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T}~~ DELAY-DOPPLER SPECTRAL ANALYSIS OF

NONSTATIONARY TI~~ VARIANT LINEAR CHhNNELS fl 
OSSlltUTtOI/gy~j~ j 1~~~

- - by
P.Bello

4 I. INTRODUCTION
A .

The channel characterization and measurement problem for
- 

A !  physical time variant channels is complicated by nonstationary

statistical behavior. This complication is, in part, analogous

to that perceived in the analysis of speech signals, particularly

with a view to the characterization of such signals in identi—

fiable classes. The earliest and still popular approach to

speech analysis involves a short—term running spectral analysis

in order to follow the nonstationary changes and to provide

identifiable characteristics (e.g., formants). A similar approach

is necessary in the measurement of nonstationary channels and is

( L developed in some detail in the discussion below. In brief, a

short—term running two-dimensional delay—Doppler spectral analy-

sis is studied as a means of characterizing the channel on a

short—term basis and allowing observance of nonstationary behaviors
The analysis draws upon prior theory developed in [1) and [23

on the characterizations and measurement of randomly time variant

linear channels.

H:
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II . THE SPECTRAL REPRESENTATION OF
TIME VARIANT CHANNELS

HT
A variety of system functions exist for characterizing the

r 
input—output relations of time variant linear channels. We use
the categorization and definition of system functions developed

in [1), where system functions are arranged in time—frequency

dual pairs. To simplify the discussion we shall deal primarily
with two system functions T(f,t) and U(~~,v) called, respectively,
the time variant transfer function and the delay—Doppler spread
function.* If z(t) is the complex envelope of the channel input
and w(t) is the complex envelope of the channel output, then

T(f,t) and U(~~,~ ) provide the input-output relations,

w ( t )  j
~ 
Z(f)T(f,t)e~

2
~~

tdf (1)

w(t) = $$ z(t_~)ej2~~t U(~~~ )dgdv (2)

where Z(f) is the spectrum of z(t).

The system functions T(f,t) and U(~ ,v) are double Fourier
transform pa ir s

j2 TTf~~-j 2irvt
$$ T(f,t)e e dfdt (3)

- — 32 r~~f j2irvt
T(f,t) ~$ U(~~,v)e e d~dv (4)

•The entire pap.r can be phrased in terms of the 625 1 system
functions M(t,f) and V(v,~ ) defined in (1).

2
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An examination of Eq. (2) reveals that the delay—Doppler

spread function provides a phenomenological model of the channel
as a continuum of differential “scatterers” subjecting the trans-

mitted signal to a complex gain U(~ ,v)d~dv for the acatterers

providir~g delays (~ ) and Doppler shifts (~ ) in the region
x (v ,v+dv). The function ~~~~~ provides the formal

F spectral representations of the time variant channel that we

shall use in this paper. It will be used in the same way that
- - the Fourier transform of a time function is used to provide a

formal spectral representation of a time series. It should be

noted that we do not propose to present a rigorous mathematical
exposition of the Fourier transform of random processes but

- - 
rather an engineering presentation following the approach
developed by the author in [3], Section III. Thus we shall side-

step questions concerning the existence of integrals and appeal
to physical interpretation for the justification of results.

The spectral occupancy of a time function is defined as the
set of frequencies over which the spectrum of the function is
“significantly” different from zero. The bandwidth of a time
function is generally defined as the highest frequency of its

I. spectral occupancy. However, in the case of narrow band pro—

1 cesses, it is more meaningful to define a “center” frequency for
the spectral occupancy and then define bandwidth as the “width” of -

the spectral occupancy, i .e., the difference between the highest
[1 and lowest frequencies in the spectra l occupancy.

Fc.~r a stationary random process z ( t )  with power spectrumI ! and autocorrelation function R~ (’r ) , th. spectrum of z(t),
defined as

I —j 2 n ft
Z(f) — z(t)e dt (5)

I. has the autocorr.lation function (see t3) , S•ction III) ,

z~( f ) Z ( 4 )  — P5(f)8(f—~
) (6)

L
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where 6(.) is the unit impulse and

i s  —j 2 rrf .r

- .  
= $ R~(T)e dr (7)

z*( t ) z ( t + ~r) = R~ (’r ) (8)

• The spectral occupancy of z(t) will clearly not include

any frequencies for which is identically zero. Where

is not identically zero some criterion of “significantly

different from zero” must be established. When z(t) is a non—

j. stationary random process the power spectrum does not have any

meaning since the latter is defined only for a stationary randorn
process. However the concepts of spectral occupancy, bandwidth,
and center frequency can still have meaning for some nonstationary

processes.

