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INTRODUCTION

PURPOSE.

General aviation piston engine exhaust emission tests were conducted at the

National Aviation Facility Experimental Center (NAFEC) for the following
reasons:

1. Determine and establish total exhaust emissions characteristics for a
representative group of current production general aviation piston engines.

2. Determine the effects of leaning~out of the fuel metering system on
exhaust emissions.

3. Verify the acceptability of test procedures, testing techniques, instru-
mentation, etc.

4, Determine reductions in operating limits and safety margins resulting
from fuel system adjustments/modifications evaluated for improved piston
engine exhaust emissions characteristics.

BACKGROUND .

Beginning in 1967, Congress enacted a series of laws which added environmental
considerations to the civil aviation safety, control, and promotional functions
of the Federal Aviation Administration (FAA). This legislation was in response
to the growing public concern over environmental degradation. Thus, the FAA
was committed to the development, evaluation, and execution of prograas

designed to identify and minimize the undesirable environmental effects attri-
butable to aviation.

In accordance with the Clean Air Act Amendments of 1970, the Environmental
Protection Agency (EPA) established emission standards and outlined test pro-
cedures when it issued EPA rule part 87 in January 1973. The Secretary of
Transportation, and therefore the FAA, was charged with the responsibility for
issuing regulations to implement this rule and enforcing these standards.

Implementation of this rule was contingent on the FAA's finding that safety

was not impaired by whatever means was employed to achieve the standards. For
this reason, the FAA undertook a program, subsequent to the issuance of the EPA
emission standards in July 1973, to determine the feasibility of implementation,
verify test procedures, and validate test results.

There was concern on the part of the FAA that the actions suggested in order
to comply with the EPA emission standards, such as operating engines at leaner
mixture settings during landing and takeoff cycles, might compromise safety
and/or significantly reduce engine operating margins. Therefore, the FAA
contracted with Avco Lycoming and Teledyne Continental Motors to select
engines that they considered typical of their production, test these engines

1




as normally produced to establish a baseline emissions data base and then alter
(by lean-out adjustments) the fuel schedule and ignition timing to demonstrate
methods by which the proposed EPA limits could be reached.

In the event that hazardous operating conditions were indicated by the manu-
facturer's tests, independent verification of data would be necessary. There-
fore, it was decided that duplication of the tests be undertaken at NAFEC to
provide the needed verification, This report presents the NAFEC test results
for the Avco Lycoming I0-360-B1BD piston engine (S/N887-X). It should be

noted that since the time of these tests, the EPA has rescinded the promul-
gated piston engine standards (reference 1). This work is reported upon herein
in the same light as it would have been if the requirements were still in
effect,

DISCUSSION

DESCRIPTION OF AVCO LYCOMING IO-360-B1BD ENGINE.

The I0-360-B1BD engine tested at NAFEC is a fuel-injected, horizontally opposed
engine with a nominal 360 cubic inch displacement (cid) rated at 180 brake
horsepower (bhp) for a nominal brake specific fuel consumption (bsfc) of 0.50.
This engine is designed to operate on 100/130 octane aviation gasoline
(appendix A -- Fuel Sample Analysis of NAFEC Test Fuel). The vital statistics
for this engine are provided in table 1.

TABLE 1. AVCO LYCOMING I0-360-B1BD ENGINE

No. of Cylinders 4
Cylinder Arrangement HO
Max. Engine Takeoff Power (HP, RPM) 180, 2700
Bore and Stroke (in.) ; 5.125 x 4,375
Displacement (cu. in.) 361
Weight, Dry (1bs)--Basic Engine 299
Prop. Drive ‘ Direct
Fuel Grade 100/130
Compression Ratio 8.5:1
Max, Cylinder Head Temperature Limit (°F) 500

DESCRIPTION OF TEST SETUP AND BASIC FACILITIES.

For the NAFEC sea level static tests, the engines were installed in the pro-
peller test stand shown in figures 1 and 2., This test stand was located in
the NAFEC General Aviation Piston Engine Test Facility. The test facility
provided the following capabilities for testing light aircraft piston engines:
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(1) Two basic air sources--dry bottled and ambient air

(2) Ambient temperatures (20 to 140 degrees Fahrenheit (°F))

(3) Nominal sea level pressures (29.50 to 30.50 inches of mercury absolute
(inHgA)

(4) Humidity (specific humidity-—0 to 0.020 1b of water (H20) vapor/lb dry

air)
(5) Fuel (100/130 octane aviation gasoline—a dedicated 5,000 gallon tank)

DESCRIPTION OF AIR INDUCTION SYSTEM AND AIRFLOW COMPUTATIONS.

