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1. INTRODUCTION

1.1 Summary

Primary activities durina the first year of the project consisted of:
(i) developing a composites processing and testing laboratory and a neutron
radiography facility, (ii) conducting research in accordance with the
Statement of Work given in Section 1.2, (iii) preparing four technical
papers, (iv) various interactions of the faculty with the technical com-
munity through presentation of papers, chairing of conference sessions, con-
sulting, etc.

Sections 2 - 4 describe the research activities. The professional per-
sonnel associated with the project and the individual activities at confer-
ences are given in Section 5. Papers completed during the year are repro-
duced in the Appendix.

1.2 Statement of Work

"a. Investigate the effects of composite cure cycle parameters on the
mechanical characteristics of structural specimens and components (see
Section 2.):

(1) Investigate the development of new innovative in-process monitor-
ing devices and study improvements in the "Duomorph" sensor.

(2) Conduct experimental measurements on both neat resin, unidirec-
tional laminates and cross-ply laminates to establish the relationships
at various elevated temperature and relative humidities between processing
parameters and mechanical strain rate behavior, linear and identified
nonlinear viscoelastic behavior, dimensional stability,and fracture
characterization.

(3) Investigate the influence of processing parameters on Tg at
various relative humidities.

b. Investicate the influence of elevated temperature and high relative
humidity environments on composite laminates and adhesively bonded
structural components (see Section 3.):

(1) Investigate, on a theoretical level, the formulations of a
coupled diffusion theory to accurately predict the environmental degrad-
ation of composite laminates and adhesive mechanical performance which
con;;ders the influence of cure cycle parameters being investigated in
a above.
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(2) Predict moisture concentration profiles and internal stress/ |
I strain fields within a laminate and bonded structure as well as in |
the vicinity of exposed edges. These profiles will consider generic

T environmental conditions of absorption and desorption. '
“ (3) Compare theoretical predictions with available experimental

data or define experiments which would yield necessary data for this

comparison.

c. Investigate suitable experimental techniques which can be used to
nondestructively examine composite laminate initial defects, damage
growth and environmental degradation characteristics which affect
mechanical performance. Initially, emphasis will be given to neutron
radiography as a suitable technique (see Section 4):

(1) Conduct necessary experiments to characterize neutron beam 1
parameters and associated parameters' sensitivities applicable for
nondestructively examining major composite laminate mechanical charac-
teristics which affect strength, dynamic response and durability.

(2) Investigate the development of experimental neutron radiography
techniques to measure moisture concentrations in composite laminates as
well as spatial concentration profiles.

(3) Investigate the development of automated procedures for the anal-
e ysis of data from neutron radiography experiments which accurately and
efficiently characterize and identify laminate initial defects, mechani-
cal damage, and moisture concentrations.

(4) Investigation of automated data analysis procedures in c(3)
above will consider both planar and stereographic data displays."

——
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2. PROCESSING AND TESTING OF RESIN AND COMPOSITES

2.1 New Equipment

A press for fabricating flat and curved laminated plates was designed
and built at Texas A&M University. This press, which is shown in Fig. 1,
is electrically heated, water cooled, and designed to apply temperatures
and pressures in excess of 400°F (204°C) and 100 psi, respectively. Glass
laminates have been successfully fabricated and, it is planned to initiate
the processing of graphite composites early in the next reporting period.

Nine environmental chambers for conditioning specimens at various
temperatures and humidities were also built. These chambers, two of which
are shown in Fig. 2, have an internal glass cavity 6 inches in diameter x
15 inches long. Humidity is maintained by means of salt and acid solutions.
An immersion bath was constructed for submersing specimens in water at con-
trolled temperatures up to the boiling point. It is planned to build five
additional environmental chambers for use with existing constant-load test-
ing frames; their design is described in Section 2.2.

Also acquired during the first year are (i) Perkin-Elmer thermal test
equipment consisting of a thermo-mechanical analyzer (TMS-2) and differen-
tial scanning calorimeter (DSC-2) and (ii) a Micromech microwafering saw
for machining laminates.

2.2 Constant Load, Temperature and Humidity Apparatus*

Five existing lever-arm type constant load mechanical testing frames
are to be modified by the addition of environmental chambers for controlling
a constant temperature and humidity during a creep and recovery test. The
design of the chambers, humidity generator, and load frame modifications have
been detailed. The current effort on this project is being directed toward
manufacturing and procurement of the various components necessary to make the
facility operational.

The design go2ls are to maintain a constant temperature and humidity en-
vironment during a c-eep and recovery test over a period as long as several
weeks. The temperature rance of interest is 23°C (ambient) to 100°C and the
humidity range is 7 - 9% vrla*ive humidity. Long term stability of

+
Prepared by Dr. K. L. Jerina

ot



saaqueyy bupuotjLpuo) uawrdads °z aunbiy sS3dd adnjedadwa) ybirH

*L danbiry

!
L3
.
»
2
»
4




W_— .. e —

temperature and humidity was ‘a major factor in the choice of the system
to generate the environment. Electric resistance heating tapes con-
trolled by proportional closed loop temperature controllers will be used. %t
Constant humidity will be maintained by exposing certaih saturated and i
non-saturated aqueous solutions to an enclosed air space at known temper-
ature [1]*. Temperature will be controlled by placement of heaters through-
out the system. Humidified air is to be circulated by mechanical convection
throughout the system from a central humidity generator.

Humidity: The concentration of water vapor in air can be expressed
as parts per million, percent relative humidity, or percent of saturation

[2]:
P
£yt Wi
P-pw
where
C = concentration (ppm)
p, = vapor pressure of water (mm Ha)
e P = total pressure of system (mm Hg)
T P
‘, HR LA 102
Pws
where

Hp = relative humidity (%)
partial pressure of water at temperature T (mm Hg)

i 1
partial pressure of water at saturation at tempera- { §
ture T (mm Ha) ‘

©
z
1]

E pw(P—pws)

|

|

H 102 1 1
= x {

where

H
p

At room temperature the partial pressure of water vapor is small with res-
pect to the total pressure. Therefore HR and HP are nearly the same. As

humidity (% of saturation)

o i

' References are listed in Section 6.
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the temperature increases the partial pressure becomes more significant
for a given humidity and the difference between percent saturation and
relative humidity becomes significant.

Generating a humidity environment: Production of standard atmospheres
of known humidity can be achieved by several techniques [1, 2]. Numerous

humidity chambirs are available within the ranges of 20 - 95% HR and

3 - 90°C. However,a special system can be designed to operated in a

2 - 98% HR range. A passive system is desirable for long term testing
since it will be inherently the most reliable.

Constant humidity air at a known temperature can be maintained in a
static system by exposing certain aqueous solutions to an enclosed air
space [1, 2], Tables of some of these solutions are given in [3, 4], and
selected saturated salt solutions are listed in Table 1. In this manner
relative humidity can be maintained from 7 to 98% by varying the saturated
solution used. Sulfuric acid or glycerine and water solutions will also
equilibrate toa constant humidity in an enclosed air space at a known tem-
perature [1, 3, 4]. The Hp can be varied by changing the concentration of
the solution. However, if water vapor escapes from the system the solution
concentration and equilibrium humidity will change. With a saturated salt
solution any loss of vapor would result in precipitation of salt from the
solution thus maintaining a constant solution concentration and constant
relative humidity. Glycerine solutions cannot be used above 70°C because
the vapor pressure of glycerine becomes significant at these temperatures.
For example, at 100°C the vapor pressure of glycerine is 140 mm Hg. Since
the vapor pressure of sulfuric acid at 100°C is less than 1 mm Ha,
sulfuric acid solutions can be used to obtain very dry conditions in the
higher temperature range.

Consequently, in order to cover a wide range of temperature (23-100°C)
and relative humidity (7-98%), glycerine water, sulfuric acid water, and
saturated salt solutions will be used.

Description of apparatus: A system drawing, Fig. 3, shows the compo-
nents of the mechanical testing frame and humidity generator. The generator
will be capable of supplying humidity to 5 test frames although only one is
shown for illustration purposes.
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Figure 3. Mechanical Testing Frame and Humidity Generator




The constant load test frame has a single and compound lever ar-
rangement. These levers provide a mechanical advantage of approximately
9 for the single lever and 30 for the compound lever. The maximum 1load
capacity of the frame is 6,000 pounds on the specimen. A pull rod extends
through the base of the machine and is attached to the specimen within the
environmental chamber. Specimens are placed in the chamber by removing
the bottom cover. Humid air is circulated through the chamber by a fan in
the humidity generator. Insulation surrounds the chamber which is kept at
constant temperature by electric resistance heating elements.

The humidity generator consists of a shallow container for the aqueous
solution. This container is surrounded by an electrically heated and in-
sulated shell. A small fan circulates air through a baffle in the generator
to promote evaporation. The humid air is then circulated to the test cham-
bers through heated ducts.

TABLE 1

Solutions for Maintaining Constant Humidity
- HR(%) T(°C) Saturated
i Solution

98 20 Pb(N03)2

96.6 100 NaF

79.2 20 NH4C£

78.3 90 KCL

47 20 KCNS

50.4 100 Nal

20 20 KC2H302

22.6 80 KF

7 ' 25 NaOH-HZO
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2.3 Dynamic Mechanical Response of Resins and Composites*

This portion of the study on the effect of cure cycle parameters is
concerned with the direct monitoring »f the viscoelastic complex modulus
of resins and composites during and immediately following the cure cycle.
We have adapted a piezoelectric device called the "duomorph" for such
use. Described in this section is the duomorph, its analysis, and the
first application in which room-temperature curing epoxy was monitored.
It should be noted that a torsional pendulum [5, 6] and cone and plate
devices [7] have been used to follow curing of polymers; but these tech-
niques do not lend themselves to in situ monitoring of laminates.

Description of the gage: The duomorph consists of two crystalline
piezoelectric plates which are bonded together; a central metallic plate
is sometimes used to alter the response characteristics of the assembly.
The duomorph is electrically excited and, through a study of its bending
response when in contact with a material of interest, the viscoelastic
properties of this material are obtained. The gage was originally developed
for the purpose of measuring in situ complex modulus when embedded in the
fuel in a solid propellant rocket [8]; for this application, which involved
telemetry to trigger and measure the gage response, one piezoelectric plate
was employed as a driver and the voltage response of the other was used to

obtain the strain response.

For precise measurement of viscoelastic properties in the laboratory it
was found that it was best to use both piezoelectric plates as drivers and
employ standard electrical-resistance strain gages to monitor the bending
of the assembly [9]; see Fig. 4. The two plates are of opposite polarity
so that when they are excited by a voltage one plate expands while the other
contracts. Without external constraint this deforms a duomorph into exact-
ly the same shape as would a uniform bending moment; i.e., a spherical sur-
face. If an alternating voltage is applied the curvature oscillates from
one direction to the other.

Two pairs of strain gages are bonded onto the two outside surfaces
of the duomorph, and are used in a Wheatstone bridge to measure the extent
of bending. This measurement is made with the sensor by itself and then

*Prepared by Dr. R. A. Schapery and Mr. B. C. Harbert
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Figure 4. Duomorph Mounted on a Rubber Block

with the sensor in intimate contact with the material being tested; the
difference reflects the stiffness of the material being tested.

Inmost laboratory applications made to-date circular plates with
in-plane isotropy have been used, and the gage was either placed in con- -
tact with the surface of a large mass or embedded in the mass of material.
Rubber, solid propellant, soils [8] and asphalt [fjq] have been studied on
other projects.

Work on the present AFOSR contract has been concerned so far with
developing and applying a technique to obtain mechanical properties of a
thin layer of epoxy resin using the arrangement shown in Figs. 5 and 6.
After the technique has been developed and demonstrated for high-temper-
ature epoxies employed in advanced composites, it is planned to extend
the concept to laminates, starting with a unidirectional laminate; in
the latter case, an orthotropic rectangular duomorph which bends primarily
in the direction normal to the fibers will be used. The bonding systems
and strain gages now used with duomorph are applicable to temperatures
above 400°F, and therefore ﬁo major difficulties are expected in standard

10.
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cure and post-cure cycles.
Analysis of the Duomorph: The plate configuration in Fig. 5 had not
been analyzed in the previous studies of the gage. Therefore, this geo- g
metry was analyzed in order to provide equations for selecting proper |
plate dimensions and interpreting experimental results. Standard assump-
tions of thin-plate bending theory were made. These include 1) lines per-
pendicular to the neutral plane remain so during bending, 2) strains are |
small, 3) the plate is of uniform thickness, and 4) the two materials, |
the sensing disk and the polymer, are each isotropic and homogeneous in
the plane of the disk. The first assumption implies that edge effects are
negligible; it is assumed that this will be true if the ratio of the diam-
eter to total thickness of the plate is greater than 10. (If there are any
designs for which this ratio is approached, a finite element analysis will
be conducted to check thin plate theory and modify the results if necessary.)
The gage response quantity of interest is the ratio ér/eo’ where ér is
the difference between the strains on the top and bottom surfaces of the duo-
morph with the resin, and € is the same quantity but without the resin. This
ratio will be given first for elastic materials and then for viscoelastic ]

materials.
The normal stress-strain equations for an element of elastic resin or
gage material in plane stress using a cylindrical coordinate system are

™
1}

aV + T (o, -vo,) (1)

g aV + % (oe -vor) (2)

™
n

where standard notation for stress and strain is employed. The subscripts g
and r will be used to denote mechanical properties of the duomorph gage
and resin, respectively.
Thus

E.. Vg = Young's modulus and Poisson's ratio of the gage (with
9 a closed electrical circuit)

= Young's modulus and Poisson's ratio of the resin.

: | Er’ x

r




Also, V is the voltage applied to the duomorph faces and a is the

piezoelectric expansion coefficient; a = o for the resin, and the

sign of a for one plate of the gage is opposite that of the other one.
The constitutive Eqs. (1) and (2) together with the remaining

equations from classical plate theory for an unsupported disk,[11] yield

£y " 3aV (3)
and
e 3 $a.. .3 en2-ns 1
r.1248 L - 1th--1)S
where E201=4_)
7 Eg/‘]-vgi
and
hr
h=1+% hR 5 hR: Fg— (6)

This result is plotted in Fig. 7 for a wide range of the two dimension-
less parameters, S and h; the graph will aid in selecting appropriate
resin and gage thicknesses, depending on the resin modulus range of
interest.

In applications of the gage, one is interested in calculating S,
given values of ér/e0 from tests. For this purpose we rearrange Eq. (4)
to find a quadratic equation for S:

(7)
sz{a[4(h-1)(h3-1)-3(h2-1)2]} + s{R[4(h3+h-z)-6(h2-1)]-(h-])} +R-1=0

where
R=¢ /e (8)

The largest root provides the physical value of S.
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These results may be extended to viscoelastic behavior by means of
the correspondence principle for vibrating systems [12]. Using complex
notation, the voltage input is written as

v =|v]eiet (9)

where | | denotes amplitude and w is the frequency (radians/time). The
expansion coefficient o« is found to be a complex function as a result of
electromechanical interactions, and therefore from Eq. (3),

Hutqg) (10)

leol = 3|al|v] and b is the phase angle between free gage expansion and
the voltage. Also, the bending strain with resin is written as

At i(wt -0.)

€ Ierle r (1)

It is found that both ¢g and 6, are non-negative (i.e. the strain lags
the voltage input ) and consequently we obtain

R = |Rle " (12)
R is defined in Eq. (8) and

1l

IR| T 6 = 8, =4, (13)
0

After |R| and 6 have been obtained from duomorph tests at a given
frequency, the complex version of S, Eq. (5)scan be found from the
solution of Eq. (7), in which R in Eq. (12) is input. The solution is
written as

i
S = |S|e (14)

Experimental studies indicate that E_ and v_ are constant over
the frequency range employed (0.1 - 100 HZ), and therefore the complex

15
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resin modulus Er*/(l-vr*) is (where an asterisk denotes a complex,
viscoelastic property)

*
E E i¢
o n
F 1_vgl5le (15)

The quantities Er* and vr* are the complex Young's modulus and Poisson's
ratio of the resin, respectively.

Below the glass-transition temperature of cured epoxy it is found @
that Vr* is essentially a constant, say v. Therefore, it is helpful to |

rewrite Eq. (15) by introducing the modulus

a4 ]-vr * 5
e (16)
r
Thus,
oY ]-Vr
6| = 15~ Eq ISI (17)

According to Eq. (16),and if the frequency dependence of “r* is neglected,
|E*| is the amplitude of the complex Young's modulus, Er*

Finally, it should be noted that the maximum value of S for epoxy
is approximately 0.05, as shown in the next section. As a result, we
have found that the 52 term in Eq. (7) can be neglected; thus a complex
solution is easily found analytically in terms of R= |R|e'ie by means
of a small amount of complex algebra. However, for completeness, we have
written a computer program which solves Eq. (7) exactly in order to provide
the complex modulus E from gage test data.

of two 1 inch diameter piezoelectric ceramic disks 0.010 inch thick,
bonded together by means of a conductive epoxy adhesive.
Using the information in Fig. 7 and E, = 0.5 x 10° psi and
Eg = 1.8 x 106 psi, it was estimated that the thickness ratio hR (resin
thickness to duomorph thickness) should be approximately 3:1. In preparing

16. ﬁ
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Experimental technique: The duomorph used to study epoxy consisted- H




for casting a layer of epoxy on one side of the duomorph a circular dam

of thin paper was built up around the edge of the 1 inch diameter duo-
morph extending 0.060 inch above the surface. The frequency response

of the duomorph with the dam was then determined with the assembly resting
on a one inch thick layer of polyurethane foam. The position and support
to be used when the epoxy was to be placed for cure. Excitation was from
a sine wave source at 18 volts p-p, and covered a frequency range of 0.1
to 100 Hz.

