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Contributions to solving initial boundary value problems for partial

differential equations have been made by applying finite-difference methods
to solve seismic wave propagation problems. Very little has been done in

the area of underwater acoustic wave propagation problems, although a set

of properly developed numerical methods could very well solve these problems
effectively. These numerical methods can solve not only range-dependent
problems but also can handle irregular boundaries with arbitrary boundary
conditions. In this rezgrt as a start, two accurate general purpose over
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approaches are presented for the solution of variable coefficient parabolic
wave equations.

In a finite-difference approach, techniques are derived from both the
conventional explicit and implicit schemes, and the associated convergence
theory is thoroughly analyzed. The techniques are found to be general purpose
and to provide reasonable accuracy.

In an ordinary differential equation approach the parabolic equation is
treated as a system of equations in which the second partial derivative with
respect to the space variable is discretized by means of a second order central
difference (also known as the Method of Lines). Nonlinear multistep (NLMS) and
linear multistep (LMS) methods are used as predictor-and-corrector for solving
this system. A built-in variable step-size technique gives the desired accurac
The theory with regard to consistency, stability, and convergence has been very
well developed for both the NLMS and LMS methods, thus ensuring the convergence
of this procedure.

A practical treatment of irregular boundaries is described with an
illustrative example, and a selected set of experimental numerical results are
included to demonstrate the validity of these approaches.
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NUMERICAL SOLUTIONS OF UNDERWATER ACOUSTIC
WAVE PROPAGATION PROBLEMS

1. INTRODUCTION

Significant contributions to solving seismic wave proYagation problems
have been made by applying finite difference (FD) methods;’~” however, lit-
tle has been done in applying FD methods to the solution of underwater acous-
tic wave propagation problems. Some literature#=6 exists, but further
improvement and efficient applications of FD methods to underwater acoustic
wave propagation problems are required. The basic problems involved in the
application of FD methods — speed, accuracy, and memory capacity -- were
never thoroughly analyzed. A study of the efficiency of FD methods in
solving general underwater acoustic wave propagation problems was never
performed. In additiom, the theory involved in the FD methods (which offers
important information regarding convergence and error control) was completely
neglected.

FD methods are a general purpose scheme and have very few restric-
tions.’"9 As a start, we will search for efficient solutions of parabolic
wave equations. In this report we will:

1. Formulate both explicit and implicit FD schemes for variable coef-
ficient parabolic equations and examine whether a more efficient FD
method can be developed for underwater acoustic wave propagation
problems,

2. Discuss the theory of our FD development and estimate the error,
3. Demonstrate the validity of our FD techniques.

In addition to the FD approach, an ordinary differential equation (ODE)
approach was taken and was found reasonably effective for handling parabolic
equations. Numerical analysts have frequently remarked that FD methods would
be enhanced if a variable step length could be adopted to solve partial dif-
ferential equations. The ODE approach, used in conjunction with the FD ap-
proach, certainly offers this advantage. Our method of attack is to dis -
cretize the second partial derivative with respect to space variables into FD
representations and then to transform the whole parabolic equation into a
system of ODEs. The advantage of using this approach is that the theory of
numerical solutions of ODEs is very well developed and powerful computer
software exists. To gain speed while maintaining accuracy, we incorporate a
variable step-size technique with nonlinear multistep (NLMS) and linear
multistep (LMS) methods to handle the automatic step-size adjustment. From
test results obtained to date, we find that the ODE approach may turn out
to be the most desirable.

In addition to the FD material, we will also
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4. Discuss the formulation of ODE solutions and state the well devel-
oped theory,

5. Describe how to automatically adjust the step size by means of the
variable step-size technique.

Prior to the discussion of these numerical approaches, a section addresses
some of the theoretical background. After the descriptions of these
approaches, the relative merits and disadvantages are discussed. Finally, a
set of test results is given to demonstrate the validity of our approaches.
The accurate solution of parabolic test examples numerically disclose how
well the parabolic equation provides a solution of the sound propagation
problem. A special section presents a fresh, general treatment of irregular
bottom descriptions with arbitrary boundary conditions. Some conclusions are
provided.

The experimental programs are written in ANSI FORTRAN language and have
been checked out on the Center's PDP 11/70 computer. Since these programs
are not yet finalized, a listing is omitted. A comprehensive document
describing the computer model will be provided separately. The theoretical
discretization errors are given in this report. Since computational errors
are heavily involved, the total error analysis will be presented in the com~
puter model documentation.
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2. THEORETICAL BACKGROUND

We begin with a cylindrically symmetric acoustic wave equation in cylin-
drical coordinates:

a2 ] 32
45 D | LAE 22 & =
222 s 3% + 322 *+ k n (r,z)p =0, (2-1)

where p is the acoustic pressure, k, is the reference wave number, n(r,z)

is the index of refraction, and r is the range variable. Let p = u(r,z)v(r)
where v(r) is strongly dependent on r, but u(r,z) is only weakly dependent
on r.