Turning now to t ime-varying channels we define by analogy

the delay-Doppler occupancy pattern or just delay—Doppler

occupancy of the channel as the set of delays and Doppler shifts
• over which the two—dimensional spectrum U(~~,v) is “significantly”

• different from zero. Examples of possible occupancy patterns

are shown in Fig. 1 (repeated from Fig. 1 of (2]). The parameters

Bmax and Lmax denoted on these patterns are 
analogous to

bandwidth for a narrow band process. 8max’ 
the Doppler spread,

is the difference between the maximum and minimum Doppler shifts

and the delay spread , is the difference between the maxi—

mum and minimum delays in the occupancy pattern .

The analog of the stationary process z(t) is the WSSUS

(wide sense stationary uncorrelated ) channel defined in [1] for

which

T*(f,t)T(f+Cl, t+’r ) = R(ç),’r) (9)
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Note that the two dimensional cDrrelation function of the time
variant transfer function depends only on time and frequency

• differences. It is readily shown ( see ( 1) that for the WSSUS
IT channel

U*(~~,v)U(~ +~ , v+~ ) = S(~~,v) 6(~~-~ ) 6 (~i-v) (10)

where the two dimensional power density spectrum S(~~,v) is called
the scatter ing function (1]. The delay—Doppler occupancy of th.
channel will clearly not include any (~~,v) values for which

• S(~~,~~) vanishes . Where S(~~,v) is not identically zero some
criterion of “significantly different from zero” must be estab—

-~~ lished. When the channel is nonstationary the scattering function
has no meaning. However the concepts of delay-Doppler occupancy,

Doppler spread , and delay spread can still have significance for
some nonstationary channels.

While the spectral representation of a channel is a clear
generalization to two dimensions of the spectral representation

of a time function, this is not true for the spectral measurement of

a time series. We note that in the channel measurement case
one must transmit probing waveforms through the channel to gener—
ate signals related to the time variant transfer function. In

addition , under certain conditions the channel system functions
are nonmeaaurable even in the absence of additive noise , Thus
the author has shown (2] tha t a t ime variant  channel is measurable
if and only if the area of the delay-Doppler occupancy pattern
is less than unity. Fi nally,  the measurement problem in the
presence of noise (2] is considerably more diff icul t  to dea l

I with in the channe l measurement case even apart from the increase
in d im.nsionality of the problem.

1~
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1 III . S}~~RT-TERM SPECTRAL ANALYSIS OF

TIME VARIANT CHANNE LS

I The integrals in ( 1) and (3)  involve integration over all
• t ime and frequency and are thus convenient mathematical

f ic t ions. Although only f i n i t e  records of a process in t im e

and frequency can ever be available and although statistical

stationarity is the exception rather than the rule, this has not
prevented spectral analysis from being an extremely useful tool

- to the communication engineer in the characterization and pro-

cessing of communication signals and interference. The type of
spectral analysis that is employed in practice is based upon

1. finite intervals of time and sometimes short—term running
intervals of time. A case in point is the analysis of speech

- 

signals with a Sonogram [3] which presents a short—term intensity
spectrum as a function of time. The advantage of such a running

analysis is that “quasi—stat ionary” spectral characteristics
can be observed. The purpose of this section is to define such

- a shor t term delay—Doppler spectral analysis for time variant
• channels and discuss some of its properties.
• 3 ,1 The Segmented Channel

Just as the basis for the short—term spectral analysis of
an analog wa veform is the Fourier analysis  of a f i n i t e  segment

- of the waveform , the basis for the short—term spectra l analysis
of a time variant channel is the Fourier analysis of a “finite

• segment” of the channel. Here “finite segment” is interpreted

as a hypothetical channel whose time variant transfer function is

1. identical to the transfer function T(f,t) of the actual channel

in a rectangular region of t-f space and is zero elsewhere. Thus
we define a truncated time variant transfer function

