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Abstract

The empirical testing of a program often calls for generating a set of random

numbers and then Immediately sorting them. in this paper we consider the problem
of accomplishing that process in a single step: generating a sorted list of random
numbers (specifically, reals chosen uniformly from (0,1]). The method we describe
generates the randoms in linear time, is perfectly random (if it can call a perfectly
random generator for a single uniform), and can be described in Just three lines of
Algol or Pascal code. If the numbers are not required to be generated .0 at once
(but are rather to be used one-at-a-time), then the method can be Implemented as a
subroutine to produce the and requires only constant storage.
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1. Introduction

The first step of many computer algorithm. I. to sort the input data. When
testing these programs to detsrmins runtlm.s empirically, on. usually generates N
random numbers and then sorts them. Th. efficiency of sorting algorithms is
well-known (see Knuth (1973]), howev r, so it is often not necessary to test the
sorting procedure empirically In a particular program. In this application (as well as

• many others), it is desirable to generate a sorted list of random numbers as quickly
as possible. in this paper we will study th. problem of generating a sorted list of N
reals drawn uniformly from [0,1].

The most obvious method for generating a sorted li.t of randoms is to first
generate N randoms (see Knuth (1969, Chapter 3]) and then sort them. This
method requires time proportional to N Ig N In the worst case, but this can be
reduced to linear expected time If a SIbucket~ sort is used (see Knuth (1973,
Section 5.2.1]). This linear expected time algorithm I. rather complicated to code,
and requires extra space proportional to N. A knowledge of elementary probabIlity
theory, however, allows one to use more sophisticated approaches.

In this paper we will investigate a new method for generating sorted ll.t. of
randoms that has significant advantages over all previous approaches. We will
begin by discussing previous work in Section 2. In Section 3 we wilt study some
Important probabilistic lemmas, and then show in Section 4 how these can be used

to make efficient programs. A discussion of this approach I. offered in Section 8.

2. Pr.vlous Work

Before presenting our new algorithms for generating sorted lists of random

• numbers, we will mention, for purposes of completeness and of comparison, the best
previously known method for generating sorted list, of random numbers. Although

• the method seems to be well-known among statisticians, the present authors are
unable to find a description of it. computational aspects in the statistical literature.
The algorithm is based on the following lemma.

~9 o h  
~iA
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Lemma 1:

If X1, X2, . . • , X,~ 1 are ind.p ndent random variables with exponential
distribution of any fixed mean, then the valu..

1�i�J 1�i�n+1
for j • 1, ... , n are distributed as the order statistics of a random sample of
size n from U(O,1 1.

Proof:
We omit the proof of this lemma as it is well-known (see, for example, Johnson
and Kotz (1970, Chapter 18]) and Is not essential to the main thrust of this
paper. 13

An algorithm derived from Lemma 1 is described by the following pseudo-Pascal
code. it assumes that RAND is a function that on each call return, an independent
random number from the uniform distribution on [0,1]; a random exponential is then
achieved by negating the natural logarithm of RAND. The effect of the algorithm Is
to till elements 1 ..N of the array X with sorted random numbers independently drawn
from U(O,1].

Sum 5 0*
for I ‘ 1 to N do

XLII ~ Sue ~ Sue - In(R*ND),
Sue 5’ Sum - In(RAND)s
for 1 ~ I to N do

X1I3 ~ XtIJ /Surn
Program 1. Filling an array with sorted random..

It is obvious that this method i~ a very efficient way of generating sorted lists of

numbers chosen uniformly on [0,1]. Its one computational disadvantage, however, Is
that it is Inherently a two-pass algorithm--the first to placs the numbers into the
array and the second to norma lize them. We wi ll now turn our attention to a new,
single-pass algorithm.

