AD-A06	6 589	NATION EXHAUS FEB 79	AL AVIA	TION FA	ACILITI	ES EXPERISTICS	FOR A	L CENTE GENERAL	R ATL-	-ETC F	/6 13/2	2(U)	
Chickey	/ OF / AD AD66589		militation			The second secon	Provide states of the second s	Transition of the second secon					
												YA TI	
					III			<u>kybjiti</u> ,				-	
							анала — 2004 — на	No. of the second secon					Antoineoneoneoneoneoneoneoneoneoneoneoneoneon
	Anna Anna Anna Anna Anna Anna Anna Anna	Transmission Tr					1		- 1000000	- Network		Property of the second	Print
No. 1 Provide State													
									TIT	END FILMED 579			
1											11/10		1

February 1979

FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590

79

03 28

040

AD AO 6658 FILE COPY ä

NOTICE

. ~

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report. . je

- 1

Technical Report Documentation Page 3. Recipient's Catalog No. 2. Government Accession No. 78-129 EXHAUST EMISSIONS CHARACTERISTICS FOR A GENERAL Feb 79 AVIATION LIGHT-AIRCRAFT AVCO LYCOMING 10-360-B1BD Performing Organization Code **PISTON ENGINE**. Performing Organization Report No. 8 7. Author's) Eric E./Becker FAA-NA-78-28 9. Performing Organization Name and Address Federal Aviation Administration Work Unit No. (TRAIS) National Aviation Facilities Experimental Center 11. Contract or Grant No. 201-521-100 Atlantic City, New Jersey 08405 13. Type of Rep Final 2. Sponsoring Agency Name and Address U.S. Department of Transportation T Federal Aviation Administration Systems Research and Development Service 14. Sponsoring Agency Code Washington, D.C. 20590 15. Supplementary Notes 16. Abstract The Avco Lycoming IO-360-B1BD engine (S/N887-X) was tested at the National Aviation Facilities Experimental Center (NAFEC) to develop a steady state exhaust emissions data base. This data base consists of current production baseline emissions characteristics, lean-out emissions data, effects of leaning-out the fuel schedule on cylinder head temperatures, and data showing ambient effects on exhaust emissions and cylinder head temperatures. The engine operating with its current full-rich production fuel schedule could not meet the proposed Environmental Protection Agency (EPA) standard for carbon monoxide (CO) and unburned hydrocarbons (HC) under sea level standard-day conditions. The engine did, however, meet the proposed EPA standards for oxides of nitrogen (NO.,) under the same sea level conditions. The results of engine testing under different ambient conditions are also presented, and these results show a trend toward higher levels of emissions output for CO and HC while producing slightly lower levels of NOx. 17. Key Words 18. Distribution Statement Piston Engines General Aviation Document is available to the U.S. public Oxides of Nitrogen Carbon Monoxide through the National Technical Information Emissions (Pollution) Service, Springfield, Virginia 22161 Unburned Hydrocarbons 20. Security Classif. (of this page) 21. No. of Pages 22. Price 19. Security Classif. (of this report) 76 Unclassified Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 240 550

]	11231	3¥3	8.4	= 1 = 32 B	*
ļ]	teet Yeat Miles	· square inches square yards square miles acres	ounces pounds short tons	r fluid aurosa pinta quarta gallons cubic yada cubic yada	Fohrenheit Tehrenheit Tehrenheit Tehrenheit Tehrenheit Tehrenheit Tehrenheit
rtions from Moti	Munishy by LENGTH	9.0 8.3 8.1 1.1 8.0	AREA 0.16 0.16 2.5 2.5	(ASS (weight) 0,006 2,2 1,1 1,1 1,1 VOLUME	0.03 1.05 1.05 0.05 35 1.3	9/5 (then add 32) 96.6 96.6 120
Approximate Conve		milianeters centimeters meters meters kilometers	quure contineters quure contineters aquare motors aquare tilometers hectares (10,000 m ²)	grans kilograns kinorans (1000 kg)	millitere liters liters biters Cubic meters Cubic meters Cubic meters	Cetaius Temperature 0 22 0 26
ACTORS	1	E & E E E E	€~£~£ 2	مع مع 11 التا 101	E°E°E	
N						
METRIC CONVERSION F				ininininininininini Ininininininininini Inininini		
METRIC CONVERSION F	, 11 02 humundminininini 1111111111111	5 5 c 5	2.5.5.2 		עריינייע אין	
Metric Conversion F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Centimeters Centimeters Contineters Contineters Ameter	equare continueters equare continueters equare maters aquere hilometers here kilometers here kilometers	supplications of the second se		2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WETRIC CONVERSION F	Mattight by To Find Symbol subol sub	2.5 Centimeters Cm 30 centimeters cm 30 centimeters cm 30 filometers cm 1.6 hilometers km	AREA 6.5 6.5 0.08 4quare cantineters 0.08 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.8 4quare meters 0.0 0.0 4quare meters 0.0 0.0 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1	ASS (weight) 28 grams - 0 0.45 kilopana ka 0.45 kilopana ka 0.45 kilopana ka 0.45 kilopana ka 0.45 kilopana ka 1 * * * * * * * * * * * * * * * * * * *	3 3 5 5 1 1 1 1 1 1 1 1 1 <t< td=""><td>U.J.o ERATURE (exact) 6/3 (after Catalus °C aubtracting temperature °C 22) 32)</td></t<>	U.J.o ERATURE (exact) 6/3 (after Catalus °C aubtracting temperature °C 22) 32)
Approximate Conversions to Matric Measures	When Yee Kaeen Muttiply by To Find Symbol	inches 2.5 centimeters cm 2.5 test 30 centimeters cm 2.5 cantimeters cm 2.9 meters cm 2.9 meters n 1.6 kulometers km 1.6	AREA square inches 6.5 square centimeters on? equare feet 0.08 square centimeters on? square miles 2.6 square moters m? equare miles 2.6 square biometers m? extra 0.8 houses in m? extra 0.8 houses in her in the intervention of	MASS (weight) MASS (weight) concea 28 grans 0 pounds 0.45 kilograns 10 (200 lb) VOLUME 1	Image: Control of the sequences 5 millitiens 1 Intersections 15 millitiens 1 Intersections 30 millitiens 1 Cops 0.47 liters 1 Outpet 0.47 liters 1 Partia 0.35 liters 1 Outpet 1 1 1 Outpet 1 1 1 Outpet 1 1 1 Outpet 1 1 1 Outpet 0.47 liters 1 Outpet 0.36 liters 1 Outpet 0.33 liters 1 Outpet 0.33 liters 1 Outpet 0.33 liters 1	TEMPERATURE (asset) Temperature substanting temperature contracting temperate

P

-

. 9

1

¥.

TABLE OF CONTENTS

Doc

NAM JUSTI ICA TON DUNC:D

ANT NOTION / A YAL ANT IY CODES

8)

Wie Section &

SP.CIAL

0

Page

1

1

1

2

2 2

5 5 7

23

40

42

INTRODUCTION

Purpose Background

DISCUSSION

8

9

÷

Description	of	Avco Lycoming IO-360-B1BD Engine
Description	of	Test Setup and Basic Facilities
Description	of	Air Induction System and Airflow Computations
Description	of	Fuel Flow System
Description	of	Cooling Air System
Description	of	Test Procedures and EPA Standards
Description	of	Emissions Measurement System
Description	of	Sample Handling System
Description	of	Filtration System
Computation	Pre	ocedures

RESULTS

General	Comments	
Results	of Baseline Tests (Landing-Takeoff Cycle Effects)	
Results	of Lean-Out Tests	
Results	of Tests with Varying Spark Settings	

SUMMARY OF RESULTS

Exhaust Emissions	40
Maximum Cylinder Head Temperatures	40
Critical Landing and Takeoff Cycle	40
Optimum Spark Setting	41
ONCLUSIONS	41

REFERENCES

APPENDICES

- Fuel Sample Analysis A
- Composition of Air (General Properties) B
- С NAFEC Test Data and Working Plots for Analysis and Evaluation of Avco Lycoming IO-360-B1BD Engine

LIST OF ILLUSTRATIONS

9

¥

Figure		Page
1 1	Typical Sea Level Propeller Test StandPiston Engine InstallationEmissions Testing	3
2	Engine InstallationNAFEC General Aviation Piston Engine Test Facility	.4
3	NAFEC Air Induction (Airflow Measurement) System for Light- Aircraft Piston Engine Emission Tests	6
4	NAFEC Fuel Flow System for Light-Aircraft Piston Engine Emission Tests	8
5	Schematic of Emissions Measurement System and Its Measurement Characteristics	11
6	Beckman Model 402 THC Analyzer (1.5 PSI Unmodified)	13
7	Beckman Model 402 THC Analyzer (1.5 PSI Modified)	13
8	Beckman Model 402 THC Analyzer (3 PSI Unmodified)	14
9	Exhaust Gas Molecular Weights	18
10	Relation of Carbon Monoxide and Hydrogen	20
11	Average Total Emissions Characteristics for an Avco Lycoming IO-360-B1BD Engine Operating Under Varying Sea Level Induction Air Temperatures-Table 5 Minimum Five-Mode LTO Cycle	25
12	Total Emissions Characteristics for an Avco Lycoming IO-360-B1BD Engine with Different Fuel Schedule AdjustmentsSea Level Standard Day	26
13	Sea Level Standard Day Maximum Cylinder Head Temperatures for Different Power Mode Conditions and Varying Fuel-Air RatiosAvco Lycoming IO-360-B1BD Engine	31
14	Sea Level Hot Day (Ti=103° F) Maximum Cylinder Head Temperature for Different Power Mode Conditions and Varying Fuel-Air RatiosAvco Lycoming IO-360-B1BD Engine	31
15	Sea Level Maximum Cylinder Head Temperature Variations for Different Cooling Air Differential Pressure Conditions and Varying Fuel-Air Ratios—Avco Lycoming IO-360-B1BD EngineTakeoff Mode	32

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
16	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsTakeoff Mode (CO2 and CO)	34
17	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsTakeoff Mode (HC and NO _X)	35
18	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsClimb Mode (CO2 and CO)	36
19	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsClimb Mode (HC and NO _X)	37
20	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsApproach Mode (CO ₂ and CO)	38
21	Effect of Varying Spark Setting on Engine Perfromance and Exhaust EmissionsApproach Mode (HC and NO _X)	39

LIST OF TABLES

Table		Page
1	Avco Lycoming IO-360-B1BD Engine	2
2	EPA Five-Mode LTO Cycle	9
3	FAA/NAFEC Seven-Mode LTO Cycle	9
4	Maximum Five-Mode LTO Cycle	9
5	Minimum Five-Mode LTO Cycle	10
6	Summary of Exhaust Emissions (CO) Reduction Possibilities for an Avco Lycoming IO-360-BlBD Engine-Sea Level Standard Day (Except as Noted)Cooling Air ΔP=3.0 inH ₂ O	28
7	Summary of Engine Performance and Exhaust Emissions Characteristics for Three Different Spark Settings (°BTC)Full-Rich Fuel Schedule	33

v

INTRODUCTION

PURPOSE.

General aviation piston engine exhaust emission tests were conducted at the National Aviation Facility Experimental Center (NAFEC) for the following reasons:

1. Determine and establish total exhaust emissions characteristics for a representative group of current production general aviation piston engines.

2. Determine the effects of leaning-out of the fuel metering system on exhaust emissions.

3. Verify the acceptability of test procedures, testing techniques, instrumentation, etc.

4. Determine reductions in operating limits and safety margins resulting from fuel system adjustments/modifications evaluated for improved piston engine exhaust emissions characteristics.

BACKGROUND.

Beginning in 1967, Congress enacted a series of laws which added environmental considerations to the civil aviation safety, control, and promotional functions of the Federal Aviation Administration (FAA). This legislation was in response to the growing public concern over environmental degradation. Thus, the FAA was committed to the development, evaluation, and execution of programs designed to identify and minimize the undesirable environmental effects attributable to aviation.

In accordance with the Clean Air Act Amendments of 1970, the Environmental Protection Agency (EPA) established emission standards and outlined test procedures when it issued EPA rule part 87 in January 1973. The Secretary of Transportation, and therefore the FAA, was charged with the responsibility for issuing regulations to implement this rule and enforcing these standards.

Implementation of this rule was contingent on the FAA's finding that safety was not impaired by whatever means was employed to achieve the standards. For this reason, the FAA undertook a program, subsequent to the issuance of the EPA emission standards in July 1973, to determine the feasibility of implementation, verify test procedures, and validate test results.