- 
T(f , t )  = Rect (fm)T(f,t)Rect(ttr) (11)

j where 
1 , ~~ 

~

Rect(x) 
- 

(12)

-~~~~~~~~~~~~~~~~~~~~~~~~ 7 
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One may obtain a physica l representation of a channel
with time var ian t  transfer function T(f , t )  in terms of the
channel with time variant transfer function T(f,t) by preceding
the latter with a f i l t e r  having t ransfer  function Rect( f/ W )
( i .e., an idea l band pass f i l t e r  of bandwidth W Hz) and following
it with a t ime j ate Rect( t /T)  of duration T seconds . Us ing the
Fourier t ransform property (3), (4) it is readily shown tha t the
spectral representation of the segmented channel is related to
that of the original channel by

= $$ ‘IWsinc EW ( n—~ Yj T s i nc [T(~~— v ) ) U ( ~~,~.i ) d,1d~.j

where (13)

sinc x = 
S1fl TTX (14)

The spectrum of the segmented channel is obtained by a two
d imensional convolution of the spectrum of the origina l channel
with the spectrum ‘1W sinc(W~)sinc(Tv). It is important to note

• that this latter spectrum is non-vanishing in any f i n i t e  non-

zero interval of ~ or v and decr~.ases very slowly from its

maximum value of unity. Thus although the delay-Doppler occu-
pancy pattern of the origina l channel may be identically zero
outside a given region of the ~~~ plane . The occupancy pattern
of the segmented channel cannot be ~~enc~~ally zero over any
nondegenerate region. Of coura1~,- the occupancy pattern of the
segmented channel wil l  become small su f f i ciently f a r  f r o m  the

• occupancy pat tern  of the original channel and will eventually

become sufficiently small to be regarded as negligible. How— - •

ever the occupancy pattern will be a spread—out version of the

original, the amount of spreading decreasing as T and W increase.

- 
:. A discrete spectral representation of the segmented channel

is provided by the use of sampling theory applied to O(~~,i~),

8
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Thus since the, transform of U(~~, -rI ) , ‘i~(f , t ) , is “band—limited”
in both the variables t and f we may reconstruct U(~~,~~) fr om
the samples

= -~ — ~~~~~~~~~ (15’m n  - TW \W ‘ TI

The impulse sampled version of U(~~,~~) is g iven by

= E E  U 6 ( ~~
_ 

~) o (v — ~) ( 16)

where, from (15) and (13),

Umn = J’j ’ siric [w(~~_~~)T sinc ~~~~~~~~~~~~~~~~~~
( 17)

The quantity Umn is readily shown to be equal also to the generic
coefficient in the Fourier expansion of T(f,t) (and T(f,t))

• 1 T/2 W/2 j2iif~~— j2TT~~tU n = ~ $ $ T ( f , t ) e  e dfd t (18)
• -T/2 -W/2

The segmented channel is “recovered” from the channel which
has the impulse lattice (16) for its delay—Doppler spread function

I 
~ 

by the use of band limiting before and time gating after the
latter channel as shown in Fig. 2. This is the discrete delay—

Doppler representation discussed in [1] and [2]. The input--output
relation of the segmented channel is uniquely determined by the

coefficients [U mn I •  Thus if the segmented channel input z(t) is

limited to the band of frequencies -W/2 < f < W/2, the output w(t)
is given by

I;.
j 2rr~~ t

w (t) = Rect (t/T ) ZE U z ( t  — ~ ) e ( 19)
mn mn

• V If the input is not bandlimited , then z(•) in (19) should be
replaced by only those frequency components of a(s) which lie