Since the effort at this point was mostly concerned with checking
the feasibility of following the cure of an epoxy, a room temperature cure
system was selected so that it would be easy to evacuate any entrapped
air from the mixing process. A suitable system was found by mixing Shell
Epon 815 with 5 parts/hundred D.E.P. (Diethylaminoproylamine). A small
amount of these ingredients was mixed by hand, evacuated, and then cast
into the thin space on top of the duomorph. The response of the duomorph
was obtained periodically as the epoxy passed through the cure process.

Following the completion of the cure process the duomorph with the
cured epoxy was examined to check for thickness variation. It was found
that a slight meniscus had formed near the edge with the circular edge
being approximately 0.005 above the flat section part. The total thick-
ness (including the thickness of the duomorph) was measured to be 0.087
t+ .005 inch, yielding the total hR thickness ratio of 3.35:1. The meniscus
was next removed to the point where a flat surface was obtained across the
epoxy layers. The total thickness following this operation was found %o
be 0.082 + .002 yielding hg = 3.1. Figure 6 is a photograph showing the
duomorph with the epoxy layer after the surface was smoothed down. The
"effective" thickness ratio of the epoxy with meniscus was then determined
from Eq. (4) to be 3.15 by requiring the resin modulus before and after
meniscus removal to be the same;this value of hy was used in all analyses
of data obtained during cure.

At the time of casting the layer of epoxy on the duomorph, similar
shapes were cut from the epoxy mix to provide material with the same cure
history for independent property determination on the fully cured material.
The test apparatus used in making these tests consisted of a simple canti-
lever beam. The thin beam cut from the epoxy was loaded at the free end

17
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by a weight having a hook to precisely locate the point of application.
Beam deflection at the free end was monitored using a microscope mounted
on a precise traversing stage which provided linear measurement of dis-
placement to within + 0.001 mm.

Experimental results: The bending strain amplitude IEJ and phase an-
gle 0. (cf. Eq. (11)) were obtained at four frequencies (0.1, 1, 10, 100 Hz)
at ten different times during the cure process; the strain leol and angle
¢ (cf. Eq. (10)) were obtained prior to the initiation of curing. Equation
(13) was then used to derive R and & at these times which, together with
Eqs. (7), (12) and (17) provided values of the complex modulus amplitude
|ér*| and phase angle ¢ . The results cover a greater than 100:1 change
in modulus, and are shown in Figs. 8 and 9. It should be added that earlier
direct mechanical calibration of the duomorph [ 97 yielded
Eg/(1-vg) = 16.8 X 108 psi (where vg = 0-3).

A1l moduli in Fig. 8 approach 0.45 x 10" psi at long times. This value
is identical to that found independently from the early-time creep response
of a beam in flexure tested at 70 hours after mixing of the polymer (cf. Fig.
8). An additional beam flexure test made at 360 hours revealed almost negli-

1 gible creep out to 1000 seconds, and provided again the same modulus. The

- fact that the 70 hour old resin exhibited significant creep is very interest-
- ing. This behavior implies that the aging actually continued well beyond the
il age where the duomorph data leveled off; therefore, the longer the resin was

_under load,the more influence long-term aging has on mechanical response.
Notice that the phase angle data in Fig. 9 decreases continuously as
curing proceeds. The behavior exhibited is very reasonable since ¢ = 90°
for a Newtonian fluid and ¢ = 0° for an elastic solid. '
In view of the success of the duomorph in following changes in a room
temperature cure epoxy, it is planned to next evaluate it with the Hercules
3502 resin, which is used in an advanced composite.
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2.4 Enthalpy Changes in Epoxy Resin *

The influence of cure cycle parameters and age fcllowing cure on
enthalpy and associated specific heat changes in epoxy resin is under
investigation. Emphasis to-date has been on developing maximum sensi-
tivity and reproducibility in the measurements with the scanning calori-
meter (DSC) since we are seeking to measure small changes in the thermal
properties produced by various treatments.

Background: This type of study has been carried out on other
materials but the measurements are difficult in that the thermal history
must be carefully specified [13-20]. An additional complication is that
the effect of thermal history is confounded with the effects of moisture
content which is known to produce large effects.

The materials now used as the matrix for the advanced graphite com-
posites are selected to have an extremely high value of the glass transition
temperature, Tg, to insure good structural performance at elevated tempera-
tures and humidities;since moisture and other plasticizers reduce Tg, the
extremely high value of Tg permits more reduction before degradation of
properties becomes a more serious problem. Consequently, the glass tran-
sition in the dry state is often well above 200°C (392°F).

The rate of cure slows at temperatures below Tg, and the glass tran-
sition raises with the extent of cure; therefore Tg often rises only to the
range of the cure temperature leaving a number of unreacted groups in the
sample. This undercured sample will then cure further whenever the temper-
ature and moisture content become high enough for some molecular mobility
to result. This results in a glass transition of the undercured material
which changes with time at any high temperature which is needed to measure
it. One is limited in the upper 1imit of the cure temperature by the tem-
perature that causes chemical degradation of the sample. It may happen that
the glass transition temperature can be elevated into this region of ther-
mal degradation so that, even in principle, Tg is impossible to measure.

*Prepared by Dr. J. S. Ham
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Hercules Inc. has provided us with one gallon each of 3502 and
3501-6 uncured epoxy resins for study on this project. However, these
resins are proprietary and no molecular structure is given. We will
make comparison with our studies of these resins with similar studies on
a series of epoxies whose structure and composition is known and where
reactions can be completed. These latter resins are the series based
upon DGEBA cured with MDA. DGEBA is the common commercial epoxy and
comes in a variety of molecular weights which can be used to control the
molecular weight between crosslinks. The MDA (methylenedianiline) is a
common curing agent that is similar to the diaminodiphenysulfone probably
used as a curing agent in the proprietary resins. These are high temper-
ature epoxy resins with glass transitions ranging from 95° to 180°C
depending upon the molecular weight of the epoxy component. Such materials
have been studied in the literature and have a regular sequence of proper-
ties varying as the crosslink density varies over a range of values [21].
Since the crosslink density is one of the important parameters used in
the proprietary aerospace resins to achieve a very high value of Tg, we
hope to be able to extrapolate from the standard epoxy materials to the
properties of the proprietary resins.

Experimental procedures for castinc resins: The samples are cast with

some differences in technique depending upon the properties of the starting
materials. We have been casting 1/8 inch thick slabs using the standard
techniques of using two glass plates held apart by spacers with a soft rub-
ber tube as a gasket. We use either mold release agent on the glass or two
mylar sheets to protect the glass surface from the resin. The mold release
agent may contaminate the surface of the resin but one obtains smooth flat
surfaces. The mylar sheets sometimes wrinkle making the sample thickness
uneven. For our thermal measurements, either technique is possible, but
avoiding the possible contamination of the mold release agent makes the
mylar sheet preferable. We will need smaller variations in sample thickness
than we find using the mylar sheet when mechanical measurements are to be
made on the same samples and so need to refine the casting technique.

The Tow molecular weight epoxy components are liquids and the higher
molecular weight components are solids. The MDA is a high melting solid
but will dissolve slowly at temperatures below its true melting temperature.
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The Tow molecular weight materials are mixed with the MDA to form a
slurry which is then poured into the molds. The higher molecular
weight epoxies are ground and mixed with the MDA as two powders and
this is then put into the mold.

The mold is held in a vacuum oven where we can watch the i elting
through a window. The samples are heated to between 90 and 100°C ‘‘hile
under vacuum. At these temperatures there is a component given off
(possibly dissolved water, but the volume released seems to be too large
for this to be the case) producing a foam. The pressure is increased
whenever the foam threatens to overflow the cell so that, by varying the
pressure, we expand and contract the bubbles and they gradually work
their way to the surface of the material. The low molecular weight resins
and the proprietary materials become quite fluid at these temperatures so
the bubbles can be worked out quickly. The higher molecular weight epoxy
components are viscous and so considerable patience is required to get
the bubbles from these materials.

While higher temperatures would make the material more fluid it
can also start the curing reaction which is to be avoided until the bub-
bles are completely removed. Once the bubbles are removed, the samples
are cured at 180°C for two hours.

The proprietary resins have a curing reaction triggered at high tem-
peratures by the decomposition of an amine complex of BF3. Thus, these
resins have a broad temperature range in which they are liquid before they
start curing. We have cured samples up to 1/8 inch thick and have had
no difficulty with thermal runaway which can happen in the resin samples
according to reports. Thermal runaway is a phenomenon where the reaction
produces heat faster than it can be conducted away and so the reaction ac-
celerates in the middle of the sample to scorch the material there. This
can be avoided when it is a problem by initially curing at a low curing
temperature until enough of the reaction is complete so that the remainder
will not get out of control. ;

Enthalpy measurements: Our first study is an attempt to measure the
relaxation of enthalpy with time at a temperature below the glass tran-
sition temperature [19, 20]. To do this, the samples are cured in the
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scanning calorimeter so that no further reactions can be detected with
repeated heating to some determined high temperature. The sample in its
aluminum holder is then held for a determined amount of time at some fixed
lower temperature where relaxations in the glassy material take place.
This time is up to one month. The DSC scan is run at a high sensitivity
and the sample is held above the glass transition for 5 or 10 minutes and
then rerun. The difference in these two runs is the effect of aging at the
lower temperature since the sample is restored to its original condition
by heating above the glass transition temperature. The observed ef-
fects are small and some typical traces are shown in Fig.10 but we have
not been able to make a sufficient number of runs to get systematic data
since the DSC must be set very precisely to permit the slope and intercept
to be set appropriately without a trial run.

The sample in Fig.10 was aged one month at room temperature after
holding above Tq to erase prior history. The trace obtained is the upper-
most curve. After holding this sample above Tg for 5 minutes, the next
curve was obtained. This curve has the normal step shaped curve typical of
a glass transition. The difference between these two curves is due to aging
or enthalpy relaxations. (The slope of the background has been selected so
that the trace stays on the scale even with the change of specific heat around
the glass transition; subtract this slope from the data to obtain the true
variation of specific heat. A vertical shift was made so that the traces
would not cross each other; the true value of the specific heat is the
same above the transition region for the two runs shown.

Future work: There are a number of correlations to be made once
we are able to measure the relaxation of the enthalpy with high precision.
First, we would like to compare the behavior of the standard materials with
that of the proprietary materials used in the advanced composites. These
should have quite similar behavior except for Tg. Struik says that this en-
thalpy relaxation occurs at all temperatures above that of the secondary
transition [18]. This should be similar in these materials.

Second, we would like to look at the influence of moisture upon the
relaxation of the enthalpy. It is known that moisture can lower the glass
transition by many degrees and it may enhance the rates of enthalpy

24.
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relaxation also. There is little information on this question in
the literature.

Third, there is a cluster of questions concerning the relationship
of the relaxation in the enthalpy with the relaxation in residual
stresses and mechanical measurements. There seems to be some correlation
but also some differences in the published data [18, 19].

Finally, after looking at the various phenomena related to the glass

transition, we plan to study curing cycle phenomena. This would involve
the determination of the extent of reaction at various temperatures from
the heat produced [22]. Possibly the enthalpy relaxations will affect
further curing so that different temperature profiles will result in dif-
ferent material properties. Although a more complete cure might be ob-
tained by a temperature profile which increases as the cure progresses,
this may not be desirable in that the stresses frozen in during the cool
down may produce cracking in the more completely cured sample.
These problems involve the use of the DSC as the major experimental
.- technique along with some mechanical measurements. None are easy ques-

b tions to answer experimentally since they all require precise control and
specification of the sample history as well as high precision and repro-

I ducibility of the measurements.

- 2.5 Thermal Expansion Behavior of Epoxy Resin* 3

il The influence of post-cure cooling path on subsequent mechanical ;

behavior of epoxy resins is under investigation. Optimizing the post-
cure cooling path to minimize residual stresses or other parameters in
graphite/epoxy composites is the ultimate objective in this study. The
initial approach to characterizing physical behavior has been to measure

the relative amount of free volume retained below Tg as a function of
cooling rate. According to current understanding,a subsequent aging phe-
nomenon would be associated with a time dependent reduction of this free
volume. The volume measurements are being made on a Perkin-Elmer TMS-2
("Thermo-Mechanical Analyzer"),which provides the change in a linear dimen-

sion of a virtually unstressed sample with temperature and time.

* Prepared by Dr. W. L. Bradley
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Background: It is generally observed that most epoxies experience
some degree of change in mechanical properties with time (the so-called
"aging" phenomenon) subsequent to cooling through their glass transition
temperature (Tg). As a test of this behavior the creep/recovery response
at 300°F of Hercules Inc. epoxy resin 3502 was first determined for a
specimen "aged" at ambient temperature for several months. The specimen
was subsequently heated at 10°F/min. to 425°F (Tg ~ 375°F), and then quenched
to 300°F where creep/recovery behavior was determined in two succesive one-
hour tests. The results are presented in Fig. 11. A dramatic increase in
compliance immediately after quenching through Tg is noted. The material
is still much softer than in the original aged condition even one hour af-
ter quenching when the second creep/recovery test is initiated. Thus, the
transients associated with aaing after quenching through Tg appear to be
sufficiently sluggish to be significant in their influence on selecting op-
timum post-cure cooling paths.

The simplest explanation for the observed aging behavior is that it is
associated with a time-dependent densification due to reduction of free vol-
ume. An alternative explanation is that possibly high residual stresses
produced during quenching are influencina the mechanical properties through

nonlinear mechanisms.

Experimental approach: Our experimental approach has been to run a
series of thermal cycles from 348K to 490K (167-422°F) using a constant
heating rate of 10K/min and cooling rates which varied from 10K/min to
80K/min. The variation of specimen thickness with temperature is moni-
tored using the TMS-2. Loads on the quartz tube are maintained very low
to avoid surface indentation of the small rectangular specimens. The
linear measurements may be converted to volume as the epoxy is isotropic.
Typical results are shown in Fig. 12.

Discussion of results: The cure temperature of the as-received epoxy
was 375°F. A well defined Tg of 375°F is observed on the first thermal
cycle (not shown in Fig. 12). Subsequent thermal cycles to the same maxi-
mum temperature show no well-defined T_ unless the maximum temperature uéed
in previous cycles is exceeded. This phenomenon of the effective T_ equal-
ling the previous maximum thermal cycle temperature (and effectively the
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maximum curing temperature) continues up to 590K (600°F), where the epoxy
experiences significant degradation. The differential scanning calorimeter
was used to determine that each time the Tg is exceeded additional curing
occurs, thus raising the Tg to this new temperature. The mobility of the
molecules above Tg is short-lived, as this new mobility appears to allow
further curing to occur.

While a true (fixed) Tg is not observed below the highest cure temper-
ature, the thermal expansion curves do show considerable nonlinearity,
beginning at about 300°F. If one assumes a two phase solid begins to
develop at 300°F, say a rubbery phase precipitating in the glassy phase,
the change in slope and a rule-of-mixtures calculation suggest a 0.1 - 0.2
volume fraction of rubber. Dr. Kibler at General Dynamics has recently ob-
served changes in the viscoelastic behavior of[+ 45]graphite/epoxy at about
300°F which may also be explained by such a hypothesis.

Because Tg cannot be exceeded except on the first thermal cycle in.
epoxy (unless each successive cycle goes to a higher maximum temperature),
the magnitude of free volume available to be "trapped" onquenching is rather
small. When the effects of thermal lag due to temperature gradients through
the specimen are taken into account, the change in free volume fraction af-
ter quenching at 50K/min. is estimated to be no greater than 0.1%. This was
done by measuring the width of the thermomechanical hysteresis loop (cf.
Fig. 12) for specimens of thickness 0.125", 0.062", and 0.037" and then
extrapolating thermal lag AT vs (thickness)2 to zero thickness.

Additional experiments in which the quenchwas interrupted at 300°F.
to allow for aging have indicated that the difference in free volume (be-
tween the lowest and highest cooling rates) is no greater than .03%; this
value is only 1/100 of the free volume at Tg [23]. The small value for
free volume change leads us to believe that residual stresses, which also
occur on quenching but give no net free volume, may be the more important
cause of the observed aging phenomenon for 3502 epoxy. 3

Future work: Our work in the coming year will include additional ex-
periments to more completely characterize the effect of various post-cure
cooling paths on the viscoelastic behavior of the material. It is antici-
pated that modelling of this behavior will allow us to better establish
whether annealing residual stresses or collapse of free volume is principal-
1y responsible for the observed behavior.
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2.6 Viscoelastic Characterization of a Graphite/Epoxy Composite*

The effect of stress level, temperature and moisture on the visco-
elastic behavior of graphite/epoxy Hercules Inc. AS/3502 composite
material [t 45 ]25 and [90]]5 is being investigated. Current tests are
on specimens produced by a standard cure cycle. The results will pro-
vide baseline data for later studies on the effects of cure cycle para-
meters and post curing.