There was concern on the part of the FAA that the actions suggested in order to comply with the EPA emission standards, such as operating engines at leaner mixture settings during landing and takeoff cycles, might compromise safety and/or significantly reduce engine operating margins. Therefore, the FAA contracted with Avco Lycoming and Teledyne Continental Motors to select engines that they considered typical of their production, test these engines

as normally produced to establish a baseline emissions data base and then alter (by lean-out adjustments) the fuel schedule and ignition timing to demonstrate methods by which the proposed EPA limits could be reached.

In the event that hazardous operating conditions were indicated by the manufacturer's tests, independent verification of data would be necessary. Therefore, it was decided that duplication of the tests be undertaken at NAFEC to provide the needed verification. This report presents the NAFEC test results for the Avco Lycoming IO-360-BIBD piston engine (S/N887-X). It should be noted that since the time of these tests, the EPA has rescinded the promulgated piston engine standards (reference 1). This work is reported upon herein in the same light as it would have been if the requirements were still in effect.

DISCUSSION

DESCRIPTION OF AVCO LYCOMING IO-360-B1BD ENGINE.

The IO-360-BIBD engine tested at NAFEC is a fuel-injected, horizontally opposed engine with a nominal 360 cubic inch displacement (cid) rated at 180 brake horsepower (bhp) for a nominal brake specific fuel consumption (bsfc) of 0.50. This engine is designed to operate on 100/130 octane aviation gasoline (appendix A -- Fuel Sample Analysis of NAFEC Test Fuel). The vital statistics for this engine are provided in table 1.

TABLE 1. AVCO LYCOMING IO-360-B1BD ENGINE

No. of Cylinders	4
Cylinder Arrangement	но
Max. Engine Takeoff Power (HP, RPM)	180. 2700
Bore and Stroke (in.)	5.125 x 4.375
Displacement (cu. in.)	361
Weight, Dry (1bs)Basic Engine	299
Prop. Drive	Direct
Fuel Grade	100/130
Compression Ratio	8.5:1
Max. Cylinder Head Temperature Limit (°F)	500

DESCRIPTION OF TEST SETUP AND BASIC FACILITIES.

For the NAFEC sea level static tests, the engines were installed in the propeller test stand shown in figures 1 and 2. This test stand was located in the NAFEC General Aviation Piston Engine Test Facility. The test facility provided the following capabilities for testing light aircraft piston engines:

FIGURE 2. ENGINE INSTALLATION--NAFEC GENERAL AVIATION PISTON ENGINE TEST FACILITY

- (1) Two basic air sources--dry bottled and ambient air
- (2) Ambient temperatures (20 to 140 degrees Fahrenheit (°F))
- (3) Nominal sea level pressures (29.50 to 30.50 inches of mercury absolute (inHgA)
- (4) Humidity (specific humidity-0 to 0.020 lb of water (H20) vapor/lb dry air)
- (5) Fuel (100/130 octane aviation gasoline--a dedicated 5,000 gallon tank)

DESCRIPTION OF AIR INDUCTION SYSTEM AND AIRFLOW COMPUTATIONS.

The airflow system (induction system) utilized at NAFEC for testing light aircraft piston engines is illustrated in schematic form in figure 3. This system incorporated a redundant airflow measuring system for accuracy and reliability. In the high-flow measuring section, NAFEC utilized a 3.0-inch orifice and an Autronics air meter (model No. 100-750S). The capability of this high-flow system ranged from 400 to 2,000 pounds per hour (lb/h) with an estimated reading tolerance in flow accuracy of ± 2 percent. The low-flow measuring section utilized a small 1.0-inch orifice and an Autronics air meter (model No. 100-100S). The capability of this system ranged from 40 to 400 lb/h with an estimated reading tolerance in flow accuracy of ± 3 percent. The size of the basic air duct was 8.0 inches (inside diameter) for the highflow system and 2.0 inches (inside diameter) for the low-flow system.

The airflow was computed from the orifice differential pressure and induction air density using the following equation:

Wa = (1891) (Cf) $(d_0)^2 [(.03609) \Delta P_0]^{1/2}$ (reference 2)

For the 3.0-inch orifice this equation simplifies to:

Wa = (10,381.6) $\left[(.03609) \Delta P_{\rho} \right]^{1/2} = 1972.23 (\Delta P_{\rho})^{1/2}$

For the 1.0-inch orifice this equation simplifies to:

Wa = (1,189.4) $[(.03609) \Delta P_0]^{1/2} = 225.955 (\Delta P_0)^{1/2}$

DESCRIPTION OF FUEL FLOW SYSTEM.

The fuel flow system utilized during the NAFEC light aircraft piston engine emission tests incorporated rotameters, turboflow meters, and a burette. The high-flow section incorporated a rotameter in series with a high-flow turbometer while the low-flow section incorporated a low-flow turbometer in series with a burette. The high-flow system was capable of measuring fuel flows from

50 lb/h up to 300 lb/h with an estimated reading tolerance of ± 1.0 percent. The low-flow system was capable of flow measurements ranging from 0-50 lb/h with an estimated reading tolerance of ± 2.0 percent. Figure 4 illustrates the NAFEC fuel flow system in schematic form.

DESCRIPTION OF COOLING AIR SYSTEM.

The NAFEC piston engine test facility also incorporated a system which provided cooling air (see figure 1) to the engine cylinders. The engine mounted in the test stand was enclosed in a simulated nacelle and cooling air was provided to this enclosure from an external source. The cooling air temperature was maintained within $\pm 10^{\circ}$ F of the induction air supply temperature for any specified set of test conditions. This not only minimized variations in temperature but also minimized variations in the specific weight of air for all test conditions. All of the basic cooling air pressures of 3.0 inH₂0. A range of differential cooling air pressures from 1.0 to 6.0 inH₂0 were also evaluated to determine the effects of variable cooling air conditions on maximum cylinder head temperatures.

DESCRIPTION OF TEST PROCEDURES AND EPA STANDARDS.

The data presented in this report were measured while conducting tests in accordance with specific landing and takeoff cycles (LTO) and by modal leanout tests. The basic EPA LTO cycle is defined in table 2.

The FAA/NAFEC contract and inhouse test programs utilized an LTO cycle which was a modification of the table 2 test cycle. Table 3 defines this modified LTO cycle which was used to evaluate the total full-rich emission characteristics of light-aircraft piston engines.

An additional assessment of the test data clearly indicates that further evaluations of the general aviation piston exhaust emission must be analyzed with the climb mode emissions at 100-percent and 75-percent power settings (tables 4 and 5). This would then provide basis for a complete evaluation of test data and permit a total assessment of the EPA standard based on LTO cyclic tolerances.

The EPA Standards (reference 1) that were evaluated during this program were:

Carbon monoxide (CO)--0.042 lb/cycle/rated BHP Unburned hydrocarbon (HC)--0.0019 lb/cycle/rated BHP Oxides of nitrogen (NO_x)--0.0015 lb/cycle/rated BHP

DESCRIPTION OF EMISSIONS MEASURMENT SYSTEM.

EMISSION ANALYZERS. The instrumentation used to monitor the exhaust emissions from general aviation piston engines was basically the same as that recommended by EPA, but with a number of modifications and additions to enhance the reliability and accuracy of the system. A schematic of the emissions measurement system is shown in figure 5.

TABLE 2. EPA FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Taxi/idle (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	75-100	*
4	Approach	6.0	40	* 00 strop
5	Taxi/idle (in)	4.0	*	*

*Manufacturer's Recommendation

TABLE 3. FAA/NAFEC SEVEN-MODE LTO CYCLE

Mode No.	Mode <u>Name</u>	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Idle (out)	1.0	*	tertenten laboer sestas
2	Taxi (out)	11.0	*	*
3	Takeoff	0.3	100	100
4	Climb	5.0	80	*
5	Approach	6.0	40	. *
6	Taxi (in)	3.0	*	*
7	Idle (in)	1.0	*	*

*Manufacturer's Recommendation

TABLE 4. MAXIMUM FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Taxi (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	100	100
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	*

*Manufacturer's Recommended

2

EMISSION INSTRUMENTATION ACCURACY/MODIFICATIONS. The basic analysis instrumentation utilized for this system, which is summarized in figure 5, is explained in the following paragraphs.

Mode No.	Mode Name	Time-In-Mode (Min)	Power (%)	Engine Speed (%)
1	Taxi (out)	12.0	*	S * Tard/141
2	Takeoff	0.3	100	100
3	Climb	5.0	75	
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	*

TABLE 5. MINIMUM FIVE-MODE LTO CYCLE

*Manufacturer's Recommended

<u>Carbon Dioxide</u>. The carbon dioxide (CO_2) subsystem is constructed around a Beckman model 864-23-2-4 nondispersive infrared analyzer (NDIR). This analyzer has a specified repeatability of <u>+1</u> percent of full scale for each operating range. The calibration ranges on this particular unit are: Range 1, 0 to 20 percent; Range 3, 0 to 5 percent. Stated accuracy for each range is <u>+0.2</u> and <u>+0.05</u> percent, respectively.

<u>Carbon Monoxide</u>. The subsystem used to measure carbon monixide (CO) is constructed around a Beckman model 865-X-4-4-4 NIDR. This analyzer has a specified repeatability of ± 1 percent of full scale for ranges 1 and 2 and ± 2 percent of full scale for range 3.

Range 1 has been calibrated for 0 to 20 percent by volume, range 2 for 0 to 1,000 parts per million (ppm) and range 3 for 0 to 100 ppm. The widerange capability of this analyzer is made possible by using stacked sample cells which in effect give this analyzer six usable ranges when completely calibrated.

Effects of interfering gases, such as CO2 and water vapor, were determined and reported by the factory. Interferences from 10-percent CO2 were determined to be 12-ppm equivalent CO, and interferences from 4-percent water vapor were determined to be 6-ppm CO equivalent. Even though the interference from water vapor is negligible, a condenser is used in the CO/CO2 subsystem to eliminate condensed water in the lines, analyzers, and flowmeters. This condensation would have decreased analyzer sensitivity and necessitated more frequent maintenance if it had been eliminated.

Total Hydrocarbons. The system that is used to measure total hydrocarbons is a modified Beckman model 402 heated flame ionization detector. This analyzer has a full-scale sensitivity that is adjustable to 150,000-ppm carbon with

intermediate range multipliers 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 times full scale.

Repeatability for this analyzer is specified to be +1 percent of full scale for each range. In addition, this modified analyzer is linear to the fullscale limit of 150,000-ppm carbon when properly adjusted. The two major modifications which were made to this analyzer were the installation of a very fine metering value in the sample capillary tube, and the installation of an accurate pressure transducer and digital readout to monitor sample pressure. Both of these modifications were necessary because of the extreme pressure sensitivity of the analyzer (figures 6 through 8). Correct instrument response depends on the amount of sample passing through a capillary tube; as a result, if there is too high a sample flow, the analyzer response becomes nonlinear when a high concentration gas is encountered. Sample flow may be controlled by varying the pressure on this capillary or increasing the length of the capillary. On this analyzer, linearity to 50,000-ppm carbon was obtained by reducing the sample pressure to 1.5 pounds per square inch gauge (psig). However, the need for linearity to 120,000-ppm carbon was anticipated. Further reduction of the sample pressure increased the noise level of the analyzer to an unacceptable level. In order to reduce the flow through the capillary without using a lower pressure, either the length or the resistance of the capillary had to be increased. The standard modification for this analyzer in order to limit flow is the installation of an additional length of capillary tubing. This procedure requires trial-and-error determination of proper capillary length and is a permanent modification that limits sensitivity at low hydrocarbon levels. By installing a metering valve in the capillary, flow could be selectively set at either low flow for linearity at high concentrations or high flow for greater sensitivity at low concentrations. Installation time was reduced by eliminating the cut-and-try procedure for determining capillary length.

The addition of a sensitive pressure transducer and digital readout to monitor sample pressure was needed since the pressure regulator and gauge supplied with the analyzer would not maintain the pressure setting accurately at low pressures. Using the digital pressure readout, the sample pressure could be monitored and easily maintained to within 0.05 inH₂0.

Oxides of Nitrogen. Oxides of nitrogen (NO_X) are measured by a modified Beckman model 951H atmospheric pressure, heated, chemilluminescent analyzer (CL). This analyzer has a full-scale range of 10,000 ppm with six intermediate ranges. Nominal minimum sensitivity is 0.1 ppm on the 10-ppm full-scale range.

The atmospheric pressure analyzer was chosen because of its simplicity, ease of maintenance, and compactness. Anticipated water vapor problems in the atmospheric pressure unit were to be handled by the heating of the internal sample train. Interference from CO₂ quenching, common in the atmospheric pressure type CL analyzer, was checked and found to be nonexistnet.

