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THE DELAY-DOPPLER SPECTRAL ANALYSIS OF 7
NONSTATIONARY TIME VARIANT LINEAR CHANNELS Ll

by it AVAIL mije

P. Bello ; ?

I. INTRODUCTION

JThe channel characterization and measurement problem for
physical time variant channels is complicated by nonstationary
statistical behavior, This complication is, in part, analogous
to that perceived in the analysis of speech signals, particularly
with a view to the characterization of such signals in identi-
fiable classes., The earliest and still popular approach to
speech analysis involves a short-term running spectral analysis
in order to follow the nonstationary changes and to provide
identifiable characteristics (e.g., formants). A similar approach
is necessary in the measurement of nonstationary channels and is
developed in some detail in the discussion below, In brief, a
short-term running two-dimensional delay-Doppler spectral analy-
sis is studied as a means of characterizing the channel on a
short-term basis and allowing observance of nonstationary behavior,
The analysis draws upon prior theory developed in [1] and [2]
on the characterizations and measurement of randomly time variant
linear channels,

\




II. THE SPECTRAL REPRESENTATION OF
TIME VARIANT CHANNELS

A variety of system functions exist for characterizing the
input-output relations of time variant linear channels, We use
the categorization and definition of system functions developed
in [1], where system functions are arranged in time-frequency
dual pairs, To simplify the discussion we shall deal primarily
with two system functions T(f,t) and U(g,v) called, respectively,
the time variant transfer function and the delay-Doppler spread
function.* If z(t) is the complex envelope of the channel input
and w(t) is the camplex envelope of the channel output, then
T(f,t) and U(g,v) provide the input-output relations,

wit) = [ z()7(e,0)ed? ™ at (1)

w(t) = [[ z(e-g)e??™" u(g,v)agav (2)

where 2(f) is the spectrum of z(t),

The system functions T(f,t) and U(g,v) are double Fourier
transform pairs

2nfEg~j2nvt

u(g,v) = jj T(f,t)ej e dafac (3)
R -j2nef j2mut

T(£,t) = EI u(eg,v)e . ej h dedv (4)

'Tho entire per can be phrased in terms of the dual system
functions M(t,f) and V(v,f) defined in [1].
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An examination of Eq, (2) reveals that the delay-Doppler
spread function provides a phenomenological model of the channel
as a continuum of differential "scatterers" subjecting the trans-
mitted signal to a complex gain U(g,v)dgdv for the scatterers
providing delays (&) and Doppler shifts (v) in the region
(g,e+ag) x (v,v+dv). The function U(g,y) provides the formal
spectral representations of the time variant channel that we
shall use in this paper. It will be used in the same way that
the Fourier transform of a time function is used to provide a
formal spectral representation of a time series, It should be
noted that we do not propose to present a rigorous mathematical
exposition of the Fourier transform of random processes but
rather an engineering presentation following the approach
developed by the author in [3], Section III, Thus we shall side-
step questions concerning the existence of integrals and appeal
to physical interpretation for the justification of results,

The spectral occupancy of a time function is defined as the
set of frequencies over which the spectrum of the function is
“significantly” different from zero, The bandwidth of a time
function is generally defined as the highest frequency of its
spectral occupancy., However, in the case of narrow band pro-

cesses, it is more meaningful to define a "center" frequency for
the spectral occupancy and then define bandwidth as the "width" of
the spectral occupancy, i.e., the difference between the highest
and lowest frequencies in the spectral occupancy,

For a stationary random process z(t) with power spectrum
Pz(f) and autocorrelation function Rz(7), the spectrum of z(t),
defined as

-42nft
Z(£) = J’ z(t)e % at (s)

has the autocorrelation function (see [3], Section III),

Z*(£)Z(¢) = pl(t)a(t-c) (6)
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where 8(.) is the unit impulse and

—j2nfr
P_(f) = j R,(m)e ar (7)

z*(t)z(t+r) = Rz(T) (8)

