
AD AOÔb 992 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/S 9/2
Ft A F%*ICTIONAL QUERY LANSUAQE • (U)
MAR 79 ~ P Bt*LMAN. R E FRAP*EL N000t*—75—C—fl62

UN CLA SSIF IED 79—03—05 Nt.

%6~992 I _________

_ _
_ _

_ _

_

_ F
_ _ _ _

I

ENJ D
DATE

~I1M E D

——
6:79

1.0 ~~ L~
8 L~

~
11111L4

I . I ~~ IIIO~°
III~ 8

IOU ‘ 25 IIOhi~
L6

~~~~~~~~~~ ~~~~~~~~~~ ~f I .’~I~I



-- 
-

~! ~~~~~~ 
c2~ 

I
,

IVEL /

f

O D C
it— 1i-’~ P-flflflI?~1APR 5 1919

~~~~~ L~U U
IL_

F __~~~~~~~~~~~~~~ Ufl1 k’L~iikYK. 1

L—
- 1’ — - —

•,~~~.
T:ru,*~.

1- /1
I ~

.- ~~
,:.

~; ~

- ~~
--

~~~
-

~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



J!!I J. ~~~~~~ -. 
-

S E C U R I T Y  A S S I F I C A T I O N  OF T H I S  P A G E  (II)~.n D.i. Enl.~.d) 
_________________________________________

.DEPnDT r f lr I I u~~k J T A T I f l L I  D A I ~~~ R EA D  INSTRUCTIONS
~~ ~~~~ IT%L1~ I 1~ I~~1J’ I ~~ UL BEFORE COMPLETING FORM

I. REPORT NUMBER 2 . GOVT ACCESSION NO. 3. RECIP IENT S C A T A L O G  NUMB ER

- ~~

. ~~~~~~~ S. TY P ~~REO

~

al ep

~

FQL _YA F u n c t i o n a l  Query L a n g u a g e, 
r ____

1. AUTI4 OR(.) . . S. CONTRACT OR GRANT NUMBER(S) 
—.— - - - -

(j~-’
_ 

0. . Peter/Buneman
Robert E./Frankel i 

0 . - 
.

L PER FORMING ~~A G A N IZ A TION NAME AND ADDRESS - - 10. PROGRAM E L E M E N T . PROJE CT S T A SK
- . - (A B WO RK UNIT NUMBER S 

-

- Department of Decision ~~~~~~~~~~~~~ ~
. j

~~~~
—

-

——---— - - - • •
-

University of Pennsylvania / NOOO].L~
_ 7 5_C~~O462)

Ph i l ad e l ph ia , PA l9lO~ê ~~~~~~~ ,~~~~~
_

~~
--_ -—--—--

~~~~~

‘ (
• II. CONTROLL ING OFFICE NAME AND ADDRESS 12. REPORT DAT E

- - 

. - Task  NRO ~~9 - 2 7 2
- Office of Naval~ Research . 

-

. 13. NU M B E R O F  PAGES -

14. MONIT ORING.A~~~~~.~~~~U.AML E5 41! .r.fl I fto., Co&rollSnS OSStc ) . IS. IECURITY CLASS. (of lAl. r.porf)

(~~~ 7 ..f . 1Unclassified 
-
. 

-

I . . IS.. DECL ASSIWJCATION/.DOWMGRAD ING’V’
. 

~- 
. - , . ~~CH (DL -E~~ Dt-~ - .

16 I~~STRIB UTIO N STAT.Ebt~~~~~ (eI1hJ..R.porf) ~~~~~~ç - 

—

S

- Approved for public release; distribution unlimited

ii. ols-rRIeuT)ON S T A T E M E N T  (of IA. .b.l,. cI .nS.,.d In Block 70, St dStt.,.n S horn R.porf)

Distr ibution unlimi ted . -

/

1$. SUPPLEMENTARY NOTES 
- -

IS. KEY WORDS (Conhlrw. on ,.v .r.. .Sd. SI n.c...aiy ond ld.nllf y by block n.onb.,)

applicat ive languages , query languages , databas es ,
da ta  base  models

20. AB STRACT (Con ISnos on ,. ~~.,.. old. IS n.c.. .rny ond Sd.nllfy by bI.ck n.onb.r)

~~ n applicat ive language based upon recent ideas by John Backus has
been developed.. The language provides a powerful formalism for
the expression of complex database queries. Though currently im-
plemented with an interfa1ce to a CODASYL system , the language
employs a sufficiently general data model that us e with other
database management systems is possible. This paper describes
the language through a number of examples and -outlines its
implementation. - 

-

DD 
~~~~~~ 

1473L EDITI~~~~~3F I NOV 41 II OBSOLET Er S/N O102~ O14- 6601 I - ___
LI

. 0 SECURITY CLAUIr,CaTIoN or tWIS PAG E (Wli on B.,. jisIrns~~

~9 O 4 ‘Q4
_ _

H

LA ____ __________ — - - - ______ _________________

7 ~~~

-

-

U~ Ofg f 1r /
— N~~JS White Sectios

I IUU SeCtiQII 0
N4’ffiOUNCED 0

- kSfl~IC*Tt)N _______

0

• FQL — — A Functional Query t1anaua~e
F: .