— —- ~~~~~~~~~ —- __________________________________
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3. Probablftst ic Arguments

The correctness of the algorithms to be presented In Section 4 rests on the

following two lemmas. Lemma 2 wIll allow us to generate, in constant time, the

largest of n Independent uniformly distributed random numbers. Lemma 3 shows that
once we have generated the Pc largest of n Independent uniform random., the
problem of generating the k+ let largest reduces to the problem of generating the
largest of n-k Independent uniform random,.

Lemma 2:
The probabIlity distribution of the maximum of n Independent random number.
from the distribution U(O, 1] is the same as that of the ~th root of a single
number from U(O,1].

Proof: H

Note that the both distributions mentioned range over the interval (0,1). Let
q € [0,11. It suffices to show that numbers from either distribution have equal
probability of being In (O,q].

If X is drawn from U[O,1 J, then P(X 1 1”Cq) ~ P(X<q”) • qn~ On the other hand,
the largest of a set of n numbers in [0,1] will lie in (O,q] 1ff all n lie in (O,q].
Since the probability of a single number drawn from U(0,1] will lie In (0,q] Is q,
It follows that the probabiiity of n number, drawn Independently from U(O,1J all
being less than q Is also qn, ~

Lemma 3:
Let n and k be positive integers, n < k. Let y1, . . . Yp~ be elements of (0,1]such thaty 1~~y2� ...� y~. Then,fornrandoin numb.rsX1,...,X~ chosen
Independently from U[O,1) the distribution, conditional on the largest Pc being
Yl. . . . Yp~. 

of the k+15t largest is the same as the distribution of the largest
of n-k numbers uniformly selected from

~~
s

‘-“s—
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Proof t :
We note first that the probability of the- k+let largest of the X1 being equal to

Yk is zero, as is the probability of the largest of n-k independent draws from
U(O,yk] being equal to it remains to consider the case where the k+15t
largest of the X1 lies in (O,yk).

Consider the event space of all sets of n independent draws from U[O. 1]. The
subspace containing all events wherein the largest k numbers drawn are

• • •  ~k may be partitioned Into a number of equivalence classes.2 Each
such equivalence class may be obtained by assigning the 

~i 
to k of the X1,

picking all events from the full space which satisfy these assignments, and
throwing away all event. in which any of the n-k “unspecified” X1 happen to be
larger than or equal to 

~k• Thus, the distrib ution of the smallest n-k entries ,
within each equivalence class, Is precisely the distribution of n-k Independent
draws from U(O,yk). Since there are finitely many equivalence classes, It
follows that the distribution of the n-k smallest entries, within the union of all
equivalence classes (I.e., contingent only on the k largest draws being
Yi~

.. • Yk and on the k+15t being less than yk) Is Identical to the distribution
of n-k independent draws from U[O,y~). This completes consideration of the
case in which the k.15t largest ot the X1 Is In [ 0’YPc ) ’ so we are don.. 13

4. Programs

In this section we wIll see how the basic probabilistic facts discussed In the last

section can be used to make programs for generating sorted lists of random,. In all
these programs we will assume that we have a subroutine RAND that returns a
random number drawn uniformly from (0,1]. All the programs that we will describe

produce correct output In the sense that If RAND satisfies the probablilstic definition

of U(O,1], then the output of our program will satisfy the probabilistIc definitions of a

tsmc. this papor Is Intind.d primarily for non-itaUsUclans, wo hays .ttsn~t.d to ,ninlmêzs statistical notation In
5’s prsssntatlon of this iomma, at 5’s .~p.ns• of concisincas. A mor• gsnsral ?on,, of the. wsIl-known r•ault Is
mor• formally pr.s.nt.d as Thsorsm 2.7 of DavId [1970].

mmesr (5’. mmtsr of .vsnt clau.s) may rings from I to nI/(n-k)l, dspaudlng on 5’. mme.r and p.tt.m
of i~ jaIItioi ama..g 5’. y~.