within-W/2 c f < W/2 .
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The number of U coefficients which are significantly
dif ferent  from zero depends upon the occupancy pattern of

~~~~~~ and the values of T and W as illustrated in Fig. 3.
Also shown in Fig. 3 is the occupancy pattern of the original

unsegraented channel in addition to that of the segmented

channel , showing the spreading of the latter relative to the
former The spreading of the occupancy pattern after segmenta-

tion is unfortunate because it increases the number of spectral

coefficients  that need to be measured in order to cnaracterize
the segmented channel . In Section 3 .3 we consider the use of
window functions as a means of reducing the spreading of the
occupancy pattern of segmented channels.

3.2 Representation of Channel in Terms of Segmented Channels

The above discussion was confined to a segmented version

of the actual channel which accepted frequencies in the band

—W/2 < f < W/2 and had output only in the time interva l
—T/2 < t < T/2. To provide spectral estimates over wider fre-
quency and time intervals one may either increase T and W or
else keep T and W fixed and use more segmented channels t~
characterize the additiona l time and frequency intervals. In
order to observe nonstationary characterist ics in t ime and fre-
quency one should keep T and W as small  as possible and build
up the actual channel with segmented channels.

Thus we consider a channel with time—variant transfer
function given by the series

Q
T(f,t) = E E ‘f’ (f,t) (20)

• p=-P q=-Q pq

• where ¶i’pq(f~t) is the time variant transfer function of a com-
ponent segmented channel

• 

• 

¶~pq (f ~ t )  = Rect(~ 
— p) T( f , t )Rect (~ — q) (21)

11
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Figure 3 DISCRETE SPECTRAL REPRESENTATION
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in which the input frequency band is confined to pW - W/2 < f

< pW + W/2 and the output t ime to qT - T/2 < t < qT + T/2,

Note that since

p=-P 
Rect(~ - Rect [(2p 

~ 1)W ~
(22)

qY_Q 
Rect(~ - q) = ~ ect [(2Q ~ 1)T ~

the summation (19) is ident ica l to

‘~(f , t )  = Rect[(2p ~ ~ y~i] T(f,t)Rect [(2Q + 1)T] 
(23)

which is a representation of the channel for input frequencies
— ( p  + i/2)W < f < (P  + 1/2)W and output t ime instants
—(Q + 1/2)T < t < (Q + 1/2)T.

By analogy with Eq. (13), the delay—Doppler spread function
of the component segmented channel (2 0 )  is readily found to be

= $$ ~_j2 irpw ( n_~ )~~j 2TrqT(~ _v)

( 2 4 )

‘1W sinc [W(~ —~)] sinc

The impulse sampled version of £~pq (~~s v) ana logous to (16) is

~pq(~~~v ) E E U ~~ ~~~ 
_
~~) o(~ 

_
~~) (25)  

•

13



where the spectral samples are

~P~~_ L ~~ (!a fl
mn ‘1W pq \ W ’ T

= $$ e_j2 W~~ j 2rTq Tv sin c [w(~ - sinc [T(v -

(26)

As in (18) the spectral samples are expressible as Fourier
coefficients

qT + T/2 pW+W/2 j2,tf~ -j2Tr~~t
= 

~~ $ $ T(f,t)e e dfdt

qT - T/2 p W - W / 2
(27)

The set of spectral samples [U~~~1 for fixed values of p
and q provide a “ snapshot ” spectral analysis of the channel .
As p and q are changed one obtains a discrete “running” spectral

analysis in the (output) time and (input) frequency variables.

3 ,3 Window Functions

In practice only a f i n i t e  number of spectral samples can
be used to characterize a component segmented channel . As di s-
cussed at the end of Section 3 .1 and illustrated in Fig. 3 ,
the number of spectral samples needed is determined by the area
of the occupancy pattern of the component L-.egment ed channel.
This area in turn is dependent upon some a .b i t r a ry  criterion as
to what values of Upq(~~V) are “significantly” different from

zero. In the discussion that follows we assume that a threshold
criterion has been established which allows us to regard
as negligible when it is less than some constant c. Thus if

denotes the set of points in the occupancy pattern of the

segmented channel,

14
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(~~,v ) 
~
‘
~pq ~~~ 1Ü~~(~~,v)1 > c Naxjupq(g,v) (28)

The occupancy pattern of the segmented channel is a somewhat
spread-out version of the actual channel occupancy pattern. Thus
in the case of a channel consisting of a single delay and Doppler
shift , i.e.,

= u 1o(~ — ~1 )6 (v 
— v~ ) (29)

we note from Eq. (23) that the magnitude of the spectrum of the
segmented channel is given by

~T pq (~~~V)~ = u
1
’IS’J sinc [W(~~1 

— 0] sinc [T(v1 
— v)]

• ( 30)

Since the sinc function drops to zero very slowly and in an
oscillatory fash ion , the zero—area occupancy pattern of the original
channel expands into a pattern of occupied reg ions . For example ,
if c in (27) is defined as 10%, the occupancy pattern of the seg-
mented channel takes the form shown in solid lines in Fig. 4.
While the total area occupied by this pattern is approximately
4.5/’1W, note that it extends almost to +3/W in ~ and ±3/T in v.
When c is decreased to 3% the pattern broadens drastically as shown
in Fig. 5. The area has increased to approximately 27.8/’1W and
the pattern extends to rd/W in ~ and ~81T in V.

In order to observe tne ~, t ime and frequency) non—stationary
characteristics of the channel it is desirable to make T and W as
small as poss ible . However we see that the penalty is an increase
in the area of the segmented channel ’ s occupancy pattern and a
consequent increase in the number of discrete spectra l samples

r needed to characterize each segmented channel. Note that if ‘1W
becomes small enough the segmented channel could become non—
measurable I
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In order to alleviate this spreading problem one may use an
expansion of the time variant transfer function over the fre-
quency band — (P + 1/2)W < f < (P  + 1/2)W and time interval

+ 1/2)T < t < (Q + i/2)T which is different from that shown
in Eq. (19) in that rectangular time and frequency gates are not
used.

Consider the representation

‘~‘(f , t )  E H ( f  — pW)G( t  — qT)T( f , t)
p=-(P+~) q=-.(Q+~) (31)

where

E H(f — pW) = 1 (32) •