The spectral occupancy of z(t) will clearly not include
any frequencies for which Pz(f) is identically zero. Where
Pz(f) is not identically zero some criterion of "significantly
dif ferent from zero" must be established, When z(t) is a non-
stationary random process the power spectrum does not have any
meaning since the latter is defined only for a stationary random
process., However the concepts of spectral occupancy, bandwidth,
and center frequency can still have meaning for some nonstationary

processes,

Turning now to time-varying channels we define by analogy
the delay-Doppler occupancy pattern or just delay-Doppler
occupancy of the channel as the set of delays and Doppler shifts
over which the two-dimensional spectrum U(g,v) is "significantly"
different from zero., Examples of possible occupancy patterns
are shown in Fig, 1 (repeated from Fig. 1 of [2]). The parameters
B and L denoted on these patterns are analogous to

max max
bandwidth for a narrow band process, B the Doppler spread,

max’
is the difference between the maximum and minimum Doppler shifts
and L ., the delay spread, is the difference between the maxi-
mum and minimum delays in the occupancy pattern,
The analog of the stationary process z(t) is the WSSUS
(wide sense stationary uncorrelated) channel defined in [1] for

which

T*(£,t)T(£+Q, t+7) = R(Q,T) (9)
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Note that the two dimensional correlation function of the time
variant transfer function depends only on time and frequency
differences, It is readily shown (see [1] that for the WSSUS
channel

U*(E,V)U(E+n, v+u) = S(E,v) 6(n=-€)6(u-v) (10)

where the two dimensional power density spectrum S(§,v) is called
the scattering function [1]. The delay-Doppler occupancy of the
channel will clearly not include any (£,v) values for which

S(g,v) vanishes, Where S(g,v) is not identically zero some
criterion of "significantly different from zero" must be estab-
lished, When the channel is nonstationary the scattering function
has no meaning, However the concepts of delay-Doppler occupancy,
Doppler spread, and delay spread can still have significance for
some nonstationary channels.

While the spectral representation of a channel is a clear

generalization to two dimensions of the spectral representation

of a time function, this is not true for the spectral measurement of
a time series, We note that in the channel measurement case

one must transmit probing waveforms through the channel to gener-
ate signals related to the time variant transfer function, 1In
addition, under certain conditions the channel system functions
are nonmeasurable even in the absence of additive noise, Thus

the author has shown [2] that a time variant channel is measurable
if and only if the area of the delay-Doppler occupancy pattern

is less than unity, Finally, the measurement problem in the
presence of noise [2] is considerably more difficult to deal

with in the channel measurement case even apart from the increase
in dimensionality of the problem,
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III, SHORT-TERM SPECTRAL ANALYSIS OF
TIME VARIANT CHANNELS

The integrals in (1) and (3) involve integration over all
time and frequency and are thus convenient mathematical
fictions, Although only finite records of a process in time
and frequency can ever be available and although statistical
stationarity is the exception rather than the rule, this has not
prevented spectral analysis from being an extremely useful tool
to the communication engineer in the characterization and pro-
cessing of communication signals and interference. The type of
spectral analysis that is employed in practice is based upon
finite intervals of time and sometimes short-term running
intervals of time, A case in point is the analysis of speech
signals with a Sonogram [3] which presents a short-term intensity
spectrum as a function of time, The advantage of such a running
analysis is that "quasi-stationary" spectral characteristics
can be observed., The purpose of this section is to define such
a short term delay-Doppler spectral analysis for time variant
channels and discuss some of its properties,

3.1 The Segmented Channel

Just as the basis for the short-term spectral analysis of
an analog waveform is the Fourier analysis of a finite segment
of the waveform, the basis for the short-term spectral analysis
of a time variant channel is the Fourier analysis of a "finite
segment" of the channel, Here "finite segment" is interpreted
as a hypothetical channel whose time variant transfer function is
identical to the transfer function T(f,t) of the actual channel
in a rectangular region of t-f space and is zero elsewhere, Thus
we define a truncated time variant transfer function