— — 
~~~~~~~~~~~~ .* p
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sorted lIst of N such randoms.

Lemma 2 of Section 3 allows us to generate the maximum of N uniforms In (0,13
by evaluating RAND1 /N, which we will call CurMax (for reasons soon to become
obvious). After we have done that, Lemma 3 allows us to solve the remaInder of the
problem by generating N-i random, uniform on [0,CurMax]. We can accomplish this

t by taking as the maximum the value of CurMax~RAND 1 ~“(P4 1), and so forth. This
• process can be described precisely by the following program In pseudo-Pascal,

whIch places the random numbers into the array X In decreasing order.
CurNax 5’ 1,0;
for i “ N dow n t o ld o

Xlii ~ CurNax 4’ CurNax * RAND1”;

Program 2. StraIghtforward Implementation.
in the above program the variable CurMax represents the current maximum of the
range In which I randoms are to be generated. (A program essentially equivalent to
Program 2 was described by Friedman [1971] for use in random event generation In
a physics context. He did not, however, observe the generality of his method.)

in Program 2 we exponentiate to a fractional power. Since most programming
languages do not directly support such a statement, this step is usually Implemented
as

Xli] 5’ CurNax 5’ CurNax * exp(In(RAND)/i),

The multiplicatIon in that statement might be a source of numerical error, so It can

be replaced by an addition as In the following program to fill X with sorted randoms.
LriCurMaz “ 0 ,0;
fan  ~~N down to 1do

begin
~ LnCurNax 5’ LnCurNax + i n(RAND)/I ;

Xlii  5’ exp(LncurNax)
ends

~~~~ 
3. MultIplication replaced by addition.

Note that with perfect arithmetic this procedure will produce exactly the same

_ _ _ _  
_ _ _ _ _ _ _ _  II~4
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output as Program 2 (assuming the use of the same procedure RAND); this program,
however, Is numerically more robust than its predecessor.

In many applications the variables are not all needed at one time, but rather can
be used “on the fly”. If this is Indeed the case, then using the N array words of X Is
very wasteful of storage. We would prefer to have an algorithm that can generate
the “next” value. We will now describe such an algorithm as two Pascal
subroutines; Procedure lnitSorted is passed an Integer N and Initializes the global
variables I (an integer) and LnCurMax (a real); NextSorted is a parameterless
function that returns the next value in decreasing order (unless N values have
already been returned).

procedure InltSorted(Ni Integer);
begin
I ~ N:
LnCurNax 5’ 0,0
ends

function NextSorteds reals
begin
If I <~~0 then Abort;
LriCurNax 5’ LnCurN.x + In(RAND)/I;
I 5’J~~;NextSorted 5’ exp(LnCurN.z)
ends

Program 4. On-line generation of sorted random,.
Making N successive calls on PlextSorted after executing lnItSorted(N) will produce
exactly the same output as executing either Program 2 or Program 3 (although not
In the array X). If an N. ~~ call I. made on NextSorted then abnormal termination

will be e4fected by calling procedure Abort. As this algorithm 5 stated it returns the
values in decreasing order; If increasIng order I. preferred then this can be

accomplished by subtracting the result from one.

I 

_ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _
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5. DiscussIon

Programs 3 and 4 of the previous section have been Implemented as Pascal
programs; these programs are described by Bentley and Sax. [1979]. Both
implementations required approxImately 250 microseconds to generate a single
random number when executed on a Digital Equipment CorporatIon PDP- 10 KL
processor.1 To compare these programs to more straightforward methods of solving
this problem we wrote a program that generates an array of N random unIforms and
then uses Oulcksort to sort the array. The Implementation of Program 3 was
somewhat slower than the sorting methods for values up to N ~ 250; after that point
Program 3 Is faster. A significant advantage of our programs over the naive
methods, however, Is that while the sorting algorithm was described by some 80
lInes of Pascal code, our method requires only a dozen lines. To ensure that the
randomness properties of our algorithms were not adversely affected by roundoff
errors or by using a linear-congruentlal psuedo-random number generator, we ran a
number of statistical tests to determine the randomness of the resulting
numbers--all tests were passed with flying colors.