By substituting p = uv into equation (2-1), rearranging the terms, and

using kg as a separation constant, we obtain the following reflected field
and transmitted field parabolic wave equationms:

1 2
Vo BN % ko v=0 (2-2)
o tu. sl el 3y + k2 (2%-1u =0 (2-3)
T zz r vor/'r o 3

After we introduce the far-field approximation (kor >> 1), the exact solu-
tion of equation (2-2) is known:

) [T ilkr-2)
b s
v(r) = Ho (kor) k] ii:; e o & (2-4)

Using equation (2-4) to eliminate v from equation (2-3), we obtain

; ;.2
SR R 21k°ur + ko(n -1)u = 0. (2-5)

If we assume that inhomogeneities vary slowly with range, the reflected
field can be neglected, which leads to the following parabolic wave equation:

iko(nz-l)
u = 3 u + wo s (2-6)

T 2k zz
o

Performing parabolic approximations to the reduced wave equation will result
in various slightly different forms.2:5,6,10 We choose to deal with equa-
tion (2-6) because it is commonly recognized in the underwater acoustics
community, and existing PE (parabolic equation) models, such as the split-
stepll, are directed toward the solution of equatiomn (2-6).
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Note that in the shallow water environment or wherever bottom interac-
tion is important, the exact boundary condition must be satisfied; therefore,
more general purpose methods are sought for the solution of equation (2-6).
Existing methods using the fast Fourier transformation (FFT) are inappropri-
ate for such problems because these methods reflect the entire medium across
the surface; however, below the physical ocean, an absorbing layer is intro-
duced, permitting the infinite transforms to be truncated, so that the FFT
becomes applicable. The numerical ODE and the FD approaches are advantageous
because they do not introduce an artificial bottom.
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3. NUMERICAL SOLUTIONS

3.1 FINITE DIFFERENCE APPROACH
3.1.1 Formulation
We consider
- a(ko,r,z)u + b(ko,r,z)uzz = Lu. (3-1)

Let D be the FD operator, and
8, be the central-difference operator in the z-direction.

D and §, are related by

1 8,

2.
D 5 sin 7

Where h = Az, we use k = Ar. Therefore,

62
OETe T RGN WE SN T -
D h2 ( 12 6z + 90 Gz e .) A (3-2)
We choose to write
52
p? = = [i - pCi,0)] . (3-3)
h

p(k,h) is a parameter to be determined such that the choice of p(k,h) will
minimize the initial local discretization error for implicit schemes.

Further, we assume that p(k,h) # 1. If p(k,h) =1, equation (3-1)
reduces to up = au, which is trivial. In fact, we will demonstrate that

p(k,h) = 0 gives the Crank-Nicolson formula,
o(k,h) = hZ2/6k gives the Douglas formula.

We will make an attempt to find a p(k,h) such that the order of the error is
the smallest, if possible.

3.1.1.1 Explicit Methods. We start with the formulation of explicit
methods. Using the Taylor expansion, we can obtain a two-level scheme for
equation (3-1):

2 " |
u(r + Ar,z) = (1 + k-g? + % k2 3-—2- L TR .)u(r,z) = ek ar u(r,z).
ar

(3-4)
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If we let z = mh, r = nk, and u(r,z) = u(nk,mh) = u;, then equation (3-4) can

represent an explicit scheme:

3
il _ & n S *
uy e" ot up - (3-5)

To solve equation (3-1), we could use equation (3-5) and retain only the
second order difference; the explicit formula becomes

n+l 9 n b 2\ n
uy -(1+k~a-r-)um'(l+ak+;fk5z)um. (3-6)

In general, we drop the superscripts and subscripts of a and b for econ-
omy in writing; however, in the critical places, we will use the indexes to
make our formulas clearly readable. Using the second order central differ-

ence for 6:, we find that

}
. n+l n_ b n n n
; uy (1 + ak)u + 2 k(‘%ﬁl -2y & um—l) . (3=1)
E
I
, I1f we write 1 + ak = ax, 25 k= B:, we can express equation (3-7) in a matrix o
i h
5 form: t
| n+l n n
? n+l - n
| u, 82 a, 232 82 - SNPGRS u, 0
i . = 0 . * .
E

n+l n n

uy 0 0 v o Bm a 28 v Bmum+1

(3-8)

3.1.1.2 Implicit Methods. To pursue the formulation of implicit meth-
ods, we use

. (3=9)

MJWW . s
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To solve equation (3-1), we u-e
[1 - Ju(a + sz)] ot [1 + k(a + sz)] a (3-10)

Again, a second order central difference is used for D2 in equation (3-10);
we obtain

2 2
§
e T -é-kb [—;— (l-O(k,h))] u:+l =1 + %ka + Lo [—% (l-D(k,h))] ol

& h L £7
(3-11)
Simplifying the above, we find that
1 n+l 1 n+l n+l
LHS [ - 7ka + bs(l-D)] u 7bs(1-P) (um_1 + um—l) (3-12)
- e W, n ik o n n i
' RHS [1 + 2ka bs(1 O)] u 2bs(l P) (um+1 + um—l) ; (3-13)
X W
where s = 2o
If we write > LT i
1 : i Al
@ =1 - 3ka, B = bs(1-p), o =P(k,h), Y =1+ 5ka,
LD it T i ol B TR Rl T T B
m m m m 2" m m
n n n D e n
B Ve W Bm 1+ 3ka - by s(1-p),
and equate both sides (LHS = RHS), we find that
1 gn+l n+l n+l n+l n+l 1 an+l n+l
e Bm Yn+l b (am 43 Bm ) Y 2 Bm Ym-1
- b g® _u ~goy . n_ 1o n o
3 Bm Va t (Y: Bm) U * 7 Bm U (3-14)
Equation (3-14) can be written in matrix form as:
7