~ T I ! ~V %A ~ flT t~~(oreliminary version) -
~~~~~~

--  

___ . ,i

~~

j

~~

Rob:rt E. Frankel

Abstract

An aPolicative lanquaae based upon recent ideas by John

Backus has been develooed. The language orovides a ooweLful

• formalism for the exoression of complex database aueries.

Thou~h currently imniemented with an interface to a COD.~SYL

syste:n , the langua~e emoloys a sufficiently ~eneral data

~todel that use with other database ianaqement systems is

possible. This oaoer describes the lanauaqe throuch a

• number of examoles and outlines its imolementation.

01 
~1

& Authots ’ address : Deoartment of Computer and InfoL~tation
Science, Moore School , Universi ty of ‘ennsvlvania, 0

Philadelohia, Pa. 19104

t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~~~~~~~~~~~~~~~~~~~ 0


~:11 ~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~
—

.
— -

-

FQL —— A Functional Query Languaae

1.0 INTRODUCTION

Formal database query languages are extraordinarily

varied , ranging from the algebraically based relational

languages (3, 101 to those languages provided with some
p

CODASYL systems (4) which give the user direct access to the

data—manioulation routines within the database management

¶ system. The Functional Query Lancuaqe described here, FOL,
p

was originally desianed and implemented in an effort to
I

provide a powerful and structured interface to a CODASYrJ

database management system. Constructing an interface to
p

other database systems should , however , present little

difficulty as the data model used by the language is quite

general: FQL may in fact serve as a common query language
p

-
for communicat ion with d i f f e r e n t database systems.

0 0 FQC~ is an aoplicative language; and embodies many of

p the ideas concerning functional programming systems recently

described by Backus [11. The only control structure in fact

• available to the user is the abilitiy to combine functions.

• The means for exolicit data r e ference (i .e . , var iab les) have

been purposely omitted from the lanaua~e. As a resul t, FQL

d t f f er s f rom other auery lanauaoes in severa l imoor tan t

resoects.

1. There is no notion of data currency: many query
systems (the relational lanquages aLe a notable
exceot~on) oPerate on a “record—at—a—ti~.” basis

—

0~~~
_ _ _ _ _ _ _ _

—~ -•--.w~ —.~- ——

—

•w—
~~~~~~~~~~~~~~~~~~~~~~~~~~ - _____ ~~ •~~~~— ~~~~~~~~~

FQL —— A Functional Query Lanauaqe Page 2

strongly reminiscent of what Backus terms the
• “ von—Neumann bo t t l eneck” .

- -
- 2. Complex cueries may be develooed incrementally from

simpler queries: a ~uerv in FQL is no more than
another function over the database  which , usinq the
mechanisms provided by the language, can be
combined w i th  o ther  guer ies .

3. Full computational power is orovided : many query
lanquaqes lack the ability to do basic arithmetic,
let alone recursion (some relational language are
particularly weak in this respect).

4. The language itself is indeoendertt of any database
system: the data model it employs can be
interfaced with database systems other than
CODASYL.

p t O

It should be emphasized that we do not see FQL as the

0 “ i d e a l ”  end—user  query  lart quage ; nor do we believe that

such a language exists. Rather, it is presented as a

precis ~ and powerful formalism for the exaression of

database queries. Our hope is that FQL (or some syntactic

variant of it) can serve both as a tool for those wishing to

construct complex queries and as an intermediate language 
0

into which one ’s “favorite ” auery languaae may be readily
0 

translated (an early version of FOL is currently in use as a
p

database interface for a natural language system (7J).

The main ourpose of this pacer is to provide an

P in fo rma l in t roduc t ion  to FQL . In the following section the

rudiments of the lanauage together with sir’ole examples of

the i r  apolication are  presented . Some issues of

$ imolementa t ion  are then outlined . The final section of the

oaoer is devoted to a discussion of the future develo~ment

of FQL including its extension to other database systems and

$ 

—;-



-. _0__ •_ ~_~
_
~00~_ ~~~~ ~~~~~~~~~~~~~~~~~ — - - -

~ 
— -— ~~~~~~~ — —. ~~~—.. ~~~~~~~~~~~~~~ ~~ .. __~~~~~~~~~~~~~~~ —~.~~~_-_ 

— —

-- —- _ _  . - - - - - -

Ii
FQL —— A Func t ion a l  Query  Lan guage Pane 3

its more general role as an aoolications language.

I ’

2.0 THE LANGUAGE

p
2.1 A Funct ional  View Of Databases

Since FQL is a functional language, we need to adopt a

p functional view of databases. We regard a database as a

collection of functions over various data—types. Figure 1

¶ shows the schema of a (very simple) database containing

• entities of tyoe EMPLOYEE and of tyoe DEPARTMENT.

P:EE

~~~~~~~~~~~~~~~~~~~~~~~ DEPARTM~~~~~~~
T

Figure 1

The function DEPT in this examole reoresents a mapoir%g

between these types; that is, given an EMPLOYEE, DE PT

returns that DEPARTMENT in which he works. In addition ,

th i s database f u r n i s he s func t ions which mao these en t i t i e s
0

- into basic tyPes: the func t ions ENAME and DN~~IE each r e t u r n

a CKAR(ac ter string); the function SAL (arv) yields a

MUM (eric) value ; and the BOOL (ean) fuftction MARRIED serves

2 as a oredicate. To summarize using conventional notation:

— __________ -
— - -

-~~~~“ — ~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~~~~~~~ 0_ _~~~ - _ _ _

F(~L —— A Func t iona l  ‘~uery  Lan’-~ua,e Page 4

• DEPT : EMPLOYEE — ) D!P~~~R T M E M T

E~1A 1~E : EMPLOYEE —> CHkP
S~ L : EMPLOYEE — > MUM
MARRIED : !MPLOYEE — , BOOL
ON~ME : DEPARTMENT —> CHAR

Of the five data—tyoes seen here, CHAR , MUM , and 300L,

are standard in that they exist independently of any

database. On the other hand , the tyoes EM PLOYEE and

DEPARTMENT together with the five functtons described above

are specific to this database. It should also be noted that

& we regard all of these tyoes as scalar. Information about

EMPLOYEEs or DEPARTMENTs may only be obtained through those

database functions whLch map the~e entities into “printable ”

types (e.g., CHAR).

2.2 Creating New Functions
0

Knowing that the database defines a set of functions we

- - need mechanisms —— functional forms as Backus terms

p them — — for combininq these ooerators to create new and more

powerful functions. Of these mechanisms , the most

fundamental is composition. One might , for instance, wish

to define a function which, qiven an emoloyee , returns ther name of the leaartment in which he works:

DEPT NAME : EMP L OYEE — ) CH A R • DEPT .DNAME; 
0

This example shows the syntax of an FOLI function 1efinit~on :

DEPT ~1A~1E is declared to be a function from EMPLOYEE to

- __
~1~~~

_ _
_ _

_
~

_
~._ -



—~w-eI ~~~~•—1.-- — 
~~~~~