T(£,t) = Rect(£M)T(£,t)Rect(t/T) (11)
where
1 5 Ixl <4
Rect(x) = - (12)
0 ; |x| ?.%
7
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One may obtain a physical representation of a channel
with time variant transfer function 5(f,t) in terms of the
channel with time variant transfer function T(f,t) by preceding
the latter with a filter having transfer function Rect(f/W)
(i.e.,an ideal band pass filter of bandwidth W Hz) and following
it with a time gjate Rect(t/T) of duration T seconds, Using the
Fourier transform property (3), (4) it is readily shown that the
spectral representafion of the segmented channel is related to
that of the original channel by

Ulg,v) = j_[msinc (W(n-€)] T sinc [T(u=-v)]U(n,u) dndu

where (13)

sinc x = 210 TX (14)
™

The spectrum of the segmented channel is obtained by a two
dimensional convolution of the spectrum of the original channel
with the spectrum T™W sinc(Wg)sinc(Tv). It is important to note
that this latter spectrum is non-vanishing in any finite non-
zero interval of € or v and decr.ases very slowly from its
maximum value of unity, Thus although the delay-Doppler occu-
pancy pattern of the original channel may be identically zero
outside a given region of the €,v plane. The occupancy pattern
of the segmented channel cannot be i1dent.cally zero over any
nondegenerate region, Of course, the occupancy pattern of the
segmented channel will become small sufficiently far from the
occupancy pattern of the original channel and will eventually
become sufficiently small to be regarded as negligible. How-
ever the occupancy pattern will be a spread-out version of the
original, the amount of spreading decreasing as T and W increase,

A discrete spectral representation of the segmented channel
is provided by the use of sampling theory applied to ﬁ({,n).




Thus since the. transform of G(g,n), ‘f‘(f,t), is "band-limited"
in both the variables t and f we may reconstruct 6(g,n) from
the samples

Unn = %% ﬁ(% ’ %) (15)

The impulse sampled versionof ﬁ(g,n) is given by

G(e,m) = zz v 6(g-2)s(v- 1) (16)
where, from (15) and (13),
L .” sinc [w(g-%):! sinc [T( -%)ZU(g,v)dgdn

(17)

The quantity Umn is readily shown to be equal also to the generic
coefficient in the Fourier expansion of T(f,t) (and "f‘(f,t))

j2nf % - jomn B¢

T/2 W/2 -
FUCTET e e o T aEee  (18)

: Yun = é%
' -T/2 -W/2

The segmented channel is "recovered" from the channel which
has the impulse lattice (16) for its delay-Doppler spread function
by the use of band limiting before and time gating after the
latter channel as shown in Fig, 2., This is the discrete delay-
Doppler representation discussed in [1] and [2]., The input-output
relation of the segmented chénnél is uniquely detefmined by the
coefficients[Umn}. Thus if the segmented channel input z(t) is

|| limited to the band of frequencies -W/2 < f < W/2, the output w(t)

isgiven by
& j2n-%t
1 w(t) = Rect(t/T) X U 2z(t - v—v)e (19)
| mn W0
n If the input is not bandlimited,then z(+) in (19) should be
i replaced by only those frequency components of z(.) which lie

within -W/2 < £ < W/2,
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The number of Umn coefficients which are significantly
different from zero depends upon the occupancy pattern of
G(g,v) and the values of T and W as illustrated in Fig, 3.