—
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1 on+l n+l 1l gqn+l n+l
Xl 3 Bl 0 g v 0 u) 3 31 U,
1 qn+l 1 on+l n+l
3 82 X, 5 82 g .. 8 u, 0
1 gn+l n+l 1l gn+l n+l
0 0 0 0 > Bm X u 5 Bm U
l an n lgn n
¥ 7 81 0 0> 35 i O u 3 B1 u,
1 4n 1l on n
5 32 Yz 2 32 [0 RN O o u, 0
+ L] . .
0 0 0 Lgn - Ligm o8 lra-1s)
- 2 m m m 2 m m+l

The two components of the first column vector on the RHS are two boundary
points, and the two components of the last column vector on the RHS are two
boundary points on the initial line. (Note: If we select P = 0, equation
(3-15) reduces to the Crank-Nicolson scheme; if we select 0 = h2/6k, equa-
tion (3-15) reduces to the Douglas scheme.) At this point, we cannot yet
make a choice of P to arrive at a new method. We defer this until after we
have developed the consistency of the method.

Jel.2 Consistency. The conventional definition of consistency states
that an FD approximation to a parabolic equation is consistent if

Truncation error 0 & &
| 4

<>
X k * 0.
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However, we adopt the definition of comsistency in the sense of Rellerl? as
follows:

Let
£O[u;h,k] be an FD approximation to equation (3-1),
L[u] be the true operator.

Define
T{u;h,k] = C[u] - £°[u;h,k].

If

lim T [u;h,k] *= 0,
h,k=+ 0

we say that the method is consistent, meaning that the FD operator is con-
sistent with the true operator.

Now we proceed to develop the concept of consistency and to obtain the
"initial local discretization error" (usually called the "truncation error'").

Expanding u:+1 upon uz, using the Taylor expansion, and sub-

u® o
’ "m+l’ -1
stituting the results into equation (3-7); we obtain

n+l n b n n n
e (1+ak)um - ;ik (?m+1 - 2um + um-l)

(3-16)

The terms inside the { |} of equation (3-16) = 0 because they satisfy
equation (3-1). Let E[e] indicate the principal part of the initial local
discretization error. Then, we have

Efe] = 0(k? + kh2).

As h,k* 0, lim T[u;h,k] * 0; therefore, method (3-7) is comnsistent.

i o,
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oy z n+l n+l n n n r
Similarly, expanding Unel? Yp-1’ Yme1? Ype1 UPOR Upo using the Taylor

expansion, substituting the results into equation (3-14), and simplifying, we
obtain

_ 1 goel, mbl (n+1 a*ly ol 1 el avl
% 2 Bm Upep ¥ %t Bm ) “m 2 B um-l%

l 0 n n n\ n l1 .0 n
-338mum+1+ (YmmBm)u +3h 2

2 n
n du\ * 2 (3%
- |“kau *k (5—) = bsh (-—i>
m 3z
m
a2 3u) " . k% /3%\ " 2 n? 3 a
. 'a‘““(ﬁ-) *z—'(;— e 1 e 7
§ m A z“dr

dz 2! azzar m <t 2l
m
4 4 n
- ba(l-p)%i (3-%> BB o be e (3-17)
dz

The terms inside the { |} of the RHS of equation (3-17) = 0 because they
satisfy equation (3-1). If a and b are range independent, we see that the
terms inside the [ Jand the ( ) of the RHS of equation (3-17) all =0
because the terms inside the [ ] satisfy upy = aup = buy,, = 0 and the
terms inside the ( ) satisfy uppy - aupy = buyyrr = 0. Let E[I] indi-
cate the principal part of the initial local discretization error of the im-
plicit scheme of equation (3-14). i

E[I] = O(k3 + khz), a Crank-Nicolson error;

-

For p = 0,

p = 0(kh2), E[I] = 0(k3 + kh#), a Douglas error.

It does not seem likely that a p can be chosen such that E[I] is smaller than

the Douglas error. However, we see that lim T [u;h,k] + 0 ; therefore, the
h,k*0

implicit methods of formula (3-15) are consistent for range-independent coef-

ficients a and b, For the range-dependent case, the terms inside the

10

e B e S
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and the ( ) of the RHS of equation (3-17) do not vanish, so that we will ob-
tain a larger E[I]. For all p's, we can see that

E[I] = 0(kZ + xh2 ) .

However, lim t[u;h,k] + 0; therefore, the implicit methods of formula (3-15)
h,k+0
are consistent also for range-dependent coefficients.