-

~~~

Z G(t — qT) = 1 (33)
- w

H ( f )  = 0 ; ~~ > ~W/2 (34)

G(t) = 0 ; t t l  > $T/2 (35)

We call any function which satisfies (32) and (34) or (33) and (35)
a window function of bandwidth cLW or time duration BT, respectively.
Nyqu ist 1~4] has shown that large classes of functions can be

• 

• 
generated to satisfy what we call the window property by starting
with a rectangle and adding odd symmetric functions at the edges,
keeping the resulting function symmetrical. Typical normalized

• (W,T = 1) window functions are c(’) the “raised—cosine” function
and Tr(.) the triangle function, defined by

[1 16
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• + cos ( rtx) ; ¶ x~ < 1

C( x ) =~ (36)

0 ;

and

1 1  — Ix~ ; ~xj < 1

Tr (x )  =( (37 )
0 ; ~~~~ > 1

For purposes of discussion let us use

H(f) = C ( f/ W) (38)
G(t )  = C(t/T)

Note that

a = = 2 (39)

and that

~E z c(~~_ p ) c~~~~ q ) 1
p=— (P+ 1)  q=— (Q + 1)

f_ ( P+i/2 )w < f < (P +1/ 2 )W ~~

< t < (Q+1/2)TJ (40)

Thus

f /
• T(f , t)  = c(~ — ~) c(~ — q) “r( f ,t)

p=— (P+1) q — (Q+1)
(41)

- 1. is identica l to T(f , t) over the input frequency range -(P+1/2)W
< f < (p+1/2)w and the output t ime interval — (Q+1/2 )T < t < (Q+1/2)T.

If we define

F ‘i~pq(f ~t) = c(~ — ~) c(~ — q) T(f , t)  (42 )

17
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then ~(f,t) is represented as a summation of component segmented

channels with t ime and frequency weightings applied by the window
functions. Equation (41 ) may be compared to Eq. (20)  which can
now be viewed as the case of rectangular window functions. It is
important to note that the duration of the windows in (41) are

2W and 2T as opposed to W and T in (20). Since adjacent fre-
quency windows are separated by W Hz and adjacent time windows

by T sec, the windows overlap in (40) and not in (19). Also note

that the summation in (40) extends one unit farther in each direc-
tion compared to (19) so that somewhat more component segmented

channels are required.

These additional complexities are offset by a reduced spread-

ing of the occupancy pattern of the segmented channel. Thus

upon Fourier transforming (41), we note that the spectrum of the

segmented channel with raised cosine windows is given by

= $$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

sinc [2W(ii — ~~)]  sinc 12T( u — v)] u’ ~ A
• 2 2 2 2(1 — 4W (r ~ — 

~~) )( 1. — 4T (~
j
~ 

—

(43 )

• 
, where

- ! . c(y) = 
sinc 2~ (44)

— 1 — 4 y

is the Fourier transform of the raised cosine window function C(x).