It is known that moisture absorption causes resin to soften, behaving

as if it were effectively closer to its glass transition temperature (Tg).
We want to characterize this behavior to better understand the mechanistic
basis for the interaction of absorbed moisture and mechanical behavior;

for example, the influence of moisture on creep and on residual stress
relaxation is of particular interest. Our results to-date include charac-
terization of the dry composite as a standard to which the wet specimen may
be compared, construction of environmental chambers to condition wet speci-
mens (cf. Section 2.1) and construction of environmental chambers in which
the specimens may be tested without any significant change in moisture con-
tent (cf. Section 2.2).

Experimental approach: The initial vis-oelastic characterization work

has been done on dry specimens using creep/recovery tests. Strain gages
have been used. More recently, a high temperature, high sensitivity linear
variable differential transformer (LVDT) system was purchased and special
grips were built. This gives us the capability of testing at high tempera-
tures (450°F maximum) and in hot, wet environments where strain gages are
not suitable. The last part of the dry specimen characterization was done
using the new LVDT system. The results agreed nicely with the earlier
strain gage measurements, proving the reliability of both techniques.

Results: Typical creep compliance data taken at 75°F, 175°F, 231°F
and 261°F is presented in Fig. 13 for the [# 45]2$ composite. The compliance
data were found to obey a power lew in time; the exponent is approximately
independent of temperature up to 231°F. The data at different temperatures
can be superimposed on a single curve by choosing appropriate horizontal
translations, log ay values. These are also presented in Fig. 13. All

*
Prepared by Dr. W. L. Bradley
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of the data on the continuous curve were taken at a stress level of 6450
psi; these results turn out to be very close to low-stress level data
recently obtained by General Dynamics on the T300/5208 [t 45]ZS composite
[24].

Several additional tests were run at higher stresses at 175°F and
261°F. The material is seen in Fig. 13 to be nonlinear at these higher
stress levels. The high temperature data (261°F) seem to have a slightly
higher slope at all three stress levels. A subsequent test of the specimen
at 6450 psi after it was tested at 10,000 psi gave a curve that extrapola-
ted the lower temperature data, maintaining the same slope (dotted line in
Fig. 13).

These results may imply that at sufficiently high temperatures and
stresses, residual stresses are relaxed so that the subsequent behavior
at lower stress levels is modified. Tests have also been conducted on
dry unidirectional specimens[QO]ls. Analysis of the results is expected
to aid in the understanding of residual stress effects since they are a
minimum in a unidirectional composite.

Future work: The testina of the wet specimens is now beginning, using
specimens soaked to saturation in 75% and 98% relative humidity. Addition-
al very long time tests on dry specimens are also to be made.

33.
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3. ANALYSIS OF COMPOSITES AND ADHESIVES®

Four papers on the analysis of time-dependent behavior were completed
during the reporting period and are included in the Appendix. They help to
provide an analytical basis for predicting effects of post-cure cooling and
the dependence of mechanical response and failure on hot, wet environments.
Work currently underway is summarized below.

3.1 Current Activities

Moisture-stress interaction analysis: One major theoretical study on

moisture effects in resins and composites is now concerned with theories of
diffusion and interaction of moisture content and mechanical response.
Specifically, a critical study of publications on continuum and equilibrium
and nonequilibrium thermodynamic theories is being conducted for multi-phase
media. The aim is to incorporate realistic effects of moisture on the be;
havior of polymers and polymeric composites. This investigation should also
provide guidelines for experimental work and interpretation of data.

Viscoelastic hygrothermal stresses in composite laminates: An analy-

tical investigation has been initiated to evaluate the hygrothermal stresses
which arise in a multi-directional laminate accounting for the viscoelastic
behavior of the material. The purpose of the investigaion is to quantify
the stress levels which arise within the individual plies and determine
their relation to the conditioning regimes that are employed in various ex-
perimental studies on moisture effects on composites.

A11 major factors which affect the linear viscoelastic behavior of
composite materials have been identified and quantified on the basis of
the best available data. These include the swelling strains due to mois-
ture diffusion, and the temperature and moisture dependence of the visco-
elastic "shift factor" which governs the creep compliances of the composite.

The analytical formulation of the problem has been completed for the
elastic case, and the viscoelastic formulation for a balanced 0°/90° lamin-
ate is being finalized. The moisture diffusion, which is temperature depend-
ent,affects the material compliances differently at each location across the

1l.Pr'epar'ed by Drs. Y. Weitsman and R. A. Schapery
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thickness, since each such position is subjected to a different moisture
history. The formulations account for the transient, non-uniform moisture
profiles which prevail within the laminate for long times.

The solution of the viscoelastic problem will require discretization
of the analytical expressions in the time domain and in the spatial coordi-
nate across the thickness. The stresses will then be evaluated by means
of an incremental, time-marching, numerical computation (cf. paper by D. R.
Sanders and Dr. W. E. Haisler in the Appendix).

Optimization of cool-down temperatures in composites: An optimization

scheme is being developed to optimize the cool-down temperatures in order

to reduce the residual stresses in multi-directional laminates with specific
attention to 0°/90° balanced laminates. The scheme considers the thermo-
rheologically complex viscoelastic response of composites and strives to
develop an optimal cool-down path that will increase the residual strength
of the predominant plies at termination of cooling.

Fundamental fracture toughness parameters for viscoelastic materials:

Work is underway to extend the J-integral theory for fracture initiation to
time-dependent composite materials. A preliminary version of the extension

is given in the Appendix (cf. paper by R. A. Schapery). It is shown that

for a class of realistic loading histories and nonlinear constitutive equa-

n tions one can use a time-dependent J-integral to characterize fracture

‘. initiation. It is believed that such a criterion will prove useful in charac-
terizing fracture behavior of resins and composites at elevated temperatures :
and humidities. '

3.2 Future Work

Current analytical studies which are summarized above will be con-
tinued. The effort includes supporting the experimental work described
in Section 2.

Also, the finite element modelling (cf. paper by D. R. Sanders and
Dr. W. E. Haisler in the Appendix) will be extended. Current plans are to 2
allow the relevant material parameters to be functions of temperature, %
stress, moisture content and perhaps other parameters. We will assume
this functional dependence is given in either analytical form or tabular
form. The mode)l will be utilized to predict viscoelastic behavior of
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specimens subjected to various loading and environmental conditions in
experiments to be conducted during the course of the present research.




4. NEUTRON RADIOGRAPHY*

4.1 Summary
Through the past year the Nuclear Science Center has developed an
extremely high quality neutron radiography facility. The operational
parameters such as geometric resolution, beam uniformity, film density,
and neutron flux have been optimized to a point where variation in material
density of less than 0.5% may be measured. A variety of laminate sections
with known moisture contents has been radiographed in an attempt to esta-
blish a relationship between film density changes for increased moisture
in the samples. A laminate with known defects was also studied.

4.2 Beam Characterization

The initial effort was directed towards producing neutron radiographs
and inspection techniques adequate for identifying minute defects or mois-
ture content in laminate sections. For this purpose the existing radiographic
facility was modified with a series of collimators, scrapers and filters de-
signed to produce a parallel beam of neutrons of uniform intensity (Fig.14).
The initial and final beam parameters are as follows:

Thermal neutron flux 1.5x106 n/cm2/sec >107 n/cmZ/sec
Scattered and fast neutron content 15% 10%
Gamma intensity 4.0x10% n/cn? 4.0x106 n/cm2
mr mr
Beam uniformity +17% +3.5%
Beam divergence 1.5° 1.5°

Also, optimum film developing, handling and inspection procedures necessary

for reproducible data collections have been established.

* Prepared by Mr. J. P. Taft and Dr. J. D. Randall
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4.3 Sensitivity Studies

The application of neutron radiography to the study of composite
materials was directed in two areas: (1) the determination of the sen-
sitivity in measuring absorbed water concentration and (2) the deter-
mination of the sensitivity in detecting voids, cracks and delaminations.
Neat resin and graphite and glass fiber-reinforced epoxy samples were
used to investigate sensitivity to absorbed water. Dry samples were radio-
graphed initially in pairs (2 neat,2 glass,etc), and the samples were radio-
graphed again after one sample of each material was saturated with moisture

at 98%RH. Evaluation of these radiographs revealed unanticipated geometry
effects and interactions between the samples which hampered proper inter-
pretation of the data collected (see Fig.15). These effects are caused

by neutrons scattering from the sample and adding to the background

film density near the sample. To alleviate this problem, samples were sur-
rounded by material with similar scattering characteristics so the effect
due to the scattered neutrons is uniform in and around the sample (see Fig.
16.) Also, due to the large lag time between initial radiography of the
samples and radiography of the samples after saturation it was decided to
simulate the presence of moisture in dry samples with a hydrocarbon in the
form of polyethylene sheeting. This procedure has met with success, with

the equivalent of 1 w% H20 being easily detected in a glass laminate section.

Future work will pick up at this point and establish a relationship between
the film density and percent water abscrbed.

In the area of void, crack and delamination detection, studies have
begun of a test plate* in which known defects have been introduced. Figure
17 presents a view of the defects which have been identified at this point.
The defects are referred to only as additions or removals (i.e., an addition
being a positive change in the effective sample thickness and removal being
a negative change); introduction of a material which does not interact with
the neutron beam would constitute a removal. A more complete analysis
depends upon further knowledge of the relationship between sample thickness
and film density.

*Furnished by Dr. G. P. Sendeckyj of the Air Force Flight Dynamics
Laboratory.
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RESIDUAL THERMAL STRESSES DUE TO COOL-DOWN
OF EPOXY-RESIN COMPOSITES
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Abstract

This paper concerns the residual thermal stresses that develop

within the resin of a fiber-reinforced composite-lamivnate as the

material is cooled from cure temperature down to room temperature.

The calculations presented herein consider the viscoelastic
response of the resin and account for the temperature: dependence
and the stress sensitivity of the creep compliance. Comparisons with
linear elasticity indicate that viscoelastic relaxation may reduce the

residual stresses by about 20%.
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1. Introduction

Linear elastic stress analysis predicts that the thermal stresses,
which develop within a composite material due to typical temperature
excursions experienced by the structuré, may exhaust the strength of
various laminae even before the application of external loads. Effects
which were attributed to high residual thermal stresses in composite
laminates were reported by several investigators [1]* [2]. A similar
prediction can be made fér the micromechanical thermal stresses within
the epoxy resin when its response is assumed to follow linear thermo-
elasticity. The assumption of linear-elastic behavior tends to over-
estimate the residual thermal stresses and, by ignoring the time,
temperature and stress dependencies of the resin's response - rules
out any advantage that may accrue froﬁ the consideration of special

temperature histories.

A major portion of the thermal stress is introduced into the
composite laminate during cooling from cure temperature down to
room temperature. This cool-down stage may be viewed as part of the
manufacturing process and therefore lends itself to careful control.
It has already been shown that the selection of an optimal cool-down
path could reduce residual termal stresses in plexiglass [3] and the

same idea can be carried over to epoxy and epoxy-based composites.

This paper presents calculations of the "michromechanical"

residual stresses within the epoxy due to cool-down. Our purpose is

* Numbers in brackets indicate references listed at end of paper.
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to provide a quantitative assessment of the role of inelastic res-
ponse. The calculations are based upon a thermorheologically-complex
viscoelastic model, which includes some aspects of the non-linearity

that is attributed to stress effects on relaxation.

The findings of this paper are preliminary since they are based
upon incomplete data. Consequently it was necessary to extrapolate
existing data to higher temperature ranges and to infer the non-linear
stress-effects by analogy from similar materials (glass-reinforced
epoxy). Perhaps most significantly, due to the complete lack of data,
it was necessary to omit any aging effects, which may be very prominent

during the cool-down of a newly created laminate.

Several experimental programs, currently in progress, should
provide information which would enable us to reassess and refine the

model which is used in the present work.
2. Formulation

Consider a fiber-reinforced, multi-directional, composite
laminate - h ¢ 2z < h, - » < X,y < o, traction free at the boundaries
z = +h and shbjected to spatially uniform temperature fluctuations.
For sufficiently slow fluctuation of the ambient temperature and suf-
ficiently thin layers it is possible to discard the transient states
and consider the quasi-static case of uniform temperature

o(z,t) = ol(th,t) = o(t).*

*In typical laminates, the transient effects may be ignored up
to temperature fluctuations of 5°K/min.




Since the present analysis ‘aims at investigating the thermo-
viscoelastic response of the resin let us assume that the multi-
directional fibers, all of which lie in planes z =const., affect

the behavior of the resin through the following geome;ric constraint

By, €y = ag 40 (1)

In (1) ag is the coefficient of thermal expansion of the fibers,

A0 is the difference between the initial and final temperatures,

A0 = eo-of, and €x* €y are the in-plane strains.

If we assume in-plane isotropy of the layer, and consider linear-

elastic response, we obtain the following results [3]

o. =0 =0 = -cGao

x vy
(2)
dy = 0 and all shears vanish.
where
¢ =2 122 (o - ag). (2')

In (2) and (2') G, v are the shear modulus and Poisson's ratio

of the resin, and an is its coefficient of thermal expansion,

If the resin responds viscoelastically equation (2) takes the

form

t
ofte) = -cj! G[t:(tf)-c(t')l o(t')dt' (3)
0

where £ is a "reduced time",given by




u

&(u) =/ G—T‘(%— (4)

(o}

and G(t) is the shear-relaxation function for the resin.

The purpose of the subsequent investigation is to consider and
evaluate the significance of various factors which affect the functipn

ars and investigate the influence of the history o(t) on o(tf).

3. A Linear Thermorheologically Complex Model for Epoxy

On the basis of uniaxial tension data obtained for "shell 58-68R"
epoxy resin [4], for temperatures ranging between 20°F and 160°F, it

is possible to express the creep compliance as follows

q
D(6,t) = D (o) + D’L‘—TEW (5)

where

D,(0) = [0.2731 +0.000574 ( o - 297)] 10°°

D, = 0.01 x107°, ar(o) = exp(6—408—0 - 21.82),q = 0.19

In (5), D is in (kPa)'l , the time t is in minutes, and the tempera-
ture 0 is in degrees Kelvin. Furthermore, the Poisson's ratio for epoxy
is approximately constant at v = 0.35. For temperatures below glass tran-
sition the coefficients of thermal expansion are such that

a=a - o=5x 10” 5m/m/1°K.

Consider a composite cooled-down between a cure-temperature

6, * 438°K and room-temperature O = 298°K. For lack of more complete
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data assume that (5) can be extrapolated up to the elevated cure-
temperature. In terms of the imposed thermal strain (am - af)(e° - o(t))
and the creep compliance (5) we obtain the following integral equation

for the stress o:

- x Q
T~ |_°o-9(t)]= Dy(0da(t) + m/[e(t)-e(w} Stdt (6)

(o}

where a = @, - ag.

If the temperature drops linearly between %% and O over a time in-

terval tf then
o(t) = eo+Rt with R = (ef-oo)/tf
- and equation (6) reads

k) - T%— Rt = D (0, + Rt)o(t) ;

t t
ds . ' )
: °;[ [j T (oTET - ca) o(t’)at (7)

where in (7) aT(o(s)) = exp (_gggg 21. 82)
%

The solution of (7) was obtained numerically. Following the scheme
developed in reference [3], the time interval te was divided into sub-

intervals At = tf/n and each intermediate time was denoted by tj = jat.

Denoting eJ = e(tj) -0t Rtj. o5 = o(tj) and computing the n values
of

£y = e(t E'TETETT

= = - - -6
and n values of Doj Do(oj l?.237l 0.000574(9j 297{]10
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the following expression was obtained for oj

1 o 1 q
o, = p— ——q |- —:7-Rt. + 5 Dy (E.-E; )0,
3 D°J+g(§J £5.) ’ 1-v 0 2 iR Ty

j
-3 ulu(j-z); [(zj-am)" + (ej-am_,)‘il (om-om_,)i (8)

In (8), H(j-2) is a unit step function which vanishes for j < 2. In ad-

dition, it is necessary to employ the initial conditions g, = 0, §g 0.

Calculations were performed on an Amdahl 470 computer. The
residual stress at the termination of cool-down is shown in Fig. 1 as
a function of the time te allowed for the cooling. The reduction in the
residual stress with the increase in cooling-time te is due to visco-
elastic relaxation. The value of o = 39430 kPa at te = 0 corresponds to

the linearly-elastic case.

Additional relaxation of stresses occurs, at © = o, at times
t > te. The calculation of these stresses requires a slight modifica-
tion of expressions (7) and (8), which is omitted here. The additional
relaxation, which is drawn by the dashed lines in Fig. 1, further reduces

the residual stresses by about 3 - 4%.

4. Optimal Cool-Down Path for the Thermorheologically Simple Model

It has been shown previously [3] that, for a prescribed time tf for
cool-down, there exists an optimal cool-down path © = o(t) which minimizes
the residual stress Of. A remarkable feature of this optimal path is that
it contains discontinuities at times t = 0and t = te. It is interesting
to note that the discontinuous character of the solution is apparently
quite common, since a similar result was obtained recently for optimal
strain paths [5]. The sharp discontinuity represents an impractical mathe-
matical idealization and indicates that the best results can be realized by

rapid cooling during the initial and final stages.




In order to reduce the computational effort consider the approximate
form of the creep compliance
D(t) = b(1+at%)
where b = 0.3126 x 10°(kPa)™', a = 0.032 and q =0.19 (9)
Equation (9) was derived from (5), with 0 = 75°F (297°K) and when Do(e)
is approximated by a constant value D0 = b.