3.1.3 Stability. The general concept of stability states that the
difference between the theoretical and numerical solutions remains bounded as
the range step n increases, provided the range increment k remains fixed for
all space steps m. To find out whether a method is stable or not, we examine
the satisfaction of the stability conditiom; this condition can be derived by
means of familiar methods such as Von Neumann's, the matrix, or the Fourier
series.

We shall first derive the stability condition for the explicit methods,
equation (3-7). We apply Von Neumann's criterion of stability to equatiom
(3-7) by seeking a solution in the form e®F elWZ, Sybstituting the solu-
tion into equation (3-7), we get

£n+1 ehﬂnh - En(l + l:k - Zb:s)eiwh

CE R [eun(m-vl)h At ew(m—l)h] : .

where £ = eCk,
Simplification of equation (3-18) gives
E=1+ a'k - 4s b" sinz (QB) .

m m 2

[g] < 1 is required to give the stability condition; i.e.,
B o n . 2 (wh &
| 1+ agk - 4s b3 sin” (£)] < 1. (3-19)

When we use formula (3-7) to solve the example equation, uy = u,,, we
arrive at Mitchell's9 results:

1<l = &E- sin2 (QE) A
- hz vl -

which implies s = Ei‘i % for stability.
h

In general, a(kqy,r,z) and b(ky,r,z) are functions of r and z; this
requires a thorough examination of condition (3-19). In the case
a(ky,r,z) = 0, we need

11

"'—““
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n . 2 /wh
- 151 - 48b? sin? ($B) o1, (3-20)

)

As long as s, b" > 0, the RHS inequality of equation (3-20) is trivially sat-
isfied. The LHE gives

In the case where b: is purely imaginary, we need

n . 2 (Wh
1 - Asbm sin (E-) |‘§ 1 (3-22)

Condition (3-22) does not hold for s > 0, b: purely imaginary; therefore,

formula (3-7) is not stable for problems with zero coefficient a(k,,r,z)
and a purely imaginary b(k,,r,z).

When a(kqy,r,z) # 0, we need inequality (3-19) to hold. In our appli-
cations, a(ky,r,z) and b(ky,r,z) are both purely imaginary. Let
a = isg, b = ibg; we then have

; 1 . 8 Qh) 2
isi [aRk lssbR sin (2 ]l £ 3. (3-23)
1 Obviously, inequality (3-23) does not hold. To hold the inequality, we must
have
agk = 4sby sin® (3) = o,

which implies that the condition of stability is

e ks i i i

b
.2 R . 2 (wh L
h 4 ™ sin (§-> . (3-24)

Equation (3-24) holds for h = 0, which implies the instability of scheme
(3-7). To overcome this difficulty, a parameter A can be introduced to
obtain an equivalent equation of scheme (3-7); namely,

.. [t(ko,r,z) - X]v + b(ko,r,z)vzz, (3=

where v = e~AT y, Then, a similar inequality of equation (3-19) is
obtained; namely,

12
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| (142) + i [‘n“ - 4sby sin’ “ZL“-)] | < 1. (3-19)"

The values k, h, and A\ can be chosen such that equation (3-19)' is satisfied;
therefore, scheme (3-7)' is conditionally stable.

Now let us turn to the stability of implicit methods, equation (3-14).
When a(kq,r,z) = 0, b(ky,r,z) = 1, and P = 0; equation (3-14) reduces to
the example equation u, * u,, and our formula reduces to the Crank-
Nicolson formula. Using Von Neumann's method again, we find that the stabil-

ity condition is
= 1 - sll - cos(wh) o
ST+ 51 = cosun)) < ! (3-25)

We see that condition (3-25) is satisfied for s > 0. 1In fact, s = k/h? is
always > 0; therefore, we see that the Crank-Nicolson formula is uncondition-
ally stable for solvipg u, = u,,.

However, for the equation with complex coefficients, we cannot take the
unconditional stability for granted when we are using the generalized Crank-
Nicolson formula; the stability of formula (3-14) needs a thorough investiga-
tion. We shall apply Von Neumann's method to formula (3-14) to derive a con~
dition and examine the condition in detail.

Define { = ek eiwh, substituting £ into formula (3-14), we get

5 % stk in(mtdh | o oo+l iuwmh _ :;_ 5o 2(a*k in(a1)n

pE % "ank e1.:.>(1||-0‘1)h .Y

SO0k emmh = % ek em)(m-l)h 2
Simplifying, we find that

4 Y +% s [2 cos(wh)]

g ’ (3-26)
X - -g- s [2 cos (wh))
which gives the condition
1-bs [1 - cos(wh)] = -;- ak
— < 1 (3-27)

1 +bs [1 - coswh)] + % ak|™

Where a(ky,r,z), b(ker,z) > 0, inequality (3-27) is satisfied for all
s > 0; therefore, the unconditional stability obtains. In our applicatioms,
a(ky,r,2) and b(ky,r,z) are both purely imaginary. Specifically, we have

13
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1 - -Z-E- s [1 - cos(uh)) - -;—— (r,z) - 1
: > (3-28)

1 +5— s [1 - cos(uh)] +-§—— Exz(r,z) - lzl "

2k

Equation (3-28) can be expressed in the short form

1 - iX

1_-;‘_1‘-_X- 1, (3-29)

o PR RTINS T S SerAS T

s

where

kk
X'?k— [l-cos(wh)J 4"-4—[ (r z)-l] .