A series of major modifications were performed by the manufacturer on this analyzer to insure compliance with specifications. One such modification was

FIGURE 7. BECKMAN MODEL 402 THC ANALYZER (1.5 PSI MODIFIED)

FIGURE 8. BECKMAN MODEL 402 THC ANALYZER (3 PSI UNMODIFIED)

installed in order to maintain the temperature of the sample stream above the dew point of the sample gas. Originally, this analyzer was specified to maintain a temperature of 140° F at all points in contact with the sample. After a survey of the 951H analyzers in use on FAA projects, it was determined that this temperature was not being achieved because the method used to heat the components was inadequate. A recommendation was made to the manufacturer to install a positive method of heating the sample tube compartment and reaction chamber that would be thermostatically controlled. In time, the modification was made and this problem was eliminated. Increasing the temperature of the internal sample components eliminated the condensed water problem; however, the elevated temperature caused an instability in the photomultiplier tube output. Another recommendation was made to thermostatically control the temperature of this tube. This was accomplished by installing an electronic cooling jacket designed to maintain the photomultiplier tube at a constant temperature below the internal case temperature.

A further modification required was the addition of a flow control value to adjust and balance the flow rate through the NO and NO_X legs. This value replaced a restrictor clamp that was used by the manufacturer to set the NO to NO_X flow balance. The problem that was encountered with this clamp was that it was not a positive method of adjusting the restriction on the capillary. The clamp compression was affected by the flexible material on which the clamp was mounted and the variable flexibility of the Teflon[®] capillary as it was heated. This caused the restriction on the capillary to change with time and caused permanent deformation of the capillary, allowing only an adjustment that would increase the restriction. Oxygen Measurement. Oxygen (02) was measured by a Beckman model OM-11 oxygen analyzer. This analyzer uses a polagraphic-type sensor unit to measure oxygen concentration. An advanced sensor and amplification system combine to give an extremely fast response and high accuracy. Specified response for 90 percent of final reading is less than 200 milliseconds (ms) with an accuracy of less than +0.1-percent 02. The range of this unit is a fixed 0 to 100 percent 02 concentration.

EMISSIONS INSTRUMENTATION MODIFICATION STATUS DURING THE TESTING OF THE IO-360-B1BD ENGINE. The tests conducted with the Avco Lycoming to IO-360-B1BD engine utilized the model 742 oxygen (O₂) analyzer and a prototype Beckman model 951H oxides of nitrogen (NO_X) analyzer.

The model 742 oxygen (02) analyzer did not have the extremely fast response rate of the Beckman model OM-11 analyzer, and it was not as accurate. The data recorded with this analyzer reflect these deficiencies.

DESCRIPTION OF SAMPLE HANDLING SYSTEM.

Exhaust samples are transported to the analysis instrumentation under pressure through a 35-foot-long, 3/8-inch o.d., heated, stainless steel sample line. The gas is first filtered and then pumped through this line by a heated Metal Bellows model MB-158 high temperature stainless steel sample pump. The pump, filter, and line are maintained at a temperature of 300° +4° F to prevent condensation of water vapor and hydrocarbons. At the instrument console, the sample is split to feed the hydrocarbon, oxides of nitrogen, and CO/CO2/O2 subsystems which require different temperature conditioning. The sample gas to the total hydrocarbon subsystem is maintained at 300° F, while the temperature of remaining sample gas to the NO_X and $CO/CO_2/O_2$ system is allowed to drop to 150° F. Gas routed to the oxides of nitrogen subsystem is then main-tained at 150° F, while the gas to the $CO/CO_2/O_2$ subsystem is passed through a 32° F condenser to remove any water vapor present in the sample. Flow rates to each analyzer are controlled by a fine-metering value and are maintained at predetermined values to minimize sample transport and system response time. Flow is monitored at the exhaust of each analyzer by three 15-centimeter (cm) rotameters. Two bypasses are incorporated into the system to keep sample transport time through the lines and condenser to a minimum without causing adverse pressure effects in the analyzers.

DESCRIPTION OF FILTRATION SYSTEM.

Particulates are removed from the sample at three locations in the system, thereby minimizing downtime due to contaminated sample lines and analyzers (figure 5). Upstream of the main sample pump is a heated clamshell-type stainless steel filter body fitted with a Whatman GF/C glass fibre paper filter element capable of retaining particles in the 0.1-micron range. A similar filter is located in the total hydrocarbon analyzer upstream of the sample capillary. A Mine Safety Appliances (MSA) type H Ultra Filter capable of retaining 0.3-micron particles is located at the inlet to the oxides of nitrogen and $CO/CO_2/O_2$ subsystem.

COMPUTATION PROCEDURES.

The calculations required to convert exhaust emission measurements into mass emissions are the subject of this section.

Exhaust emission tests were designed to measure CO₂, CO, unburned hydrocarbons (HC), NO_X, and exhaust excess O₂ concentrations in percent or ppm by volume. Mass emissions were determined through calculations utilizing the data obtained during the simulation of the aircraft LTO cycle and from modal lean-out data.

COMBUSTION EQUATION. The basic combustion equation can be expressed very simply:

Fuel + Air = Exhaust Constituents

An initial examination of the problem requires the following simplifying assumptions:

1. The fuel consists solely of compounds of carbon and hydrogen.

2. The air is a mixture of oxygen and inert nitrogen in the volumetric ratio of 3.764 parts apparent nitrogen to 1.0-part oxygen (see appendix B for additional details).

3. If a stoichiometric combustion process exists, the fuel and air are supplied in chemically correct proportions.

4. The fuel (which consists usually of a complex mixture of hydrocarbons) can be represented by a single hydrocarbon having the same carbon-hydrogen ratio and molecular weight as the fuel; usually C_8H_{17} as an average fuel.

Applying the above assumptions for stoichiometric conditions, a useful general reaction equation for hydrocarbon fuel is:

 $M_{fC8H_{17}} + M_{a} [0_{2} + 3.764N_{2} + M_{w}H_{2}0] \rightarrow M_{1}C0_{2} + M_{3}H_{2}0 + M_{5}N_{2}$ (1) (references 3 and 4)

Where

ere M_f = Moles of Fuel M_a = Moles of Air or Oxygen M₁ = Moles of Carbon Dioxide (CO₂) M₃ = Moles of Condensed Water (H₂O) M₅ = Moles of Nitrogen (N₂)--Exhaust 3.764M_a = Moles of Nitrogen (N₂)--In Air M_aM_w = Moles of Humidity (H₂O)--In Air

The above equation is applicable to dry air when M_w is equal to zero.

From equation (1), and assuming dry air with one mole of fuel (Mf=1.0), the stoichiometric fuel-air ratio may be expressed as:

$$(F/A)_{g} = \frac{Wt. Fuel}{Wt. Air Required} = \frac{12.011 (8) + 1.008 (17)}{12.25 [32.000 + 3.764(28.161)]}$$
 (2)

$$(F/A)_{B} = \frac{113.224}{12.25(137.998)} = 0.067$$

The mass carbon-hydrogen ratio of the fuel may be expressed as follows:

$$C/H = \frac{12.011(8)}{1.008(17)} = \frac{96.088}{17.136} = 5.607$$
 (3)

The atomic hydrogen-carbon ratio is

$$17/8 = 2.125$$
 (4)

The stoichiometric fuel-air ratio may be expressed as a function of the mass hydrogen-carbon ratio of the fuel. The derivation of this equation is presented in reference 3.

(5)

$$(F/A)_{s} = \frac{C/H + 1}{11.5(C/H+3)}$$

$$(F/A)_8 = 0.067$$
 for a mass hydrogen-carbon ratio of 5.607

With rich (excess fuel) mixtures, which are typical for general aviation piston engines, some of the chemical energy will not be liberated because there is not enough air to permit complete oxidation of the fuel. Combustion under such conditions is an involved process. By making certain simplifying assumptions based on test results, the effect of rich mixtures may be calculated with reasonable accuracy.

For rich (excess fuel) mixtures, equation (1) will now be rewritten to express the effects of incomplete combustion:

$$M_{fC8H_{17}} + M_{a} (O_2 + 3.764N_2 + M_{w}H_{2}O) \rightarrow M_{1}CO_2 + M_{2}CO + M_{3}H_{2}O + M_{4}H_2 + M_{4}O_2 + M_{4}O$$

$$M_5N_2 + M_6NO + M_7CH_4 + M_8O_2 + M_9C$$
 (6)

Since only a limited number of the exhaust constituents were measured during the testing of general aviation piston engines, the above equation can only be solved by applying certain expeditious assumptions and imperical data.

An important requirement of the FAA/NAFEC General Aviation Piston Engine Emissions Test Program was the accurate measurement of air and fuel flows. These parameters provide the data for determining engine mass flow (W_m) and with the aid of figure 9 (developed from reference 5) it is a simple computation to calculate the total moles (M_{tp}) of exhaust products being expelled by general aviation piston engines.

 $(M_{tp}) = W_m \text{ (engine mass flow) + (exh. mol. wt)}$ (7)

Since the unburned hydrocarbons (HC) and oxides of nitrogen (NO_x) are measured wet, it becomes a very simple matter to compute the moles of HC and NO_x that are produced by light-aircraft piston engines.

 M_7 (Moles of HC) = (ppm + 10⁶) x M_{tp} (8)

 $M_6 \text{ (Moles of NO}_x = (ppm + 10^6) \times M_{tp} \tag{9}$

If the dry products (M_{dp}) of combustion are separated from the total exhaust products (M_{tp}) it is possible to develop a partial solution for five of the products specified in equation 6.

This can be accomplished as follows:

The summation of the mole fractions (MF)d for dry products is:

 $m_1 + m_2 + m_4 + m_5 + m_8 = 1.0000$ (10)

 $m_1 = MF(CO_2) = %CO_2$ (measured dry), expressed as a fraction

 $m_2 = MF(CO) = %CO$ (measured dry), expressed as a fraction

 $m_4 = MF(H_2) = K_4$ (%CO) (see figure 10, also references 4, 5, and 6), expressed as a fraction

 $m_8 = MF(O_2) = %O_2$ (measured dry), expressed as a fraction

 $m_5 = 1.0000 - (m_1 + m_2 + m_4 + m_8) = %N_2$ (dry), expressed as a (11) fraction

Utilizing the nitrogen balance equation, it is now possible to determine the moles of nitrogen that are being exhausted from the engine.

$$M_5 = 3.764 M_a - (M_6 + 2); M_6 = moles (NO)$$
 (12)

The moles of exhaust dry products (M_{dp}) may now be determined by dividing equation 12 by equation 11.

 $M_{dp} = M5 + m_5$ (13)

Using all the information available from equations (7), (8), (9), (10), (11), (12), and (13), it is now possible to determine the molar quantities for seven exhaust products specified in equation 6.

Moles $(CO_2) = M_1 = m_1 \times M_{dp}$ (14)

Moles (CO) = $M_2 = m_2 \times M_{dp}$ (15)

Moles $(H_2) = M_4 = m_4 \times M_{dp}$ (16)

Moles $(N_2) = M_5 = m_5 \times M_{dp}$ (17)

Moles
$$(0_2) = M_8 = m_8 \times M_{dp}$$
 (18)

Moles (CH4) =
$$M_7$$
 = (ppm + 10⁶) x M_{tp} (19)

Moles (NO) =
$$M_6$$
 = (ppm + 10⁶) x M_{tp} (20)

To determine M₃ (Moles of condensed H₂O), it is now appropriate to apply the oxygen balance equation.

$$M_3 = M_a (2 + M_w) - (2M_1 + M_2 + M_6 + 2M_g) = Moles (H_20)$$
(21)

The remaining constituent specified in equation 6 may now be determined from the carbon balance equation 22.

$$M_{9} = 8M_{f} - (M_{1} + M_{2} + M_{7})$$
(22)

A check for the total number of exhaust moles (M_{tp}) , calculated from equation 9 may now be determined from equation 23.

$$M_{tp} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9$$
(23)

$$m_1 + m_2 + m_3 + m_4 + m_5 + m_6 + m_7 + m_8 + m_9 = 1.0000$$
 (24)

 $m_{1} = MF(CO_{2}) = M_{1} + M_{tp}$ $m_{2} = MF(CO) = M_{2} + M_{tp}$ $m_{3} = MF(H_{2}O) = M_{3} + M_{tp}$ $m_{4} = MF(H_{2}) = M_{4} + M_{tp}$ $m_{5} = MF(N_{2}) = M_{5} + M_{tp}$ $m_{6} = MF(NO) = M_{6} + M_{tp}$ $m_{7} = MF(CH_{4}) = M_{7} + M_{tp}$ $m_{8} = MF(O_{2}) = M_{8} + M_{tp}$ $m_{9} = MF(C) = M_{9} + M_{tp}$

The exhaust constituent mass flow rates may be computed in the following manner using each exhaust constituents molar constant with the appropriate molecular weight.