Throughout this paper our programs have taken logarithms of real numbers
uniformly distrIbuted on (0,1]. Notice that this leads to en undefined result If the
value of the random number is zero. Although this does not affect the theory
underlying the paper (since we only took such logarithms to “simulate” fractional
exponentietion or generate exponentially distributed randoms), thIs will affect
programs implementing these methods. Such programs should take logarithms of
randoms uniform on (0,1]. Since most RAND subroutines return values unIform on
(0,1), this can be accomplished by using 1-RAND as the desired random number.

Although It is clear that the method of Program 3 Is sup’,rlor to a

Pascal compiler used In these tests doss not produc, very efficient cods~ the authors suspect that 5’sspeed of the pro~ .ms could be s%~ stanti.lly Increased by careful hand-coding. This Is wrnsosawy In mostapplications, however, since the use of this method Is usually snou~ to remove the process of generating iorlsd
random. from 5’s tIme bottleneck of the program.

— ~~~~~~~~~ —~~~~~
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generate-and-sort solution in almost all applications, It I~ more difficult to compare
Program 3 with Program 1. Program 1 Is faster than Program 3 (Program I uses en

addition, a logar ithm , a multiplication, and three array accesses for each random;
Program 3 uses an additional exponentiation, but only one array access), but
Program 3 is shorter to code. The primary advantage of the method of SectIon 4.

over Program I Is that this method can be implemented on-line; the method of
Program 1 has no on-line version corresponding to Program 4.

Although we have descrIbed our method for generating sorted lists of uniform
random numbers, the same method can be extended to generate sorted numbers
from other distributions. To generate numbers from distribution F for which the
Inverse F 1 Is known, It is only necessary to apply the monotone functIon F 1 to

each of the outputs of Progrims 3 or 4, and the resulting sorted list will satisfy all
the desired properties.
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ALGORITHM. G.n.ratlng Sorted Lists of Randoms

DESCRIPTION

This Pascal program implements two algorithms described by Bentley and Sax.
(1979) for generating sorted lists of random numbers. The theory underlying these
algorithms can be found in that paper.

REFERENCE

Bentley, J. 1. and J. B. Saxe (1979]. “Generating sorted lists of random
numbers,” attached.

ALGORITHM

(* ROUTINE S FOR GENERATION OF SORTED RANDOM NUMBERS

(* The al gorithms used in t hi s program are taken from ~Generat)ngsorted l i sts o f random numbers ” , here i na f ter re ferred to as
“Bentley and Saxe.” The reader should refer to that article for
a discussion and justificat ion of the algor i thms. The procedure
GenSorted imp l ements Program 3 of Bentley and Saxe for filling
an array w it h sorted random numbers un I formly drawn from the
interva l (0,13. The procedure InitSorted and the function
NextSorted together Imp l ement Program 4 of Bentley and Saxe for
generating sorted random numbers on-line. The main program Is a
test dr i ver wh i ch exercises these routines.

cortet
MaxRands - 108; (* Maximum number of random numbers

generated by Gensorted *)
TeetS i ze — 25; 1* Number of sorted randome to generate——

used by test dr i ver. (Note; TeetSi ze
must be <- MaxRande) *)

type
RandArrag — array (1..tlaxRande) of real;

I 
_ _ _ _ _ _ _ _  

_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _

— — — — ~~~~~~~~~~~ ~~~~~~~~
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var
(* Var iables for on-line generation of sorted randoms. These

var iab le names are the same as those used in Program 4 of
Bentley and Saxe, except that they have been preceded by
“OLG” (for On-Li ne Generation) to lessen the probability of
name confl icts with other globa l var iab les ~ihich may occur
In programs using the on-line generation routines.