From equation (3-29) we see that

L = X

B iX\ always = 1 for all real X .

Therefore, the FD scheme, equatxon (3-14), is stable when it is applied to
solve our parabolic wave equatlon. !

- SSen i

‘ 3.1.4 Convergence. We have developed the cons1stency and the stabil-
: ity of both explicit and implicit FD schemes, formulas (3-7) and (3-14). Now
we want to show that our FD schemes are convergent. Let

"t.s." stand for the theoretical sclution of equatiomn (3-1),
"n.s." stand for the numerical solution of equation (3-1),
"£.s." stand for the finite-difference solution of equatiom (3-1).

The norm inequality shows that

||t.s. - n.s.|| < ||t.s. - f.s.|| + ||E.s. - n.s.ll

Note that by applying the consistency to the first norm of the RHS and by
applying the stability with the error control to the second norm of the RHS,
we have established the convergence.

3.1.5 Discretization Errors. As a result of their consistency, the
local initial discretization errors of explicit and implicit FD methods are
given by formulas (3-16) and (3-17), whose principal parts possess the fol-
lowing expressions:

32 n 34 n
Efe] = —— <3 2) - %E bkh2 (;—%) = 0(k2+kh2). (3-30)
r z

14
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In the range-independent case,

; 3 /.3 n 4 \n
E[I] o % (i_%) 2 .i_z. bkhz (1-p) g_z = Q <k3 + (‘l-p)khz) i
oar’'/ m 3z / m  3-31)

For the range-dependent case,

2 n 2 4\ n
efr] - - & o0 (_32) . "%‘ (1-9)(3—2) =0 (kz + (1-p)kh2) ]

® \T Jn 3z*/ w (3-32)
3.2 ORDINARY DIFFERENTIAL EQUATIONS APPROACH
3.2.1 Formulation
Consider
u_ = a(ko,r,z)u + b(ka,r,z)uzz z (3-33)
Discretize the u,, portion by a second order central difference:
b
., - a(ko,r,z)u + ;2 (u‘m’1 2u + “ur-l)' (3-34)
dum ‘ b
(3-35)
(3-36)

15
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Decompose the above matrix form into

m-1
h2
bm ; bm
0 . . " = 0 u -
h2 m h2 m+1
(3-37)
which is in the form
i u' = Aﬁ + g(r,z,u) (3-38)

3.2.2 Methods Under Consideration (NLMS and LMS)

The above form (equation (3-38)) is the equation to which the NLMS meth-
ods are applicable. To simplify the application, we apply an NLM-l-step pre-
dictor and a corrector with a built-in variable step size.

As a predictor, the solution is

16
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= AR Ly ) -eAM] gRr,z,u™. (3-39)
As a corrector, the solution is
\1""‘1 = eAhun +h [—(Ah)_z] “:-I + (I-Ah)eAh] gn
+ (1 + Ah - *P) gn+1(tn+1,z,un+1)l . (3-40)

A pc3 procedure is built-in; i.e., the procedure predicts and corrects at
most three times.

NLMS methods are designed to be effective in solving equations whose g
is either slowly varying in r or is a low order polynomial in r and whose
eigenvalues of A have negative real parts and differ greatly in magnitude.
The selection of step—-size h can be made approximately by

agl| .
™ ||¢kk(Ah)

where ¢ has been defined in formula (3-40).

e

When g is a constant, any h can satisfy the above inequality; therefore,
NLMS methods allow the use of a large step size. In this case, an accurate
computation of eAR will give accurate results with fast speed. Therefore,
NLMS methods have an excellent application to underwater acoustic .range-
independent problems with plane parallel boundary conditions where the field
vanishes on both boundaries.

3.2.3 Stability, Consistency, and Convergence

The theory with respect to consistency, stability, and convergence has
been well developed.13 We summarize the theory below.

NLMS methods take the expression

k ¢ k
I o, ML,y s
1 n+1l ‘e

i ¢ki(Ah)gn+i. (3-41)

The characteristic polynomial of NLMS methods is

k .
\b T (3-42)
i=0

Since we select k=1, ak-l, and Q-] = -1, the root of p(X,f) is 1 and
simple; therefore, the NLMS methods are stable.

p(A,g) = e

The consistency condition is self-contained because NLMS methods are
formulated to yield consistency. Then, by the convergence theorem, stabil-
ity + consistency + convergence. '

17
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We also tried LMS methods, which can be simply obtained from NLMS meth-
ods by letting ||A|| + O so that the theory is automatically applicable.

The predictor we used is

s,

ut*l = 40+ WED(r,z,ul), (3-43)

which is known as the Adams-Bashforth method and also carries the name Euler
method.

The corrector we used is

um1 =qy" 4 % [fn + fnﬂ(r,z,unﬂ)] g (3-44)

which is known as the Adams-Moulton method or the trapezoidal rule. £ here
is the RHS of equation (3-36).

