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Abstract

Geometric closest-point problems deal with the proximity relationships in k-dimensional
point sets. Examples of closest-point problems include building minimum spanning trees,
nearest neighbor searching, and triangulation construction. Shamos and Hoey {1975] have
shown how the Voronoi diagram can be used to solve a number of planar ciosest-point
problems in optimal worst-case time. In this paper we extend their work by giving optimal
expected-time algorithms for solving a number of ciosest-point problems in k-space, including
nearest neighbor searching, finding all nearest neighbors, and computing planar minimum
spanning trees. In addition to establishing theoretical bounds, the slgorithms in this papsr
can be implemented to solve practical problems very eificientiy.

This research was supported in part by the Office of Naval Resesarch under Contract
NOOO14-76-C-0370 and in part by the National Science Foundation under Grant
MCS-77-05313.
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1. Introduction

Shamos and Hoey [i975] have collected together and siudied a group of probiems in
computational geometry that they refer to as closest-point probleras. Problems in this set are
usually defined on point sets in Euclidean space and include such computational tasks as
nearest-neighbor searching, finding all nearest-neighbor pairs, and constructing Voronoi
diagrams. The merits of studying these problems as a set have been proven repeatedly sirce
the class was first defined. Not only do the various problems often arise in the same
application areas, but time and again we have seen that advances mado in the computational
efficiency of an algorithm for one of the problems can be applied to increase the
computational efficiency of others. In this paper we continue in this spirit by showing how
the technique of “cells" can be used to produce optimal expected-time algerithms for many
closest-point problems.

All of the closest~-point probiems that we will study in this paper have as input a set S of n
points in Euclidean k-space. The nearest-neighbor searching problem calls for organizing the
set S into a data structure such that csubsequent queries asking for the nearest point in S to
a new point can be answered quickly. The all nearest neighbors problem is similar: it calls for
finding for each point in § its nearest neighbor among the other points of S. Both of these
probiems arise in statistics, data analysis and information retrieval. A problem similar to the
nearest neighbor problems is that of finding the closest pair in a point set: that pair of
poinis realizing the minimum interpoint distance in the set. The minimum spannring tree (or
MST) problem calls for finding a tree connecting the points of the set with minimum total
edge length. This problem arises in statistics, image processing, and communication and
transport networks. The most complicated closest-point probiem that we will investigate in
this paper is the problem of consiructing the Voronoi diagram of a point set. This problem,
along with its applications, is describad in Section 3. Ail of the ‘problems that we have just
mentioned are described in great detail by Shamos {1978} he also discusses many of their
applications.

Much previous work has been done on closest-point problems. The seminal paper in this
field is the classic work of Shamos and Hoey [1975] in which the problems are defined and a
number of optimal worst-case algorithms for planar point sets are given. Algorithms for
closest-point problems in higher-dimensional spaces have been given by Bentley [1976), A.
Yao [1977]), and Yuval [1976]. Randomized algorithms for the closest-pair problem have been
given by Rabin [1976) and Weide [1978}; Fortune and Hopcroft [1979] have recently shown
that the speedup of the fast closest-pair algorithms was not due to tneir randomized nature
alone but also to the model of computation employed {which allowed floor functions). Fer
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additional results onr closest-point problems the reader is referred to Preparata and Hong
[1977] and Lipton and Tarjan {1977}

In this paper we study closest-point problems from a viewpoint not taken in any of the
above papers. We assume that the point sats are randomly drawn from some “smooth"
underlying distribution, and then use the cell technique to give fast expected-time algorithms
for many closest-point problems. In Sections 2 and 3 we illustrate this idea by appiying it to
two fundamental ciosest-point problems (nearest-neighbor searching and Voronoi diagram
construction) under the very restrictive assumption that the points are drawn uniformly from
the unit square. In Section 4 we extend these results to oiher planar closest-point probiems
and to point sets drawn from a wide class of distributions. In Section 5 we extend our
algorithms to problems in Euclidean k-space, Most of the algorithms we present solve a
problem on n inputs in expected time proportionai to n and all searching structures we give
have constant expected retrieval time; these resuits are therefore optimal by the trivial lower
bounds. Having thus resolved the primary theoretical issues, we turn to implementation
considerations in Section 6. Conclusions snd directions for further research are then offered
in Section 7.