Furthermore, it is more convenient to employ the relaxation modulus
E(t) instead of the compliance D(t). This task is accomplished with
the aid of Laplace transforms. The Laplace transform of D(t) yields

p 5(p) =k []4'3 I‘(qz])}= _] (10)
p pE(p)

where E(p) is the Laplace transform of E(t) [6]. An approximate in-

1

version, based upon the expression [7] E(t) = 0(pY 1 Yields

1o 2

E(t) = kPa (1)
1+0.0336t°°

The validity of (11) was verified by comparison with a collocation
scheme for the inversion of (10). The collocation method will be dis-
cussed in the following section on nonlinear effects. The comparison is

shown in Fig. 2.
Employment of (11) in (3) yields

U(tf)"CIS(tf) : (]2)




where
te 2 : q) -1,
S ' '
S(tf) t[ ]+3M’ aT-—(?)- o(t')dt* . (13)

3.2 x 10°a |

and ¢) = e

Also, in (13) o = exp|3155 - 21.8%]

To determine the optimal path o(t) subdivide te into n equal portions as

before and consider a "stair-case" drop in ©

e(t) = Ak tk <t < tk+] 0 < k < n-1 !
whereby g
. |
o(t) = (A, - A ) 8 (t-t}) 1<ks<n (18) |
and
o(t) = (A, -9,) & (t) k=0
Substitution of (14) into (13) gives
A -0 |
- 0 0 f
S(tf) <, n-1 q ‘
1+a{at Y 1/a(A;) ,
™3
J=0
n'] |
Ak - A

+

k=1 1+ afat ?ii-:/ a)l o g i |
= + ala
e & vy

Equations (12) and (15) express the residual stress o(tf) in terms
of the unknown intermediate temperatures, Aj = A(tj) J=0,1,... n-1.
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For a stationary value it is necessary that as(tf)/aAj =0,
J =0,1...n-1. This results in n simultaneous equations in the n un-
known Aj as follows
A -0 oz S WY
°2°-5A2+H(i-])z\:—-—2——"1'] et =0 (16)
z k - 23 Kk ‘ka1

k=0, 1,... n-1

where, in (16) Zn = 1, H(i-1) is the unit step-function which vanishes

for negative arguments, and

Z.=1+alat 1/ (A})

J
J-1
a7 n-1 9
.—_j—: -?
3Ak 6480 Ak at E l/aT(Aj)
J=1

The solution of (15) and (16) was obtained by an iteration technique.*

The resulting optimal path is shown in Fig. 3 for tf = 100 min. It is

worth noting that the value of o(t;) is insensitive to the details of the

“"tail-end" of the path, i.e., near tf. Cooling along the optimal path
results in a residual stress o(tf) = 32900 kPa. This represents an im-

provement of about 6% over the linear cool-down path.

We refrained from using standard optimization methods, because those
techniques presuppose a smooth functional which can be approximated by
quadratic function (see e.g., Ref. [8]) while the present case revolves
about a discontinuous function.

i
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5. Stress Effects on Relaxation during Cool-Down

We note that the residual stresses reach levels which exceed half
the ultimate stress of epoxy, PR 52,200 kPa. Stresses of such mag-
nitude were found to influence the creep-response of epoxy-based compos-
ites [9]. The stress effect can be incorporated into the "shift-factor"
oy of Eq. (4) as follows

A/oy - (B/og)Hlo-0.(0)] [0-0_.(0)]/o(0)
u-l-(o.e) = exp { R R O/E)R c u o A_R} (17)

In (17) 0 is a reference absolute temperature, oc is a "threshold
stress" beyond which stress starts to affect ars O, is the ultimate stress
of the resin, H( ) is a unit step-function which vanishes for negative

arguments and A, B are material constants.

From the data given in Ref. [9], which were obtained at a reference
temperature O = 293°K, and from recent data which detailed the dependence -

of o, On © [10], the following values were selected

A = 6500, B = 2000

au(e) = 55200 - 190 (e-eR)

°c(°) = 13800 - 47.5 (e-eR).

where % and o, are in kPa.

A significant reduction in the computational effort is achieved if
the relaxation function E(t), as given in (11), is expanded in a sum of

exponentials. To this purpose, the method of collocation [7] was employed

and E(t) was expressed as
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22
E(t) =Z Bt e WY, 0V e (18)
I=1

The values of EI’ which are not listed here, were obtained from

solving the simultaneous equations

22

Y annple, - BE(P),

I=] P=3,

with pE(p) given in (10). The form (18) of E(t) is shown in Fig. 2.

Substitution of (17) and (18) in (3) and (4) yields
22 t

o(t) =}: Elf s [-Alg(t)ﬂlg(t')]%-r di’ (19)
I=1

v
were <) <f e
T s
()
with the form of ar given in (17).

Consider a linear cool-down from % too, during a time interval
tf. Denote the constant cooling rate by R = (eo-ef)/tf and let

¢,=aR/(1-v). In this case (19) reduces to

o(t) = c,5(t)

where (20)
t
S(t) = XiEI/exp [-Ale(t)n!s(t')] dt'

0
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Divide the time interval tf into n equal intervals At and denote
tk = kat as before. The initial condition is g = 0 and the intermediate
temperatures are ok = 00 - Rtk. If we employ the approximation that

GT(O,Q) = GT(Okaek) for tk <t < tk""] (2])

then, as a consequence of expansion (18), it is possible to integrate S(t)
analytically over each sub-interval tk <t«< tk+l' This leads to a

substantial reduction in computations.

Denote Vi =°T(°k’Tk) and W, = e'vk. From (21) it follows that
k
AL TRED DI REAN TS
i=1
Denote further
r-1
Yrk =Z (tytp) -1~
. m=0
and (r=1,..k. k=1,..n)
bk = ek P W (b - ty)

Straightforward manipulations lead to

22 | k

-1

S 7 St = D] D 0 M) [e""“x‘rk)
I=1 r=1

- exp(xl\vrk)]‘ (22)

and
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For times beyond termination of cool-down tk > tg, the temperature
retains a constant value o but the stress % continues to relax. The
computational scheme (22) remains valid except that now
ap(oy+0,) = agloy,0¢), (ty > te).

Results for a constant cooling rate from 8y = 438°K down to
0 = 293°K are shown in Fig. 4 for tf = 100 minutes, followed by a relaxa-
tion at 293°K, and for te = 300 minutes. Note that a prolongation in the
cool-down time does not effectively reduce the residual stresses. Compari-
son with results based upon the lineal thermorheologically complex model
shows that when stress effects are incorporated into ars(EQ. (17)),the

relaxation is enhanced and the residual stresses reduce by an additional
10%.

Finally, consider the case of a "two-step cooling”. In this case
the temperature is dropped suddenly from eo to Ops held at o = 6y for
a period t = tf and dropped sharply again to 0 = Of at t = tf. For
such cooling-history Eq. (19) yields

o(te) = c S(te) + ¢y (23)
I

In (23) ¢ = 1"_'—v (64-0p) » c¢ = 1‘:—\, (o, -0¢)
and

S -212 Ele"‘“‘

where ¢, is defined and evaluated as before.

Following a numerical scheme similar to (22), the dependence of
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the residual stress o(tf) on the intermediate temperature 0, has been
computed for a "hold-time" te = 100 minutes. In the calculations we

took T 438°K and o = 293°K. The results are shown in Fig. 5.

Note that the residual stress attains a minimum at the intermediate
temperature 0, = 333°K. A similar behavior was observed experimentally
for epoxy coupons reinforced by unidirectional fibers. Those coupons
were cooled-down in two-steps and a qualitative assessment of the
residual stresses was obtained by means of a frozen fringe pattern. It
was observed that a minimal fringe count was attained at an intermediate

value of temperature o (ef >0y > eo).*

6. Concluding Remarks

It has been shown that a linear elastic analysis of residual stresses
overestimates their magnitude by more than 20%. If account is taken of the
viscoelastic response of the material it may be possible to design a cool-
down path that will yield a reduced value of residual stresses. It seems
that the details of the cool-down path influence the magnitude of the

residual stresses more noticeably than the duration of the cooling period.

The computations conducted in the present paper are based upon incom-
plete data. It is intended to modify the calculations and analysis in
light of new data as they become available. It should be noted that thé
effects of aging were not considered in the present formulation. These
effects may be of prime importance because it is conceivable that the
newly created epoxy may be undergoing rapid aging while it is being cooled
down. An inquiry into this matter is now under way.

*The author is indebted to Dr. Frank Crossman, of Lockheed Missiles
and Space Co., Palo Alto, California, for this information.
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Interfacial Stresses in Viscoelastic Adhesive-Layers
due to Moisture Sorption

by

Y. Weitsman*

ABSTRACT

This paper concerns the mechanical behavior of an epoxy adhesive
layer that is located between stiff adherends as the adhesive absorbs
moisture from the ambient environment.

As the moisture penetrates the layer by an extremely slow diffusion-
process the epoxy undergoes a simultaneous process of stress-relaxation.
Calculations of viscoelastic interfacial stresses were performed for a
time-dependent response which is typical of epoxy and for a layer geometry
as encountered in practice.

The results show that for exposure to steady ambient humidity the
viscoelastic stresses are smaller than their elastic counterparts. How-
ever, under fluctuating ambient humidity the viscoelastic response may
cause stress reversals, and thereby failure modes,which are not predicted

by elasticity theory.

Accepted for publication in The International Journal of Solids and
Structures




1. Introduction

Adhesive bonding forms an attractive method of joining structural members.
In analyzing the stresses which develop within the bond it is necessary to
account for the fact that the adhesive materials respond in a viscoelastic
manner under loads and their time-dependent behavior is greatly affected by
moisture and temperature.

When two adherends are joined together by a thin adhesive layer the ad-
hesive absorbs moisture from the ambient environment, at its exposed edges,
which induces swelling strains into the layer. Since the adherends are much
stiffer than the adhesive they constrain the adhesive-layer against its ten-
dency to swell, thus causing the formation of extremely high stresses within
the layer. In this paper attention is focused on the interfacial-stresses
which arise at the interfaces between the adherends and the adhesive.

Since the moisture penetrates the layer by an extremely slow diffusion-
process, the epoxy may undergo noticeable creep and relaxation while the
diffusion process is in progress. The main purpose of this paper is to
relate the interaction, which occurs concurrently, between the two time-
dependent phenomena - moisture-diffusion and stress-relaxation.

The analysis employes a variational method and is inherently approximate
in nature. It is due to this approximation that the edge singularity in the
stress field is replaced here by finite,though large, values. However, for
the exceedingly thin layers that are utilized in practice, the selected ex-
pressions for the displacement fields should provide a good approximation.
Furthermore, the approximation should not detract from the basic purpose of
this work which is to provide information about the relative influence of
the diffusion and relaxation times.

2. Formulation

Consider a semi-infinite, isotropic and elastic adhesive layer, of thick-
ness 2a, between two semi-infinite adherend plates as shown in Fig. 1.

Let X, Y denote Cartesian coordinates and t time. Let e(X,t) represent
the unconstrained swelling induced by moisture and u, v be the elastic shear-
modulus and Poisson's ratio, respectively. Assume a state of plane straiﬁ.

Introduce the following non-dimensional quantities ;

x = X/a, y=VYa, e(x,t) = e(X/a, t)
(1)

Sy * °x/“’ Sy = oy/u. Sxy * Txy/"

o S e el



Also, denote

fl = 2v/(1-2v) , f, = 2(1-v)/(1-2v), fy = 2(14v)/(1-2v)

Consider now the following approximate form for the displacement
fields within the adhesive-layer

u(x,Y) = auo(x) + %-a uz(x)y2

2)
V(X,Y) = a v](x)y + %-a V3(X)¥3 (

In (2) U and V are components of displacement in the X and Y directions,
respectively, and Ugs Ugs Vqs Vg are dimensionless, yet to be determined
functions of the dimensionless coordinate x. Note that for an induced swell-
ing-strain of the form e(x,t) the displacements U and V possess the required
symmetries in Y.

Form (2) is the lowest-order approximation which provides information on
the interfacial stresses, at the boundary between adhesive and adherend, in a
self-contained manner. For exceedingly thin layers the approximation provides
sufficient accuracy. '

Expressions (2) are essentially the same as used in reference [1]*.

Employing Hooke's law we obtain the following non-dimensional form for
stress-strain relations:

EN 3 T l 2 =
5] P2 % T 9] [w' tzw'y
2
gy = f] f2 f3 0 Vi tv3y
(3)
S
o0 v -e
.xy_i i . . R
Yyt T3y

where primes designate derivatives with respect to x.
The rigid adherends force the boundary conditions:

*Numbers in brackets indicate references listed at the end of this paper.




u(x, 1, t) =0
vix, 1, t) =0 : (4)

The boundary conditions (4) imply that the unknown functions
Ugs Yps Yy and V3 in (2) are not independent. As noted in [1] the four
above mentioned functions can be treated independently by introducing
suitable Lagrange multipliers Sh and Sy The S and sy are the dimension-
less force-conjugates of v(x, 1, t) and u(x, 1, t) respectively, and
represent the interfacial normal and shear stresses.

Using the Lagrange multipliers defined above in the principle of
virtual work as in [1]§ yields the following expression for the variation
of the internal energy 6E

1
= ja f,/[s (5u ts yz 6u2‘) + s (6v + yz 6v3) +s (yau2
(V)
3

+ ycv]' + ; y 6v3 )] dy - St (6u + 2 6u2) - sst(u + “2)

s ] 1
- s, ((Sv.I t3 6v3) - dsn(v] + §-v3) dx (5)
j{ Similarly, the variation of the external work, W, is given by
. R * 1.2 * '
N = [[sx (0,) (6u, + 5 5% su) + 5, "(0y)(yov, + 343 6v3)] dy (6)

Integration-by-parts of (5) and employment of (3) yield, upon factoring-
out the now independent variations Suys  Buy,  8vy and 6vy:

2 B o ' =
3 f2 Uo f3e + St 0

] " 2 ] 2 ] (] .i
-Ts'fzuo -Ts-(f]*P])V‘ +3-u°-5f3e +-2-St"0
P > (7) i
g(f] +1) uo' ‘15 v]“ “Tol < B9 ‘

2 2 . » @&
S‘fl +1) uo' -3 i B fzvl - f3e B 0

sg:e p?rticggarly the section "Variational Formulation of the Totally Constrained
se (v .= 0)"
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To these are adjoined the constraint conditions
u, +-% u, = 0
(8)
v, + 3 vo = 0
1 373
Equations (7) and (8) express the field equations of the problem. The con-

comitant from the integration-by-parts of (5) combines with (6) to determine
the boundary conditions at x = 0. This combination, together with (3), yields

-Ju +2v,' =0
5 5 f3
2u° +?;V]=‘2—'f_2'e(°s t)

Note that the boundary conditions (9) were obtained after employment of
(8), which hold also at x = 0.

In order to solve for Uo and vy we first eliminate S¢ between the first
pair of (7) and S between the last pair. Next, we employ (8) to eliminate
u, and V3. This procedure yields:
n [ = 5 '
2 f, u" * (f] +1) vp' - 5 Uy * % f3e
(10)
; v1“ . (f] +1) vo' - 3f2 vq = 0
The solution of (10) is expressed with the aid of the following second-
order equation
4

2 2 2 _ 10 i
7 fa 17+ (f] +1)° - 6f," - 5 Z+15f,=0 (11)

Denote the roots of (11) by Z] and Z, and define

o) = /Ty, a6y = VT,
(f] +1) a4 5 f3 .
xm.z ’ 31,2 D.

T -3, < : .

?5 % X2 T %Xy




6‘
The solution of (10), which vanishes as x + =, is

u, = D [x]/ sinh "2(" - s)e'(s)ds - xzfsinh a](x-s)e' (s)ds]

X X

'G]x -sz
+ A]e + Aze
7 , (12)

vy = Dx]xzf[cosh qz(x - s) - cosh a](x - s)] e'(s)ds

X

- X -GZX

1

In (12) A1 and A2 are arbitrary constants determined by boundary con-
ditions (9).

3. Elastic Solution for Moisture-Diffusion Under Constant Ambient Humidity

It has been observed [2], [3]* that the saturation-moisture level
in "neat" epoxy, as well as in epoxy-based composites, depends on the relative
14 humidity of the ambient environment. The dilatational strains that accompany
moisture sorption are about 2/3 of the swelling that would be anticipated by
straightforward"volume additivity".

The penetration of moisture into several epoxy resins was shown to follow
the classical diffusion equations [2] [3] [4].

For the one-dimensional diffusion process considered herein, it follows
that under constant ambient humidity the moisture-induced swelling is given

by

e(X,t) -Aerfc(—z—l/k:t;) (13)

In (13) A is a constant which converts moisture <ontent to dilatational
strain and k is the coefficient of moisture diffusion.

In terms of the non-dimensional time g = kt/az, the non-dimensibna] form
of (13) reads

e(x,8) =Aerfc(x/2/B) (14)

*For most of this information, the author is greatly indebted to Messrs. J. E.