To see the reduced spreading of the segmented channel’s

occupancy pattern associated with raised cosine windows we con-

eider the case of a channel consisting of a single delay and

Doppler shift, Eq. (28). Using (28) in (42) we find that for

raised cosine weighting

18
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sinc [2W(~~1 — ~)) sinc [2T(~ 1 —

Max ~~~~~~~~~~ 
— 

El — 4W2 ( {1 — ~) 2 ][1 — 4T2 (~~1 
— v ) 2)

(45)

For c = 10% the occupancy pattern takes the form shown by

• dashed lines in Fig. 4. The area of this pattern is 2.3/TW and

extends to around +1,fW in ~ and ±l/T in v. The improvement of

raised cosine weighting over rectangular weighting becomes very

• noticeable for c = 3% as shown in Fig. 5. Hera the area has

increased to only 3.6/’1W and the pattern still extends to only

around j1/W in ~ and +1/T in v.

For general window functions it is clear that the spectrum

of the segmented channel can be expressed as

q(~~ V)  = $$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(46 )

where h(~~) , g ( V )  are the Fourier transforms of the window functions
H(f) and G(t), respectively.

Consider now the discrete representation of each of the seg-

mented channels. We note first that the application of general

window functions as described above causes an increase in the input
bandwidth and output t ime duration c • • which the segmented channel

is characterized to aW and $T , respectively. The sampling grid
then becomes finer with samples occuring at (m/aW, n/6T) where m ,n
are integers. For the case of the raised cosine windows the samples

are at (m/2W , n/2T). Thus, in the latter case, the discrete spectral

samples needed to represent the channel are given by

19
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Fig. 4 Occupancy Patterns of Segmented Channels With
Raised Cosine and Rectangular Gates for a 10%
Threshold Level.
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~P~~= _ ~i._~~ (-~ ~~run 4 1W pq\2W , 2T

= 

~ $$ ~~~~~~~~~~~~~~~~~~~~~~~~~~ (47 )

-
~ sinc 2W(~ — m/2W) sinc 2T(y — n/2T)

2 2 2 2 U(~ ,V)d~dV[1 — 4W (~~ — m/2W) ][1 — 2T ( v  — n/2T) ]

It should be clear that the number of discrete spec tral coeff icients
required to characterize the segmented channel with raised cosine
windows of durations 2T, 2W is around four times that required for
rectangular windows of durations T, W , at least ignoring the differ-
ences of spreading of the occupancy patterns for the two cases,

One may use raised cosine windows of smaller width than 2T, 2W,
but then more segmented channels would be needed to characterize
the channel over large intervals of input bandwidth and output time,
For example, suppose the raised cosine windows were of duration T, W.
Roughly four times as many segmented channels would be required but
each segmented channel would require roughly the same number of
spectral samples as rectangular gates of duration T, W if the oc—
cupancy patterns of the segmented channels had the same area in both
cases. However , as Fig. 5 shows, the spreading caused by the rec-
tangular gates can be rather severe as compared to raised cosine
gates.

Assuming that the window widths of 2T and 2W are used and thus
the spectral samples are given by (46), the input—output relation
for the segmented channel becomes

n

w~~(t) = Rect (
~ 

- ~ U~~ z~(t - ~~)e
1
~~~

t

(48 )

L. 

21 
•



L. ..i
_ _ _ _ _ _ _  

I
• 

,‘~~~ 

‘
~~~

• 
rectangular windows

- raised cosine
• 

~~~ windows

96

- ()

• • 
•

- 

~~~~~~ LoQ~oOO OQOO~o

Fig. S Occupancy Patterns of Segmented Channels with
Ra ised Cosine and Rectangular Gates for a - 3%
Threshold Level,

22



where z~~(t )  is that portion of the input signa l z ( t )  contained
- within the spectral band (p — 1)W < f < (p  + 1)W .