The airflow system (induction system) utilized at NAFEC for testing light air-
craft piston engines is illustrated in schematic form in figure 3. This
system incorporated a redundant airflow measuring system for accuracy and
reliability. In the high-flow measuring section, NAFEC utilized a 3.0-inch °
orifice and an Autronics air meter (model No. 100-750S). The capability of
this high-flow system ranged from 400 to 2,000 pounds per hour (1b/h) with

an estimated reading tolerance in flow accuracy of +2 percent. The low-flow
measuring section utilized a small 1.0-inch orifice and an Autronics air meter
(model No. 100-100S). The capability of this system ranged from 40 to

400 1b/h with an estimated reading tolerance in flow accurancy of +3 percent.
The size of the basic air duct was 8.0 inches (inside'diameter) for the high-
flow system and 2.0 inches (inside diameter) for the low-flow system.

The airflow was computed from the orifice differential pressure and induction
air density using the following equation:

Wa = (1891) (C£) (d0)2 [(.03609) apg] 1/2 (reference 2)

>
o
"

inHp0 (differential air pressure)

1b/£ft3 (induction air density)

do = inches (inside diameter (i.d.) of orifice)

Cg = flow coefficient for orifice (nondimensional)

1891 = conversion constant for airflow in pounds per hour.

©
]

For the 3.0-inch orifice this equation simplifies to:

Wa = (10,381.6) [(.03609) apg] 1/2 = 1972.23 ( sB, )1/2

For the 1.,0-inch orifice this equation simplifies to:
Wa = (1,189.4) [(.03609) aBg] 1/2 = 225.955 ( ap, )1/2

DESCRIPTION OF FUEL FLOW SYSTEM.

The fuel flow system utilizied during the NAFEC light aircraft piston engine
emission tests incorporated rotameters, turboflow meters, and a burette. The
high-flow section incorporated a rotameter in series with a high-flow turbo-
meter while the low-flow section incorporated a low-flow turbometer in series
with a burette. The high~flow system was capable of measuring fuel flows from
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50 1b/h up to 300 1b/h with an estimated reading tolerance of +1.0 percent.
The low-flow system was capable of flow measurements ranging from 0-50 1b/h
with an estimated reading tolerance of +2.0 percent. Figure 4 illustrates

the NAFEC fuel flow system in schematic form.

DESCRIPTION OF COOLING AIR SYSTEM.

The NAFEC piston engine test facility also incorporated a system which provided
cooling air (see figure 1) to the engine cylinders. The engine mounted in the
test stand was enclosed in a simulated nacelle and cooling air was provided

to this enclosure from an external source. The cooling air temperature was
maintained within +10°F of the induction air supply temperature for any speci-
fied set of test conditions. This not only minimized variations in tempera-
ture but also minimized variations in the specific weight of air for all test
conditions. All of the basic cooling air tests with the I10-360-B1BD engine
were conducted with differential cooling air pressures of 3.0 inHy0., A range
of differential cooling air pressures from 1.0 to 6.0 inH20 were also evaluated
to determine the effects of variable cooling air conditions on maximum cylinder
head temperatures.

DESCRIPTION OF TEST PROCEDURES AND EPA STANDARDS.

The data presented in this report were measured while conducting tests in
accordance with specific landing and takeoff cycles (LTO) and by modal lean-
out tests. The basic EPA LTO cycle is defined in table 2,

The FAA/NAFEC contract and inhouse test programs utilized an LTO cycle which
was a modification of the table 2 test cycle. Table 3 defines this modified
LTO cycle which was used to evaluate the total full-rich emission characteris-
tics of light-aircraft piston engines.

An additional assessment of the test data clearly indicates that further
evaluations of the general aviation piston exhaust emission must be analyzed
with the climb mode emissions at 100-percent and 75-percent power settings
(tables 4 and 5). This would then provide basis for a complete evaluation of
test data and permit a total assessment of the EPA standard based on LTO cyclic
tolerances.

The EPA Standards (reference 1) that were evaluated during this program were:

Carbon monoxide (C0)--0.042 1b/cycle/rated BHP
Unburned hydrocarbon (HC)--0.0019 1b/cycle/rated BHP
Oxides of nitrogen (NOyx)=--0.0015 1b/cycle/rated BHP

DESCRIPTION OF EMISSIONS MEASURMENT SYSTEM.

EMISSION ANALYZERS. The instrumentation used to monitor the exhaust emissions
from general aviation piston engines was basically the same as that recommended
by EPA, but with a number of modifications and additions to enhance the reli-

ability and accuracy of the system. A schematic of the emissions measurement
system is shown in figure 5,
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2., EPA FIVE-MODE LTO CYCLE

Mode No. Mode Name Time-In-Mode (Min Power (%) Engine Speed (2)
1 Taxi/idle (ocut) 12.0 * *
2 Takeoff 0.3 100 100
3 Climb 5.0 75-100 *
4 Approach 6.0 40 *
5 Taxi/idle (in) 4.0 * *