2. Nearest Neighbor Searching

The problein that is easiest to state and most clearly illustrates the cell method is
nearest-neighbor searching, sometimes called the post office problem. Given n points in
Euclidean space, we are asked to preprocess the points in time P(n) in such a way that for a
new query point we can determine in time Q(n) which pc.at of the original set is closest to it.
There are (complicated) structures available for solving the problem with P(n} = OXn log n)
and Q(n) = O(log n) in the worst case (Lipton and Tarjan [1977]), but one might expect that on
the average we can do better. In fact we will see that for a large class of distributions of
points, the expected values of P(r) and Q(n) can be made to be O{n) and O(1), respactively.
Although we will initially restrict our cttention to this apparently simple problem (and the
planar case at that), the techniques used also apply to other closest point problems, which we
will investigate in later sections.

We first consider the problem of nearest neighbor searching in the plane, where the points
(both the original n ooint. and the query point) are chosen independently from a uniform
distribution over the unit square. The idea of the preprocessing step is to assign each point
to a small square (bin or cell) of area C/n, so that the expected number of points in each bin
is C. This is easily done by creating an erray of size (r't/C)”2 by (n/C)l/2 that holds
pointers to the lists of points in sach bin.
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When a guery point comes in, we search the cell to which it would be assigned. If that celi
is empty, then we start searching the celis surrounding it in a spiral-like pattern until = point
is found. Once we have one point we are guaranteed that there is no need to search any bin
that does not intersect the circle of radius equal to the distance to the first point found a2nd
centered at the query point. Figure 1 shows how the spiral search might proceed for the
query point in the middie of the circle. Once the point in the northesst neighbor is found,
only bins intersecting the circle must be searched. Each of thase is marked with an x in
Figure 1. In order to make this test easy, we suppose that all bins that lie within that
distance of the query point in either coordinate are examined, making the numbser of cell
accesses slightly larger than necessary but simplifying the specification of how the
appropriats bins are to be found.

X

Figure 1. Spiral nearest neighbor search using cells.

It is clear that preprocessing, which consists of assigning each point to the appropriste bin,
can be accomplished in linear time if computation of the floor function in constant time is
allowed. This assumption is necessary to solve most of the closast point problams in o(n log n)
time because lower bounds proportional to nlog n are known for many of them in the
"decision tree with linear functions" model of computation. The following theorem shows that
spiral search is indeed a constant-time solution to the nearest neighbor cearching problem.

Theorem 1 - If n poinis are chosen independently from a uniform distribution
over the unit square, then spiral search finds the nesarest neighbor of a query
point after examining only an expected constant number of the other points.

Proof - Certain notation is required in this proof. We will first define the concept of layers
of cells surrounding the query point. We say that the cell containing the query point is In
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layer 1, the eight ceils surrounding that are in layer 2, the sixtesn cells surrounding those
are in layer 3, and so on. In general, for any k 2 1, the k-th layer contains exactly 8(k-1)
celis and there ara (2k-3)2 < 4k2 cells on or within layer k. We will aiso use in our proof the

constant

q=C/n
Since the number of cells in the structure is n/C, q can be thought of as the probability of a
point being placed in a certain fixed cell. We srs now equippud o proceed to the statistical

arguments required to prove Theorem 1.