Also shown in Fig, 3 is the occupancy pattern of the original
unsegmented channel in addition to that of the segmented
channel, showing the spreading of the latter relative to the
former, The spreading of the occupancy pattern after segmenta-
tion is unfortunate because it increases the number of spectral
coefficients that need to be measured in order to characterize
the segmented channel, In Section 3.3 we consider the use of
window functions as a means of reducing the spreading of the
occupancy pattern of segmented channels,

3.2 Representation of Channel in Terms of Secmented Channels

The above discussion was confined to a segmented version
of the actual channel which accepted frequencies in the band
-W/2 < £ < W/2 and had output only in the time interval
-T/2 < t < T/2. To provide spectral estimates over wider fre-
quency and time intervals one may either increase T and W or
else keep T and W fixed and use more segmented channels to
characterize the additional time and frequency intervals. In
order to observe nonstationary characteristics in time and fre-
quency one should keep T and W as small as possible and build
up the actual channel with segmented channels,

Thus we consider a channel with time-variant transfer
function given by the series
P Q

MeE,e)m B . T B (2,8 (20)
=P q:-Q Pq

where qu(f,t) is the time variant transfer function of a com-
ponent segmented channel

'f‘pq(f,t) = Rect(% - p)T(f,t)Rect(% - q) (21)
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in which the input frequency band is confined to pW - W/2 < £
< pW + W/2 and the output time to gqT - T/2 < t < qT + T/2,

Note that since

P
£ 15 £
:ip Rect(ﬁ - ) = ReCt[IEE_:—TTW]
(22)
% R c(E ) = Rect S
2. ect(7 - 4) = Rect| 555177

the summation (19) is identical to
-~ e |
T(f,t) = RSCt[fEE_g_TTW} T(f,t)Rect[ria—%—TTEJ (23)

which is a representation of the channel for input frequencies
-(P + i/2)W < £ < (P + 1/2)W and output time instants
-(Q + 1/72)T < t < (Q + 1/2)7T.

By analogy with Eq, (13), the delay-Doppler spread function
of the component segmented channel (20) is readily found to be

qu(g,v) - Ij o-32mPW(n=g) _ 327qT(u-v)

o (24)
™ sinc (W(n-g) ] sinc [T(u=-v)JU(n,u)dndu

The impulse sampled version of ﬁpq(g,v) analogous to (16) is

Goq(E,v) = z 2 uPd (g - B) o(g - B) (25)

13




where the spectral samples are

Uig -'I_'lw_ qu (% 2 %)

U(g,v)dedy (26)

As in (18) the spectral samples are expressible as Fourier

coefficients
n
qT + T/2 ,pW+W/2 j2nf 3 -j2mat
vbd = L | [ T(f,t)e’ "e T afat

qT-T/2 pW=-W/2
(27)

The set of spectral samples {Ugg] for fixed values of p
and q provide a "snapshot" spectral analysis of the channel,
As p and q are changed one obtains a discrete "running" spectral
analysis in the (output) time and (input) frequency variables,

3.3 Window Functions

In practice only a finite number of spectral samples can
be used to characterize a component segmented channel, As dis-
cussed at the end of Section 3,1 and illustrated in Fig, 3,
the number of spectral samples needed is determined by the area
of the occupancy pattern of the component gegmented channel,
This area in turn is dependent upon some a.bitrary criterion as
to what values of ﬁpq(g,v) are "significantly" different from
zero, In the discussion that follows we assume that a threshold
criterion has been established which allows us to regard ﬁpq(;,v)
as negligible when it is less than some constant ¢, Thus if
§ denotes the set of points in the occupancy pattern of the
segmented channel,

14
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(g,v)cépqglﬁm(g,v)l > cMax|(3pq(g,v)| (28)

The occupancy pattern of the segmented channel is a somewhat
spread-out version of the actual channel occupancy pattern, Thus
in the case of a channel consisting of a single delay and Doppler
shift, i,e,,

U(g,v) = 015(§ - 51)6(v ~ vl) (29)

we note from Eq., (23) that the magnitude of the spectrum of the
segmented channel is given by

\ﬁpq(g,v)\ & U1TW sinc [w(g1 - g)] sinc [T(v1 - V)]
(30)

Since the sinc function drops to zero very slowly and in an
oscillatory fashion, the zero-area occupancy pattern of the original
channel expands into a pattern of occupied regions, For example,

if ¢ in (27) is defined as 10%, the occupancy pattern of the seg-
mented channel takes the form shown in solid lines in Fig, 4,

While the total area oSccupied by this pattern is approximately
4.5/TW, note that it extends almost to +3/W in g and +3/T in v,

When ¢ is decreased to 3% the pattern broadens drastically as shown
in Fig, 5., The area has increased to approximately 27.8/TW and

the pattern extends to +8/W in g and *8/T in v.