j- —

-~~~~~
‘
~~~~ ~~~~- - —--

p

— —  A Func tional Query Langua~ e Page 5

CH~ R ( a c t e r  s t r i ng ) and def ined to be the comoosit ion of the
I

func tions DEPT and DNAME (as denoted by the ooerator “ .“) .

Observe that these functions are composed , and hence

• evaluated , from left to right (reverse Polish): the

DEPARTMENT returned by ao~ lyinq DEPT to an E~1PLOYEE serves

as the operand for DNAM E which, in turn , produces a value of

type CHAR. Using reverse Polish for functional composition

in fact seems cuite natural: the left to riaht order of the

functions determines a corresponding oath through the

database schema .

So far , we have considered only those functions within

the database which map scalars into other scalars; and thus
- 

• any functions one might define usini comPosition would be

scalar as well. We have yet to deal with collections of

objects such as the set of all EMPLOYEEs within a car-ticular

• DEPARTMENT. To do so, we must augment our view of the

database to include the inverse of functions. Returning to

our samole database the inverse of the function DEPT,

written !DEPT , maps a DEPARTMENT into a seauertce of all

those EMPLOYEES who belong to the given depa rtment;

similarly, the function !DNAME maos a CHAR(acter string )

into a sequence of DEPARTMENTs~. We shall use the term

stream to refer to such a secuence of objects of a given

data—tyoc . (A stream , following Landin (8) and 3urae f 2 1 ,

(

1. Strictly sceaking !DU AM E is not  the ma th e~ a t i c al  - 
-

inverse of DNAME as the inverse of a function contains no
not ion  of s e a u e nt i a l i t y .



•-•• -- .-•
~~~

•,-- J*J~~~
T’•__

~ ~~‘—~~~~
—--

~

—‘-
~~~~~~~~~_ _-  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - - - — - -

~~~ 

- — 

--

p

— —  \ ~unc tionil 
(
~u e r v  Lan~ uaoe Page ~

is a “virtual” se~ uence of ohiects whose ohvsical
I

reoL-esentation should ~e of no concern to t he

—— it may be a list in orimary store, a file in

secondary store, a oenevatinr~ func tion, or some com bina tion

of these.) •-~nether- or not the irivei se of a given function is 
0

availa ble deoerids ucon the database : there is no guarantee

that, because the function S~.L exists , its inverse, !SAL ,

will also be oresent. Database systems do , thouch , usually

emolov soohisticated rnechanisims for reoresentino inverses

of func tions when they ate required . For examole, ~DEPT

would ~e imolemen ted throu gh a COD S YL set , while !D~A~1E

might be imolemented usinq a hash table.

We return now to the task of creating new functions , in

oar ticular functions which mao streams into other streams.

For th is, we in troduce two add itional func tional form s,

• ex tension and restriction. The first of these allows , say ,

the function SAL (a ma?oinn from EMPLOYEE to N’JM) to be

“extended ” into a func tion , denoted *SAL , whic h , given a

stream of EMPLOYEEs , returns a stream of r4 U M s by aoolyinq

the function S~ L to each E~ PLIOYEE within the stream . The

second functional form allows streams to be filtered by

oredicates over individual elements: the function n-tARRIED

maos a stream of EMPLOYEEs into the sub—stream of EMPLOYEEs

satisfyin~ the condition that they ~e ‘t ’\RRIF~D. ?~ote that

while extension will oreserve the lenath of a ,iven stream ,

restriction oenerally will return fewer elements. ~ an

exa~ p1e, these ooevators are used to cLeate a function ~‘h ich  



~~~~~~:-~~~ 
-
~~~~r:~~ 

-

e
F~~L —— - runctional Query Lanouaie ?a~ e 7

t eturns a stream of salaries of all rrarr ied e~toloyees within

.3 2~ ven -ieoartment:

I AR R I E D— S A L S : D E P A RT M E N T _ > *~~W M  = !D E P T . I M A P R I E D . *SAL ;

p

~ere , MAR RIED—SALS is defined as a function from tvoe

DEP•~~~ 1E?~T into a stream of MUMs (we use ~~~~ to denote the

data—tvoe of a stream of entities of tyoe ~‘3UM~- . It is

formed by aoolyinq the inverse of DEPT , t OEPT , to oroduce a

stream of EMPLOYEEs; tnis stream is restricted to that

sub—stream satisfyjnq the oredicate MARRIED; the function

SAL is then anolied to each of the remainin g EIPLOYEEs

vieldino a stream of NUMs.

A final func tional form , construction , is needed to

crea te functions that returns tunles of objects; for

instance , an em oloyee ’s name and salary. In that case the

no tat ion [E MAME ,SALI signifies a rnaopina from EMPLOYEE to a

pair comprising a CHAR and a MUM. Thus we would write :

NA ME—~~ fl—SALS: EMPLOYEE—> (CHAR ,~WM1 [!NAME ,SALJ ;

p

The range of this func tion, (CHAR ,NUMI, denotes the

data—tyne of tuoles of tvoe CHAR and NUN . Tuoles, in fact,

will become imoo r tan t when on era to r s  such as addi t ion ar e

introduced since , by des~~qn, all FOLI functions (orimitive or

comoos ite) are monadic: the oPerator “4 ” rePresen ts a

maoping from a oajr of ~1U Ms into a 9UM; e.o.,

+ : (~~~~U1, M U M 1 — > MUM.