Let Pij be the probability that the first i cells probed by the search are empty and the
(i+1)-st cell contains exactly j points. Simple combinatorial arguments show that

Pij = (?)qj [1 - G+ D),

Since the (i+1)-st cell examined can be at most in the k = (al/2+l)—st layer, one need search
a total of at most 4k? < (12i+4) cells, or 11i+3 beyond the original i+l searched. The
expected number of points in each cell beycnd the origiral i+1 is (n-j)/[1/q - (i+1)].
Combining these counting arguments shows that the expected number of peints examined, m,

is bounded above by

ms 2 2. B [i"““*3)1/q':-(.i~~1)3

Osist 1sjsn

where t = n/C - 1 (one less than the tolal number of cells). Rearranging this expression

yields

ms Z[ ijij+(lli+3)q2(n-j)]—;gj;‘m ]

O<ist 1sjsn isisn

We will now use the binomial thenrem and other basic combinstorial identities to expand

the two inner sums of the above expression, yielding

. m i ’ 1 - (i+l n‘j
l%ﬂjpIj 1§5nJ (r)q [} - G+Da)
- ~1 k - r"‘l"k
na Ogsg}‘l ) 11 - G+a
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2, n-i) itergy = 2 (=) (1) ol [1-Gena)™" 1l

1sjsn 1g)sn

- .
-n & (7)o i-enay 1

= n(1-ig"! - a1 - Gielg)"- L
Substituting these sums back into the rearranged bound on m gives

m S Nng (; ( (l—iQ)n'l + (11i+3) [1*iq]n'1 - (11i+3) [l'(i*l)q]n"l )
sist
= nq Ozl:ét( (LLi+B)1-iqI ! - (11143) [1-Ge ™ )

< ng (11i+4) (l-iu)“‘l
<ist

. -i(n-1)q
s nq Oéz:st(““a) e

-C 1}i+4 ~C(1-1/n)i
Osz;st( i+4) &

- o).

Note that this proof is valid for any given point in the unit square. The programming of the
spiral search, however, must behave properly when cells on the boundary of the unit squara
are being examined. This argument shows that the expected number of points examined by
the spiral search is bounded above by a constant. Similar arguments can be used to show
that the expected number of cells examined is also bounded above by a constant. Since
those are the only two time-consuming operations in a spiral sesarch, we have have shown
that the expected running time of spiral search is bounded above by a constant, indepsndent
of the vatue of n.

Although the proof of Theorem | is rather tedious, the thmorem itself can be eassily
understood on an intuitive ievel. Phrased very bhriefly, nearest neighbors are a locai
phenomenon, and so are cells. The following is a lengthier but more graphic illustration.
Suppose you were standing in the middle of a large hall that is covered with tiles that are
one-foot by cne-foot square; suppose furthermore that the hall has been sprinkied uniformly
with pennies, so that there are about a dozen pennies per tile, on the average. How many
feet out will you have to look before you find the penny nearest you? Your answer will be
independent of the siza of the hall, because the density of pennies Is the critical issue, and
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not their absolute number--whether the hall is one hundred feet square or one mile square is
immaterial. This is exactly the phenomenon we exploit in nearest neighbor sesrching by
ensuring that there are a constant number of points per celi on the average.

We will now apply the cell method to a number of other closest-point problems. Aithough
the formal proofs of the algorithms will all have the rather complicated structure of the proof
of Theorem 1, the reasons why the algorithms perform efficiently all come back to the same
principle: closest-point problems investigate 1ocal phanomens, and celis capture locality.

3. The Voronoi Diagram

The Voronoi diagram of a point set is a device that captures many of the closeness
properties necessary for solving closest-point problems. For any point x in a set S the
Vo-onoi polygon of x is defined to be the locus of all points that are nearer x than any other
point in S. Notice that the Voronoi polygon of point x is a convex polygon with the property
that any point lying in that poiygon has x as its nearest neighbor. The union of the edges of
all the Voronoi polygons in a set forms the Voronoi diagram of the set. A planar point set
and its Voronoi diagram are illustrated in Figure 2. The Voronoi diagram has many fascinating
properties that are quite usaful computationally. We already mentioned the fact that the
nearest neighbor to a new point is that point whose Voronoi polygon contains the new point.
This fact can be used to give a fast worst-case algorithm for nearest neighbor searching.
Another interesting property of the Voronoi diagram is the fact that the dual of the diagram
(that is, the graph obtained be connecting all pairs of points that share an edge in their
ruspective Voronoi polygons) is a supergraph of the minimum spanning tree of the set and,
furthermore, the dual contains at most 3n - 6 edges. These and many other properties of the
Vorenoi diagram are discussed by Shamos [1978]
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Figure 2. A point set and its Voronoi diagram.