In order to observe the (time and frequency) non-stationary
characteristics of the channel it is desirable to make T and W as
- small as possible, However we see that the penalty is an increase
in the area of the segmented channel's occupancy pattern and a
consequent increase in the number of discrete spectral samples
needed to characterize each segmented channel, Note that if TW
becomes small enough the segmented channel could become non-
measurable!

15
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In order to alleviate this spreading problem one may use an
expansion of the time variant transfer function over the fre-
quency band -(P + 1/2)W < f < (P + 1/2)W and time interval
-(Q + 1/72)T < t < (Q + 1/2)T which is different from that shown
in Eq. (19) in that rectangular time and frequency gates are not
used,

Consider the representation

P+a Q+8
Me,e) = T B H(f - pW)G(t - gT)T(f,t)
p=-(P+a) g=~(Q+B)
(31)
where

T H(f - pW) = 1 (32)
T G(t -~ gqT) =1 (33)
H(f) =0 ; |f] > aW/2 (34)
G(t) =0 ; |t] > BT/2 (35)

We call any function which satisfies (32) and (34) or (33) and (35)
a window function of bandwidth gW or time duration BT, respectively,
Nyquist [f4] has shown that large classes of functions can be
generated to satisfy what we call the window property by starting
with a rectangle and adding odd symmetric functions at the edges,
keeping the resulting function symmetrical. Typical normalized
(W,T = 1) window functions arec(+) the "raised-cosine" function

and Tr(.) the triangle function, defined by

16




% + % cos (mx) ; [x]| <1

C(x) =
0 s x|l 21
and
1 - 1x] ;3 x| <1.
Tr(x) =
| 0 3 Ix] »1
I
For purposes of discussion let us use
G(t) = c(t/T)
Note that
a=8=2 (39)
and that
P+1 Q+1 oy
D r cf-p)c(F=q)=1;
p==-(P+1) g=-(Q+1)
-(P+1/2)W < £ < (P+1/2)W
-(Q+1/2)T < t < (Q+1/2)T (40)
|
Thus 3
2 P+1 Q+1 1 4
Me,e) = ¢ s & -p)c(f-q) e, |
p=-(P+1) g=-(Q+1) |
|
(41) | 4
is identical to T(f,t) over the input frequency range -(P+1/2)W
< f < (P+1/2)W and the output time interval -(Q+1/2)T < t < (Q+1/2)T,
If we define
o ; £, kL
1_ qu(f,t) = C(w p) C(T q) T(f,t) (42)
Ii | 17
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then f(f,t) is represented as a summation of component segmented
channels with time and frequency weightings applied by the window
functions., Equation (41) may be compared to Eq, (20) which can
now be viewed as the case of rectangular window functions, It is
important to note that the duration of the windows in (41) are

2W and 2T as opposed to W and T in (20)., Since adjacent fre-
quency windows are separated by W Hz and adjacent time windows

by T sec, the windows overlap in (40) and not in (19). Also note
that the summation in (40) extends one unit farther in each direc-
tion compared to (19) so that somewhat more component segmented
channels are required.

These additional complexities are offset by a reduced spread-
ing of the occupancy pattern of the segmented channel, Thus
upon Fourier transforming (41), we note that the spectrum of the
segmented channel with raised cosine windows is given by

> -j2mpW(n-g) _32nqT(u-v)
qu(g,v) = jf e e ™

sinc [2W(n - E)] sinc |2T§g 2] Ul n, w)dndu
(1 - aw? (n=-¢) )(1 47° (b - v)

(43)

where

ely) = 8iDE 2Y (44)

is the Fourier transform of the raised cosine window function C(x).