3.2.4 Discretization Errors ;

The initial local discretization errors of LMS and NLMS methods have 3
been worked out in detaill3 14, The error terms are listed below in
relation to the methods we have applied.

E[AB] = Adams-Bashforth error

- P2 (p+2) RS ¥ o a2 .
h u &) [( 1) Io (p*l ds o(h™ ) (3-45)
E[AM] = Adams-Moulton error
i |
- 372 (P2 ¢, [(-1)‘”1 f.2 (p+1> ds] = o(nP*?) (3-46) :
E[NLMS] = Nonlinear multistep error
i . = (constant) || g7*1) (r,0)] | uP*Z = 0(uP*D), (3-47)
: |
: where p = order of the method, f
. = tn
s = h .

3.2.5 Variable Step-Size Technique and Error Controls

Definitions: PC® stands for "predict-and-correct-mtimes,"

€ is the user required tolerance.

18
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A variable step-size employs the PC™ procedure to satisfy the user's
required tolerance.

Applying a predictor (explicit method), one can use j

k-1 . k-1
1 Ah(k-1i)
u — [- z ae un+i+h .2 ¢ki(Ah)gn+i] « (3-48) |

nee G i=0 i=0

where up, is expressed in terms of previous up4j values.

If a corrector (implicit method) is used, one must have

k-1 . k
Fap S Ah(k-1i) o
Yntk & F Qe un#i+h F ¢ki(Ah)8n+J ’ (3-49)
k i=0 i=0
which is of the form |
u = G(u), (3-50)
where
u = un+ko

The successive iterative form gives
u@+1) = g(uO)) (3-51)

for any initial vector u(0),

Let G(u) be defined for || u| < ®, and let there exist a comstant K
such that 0< K< 1. Then G(u) satisfies the conditionm

] 6Cu*) - G(uw)|| < R || ur - d]. (3-52)
Using the definition of G(u) — formula (3-49) —— and the fact that g(r,z,u)

satisfies the Lipschitz condition with a Lipschitz constant L, one can see
that equation (3-52) is satisfied by

bl ¢ (AR |

x L. (3-33)

k

For the iterative procedure, equation (3-51), toc converge for arbitrary
u(°), K is required to be less than 1l:

(Ah)
L

1. (3-54)

A

19
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This is the condition of the corrector's convergence. Conventionally, we
select o = 1 for computational convenience.

Now we describe how we develop the variable step-size technique. If a
predictor is accurate, only one correction is needed. In our implementation
we limit m < 3; thus, we have a pc3 procedure, which can be described by
the following diagram.

@-——‘ urf,?]) by predictor » O—m ——-—@

@-—— m+l—=m fES %-——h _.@

NO

(m)
@—‘ Uoe by corrector

(m)
n+l
is the solution. When the corrector's convergence is met, we double the step
size and go to () to continue the solution. When the third try fails to
meet the convergence, we halve the step size and go to C) to restart the
solution. Since there exists an h that leads to the corrector's convergence,
this procedure is a convergent procedure; however, when h is extremely small
such that t+h = h in the machine, the program will provide a message and halt
the computation.

m
GD , the latest u;+3, meets the corrector's convergence; therefore, u

When it is less than the user required tolerance, the accuracy is con-
trolled by examining the norm between two consecutive computatioms.

20
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4, A NUMERICAL TREATMENT OF BOUNDARIES

Consider the solution of the parabolic wave equation of the form

g » a(ko,r,z)u + b(ko,r,z)uzz . (4~1)

Assume that the numerical methods (FD and ODE) are to be used to solve the
problem in the rectangular region:

BOUNDARY
POINT. SURFACE BOUNDARY

INITIAL —
VALUES BOTTOM BOUNDARY

BOUNDARY
POINT

Our methods require the initial conditions and two boundary points
before we can proceed to find the solution at the next range line. With
this input information, we can classify the boundary descriptions for three
different cases, and discuss the treatment of each case separately.

We further assume that the boundary condition is a Neumann condition
such that Py = 0, where p is the solution of Vzp 2 kzp = 0,

CASE 1: FLAT BOTTOM BOUNDARY

In this case,

BOTTOM BOUNDARY

-

S——
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Py = 0~ %E cosQ + %5 sin@ = 0 and & = 0

5 Un*l
m
Um
n+]
n m+
Um+1
; (1
Since p = Ho (kr)u, By 0o~ u, = 0.
oel - ol
. +1 m+1 n+l +1
To find u:‘_'_l, we see that ——-&L = 0; therefore, L = ug .

CASE 2: SLOPING BOTTOM (SHALLOW TO DEEP WATER)

By trigonometry, the distance between u;+1 and un+1 is

h+8=h+k * tga ,

22
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: n+l x
We find Uiel 38 follows:

3 3p . a+l
55 cos® - 5% sind = 0 at u = Yrel (4=4)

Also at u = un+1
m+1

equation (4-4) becomes

, u must satisfy parabolic equation (4-1); therefore,

Hgl)(kr)uzcosoz - [(Hc(,l)(kr))ru + Hgl)(kr)ur] sina = 0 .

And therefore,

(1)

Hgl)(kr)cosauz - [%21)(kr)] H sinCu - Hol (kr)sinu(au+buzz) = 0.

