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PLASMA DIFFUSION IN A
SPACE-SIMULATION BEAM-PLASMA-DISCHARGE

I. INTRODUCTION

Beam-plasma interactions have received increased
attention in recent years largely as a result of consid-
erations bearing on vehicle neutralization during space-
borne accelerator experiments, enhanced beam-plasma
ionization processes, and in general, collective phenomena
initiated by beam injection into neutral gas and charged-
particle environments. With plans for Shuttle-borne
experiments directed at controlled beam-plasma interactions
and the use of beams to probe ionospheric/magnetospheric
electric and magnetic fields, it became important to
conduct laboratory simulations which supported the Shuttle
plans and helped establish definitive Shuttle-borne experi-
ments.

As part of just such a plan involving a continuing
investigation of large-facility beam-plasma interactions

(Bernstein, et al, 1975,1977,1978) the Naval Research

Laboratory (NRL) participated in a recent series of experi-

ments at the NASA Johnson Space Center (JSC). The NRL
Note: Manuscript submitted December 11, 1978.
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contribution involved the direct measurement of electron
density and temperature under varying conditions of beam-
plasma and neutral gas parameters. Reported here are

the first large facility profiles of electron density and
temperature under conditions of enhanced beam-plasma
ionization...conditions which have come to be known as the BPD,

the '"beam-plasma-discharge'" (Getty and Smullin, 1963;

Bernstein et al., 1978). The observed density profile is

found to be in good agreement with a two-dimensional diffu-
sion model and this result makes possible the first estimate
for the cross-field electron diffusion coefficient in a
large facility BPD. In the following Sections the experi-
ment is described, the theoretical model is defined, and
the diffusion coefficient is derived.

II. EXPERIMENTAL RESULTS

The Experiment. The technique of the pulsed-plasma-

probe (P3) was employed to measure the beam-plasma profile.

The P3 provides simultaneous measurements of Ne’ T \')

e) “I
and GNe(*Pn(k)) and is particularly useful under dynamic
plasma conditions and in environments that can contaminate

electrode surfaces (Holmes and Szuszczewicz, 1975;

Szuszczewicz and Holmes, 1975,1976,1977). Both these

conditions prevailed to various degrees in the JSC experi-
ments.
The experimental configuration (similar to that

described by Bernstein et al 1978) is illustrated in
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Figure 1. The P3 was mounted on a traversal mechanism

positioned at approximately 8 m above the injection point of
the beam. The tungsten cathode gun was operated at 63 ma

..6)

torr range. A combination of coil current and the Earth's

and 1.3 KV DC with the chamber pressure in the 2-4(10

field established vertical and horizontal component B-
fields at B =1.21 gauss and Bx_y-0.27 gauss, respectively.
Under these conditions a BPD was established and the probe
traversal mechanism was exercised to determine the plasma's
radial profile out to 4.6 m. The resulting measurements of
Te and Ne are presented in Figure 2.

Following the diffusion-model density-profile
predictions (discussed below) the experimental curves
were fit with exponential distributions found to be

T, [10® °%k 1= 6.93 exp (-r/1.99) (1)

N, [10% en™3 ] = 7.01 exp (-r/2.49) (2)

III. THEORETICAL CONSIDERATIONS

For purposes of comparison, a simple two-dimensional
diffusion model is developed which follows the approach used
in the study of small laboratory arc plasmas by Bohm et al.,
(1949a). The approach suggests the consideration of a
differential plasma element of thickness dr and of length h
parallel and equal to the length of the beam as depicted
in Figure 3. The differential element is taken outside the

domain of the primary beam and is assumed to be homogeneous
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along its length. The equilibrium density then arises from
the balance of charge accretion by differential drift across
the element, i.e., j (r) - j (r+dr), and end losses (z=0
and h) due to axial diffusion. Requiring dNe/dt = 0 and
assuming an axial diffusion loss directly proportional to
density (i.e., differential end losses = 2 a:Nedr), the
balance hetween production and loss requires

(dj,/dr) hér= -Za: N 6§ (3)
which is rewritten as

dje/dr=-2q: N,/h . (4a)

Similar arguments for the plasma's ion component yield

dj/dr = -2 a; N, /h (4b)

Independent of Eqs. (3) and (4) the diffusion currents Je

and Ji can be described by their respective mobility

equations
dN eN_ dv
e T awk e
Je De dr ETe dr } (5a)
Lf an, N, av |
we Myt o BpEt Y, ) i

& ok
where V is an electric potential and De and Di are the

perpendicular electron and ion diffusion coefficients,
respectively. Taking the one-~dimensional space-derivative

d/dr of Eqs. (5 and substituting (4) yields
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a
[ 2 v, - =2)=-2 ¢ [y L (62)
°\ hD dr k dr dr
i 2
v 2w e i R g . (6b)
hDi drz k dr dr

when Ne = Ni and the terms have been rearranged.' Addition

of Eqs. (6) eliminates the potential-dependent term and

results in

2 e 5L
d Ne <3 azDiTe+ “zDeTi N =8 2N (7)
3 = 2 h e e
2 -
dr - ‘ DeDi (Ti + Te)
with a solution
o (N3 exp (BR) - ND)
B & Ne - exp (Br)
] (exp (BR) - exp(-BR)
NQ exp (6R) - NP
* exp(-8r) (8)
(exp (BR) - exp (-BR))
In the limit R+ », the solution becomes
f N_ = N° exp (-Br)
£ - N g (9)
: where o {4+ /2
1 B . o 2(a Dy Ty + D, Ty) (10)
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DEDI(T, + T¢) b