To see the readuced spreading of the segmented channel's
occupancy pattern associated with raised cosine windows we con-
sider the case of a channel consisting of a single delay and
Doppler shift, Eq. (28). Using (28) in (42) we find that for
raised cosine weighting

18
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Gpq(8V) | sinc (2W(g, - €)] sinc [2T(v, - V)]

Max |G (g,v)] 01 - awi(g, - 02101 - 4T3 (v, - WP

(45)

For ¢ = 10% the occupancy pattern takes the form shown by
dashed lines in Fig, 4. The area of this pattern is 2,3/TW and
extends to around +1/W in g and +1/T in v. The improvement of
raised cosine weighting over rectangular weighting becomes very
noticeable for ¢ = 3% as shown in Fig, 5., Here the area has
increased to only 3.6/TW and the pattern still extends to only
around *1/W in g and +1/T in v.

For general window functions it is clear that the spectrum
of the segmented channel can be expressed as

qu(g.v) = II e-jZ"pW(“';)ejZ“qT(“-V)h(n-g)g(u-v)upq(n.u)dndu
(46)

where h(g), g(v) are the Fourier transforms of the window functions
H(f) and G(t), respectively.

Consider now the discrete representation of each of the seg-
mented channels. We note first that the application of general
window functions as described above causes an increase in the input
bandwidth and output time duration o ! .which the segmented channel
is characterized to oW and BT, respectively. The sampling grid
then becomes finer with samples occuring at (m/aW, n/gT) where m,n
are integers, For the case of the raised cosine windows the samples
are at (m/2W, n/2T), Thus, in the latter case, the discrete spectral
samples needed to represent the channel are given by

19
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Un = 7 Opglzw |, 27)

- % ” e~ JmPm, jngn -~ j2mpWE  j2nqTy (47)

~ _sinc 2W(& - m/2W) sinc 2T(v - n/2T)
[1 - aw?(g - m/20)%][1 - 27%(v - n/2T) %)

It should be clear that the number of discrete spectral coefficients
required to characterize the segmented channel with raised cosine
windows of durations 2T, 2W is around four times that required for
rectangular windows of durations T, W, at least ignoring the differ-
ences of spreading of the occupancy patterns for the two cases,

One may use raised cosine windows of smaller width than 2T, 2W,
but then more segmented channels would be needed to characterize
the channel over large intervals of input bandwidth and output time,
For example, suppose the raised cosine windows were of duration T, W,
Roughly four times as many segmented channels would be required but
each segmented channel would require roughly the same number of
spectral samples as rectangular gates of duration T, W if the oc-
cupancy patterns of the segmented channels had the same area in both
cases, However, as Fig., 5 shows, the spreading caused by the rec-
tangular gates can be rather severe as compared to raised cosine
gates,

Assuming that the window widths of 2T and 2W are used and thus
the spectral samples are given by (46), the input-output relation
for the segmented channel becomes

Jnﬂt
£ ~ yPd o e T
wpq(t)_ » Rect (2T 2) g : Umn p(t 2W

(48)

21
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Fig. 5 Occupancy Patterns of Segmented Channels with
Raised Cosine and Rectangular Gates for a 3% '
Threshold Level, :
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where zp(t) is that portion of the input signal z(t) contained
within the spectral band (p - 1)W < f < (p + 1)W,

s 5 p———
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IV. SPECTRAL MEASUREMENT