0 .0 
~~~~~~~~~~~~~~~~ 

0 _ ~~__~~~~__ _ ~~~~~~~~~~
- -- -~~~~~~

~~~~~~~~~~~~~~~~~~ i1w~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--—— —

~~~

p

F’~L —— \ Functional Query Lar .iuace Page S

2 . 3 ~u e r i e s

\ query is a snecial kind of function whose range is

some “o r in ta ble ” object. (The tyPe of a printable object is

• recursivel y defined as either that of a standard scalar, a

tuole of orintables , or a stream of such.) As an examole, we -:

might wish to know “the department names and salaries of all

• marrie d emolovees.” To realize this query, however , we need

access to the stream of all eoplovees within the database.

Again , our func tional view of the database mus t be ex tended ,

this time to include a set of “constant” functions. In our

database these include:

I ! E M P L O Y E E : — > *E~.1pLOYEEL D E P P ~RTMEM T : —) * QF P A R T M E N T

(The absence of a data type to the left of the “— >“

indicates a constant function.) The functions !EMPLOYEE and

!DEP A RT M E N T resoectively return streams of all values of

tv~e EMPLOYEE and DEPARTMENT currently in the database. Of

k course , these functions are not truly constants in that they

are database dependent and that their - values can , and often

do , change over time. Returning , then , to our query that

produces the deoar tm ent name and s a l ary of each m a r r i e d

employee :

01: _>* [CHAR ,NUM) = ! E M P L O Y E E . I M R R I E D . *[D! PT .DNAME , S.’, L) ;

Fo~- convenience , we w i l l assume that the database is current

and thus Cl , like the function !E9P[JOYEE , is a “cons tan t”

-4

-~~~~~~
-
~~~~

— - -
~~~~~~~~~~~ 

~~~~
‘ 
~~Tw . 

~~~~~~~~~~~~~

—— Functional Query Lanlu3ne Pane q

.~hose domain will remain unspecified . ~lso observe that the

function being extended by the “ a ” j
~ this examole is itself

th~ resul t of apolvinq the construction ooeratou to a oair

of f u n c tions , one of which is the composition of vet two

other functions.

To reca oi tu l a te, we have viewed a ~ata5ase as a

collec tion of functions over various lata—tynes and have

oresented four- function~ ls —— comoosi t ion , extension ,

res triction, construction —— for combining these functions

in to new functions; and ultimately into cueries. ~e have

also introduced two modes for structurin g tyPes —— streams

(~~~) and tuoles (k,~ . . . 1) — — where Greek letters denote

• ar bitrary data—tyoes. The tyPes of the functions FQL ’s

func tionals produce are summarized in the followina where

lower—case letters signify functions.

1. Comoosition. If f and g are such that f:o (—> ~~ and
g: ~~—)y then f.a: ~ ‘ — >) ‘.

2. Extension. If f:~~ —~~ then *f ooerates umon a
stream of these tynes; i.e., *f: ~~~~~~~~~~~p

3. Restriction. If o is a ~re1icate over o((i.e.,
p:&.—>bool) then Ip : *~~~~> *o(.

4 . Construction. If f~~:~~ — > ~~~., f~ :~~ ~~~~~~f,~ :~ ~~~~~~~ then (f~~,f~ ..,f~ J :~ ~~~~~~~~~~~~

2.4 Stan dar d Func tions

The class of aueries one can formulate using only the

f u n c t ion s ~iven by the database is rather limitel . Our

~~ 0~~~ •0,- --- - 0~~~~~~~

—
v- -r,~~~~~~ ”W.’ _p 7 I ‘~~W ‘7)IP ~ _ _.......... ..

-~~~

- — -.- .----———— - --— -

p

— — A Functional 0uery Lanoi~age Pane 10

lan~ uage therefore contains an array of standarl functions

including the familiar arithmetic , relationa l, and boolean 0

ooer-ators , a set of construc tor-s an d selec tors for

structured data—tyoes , and a num ber of “stream—reducin g ”

func tions which mao streams into scalars. To P O i f l t Out the

use of several of these functions (a comnrehensive listing

m ay be foun d in an . aooendix) consider a cuery which returns

“the names of those employees who earn above the average

salary for their denartment . First , though , let us define a

func tion AVRG which computes the mean of stream of numbers :

H
AVRG : *NUM_)NUM =

- -

He r e , the func t ion “/+ “ (borrowinq from APL) sums the

elements of the given stream while “LEN” returns its length ;

this oair of NUM (bers) then serves as the operand for the —

division (“ I ”) function. Mext, let us define a oredicate

I’ over EMPLOYEEs:

EARNSMORE: EMPLOYEE—)900L
-

- . (SAL ,DEPT. !DEPT .*SAL .AVRG I .GT;

p
EA~MSMORE returns the value “true ” if the given EMPLOYEE

0
~~~~~~~~ earns more than the a~ier aqe salary among his co—workers and

- - “false ” otherwise . The sub—exoression “DEPT.!DEPT” r etu r n s

the co—workers per Se; *SAL retr-ieves their resPective

wages, and AVRG computes the mean; this value is then

com pared to the ori oinal E~tPLOYEE’s salary using the

rela tional onerator “GT.” :\nd finall y , the cuery :