The probiem of constructing the Voronoi diagrem of a planar point set is somewhat more
delicate than nearest-neighbor searching. For each point, we will compute its Voronoi
polygon by listing its edges together with the associated Voronoi neighbors in clockwise
order. We will show that this can still be accomplished in finear expected time under the
same assumption of point sets drawn from a bivariate uniform distribution. The basic idea is
to search all cells in a relatively small neighborhood of each point in a spiral-like fashion until
at least one point is found in each of the eight octants shown in Figure 3, or we give up
having examined O(log n) cells. The tentative Voronoi polygon of the center point is that
determined by considering just those eight points. lLet d be the distance from the center
point to the farthest pcint of its tentative Voronoi polygon. Then no point farther than 2d
from the center point can have any affect on the actual Voronoi polygon of that point, which
means that the Voronoi polygon of such a point can be constructed by considering only the
few (expected constant) number of points which are in the circle of Figure 3.
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Figure 3. Construction of Voronoi pelygon.

In the case that there is at least one point found in each octant before the O(log n) cells
are searched, the point is called a closed point. A spiral search can be used to determine
whether or not a given point is closed in constant expected time, and for a closed peint its
Voronoi polygon can then be computed in constant expected time. This can be proved by
slightly modifying the proof of Theorem 1. The function Pij in that proof remains the same;
the only change is in the number of cells that need be searched if the point is found in the
i-th cell. Performing the above operations on ail points allows us to identify all closed points
and compute their Voronoi polygons in linear expected time.

All points in the set that are not closed are cailed open points {(note that most of these are
near the boundary of the point set). Using methods similar to those of the proof of Tt .orem
1, it can be shown that the expected number of open points is O{(n log n)l/‘?). Since each
open point is identified in O(log n) steps, the total work required to identify all of the open
points is O(nl/zlogalzn). Once the Voronoi polygons of the closed points are constructed
and the open points are identified (all of which takes linear expected time) we are left with
the problem of computing the Voronoi polygons of the open points, This is accomplished by
applying the O(n log n) Voronoi diagram algorithm of Shamos and Hoey [1975] to the set of
open points plus the set of closed points that are Voronci neighbors of some open point. The
expected size of this set is O((n log n)”z), so the expected time required by the O{n log n)
worst-case algorithm is O(n”zloge/zn). This computes the Voronoi polygons for the open
points, and completes our description of a linear expected-time algorithm for constructing the
Voronoi diagram.
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4. Extensions of the Planar Algorithms

The algorithms of Sections 2 and 3 can be used to solve a number of planar closest-point
problems. Given the fast nearest-neighbor searching algorithm we can easily solve the all
nearest-neighbors problem (which calls for finding the nearest neighbor of e2ach point) in
linear expected time, for point sets drawn from uniform distributions. This is cccomplished by
preprocessing the n points in linear time and then doing n searches, each of expected
constant cost. Orce we have found all nearest neighbors we can easily find the closest pair
in the set by taking the minimum of the n distances. Shamos and Hoey [1975] have shown
that once we have constructed the Voronoi diagram of a point set we can solve many other
problems in linear worst-case time. Together with the Voronoi diagram slgorithm of Sectien 3
this allows us to solve bcth the minimum spanning tree and Delaunay triangulation problems
in linear expected time. The details of these algorithms, together with some of the
applications areas in which they arise, are discussed by Shamos [1978]

All of the results that we have described so far are valid only for point sets drawn
uniformly on the unit square; the algorithms can easily ba adapted to work for many known
distributions of points. The axtension of these results to unknown distributions is a bit
tricky. If we proceed for such a distribution as though it were uniform over some bounded
region, a query can still be answered in constant expected time under certain conditions, The
cells are chosen by first finding the minimum and maximum values in both x and y and then
partitioning the rectangle defined by those four values into a number of squares proportional
to n. The resulting cells can be reprasented by & two-dimensional array and our previous
algorithms can operate as before. The only restriction on the underlying distribution
required to achieve constant axpected time is that it salisfy a condition similar to but more
restrictive than a Lipschitz condition.