In a previous paper [2] the channel measurement problem was
formulated for a single segmented channel with rectangular windows
on the input time and output frequency. Here we wish to consider
the more practical running discrete spectral analysis with shaped
windows outlined in the previous section, For concreteness we will
assume overlapping raised cosine windows of duration 2T and 2W
for input frequency and output time, We first confine our atten-
tion to the case of a single input frequency window but a large
number of overlapping output time windows. As shown in Fig. 6,
the frequency window is assumed to cover the band -W < £ < W Hz,
Also it is assumed that the input signal z(t) contains no
frequency components outside of this band and has a non-zero
spectrum at all frequencies within this band, ' except possibly for
f = +W, From (48) we find that the output of a particular time
window located at (q - 1)T < t < (g + 1)T may be expressed as

: n
wq(t) = Rect (2%‘ _%)gqu z(t it _i%) eJTTTt

+ ¢(§ - q)nte) (49)

where n(t) is an additive noise, assumed white in the present dis-
cussion, The "short-term" spectral samples {Ugn} are given by

a4 _ gJiman
L : IJ e32™TV o (wg - m)c(Ty - n)U(E,v)dedy

(50)

where c(-) is the transform of the raised cosine spectrum (see (4-31)).
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The least-squares measurement technique to extract the
spectral samples {Ugn} from wq(t) can be approached exactly as
in [2]. However, here we follow a slightly different procedure
using a continuous rather than discrete representation of w_(t)
(see, for example, the formulation by Levin [5]). To simplify
the notation we assume the set of possible discrete delay-
Doppler-shift pairs has been ordered in some convenient fashion,
The kth delay-Doppler shift pair (mk, nk) is denoted by the
vector dk. The received waveform can then be represented by the

vector product

wg(t) = Rect (% - 9 uzz(e) + c(% - a)n(e) (51)

where the vectors gi and %T(t) are given by

T _ ryd q q
Yy [qu' qu, fd qu] (52)
T —
Z(%) = [zgl(t), z‘-’-z(t)' zqs(t)? (53)
in which
q, = [m,n.] (54)
9 = 4 . (55)
e Ty
JﬂEEt

m
() = z(t - 5%)e T (56)

"y
The discrete spectral representation of the qth channel is given
by the vector U ., The least squares estimate of gq is given by
(see [5], pg. 40)

~ -1
U =E "M
E o (57)
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where the typical element of Eq and %q are given by

a (g+1)T
EJ, = j zdk(t)zéL(t)dt (58)
(g-1)T ~ g :5
it
(g+1)T y
.
ML = I zdL (t)wq(t)dt (59)
(g-1)T =

The matrix M_ is essentially the set of matched filter outputs,
One may write (59) in the alternate form
5. = [T eige e (o) (60)
U=J E-lz*(t)w_(t)dt 60
~ g ~ ( q
(g-1)T

If we define the column matrix

e (t) = Eglz*(t) (61)
then f
X (g+1)T
G, = | e (B)v (£)at (62)
(g-1)T

The matrix gq(t) is a column vector of s time functions which
may be computed once the occupancy pattern of the channel is ﬂ
known, Equation (62) represents the estimate of each spectral

coefficient as an inner product of the received signal and one
of the component time functions of fq(t)' Alternatively, Eq. (57) v
shows that this estimate may also be represented as a weighted
sum of "matched filter" outputs,
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The least square estimate (57) is the minimum variance linear
estimator only when the noise is white and WSS (wide sense
stationary). For more general noise the minimum variance linear
estimate is the Markov estimate [see [5]]. In the channel under
study we consider only the case of white and WSS noise at the
receiver input, However, it should be noted that the imposition
of the segmenting time gate makes the noise observed after the
time gate nonstationary. Thus it might appear as if the more
general Markov estimate should be used, For our special case we
may obtain the Markov estimate by the simple artifice of dividing
both sides of (49) or (51) by the time gate C(% - g), which removes
the raised cosine gate from both the noise and observed data,
replacing it by the rectangular gate Rect(t/2T - q/2). Egquation
(51) becomes

w(t)Rect (/2T - g/2) = ReSLL/ZE =9/2) y77(¢) + n(c)

(63)

where w(t) is the receiver input waveform. Since the noise in
(63) is white and WSS now one may employ least squares to obtain
the minimum variance linear estimate, Thus if this estimate is
denoted by‘E; we find