_ A



- -

~~~~~~~~~ ~~~~~ Ti ~

- - -

~~~~~ 

~~~~~~~~

- -

— — A F u n c t i o n a l Quer y Lan au a~ e Paae 11

.

‘p2: _ > * C U AR ~~ !EMPLOYEE.IEAPNgiQRE . *E~AM C ;

AS a further demonstration of the language we now turn

to a m ore complex cuerv : “the names of those deoartments

and all of their em ployees in which the average salary is

below ~2O ,OOO and some of the emp loyees a re not m a r r i e d .”

Firs t, the guerv itself:

Q3: _ >* (C UAR ,*C H\ R1 a

DE PAPT’IE’IT. I ((P1 , P21 . AND) (DMAME, DE PT. *ENA ME J
7

- L
The cuery is formed throuch restrjctjna the stream of all

f DEPART~1E’4Ts by the conjunction of predicates P1 and P2 as

soeci fied below (note the use of paren theses to enforce the

scope of the restriction operator); for each DEPART~1ENi’~~ n

4 this sub—stream a pair consisting of its name and a stream

• of its EMPLOYEE ’s names is then constructed . The predicates

P1 and P2 are defined as follows :

P1: DEP .ART’!EMT—>BOOL = (!DEPT .*SAL.AVRG ,-$20000].LT ;

j P2: DEP A RT ME ~~~T— >B O O L

-
. The firs t predica te compares the average salary earned in a

given DEPAFT1SNT with the value 20,000 (more orecisely, with

the value of the constant function 20000). The second

~redicate tests for the mresence of some EMPLOYEE who is not

married : the exoression *(~1AR q IED • ~o~) yiel ds a stream of

BOOL (eans) while the function “/OP” returns the value “tr u e ”

if some member of this stream is “true.”

~~
, ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-~~~~~~~~ r’ -r ~~~~~~~ wv’~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~ 
—.v

~~
-,-

_______ __________ —-- — - - -

_-- - - -

I

FOL —— A Functional Query Language Page 12

2.5 A ~ill-of— Materials Processor

As a final examole, we w i l l attack the in famous

bill—of—materials oroblem which, to our knowledge , eludes

p solution (or at least an elegant one) withir~ most database

query systems. The difficulty here lies with the fact that

the schema reauired is inherently recursive : Parts contain

sub—oarts which themselves are parts; these , in turn , are

buil t—uo out of other parts; and so on. The soecific task

we shall address is that of finding the total cost of a

given Part. If we associate with each part a “cost” meaning

either the purchase pr ice ~in whic h case it has no sub—parts

of interest to us) or else the expense of assembly, then the

total cost of a Part is its own “cost” added to the total

cost of all of its sub—oart~ . To complica te matters

somewhat we will assume the componen ts of par ts are used in

•
differing quantities: an engine may require four piston

assem blies and two carburetors. Finure 2 depicts a possible

schema for such a database:

Ficure 2

-

— —.~
-

— - —- — - -

I t .
—— A F u n c ti o n a l Query Langua ge Page 13

The relation between a part and its sub—oarts is

represented by the USAC E tyoe. For example, if an enaine

requires two carbure tors , a USAGE entity will be defined

whose PT is an engine, whose COMP is a carbure tor, and whose

QTY is 2. The exoression ~PT.*COMP the efore maos a aiven

PART into a stream of its immediate COMP(onents);

conversely, tCOMP.*PT returns a stream of PARTs in which a

~iven PART is an immediate constituent. We may now define

the function TC wh ich computes a par t ’s total cost :

TC: PART—>NUM = rCOsT,!pr.*(ro~ry,coM p.Tc1.x)./+1.+;

For a given PART , the to ta l—cost (TC) of each of its

sub—parts is multtplied by the required quantity and then

summed together, after which this total is added to the COSt

of the oriqinal. -

‘lhat is remarka ble about this oar ticular function is
p -

t ha t its d e f i n i t i o n , despite recurs ion , includes no exol ic i t

basis for termina tion t (FQL queries do not usually require

the IF—THEN—ELSE construct normally associated with
p

termination in recursive functions.) Yet , computation will

halt since the database is finite. This can be seen by

examininq the simolest case: given an atomic part (one with

no sub— parts), aoolication of the function !PT would yield

the emoty stream; aoolyinq the oarenthesized exoression to

each element of this stream oroduces , of course , another

emotv stream; the sum of the empty stream of NZJMs is, by

defini tion, 0 (the identity for addition) which is then

__
~~~~-~~~~~~ -~~~~~~~~- - - - - - ~~~~~~~~~~



-
~~ ~~

-. 
_________ ~~~~~~~~~~~~~~ ~~~~~~~ 

W W~~~ _ _ _ _ _ _ _ _

F Qt, —— A Func t ional  ‘~uerv Lanquaoe Pane 14

added to the COST of the original Part. And assuming the

comoonen ts of all oarts are ultimately atomic the function

TC will converne. IncorPora tion of the function into an

aporopria te cuery is left to the reader ’s imagina tion.

A
Finally, we should men tion that FQL does include a se t

of basic stream—man joulatinq or imjtives based uoon the

list—processing functions , CONS, CAR , CDR , etc. of LISP.

(These are  described in an apoendix.) It Is interesting to

note that for most database queries exolicit use of these

7 operators is not required : they are imolic~ t in extens ion

and restriction. Constructing a bill—of—materials orocessor

which lists all the sub—parts of a given part would ,

however , call for a d irec t ~ise of CONS. (Again , this is

- - left as an exercise for the reader.)

* 3.0 IMPLEMENTATION

In its curren t form , FQL is imolemented in PASCAL as an

interface to SEED (61, a CODASYL—based database manaaement

system written in FORTRAN , and is running on The ~Tharton

School ’s DEC—10. Little difficulty is foreseen in

transferring FQL to other machines or, if necessary,

re—wri ting its source code in some other oroarammina

language. Interfacing to other CODASYL systems may reauire

some additional code: unless routines are provided for

run— time interrogation of the database schema , as they are

in SEED , a ore—orocessor would be necessary to translate

______________  _____________ ________ :~~~~~-$Y~~ ~~~~~~~~~~



-,- — ——- - -- .— —----- -. — -  _ w—_,_—--— ___ — ‘ -- ~~~- -

—~:-- ‘~ - -- 
- - -— -

p

F’~L — —  \ Func tional Query Lannuane Pane 15

from the CODASYL 1ata—definit~on lannuaae (CDL) into a
I

seoatate rePresentation of the schema used by F(~L.

The maooina between a CODAS YL schema and the f u n c t i o n a l

• model presented above oroves nuite straiahtforward2.

Roughly  soeak in a , sets and I tems corresoond to func t i ons

wh i l e  the records  become tvoes. The “ f u n c t i o n a l ”  database

• deoicted earlier in Figure 1 would , for instance , derive

froi a schema in which DEPARTMENT and EMPLOYEE were records,

DNA ~’1E and E~JAME were resoectively items within these records

of type CHAR , and DEPT were a set owned by DEPARTMENT and

populated by EMPLOY EE s.  N ote,  thouqh , tha t  the  set DEPT

actually corresponds to the inverse function IDEPT ; the

function DEPT itself takes a member—record into its owner.

It should also be ment ioned t ha t  inverse  f u n c t i o n s  such as

!DNAME are only available when the corresoonding item (DN~~1E

$ in this case) serves as a CALC key.