M1	x	44.011	-	CO2 1	in 1b/h	(25)
M2	x	28.011	-	CO ir	n 1b/h	(26)

M3	x	18.016 = H ₂ O in 1b/h	(27)
M4	x	$2.016 = H_2 \text{ in } 1b/h$	(28)
M5	x	28.161 = N ₂ in 1b/h	(29)
M6	x	30.008 = NO in 1b/h	(30)
M7	x	16.043 = CH4 in 1b/h	(31)
Mg	x	$32.000 = 0_2$ in 1b/h	(32)
Mg	x	12.011 = C in 1b/h	(33)

The exhaust fuel flow (W_{fe}), base on exhaust constituents, can now be calculated on a constituent by constituents basis as follows:

$(M_1 + M_2 + M_9) \times 12.011 = 1b/h$	(34)
$M_7 \times 16.043 = 1b/h$	(35)
$[(M_3 - M_a M_w) + M_4 + 2.016] = 1b/h$	(36)
$W_{fe} = (34) + (35) + (36) = 1b/h$	(37)

In a similar manner the exhaust airflow (W_{ae}) can also be calculated on a constituent by constituent basis:

$M_1 \times 32.000 \ lb/h$	(38)
$M_2 \times 16.000 = 1b/h$	(39)
$(M_3 \times 16.000) + (M_a M_w \times 18.016) = 1b/h$	(40)
$M_5 \times 28.161 = 1b/h$	(41)
$M_6 \times 30.008 = 1b/h$	(42)
$M_8 \times 32.000 = 1b/h$	(43)
$W_{ae} = (38) + (43) = 1b/h$	(44)

Using equations (37) and (44) it is now possible to determine a calculated fuel-air ratio on the basis of total exhaust constituents.

 $(F/A)_{calculated} = (37) + (44)$ (45)

RESULTS

GENERAL COMMENTS.

General aviation piston engine emission tests were conducted to provide the following categories of data:

1. Full-rich (or production fuel schedule) baseline data for each power mode specified in the LTO test cycle.

2. Lean-out data for each power mode specified in the LTO test cycle.

Data for the above categories at different spark settings.

4. Data for each power mode specified in the LTO test cycle utilizing different quantities of cooling air.

RESULTS OF BASELINE TESTS (LANDING-TAKEOFF CYCLE EFFECTS).

Based on an analysis of the factors affecting piston engine emissions, it can be shown that the mode conditions having the greatest influence on the gross pollutant levels produced by the combustion process are taxi, approach, and climb when using the LTO cycle defined in tables 3, 4, and 5. The five-mode LTO cycle shows that approximately 99 percent of the total cycle time (27.3 min) is attributed to these three modal conditions. Furthermore, the taxi modes (both out and in) account for slightly less than 59 percent of the total cycle time. The remainder of the time is almost equally apportioned to the approach and climb modes (22 and 18 percent, respectively).

As a result of these time apportionments, it was decided that an investigation and evaluation of the data should be undertaken to determine which mode(s) has the greatest influence on improving general aviation piston engine emissions. The subsequent sections of this report will show the exhaust emissions characteristics for an Avco Lycoming IO-360-BlBD engine (S/N 887-X) and what improvements are technically feasible within the limits of safe aircraft/engine operational requirements based on sea level propeller test stand evaluations conducted at NAFEC.

The first set of data to be presented and evaluated is the five-mode baseline runs conducted to establish the current production full-rich exhaust emissions characteristics of the IO-360-B1BD engine. These are summarized in tabular form in appendix C (see tables C-1 through C-16) and includes data that were obtained for a range of sea level, ambient conditions specified as follows:

Induction air temperature (T_i)	= 50° F to 110° F
Cooling air temperature (T _c)	$= T_{1} + 10^{\circ} F$
Induction air pressure (Pi)	= 29.20 to 30.50 inHgA
Induction air density (ρ)	$= 0.0690 \text{ to } 0.0795 \text{ 1b/ft}^3$

Figure 11 presents five-mode baseline data in bargraph form (for different sea level ambient conditions). It also compares the total emissions characteristics of the IO-360-B1BD engine (current production configuration) with the proposed EPA standards as a function of percent of standard. The data that were utilized to develop figure 11 are tabulated in appendix C and plotted in various forms for analysis and evaluation in figures C-1 through C-19. Tables C-14 and C-15 provide the data tabulation that was used to construct the bargraphs for $T_1 = 60^\circ$ F and $T_1 = 103^\circ$ F.

RESULTS OF LEAN-OUT TESTS.

In the subsequent sections of this report it will be shown what improvements can be achieved as a result of making lean-out adjustments to the fuel metering device: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out the climb mode to "best power" in combination with taxi and approach mode leaning.

EFFECTS OF LEANING-OUT ON CO EMISSIONS. The test data obtained as a result of NAFEC testing the Avco Lycoming IO-360 BlBD have been evaluated on the basis of leaning-out the taxi, approach, and climb modes while continuing the operation of the test engine at the production rich and lean limits in the takeoff mode. The results of leaning-out under this procedure are shown in bargraph form in figure 12.

When the taxi modes (out and in) were leaned-out from the production rich or lean limits to a fuel-air ratio of 0.075 or lower, but not lower than stoichiometric (F/A = 0.067) (see figure 12), CO emissions were reduced approximately 20 percent. However, adjustments to the taxi mode fuel schedule alone are not sufficient to bring the total five-mode LTO cycle CO emission level below the proposed federal standard.

Simultaneously, leaning-out both the taxi and approach modes to fuel-air ratios between 0.067 to 0.075 will result in additional improvements in CO emissions. In the case of operating the engine at production rich limits for takeoff and climb while operating taxi and approach at F/A = 0.075, the total five-mode LTO cycle CO emission level will be reduced approximately 60 percent as shown in figure 12.

Additional improvements in the total five-mode LTO cycle for CO emissions can be achieved, as shown in figure 12, if the engine as adjusted to operate at "best power" fuel-air ratios in the climb mode while operating the approach and taxi modes at F/A = 0.075 or lower (not lower than fuel-air ratio = 0.067).

AVERAGE TOTAL EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-B1BD ENGINE OPERATING UNDER VARYING SEA LEVEL INDUCTION AIR TEMPERATURES--TABLE 5 MINIMUM FIVE-MODE LTO CYCLE FIGURE 11.

MAL BRISSIONS CHARACTERISTICS FOR AN AVOD INCO - 160-8180 EXGINE VOTE DIFFERENT INEL SCHTTORI

NOTE:

- 1. THIS FIGURE IS BASED ON THE TABLE 5 LTO CYCLE WITH THE CLIMB MODE AT APPROXIMATELY 75 PERCENT POWER.
- 2. THE MINIMUM F/A RATIO SETTING FOR THIS FIGURE IS 0.075 FOR THE APPROACH AND TAXI MODES; T. O. AND CLIMB WERE SET AT BEST POWER F/A'S FOR THE LOWEST BARGRAPH.

The preceeding evaluation of CO emissions characteristics was based on the LTO cycle defined by table 5. However, the EPA five-mode LTO cycle defined by table 2 implies that the climb mode power levels can range from 75 to 100 percent. The exhaust emissions produced will be drastically affected. Examination of the measured data produced at NAFEC show that there is a significant difference in each engine's total LTO cycle emissions output when climbing at 100-percent power compared to climbing at 75-percent power. This data evaluation also show that whereas a CO limit of 0.042 pounds per cycle per rated brake horsepower may be achievable as described previously by using the LTO cycle defined by table 5; it is not achieveable using an LTO cycle defined by table 4. When one considers the following safety considerations: (1) sea level, hot-day takeoff requirements with an aircraft at heavy gross weight and (2) altitude hot-day takeoff requirements with an aircraft at heavy gross weight, it would appear that the EPA 0.042 limit for CO is not realistic and cannot be complied with, unless engine operational and safety limits are totally ignored.

Table 6 provides a summary of the NAFEC data which indicate what levels of improvement in CO emissions can be achieved by applying simple fuel management techniques (leaning-out by mixture control manipulations), albeit with drastically reduced margins between actual measured maximum cylinder head temperature (CHT) and the maximum CHT limit.

<u>Example</u>: Consider the engine installed in a sea level propeller stand and operating with cooling air at a $\Delta P = 3.0$ inH20 and the following critical test conditions:

- 1. Ambient conditions (pressure, temperature, and density)--sea level standard day
- 2. Fuel schedule--production rich setting
- 3. Power setting--100%
- 4. Measure max. CHT--435° F
- 5. Max. CHT limit--500° F
- 6. Margin-- (5)minus (4) --65° F

If this engine fuel schedule setting is adjusted to best power (all other parameters constant based on above conditions), the following changes take place:

- 1. CO emissions are improved by 105% (nominal)
- 2. Measured max. CHT increases 9.2% (from 435° F to 475° F)
- 3. Max. CHT -- 500° F
- 4. Margin (3) minus (2) = 25° F
- 5. Reduction in margin (max CHT) -- (40 + 65) x 100 = 61.5%
| | Max, Limit
CHT-°F | 2222 I | |
|--------------|----------------------|---|--|
| LnH20 | Max. | -
495
495
495
375
81.
For
81.
Bay
475
475
475
475
475
375 | |
| ΔP = 3.0 : | Max.
CHT-°F | -
475
475
475
350
350
For
For
Standard
475
475
475
475
475
475
475 | |
| COLING AIR | CO
<u>1b/Mode</u> | 1.067
0.425
7.083
2.250
10.825
0.060
0.042
+.018
4.2.9
1.067
1.067
1.067
0.042
4.500
2.250
8.242
0.046
0.046
0.046
0.042
+.004
109.5 | |
| OTED)O | <u>F/A</u> | 0.0750
0.0850
0.0850
0.0750
0.0750
0.0750
0.0750 | |
| CEPT AS 1 | Max.
CHT-°F | -
435
435
435
335
335
Column
For
For
SL
435
420
335 | |
| DARD DAY (EX | CO
<u>1b/Mode</u> | 2.400
0.640
10.667
5.000
18.707
0.104
0.104
0.042
+.062
147.6
247.6
2.400
0.640
0.640
0.640
14.707
14.707
0.082
0.042
+.040
15.2
195.2 | |
| VEL STAN | <u>F/A</u> | 0.0925
0.0990
0.0925
0.0925
0.0925
0.0925
0.0925 | |
| ENGINESEA LE | Modes | <pre>1 Taxi 2 Takeoff (100%) 3 Climb (100%) 4 Approach 5 lb/Cycle/RBHP 7 Federal Limit 8 Difff. = 6 - 7 9 (8 + 7)x100 10 % of STD = 9 +100 10 % of STD = 9 +100 11 Taxi 11 Taxi 12 Takeoff (100%) 13 Climb (75%) 14 Approach 15 lb/Cycle(RBHP 17 Federal Limit 18 Diff. = 6 - 0 19 (19 + 0) x100 20 % of STD = 0 +10</pre> | |

SUMMARY OF EXHAUST EMISSIONS (CO) REDUCTION POSSIBILITIES FOR AN AVCO LYCOMING IO-360-B1BD TABLE 6.

V

Now, if we apply the above results to a sea level hot-day condition, we arrive at the following results:

Production Rich Limit Schedule (100% power)

- 1. Ambient conditions--sea level hot day
- 2. Fuel schedule-production rich setting
- 3. Power setting--100% (nominal)
- 4. Measured max. CHT--445° F
- 5. Max. CHT limit-500° F
- 6. Margin--(5) minus (4) = 55° F

Best Power Fuel Schedule (100% Power)

- 1. Ambient conditions--sea level hot day
- 2. Fuel schedule--best power fuel schedule
- 3. Power setting--100% (nominal)
- 4. Measured max. CHT--495° F
- 5. Max. CHT limit--500° F
- 6. Margin-(5)minus(4)= 5° F
- 7. Reduction in margin (max. CHT)--(50 + 55) x 100 = 90.9%

EFFECTS OF LEANING-OUT ON HC EMISSIONS. The test data show that the Lycoming engine can be leaned-out sufficiently in the taxi mode to bring the unburned hydrocarbon emissions below the federal standard (figure 12). Additional leaning-out in the approach and climb modes provides added improvements, but is not required to produce HC emission levels below the federal standard. The taxi-out mode data from this engine were not influenced by procedural effects such as clearing-out prior to conducting tests. Therefore, this engine exhibits somewhat higher hydrocarbon levels than other naturally aspirated engines in the same power/size category.