Halkias and E. L. McKague of General D
Division. g neral Dynamics Corporation, Fort Worth




Substitution of (14) into (12) leads to closed form expressions [5],[6],
e.g.

r 2
sinha(x - s)e'(s)ds = - AeBo {sinh x[’l - l(elr'f(—"- + a/B)
[ 2¢ " 2 o

- erf (_/E - a/_))]- 1 coshax I:er'f(z—',—E + a/B) - erf(7§ - a/_)]}

and a similar expression for/cosha (x - s) e'(s)ds
X

With the simpler, closed-form version of Uy and vi that replaces all the
integrals in (12) it is possible to evaluate analytically the unknowns A] and
A2 therein.

Employing the boundary conditions (9), with e(o,t) = A, the values of A]
and A2 are determined from the following two-by-two algebraic system:

(15)
M, M A 5

ey ey

where, in (15)

L, =7-(2x), M = 20+ % ey
2 (m=1,2)
Kn =- Aesam In ==Ky erf(am/a—)

Solving for A] and A2 from (15) we obtain the complete solution for Uo
and ) in (12), which enables us to evaluate the interfacial tractions Sh
and s, by using the first and third of Eqs. (7).

After straightforward, though tedious, manipulations we obtain

PRPTRRTRSEE A




sn(x’B) - %’D [GZXIPZKZ(X'B) - G]XZP]K](X’B)]

aqX

: -a,X
- % aPiAce ] .

- %‘GzpzAze - f3 e(x,B)

Sp(x.8) = = 50 (@)% X,05(x,8) = 0,20, (x,8)]

~ay X ks B -k
6/m8

In (16) .
801’2 2 + -y -
(1,2 1,2)

>

J]’z(x,s) =-3e

N

Ba
A 1,2 + -
| 2 T e (Wl,z Y Vl,z)
] + % ot
. where  ¥,°, = e erfc (a] 2 /B + x/2/B

i N P

1
Also, P1,2 = f] ¥ hen (c;x)]’2

ratio of thickness to length.

ceeding the accuracy provided even by "double precision".

e g g e e

Form (16) is the elastic solution to the present problem.
form provides a necessary step toward the generation of the viscoelastic
solution, because its Laplace transform is readily available, it cannot be
evaluated numerically for a wide range of x and t because J](x,a). Kl(x,e),
A] and Az become numerically unstable.* Difficulties of this sort stem from
the peculiar geometry of the adhesive layer, namely, the extremely small

(16)

While this

* For x = 3 and t = 1000, with typical values for k, a, and v, J] and K]
involve products of numbers of 0 (1022) with numbers of 0(10'22), thus ex-

“ - : S— ke i oo bl




The difficulty is overcome by the employment of an approximate form for
erfc (z), as follows [7]:

erfc z = Q(t(z))e™?
where (17)

Q(t) = jz% a;td and  t(z) = (1 + pz)”

Appropriate substitution of (17) into (16) yields an alternative,

numerically stabie, form for the interfacial stresses. We obtain
-0 X -0, X
£

2
a,P,L.e - a,P,L,e
l s (x.B) %.?i 2271 1"1-2

- f, erfc(x/2/8)

A 3

x2

+ % D "“2"1"2 Je (Q( a,/B + 5i“/§)+ h(x-20,8)Q(|a,/B - —-|))

2
2 X
Ba, =anX -
2 q
- H(x-2008) & 2 °|+ a1%,P; ;—e B Q( /‘+——2 )

x BGIZ-G]X

B "G]x ‘sz

1 5 '3 L. 5 “agh N 3
S(x,3)=—-—(a SR AR )- 3
At S aLt"2™ | fe

%2
2 2 1 48 X X
+3 fZD{az X [2- e (Q(u2/§+-2'/—§)- h(x-2a28)0(|62/§ < E?.B‘I))

2
B - x - x >
' HxZagple 2 2 ]-a,zxz [,1, e ¥ (oo + = |

Bu] 2"“] X

2
1) (18)

x
®

e

o —

SR a7k B

- h(X'ZG]B) Q(lal/g ¥ ;x}-B_- I)) + H(X‘ZG]B)e

“Qq X =anX
+ -g— (uleze L 022 M.le 2 )} . 3‘
¥ The numerical value of a, (J = 1, ..5) and p are given in section 7.1.26,
on page 299 of ref. [7]. This approximation is valid for all z. : |




10.
In (18)
ne) =49 &9 ney = 473 =l

and

In the 1imit t > » the "fully saturated" elastic solution is

] S (Xy») = =Fo |1 + > —l—-( P,L e.m]x - a,P,L e-azx)]
A >n\% 3 ’szA“Hz o
(19)
1 (x,2) = - §-f§ ( L e-a]x- = e-azx)
A T\ 3 Y 2 2. %

4. Viscoelastic Solution for Moisture-Diffusion Under Constant Ambient
Humidity.

Uniaxial-tension experiments [8] on epoxy indicate that its creep-res-
ponse can be described by a "power law" form as follows:

D(t:T) = D,(T) + D, [a—('iry] ; (20)
In (20) T denotes temperature and a(T) is the "shift-factor" function.
Additional data on polyester [9] and epoxy [10] indicate that the creep-
response depends also on the moisture content m, namely D = D (t; T, m).
However, this dependence is omitted in the present analysis. Furthermore,
we shall consider the case of uniform temperature for the entire adhesive.

In most adhesives the Poisson's ratio v remains constant under a wide
range of conditions. Consequently we shall consider a viscoelastic shear-
compliance of the form

u(t) = d (1 +d,t (21)
where d° = 2(1 + v) Do *

*The non-dimensional viscoelastic stresses are given by sij - °1j/do




n.

Denote 1 = az/k and 1 = d]']/q. Let p be the variable of the Laplace
: transform in the time domain and n = ptr. Finally, let the ratio between the
‘ characteristic diffusion-time t and the characteristic creep time T, be

9 = Tr/t.

Then, the Laplace-transform of (21) is
- Wb(p) = 1+ Hatl) (22)
0 (en)

The reciprocity relations between the transforms of the creep and
relaxation functions [11] yield

doPE(P) = 1/[1 + T (q +1)/(en)%] = R(en) (23)
™ Upon insertion of the explicit expressions for AI and A2 into (16),
‘- the Laplace transforms of the elastic stresses (denoted by s) become
=-aqX =0nX
i 108 (x p)=§0 i 1x2Py ; e X _ sy e xe ¢ )
_ 4 e B o e

'G]x =anpX
e (sz 6.1 0 el LR
/n *ag Vn + o &

-GZX -G]x z
/nx . 5 T3 %Py © -ogPylae
ks RS & A :
2 !
(24) i
2 -q X 2 ‘azx ;
f Loay"€ - Lija, €
1 3 ~-/nx _5 22 1 i
WP (xp) = - 5 /ne -3f; 2 ,
2 “Qqa X _/;‘-x 2 -uzx- ot ﬂx
N B (A JO . i 2
/;¥G] /E - G] JE;QZ /H - 02
2 'sz 2 'G]x
/iy iy :
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Note that the singularities at /n = a, and /n = a, are removable.

From the fundamental equations of linear viscoelasticity [12] it
follows that the Laplace-transforms of the viscoelastic solution to our

problem{denoted by overbars) are

do z |

& P s,(x,p) = R(en) - g ps (x,p)

3 (25)
£ 0 5,06p) = R(on) * F P, (x.P)

In order to obtain the viscoelastic solution in the real-time domain it
is necessary to invert (25). The inversion was obtained by the method of
collocation [13]. Typically, expressions (25) were plotted vs. 1og n and a
set on N points n1(i =1, ...N) was selected to cover the ranges where those
plots show noticeable curvatures. It was found that the shapes of the above-
mentioned plots, as well as the locations of high curvature regions, depended
on x. Therefore, it was impossible to employ any specific set of points ny in
the inversion and an appropriate selection had to be made for each value of
X.

The calculations followed the scheme of ref. [13]. Note, however, that
for “power-law" creep as given in (20) we have 1im D(t,T)+~, hence the equi-
librium stress vanishes. Furthermore, in the - present case the trans-
form variable is n = pt, whereby the inversion is obtained in terms of dimen-
sionless time t/t , rather than real time t.

Calculations were performed for an adhesive-layer with the following
selected properties:

Thickness a = 0.003", moisture diffusivity k = 0.2 x 1078 in?/sec,
Poisson's ratio v = 0.45, 100% R. H.- to - swelling conversion-factor A = 0.03,
creep compliances D = 2 x 107 in?/1b, D, = 0.2 x 10°® in?/1b with q = 0.19.
The corresponding value of the shift-factor function was a(T) = 1.

With the above numerical values we obtain t = 4500 sec'] and the value
of o in (22) is e = 2450.

Numerical evaluations were performed on an Amdahl 470 digital computer.
The results are shown in Figs. 2 - 9. The heavy solid lines in Figs. 2 - 7
show the dependence of the non-dimensional viscoelastic normal and tangential

interlaminar stresses Sh and S¢ on time t at three fixed stations within the
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layer, x = X/a = 0.01, 1 and 3, when the free edge (x = 0) is exposed to a
constant R.H. = 100% at t = 0. Note that the time scale is logarithmic.

For comparison purposes, the elastic stresses - as given in (18) - are
shown in thin solid lines in Figs. 2 - 7. Note that any station within the
layer senses the build-up and approach of the moisture in a gradual manner
and that a steep increase in stress occurs after the passage of a time-span,
which depends on the characteristic diffusion time and the location of the
station. Beyond that time the station notices a "fully saturated" state,
which explains the leveling-off of the elastic stresses for longer times.

The viscoelastic values, which are affected by relaxation, diminish to
zero with time.

Thus far all viscoelastic results were obtained from inversion of (25)

by means of collocation.
Consider now an approximate expression for the relaxation modulus
[14]
E(t) = ]t Si:nﬂn (26)

where n = n(t) = E_TgE_f' D(t).

Employing (26), the "quasi-elastic" (viscoelastic) solution is given
by [13]
sp € (x,t) = F(t)s (x,t)
(27)
sg 0 (xt) = F(t)sy(x,t)

where, in (27), sn(x.t) and st(x,t) and the elastic expressions given in
(18) and
F(t) = 1 sin nn(t)

T+btd  an(t)

n(t) = qbt/(1 + bt9)
with b = 0.046 and q = 0.19.

It is interesting to note that for the particular geometric and physical
values for the adhesive-layer employed in the present problem the quasi-
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elastic approach yielded results which were almost indistinguishable from

the collocated inversion. This fortuitous circumstance could not be anticipat-
ed a-priori because the transformed expressions,(24) and (25), do exhibit large
curvatures in the n domain. In general, the usefulness of a quasi-elastic
method must be verified in such circumstances. In the present case expres-
sion (27) are certainly easier to evaluate than (25).

Employing (27), values of sx'e'(x,t) and s{'e'(x.t) were calculated for
fixed values of time, t = 1000 secs. and 10000 secs, along the interface be-
tween the adhesive and adherent. These results are shown in Figs. 8 and 9
for 0 < x < 1.6. (For comparison purposes, the elastic values are also
shown in dashed lines).

5. Viscoelastic Solution under Fluctuating Ambient Humidity.

Thus far the adhesive layer was considered to be subjected to a sudden
exposure to ambient-humidity at time t = 0, with a swelling conversion factor
A.

For fluctuating ambient-humidity A = A(t) the interlaminar stresses are
given by a superposition integral as follows

t

e G i . . ' d A t' '
e (xst) = /s:' e (x,t-t) LALD g (28)
o]

where m = n or t.
In (28) the kernel-functions, under the integral sign, are given by (27).

A sample computation was performed for a sudden exposure to 100% R.H.
followed by drying at a later time t = ty- In this case

A(t) = A[H(t) - H(t-t])] (29)

whereby

5;'e‘(x,t) - s;.e.(x’t) - s;'e’(x,t-t]) (m=nort) (30)

Results for t, = 10,000 sec. at x = N.01, x = 1.0 and x = 3.C are shown by
the dashed 1ines in Figs. 2 - 7. Note that the superposition of wetting and
subsequent drying is algebraically additive in the elastic case. Therefore,
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all the elastic stresses,represented by thin dashed lines in Fig. 2 - 7,

tend to zero as t+~ without any further sign changes.* However, in the
viscoelastic case, the drying effects are superimposed on a relaxed wet

state and this causes an overcompensation - thereby introducing sign-reversals
in the stresses. Eventually, as t-«, the viscoelastic stresses too tend to

zero.

It is observed that viscoelasticity predicts detrimental effects that are
caused by fluctuations in relative humidity - such as low cycle fatigue and
interfacial tension - that are absent in an elastic analysis.

6. Concluding remarks

The present analysis is based on several idealizations which restrict the
validity of the results. The exceedingly large stresses which are predicted by
linear theories near the corners X = 0, Y = *a cannot be borne by real adhesives
and the response inthose regions must be represented by a suitable non-linear
model.

In addition, the actual viscoelastic response of resins depends on the
moisture content, which introduces yet another non-linearity into the analysis
of adhesive layers.

The evaluation of those non-linear effects still awaits an appropriate
characterization at the present time. Once available it would require solution
by means of numerical methods.
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FIGURE TITLES

The Adhesive Layer Between Rigid Adherends Exposed to
Moisture at X = 0.

Elastic and Viscoelastic Values of the Non-Dimensional

Normal Interlaminar Traction s at x = X/a = 0.01 vs. log

t (t in seconds). Heavy Lines - Viscoelastic, Thin Lines -
Elastic. Solid Lines - Exposure to a Constant Ambient R.H.,
Dashed Lines - Exposure to Fluctuating Ambient R.H. (according
to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Tan-
gential Interlaminar Traction s, at x = X/a = 0.01 vs. log

t (t in seconds). Heavy Lines =~ Viscoelastic, Thin Lines -
Elastic. Solid Lines - Exposure to a Constant Ambient R. H.,
Dashed Lines - Exposure to Fluctuating Ambient R.H. (according
to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Normal
Interlaminar Traction s at x = X/a = 1 vs.log t (t in seconds).
Heavy Lines - Viscoelas@ic, Thin Lines - Elastic. Solid Lines
- Exposure to a Constant Ambient R. H., Dashed Lines - Exposure
to Fluctuating Ambient R.H. (according to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Tan-
gential Interlaminar Traction s, at x = X/a = 1 vs. log t (t in
seconds). Heavy Lines - Viscoe?astic, Thin Lines - Elastic.
Solid Lines - Exposure to a Constant Ambient R. H., Dashed Lines
- Exposure to Fluctuating Ambient R. H. (according to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Normal
Interlaminar Traction s_ at x = X/a = 3 vs. log t (t in seconds).
Heavy Lines- Viscoelastfc, Thin Lines - Elastic. Solid Lines -
Exposure to a Constant Ambient R.H., Dashed Lines - Exposure to
Fluctuating Ambient R. H. (according to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Tan-
gential Interlaminar Traction s, at x = X/a = 3 vs. log t (t in
seconds). Heavy Lines - Viscoefastic, Thin Lines - Elastic.
Solid Lines - Exposure to a Constant Ambient R.H., Dashed Lines
- Exposure to Fluctuating Ambient R. H. (according to Eq. (29)).

Elastic and Viscoelastic Values of the Non-Dimensional Normal
Interlaminar Traction s_ at Times t = 1000 sec. and t = 10000
sec. vs. x. Dashed 1inBs - Elastic, Solid Lines - Viscoelastic.

Elastic and Viscoelastic Values of the Non-Dimensional Tangential
Interlaminar Traction s, at Times t = 1000 sec. and t = 10000
sec. vs. x. Dashed linSS - Elastic, Solid Lines - Viscoelastic.
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ON THE ANALYSIS OF CRACK INITIATION AND GROWTH
IN NONHOMOGENEOUS VISCOELASTIC MEDIA
R. A. Schapety1

ABSTRACT. Prediction of the rate of crack growth in viscoelastic media,

as well as the time at which this growth initiates, is discussed. Emphasis 1is
placed on the particular analytical problems which are associated with
composite materials,such as fiber-reinforced plastics, and other nonhomogeneous
media. Previous work on the analysis of crack speed and initiation of growth
in linear viscoelastic bodies is first reviewed. Some new results are then
obtained for initiation of crack growth in linear and nonlinear viscoelastic

. media. Certain important unsolved problems related to fracture of viscoelastic

materials are indicated in the concluding remarks.

1. INTRODUCTION AND SUMMARY. Analysis of the quasi-static fracture of
i isotropic, homogeneous, linear viscoelastic bodies has received considerable
i attention, as may be seen in the reviews by Knauss [1, 2]. However, very
7T little work has appeared on the analysis of more general classes of viscoelas-
tic media.

In the former case, there are many applications involving traction bound-

ary conditions in which the stress distribution is independent of viscoelastic
properties; for this situation the stresses are the same as in a geometrically
identical elastic body which is subjected to the same boundary tractions.

This feature greatly simplifies the fracture analysis,and leads to relatively
simple equations for predicting crack initiation and growth [3 - 5]. On the
other hand, when stresses depend on viscoelastic properties, the fracture
analysis is much more involved. This dependence normally exists for non-
homogeneous bodies; nonhomogeneity may be due to moisture or temperature
gradients in polymeric materials for example, or to the presence of more than

one continuum phase, as in fiber-reinforced plastic. An approximate method

for calculating crack growth rate in such materials in their linear range of
behavior is developed in (6).
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73F10, 73F25, 73M20. .
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The analysis in [6] consists of solving for stress and displacement in
the neighborhood of the crack tip and then combining these results with an
energy criterion of failure for the material at the crack tip. This work is
reviewed in §2 - §4. It will be seen that the model employs a stress distribu-
tion which is bounded at the crack tip. In contrast to predictions for linear
elastic media, the use of unbounded stresses in viscoelastic media leads to
physically unacceptable results for fracture criteria [3, 7].