S tr i c t l y  soeak inq ,  CODAS YL sets cortesoond to func t i ons

only  when member shio is both MAND A TORY and AUTOMAT IC. In

o ther  cases we may only  assume t ha t  a set d e f i n e s  a oa r t i a l

f u n c t i o n .  In order to cooe w i t h  p a r t i a l  f u n c t i o n s , a

standar d object , UNDEF , has been introduced as a member of

I

2. Some CODASYL I c o n s tr u c t s  cannot  be reoresented  in FQL ’s
data model at Present .  These inc lude  a rr a y s  ton ether  w i t h
sets In which  more t han  one record tvne may be owned.  There
aooear to be no f u n d a m e n t a l  ~ l f fl c ’i lt ~ es in e xt e nhj n n  FQIJ to
cooe with these.

- ~~---~~~~~~~~~~~~~~~~~~~~~~~ - -~~- 
~~- -~ ~~~~~~~~~~~~~~ ~~~~~

- - .



~~~~~~~i __ i
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~1~~

I
— — A Func tional Query Laniusie Pane 16

every tvoe ; and a s t a n d ar d ore dica t e , D E F I N E D , is a v a i l a b l e

to test whethet or not an obiect i~ defined . Partial

func tions can then he reoresented by (total) functions which

may, at times , return UNI)EF.
I

One of the more interestinn facets of the

imo lemen ta t i on of FOL is the r~anner in which s t r eams a re

handled internally. The oroblem here is to supPort the

user ’s i~~1usion of c o n s t r u c t i na and t r a v er s i na (ooss iblv

v e r y long) l i s t s of data w i t h o u t monop olt z ing la m e amounts

of orimam y store. To some ex t e n t out so lu t ion fo l lows f r o m

the work of Friedman and Wise (5 1 though there are

s i g n i f i c a n t d i f f e r e n c e s . To consider art examole, the

“constant” function ~EMPLOYEE does not literally return a

list of all EMPLOYEEs currently in the database (to do so

would not on ly be Imprac t i cal but in c e r t a i n cases

imoossible) . Rather , this func t ion qenera tes a s t ream

reoresented by an ordered—pair comor~sinq its head, the

first EMPLOYEE in seauence, and its tail, another function

whIch , when apolied , oroduces a stream of the remainlno$
EMPLOYEES (i . e . , it oroduces another o r d e r e d — o a i r) . Amona

the advantages of this scheme is that the amount of orimary

Store r eauired to process a seauence of i nde t e rmina t e lenath
- I

r e m a i n s cons tan t .

IL

1

~~~~~~~~~~~~~~~~~~~



— — — — _w ~~‘ ~.__ ~~
- 

~~~~~~~~~~
—

~~

—
— —----- -~~ ,-~~~--v-~

_
~~

_ _ ---
- - - -~ ——- -— - - — —

________________— -~~~~~~~~

F~~~~L — — A Functional Query Lanoua~ e Pane 17

4.0 !~I3CUSSION

In this section we shall briefly discuss extensions to

FQL and further related research areas. The oresent syntax

of FQIJ makes it somewhat unn a in ly as an end—use r nu erv

lanqua Qe. There are a number of chanaes tha t could be male

to alleviate this situation. At the cost of some run—time

check ing , the tyce declara t ions on the l e f t hand side of

f u nct i o n de f i n i t i o n s could be e l i m i n a t e d . Also , i n f i x

representation of the dyadic arithmetic and relational

oP erator s may he found more convenient . It is also oosslble

to have the ~~~~ f unc t iona l a u t o m a t i c a l ly inserted : much as

APt aeneralizes its standard functions over arrays , most

func t ions in FOL have an obvious exten sion over streams .

Using this simplified syntax , the bill—of— m aterials query

described above reduces to:

* TC COST + ~~PT.((~~TY x COMP,TC).+/ ‘

which is a somewhat more readable version of the function.

We have suggested that the functional schema used by

FQL is general enough to allow rePresentation of other

database systems. One of the obvious extensions to POt. is

an In te r face to a re la t ional system. ! ri e fly , each t e l a t i o n

defines a data—type and a set of functions , one for each

subset of its domains, Thus , u~ inn conventional r e l a t i o n a l

database notation , if

— -- -- --—-. -—
~~~



- — — — 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

—— ~~ !unc tjort3l “UC L V  Lannua’e Pa~ e l~I

• ~~-‘P: (E~~A ’1F , ~~~PT’, SAL)

describes a r e l a t i o n  then , in the  fu r t c t I on ~ l d e s c r ip t i o n ,

theme is a data ty’~e EMP toaethem with functions such as:

EMP(ENA~-l!, SA L>: ~MP — > (CU ~~R ,N ’J~l !
E M P < D E P T *) :  E’i P— >~4UM

etc.

( e ne t a l lv ,  n iven a r e la t ion  R , and a subset di , da . . .d s of

its domains, there is a function denoted by R<dj,da...d~ >

which mans into the data—tyoe (t1,t2...t~ J where t~ is the

data  tvne of d~ ( l < i < k ) .  F i m st  no rm a l  f o L m  a u am a n t e e s  tha t

such data  typ es ar e  a lway s  or i n t a b l e .  It is an easy mat te r

to imolement  these func t ions  and the i r  inverses  using the

ooeratoms of the relational calculus . It m ay,  howev er ,  be

ooss~b1e to translate FOL queries more directly into a

relational auemy languane, though the oroblem of oroducing

efficient relational aueries from an FOL definition reaulres

further work.

It is interegtlnl to note that a relationa l database

with added semantics (the Smiths ’ aggregation model I~ i is a

good examole) often gives rise to a much simoler functional

reoresentatjon. Direct functions between relatIons (the

“natural ” ~oirts) are available and schemata not unlike those

used in this oaoem may be dIrectly inferred from the

sem a n t i cs ,



~~~ ~~~~~~~~~~~~~ ~~~~~ ~p~~ra )~# ~~ ___________________

~~~~~~~ ~~1~~~~~.i~TT~~~T ~~~~~~ ~~~~~~~~ 
—

— —  A Func tional Query Lan~ uaae Paic 19

~e would also like to extend F~ L to be a more general

database aooljcatjons lancuaqe. The ~r o b lem her e ,  as in a l l

aoolicative languanes, is that of uolate. It should be

oosslble to all the ability to undate functions; and if

this were done , it would ~,ive the user the ability to define

blab level transactions in a structured fashion. This may

well be of advantage when workinq in a shared environment

where many undate anomalies are caused by the user having

exolici t control over data currency. Other additions we

would like to see to FOL include functions which describe

the tyPe of a database entity and what functions are

available. This would allow nueries to interrogate the

structure of the functional schema and greatly enhance FQL ’s

use as a general—purpose anolications language.