<u>EFFECTS ON NO_x EMISSIONS</u>. Oxides of nitrogen emissions are not improved as a result of applying lean-out adjustments to the fuel metering devices. In fact, the NO_x levels are at their lowest when the engine is operating full rich as shown in figure 11. Test results have shown that if all the test modes (take-off, climb, approach, and taxi) were leaned-out excessively (F/A = 0.067), the NO_x emission level would exceed the federal standard.

The negative effect on NO_x emissions is one of the reasons why it was decided to evaluate and study the effects of adjusting/manipulating selected mode conditions rather than adopt the philosophy of adjusting all modes.

EFFECTS ON ALLOWABLE MAXIMUM CYLINDER HEAD TEMPERATURE. One of the major problems that occurs as an effect of leaning-out general aviation piston engines in order to improve emissions is the increase or rise in maximum cylinder head temperatures. Most general aviation aircraft are designed to operate with cooling air pressure differentials of 4.0 inH₂O or less. The tests conducted with the Avco Lycoming engine utilized 3.0 inH₂O as the basic cooling flow condition.

Additional tests were conducted using variations in cooling air flow to evaluate these effects on different lean-out schedules. Some of the tests were also conducted under different ambient conditions so that changes in ambient conditions could also be evaluated.

Data shown in tables C-1 through C-15 and plotted in figures 13 through 15 show the results of these tests.

In summary, it can be concluded that any attempts to lean-out current production type horizontally opposed general aviation piston engines in the takeoff mode to F/A ratios lower than production lean limits will produce CHT's that are higher than the manufacturer's specified limit.

Any attempt to lean-out the climb mode to F/A ratios below best power will result in higher than normal CHT's. This could become particularly acute under hot-day takeoff and climb conditions at sea level or altitude.

RESULTS OF TESTS WITH VARYING SPARK SETTINGS.

This engine was also evaluated with different spark settings. The basic production setting is 25° before top dead center (BTC.) Two other settings were evaluated: 20° BTC and 15° BTC. Table 7 summarizes the results of all the tests conducted and presents the data on an average-of-three runs basis. The three basic power modes (takeoff, climb, and approach--100, 75-80, and 40 percent, respectively) are tabulated using average data based on three test runs for each power mode condition and each spark setting.

The percent changes in emission output are shown in table 7. For a change in the spark setting from 25° BTC to 20° BTC it may be noted that the CO increases 0.3 to 5 percent in the takeoff and climb modes for a 5-percent reduction in power and a nominal 3.85-percent reduction in maximum CHT. Even though the percent changes in unburned HC and NO_X appear to be significant, it should be noted that both of these pollutants are being measured on a fraction of a percent basis. Changing the spark setting from 25° BTC to 15° BTC shows that the CO emissions increase (0.8 to 1.6 for takeoff and climb, respectively) with a nominal 14.5-percent reduction in power and a 7.7-percent reduction in maximum CHT.

The data presented in table 7 and the plotted results in figures 16 through 21, for the various power conditions and spark setting indicate that the most optimum condition for the IO-360-BIBD engine is the 25° BTC spark setting if it is important not to compromise the available power at the significant modal conditions (takeoff, climb, and approach).

SUMMARY OF ENGINE PERFORMANCE AND EXHAUST EMISSIONS CHARACTERISTICS FOR THREE DIFFERENT SPARK SETTINGS (°BTC---FULL-RICH FUEL SCHEDULE) TABLE 7.

-in-

Run No.	3,16,30 4,20,31 5,24,32		37,50,64 38,54,65 39,58,56		71,84,98 72,88,99 73,92,100			
Max CHT	438 418 336		420 403 337		405 385 334	(Xex)		
HAA YON	127 200 113		103 140 119		883	ZA CHT	-4.11 -3.59 +0.30	-7.53 -7.89 -0.60
HC PPM	1900 1683 1858		1800 1542 1717		1617 1425 1567	(X) TONO	-18.90 -30.00 + 5.31	-39.37 -54.33 -17.70
2CO	10.4 8.8 9.4		10.7 9.3 9.1	•	11.2 10.4 9.6	tc (3)	5.26 8.38 7.59	14.89 15.33 15.66
2002	7.4		7.2 7.9 8.1		6.9 7.5 8.1	AXCO A	+0.3 -0.3	+1.6 +0.2 +0.2
F/A	0.0972 0.0896 0.0868		0.0990 0.0913 0.0883		0.0969 0.0927 0.0895	AZC02	+0.2	- 0.8 - 0.8
Ma 1b/h	1179 853 486		1165 843 462		1179 834 449	AH AX	- 5 - 11	-15 -14 -25
Mr.	114.6 76.4 42.2		115.3 77.0 40.8	ė l	114.3 77.3 40.2	ifnal r Temp. F)	5 4.5 6.5	7 6.5 7.5
Ind. Air Temp. (°F)	55 53 33 54	Ind. Air Temp. (°F)	8 8 9 9 9 9 9 9 9	Ind. Air Tem (°F)	60 60 62	Nom Ind. A1 IT(Max) (*	115 115 115 115 115 115 115 115 115 115	- 2 5 5 5
HP 25° BTC	173 130 64	HP 20° BTC	164 124 57	HP 15° BTC	147 112 48	AHP ACT	0.0F	-26 -18 -16
Torque 1b-ft 25° BTC	336 281 142	Torque 1b-ft 20° BTC	319 267 127	Torque 1b-ft 15° BTC	285 242 108	∆Torque Ib-ft	-17 -14 -15	-51 -39 -34
RPN	2700 2430 2350		2700 2430 2350		2700 2430 2350		25°-20° BTC 25°-20° BTC 25°-20° BTC	25°-15° BTC 25°-15° BTC 25°-15° BTC
Mode Cond.	Takeoff Climb Approach		Takeoff Climb Approach		Takeoff Climb Approach		Takeoff Climb Approach	Takeoff Climb Approach

FIGURE 19. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS--CLIMB MODE (HC AND NOX)

FIGURE 20. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS--APPROACH MODE (CO2 AND CO)

FIGURE 21. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS--APPROACH MODE (HC AND NO_X)

SUMMARY OF RESULTS

EXHAUST EMISSIONS.

1. The IO-360-B1BD engine did not meet the proposed EPA carbon monoxide and hydrocarbon standard for 1979/80, under sea level standard-day conditions.

2. The IO-360-B1BD engine meets the proposed EPA oxides of nitrogen standard for 1979/80.

3. The engine fuel metering device could be adjusted on the test stand to reduce the current CO exhaust emission level, but not to levels required by proposed EPA standards when operating under the most severe LTO cycle requirements.

4. The engine could be adjusted on the test stand to reduce the unburned hydrocarbon exhaust emission level, but not to levels required by proposed EPA standards.

MAXIMUM CYLINDER HEAD TEMPERATURES.

1. Adjusting the fuel metering device in the takeoff mode to the constant best power operation results in an increase in maximum CHT, which will exceed the engine specification limit on the test stand if cooling air $\Delta P = 3.0$ inH₂O or less.

2. Adjusting the fuel metering device in the climb mode to constant best power operation will result in an increase in maximum CHT. This latter change will necessitate an increase in cooling air flow to provide adequate temperature margins for hot-day operations. An increase in cooling air differential pressure of approximately 1.0 inH₂O may be required for certain critical installations.

3. No critical maximum CHT's result from leaning-out the approach and taxi modes.

CRITICAL LANDING AND TAKEOFF CYCLE.

1. The most critical LTO cycle is the cycle defined in this report as maximum five-mode LTO cycle (table 4). Engine operation in accordance with the maximum five-mode LTO cycle could not be adjusted to meet the proposed EPA emission standards for 1979/80 without exceeding engine maximum CHT limits.

2. Engine operation in accordance with the minimum five-mode LTO cycle (table 5) could be adjusted to meet the proposed EPA emission standards for 1979/80 without exceeding engine maximum CHT limits.

OPTIMUM SPARK SETTING.

1. The 25° BTC spark setting produces optimum test results:

a. Optimum Power

b. Optimum Maximum CHT

c. Emissions (CO, HC, and NO_x) compatible with optimum power and acceptable CHT margins.

2. The 15° and 20° BTC spark settings produced higher CO emissions even though HC and NO_X were lower. However, these settings also resulted in 5 to 25 percent decreases in power for the takeoff, climb, and approach modes.

CONCLUSIONS

The following conclusions are based on the testing accomplished with the Avco Lycoming 10-360-BlBD engine.

1. Simple fuel management adjustments (altering of fuel schedule) do not appear to provide the sole capability to safely reduce light-aircraft piston engine exhaust emissions.

2. The test data indicate that fuel management adjustments must be combined with engine/nacelle cooling modifications before safe and optimum low-emission aircraft/engine combinations can be achieved.

3. Spark settings other than the 25° BTC setting do not appear to produce significantly beneficial improvements in exhaust emissions.

4. The EPA CO limit of 0.042 lb/cycle/rated BHP did not appear to be achievable when hot-day takeoff and climb requirements are impacted by aircraft heavy gross weight and the need to pay close attention to CHT limitations.

5. An accessment of the maximum five-mode LTO cycle (table 4) test data indicate that the following standard changes should be made to the proposed EPA emission standards:

For 1979/1980 (lb/cycle/rated BHP)	Recommended Standard for 1979/80 (1b/cycle/rated BHP)			
CO Standard 0.042	0.075			
HC Standard 0.0019	0.0025			
NO _x Standard 0.0015	0.0015			

6. To avoid CHT problems in the takeoff mode (100-percent power), it is advisable not to adjust the fuel metering device. Engine operation in this mode should continue to be accomplished within current production rich/lean limits.

REFERENCES

1. <u>Control of Air Pollution from Aircraft Engines</u>, Environmental Protection Agency, Federal Register Volume 38, No. 136, Part II, July 17, 1973.

2. <u>Flow of Fluids Through Valves, Fittings, and Pipe</u>, Crane Industrial Products Group, Technical Paper No. 410, 1957.

3. Liston, J., <u>Power Plants for Aircraft</u>, McGraw-Hill Book Company, Inc., New York, 1953.

4. Obert, E. F., <u>Internal Combustion Engines and Air Pollution</u>, Intext Educational Publishers, New York, 1973.

5. D'Alleva, B. A., <u>Procedure and Charts for Estimating Exhaust Gas</u> <u>Quantities and Compositions</u>, General Motors Corp., Research Laboratories, GMR-372, May 15, 1960.

6. Graf, Gleeson, and Paul, <u>Interpretation of Exhaust Gas Analyses</u>, Engineering Experiment Station, Oregon State Agricultural College, Bulletin Series No. 4, 1934.

7. Guide to Aviation Products, Humble Oil and Refining Company, 1969.

8. NAPTC Fuel Sample Analysis -- 100/130 Octane Aviation Gasoline, 1976.

9. G.E. Aircraft Propulsion Data Book, General Electric, 1957.

10. Aeronautical Vest-Pocket Handbook, Pratt and Whitney Aircraft, 1957.

APPENDIX A

FUEL SAMPLE ANALYSIS

COMBUSTIBLE ELEMENTS IN FUELS (AVIATION FUEL).

1. Carbon and hydrogen are the predominant combustible elements in fuels (aviation type), with small amounts of sulphur as the only other fuel element.

2. Liquid fuels are mixtures of complex hydrocarbons.

3. For combustion calculations gasoline or fuel oil can be assumed to have the average molecular formula $C_{8H_{17}}$.

Note: The Exxon[®] data presented in table A-1 may be found in reference 7.

TABLE A-1. TYPICAL SPECIFICATIONS FOR AVIATION FUELS

	D910-76	Exxon	D910-70	Exxon
	Grade	Aviation (Gas Grade	Aviation Gas
Item	100/130	100/130	115/145	115/145
Freezing Point, °F	-72 Max.	Below -76	-76 Max	. Below -76
Reid Vapor Press., PSI	7.0 Max.	6.8	7.0 Ma	x. 6.8
Sulfur, % by Weight	0.05 Max.	0.02	0.05 Ma	x. 0.02
Lower Heating Value, BTU/1b	18,720 Min.		18,800	Min.
Heat of Comb. (NET). BTU/1b		18,960		19,050
Distillation,				
%Evaporated				
At 167° F (Max.)	10	22	10	21
At 167° F (Min.)	40		40	
At 221° F (Max.)	50	76	50	62
At 275° F (Max.)	90	97	90	96
Distillation End	338° F Max.		338° F 1	Max.
Point				
Final Boiling Point °F		319	002,81.03	322
Tel Content, ML/U.S.Gal.	4.0 Max.	3.9	4.6 Max	. 4.5
Color	Green	Green	Purple	Purple

A-1

4. NAFEC used 100/130 (octane rated) aviation gasoline for the piston engine emission tests. The following analysis of a typical fuel sample (table A-2) was made at the U.S. Naval Air Propulsion Test Center (NAPTC), Trenton, N.J. (reference 8).