1~
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IV . SPECTRAL MEASUREMENT

— In a previous paper [2] the channel measurement problem was
formulated for a single segmented channel with rectangular windows
on the input time and output frequency. Here we wish to consider

the more practical running discrete spectral analysis with shaped

windows outlined in the previous section. For concreteness we will

assume overlapping raised cosine windows of duration 2T and 2W
for input frequency and output time, We first confine our atten-

tion to the case of a single input frequency window but a large

number of overlapping output time windows. As shown in Fig. 6,

the frequency window is assumed to cover the band -W < f < W Hz,
Also it is assumed that the input signal z(t) contains no

frequency components outside of this band and has a non—zero
spectrum at all frequencies within this band , except possibly for

= ±W. From (48) we find that the output of a particular time

window located at (q — 1)T < t < (q + 1)T may be expressed as

Wq
(t) = Rect - 

~ 
U~~ z(t - ~

) eJ~~T t

t+ C~~ — q)n(t) (49)

where n ( t )  is an additive noise , assumed white in the present dis-
cussion . The “ short—term ” spectral samples [U~~~) are given by

- ~jrrqn j2ir TVrun — $$ e q c(W ~ — m)c(TV - n )U (~~, v)d Edv

(50)

where c(.) is the transform of the raised cosine spectrum (see (4—31)),, —
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The least—squares measurement technique to extract the

spectral samples [U
~n) 

from wq(t) can be approached exactly as
in [2]. However , here we follow a sl ightly dif ferent procedure
using a continuous rather than discrete representation of Wq ( t )
(see, for example , the formulation by Levin [5]). To simplify

the notation we assume the set of possible discrete delay—

Doppler—shift pai rs  has been ordered in some convenient fashion.
The k th delay—Doppler shif t  pair (ru k ,  ~~~ 

is denoted by the
vector The received waveform can then be represented by the
vector product

Wq ( t )  = Rect (
~~ 

— 

~
) U~~~Z ( t )  + c(~ — q)n ( t)  (51)

T T -where the vectors U~ and Z ( t )  are given by

~~ T - .. [u~ , U~ , ... u~ ] (52)q —1 —2 —s

zT(t )  = [Zd (t), Z
d 
(t), •.. z (t)] (53)

— —1 —2

in which

= [rnk,rlk]

~~~~ ~~~~~~~ , (55)

n
mkz~~ t) = z ( t  — ~~ )e (56)

The discrete spectral representation of the qth channel is given
by the vector Q~. The least squares estimate of Uc~ 

is given by
(see [5], pg. 40)

A

- ..q .q
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where the typical element of Eq and M~ are given by

(q+ 1)T
= $ Zd ( t ) z ~ ( t ) d t  ( 58)

• ( q— 1)T ~k

(q+1 )T
M~ = $ Zd~ 

( t ) W q ( t ) d t  (59)
(q — 1)T -

The matrix M~ is essentially the set of matched filter outputs.
One may write (59) in the alternate form

(q+1)T 1
= $ ~~ ~*(t)Wq(t)dt (60)

(q-1)T

If we defi ne the column matr ix

• 

~~ (t )  = E~ z *(t ) (6 1)

• then

(q+ 1)T
= $ ~q ( t ) W q ( t ) d t  (62)
(q-1)T

The matr ix  e ( t )  is a column vector of s time functions which
may be computed once the occupancy pat tern of the channel is
known. Equation (62 ) represents the estimate of each spectra l
coefficient as an inner product of the received signa l and one
of the component t ime functions of ~~ ( t ) ,  Alternatively, Eq. (57)
shows that this estimate may also be represented as a weighted
sum of “matched filter” outputs,
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The least square estimate (57) is the minimum variance linear
estimator only when the noise is white and WSS (wide sense
stationary) . For mor e general noise the minimum variance linear
estimate is the Ilarkov estimate Isee [5]], In the channel under
study we consider only the case of white and WSS noise at the
receiver input. However, it should be noted that the imposition
of the segmenting time gate makes the noise observed after the
time gate nonstationary. Thus it might appear as if the more
general Markov estimate should be used , For our special case we
may obtain the Narkov estimate by the simple artifice of dividing
both sides of (49) or (51) by the time gate C(~ - g), which removes
the raised cosine gate from both the noise and observed data ,
replacing it by the rectangular gate Rect(t/2T — q/2). Equation
(51) becomes

w(t)Rect (t/2T - q/2) Rec~~~~~T_
_
q~
/2) 

~~z ( t)  + n(t)

(63)

where w ( t )  is the receiver inpu t waveform . Since the noise in
(63)  is white and WSS now one may employ least squares to obtain
the min imum variance linear estima te. Thus if this estimate is
denoted by we find

• 
U = F 1N (64)_q -q~~q

where the typical elements of F~’ and N~ are

,~(q+1)T 
Zd (t )za (t)

- 
_k _~~ .

(q-1)T 
- q

(q+ 1)T z~ ( t ) w ( t )

J C*(t/T_q)
(q— 1 )T
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An examination of (65) and (66) reveals that certain diffi-

culties may occur in applying (64) since the gating function can

drop to zero and the coefficients F~~ and N~ might become infinite.
This singular case has not been examined yet. The covariance

matrix of the measurement error for the least squares and Markov

estimates are [see [5] and [2]],

C (U) <~j ~~
T
> - ~~~~~~~ 

T>ov _q ~q..q 
_q 

~q

(E~~D E ~~ ) <ln (tH
2> (67)