The initiation of growth is discussed in §5 and §6 for linear and non-
linear viscoelastic media, respectively. An approximate method of analysis is
described, which represents an extension of the J-integral criterion to visco-

elastic materials.

2. LINEAR STRESS AND DEFORMATION ANALYSIS. In analyzing linear visco-
elastic media with growing cracks, the problem will be divided into two parts.
First, response to imposed loads, temperatures, etc. is calculated for the
case in which all cracks are stationary. The second part consists of predicting
the additional response due to crack growth alone. Addition of these two res-
ponses yields the complete solution. The specified mechanical input for the
second part consists of tractions which are applied to the new surfaces
associated with the crack growth. If, in the complete solution, these surfaces
are to be traction-free, then the tractions which are specified in the second
problem are equal in magnitude, but opposite in sign, to tractions in the first
problem acting across suitably defined imaginary surfaces; these surfaces
correspond, of course, to the actual instantaneous crack surfaceas. In some
problems the actusl crack faces will not be traction free due to, for example,
interfacial rubbing or injection of a fluid under pressure; an appropriate
adjustment to the surface tractions specified in the second part must then be
made.

Inasmuch as this analysis is concerned with the prediction of crack
growth, rather than the total mechanical state of the body, we shall deal with
only the second problem. It should be added that the particular manner in
which the original problem is decomposed aic's in constructing approximate
local solutions, as discussed in [6].

General linear, anisotropic viscoelastic relationships connecting the
stresses °1 (4, § =1, 2, 3) and strains eij referred to an orthogonal set
of Cartesian axes (xi) may be written in the form

. M0
cu = /sijkl(t-‘)_aT dt, (1)

o

where sljkl(‘) (1,3,k,2 =1, 2, 3) are the linear viscoelastic creep com-
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pliances; these mechanical properties form a completely symmetric positive-
definite fourth-order tenmsor [8). For notational simplicity, explicit
dependence on the coordinates Xy is not shown; however, all dependent variables
as well as the compliances may vary from point-to-point in the body. Also,

the summation convention is used, in that a repeated index is to be summed out
over its range.

Crack growth is assumed to start at t = o; the lower limit of the integral
in Eq. (1) is shown as o-, rather than o, in order to allow for a timewise
jump in the stresses which may occur upon initiation of growth.

It is not necessary to include the expansion or contraction associated
with temperature or moisture inasmuch as these effects are taken into account
in the problem without crack growth. However, temperature and moisture can be
expected to affect the particular values of creep compliances which exist at
each point in the body. In order to be able to draw upon certain simplifying
features of the Laplace transform,it is assumed that changes in the creep com-
pliances due to timewise variations of temperature, moisture, and other
physical and chemical changes are negligible during short periods of crack
growth as determined by the crack speed and scale of the failing material at
the crack tip [6].

Let us next introduce the Laplace transform (LT),

fs= /f(t)e'“dt. (2)

o

The quantity f 1s the LT of a time-dependent function f; s is the transform
parameter. In some cases it is desirable to use the following notation for
the LT,

L {f) = ¢ 3)

and to use L-I(E) for the inverse of LT. Also, the Carson transform,

Tz ef %)

will be employed when notationally convenient.
The constitutive equation (1) is now transformed to obtain

€49 " Siyue®ia. (5)

The complete set of transformed field equations consists of these six equations

together with the equations of motion

i 1
|
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30
4. a2 (6)

and stralon-displacement cquat lons

aﬁ u
J

€yy ™

N =
U

where p is the density and v, are the displacements. The boundary conditions
are all homogeneous with exception of those corresponding to the new surfaces
which result from crack growth. (We assume that there are no changes in the
surfaces of the body other than those due to crack growth; e.g., interaction
of crack growth and ablation is excluded.)

Consider next an elastic boundary-value problem. It is supposed that the
problem is in all respects identical to that for the viscoelastic body except
elastic time-independent compliances Sijkl.say. are used in place of the visco-
elastic compliances; the instantaneous crack geometry and the specified trac-
tions acting on the new crack faces are taken to be the same as for the visco-

elasticity problem. Furthermore, let each s® be equal to the corresponding

SUu for one generic real value of the trnn:i::n parameter s; in general,
these elastic compliances will be functions of Xy Assume now that the elastic
boundary-value problem with specified growing cracks is uolved. Denote the
time-dependent solutions using a superscript e (viz., °1j y u1 ¥ :1 ) It

is important to recognize that even though sijkl is a function of s, thtough

its association with S 0 this dependence is suppressed when solving the

elasticity problem by ti:ng LT theory or other means. Indeed, the time-

dependent elastic solutions will depend on s because of this association.
Clearly, the LT of these elastic solutions satisfies the LT of the

viscoelastic field equations (5)-(7). If we invert these transformed elastic

solutions, and take into account the dependence of s® on 8, the resulting

time-dependent solutions will obviously satisfy all :gk:he field equations of
viscoelasticity in the time plane.

In some cases (such as those discussed in [3])), this inverse will satisfy
all boundary conditions, including those along the growing crack faces, as
well as meet the requirement of continuity of material ahead of the crack
tips. When this happens, the inverse is the solucion to the viscoelasticity
problem; uniquonoln.ls assumed, not proved. In general, however, not all
conditions will be satisfied by the inverse of the elastic transforms.
Pursuing this latter point, we first note that the inverse obviously will
satisfy all homogeneous boundary conditions on the original surfaces since the
LT vanishes for all s. Also, the requirement of material continuity ahead of
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the crack tip is not violated [6]). However, the traction condition on the
newly formed crack faces is not necessarily satisfied. Nevertheless, in many
cases most of the error in this condition can be eliminated through super~
position of an elementary solution; the corrected result, which is derived in
[6], then provides the basis for the development of the equation for predicting
crack speed.

3. THE CRACK TIP MODEL. The model we employ is for the so-called opening
mode of growth, and is shown in Fig. 1; it is analogous to that used by
Barenblatt (9] and Dugdale [10] for elastic media. The (x,y,z) coordinate

Y

Failure zone

Figure 1. Idealized Crack Tip Neighborhood‘

system in Fig. 1 is stationary, with the y-axis located at any convenient
position within the continuum; y = 0 defines the local crack surface, and the
z-axis ig perpendicular to the x-y plane. We assume this surface is locally
flat but do not restrict its shape far from the craek tip relative to the
scale of the failure zone, a. It is further supposed that the radius of cur-
vature of the crack edge or tip is large relative to this scale. The shape
of the crack edge is otherwise unrestricted, so that it may be an "internal",
"through", or "surface" crack.

The region between x = a, and x = a in Fig. 1 is called the "failure
zone" in [3]. No constitutive assumption is made for this material. Instead,
we simply assume that the disintegrating material exerts a normal load per
unit area, Ogs ON the surrounding continuum, where this continuum is taken to
be linearly viscoelastic; ¢ is called the "failure" stress distribution. The
failure process could therefore be quite arbitrary without invalidating the
results of our theory. Indeed, the material in the failure zone need not even
satisfy a continuum hypothesis. The layer of damaged material on the crack
faces (x < a.) is supposed to be so small that its effects on the motion of

lomb‘ iy nm from l A. Schapery, A theory of crack initistion and |~mh ln vummnc mdh I Thwm-
cal develo | of Fracture, Vol. Il, Feb 1978, pp. 141159, copynighted by

Publishing.
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the continuum is negligible.
It should be noted that different names are used by various authors for

the thin zone of material which we have called "failure zone". Plasti¢ zone,
process zone, and damage zone are commonly used labels. Also, ¢ is often
called the "cohesive stress.'" We prefer to use the word failure in this
connection because the material in this zone usually is much thicker tﬁﬁn the
interatomic spacing,it may contain many cohesive and adhesive microcracks when
in a composite material, and of course it is ruptured during the passage of a'
crack tip [3). Also, in composites and other materials there may be a much
larger zone of damage (e.g., microcracks or plastic deformation) outside of
this thin layer;: both of these zones are taken into account in the nonlinear
theory in §6.

We assume further that the neighborhood of the crack tip P in Fig. 1 is
in a state of plane strain. This condition is met provided that (i) the dis-
tance a is small compared to the distance B to the nearest geometric feature;
(11) a is small compared to the radius of curvature of the crack edge at P;
and (1i1) the value of o, away from P can be neglected in comparison to oy
near P (cf. Fig. 2). Just how small a must be depends on the degree of

nonhomogeneity [6].

T

Figure 2. Normal Stress Distribution Along Crack Plane’

The stresses and displacements due to the action of of alone may be taken
from (3] 1f the viscoeldstic material in the crack tip neighborhood is homo-
geneous and isotropic; the superscript f is used to denofe 0g-1nduced quan-
tities. The normal stress ahead of the crack tip, €1 > 0, is the same for
elastic and viscoelastic media in this case, and is given by

7€ 0, ()

f 1
o = dg ’ (a)
4 gy bl

'Icpmu Oy 'mubnun from K. A. Schapery, A theory of crack initistion snd pmu in viscoelastic uoal. I m
ool & ot of Trachws. Vol W, Feb, 1978, pp. 141 - 159, copyrighted by N
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where, with reference to Fig. 2,
Ep¥x-a, E2a-x . 9)

The viscoelastic normal displacement of the upper crack face relative to the

fixed plane y = 0 is, for t > t

1'
vie - -21; Jf ¢ (e - 1) a% I dv , (10)
Y
where
AR
L, = 0.(£")1n dag' (11)
. ' T - /El

in which Cv is the inverse Laplace transform of the function Ev found from

& - 4(1 - 322
e = (12)

E'.nd V are, respectively, the Carson transformed relaxation modulus and
Poisson's ratio obtained from a uniaxial constant strain test. The time
t1 is the time at which the crack tip first reaches the point at x, and §

is as defined in Eq. (9) with a = a(t) replaced by a(t).

The crack tip stress and displacement due to O¢» Eqs. (8) and (10), wmay
be considered as approximations for a material with temperature and moisture
gradients if spatial variations of viscoelastic properties are small in the
reglon affected noticeably by O¢e Local inertia effects due to O have been
neglected; this simplification does not necessarily preclude the use of these
results in the presence of large-scale dynamic effects, but it does limit our
results to crack speeds which are small compared to characteristic wave speeds
for the continuum.

By replacing the creep compliance Cv(:) with another suitably defined
function, the results in this section will apply to cracks in orthotropic
media and to cracks between different isotropic or orthotropic materials (i.e.
adhesive cracks)[1l]). However, there are certain conditions which must be
met; the local crack surfaces must be parallel to a principal plane of ortho-
tropy and, in the case of adhesive cracks, the two different media must be
incompressible.

The stress and displacement distributions due to Tgs Eqs. (8) and (10),
are to be added to those due to the unloading of the crack faces during

propagation; these latter solutions are derived by using the procedure
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described in §2 for the case o¢ = 0. It is not necessary to superpose the
solution for the body without cracks; the associated crack opening displace-
ment is zero and therefore this solution does not contribute to the energy
criterion of failure used in §4.

Now, assume o, = 0 and that the normal stress oyo. say, along the crack
plane is independent of viscoelastic properties; in the neighborhood of the

crack tip Gyo becomes (3],

o I
0 -

¥

Cl >0 (13)

where KI is the stress intensity factor; this result is identical to that for
an elastic material. The corresponding displacement is

<)
(K, /E)
1
vo = é / Cv(t -1) o dr, t>t (14)
5

The stress obtained by adding Eqs. (8) and (13) is bounded at the crack

tip, £ = 0, if :
2 g

5 'Vl: f £ (15)
o V¢

Define
fo = °f/°o - nzé&la (16)

Then, Eq. (15) may be rewritten as
2

ae il an {
T [
0o o :

where 9 is the failure stress at £ £ o and

1 s f—‘—’dn (18)
o ) /a :

1f fo is a function of only n (i.e., if the shape of the stress distribution

]
f
a, then Eq. (17) provides an explicit result for the length of the failure

is constant) then Io is a constant. If in addition % is independent of

zone. Use of Eq. (16) in the prediction of a for more general cases is dis-
cussed in (5].

Let us now add Egs.(8) and (13) for stress, Eqs. (10) and (14) for dis-
placement, and eliminate Kl by means of Eq. (15). There results, ? ]

T ———— o~ ——— e - . DRSS e Aat0 1S
- B e b s
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B E+e)) 3 9
t

v = 2—1'- / c,(t -T)s—a;zd‘l' » t2 (20)
t
1

where

T-Xxm=-X, + 2j op (6" )gfFr a8’ . (21)

o

Let us now consider the case in which o_ 1s a function of viscoelastic
properties. The procedure outlined in §2 leads to an incorrect traction dis-
tribution on the crack faces if the given O; 1s used in the bounded elastic
solution. However, we may instead use another failure stress distribution
ofe, say, in the elastic analysis. This function is selected so as to
produce the proper traction condition on the viscoelastic crack faces, which
leads tu an integral equation for Uf. . The solution of this problem 1is
lengthy, and since it is detailed in [6] it will not be given here. This
analysis results in a rather simple approximate equation for predicting crack

speed, as discussed in the next section.

4. PREDICTION OF CRACK GROWTH RATE. Dcfiqe I' such that 2rdA. is the
mechanical energy required to fail an element of material of infinitesimal area
dAf; I', which is called the fracture eneigy, does not include the energy of
the element at the starting point for failure, £ = 0. Thus, at some fixed

m
= f afdv (22)

material point, x,

where Va is one-half the crack opening displacement at the point of rupture,
€ = a (cf. Fig. 1). The governing equation for crack growth is derived by
substituting into Eq. (22) the displacement v, such as that in Eq. (20) or
that in [6,Eq. (39)] for a more general class of problems. In the former
situation we assume that crack spocd.i. is essentially constant during the
time a/i. which is the time interval in which the crack tip propagates an
amount a; it is further assumed that of and a are essentially timewise
constant during the same period. For the latter case, which is studied in
[6]), this time interval may have to be somewhat larger, possibly as large as
10 a/a. Additional simplification of the analysis is achieved by accounting
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for the fact that the second derivative of the viscoelastic creep compliances
and their logarithms with respect to the logarithm of time is typically quite
small. There results, finally [6],

r=gc(c) K, (23)

vhere
t, o/l . (24)

Also, 1

2

Kz [xle(:u) "x.("u’l (25)
is the geometric mean of so-called quasi-elastic stress intensity factors;
the quantity Kx'(.) is the stress 1ntenslt§ factor due to crack growth (as
defined in §2) in a material which is elastic,except in place of elastic com-
pliances there are viscoelastic creep compliances that are evaluated at the
"local" times t, and 3tu. The length of the failure zone is

e 2
K, (3t )
a=3 [____1 "] g (26)

When stresses are independent of the viscoelastic creep properties, Eqs.
(23) and (26) reduce to those derived in (4]. Thus,

3 @7

regc(c) K
where a is that in Eq. (17).

The quantities I' and colo are defined by the behavior of the material in
the failure zone, and as such are fracture properties. In general they are
functions of crack speed, although they appear to be constant for the poly-
meric material studied in [5). Given these properties and the viscoelastic
creep compliances, Eqs. (23) - (26) may be solved to predict the instantaneous
crack speed. Experimental detzrmination of the fracture properties is dis-

cussed in (5].

S. FRACTURE INITIATION IN LINEAR MEDIA. The approach used in [4] to
predicting initiation of crack growth consists of applying Eq. (22) to the
initial crack tip, which is located at x = 0; the initial length of the
failure zone is assumed to be zero. The instantaneous displacement v at
x » 0 and the failure zone length are calculated from Eqs. (20) and (17),
respectively. For the case in which Vg is constant in space and time and
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the stress-intensity factor does not decrease in time, we find

wklz
a= (28)
80 2
o
and then obtain an implicit equation for "initiation time", t,:
wdip Ao s 08
r=3 K, (ti) C, (ti). (29)
wnere Céz) is a so-called secant compliance,
t 2
cHagad b ptog o (30)
v P g v dt .

K

The quantity t1 is the time at which the mechanical work done on the failure
zone at x = 0 is equal to the fracture energy I'. Inasmuch as the deformation
history of the failure zone in the initiation problem is different from that
discussed previously for crack growth rate, the fracture energies in the two
cases are not necessarily the same.

These results were derived in (4] for the case in which stresses are in-
dependent of viscoelastic properties. However, they also apply to the more
general class of problems covered in [6] as long as the conditions stated in
§3 are met and the stress intensity factor is interpreted as that due only to
growth of a crack by the amount a. For, if the material in the neighborhood
of the tip is homogeneous, the streases due to tractions on the crack faces
in the interval o<x<a are independent of viscoelastic properties; of course,
these surface tractions may themselves depend on viscoelastic properties since
they are for a globally nonhomogeneous body without cracks.

The secant compliance, Eq. (30), reduces to the creep compliance, Cv(t),

when K. is constant during the interval o < t < ty In this case

1
red ke, (31)

There are many other cases in which Eq. (31) is a goud approximation; viz.,
Csz) = Cv if Cv is a lugftcicntly weak function of time or if the second
derivative of Cv and Kl with respect to the logarithm of time is small (8].