TABLE A-2. ANALYSIS OF NAFEC FUEL SAMPLE, 100/130 FUEL

	NAFEC Sample	Grade 100/ Spec Limit	130 (MIL-G-5572E) s
Item	100/130	Min.	Max.
Freezing Point, °F	Below -76	°F	-76
Reid Vapor Press., PSI	6.12	5.5	7.0
Sulfur % By Weight	0.024	1-A sides of he	0.05
Lower Heating Value BTU/1b		18,700	
Heat of Comb. (NET) BTU/1b	18,900		
Distillation,		Dis	tillation
%Evaporated		%Ev	aporated
At 158° F	10	alta tvA	
At 167° F (Min)		167° F	10
At 167° F (Max.)			40 167° F
At 210° F	40		
At 220° F	50		
At 221° F		221° F	50
At 242° F	90		
At 275° F		275° F	90
Distillation Erd % int	313° F		338° F
Specific Gravity @60~ W	0.7071	Report	Report
API Gravity @60° F	68.6	No Li	mit
Tel Content, ML/U.S. Gal.	1.84		4.60

Computation for the fuel hydrogen-carbon ratio is based on the fuel net heating value, hf, equal to 18,900 BTU/1b and figure A-1.

.

C/H = 5.6 C = 12.011 C₈ = 8 x 12.011 = 96.088 Hy = (96.088) + 5.6 = 17.159 H = 1.008 Y = (17.159) + 1.008 = 17.022 Use Y = 17

A-2

FIGURE A-1.

. NET HEATING VALUE FOR AVIATION GASOLINE AND CARBON-HYDROGEN RATIO CORRELATION

A-3

APPENDIX B

COMPOSITION OF AIR (GENERAL PROPERTIES)

1. Dry air is a mixture of gases that has a representative volumetric analysis in percentages as follows:

Oxygen (02)--20.99% Nitrogen (N2)--78.03% Argon (A)--0.94% (Also includes traces of the rare gases neon, helium, and krypton) Carbon Dioxide (CO₂)--0.03% Hydrogen (H₂)--0.01%

2. For most calculations it is sufficiently accurate to consider dry air as consisting of:

O₂ = 21.0% N₂ = 79.0% (including all other inert gases)

3. The moisture or humidity in atmospheric air varies over wide limits, depending on meteorological conditions. Its presence in most cases simply implies an additional amount of essentially inert material.

Note: Information given in items 1, 2, and 3 is recommended for computation purposes (references 3, 4, 9, and 10).

TABLE B-1. MASS ANALYSIS OF PURE DRY AIR

	Volumetric	Mole	Molecular	Relative
Gas	Analysis %	Fraction	Weight	Weight
02	20.99	0.2099	32.00	6.717
N ₂	78.03	0.7803	28.016	21.861
A	0.94	0.0094	39.944	0.376
C02	0.03	0.0003	44.003	0.013
Inert Gases	0.01	0.0001	48.0	0.002
	100.00	1.000		28.969 = M for air

4. The molecular weight of the <u>apparent nitrogen</u> can be similarly determined by dividing the total mass of the inert gases by the total number of moles of these components:

 $M_{Apparent} = \frac{2225}{79.01} = 28.161$ Nitrogen 5. This appendix advocates the term nitrogen as referring to the entire group of inert gases in the atmosphere and therefore the molecular weight of 28.161 will be the correct value (rather than the value 28.016 for pure nitrogen).

6. In combustion processes the active constituent is oxygen (02), and the apparent nitrogen can be considered to be inert. Then for every mole of oxygen supplied, 3.764 moles of apparent nitrogen accompany or dilute the oxygen in the reaction:

79.01= 3.764MolesApparentNitrogen20.99MoleOxygen

7. The information given in items 4, 5, and 6 is recommended for computational purposes in reference 4. Therefore, one mole of air (dry), which is composed of one mole of oxygen (O₂) and 3.764 moles of nitrogen (N₂), has a total weight of 137.998 pounds.

 $(0_2 + 3.764 N_2) = 137.998$

This gives the molecular weight of air = 28.97.

Distant D

The first states and the states

APPENDIX C

NAFEC TEST DATA AND WORKING PLOTS FOR ANALYSIS AND EVALUATION OF AVCO LYCOMING IO-360-B1BD ENGINE

LIST OF ILLUSTRATIONS

Figure	Page
C-1 Measured PerformanceAvco Lycoming IO-360-B1BD EngineTakeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0777 1b/ft3	C-1
C-2 Measured PerformanceAvco Lycoming IO-360-B1BD Engine Takeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0720 1b/ft ³	C-2
C-3 Airflow as a Function of Induction Air Specific Weight for an Avco Lycoming IO-360-B1BD EngineNominal Sea Level Test Data	C-3
C-4 Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-4
C-5 Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-5
C-6 Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-6
C-7 Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-7
C-8 Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-8
C-9 Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-9
C-10 Oxides of Nitrogen (NO _x) as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-10

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
C-11	Oxides of Nitrogen (NO _X) as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-B1BD Engine	C-11
C-12	Oxides of Nitrogen (NO _X) as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-BlBD Engine	C-12
C-13	Sea Level Standard-Day Emission Characteristics for an Avco Lycoming IO-360-B1BD EngineCarbon Monoxide	C-13
C-14	Sea Level Standard-Day Emissions Characteristics for an Avco Lycoming IO-360-B1BD EngineUnburned Hydrocarbons	C-14
C-15	Sea Level Standard-Day Emissions Characteristics for an Avco Lycoming IO-360-B1BD EngineOxides of Nitrogen	C-15
C-16	Sea Level Hot-Day (Ti=103° F) Emissions Characteristics for an Avco Lycoming IO-360-B1BD Engine-Carbon Monoxide	C-16
C-17	Sea Level Hot-Day (Ti=103° F) Emissions Characteristics for an Avco Lycoming IO-360-B1BD EngineUnburned Hydrocarbons	C-17
C-18	A Calibration Curve for Taxi Mode Unburned Hydro- carbonsAvco Lycoming IO-360-B1BD Engine	C-18
C-19	Effects of Induction Air Temperature on the Production of Exhaust Unburned Hydrocarbon EmissionsAvco Lycoming IO-360-BIRD Engine	C-19

FIGURE C-1. MEASURED PERFORMANCE--AVCO LYCOMING 10-360-B1BD ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0777 1b/ft³

C-1

FIGURE C-2.

2. MEASURED PERFORMANCE--AVCO LYCOMING 10-360-B1BD ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0720 1b/ft³

C-3

FIGURE C-4. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-B1BD ENGINE

C-5

FIGURE C-6. EX

EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-B1BD ENGINE

FIGURE C-7. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING 10-360-B1BD ENGINE

FIGURE C-8. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES-AVCO LYCOMING IO-360-B1BD ENGINE

FIGURE C-9. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES-AVCO LYCOMING IO-360-B1BD ENGINE

C-9

FIGURE C-10. OXIDES OF NITROGEN (NO_X) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES -- AVCO LYCOMING IO-360-B1BD ENGINE

C-10

FIGURE C-11.

OXIDES OF NITROGEN (NO_X) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES -- AVCO LYCOMING IO-360-B1BD ENGINE

FIGURE C-12. OXIDES OF NITROGEN (NO_X) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CON-STANT FUEL FLOW SCHEDULES -- AVCO LYCOMING IO-360-B1BD ENGINE

SEA LEVEL STANDARD-DAY EMISSION CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-B1BD ENGINE--CARBON MONOXIDE

FIGURE C-15. SEA LEVEL STANDARD-DAY EMISSION CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-B1BD ENGINE-OXIDES OF NITROGEN

FIGURE C-16. SEA LEVEL HOT-DAY (T₁=103° F) EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-B1BD ENGINE--CARBON MONOXIDE

SEA LEVEL HOT-DAY (T1=103° F) EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-B1BD ENGINE--UNBURNED HYDROCARBONS

FIGURE C-18.

A CALBRATION CURVE FOR TAXI MODE UNBURNED HYDROCARBONS--AVCO LYCOMING 10-360-B1BD ENGINE

FIGURE C-19. EFFECTS OF INDUCTION AIR TEMPERATURE ON THE PRODUCTION OF EXHAUST UNBURNED HYDROCARBON EMISSIONS--AVCO LYCOMING IO-360-B1BD ENGINE

TABLE C-1. AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--BASELINE (NO IDLE, FIVE-MODE) SPARK SETTING 250 BTC

Taxi In 30.16 0.0030 53 30.19 1200 8.6 8.6 8.6 8.6 101.1 0.0850 358 346 7.80 8.80 1.40 4350 12.1 8.7 1.6 0.005 17 4 0.578 I 0.019 0.0004 9 61 8.10 9.20 0.36 112 57.3 41.4 1.9 0.06 0.059 0.006 2350 17.0 0.0780 41.5 462.0 0.0898 328 317 337 137 30.18 0.0030 30.17 1 Approact 5 26.0 0.0777 75.0 836.0 108.0 70.4 2.6 0.9 0.23 5.864 0.077 0.019 8.50 8.70 0.28 1700 226 30.18 53 30.13 2430 7680.0 418 404 384 276 128 I Climb 4 115.0 0.0984 30.18 0.0030 30.09 2700 28.8 0.0776 434 420 397 334 172 7.30 10.40 0.24 2075 132.5 120.2 3.2 1.6 0.19 54 53 0.601 0.008 0.001 1 Takeoff 3 9.8 115.6 0.0848 20,000 131 30.18 0.0030 55 30.19 1200 9.8 0.0777 373 356 338 25 7.40 5.50 6.90 13.1 6.2 8.9 0.02 0.295 Taxi Out 2 Run No. Induct. Air Density-lb/ft³ (E) Mode Manifold Air Press.-inHg Induct. Air Press.-inHg Induct. Air Temp.-°F Cooling Air Temp.-°F F/A (Measured) = 9 Engine Speed - RPM Spec. Hum. - 1b/1b Fuel Flow, Wf-lb/h Act. Baro. - inHg Airflow, Wa-lb/h Max. Cht - °F Avg. Cht - °F Min. Cht - °F Corque, 1b-ft NOx-p/m (Wet) HC-p/m (Wet) C02 (Dry) NO_x-1b/Mode IC-1b/Mode CO-1b/Mode CO (Dry) 02 (Dry) EGT - °F Parameter Obs. Bhp C02-1b/h NOx-1b/h C0-1b/h 02-1b/h IC-1b/h 30. 238. п. 15. 17. 20. 98.465. 10. 12. 13. 14. 16.

TABLE C-2. AVCO LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--BASELINE (NO IDLE, FIVE-MODE) SPARK SETTING 25° BTC

2

Taxi In 1.0 0.45 0.004 0.675 0.030 30.32 8.6 0.0791 9.2 102.5 0.0898 30.48 1200 7.20 10.00 0.87 6750 121 32 11.4 327 317 307 33 30.34 17.0 42.0 2350 0.0847 334 314 8.00 9.30 0.32 1975 130 60.8 45.0 1.8 0.6 30.44 0.0791 324 144 0.08 0.062 800°C 64 Approact 32 26.0 0.0788 77.0 858.0 0.0897 2430 30.34 30.40 417 400 382 280 129 8.40 9.20 9.27 0.27 1650 180 10.7 2.6 0.19 6.431 0.077 0.016 51 53 ł Climb 31 30.36 2700 116.0 1187.0 0.0977 28.8 7.40 10.40 0.22 0.0020 0.0787 435 420 395 338 174 30.34 51 53 1 1825 124 136.7 3.0 0.18 0.611 0.007 Takeoff 30 0.0957 12.3 9.2 0.9 30.34 0.0020 30.46 1200 8.8 7970.0 9.8 102.4 384 374 7.80 9.20 0.80 5350 53 0.007 1.840 0.061 0.001 51 361 ł Taxi Out 29 Run No. Induct. Air Density-lb/ft3 F/A (Measured) = 9 / 10 Manifold Air Press.-inHg Mode Induct. Air Press.-inHg Induct. Air Temp.-°F Cooling Air Temp.-°F Engine Speed - RPM - 1b/1b Fuel Flow, Wf-lb/h - fnHg Airflow, Wa-lb/h Avg. Cht - °F Min. Cht - °F Max. Cht - "F **Forque**, 1b-ft NO_X-p/m (Wet) HC-p/m (Wet) NOx-1b/Mode (CO2 (Dry) HC-1b/Mode Act. Baro. Spec. Hum. (Dry) (02 (Dry) CO-1b/Mode Parameter H. - TOE Obs. Bhp C02-1b/h MOx-1b/h C0-1b/h 02-1b/h HC-1b/h 8 · · · · 4 ... 9.6. 10. H. 13. 14. 16. 18.