Theorem 2 - Let n points be chosen independently from the distribution F(x,y)
over a bounded convex region in the plane, where F satisfies the condition that
there exist constants 0<C<C, suck that for any region of area A, the probability
assigned to A by F lies between C;A and CoA. (Alternatively, F has a density with
respect to Lebesgue measure that is bounded above and bounded below away
from zero.) Then the same algorithm that was used for nearest neighbor searching
in the uniform case answers a query in constant expectsd time.

Sketch of Proof - The proof of Theorem 1 can be easily modified to prove this theorem.

The requirement that the distribution he over some bounded convex region of the plane
snsures that some constant proportion of the cells will be used to contain points of the
distribution, and the expected number of points per ceill will therefore be bounded ecbove and
below by constants. The lower bound on density, Cy, guarantees that the expected number
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of layers that need be examined before a point is found is smali, and the uppor bound C,
guaraniees that not many points will be in the neighboring cells when they are investigated.
With these details in mind, the modification of Theorem ! is streightforward. One can even
use the same tochnique to prove a stronger version of Theorem 2--the requirement that the
region be convex can be weakened to include non-convex regions with “sufficiently smooth"
boundaries, where "sufficiently smooth” is given a precise technical meaning.

Similar arguments show how the above .rethods can be applied to give linear
expected-time aigorithms for all of the closast-point problems mentioned above, when the
point sets satisfy the conditions of Theorem 2.

5. Extensions to Higher Dimensions

In the pravious section we showed how the algorithms of Section 2 and 3 can be used to
soive a number of probloms with inputs drawn from a wide variety of pianar distributions; in
this section we will see how the basic results can be extended to solve closest-point
probleams n k-dimansional space. If the point sets are drawn independantly and uniformly
from the unit hypercube (that is, [0, 1), then we can use the cell technique by dividing the
hypercube into n/C celis, each of side (C/n)llk.

The first closest-point problem in k-space that we will examine is that of nearest neighbor
searching. Dobkin and Lipton [1976] showed that a nearest neighbor to a new point can be
found in worst-case time proportional to k log n; their method requires preprocessing and
storage prohibitive for any practical application, however. Friedman, Bentley and Finkel
[1977] have describad an algorithm with expected ssarch time proportional to log n that has
very modest preprocessing and storage costs. We will now examine a cell-based method for
nserest neighbor searching that yields constant expected retrieval time. The preprocessing
phasa o* the algorithm consists of placing the points into cells in k-space as described chove,
To perform a nearest neighbor search we generalize the spiral search of Section 2, starting
at the cell holding the quary point and searching outwards untii we find & non-empty cell. At
that point we must search il cells that intersact the ball centered at the query point with
radius equal to the distance o the nearest neighbor found so far. Arguments similer to thuse
usad in Section 2 cen bs used to show that the expscted work performad in this search is
constant. Once we heve this result we can solve buth tho ail nearest neighbors and closest
pair problems in linear expeciad time.

The k-dimensional minimum spsnning tree problem calls for finding a spanning tree of ths
point set of minimum total edge length. Straightforward algorithms for this task require O(raz)
time. A. Yao [1977]) has shown that there is a subquadratic worst-case algorithm for solving

W
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this problem, but his algorithm is probably siower than the straightforward method for most
prectical applications. Practical algorithms for this task have been proposed by Bentley and
Friedman [1978] and Rohlf {1978], but the analysis of those sigorithms remains primarily
empirical. We will now investigate the uss of the cell technique to soive this problem in fast
expected lime. We use the method of A. Yao [1977], which calls for finding the nearest
neighbor of each of the n points in each of some critical number of generalized orthants. Yao
has shown that the resulting graph is a supergraph oi the minimum spanning trae'of the point
set. Since that graph contains a number of edges linear in n (for any fixed dimension k), the
minirmum spanning tree can be found in O(n iog log n) time (see Yao [1975] or Cheriton rnd
Tarjan [1976]). Because the "nsarest neighbor in orthant™ seerching can be accomplished in
constant expected time for each point, the total expacted running time of this algorithm is