Simplifying, we obtain

(1)
cota <Ho (erL 1
By 20 W e I o, (4-5)
H (kr)

which is a second-order scalar ODE.

: n+l . %
Knowing 8z, u , we can find 3z A from

n+l n+l
T u.m_1 3u n+l
B T . (4-6)

Then we can use numerical methods to solve equation (4-5). We make the fol-
lowing transformation, using the ODE package already incorporated in the sys-
tem. Let

cotl
pl it 5 !

(Hgl)(kr))r /
R b o s e ,
2 Hol (kr)
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We have
Pu, o gydu, (2)u = 0
2" P)\%igz T Py
dz
‘ -
du _
dz
2
dv d"u el i 5
therefore,

R o h

If p1(z) and py(z) are constants in z, we can solve equation (4-5)
exactly; i.e.,

=P, £ /P, ~ 4p
32 *pstp, = 0 + s = L 21 £ .

The solution is

i ' O < e o S S T
u=ce\2 T2 VP TP + c.e\2 7 VP T Vel (4-7)

1 2

If we use u(zy) = uy, u'(zy) "uz,, we can determine cj,

o xS +
cy exactly. Then the solution u can be calculated exactly, and u® .

solved i e

Once u::} is found, we can proceed if we use proper care. Note that
i ; n+l n+l
if the distance between uy and Uil
the present method because the depth partition at this time level is not uni-

form. A special treatment is needed at some specific advanced time levels.

is not = 2(§z), we cannot proceed with

To handle this, we label u::i as u::; and define u::} as the mid-point
between un+1 and “n+1 We determine un+1 in such a way that the
m m+2" o+l

24
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distance between u:+1 and u::é is 2(8z). This treatment ensures a uniform

partition in the depth direction. The u::i can be found the same way by

solving equation (4-5).

i i : il +
A question arises: How far can we proceed in determining u:+i?
the programming requirements and to maintain accuracy, we determine Ar by

To ease

%% = tga + Ar = §z * cota. -

n+l

When we have proceeded Ar distance in range, it is time to determine Uit

CASE 3: SLOPING BOTTOM (DEEP TO SHALLOW WATER) 1 4

m+]

The treatment of case 2 can be applied to case 3. The only differences
are a and §z.

25
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5. EXPERIMENTAL NUMERICAL RESULTS

To implement these numerical methods, experimental computer programs
have been developed in ANSI FORTRAN language. The computations were carried
out on the Acoustic and Envirommental Research Division's (Code 312) PDP
11/70 computer. Since these programs are not yet finalized, we will not
describe them in this report. A separate document will be issued to describe
the computer model in detail.

A number of parabolic problems whose solutions are known were used to
test our numerical methods; the numerical results show a reasonable accuracy.
Three of the test problems are included in this report to demonstrate the va-
lidity of the methods. Note that problem 1 (used to test accuracy) does
not have any physical significance.

We generally classify underwater acoustic wave propagation problems in
two categories: range-independent problems and range-dependent problems.
Range-independent problems have coefficients and plane parallel boundary
conditions independent of range. Range-dependent problems include either
irregular bottom boundaries or plane parallel boundaries with coefficients
and/or boundary conditions dependent on range.

PROBLEM 1: ACCURACY TEST

Equation: up = (r2-z)u + ug, .

Region of consideration:

Conditions: uy = u(o,z) =1

N

u(r,0) = 1
u(r,n) = ~Tr

Exact solution: u = e~TZ,

———

e e g A e 0 i




Numerical Solutions:

Results are tabulated at a range of 1 mile.

Depth Implicit Exact

& (mile) ODE FD Solution
0.2 0.81884402 0.81880862 0.81873077
0.5 0.60672331 0.60663551 0.60653067
0.8 0.44953302 0.44939151 0.44932896
time 1m228 | 1m178

A variable step-size technique is used for the ODE method; the user re-
quired tolerance is of the order h™%4. The FD method does not have the
variable step-size capability; it uses the optimal step-~size (h=0.001) deter-
mined by the ODE program.

PROBLEM 2: A SHALLOW WATER WAVE PROPAGATION IN A RECTANGULAR REGION WITH A
RIGID BOTTOM!S

Equation:
ik :
o, 2 i & 2nf

Region of consideration:
gZV
BOTTOM

Iaput parameters and initial boundary conditioms:
Initial field values: supplied by shallow water model’
Surface condition: u(r,0) =0

27
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Source depth: 32 ft

Initial sound speed = c, = 4950 ft/sec
Bottom depth = 64 ft

Frequency = 25 Hz

Sound speed profile:

z (ft) SSP (ft/sec)
F= 0--r i 4950

64 5000

>64 90000

Numerical solutions: Problem started at range = 32 ft and terminated at
range = 1313 ft. Three solutions were obtained; a
normal models, a variagble step—-size ODE, and an
explicit FD. The FD program used a step-size 10 times
smaller than that used for ODE. The FD solution was
obtained using double-precision arithmetic.

Graphical outputs: Three numerical solutions are plotted on the graph
below: depth (ft) versus propagation loss (dB).