TABLE C-3. AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--BASELINE 3 (NO IDLE, FIVE-MODE) SPARK SETTING 25° BTC (DRY AIR)

.

.

		Run No.	140	141	142	143	144
	Parameter	lode	Taxi Out	Takeoff	Climb	Approach	Taxi In
1.	Act. Baro inHg		29.84	29.84	29.84	29.84	29.84
2.	Spec. Hum 1b/1b		1	1	1	1	1
	Induct. Air Temp°F		99	55	51	51	56
4.	Cooling Air Temp°F		1	64	63	63	1
5	Induct. Air Pressfi	hR	29.84	29.75	29.83	30.00	29.84
.9	Engine Speed - RPM	,	1200	2700	2430	2350	1200
1.	Manifold Air Press	inHg	10.0	28.9	26.0	17.0	0.6
	Induct. Air Density-	lb/ft3	0.0752	0.0766	0.0774	0.0778	0.0766
.6	Fuel Flow, Wf-lb/h		10.6	112.0	75.0	41.0	10.0
10.	Airflow, Wa-lb/h	(107.0	1155.0	843.0	460.0	98.9
11.	F/A (Measured) =(9)	(10)	0.0991	0.0970	0.0890	0.0891	0.1011
12.	Max. Cht - °F)	403	453	428	345	365
13.	Avg. Cht - °F		379	438	411	338	356
14.	Min. Cht - °F		366	415	394	324	347
15.	EGT - °F		1	1	1	1	1
16.	Torque, 1b-ft		15	342	286	146	25
17.	Obs. Bhp		3	176	132	65	9
18.	% CO2 (Dry)		6.20	7.40	8.20	8.00	9.60
19.	% CO (Dry)		6.70	10.20	8.70	9.30	11.30
20.	% 02 (Dry)		5.80	0.20	0.22	0.28	1.00
21.	HC-p/m (Wet)		26,250	1750	1550	1725	8850
22.	NO _x -p/m (Wet)		133	156	245	164	22
23.	C02-1b/h		10.1	132.5	104.9	56.5	15.5
24.	C0-1b/h		7.0	116.3	70.8	41.8	11.6
25.	02-1b/h		6.9	2.6	2.0	1.4	0.0
26.	HC-1b/h		1.9	1.3	0.85	0.51	0.59
27.	NOx-1b/h		0.018	0.22	0.25	0.09	0.0026
28.	CO-1b/Mode		1.392	0.581	5.904	4.178	0.775
29.	HC-1b/Mode		0.377	0.007	0.071	0.051	0.039
30.	NO _x -1 Mode		0.004	0.001	0.021	0.009	0.0002

TABLE C-4. AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--BASELINE (NO IDLE, FIVE-MODE) SPARK SETTING 25° BTC

4

axi In 29.74 77 29.65 1200 10.7 10.7 10.7 117.5 0.1064 351 341 332 38,000 60 5.90 6.80 6.00 10.5 0.009 0.511 0.205 0.001 1 I 178 17.0 0.0737 41.0 458.5 29.74 2350 29.88 .0894 353 345 334 127 7.60 10.00 0.32 2100 85 53.4 44.7 1.6 4.469 0.062 0.005 1 0.62 0.047 5 Approach 1 177 26.0 29.74 29.77 75.0 807.0 0.0929 428 407 391 249 7.90 9.80 0.23 111 111 97.4 76.9 2.1 82 16.0 0.110 17 1 6.411 0.081 0.009 Climb 176 0.0733 113.0 1140.0 0.0991 29.74 6.90 11.30 0.20 2075 29.63 2700 28.9 439 422 401 305 80 122.7 127.9 3.0 1.6 0.113 0.640 0.008 0.001 1 Takeoff 175 10.6 0.0130 1200 11.4 0.0950 6.10 5.00 31,000 88 10.9 7.5 6.2 6.2 1.498 0.493 0.003 29.74 29.54 387 370 358 0.013 75 ł 11 Taxi Out 174 Run No. Induct. Air Density-lb/ft3 F/A (Measured) = 9 / (10) Mode Manifold Air Press.-inHg Induct. Air Press.-inHg Cooling Air Temp.-°F Induct. Air Temp.-°F Engine Speed - RPM Fuel Flow, Wf-lb/h Spec. Hum. - 1b/1b Act. Baro. - inHg Airflow, Wa-lb/h Max. Cht - °F Avg. Cht - °F Min. Cht - °F Corque, 1b-ft % 02 (Dry) HC-p/m (Wet). NO_x-p/m (Wet) (CO2 (Dry) NO_x-1b/Mode HC-1b/Mode (CO (Dry) CO-1b/Mode Parameter He - TOB C02-1b/h 40x-1b/h Obs. Bhp CO-1b/h 07-1b/h HC-1b/h 54 m 2. 11. 14. 17. 19. 9 9. 10. 12. 13. 18. 80 2

AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--BASELINE 5 (NO IDLE, FIVE-MODE) SPARK SETTING 250 BTC TABLE C-5.

Faxi In 29.65 1200 10.3 0.0732 115.5 29.73 11 48,500 9.0 0.013 332 6.70 7.00 0.1061 341 5.20 90 0.494 0.256 25 I 185 17.0 0.0737 39.5 432.0 29.73 0.0125 29.88 2350 0.0914 355 348 135 7.30 10.00 0.28 1950 95 48.1 0.050 1.3 4.194 0.055 0.005 Approach 60 1 184 29.73 0.0734 29.76 2430 26.0 74.0 806.5 425 407 391 258 119 7.70 9.60 0.23 1775 0.94 17 82 94.3 6.236 0.0918 141 2.1 0.078 0.012 1 Climb 183 1138.0 29.73 0.0125 29.62 2700 28.9 432 416 396 313 6.70 11.40 83 119.0 128.8 2.5 1.6 82 0.119 0.644 17 0.0993 2075 0.0731 161 0.001 Takeoff 182 0.0125 123.1 42,250 361 349 5.20 6.80 5.90 9.5 29.73 1200 10.7 12.2 383 73 0.011 1.589 17 29.61 0.0731 0.698 Taxi Out 24 0.002 1 181 Run No. Manifold Air Press.-inHg Induct. Air Density-lb/ft³ Mode Ĩ Induct. Air Press.-inHg Cooling Air Temp.-°F Induct. Air Temp.-°F F/A (Measured) = 9 Engine Speed - RPM Spec. Hum. - 1b/1b Fuel Flow, Wf-lb/h Act. Baro. - inHg Airflow, Wa-lb/h HC-p/m (Wet) NO_X-p/m (Wet) Max. Cht - °F Avg. Cht - °F Min. Cht - °F Torque, 1b-ft % CO2 (Dry) NO_x-1b/Mode (02 (Dry) CO-1b/Mode HC-1b/Mode (CO (Dry) Parameter Obs. Bhp EGT - °F C02-1b/h 40x-1b/h co-1b/h 02-1b/h HC-1b/h in in 0.4 m 10. 11. 12. 13. 14. 17. 19. 0 ~ 0 6

TABLE C-6. AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--TAKEOFF MODE--SPARK SETTING 250 BTC

Takeoff 0.0050 0.0779 1167.5 0.0865 30.34 2700 28.8 101.0 465 451 425 343 176 9.50 1425 310 165.6 85.4 3.3 1.1 52 52 30.11 0.44 0.427 0.005 1 19 Takeoff 0.0050 1180.5 0.0898 8.60 8.90 0.28 1550 30.34 30.10 2700 28.8 0.0779 440 340 215 52 52 454 414 175 154.8 102.0 3.7 1.2 0.31 0.510 0.006 1 18 1174.0 0.0945 441 427 403 0.0050 2700 28.8 111.0 340 175 8.10 9.70 0.27 1675 270 146.7 111.8 3.6 1.3 0.559 30.34 52 52 30.11 0.0779 0.25 0.006 Takeoff 17 116.0 1180.0 137.8 0.0050 30.10 2700 28.8 0.0983 430 416 390 335 172 7.50 0.22 1800 126 2.9 0.19 0.614 0.007 52 30.34 0.0778 53 1 Takeoff 16 Run No. Induct. Air Density-lb/ft3 Mode F/A (Measured) = 9 / 10 Manifold Air Press.-inHg Induct. Air Press.-inHg Cooling Air Temp.-°F Induct. Air Temp.-°F Engine Speed - RPM Spec. Hum. - 1b/1b Fuel Flow, Wf-lb/h Act. Baro. - inHg Airflow, Wa-lb/h Max. Cht - °F Avg. Cht - °F Min. Cht - °F Torque, 1b-ft NO_X-p/m (Wet) % 02 (Dry) HC-p/m (Wet) % CO2 (Dry) % CO (Dry) NO_x-1b/Mode HC-1b/Mode CO-1b/Mode Parameter He - TOB Obs. Bhp NOx-1b/h C02-1b/h C0-1b/h 02-1b/h HC-1b/h 14. 17. 5 to 10 1. 9.00. 10. 11. 12. 16.

TABLE C-7. AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--TAKEOFF MODE--SPARK SETTING 25° BTC

Takeoff 101.0 1132.0 0.0892 0.0050 0.0698 3.0 1.3 0.34 29.96 109 109 29.96 2700 29.0 482 468 322 166 8.20 9.00 0.24 1725 250 141.1 98.6 0.493 0.006 0.002 1 106 Lakeoff 0.0050 0.0699 106.0 1133.0 0.0936 29.96 108 109 29.96 2700 29.0 469 453 432 7.40 10.20 0.24 129.4 317 163 1875 151 0.568 3.1 0.21 0.007 I 105 0.0050 107 0.0703 111.0 1136.0 7790.0 456 442 420 320 165 6.90 10.80 0.26 119 121.9 3.3 0.607 29.96 105 29.96 2700 1925 1 0.17 0.007 29.0 Takeoff 104 116.0 1142.0 0.1016 6.30 11.70 0.70 0.0050 106 29.96 2700 29.0 438 405 316 2125 114.0 9.2 0.12 29.96 426 162 85 Takeoff 66 0.0710 0.008 1 103 Run No. Induct. Air Density- lb/ft^3 Mode Manifold Air Press.-inHg Induct. Air Press.-inHg Induct. Air Temp.-°F Cooling Air Temp.-°F F/A (Measured) = 9 Engine Speed - RPM Fuel Flow, Wf-lb/h Spec. Hum. - 1b/1b Act. Baro. - inHg Airflow, Wa-lb/h Avg. Cht - °F Min. Cht - °F % 02 (Dry) HC-p/m (Wet) NO_X-p/m (Wet) Max. Cht - °F Forque, 1b-ft % CO2 (Dry) NO_x-1b/Mode co-1b/Mode HC-1b/Mode % CO (Dry) Parameter Obs. Bhp Ho - TOB C02-1b/h NO_x-1b/h C0-1b/h 02-1b/h HC-1b/h 18. 220. 220. 225. 225. 228. 30. 4. 17. ini 3. 10. н. 12. 14. 16. s. .9 2. . 6

*

TABLE C-8. AVCO LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--CLIMB MODE--SPARK SETTING 25° BTC

26.0 65.0 847.0 30.34 2430 0.0767 131 11.40 4.90 0.27 141.1 38.6 2.4 0.6 437 426 408 284 1125 830 Climb 52 30.31 0.82 3.217 0.049 0.068 23 69.0 847.0 0.0815 26.0 0.0785 30.34 52 53 30.31 2430 430 416 400 285 10.20 6.40 0.26 132 1325 470 470 51.1 2.4 0.7 0.48 4.255 0.059 0.039 1 Climb 22 26.0 0.0784 73.0 837.5 0.0872 30.34 2430 30.30 420 404 9.40 7.70 0.26 387 282 130 1500 295 118.3 2.4 0.8 52 53 1 0.30 5.138 0.067 .025 Climb 21 0.0891 75.5 75.5 2.7 1.0 30.34 2430 26.0 0.0784 77.0 864.5 30.30 417 398 384 282 130 8.40 9.00 0.28 1700 194 52 1 0.20 6.293 0.079 0.017 Climb 20 Run No. Induct. Air Density-lb/ft3 Mode Airflow, $W_a - \tilde{1}b/h$ F/A (Measured) = 9 / 10 Manifold Air Press.-inHg Induct. Air Press.-inHg Cooling Air Temp.-°F Induct. Air Temp.-°F Engine Speed - RPM Spec. Hum. - 1b/1b Fuel Flow, Wf-lb/h Act. Baro. - inHg Avg. Cht - °F Min. Cht - °F Max. Cht - °F Forque, 1b-ft NO_X-p/m (Wet) % 02 (Dry) HC-p/m (Wet) % CO2 (Dry) NO_x-1b/Mode NO_x-1b/h CO-1b/Mode HC-1b/Mode % CO (Dry) Parameter Ho - TOB Obs. Bhp C02-1b/h CO-1b/h 02-1b/h HC-1b/h 21. 14. 29. 54.9.2. 24. 26. 10. 11. 12. 13. 16. 17. 19. 20. 23. 90. 8 6