Recall that 0; was assumed to be spacewise and timewise constant in
obtaining Eqs. (28) and (30). Whether or not this is a reasonably good
assumption depends on the particular material of interest. If, instead of
assuming of is timewise constant, we assume a is constant, then it is found
Eq. (29) must be replaced by
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t
1 d
T3 Ky () f ¢, (t ~1) a—:l dr (32)
/-

Equation (28) still applies, but % will vary with time in order to satisfy
this equation. The assumption of a constant value for a may be a valid
approximation in somc¢ cases, such as for composite materials in which the size
of the damage zone is closely related to the scale of the phases. However,
very little is known at this time about the time-dependence of the failure

zone size in real materials.

6. FRACTURE INITIATION IN NONLINEAR MEDIA. 1In this section we shall
describe a tentative method for characterizing and predicting the initiation
of crack growth in nonlinear viscoelastic materials. The zone of intense
damage and rupture is still assumed to be the thin strip of length o in Fig.
1. However, outside of this zone the material may be nonlinear and suffer
damage. This approach is motivated, in part, by the similarity of the linear
viscoelastic result for fracture initiatfion (cf. Eq. 29) and that for an
elastic material (Cv = constant), as well as the success of the J-integral
criterion for elastic-plastic and nonlinear elastic media [e.g. 12-14].

In order to illustrate the method, consider the viscoelastic test speci-
men in Fig. 3 which contains an initial crack of length a. The applied force
is given as F = Rt". where R and n are positive constants; we suppose that
several different specimens are tested using different values of R and a,
but with the same value of n.Figure 4 shows displacement-time curves for a
viscoelastic material prior to crack propagation. From these results the
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Figure 3. Plate Specimen for Figure 4. Corner Displacement
Fracture Test Response for One Initial Crack

Length
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isochronal force-displacement curves in Fig. 5 can be constructed.
F h
t
ts

—

0

Figure 5. Force Displacement Curves
Constructed from Figure 4.

If the material were elastic or elastic-plastic there would be no dependence
on time, and it would be possible to use such data from specimens with dif-
ferent initial crack lengths to establish a fracture initiation criterion in
terms of the J-integral. We shall show that there are some nonlinear visco-
elastic materials for which the isochronal data in Fig. 5 may be employed in
the manner described in [14] for time-independent materials.

It is sufficient to show that there exists a so-called stress-working

density W = "(cij’ xi,t) with the property that
o 3
o1j 5 (33)

13

I1f W 1s independent of Xy the J-integral will be path-independent for two-
dimensional deformations [12], but this independence is not needed for the
fracture criterion. Let us start with the following stress-strain equations
for an isotropic material,

t

3(o},8)
€4y -1 /J(* - ———J——:, dr , (34)

[+}
B
e (35)

where ¥ s "reduced time",

t
0-*(:)5‘/.“'/:0, v' o= (1) , (36)
("]
and ‘ij and °ij are the deviatoric strains and stresses,
voae,, 28,0 , 0, 10, ~%8,.0 (37
= e T B Lo R Sk R B ' il
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Also, 615 is the Kronecker delta and
9 = €4 0 = %4 (38)

are the first strain and stress invariants, respectively. J(¢) is the linear
viscoelastic creep compliance under shear stress and B is the compliance
ﬁnder hydrostatic loading. Nonlinearity is due to the stress-dependence of
the material functions g and ap. In view of the data on plastics in [15] and
the microcracking model for composites in {16), it is assumed that g and a,

are functions of the so-called effective stress

1/2
= ) (]

o, = (1.5011 oij) (39)

and the Lebesgue norm of effective stress,

t l/q

= q
llo, I -[/oe dc'] . 0)
o

These constitutive equations are special versions of more general results
derived from nonequilibrium thermodynamics; by means of Ih% || they incorporate
microcracking effects [16]. The equations are quite realistic in that they
predict behavior which is observed for various viscoelastic materials. Other,
more general relations could be employed to generalize the J-integral crite-
rion, but we shall limit our discussion to the above onmes.

As in establishing the deformation theory of plasticity, proportional
stressing is assumed,

aij = h sij . (41)

where .11 is independent of time. Also, let us assume that h = ct-. where
m= "(‘1) is a positive exponent and c = c(x‘).

It is now possible, with some amount of work, to show that a stress-
working density exists. Therefore, at any fixed time prior to fracture ini-
tiation (12]

a
zfof%ag--%% ; (42)
o
where H is specimen thickness, and A = A(D,a,t) is the area under any one
curve in Fig. 6. The left-hand side of Eq. (42) is the J-integral. Thus, by
observing when fracture initiates, the experimental procedure illustrated

above may be used to determine critical J-values, Jc; for viscoelastic
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Figure 6. Force-Displaceuwent Curves
for Various Initial Crack Lengths at
One Time
materials they will depend on the loading exponent n and on the time.

It is important to observe that if o = of(v),

J-Zjofdv, (43)

(-]

which is equal to 2I'. Thus, for this case J is equal to the mechanical work
input to an element of material in the failure zome (per unit area) at the
instant of rupture. When a,=g= 1, Eq. (34) reduces to that for a linear
viscoelastic material, and it can be shown that fracture initiation Eq. (32)
is recovered from Eq. (42) if Poisson's ratio is one-half. However, when one
accounts for the small curvature property possessed by viscoelastic creep
compliances, as noted in §5, it is found that this restriction on Poisson's
ratio can be removed without introducing serious error in many cases. Also,
recall from the discussion in §5 that Eqs. (29) and (32) often yield approxi-
mately the same fracture initiation time.

7. CONCLUDING REMARKS. The intent of the discussion on nonlinear be-
havior was to suggest a procedure for applying the J-integral to fracture
initiation in viscoelastic materials, and to provide a theoretical motivation
for this extension. However, much experimental and theoretical work is needed
before one can have confidence in the technique. Prediction of crack speed
in nonlinear viscoelastic materials is a relatively untouched area, except for
materials in which viscoelastic effects are limited to the neighborhood of
the crack tip (17].

The linear viscoelastic analysis described herein is limited to slow
crack growth and to materials for which the neighborhood of the crack tip is
homogeneous. A few studies exist in which these restrictions are not imposed,
but they are for very special cases. For example, it was noted that some
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explicit results exist for slow crack propagation between two different

incompressible materials.
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AN INCREMENTAL FORM OF THE SINGLE-INTEGRAL NONLINEAR VISCOELASTIC
THEORY FOR ELASTIC-PLASTIC-CREEP FINITE ELEMENT ANALYSIS *

Duane R. Sanders and Walter E. Haisler

A single-integral nonlinear viscoelastic theary is cast into a generalized
incremental form for use in predicting creep response of materials. The fncre-
mental creep constitutive model is tailored for use in an incremental finite
element program wherein the equations of motion are integrated numerically step-
by-step. Recursijve relations for material memory parameters are developed
which allow the retention of all past history prior to the current time step and
require integration over the current time step only. The creep model parameters
required in the theory are obtainable from a standard creep and recovery test.
The incorporation of the model within an incremental elastic-plastic finiie

element formulation is outlined.

*To be presented at the 3rd ASME National PVP Congress, San Francisco,
; California, June 25-29, 1979.
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INTRODUCTION

In a majority of the finite element programs in use today for analyzing metal
components, the traditional approach of separating the total strain into elastic,
plastic, and creep components is used [1,2,3]. The most widely accepted means of
predicting the creep strain in this context is the phenomenological creep theory
[4,5]. As an alternative to this approach, a single integral nonlinear visco-
elastic theory derived by Schapery from thermodynamic considerations in reference
[6] is presented. It has a form similar to the Boltzman integral used in linear
viscoelasticity, but the physical time is replaced by a so called reduced time;
several other material functions enter into the theory. This representation of
the creep strain component should provide within the same constitutive theory
the capability of analyzing both polymeric and metallic materials.

Two constitutive theories similar in appearance to the single integral
theory of Schapery's are given by Rashid [7] and Valanis [8]. Rashid uses a
modified superposition principle with the compliance, which is a function of stress
and time, transformed such that it is a function of a single parameter called re-
duced time. Valanis's theory [8] is derived from thermodynamic considerations
with the resulting single integral equation appearing in terms of the strain
history instead of thestress history as in reference [6]. This theory is very
similar to Schapery's theory [9]wherein he employed strain as the independent
variable instead of stress. The functional difference in references [7] and [9]
being their respective definitions of reduced time. The other material functions
entering into reference [6,9] are not present in Rashid's or Valanis's theory.

Application of the single integral theory has been made by Valanis [10,11]
for the viscoplastic response of several metals. It has also been shown to give

accurate results for several polymeric composites in creep, creep-recovery and
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multistep input tests on uniaxial specimens [12,13].

A potential advantage of the single integral is that it easily handles
multistep input histories including stress reversal and creep-recovery. This is
not true of the phenomenclogical theory of creep for metals based on strain
hardening which must resort to special procedures to handle the stress reversal
situation as outlined in [14]. Theseprocedures have in some cases resulted in
rather poor results as indicated in reference [14]. Futher, the phenomenological
theory has no predictive capability for creep-recovery input stress history. Thus,
the single integral constitutive theory may offer additonal predictive capabilities
over the phenomenological theory of creep.

To put the single integral theory in a form suitable for use with a incre-
menatal finite element program wherein the equations of motion are integrated
numerically step-by-step, the time derivative of the single integral equation is
taken. In this form, the creep strain increment can be determined for the
current time interval based on the creep strain rate at the beginning of the step.
Computationally, the relationships derived for the rate form of the single integral
equation are particularly appealing since recursive relationships are developed
which allow for the retention of all past history prior to the current time step
and require integration over the current time step only.

The incorporation of the model within an incremental elastic-plastic finite
element formulation is outlined. The time-independent incremental plasticity
relations with a Von Mises yiela criterion and a kinematic hardening rule are
employed to describe the plastic component of strain.

A graphical procedure for determining the material functions from
either creep data or creep equations is presented. It is shown that

this procedure is only applicable to materials whose elastic strain on




unloading is equal to that on loading.

Numerical comparison of the single integral theory to that of phenmenological
theory of creep are given for creep, creep recovery, multistep and reverse loading
histories for a type 304 stainless steel. The numerical results were obtained
using the computer program NONVIS which implements the integration procedure

developed below for the s%ngle integral creep equation.
It is suggested that the rate from of the single-integral equations

appearing in [7,8,9] could be integrated by employing a procedure similar to
that given in this paper for the single integral constitutive theory of references
[6], provided the kernel function is a combination of constants, linear , and

exponential terms as will be outlined below.

RATE FORM OF THE SINGLE INTEGRAL EQUATION

The single integral nonlinear viscoelastic constitutive equation derived
in reference [6] for an initially isotropic material is written for isothermal

conditons, incompressible creep strains, and infinitesimal strains as,

A v ¥
€, JG, + 3’3—% LAIW-;') %-f‘f,id'r o

(2a)
Ty
e (2b)
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and A(r), B("), and T, are constants. The functions aG,aD and ;cd are material
properties and are in general function of the three stress invariants. €,p 2T€

the engineering strain components and 0.4 are the components of the Cauchy stress




tensor. The function aJ(y) is the transient component of the so calied linear
viscoelastic shear creep compliance. The first term in equation (1) represents
the instantaneous elastic response of the material.

To cast equation (2) into a form suitable for use ir a incremental finite
element analysis the time derivative of equation (1) is taken, and equation (2a)

is used to obtain,
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Equation (3) is rewritten as,
3&.«!
. . a( 24, ) a, (.
€= T G + atk Xed + —E:,Em)Yd i
where,
” dG.a 4!
- ') B8 At
X = j_o pT(4-¥) St i
S o 4G 414 (6)
ch‘ = S'o AT (“"V') 7_-:7 d y g ‘
and ) : J AI(V”"') (7) i
AT (v-¥) = -——d—r"" . ;




Evaluation of Xcd and ch

The evaluaticn of the two integrals Xcd and ch given by equations (5)
and (6) are put in a form suitable for use in an incremental finite eizient
analysis. Once the value of the integrals are known, the creep strain rate

is evaluated from the sum of the second and third terms of equation (4) as:

a( b‘f'd ) 5'34
. BUZ\. —a_?_ b e )
eacL i 0t XCJ . a.q (au:b Y‘A E (8)

Two important features in the evaluation Xcd and Yoq 2re the determination of
two recursive formula's whose values are known from the previous time step and
the evaluation of the two integrals which require integration only over the current
time step. The formulation presented is similar to the integration technique
employed by Zak and Hermann in referencé [15,16] for a thermorheological simple
material due to a variable temperature field.

Subdivide the time from O to t into N subintervals such that
tg = 0,t) =ty + B¢y, - . .0ty =t

N N-1
and assume that ach(O,tN) =0 and

+ At =t. For °cd(1’tN) and scd(;_,tN)

write och and cch
ECdﬁo’tN) = 0. Then X_, and Y., can be written as
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Evaluation of Xch

Using equation (2c) in equation (9), one obtains

f ZA " dld g - [Tz
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By evaluating the first integral in equation (11), expanding the second and
third as the sum of two integrals and approximating the time rate of change of
ch as

déed = éldhl 3 GCJN'I
dt At, (12)

within the time interval, ty ;<t< ty, equation (11) can be written as
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Now, rewrite equation (13) using equation (16), as,
Xy, = T A6y, - G, (m) ¢ L, (1)
Where,
Lty = ~u,, () + Mo, + ¥v -
and
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Recursive relationships for equations (23) and (24) are developed in

Appendix I and are given below as:
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where (1 cdp. s CchN_, ) Tl,,., and JZ are known from the) previous
(r

time step. Thus, equation (19) can be evaluated by integrating :[ltd, and
ng:_, equations (17) and (18) respectively, over the current time step

only. A1l history effects are contained in Lch.equation (20). In Appendix I,

Equations (17) and (18) are set up for numerical integration using Gaussian

Quadrature. The resulting equation for equation (17) is:
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The resulting equation for equation (18) is:
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Evaluation of the reduced time integral equation (2a) is also presented in

Appendix I.




Evaluation of chN

Following a procedure similar to that used in evaluating Xcd above, the
n

intergration of YCdN is performed. chN is given by equation (10) as,

where,
I
AJ"('}'“.‘t') =Z —% e */r,+ rZ 2l =
Expanding equation (10) as the sum of two integrals, using equation (25), and i

approximating the time rate of change of ch given by equation (12), equation (10)

is rewritten as,
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Note that J]N(r) is the same quantity that appears in the evaluation of
XCdn. Using equation (27) and (28), equation (26) is rewritten as,
Y‘JN - G‘Jﬂ .7” * K‘JN (3])

A recursive relationship for equation (31) is developed in Appendix I and

is given below as:

' : v
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where Fd,,_, and 31:: are known from the previous time step. Thus chn.
equation (31), can be evaluated by intergrating Jl(az equation (17) over

the present time step only. All history effects are represented by chN.
equation (28). In Appendix I, equation (17) is set up for numerical
integration using Gaussian Quadrature (the results were given above by

equations (I1.15) and (1.16).
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INCREMENTAL EQUATIONS OF EQUILIBRIUM

In this section, an incremental finite element formulation for the
isothermal, elastic-plastic-creep-large strain problem is developed. The
formulation is suitable for use with any creep constitutive theory which
will predict the incremental creep strain component based on the creep strain
rate the beginning of the step. Although the creep and plasticity relations
are for small strains, the formulation is developed for large strain. One
may begin with the equations of equilibrium written in terms of the second

Piola-Kirchoff stress:

& Fe. (s, 2% =
aal [Sa‘-(étk + D‘K ] + Fo r’i o (32)

where aj and u; are Lagrangian coordinates and displacements, respectively,
Sjkis the 2nd Piola-Kirchhoff stress tensor, LS is undeformed density and F01
is the body force per unit undeformed volume per unit mass. Applying the

virtual work principle at time t + At yields

s :-ttt JE‘:.*btdv 4 8&t4°t it
v, |
where
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and GE:;At is the variation of the Green-Lagrange strains at time t+At and

T:*Atare surface tractions at time t+At applied to the deformed surface S.