PROPAGATION LOSS (d8)

0 43 33 2}

[
o
—

DEPTH (1)
3

FREQUENCY s 25 Hz

SOURCE DEPTH = 32 f¢
SOTTOM DEPTH= 64 ¢
HORIZONTAL RANGE #1312 f¢
60f == NORMAL MODE

O PARABOLK (FD)

X PARABOLIC (ODE)

28
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PROBLEM 3: SLOPING BOTTOM (SHALLOW TO DEEP WATER ENVIRONMENT)16

Problem

Background: The solution for the acoustic field in a homogeneous medium
bounded by a wedge can be obtained by the method of images.
The solution in mathematical form and a computer program
(WEDGE) to evaluate the exact solution are described in
reference 16. Ahomogeneous medium, characterized by a sound speed
Co» bounded by a horizontal surface and sloping bottom that
makes an angle of 45 degrees with the horizontal surface is
described below under Region of comsiderationm.

Equation: The parabolic equation represents the wave propagation in the
range direction after the parabolic decomposition is found to be

u

N
T Ik e

Region of consideration:

— 100 ft ={ 7o RANGE
45° ____
50 tt
SOURCE
100 f¢
RECEIVER
LINE //4

BOTTOM

A point source is placed 50 ft below the surface, and the receiver is located
100 ft from the source. The depth of the wedge at the source is 100 ft, the
frequency equals 80 Hz, and c, equals 5000 ft/sec. The exact solution

above indicates the solution of the acoustic wave equation. We attempt to
find the parabolic equation solution u in the shaded region, and then we

attempt to compare Hgl)(kr)u against the acoustic wave equation

solution computed by the WEDGE program.

29
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Conditions: Initial u(r,,z) values are supplied by the WEDGE program.
u(r,0) =0
u(r,bottom) = uy = 0.

Exact solutioms:

The exact solution of the acoustic wave equation is obtained from the
WEDGE program.

The exact solution of the parabolic equation is not known.
Numerical solutions:

Numerical solutions are produced by the variable step-size ODE method.

The Neumann bottom condition was treated by formula (4-5). Solutions of the
(1)

parabolic equation are multiplied by Ho (kr) to give an approximate

solution of the acoustic wave equation. The graph below is presented in
dB-scale, plotting PL(dB) versus DEPTH (ft).

0.00r

20.00r-

4000

PHIs 45.0 DEGREES
FREQUENCY+ 800 Hz

SOUND SPEED s 5000.0 ft/sec

SOURCE DEPTHs 50.0 ft

BOTTOM DEPTH AT SOURCE = 100.0 ft
HORIZONTAL RANGEs .019 nm s 120 ft
- — ELLIPTIC

°°'°°ﬂ’ x PARABOLIC (ODE)

PROP LOSS (dB)

_-—

1 1 1 1 1 1 1
.00 3000 6000 90.00 12000 15000 18000 210.00 240.00
DEPTH (FT) ' ’

100.0

B V- ——

e
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Note that we do not expect the solution of the parabolic equation, multiplied
by an appropriate Hgl)(kr), to agree closely with the solution of the acous-

tic wave equation since the parabolic solution is just an approximation of
- the convolution. The introduction of an additional boundary point and the

approximation of a boundary condition by a combination of normal derivative

and the parabolic equation, which results in a second order ODE of the ini-
" tial value problem, may produce less accurate results.

1
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6. CONCLUSIONS

The above ODE and FD methods were developed in order to solve the para-
bolic wave equation with arbitrary bottom and arbitrary boundary conditionms,
which the existing split-step algorithm cannot handle. These methods have
been shown to be general purpose and to provide the desired accuracy.

At this stage of their development, both ODE and explicit FD methods
require small range step-size for accuracy. Implicit FD methods have favor-
able stability, but the explicit FD methods do not have this property. The
implicit FD methods are faster than the variable step~size ODE methods and
are equally accurate.

A categorization of the different environments and various boundary con-
ditions yields the following four cases:

CASE 1: PLANE PARALLEL CONDITIONS WITH u = 0 at the BOTTOM

SURFACE vz0

v=0
BOTTOM

CASE 2: PLANE PARALLEL CONDITIONS WITH u # O, ARBITRARY AT THE BOTTOM

SURFACE
/
]
2
U#O ARBITRARY
BOTTOM

32
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CASE 3: PLANE PARALLEL CONDITIONS WITH uy = O AT THE BOTTOM

E 4: IRREGULAR BOTTOM WITH NEUMANN BOUNDARY

OW TO DEE
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The applicability of these methods is summarized in the following table,
_ where NA stands for "Not Applicable"

METHOD FD SPLIT-STEP
CASE ODE EXPLICIT IMPLICIT (FFT)

1 X X X X

2 X X X NA

3 X X NA NA

4 X X NA NA

It is evident that most general purpose algorithms used to solve para-
bolic wave equations are ODE or explicit FD methods. The explicit FD methods
are restricted to the use of small step-size in order to achieve reasonable
accuracy; they are inferior to ODE methods. In addition, the built-in cor-
rector required by explicit FD methods is very costly in speed and memory
capacity.
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