O(n log log n).

it appears tc be a very difticult task to use the cell method to construct k-dimsnsional
Voronoi diagrams in fast expected time. Generalizing the method of Section 3 allows us to
find the Voronoi polytopes of all closed points in linear expected time, but at thav point there
still remain O((n log n)l“l/k) apen points.  Since no ‘fast algorithms are known for
constructing Veronoi diagrams in k-space, it is not clear how to find the true Voronoi diagram.
Notice, however, that we have found the Voronoi polytopes of an increasing fraction of the
points (that is, the ratio of open points to n approaches zero as n grows). This technique can
be used for "Voronoi polyiope searching”, which asks for the sctual Voronoi polytope
containing the query point--our method will succeed in constant time with probability
approaching one.

The aigoritiims we have described above have all been for points drawn uniformly in
{0, l]!". Metheds analogous to those used in Section 4 can be used to show that the
algorithms can be modified to work for point sets drawn from any distribution over soms
bounded convex region with density bounded above and away from zero.

6. Implementation Censiderations

In this section we wil! discuss the implementation of the algorithms described in the
preceeding sections. The slgorithms in those sections share 8 common structure: in the first
phase the points are stored in cells and in the second phase additional processing is done on
the points. The implemantation of the first phase is trivial. Points can be placed in cells by
first finding the cell number (accomplished by a multiplication for scaling and a floor function
to find the integer ccil index) and then performing an array index. The difficuity of the
second phase of processing will depend on the particular problem being solved. In tihe case
of nesarest neighbor searching all that is required is a "spiral search” snd some distance
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calculations; both of these are easy to implement. For the Voronoi diagram, howevsr, the
second phase of processing is very complicated. One advantage of the iccality inherent in
closest-point problems is that very slow algorithms may be used to perform the operations
that take place in a local area; this will increase the constant of linesrity, but wili not slow the
asymptotic running time of the algorithms.

It is important to mention one caveat that will be inherent to any application of the cell
technique: the constant of linearity of most algorithms based on this method will increase
exponentially with the dimension of the space, k. This is true simply because a cell in
k-space has ak-j neighbor cells. It seems, though, that this complexity might be inherent to
any algorithm for solving closest-point probiems because a point in a high-dimensional space
can have many "close” neighbors. (More precisely, the maximum "adjacency” of point sets in
k-space can be equated with the number of sphere touchings, which grows exponentiaily with
k.) The practical outgrowth of this observation is that the methods we have described will
prove impractical for large k; we estimate that this will happen somawhere for k between five
and ten for data sets of less than ten thousand points. Data analysts observed this
phenomenon long ago and refer to it as "the curse of dimansionality”.

Weide [1978] has described how the empiricai cumulative distribution function can be used
to decrease the constants of the running times of programs based on cell technigues. We will
now briefly discuss the application of his techniques to the case of planar nearesi-neighbor
searching. If the points to be stored for nearest-neighbor searching indeed come from a
uniforra distribution on [0,1]2, then the cell technique performs very well. If the points coma
from a distribution that is not uniform (but stili "smooth™ enough to satisfy the requirements
of Theorem 2), then the cells might perform poorly in the sense of being too large (in dense
regions of the plane) or too smail (in sparse regions). We would therefore like the cellc to
adapt their size in different regions of the space. One approximation to this “"adaptive™
behavior can be achieved with the cell methad by incorporating a "conditioning pass™ that
examines the distribution before the pointc are placed in cells. This pass might work by
finding the 10-th, 20-th, .., 90-th percentile points in both the x and y marginal distributions.
Each set of nine points partitions its dimension into ten “"slabs”, and the cross product
partitions space into one hundred rectangles. Figure 4 illustrates such a partition of a
heavily central disiribution, such as a biveriate normal truncated at three standard deviations
(where 6 points are sampled in each marginal, creating 49 1ectangles). For most distributions
satisfying the conditions of Theorem 2, the distritution of points within each rectangle will be
much smoother than the distribution over the entire space. Because we sampied only @&
constant number of points in each dimension, we can locate which rectangle to examine in a
nearest neighbor saarch in constant time. The exzct number of rectangles to be used
depends critically on the "roughness” of the underlying distribution--the smoother the
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distribution, the fewer sample points required. Thase and other adaptation techniques are
discussed in detail by Weide [1978].
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Figure 4. Adapting celi sizes by sampling marginais.