$

C

~ 
- i

t



— ill11 ~~ I~ ± T ~1 _ _ _ _  

~
. -w--~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,
~

--

—— A ~‘unctjon3 1 Query Lan-~uane Page 20

5 •) R F F C R E N C~ S

1. 9ac!cus, J. Can Pronrammin g be Liberated from t~evon Neumann Style? A Functional Style and its
Algebra of Proqra~is. Comm . ACM , 2 1 , 6fl—~ 41.

2. surge, ;q~~j, Recursive Proaramm ing Techninues.
Addison— : eslev ,~~ din~7 Mass., r9 73

3. Chamberlin , D.D. and R.F. Boyce, SEQUEL: -

S tr u c t ur e d E n g l i s h Query Lanauage. Proc. AC~1StG ~tOD ~~~~~~~~~~ 1974.

4. Data 9ase Task Groun Aor i l . 1971 Reo or t . ACM , N ew
York 1971.

S. Friedman , D,P. and Wise , D.S. CONS should not
evaluate its aLau’nents. In Automata , Lannuanes,
and Proaramming . Edinbur gh Univ. Press , Edinburgh
I~ 76.

6. G e r rj t s en , R . Seed R e f e r e n c e M a n u a l .
International Database Systems , Philade [nhia
(1978).

7. Xaolan, S.J. CO—OP: A N a t u r a l Lanqua n e
Co—ooerative Query System. PhD. Dissertation ,
Moore School, University of Pennsylvania.

8. LandIn, P.J. A Corresoondence between A LGOL ~0 andChurc h’s Lam bda Notation. Comm. ACM , 8, 89—101.

1 9. Smith, J.M and D.C.P. Smith. Angregation and
Generaliza tion. ACM Transactions on Database
Systems 2 (June 197~ 5~

10. Stonebraker , M. et al. The T)esi~ n 3nd
Imolemen tation of INCRES. ACM Tranasactions on$ Database Systems, Sept. 1976.

-:


~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~

p

F~ L —— ‘\ Functional Query Language Page 21

Aonendjx 1 —— FQL Syntax

3elow is aiven the syntax fo r a func t ion le f i n t ion , a
data—tyoe , a func tional ex or ess ion , and a function itself.
Ontionat components are denoted by “ t ” ... ” }~~” while
“ { “ ...“}

~~~
“ si gn i f i e s  a set of e lemen ts m ay occur an

arbitrary numbe r of times.

<def> : :=  <name>: (<tv,e>}t — < tyoe —<fexpr> ;

<tyPe> : :=  NUM
:: C~1AR$ :: BOOL
::~ *<tyDe)
::~ ( < tyoe {, <type> ’l

<fex or> :: <function> f,< f u n c t i o n> }~
t <func tion> : : =  <name >

: : =  *<function)
: : =  I<func tion>
:: (<fexor> (, <fexor>}~ J
:: (<fexor>)

I

I

C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~

—— ~t ~‘inctjonal 
1~U~~LV Lan~ ua-i e Pace 22

~~endix 2 —— ~tan~ ard Functjor~

The standard functions sunoortel by FQL a re  arouned here by
catenory. where aooronriate , additional exolanation is
orovidel.

Arith m etic functions

The func t ion s +, — , x , / ,  and MOD all man from [NUM ,NUMJ
into MUM . The functions /+ and /x oerform addition— and
times—reduction on streams of NUMs; i.e., they man *mj~
in to M U M . Given an emotv stream these functions return
their resgective identities , 0 and 1.

Relational an-i Boolean Functions

The operators EQ, NE , CT, LT, GE , and LE man from either
(MUM ,NUM I or from [CF1~ R ,CH~ P) into BOOL. The functions
AND and OR return a SOOL ~ijven 13r)O L,300L1; the
comolement NOT takes a BOOL into another T300L. The two
reduction onerators , /QR and /AND , renresent mannings from

H *~OOL to BOOt and , niven emPty ~tr ea:rl3, return the values
“true ” an d “f a lse ” resnectively.

Cons tan t Func tions

4 The no tat ion ~<nunber> reoresents a mapping —>MUM whose
value  is the <numb er>; the notation ‘<character—string>’
similarly denotes the manning —>CHAR. The function NIL is
a constant signifying the em~ ty stream of any tyPe ; i.e.,
—) *.(,

Basic Stream—manioulating Functions

Given a non—emotv stream , the oneration ~1D returns its
f i r s t elem en t (~~~~—>~.) while the oPeration TL returns a
stream of the remaining elements ( * ~~_ >~~~ ) .  The function
CONS takes an element of some type and a (oossihlv emotv)
stream whose elements are of that same tvoe and returns a
new stream in which the individual element is its “head”
while the original stream becomes its “ ta i l” ; i.e.,
CONS :

• Other- Stream—manipulating Functions

The function LEN comPutes th~ length of a niven stream and
is thus a maooinq from ~~ into MUM. CONC ~~os a caii. of
strea m s  [~~,*~ 1 (whose elements are of the same tvoe) into
a s in g le str eam *~~; /CONC nrorluces a sinale s t r e a m  •O( by
“fla ttening ” an arbitrary stream of streams **~~~, The
operator DISTRI3 takes a tuole of the for-n r*~ ,~ 1 and
re tu rns a st ream of tun les  ~~~~~ w i t h  the v a lue  of tvne~~~
“distrIbute d” over the stream of~~ ‘s.

LA ---
~~~~ 