%
4
&
:

e

o

T

N

B PP T




L

IV. COMPARISON BETWEEN THEORY AND EXPERIMENT
The agreement between theoretical prediction (Eq.(92))
and experimental results is found to be good (see bottom
panel, Fig. 2) and provides the opportunity for determining
the effective electron diffusion perpendicular to the magnefic
field, i.e., the radial diffusion in the model of Fig. 3.

To accomplish this, consider

p 3
1t st - Deh/zae . 2.40 (11)
A

T, /Tg=0

where the value on the right side is taken from the exponential

in Eq. (2). In addition, consider c: as the effective
velocity of axially diffusing electrons which have sufficient
energy to overcome chamber sheath potentials and be com-

pletely lost to the system. In this case,

kT - >
1rem exp (-ch/kTe) (12)

e
a2z

where Vc is the chamber-sheath potential. With Vc =
(4.8%2:3) kT /e (Chen, 1965; Szuszczewicz, 1972) and

T, = 3 (10%) °k Eq. (12) yields
1 :(nom.) = 7.0 (104) cm /sec (13a)
a S(max) =2.8 (10°) cm /sec (13b)
6




o (min) = 4.3 (10%) cm /sec (13c)

Substituting the G; values into Eq. (1l1l) provides

Di(nom) = 2.2 (10%) cm?/sec (14a)
n:(max) = 8.8 (10%) cm?/sec (14b)
D:(min) = 1.3 (106) cmz/sec (14c)

as the first experimental estimate of the effective electron
diffusion coefficient perpendicular to the magnetic field

in a BPD.

The values for D: are orders of magnitude larger than
would be expected for cross-field collisional diffusion.
This result in itself is not surprising since a variety
of observations indicate that the diffusion of plasma
across magnetic lines of force can be substantially enhanced

above the collisional diffusion rate when fluctuating

fields are present in the plasma (Spitzer, 1962; Kadomtsev,
1965). This is indeed the case in a BPD which has as one of
its characteristics the presence of fluctuating electric
fields that are associated with large amplitude plasma
waves. The enhancement of diffusion in turbulent plasmas
goes back to Bohm et al. (1949b) who semiempirically de-
scribed the rate by what has come to be known as the Bohm
diffusion coefficient

Dp = 6.25 (10%) T_B™! cm?/sec (15)
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where [T ] = e Vand [B]= gauss. For our nominal
temperature of 3(103) K and a total field BZ = 1.2 gauss
Eq. (13) yields Dy = 1.3(10%°)cm®/sec. This calculation
has not been intended to confirm or deny the validity

of Eqs. (14) but has been presented as the only possible
comparison with an existing concept of turbulent diffusion.
While the Bohm formula appears to apply to a surprising
number of different experiments, care must be exercised
so that the illusion of universal validity does not auto-
matically develop. It is evident thét a first-principles
derivation of the coefficient of turbulent diffusion can-
not be obtained without a detailed investigation of the
plasma, particularly the fluctuation power spectra and
associated instability processes (Kadomtsev, 1965;

Papadopoulos, private communication 1978). The experi-

mental and theoretical aspects of these details, as they
relate to the JSC experiments, are currently underway

at NRL (Szuszczewicz and Papadopoulos, private communi-

cation 1978).

V. SUMMARY

The first experimental radial prqfiles of electron
density and temperature in a large facility beam-plasma-
discharge are found to fit exponential functions defined by

T, [°%k] = 6.93 (10°) exp (-r[ m]/1.99)

and
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N lem 3] = 7.01 (10%) exp (-r[ m ] /2.49).

While the present stage of research does not provide a
theoretical basis for the temperature distribution, the

electron density results do agrec with a2 two cimeuasional

diffusion model which predicts

Ne = Neo exp.g-(zc;/D;h)ir}
in the limiting case of large chambers with Ti/Te-—-O. With
-Z taken as the effective velocity of axially diffusing
electrons (assigned a nominal value of 7 (104) cm/sec) the
identity of the experimental profile with the theoretical
prediction yields

D*_(nom) = 2.2(10%) cm®/sec
for the radial electron diffusion across a superimposed
magnetic field. This is the first such determination in a
large-facility BPD and points to a process substantially
faster than cross-field collisional diffusion. The reason
for this is identified with the presence of large amplitude
plasma waves and their associated electric fields.

While enhanced cross-field diffusion appears to be a
characteristic of many turbulent plasma environments, the
observations reported here are particularly unique in that

3 times weaker

the applied magnetic field is at best 10
than in any other turbulent diffusion investigation. This

points to the importance of an unequivocal determination
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of the turbulence spectra and the associated instability

processes. This work is currently underway at NRL.
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Fig. 2 - Radial profiles of electron density and temperature
under conditions of the beam-plasma discharge.
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