U_=FlN (64)
~q ~q ~q
where the typical elements of E&l and N are

(ge1)T 2, (t)23 (€)

e, " iy, gt (65)
(ger)r 23 (EIwle)
"= ST —gT (66)
(g=1)T
28
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An examination of (65) and (66) reveals that certain diffi-
culties may occur in applying (64) since the gating function can

drop to zero and the coefficients FY  and N9 might become infinite.

kL L
This singular case has not been examined yet, The covariance

matrix of the measurement error for the least squares and Markov
estimates are [see [5] and [2]].

g L
SR
= (Eg DE ) <|n(t)|?> (67)
ey (Uy) = §;1<\n(c) 12> (68)

where the typical element of the matrix Eq is given by

q (g+1)T 5
od, = | le(e/T - q) | %z (£)2g (€) at (69)

(g-1)T

We consider now the more general case in which there are
2P+1 input raised cosine frequency windows each of width 2W cps,
with the "center" window located at -W<f<W Hz, From Eq. (48) we

see that the output of a particular time window located at (q-1)T

<f<(g+1)T may be expressed as

P
wq(t) _ e wpq(t)
p=-P
o Jv%t
= Rect(t/2T - q/2) £ £ ¥ U zZ, (t - iﬁ)°
pmn
+ C(t/T - g)n(t) (70)
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where z, (t) is that portion of the input signal z(t) located
within the spectral band (p-1)W<f<(p+1)W, Equation (51) may

‘ still be used to represent.wq(t) provided we used the definitions
of iy T |
T
z°(t) = [z (t)|Z1 t)\...lz 1(t:)lzo(t:)\z (e)]...12(¢)]
(72)
in which
T _ ryP9 yPq Pq
U = (U U PR 73
~p’q [ 211 ~2, ) 9 ] ( )
T "
Ep(t) = [zpdl(t)’ 254 i -l TR zpés(t)] (74)
| ~ pot
where
d = [m,n] (75)
P9 _ ,Pq ‘
U U (76)
- S Tl
; . )
% m, jn—T—-t . (77
In the definitions above it has been assumed, for simplicity, that
the occupancy pattern is the same for each segmented channel, If

desired, one may extend the notation to a different occupancy
pattern for each segmented channel., The discrete spectral repre-

il sentation of the segmented channel with the pth frequency gate ;
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and qth time gate is the vector gpq. The set of spectral repre-
sentations for all the frequency gates and the qth time gate is

given by U_, The least squares estimate of gq, Uq can be expressed
in the general form (57) where Eq’ Eq and !q must be redefined as

the following partitioned matrices

E §
%a’-p,-p | Eqop,1-p | --

'1-p,-P|2q’1-P,1-P| """

.bm

E = 8
Eq (78)
e e e qup_l,P_l ?.q,P-I,P
L -+ |Zq'p,p-1 | Eqp,p _
T 2y 35 ¥ % g
M = M M L ) M L ]
~q ["'-P:q“"l-qul ‘~0,q‘ ‘%P’q] (79)
SRR S T T
U, = (U, _|U Fess- 18 vos U 0
~ fl‘i-qu“"l.-?oq) "“osql ‘..P'q] W0y
t E M
The typical elements of Zap,p, and g are
Al
qp4 P, (g+1)T m m, jT(nk-n()t
By i | z, (T - z)ex (t - 5)e at
(g-1)T 1 2
(81)
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t
wq(t) at (82)

Since the time functions zp (t) and zp (t) occupy portions
1 2

of the same frequency band only when Py and Py differ by unity, as
long as TW >> 1 and the Doppler spread of the channel is much less
than W,

9P, P,

EkL ~ 0 for lp1 - pz\ > 1 , (83)

and the matrix Eq will be sparse.

Markov estimates and error variances for the spectral coefficients
may be formed as in the single-frequency gate case,
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