016!: integer; 1* The next random number generated by
NextSorted w i l l  be the 0LCl—th
sinaI lest. *)

OLGInCurMax: rea l ; (* The natural l ogar i thm of the prev i ous
number generated by NextSorted. Before
the first call of a sequence, LnCurFlax
is set to 8, i.e., in(1). *)

(* Var i ables used by dr i ver *)
J: integer ;
Y: RandArray;

(* Storage used by underlying random number generator *)
RandHoid: integer ; -

(* Procedures for generation of un i form random numbers
(* The built - in function, Random, takes a single integer argument

and returns a pseudo-random real number In the range (0,1). The
argument (here named RandHold) Is a VAR parameter used to hold
the current random seed, and Is altered bV each call to Random. *1

(* Note; The function Random Is not a Standard Pascal built — in
function. At your site the random number function may go
by a different name, or i t may even be necessary for you
to wr i te your own. (See CALGO Algor i thms 266 and 294 or
Section 3.2 of Knuth’s The Art of Computer Programm i ng,
Vo l ume 2: Sem i -Numer i cal Algor i thms, Add Ison—Wesl ey,
1969.) Also, the method of init ializ ing the random
number generator may vary from site to site. In short,
the programmer should be prepared to rewrite the routines
Rand and InitRand to conform to the l ocal runtime
environment.

procedure InltRand;
begin
RandRold ;- 8
end;

funct ion Rand; real;
begin
Rand : —  1-Random (RendHoid) (* return a number in (0,11. *)
end;

-_ — ~~~ -- - J ~~~~~--~—~ ~~ -.
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(* Routine to place N random numbers unIformly drawn from (8,11
into Xf1..N1 in ascending order. a)

(* The algorithm used here is that of Program 3 of Bsntley and
Saxe. a)

procedure GenSorted(var Xi R.ridArr.y; N; Integer);
var

I: Integer ;
LnCurtlax; real;

beg I n
LnCurMax ;- 8.8;
for I ;. N downto 1 do

begin
LnCurMax ;- LnCurllax + ln(Rand)/!;
X (I] :— exp (LnCurtlax)
end

end;

(* Routines to generate sorted randoms on-line a)
(* To generate N random numbers from (0,11 , sorted in descending

order : First call InitSorted (N). The next N evaluations of
NextSorted will  return the random numbers, in descending order.
If InitSor t Is called again before N calls have been made to
NextSorted, the current sequence of randoms will be lost and a
new sequence will begin with the next call to NextSorted.

(* Note: If an ascending sequence of random numbers is desired, the
fina l assignment statement of Nexteorted should be altered to
read “NextSorted :— 1 - exp (OLGlnCurMax) ”.

(* The algorithms used here are from Program 6 of Bentley and Saxe.
The globa l var i able names, I and LnCurllax, occurr i ng in that
program have here been preceded by “GIG” to guard against their
acc idental use by other pieces of code. a)

procedure InitSorted (Nz integer) ;
begin
0161 ;- N;
OLGLnCurMax s- 0.0
end;

function NextSorted: real;
beg in
if OLGI <— 0 than

begin
wr itein(tty, ‘Too many calls on NextSorted, Aborted’);
halt
end;

OLGLnCurMax : — OLGInCurliax + In (Rand) /OLGI $
0161 s — 0161-1;
Nex tSar ted i • exp (OlGInCurMax)
end;

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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(* Dri ver to test both single-shot and on—line generation of sorted
rar’.doms a)

begin (* main program *)
m i  tRend;

(* Test sing le-shot generation of sorted randoms by filling
V (1..TestSi ze) with ascending sorted random numbers and dump ing
results to output file. a)

£ GenSorted (Y, TeetSi ze);
wr%teln (’Oump of array V after execution of GenSorted’);
for J :— 1 to TestSi ze do

wr ltein (J, Y (JJ:10sS);

(a Test on-line generation of sorted rando*s by generating TeetSi ze
random numbers in descend i ng order and writing them to output. *)

ur it. In;
wri teln (’Commenc i ng test of on-line generation’);
In%tSor ted(TestSize);
f or J ;— 1 to TestSize do

writeln (J, NextSorted;10:5)
end.

1—

t i
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