1

TABLE C-9. AVCO LYCOMIN

AVC0 LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--CLIMB MODE--SPARK SETTING 25° BTC (DRY AIR)

TABLE C-10. AVCO LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--APPROACH MODE--SPARK SETTING 25° BTC

2

27	Approach	30.32	0.0050	52	53	30.45	2350	17.0	0.0788	32.0	463.0	0.0691	356	347	334	1	136	61	13.70	1.40	.28	585	1075	89.9	5.9	1.3	0.16	0.56	0.585	0.016	0.056
26	Approach	30.32	0.0050	52	53	30.45	2350	17.1	0.0788	36.0	479.5	0.0751	351	341	328	١	143	64	10.40	4.30	0.29	1300	520	73.7	19.4	1.5	0.38	0.29	1.940	0.038	0.029
25	Approach	30.32	0.0050	52	54	30.45	2350	17.0	0.0788	40.0	479.5	0.0834	342	332	321	1	143	64	09.60	7.20	0.30	1450	190	68.7	32.8	1.6	0.44	0.11	3.280	0.044	0.011
24	Approach	30.32	0.0050	52	54	30.44	2350	17.0	0.0788	44.0	495.0	0.0889	332	322	310	1	133	64	8.00	9.30	0.32	1650	96	60.5	44.8	1.8	0.53	0.06	4.476	0.053	0.006
Run No.	Mode			F	F	-inHe	Î	-inHg	/-1b/ft ³			(10) / (10))																		
	Parameter	Act. Baro inHg	Spec. Hum 1b/1b	Induct. Air Temp	Cooling Air Temp'	Induct. Air Press.	Engine Speed - RPM	Manifold Air Press.	Induct. Air Density	Fuel Flow, Wf-lb/h	Airflow. Wa-1b/h	F/A (Measured) = (9)	Max. Cht - "F	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	Z CO ₂ (Drv)	% CO (Dry)	% 0 ₂ (Dry)	HC-p/m (Wet)	NOv-D/m (Wet)	C02-1b/h	co-1b/h	0-1b/h	HC-1b/h	NO1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
		1.	2.	з.	4.	5	.9	1.		.6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

C-29

.

TABLE C-11. AVCO LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--APPROACH MODE--SPARK SETTING 250 BTC (DRY AIR)

Approach 29.95 30.10 2350 0.0779 28.5 0.0642 52 17.0 326 321 124 55.5 13.30 0.10 1.60 12.60 925 83.3 0.4 0.4 7.3 0.46 0.46 311 0.040 0.003 0.046 157 Approach 13.50 1.60 0.32 875 1075 90.5 6.8 1.6 29.95 30.10 2350 17.1 32.5 470.0 55 341 332 322 148 66 0.0691 0.25 0.683 0.025 0.057 156 Approach 36.5 29.95 58 67 30.10 17.0 0.0770 0.0779 322 314 10.70 5.30 0.30 545 2350 1575 73.523.2 0.30 331 151 68 0.46 0.046 1 155 Approach 29.95 30.09 0.0765 40.5 466.9 323 314 307 150 8.60 8.60 1925 199 61 0.0867 61.2 38.9 1.6 0.58 ł 17.1 67 0.11 3.895 0.058 1 0.011 154 Run No. Induct. Air Density-lb/ft3 F/A (Measured) = 9 / 10Manifold Air Press.-inHg Mode Induct. Air Press.-inHg Induct. Air Temp.-°F Cooling Air Temp.-°F Engine Speed - RPM Spec. Hum. - 1b/1b Fuel Flow, Wf-lb/h Act. Baro. - inHg Airflow, Wa-lb/h Max. Cht - °F Avg. Cht - °F Min. Cht - °F Torque, 1b-ft NO_x-p/m (Wet) % 02 (Dry) HC-p/m (Wet) NO_x-1b/Mode (CO2 (Dry) CO-1b/Mode HC-1b/Mode % CO (Dry) He - TOE Obs. Bhp C02-1b/h NO_x-1b/h Parameter C0-1b/h 02-1b/h HC-1b/h "s" 17. 19. 20. 22. 28. 10. 11. 12. 13. 5.4 20. 6 14. 16. 24.225.226.226. .

TABLE C-12. AVCO LYCOMING IO-360-BIBD ENGINE NAFEC TEST DATA--APPROACH MODE--SPARK SETTING 25° BTC

ALL DATE AND ALL DATE OF ALL DATE

114	h Approach	29.95	0.0075	102	110	30.20	2350	17.0	0.0712	29.0	475.0	0.0611	389	383	368	1	134	99	14.10	09.0	0.44	345	1575	94.2	2.9	2.1	0.10	0.84	0.255	0.010	0.084
113	Approac	29.95	0.0075	66	108	30.20	2350	17.1	0.0716	33.0	476.0	0.0693	384	375	361	1	137	61	11.80	4.20	0.24	1150	840	81.3	18.4	1.2	0.33	0.45	1.841	0.033	0.045
112	Approach	29.95	0.0075	96	106	30.20	2350	17.0	0.0720	37.0	477.5	0.0775	369	361	348	1	140	63	09.60	6.90	0.31	1475	320	67.8	31.0	1.6	0.44	0.18	3.103	0.044	0.018
111	Approach	29.95	0.0075	91	105	30.20	2350	17.0	0.0726	41.0	455.0	0.0901	354	348	336	1	132	59	7.70	09.6	0.32	1750	140	53.5	42.5	1.6	0.52	0.08	4.247	0.052	0.008
Run No.	Mode	inHg	1b/1b	emp°F	emp°F	ressinHg	- RPM	PressinHg	ensity-1b/ft3	-1b/h	b/h	0) / (0) = ()																		
	arameter	Act. Baro	Spec. Hum	Induct. Air T	Cooling Air T	Induct. Air P.	Engine Speed	Manifold Air	Induct. Air D	Fuel Flow. Wr	Airflow. Wa-1	F/A (Measured	Max. Cht - °F	Ave. Cht - °F	Min. Cht - °F	RGT - °F	Torque. 1b-ft	Obs. Bhp	% CO2 (Drv)	% CO (Dry)	% 07 (Drv)	HC-p/m (Wet)	NOv-D/m (Wet)	C02-1b/h	C0-1b/h	02-1b/h	HC-1b/h	NOv-1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
	-	ι.	2.		4.	5.	.9	1.	8	.6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

AVCO LYCOMING IO-360-B1BD ENGINE NAFEC TEST DATA--TAXI MODE (16 MIN)--SPARK SETTING 250 BTC (DRY AIR) TABLE C-13.

		Run No.	162	163	164	165
	Parameter	Mode	Taxi	Taxi	Taxi	Taxi
1.	Act. Baro inHg		30.01	30.01	30.01	30.01
2.	Spec. Hum 1b/1	9	1	1	1	1 2124
э.	Induct. Air Temp.	-°F	55	55	55	56
4.	Cooling Air Temp.	-°F	1	1	1	1
5	Induct. Air Press	inHg	30.06	30.05	30.04	30.05
.9	Engine Speed - RP	W	1200	1200	1200	1200
	Manifold Air Pres	sinHg	8.8	0.6	0.6	0.0
.00	Induct. Air Densi	ty-lb/ft ³	0.0774	0.0773	0.0773	0.0772
.6	Fuel Flow, Wf-1b/	h	8.3	8.6	0°6	0.6
10.	Airflow, Wa-lb/h		98.4	99.3	100.3	99.3
11.	F/A (Measured) =(6 / 6	0.0843	0.0866	0.0897	9060.0
12.	Max. Cht - °F)	605	420	414	414
13.	Avg. Cht - °F		383	397	393	393
14.	Min. Cht - °F		367	375	375	371
15.	EGT - °F		1	1	1	1
16.	Torque, 1b-ft		16	16	16	16
17.	Obs. Bhp		4	4	4	4
18.	% CO ₂ (Dry)		7.90	7.30	7.60	7.10
19.	% CO (Dry)		8.60	09.6	9.10	9.70
20.	% 02 (Dry)		0.74	0.74	0.75	0.72
21.	HC-p/m (Wet)		4800	6250	4950	5330
22.	NO _x -p/m (Wet)		58	47	52	41
23.	C02-1b/h		11.8	11.2	11.7	10.9
24.	C0-1b/h		8.2	9.3	8.9	9.4
25.	02-1b/h		0.8	0.8	0.8	0.8
26.	HC-1b/h		0.30	0.40	0.32	0.345
27.	NO _x -1b/h		0.007	0.006	0.006	0.005
28.	CO-1b/Mode		2.182	2.491	2.369	2.516
29.	HC-1b/Mode		0.080	0.106	0.086	0.092
30.	NO _x -1b/Mode		0.002	0.002	0.002	0.001

C-32

.

TOTAL EMISSIONS CHARACTERISTICS AVCO LYCOMING IO-360-B1BD ENGINE (S/N887-X)--SEA LEVEL STANDARD DAY TABLE C-14.

	Modes	с0 <u>1b/h</u>	CO 1b/Mode	HC 1b/h	HC 1b/Mode	NOX 1b/h	NO _X 1b/Mode	F/A	Max. CHT-°F	
ч	Taxi (16.0-Min.)	9.50	2.5333	1.64	0.4373	ę	ę	0.0925		
2	Takeoff (0.3-Min.)	128.00	0*9*0	1.48	0.0074	0.120	0.0006	0660*0	435	
3	Climb (5.0-Min.)	80,00	6.6667	0.9500	0.0792	0.190	0.0158	0.0925	420	
4	Approach (6.0-Min.)	50.00	5.0000	0.600	0.0600	0.050	0.0050	0.0925	335	
5	1b/Cycle		14.8400		0.5839		0.0214			
9	1b/Cycle/RBHP	136.0	0.0824		0.00324		0.00012			
~	Federal Limit		0.0420		0.0019		0.0015			
80	Diff. = 6 - 7		+.0404		+.00134		00138			
6	(96.3		70.5		92.0			
10	% of STD = @+100		196.3	-	170.5		8.0			

TOTAL EMISSIONS CHARACTERISTICS AVCO LYCOMING IO-360-BIBD ENGINE (S/N887-X)-SEA LEVEL HOT DAY (T_{i} =103° F, INDUCTION AIR DENSITY=0.0706 Ib/ft³) TABLE C-15.

	Modes	C0 1b/h	CO <u>1b/Mode</u>	HC 1b/h	HC 1b/Mode	NO _x 1b/h	NOx 1b/h	<u>F/A</u>	Max. CHT-°F
1	Taxi (16.0-Min.)	11.0	2.9333	4.3000	1.1467	þ	¢	0.0980	
3	Takeoff (0.3-Min.)	136.0	0.6800	1.6200	0.0081	þ	¢	0.1020	435
3	Climb (5.0Min.)	87.0	7.2500	1.0000	0.0833	0.1450	0.0121	0*0980	420
4	Approach (6.0-Min.)	48.0	4.8000	0.6800	0.0680	þ	ę	0*0980	335
S	lb/Cycle	2	15.6633		1,3061		0.0121		
9	1b/Cycle/RBHP		0.0870		0.0073		0.00007	0.000 13	
2	Federal Limit		0.0420		0.0019		0.00150	11-0312	
8	Diff. = (0 - (1)		+.0450		+.0054		00143	in in	
6	((8 + (2))×100		107.1		281.9		-95.5		
10	% of STD = ()+100		207.1		381.9		4.5		

C-34

•

TABLE C-16.	ARITHEMATIC IO-360-B1BD	AVERAGING ENGINE	OF	BASELINE	DATA	AVCO	LYCOMIN	3
TABLE C-16.	ARITHEMATIC IO-360-B1BD	AVERAGING ENGINE	OF	BASELINE	DATA	AVCO	LYCOMIN	K

A

Baseline No.	CO (1b/cyc1e/RBHP)	HC <u>lb/cycle/RBHP</u>	NO _x 1b/cycle/RBHP	cycle T ₁ (°F)
1	0.0690	0.00254	0.00017	54
2	0.0781	0.00132	0.00015	51
3	0.0713	0.00303	0.00020	58
4	0.0752	0.00472	0.00011	76
5	0.0731	0.00608	0.00012	77
Avg. Baseline	0.0733	0.00354	0,00015	63
Fed. STD.	0.0420	0.00190	0.0015	•••
% of STD.	174.5	186.3	10.0	63