Equation (2) may be put into incremental form by writing
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where Sij and Eij are stresses and strains at time t and AS{J and AEfj are |
increments of stress and strain, respectively. The strain increment may be 1
decomposed into components which are linear and nonlinear in the displacement
increments
L NL
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! Substituting equations (35) and (36) into (33) yields
1 4 .. SAE.. v +j S.. SAE; . dv +JAS--£(AE--+AE‘- dv =6k
‘(V,S"J &) v, ] 4 % Yy Yy ‘:J (38)
The stress increment may be decomposed into two components, one which is
t | dependent upon total strain and one which is independent of strain (i.e.,
creep, thermal, etc.):
SRS € P..
BS; = Dyyp 88k + BFy (39)

where Dijklis the usual effective tangent modulus and AP1j is a stress
increment due to strain independent phenomena (as is usually assumed in
creep). Substituting equation (39) into equation (38), making use of
equation (36), and neglecting terms which would be nonlinear in displacement

increments, yields the following:
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The term Apij may be interpreted as the change in stress required to
account for the creep and thermal strains. Equation (40) takes on the

following form when put into matrix form

(1G5 ] « ([T < Deadiagd (R L6

where [M] is the mass matrix, [Kt] and [KﬁL] are "linear" and "nonlinear"

t+At} is a vector of forces due to externally applied

stiffness matrices, {R

loads, {Ft) is a vector of forces due to internal stress, and {Aq} is the

increment of the nodal displacements . Complete details of the derivation

of the quantities in equation (41), without creep, may be found in reference [171.
We now present a summary of the determination of Dijk] and AP1j for

kinematic hardening for the isothermal case, we assume a yield function can be

expressed by

- = T =0
i b (42)
For kinematic hardening, write
’ ’ ’ ’
§o 405525055 - ) (43)

and Sij'and afj' are deviataric components of the 2nd Piola-Kirchoff stress and
yield surface center, respectively and K is a constant.
The associated flow rule is then given by

F (44)
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where )\ is a scalar to be determined. Using the Ziegler modification of the

Pr ger kinematic workhardening rule, it is assumed that the projection of the
increment of stress onto the normal to the yield surface in a scalar multiple
of the dot product of the plastic strain and yield surface normal

"
3;’ i oF
ASLJ bS,,J i, AE" )Sq (45)

where C is a scalar (hardening modulus ) to be determined from a uni-axial stress-
strain curve. It can be shown that equation (45) is equivalent to the
consistency condition for kinematic hardening and isothermal conditions. For
small strains, the decomposition of strain is assumed:

. E E o Erin
dSt) tmn(d mn ~d Em 4 ) (46)

where Eijmn is the elastic constitutive tensor and dEm: are the incremental
creep strain components. The incremental creep strain components are deter-
mined from equation (8 ) and a time increment over which it is assumed the
creep strain components are constant. Substituting equation (44) into equation

(45) and (46) and solving the resulting equation for A,

ngn (de""\ AEM'\) ; S"

E: 3F 2F . oF oF

G 35S )S €3S 3%

(47)

(1]

Substituting equation (47) into equation (44) and the results into equation
(46) and comparing the results with equation (39) one can show that the

instantaneous modulus tensor is given by
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and the change of stress due to creep strains is given by
[d
,;|P£(j = = Dijmn d Emn (49)
Equation (46) can now be written as,
¢
dsi;’ = Djns (4Emy - dEmn (50)

DETERMINATION OF MATERIAL FUNCTIONS FROM EXPERIMENTAL DATA

In this section, equation (1) is specialized to the case of uniaxial
loading; and to materials whose elastic response on loading and unloading in
a creep and recovery test are the same. The required material functions can
then be evaluated by a graphical procedure from the results of creep tests.
For a general description of the methods for obtaining the material functions
from experimental data, see Lou and Schapery [13].

Consider a uniaxial bar which is in a uniform uniaxial state of stress at
a uniform temperature considering only one stress o, and one strain e . we let

€€y, and o = 991 When equation (1) is specialized to this uniaxial loading,

the creep term is given by

S f 20 (+-¥) 4B 4

(51)

and the three independent material functions are given by

Rl
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48,
g i
G
(€) = ) = L — (53)
%1 C-rl\( ) o—a’r )
Oy ()
Ae € : 54
« (@) G (54)
5 ¥, ()
e AD(Y) = 2 A“(I-C*/r) +; B "¢ 2 (55)
r

It is shown in reference [12] that gl(°) = 1, implies that the amount of

elastic straining on unloading is the same as on loading and that aabs- 6;5 .
A

Using g,(8) = 1 and G\ = G,, >

equation (51) is now given by,

t
c ] Ag"(‘)
¢ [ Ao(v-w) S dv

i (56)
where
o
ute) = 'a_; (57)
and
LC0) S
= 58
A (0) Ay ()

When equation (56) is subjected to a creep test the resulting equation
can be used to evaluate the material functions 9, and a . Consider equation
(56) subject to the stress history:

ait) = Hit) ™ . (59)

Substituting equation (59) into equation (56) gives

€€ = 9. AD ("'t&;)d";
(60)

and the creep compliance is given by
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B - t
ADWR) = =% % aol3,) (61)
Taking the Tog of both sides of equation (61) gives,
t
= + AD\ 7~
Log ADW) = Log g, + Lay () i

The simple form of equétion (62) is such that a simple graphical procedure can
be employed to evaluate the material functions. This is easily demonstrated
by plotting aAD and t on double - logarithmic paper, then curves at different
stress levels can be superimposed by translating them along the AD and t axes.
If the curves are shifted to a reference stress, Ur , the amount of
horizontal sgift (t) and vertical shift (AD) equals log g, = 17 %—:—:—;’) and

log Q.= Tlog a:—(%, respectively. These shifts are graphically demonstrated
in figure ( 1 ).

log AD

log 9, / 0 " reference stress.
// log a,= log ar(") - log ar("r)
l | log gp= log gz(c,.) - 1og gy(a)
R intermediate shift location
“ﬁ _’

log t
Figure 1. Horizontal and Vertical Shifts
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The direction at the shifts are as follows:
o)

3..(%)

28 >| shift 1s dewn,
gz(ﬂ}) ’

< - shift (s up ,
(63)

and
Qg (T7) o
Af(f) d

ag (00
A¢ ()

shift is 4 /ef/,

shift s 4 ’ﬁ‘t

)

SOME NUMERICAL RESULTS

This section presents some numerical results obtained for a type 304

stainless steel with the computer program NONVIS which implements the pro-
cedures developed above for integrating equation (1) for the following strgss
histories: creep (figure 2), multi-step (figure 3), creep-recovery (figure 4),
and stress reversal (figure 5). The results obtained are compared with those
of the phenomenological creep theory based on strain hardening using total
creep strain [18].
An effective creep equation of the form:

E€ = A(/- e'rt) * KL (64)
was used to determine the material functions in lieu of the actual experimental
data. Two different heats of type 304 stainless steel are considered. The

creep strain parameters for heat no. 972796 at 1100°F are:
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B LB , ;
5.436 x 10 T (65)

E L A(#)

rie) = §.92940°° exp(0.2029 ¢)

2 o LA
K(Fr) = 673 X10” [_s';'n/v (01479 0’)]

with O (effective stress) in ksz, and t in hours. The creep strain parameters

for hear No. 8043813 at 1200°F are:
6 - 3083

A(F) = 2.33 xi0~ &
3 - (66)
rt7) = 1354 x10°  exp(6.429 7)
and p e
KI(F) = 7.97 xs10” [ sinh (0./932 r)] .

The vertical shift is defined by the function A(#)and the horizontal shift
by the function r(&F). This can be seen by equating the transient term given in -

equation (60) (for r =1, r'= 0) and (64) from which it is determined that

A= 3. T (67a)

4= Ya, (67b)

A% 30 (67¢)
and T = Lo : (67d)

VA I i B 2 2.

Rearranging equation (67a) gives

Ny = 9, (68) |
and from equation (2a) and (67b)

r= '/a' (69) }
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Therefore, the actual shifting of the creep compliance wasn't necessary to
A 1
determine the material functions g,(a) and ar)- It 1s easy to check the

function 92 and at; given above by using the graphical procedure. |

If the steady state creep term in equation (65), term linear in¥ , is

subjected to the creep stress history, equation (59), it gives, '3

) «) g.,d"
£ = B e (70)
Using equations (68) and (69), equation (70) becomes
g, = BT Art (1)
Equation (64) above gives for the steady state creep term
B = kT (72)

However, from equations (71), (72), and (65c) it is seen that equations
(71) and (72) are not equal. Thus it is concluded that the reduced time

cannot be related through the reduced time use for transient creep.

In the application to the type 304 stainless steels, the steady state

term will be given by the second term of equation (64), &= Kt.

Figure 2 presents creep strain vs. time for a uniaxial stainless steel
(heat No. 9T2796) specimen for a creep test. The results of both the
nonlinear viscoelastic and the phenomenological creep theory are nearly
identical as is expected. Only the nonlinear viscoelastic theory is presented.

Figure 3 presents the creep strain response of a type 304 stainless

steel (heat No. 8043813) subjected to a creep and recovery tests for a
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Figure 3. Creep-Recovery
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uniaxial specimen. The results indicate very little recovery; of course, the

phenomenological theory predict no recovery. However, it should be noted that

the nonlinear viscoelastic theory would predict complete recovery if the

creep-recovery curve were extended to larger values of time.

Figure 4 presents the creep strain response of a type 304 stainless steel
l (heat No. 8043813) uniaxial speciman subjected to montonically increasing load.
The results are in reasonable agreement with the experimental results and
are very close to the results base on strain hardening.

Figure 5 presents the creep strain response of a uniaxial specimen subjected
to a reversed cyclic loading history. On the first reversal the nonlinear
viscoelastic theory over predicts the creep response as given by the experimental
data. This is due in part to the lack of significant recovery for Type 304 stain-
less steel. To study the behavior consider the stress history up to the time
of the second stress reversal,

| C@)= ¢ R(t) - 3T H{t-t) | oct<t, s

Substituting equation (73) into equation (56) gives

€° = D(¥) atd) - 93.(5) D(¥-¥) . (74)
Thus it is seen that the second term gives 292(01) times the compliance. Thus
twice the value of gz(o]) is multiplying the compliance than was on initial
loading. This seems to be okay for materials with an active recovery, i.e.,

polymers. However, for metals the recovery is only slight and the second term

over predicts its contribution to the recovery. Futher the first term is related
to the concept of a fading memory, which is questionable for the stress reversal
situation. Note the curve plotted for the first stress reversal with no

recovery or memory of past history. This curve was obtained by initializing

equation (20) to zero, which represents the memory of the material to prior
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histories, and setting G” =0 when a stress reversal occurs. This gives the
N-2
same response as an initial loading with the strain accumulated at the time

of the reversal serving as a new origin.
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CLOSURE

The purpose of this paper was first to present an efficient method of
integrating Schapery's single integral equation for use in a incremental finite
element program wherein the equations of motion are integrated step-by-step.

And secondly to present some preliminary results for metals using this theory.

It is believed that the method presented for integrating the single integral
equation is efficient based on the fact that the integrations required are for the
current time step only and does not require integration over the entire past
history to determine the current creep rate. From the experience gained with

NONVIS, the programming aspect of implementing the theory is straight

forward and can easily be incorporated into existing finite element
programs.

The results of this paper are not presented to draw final conclusions
regarding whether Schapery's nonlinear viscoelastic theory are the phenomenological
theory based on strain hardening is superior. Obviously, the application of the
phenomenological theory for metals has developed over many years and the application
of nonlinear viscoelastic theory is just beginning its development for metals.
However, from the results presented here, it is seen that in all except the case
of stress reversal the nonlinear viscoelastic theory gives results as acceptable
as those based on strain hardening theory and in fair agreement with experimental
data. For the stress reversal case two problems arise. The nonlinear viscoelastic
theory predicts a complete recovery of the (as in linear viscoelasticity) strain
accumulated at the first and subsequent reversals. Secondly, the theory has a
fading memory of past stress history. However, as was noted these effects can be
neglected for the stress reversal case by initializing to zero the parameters

that contain the memory of past histories when a stress reversal occurs and

setting the value of G]] 2=0.
N-

A e NN v st - l




function for several composite materials and (3) incorporating the above integra-
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Although the results obtained have been for the response of a stainless
steel most of the results reported to date have been for a polymer or polymer
composite. As noted in the introduction, reference [12,13] show the fheory in
good agreement for a polymer composite for the following stress histories: creep,
creep-recovery, and multistep inputs. Therefore, it is believed that the use
of the integration technique for the single integral equation in conjunction with
2 incremental finite element analysis has immediate application.

Current work with the single integral equation of Schapery's involves: (1)
providing a better predictive capability for the stress reversal and other

stress histories for metals, (2) determining the creep compliance and material

tion procedure into a finite element program for testing on two dimensional

problems.
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APPENDIX I

) (r)
Recursive Relationships for C1cdn and €2cdy

After expanding equation (23) as the sum of two integral, it can be

rewritting as

t ;
A { V2 (¥, dGu
Cly =€ "™ | e gl
tu-‘ '
~(Yw-1 °¥ )V, dGu ’
+ j{»,,_t e - & 4t

(1.1)

To evaluate equation (I.1) note that if in equation (23) N is replaced by N-1,

equation (23) can be written as,

e Rl N LA LI
Cl“ = g ‘t'
N-t 0

which is the value of Cl:?from the previous time step.
Define AwN as,

Aq'” = vy [ +~""

and approximate the time rate of change of chas

dﬁd e 6¢‘~-| '69_&;
at Aty

on the time interval t 2% t<ty . Using equation (I.2), (I.3) and

N-
(1.4) in equation (I.1), gives,

t -
m _ aW/z { ) 6p,., - Go, , f He-u,, v)/2. 1t

s +
c 1.‘ A (4 C 1:‘,,, Y s

In the integral given by equation (17), replace N by N-1 to get,
tu- :
" (YW /2
T e oi= -1 B el
1 Nl A, , - ¢ dt

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)
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Which is Jl(rkrom the previous step. Thus, equation (I1.5) can be written as,

I -aW/z, (r)
Cicdﬂ = e {C.ld”.' + (G‘J~_' + écdu-;) Jlru_‘} (1.7)

w (r)
Note that the values of €1, P J1 g g ch,_, and Gy .y 7€ known values

from previous steps.

Similarly, equation (24) can be manipulated and rewritten as,

(v’ (r'
C2¢d” = AYy Gdﬂ.o . Czcd/v-l . (édu-t. é‘du-t J'2"':'04 (1.8)
(r"

(r')
Where CZ‘ZN_' and J2,., are values of equation (24) and (18) from the

previous step.

)
Recursive Relationship for F,‘J’l

After expanding equation (30) as the sum of two integrals, it can be written as,

) twv-e ~(% -Y. + ¥, "'/") 7.

t ’
+f o e‘('/N-Vu-f *Hy -V W dGd dt’

(1.9)
"“". Jt'

To evaluate equation (I.9) note that if in equation (30) N is replaced by N-1,

equattion (30) can be rewritten as,

() g tw-2 -(',‘IV-I E 1")/2—' JGCJ de ¢
FJ i = d¢’
<y () (1.10)

which is the value of chr) from the previous step. Using equations (I.9).
(1.10) and (I.4), equation (30) can be written as,

F il e-wu/b{&‘lﬂ + ——""Gd“"-édﬂj G.N""-")/r'.lt' (1.11)
“'l N-l Aty ., taea

The integral term in equation (I.14) can be written as J’.(;z, using equation
(1.6) thus

w -a%/tf ° ()
Fd, e {qu.- i (éf‘u-\- 6‘304-1) I'IN°| }

(1.12)

AT . -3 57 AP
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Evaluation of the quanities Jl(:)and Jé'ﬁl
B ol (r) .
‘ panding J1'y’, equation (17) as
' tv (¥, by -& (¢, -t)
. T e e ra g E dt
1 1 J n Atl’ tﬂ_‘ fN-l
t” 'g' t ’tl '
-f e = g }
tya
or
tu B (1,.1')
. [ N
T8 u,{ b 8 At
| t“ -('y'*‘)/rr °‘g'(f“ ~t,)
‘ . +J : Nt JJt’ (1.13)
-

Let the change in reduced time during the interval Aty be related to Aty through

the parameter, a

< AY
1}'-"- = a.(t,., tu-') or A = T
e oty (1.14)
»
Define the quantity qu, as
t .¥ - -t/ ’
s L0 LS S i (1.15)
lN ¥ ‘t~ tﬂ-'
. tw
Thus, R T : (fu't)] L
Jl” = ‘t“ z e t rﬂ
i N4 (1.16)
Zr LA b
- s A Sl
Make the following change of variable in Jl*:r
y - 1-tv t-tw
Aty Aty
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at lower limit
F= -l
at upper limit
2-' e +/
and
2 dt - St
= zt- tu -t”d
e at,
= ——_—_—_-—__'___——-—-
Hence ‘] ;
) " & taty -, - Ww-
GG ot )
-1
or
+] A“ﬂ
-(¥y ¥)/7. ik 22 (1-¢)
Ji:(r)z‘lij [e v )/ i F A ]dl’
Lhere
A*y = ¢N- 7 rﬂ'l

Equation (I1.17) is set up so Gaussian Quadrature can be used for numerical
evaluation.

"
Expanding T2, equation (18) as

ty
525 %, | (W) dt
- t” ] (]
. ¥y - 3L %1& At

dt

(1.17)

(1.18)
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using

in equation (I1.18)
R iy 19 _@_G_ s t'

it (1.19)
Define,

t
% (r) N aé ’ ¢

2 . O R | (1.20)
JZy at, Jt ap

N

and write equations (I.19) as

#(r)
e TR (1.21)
Using the same change of variable as above,
2-Zy t - tu-
Aty At~

at the upper limit

Z—xfl f
at the lower limit

Thus,

e~/

+

Iy * 4

Qe (rat, + tu+ Zua) dt (1.22)
-\ ab

Equation (I.22) is set up so Gaussian Quadrature can be used for numerical

intergration.

Evaluation of ¢

t a, '
¢ - jo -a—;- dt (22)
For the interval t,. ¢t ¢ £y , we have
tv :
4:]‘”"ﬁeuwj Ga 4t
(4 a. t"" a.
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L L or o a
_ Y- ¥, * f o dt . (2
t,, 20

at a given point in space approximate the stress as a linear function of time

with the interval At

"
—
t
Thus,
ac@i)- A|~ + Aznt F AR t2e,
where
Ay * Ot o - Gy Ty ol BT -—"‘A%
= Aty W Aty
Now change the variable of integration to o, and obtain
Oy
bt o | falet 4
- Ay (6) P (1.29)

n-1