~~~
— c~ (&~

) = F 1<~n(tfl
2> (68)

where the typical element of the matrix is given by

(q+1)T 2
= $ j C( tt r  — q)~ zd (t)z

~~
(t) dt (69)

(g-1)T

We cons ider now the more general case in which there are
2P+ 1 input raised cosine frequency windows each of width 2W cpa ,
with the “center ” window located at —W<f <W Hz. From Eq. (48) we

see that the output of a particular time window located at (q—1)T

<f< (q+1)T may be expressed as

P
W
q
(t) = E w~~(t)

p=-P
n

= Rect(t/2 T — q/2 ) E E ~ U~~z~ (t — ~~ )e
i T

p m n

H + C(ttr  — q) n ( t )  (70)
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where z~ ( t )  is that portion of the input signal z(t) located
within the spectral band (p -1)W< f< (p+1)W . Equation (51) may
still be used to re~ resent wq( t)  provided we used the definit ions

= E~~~p q i T ~~_p q L#• ,q~~~~~~~~~~~ ,q~~~~ 1~~~~,q 1 ’• S
~~~~ E ,q ] 71)

ZT(t )  =

(72)

in which

uT = [ug~, u~ , • . .,  u~~~] (73)
~p,q _~~ ,~~~ -s

z~ ( t )  = [zpd (t), zpd (t), ..., z~~~ ( t ) ] (74 )

where

= k ”~k
3 (75)

(76 ) -:
k

n
m.K jrr-~~t (77)

zPd
(t) = z~ (t — ~~ )e -

In the defini t ions above it has been assumed , for simplicity, that

• the occupancy pattern is the same for each segmented channel. If

desired , one may extend the notation to a different occupancy
pattern for each segmented channel. The discrete spectral repre-
sentation of the segmented channel with the p~~ frequency gate

30
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and ~~~ t ime gate is the vector U . The set of spectral repre-pq thsentations for all  the frequency gates and the q time gate is
g iven by Uq • The least squares estimate of ~~~~~~~, Ug can be expressed
in the general form (57) where U~ , E~ and M~ must be redefined as
the following partitioned matrices

—P ~~~q
’—P , 1—P •

~~~~
•

~q ’1—P , —P ~q ’1—P , 1—P 
______

E = (78)

‘ . .  
~~~q

’P—1
,P — 1  ~~~q

’P—1
,
P

— ~~ ~q ’P , P—1 ~q’P , P

(79)

= 1~—P ,q~~— P ,ç ” ITJ~~~~~~

q

I • • •~~~~U

T

P q ) (80)

The typical elements of ~~~~ and %q are

qp1p2 (q+1)T mk n~ J~
(nk_n~)t$ z~~ (T - ~j)z~~ (t - ~~)e dt

(q—1) T 
(81)
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• (q+1)T m
~ — j ~ n t

= $ z~ (t — ~~)e 
~~
‘ Wq(t) dt (82)

(q-1)T

Since the time functions z ( t )  and z ( t )  occupy portionsp1 p2
of the same frequency band only when p1 and p2 diff er by uni ty,  as
long as ‘1W >> 1 and the Doppler spread of the channel is much less
than W,

qp1p2E
kt 0 for ~p1 — p2~ > 1 (83 )

and the matr ix  will be sparse .

Markov estimates and error va r iances for the spectral coefficients
may be formed as in the single-frequency gate case,
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