_ _ _- -
~~~
---

~~~

--

~~~~~~~~~



—— A Functio.mal Query Lannu-a,e Pane 23

liscellaneou s Functions

The function i (i=l, 2...n) selects a comnonent from a
- - tuole; i.e., fcc~ ,øt~~ ...~~~ J — > ~~~. Finall y , ID rePresents

tne identity maooiria~ — >~~~.

1.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — - ———



-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _

DISTRIBUTION LIST

Department of the N a v y  — Office of Naval 1~~ ;i ’a rch

D a ta  13~~ ;e Ma n a j & I i h - n t  Sy ~~t pins Project

- 
- ‘~.~vo1 I~lpctronj cs L&). Cener

f~ iv;e ~o c u : e n t;t  ~~ ~~~~~~~~~~~~~~~~~~~~~~~ Technolo’1y I iv.
.— C.~ieron ~‘t-~t :on 

-

~l;~x~ f t i r i a , VA 22314 ~~~ ~ IeJO , ~A 92152
12 co~ ieS

•r. . ~. ~1ei~’;ner

‘)ff ~icr ~, Ch 
(~~~ch QV( 1O~~ c’flt ’~~nt er

~~~ ou..h ~i-~rk Stite t Co:~~u t i  ion ~ind ~~t h o r ~ t ic ~)ent .
~~~~~~~~~ IL GO~ O5 T3ethe~ 5a , ~ ) 200S4

;)f lice of ~rv i~1 i~e~ei rch ‘‘ r 1~im r:ic~ i~
,
~on

r~ ~ot ~rr a  ~ 1lice ‘reclir i~~~l ~Ii  rector
/ 1 5  ~r ( ) ~~~ ’ i y  — 5th Floor In~ or ~~~~~~ ion c~y~ t c  ~~~~ D i V i n i o n
•(~ ~or~(, “~.Y. 1~oO3

~)f i i ce  of Chi~5f  !‘~va1 fl~~t~ tionS
~r. . ~~- ‘h i n ~ ton , D .C. 2 1i350
Cçj nt i uic ‘

~
‘Vi ~~ (~D—l )

- :n ~~nt  of tte ~~r ~~~ - -
~~~~~~~~~~~ P r o f .  C; -~.r- 

~~~~ii ;  ton f~ C. 203L: O 
~~~~~ r~n iver  ;ity

i i~ t~~c’ Ci~ v of -~e~’ York
~ 1f icc of ~~v:1 i~~~~nrch -

~~~~~~~~ ~~ ~~~~~~~~ 
. 1

~ ~ fl(~ ~~) i tu r ‘~~~ CO
r l i ! Y ’t O n , V’\ 222U -

~~~
-
~~~~ \‘ork , ‘~ .Y.  J c’(i 7.7

fi~-e 01 L~,c1 ~~~,c~ir ch 
~o- -~ —~- --~1~~ , ~v~’1 ~oa ~~~

I r i - ) r  t ion ~y’~ tc. :i~ Prc1r~ -n 
~~~~~

-) l 1 ~~O(- 1- of the .iwy
~~(\ C 4 3~ c~ h i i t :on , r) .C. 20362
~~~ i r s  ~ton , VA 22217 ATP~ ~~~~ ~‘~~3Ut1 l2 ( ( ) ‘ i ( ~~

— ~~~~~~~~ ich. -r~J ‘. ‘~~ t j r , ‘ 1 ~~
• -;

- ) t  lice of ~~vn1 Fe’:crrch Co’4~~~n i in- J  Off i. c ’r
L,. .C ,)  Lice , o~ton USS ~‘r~ ncis  “a n o n

~~5 ~ r ~ t reet :~
) 1 Ye r k (;55(il

~o~ tOfl, ~~~~ 
)210

Ca ;t~~in Cr~’c~ ~c~: - ‘‘~r
~~~ f i~:e of ~‘v~ 1 r~- :r- ’rch ;

~.‘~ICO’~/flI3 4u1~ v~flinc~ ~r~~nch
‘~~rc~ ~f li ce , {~~~~.‘- n a
1;3~

r ,~~~t ~r — ~-n ‘~t reet)f l ice of f’~ ic’f of ~ ‘v~
] F - ~~~i t c h

~~~~~~~~~ rr ~ ~‘i) 35 ~:~~T h i n n t o n , fl.C. 2U350

,i~ ‘J7~1 (?ç~~
---

~~
-
~~ c ~ or~ t ory 

~ ~~ •~o ;f r i ~t ~
- t-y ~~~~

~~~~~~~~~~~ ical t n l c r ~t i o n  flj•~’1’~lOn 1 ~~ 
r j

~ fl 1 ~i ’(~
‘-“ - [C f l

•
‘ç,- r - 2~ 27 ~~j L r ’r .’~ — ~~~2 ~t 2 t c ~ ~~i j t ~~~ t”

- -~~ - ‘
~ i r- ton , ‘-‘.C. 2u375 139 Col l (~ i’ -’ • v~

--a~~c
(ci :’ ~s

~c~-’ ~rer~
.iiC~ , ‘i - (_b”03

)\yj’s ’ ; I I ~~ : ~‘r . ~‘‘rry \~co:
-~~f icc of 1~ vcl ~c~”r~ tCh

~~~~~~~ t 55 E~~1ar .~~ ~~~ irq s c - I  ~~~~~

~ t1 jn ~~tD fl , 
v~ . 717 To 3r~ r~h i c  (~~nt~’r

-c -
~~ ~ ~c r— c c r ’ ’ l  ‘ i; ~ V —

Ces e ‘ 1 3~’~i
( ‘

~~~~ );) ( T

:a ’ -4 .~
- i t n , .~~

‘
. 2~ - ~1 ¶ .

LA~l

- - ~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~ I

FQL -- A FUNCTIONAL QUERY LANGUAGE

~~~ 0. Peter ~unemanRobert E. Frankel

7 9 — 0 3 — 0 5

• 8

~~~~~~~~~~~~~~~~(
- •

/ 
,

Department of Decision Sciences
~~~~ . The Wharton School

- University of Pennsylvania
-
~ Philadelphia , PA l9l0t~

-

Research suppox~ted in part by the Office of Naval ResearchF under Contract NQ0Olk-75-C~ Or~62 .

~~~~~~ ~~~~~~

- H

r~~~~~~~~~~~~~~~~~z:Tit 
L

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

--