Although the searching structures that we have describad in this paper are inhersntly
static, they can be modified to become dynamic. We will first consider the case in which the
nearest-neighbor structure is initially empty and then must support a series of Insert and
Search operations. We will use a method to convert our cell structure from static to dynamic
that is similar to a method described by Aho, Hopcroft and Ullman [1974, p. 113] for
converting a static hash tabie into a dynamic one. The nearest neighbor structure is initially
defined to have a maximum allowable size of (say) eight; wes will call this size Max. When a
new point is inserted into the structure, it is merely appended to the list of points currently

Bk e L

in its cell. Whenever an insertion causes the number of points currently in the structure to
exceed Max we perform the following operations: Max is set to twice its current value, a
new structure of Max/C cells is created, and the points currently stored in the structure are
“re-inserted"” into the new structure. Note that for any distribution satistying the conditions
of Theorem 2, the expected number of points per cell is always bounded above and below by
constants. Furthermore, analysic shows that the total amount of computation required to
insert n elements into this structure is proportional to n. (Whenever a structure of size m is
rebuilt, it is because m/2 points were inserted, so the "amortized" cost per point is constant;
for a more formal analysis, sen Aho, Hopcroft and Ullman [1974]) Monier [1978] has
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described a related technique that allows a hash table to support both insertions end
deletions intermixed with queries. We can usa his idea to give dynamic structures for ali of
the searching problems discussed in this papar with the following properties: a sequence of
n insertions and deletions can be performed in time proportional to n, at any point in this
sequence it is possible to perform a search in constant expected time, and the storage used
by the structure is always proportional to the number of elements currently stered.

In the above discussion we have described a number of rather exotic extensions to the
basic structures of this paper. For many applications, however, the basic structure is all that
is needed. We will therefore conclude this section on implementation by mentioning our
experience in implementing the nearest neighbo. searching algorithm for point sats drewn
uniformly on [0,1]2. The implementation in Fortran required approximately 35 lines of code
to insert the points into the bins and 40 lines of code to accomplish the spiral search. The
observed running times of the resuiting routines were respectively linser and constant, as
predicted, with very low overhead.

7. Conclusions

In this paper we have seen a number of algorithms for solving multidimensional
closest-point problems. The algorithms were all based on the simple idea of cells, and were
analyzed under the assumption that the points were drawn from some underlying "smooth™
distribution, All of the searching methods we described have linear preprocessing costs and
co..stant expected searching costs; all of the algorithms (with the exception of k-dimensional
minimum spanning trees) have linear expectad running time. It is clear that these slgorithms
achieve the trivial lower bounds and ars therefore optimal. Although we have described the
algorithms primarily as thecretical devices (sacrificing efficiency for sase of analysis), the
discussion in Section 6 described how they can be efficiently implemented on a random
access computer.

Much further work remains to be done in developing fast expected-time algorithms for
closest-point problems. Can the expected complexity of computing minimum spanning trees in
k-space be reduced from O(n log log n) to C(n)? A particularly important problem is to
extend our results from bounded distributions to unbounded distributions (the multivariate
normal, for example). It appears that new algorithms will have to be developed for this
problem, taking special care of "outliers™. Another very interesting open problem is to
describe precisely how much of the efficiency of our algorithms is gained from probabilistic
assumptions and how much is gained by use of the floor function. (The recent paper of
Fortune and Hopcroft [1979] shows that floor can be used to speed up the computation of
closest pair without making the randomizetion assumptions of Rebin [1976] end Weide

e
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[1978])
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