*Manufacturer's Recommendation

TABLE 3. FAA/NAFEC SEVEN-MODE LTO CYCLE

|
| Mode Mode Time-In-Mode Power Engine Speed
i No, Name (Min,) (Z) z
i 1 Idle (out) 1.0 * *
| 2 Taxi (out) 11.0 * *
! 3 Takeof f 0.3 100 100
i 4 Climb 5.0 80 *
? S Approach 6.0 40 : *
6 Taxi (in) 3.0 * *
7 Idle (in) 1.0 * *

o *Manufacturer's Recommendation

TABLE 4, MAXIMUM FIVE-MODE LTO CYCLE

i Mode No. Mode Name Time-In-Mode (Min,) Power (Z) Engine Speed ()
f 1 Taxi (out) 12.0 * *

2 Takeof f 0.3 100 100

3 Climb 5.0 100 100

4 Approach 6.0 40 *

5 Taxi (in) 4.0 * *

*Manufacturer's Recommended

L




EMISSION INSTRUMENTATION ACCURACY/MODIFICATIONS. The basic analysis instru-

mentation utilized for this system, which is summarized in figure 5, is
explained in the following paragraphs.

TABLE 5, MINIMUM FIVE-MODE LTO CYCLE

Mode No. Mode Name Time—In-Mode (Min) Power (%) Engine Speed (X)
1 Taxi (out) 12.0 * *
2 Takeof £ 0.3 100 100
3 Climb 5.0 75 *
4 Approach 6.0 40 *
5 Taxi (in) 4.0 * *

*Manufacturer's Recommended

Carbon Dioxide. The carbon dioxide (COy) subsystem is constructed around
a Beckman model 864-23-2-4 nondispersive infrared analyzer (NDIR). This analyzer
has a specified repeatability of +1 percent of full scale for each operating
range, The calibration ranges on this particular unit are: Range 1, 0 to
20 percent; Range 3, 0 to 5 percent, Stated accuracy for each range is +0.2
and +0.05 percent, respectively.

Carbon Monoxide. The subsystem used to measure carbon monixide (CO) is
constructed around a Beckman model 865-X-4~4~4 NIDR. This analyzer has a
specified repeatability of +1 percent of full scale for ranges 1 and 2 and
12 percent of full scale for range 3.

Range 1 has been calibrated for 0 to 20 percent by volume, range 2 for
0 to 1,000 parts per million (ppm) and range 3 for O to 100 ppm, The wide~
range capability of this analyzer is made possible by using stacked sample
cells which in effect give this analyzer six usable ranges when completely
calibrated,

Effects of interfering gases, such as C0O2 and water vapor, were deter-
mined and reported by the factory. Interferences from 10-percent CO2 were
determined to be 12-ppm equivalent CO, and interferences from 4-percent water
vapor were determined to be 6-ppm CO equivalent. Even though the interference
from water vapor is negligible, a condenser ‘is used in the C0/CO2 subsystem to
eliminate condensed water in the lines, analyzers, and flowmeters. This con-
densation would have decreased analyzer sensitivity and necessitated more fre-
quent maintenance if it had been eliminated.

Total Hydrocarbons. The system that is used to measure total hydrocarbons
is a modified Beckman model 402 heated flame ionization detector. This analyzer
has a full-scale sensitivity that is adjustable to 150,000-ppm carbon with

10
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intermediate range multipliers 0.5, 0.1, 0.05, 0.01, 0,005, and 0.001 times
full scale.

Repeatability for this analyzer is specified to be *1 percent of full scale
for each range. In addition, this modified analyzer is linear to the full-
scale 1limit of 150,000-ppm carbon when properly adjusted. The two major modi-
fications which were made to this analyzer were the installation of a very fine
metering value in the sample capillary tube, and the installation of an accurate
pressure transducer and digital readout to monitor sample pressure. Both of
these modifications were necessary because of the extreme pressure sensitivity
of the analyzer (figures 6 through 8). Correct instrument response depends on
the amount of sample passing through a capillary tube; as a result, if there
is too high a sample flow, the analyzer response becomes nonlinear when a high
concentration gas is encountered. Sample flow may be controlled by varying
the pressure on this capillary or increasing the length of the capillary. On
this analyzer, linearity to 50,000-ppm carbon was obtained by reducing the
sample pressure to 1.5 pounds per square inch gauge (psig). However, the need
for linearity to 120,000-ppm carbon was anticipated. Further reduction of the
sample pressure increased the noise level of the analyzer to an unacceptable
level, In order to reduce the flow through the capillary without using a lower
pressure, either the length or the resistance of the capillary had to be
increased. The standard modification for this analyzer in order to limit flow
is the installation of an additional length of capillary tubing. This procedure
requires trial-and-error determination of proper capillary length and is a
permanent modification that limits sensitivity at low hydrocarbon levels, By
installing a metering valve in the capillary, flow could be selectively set at
either low flow for linearity at high concentrations or high flow for greater
sensitivity at low concentrations. Installation time was reduced by eliminating
the cut-and-try procedure for determining capillary length.

The addition of a sensitive pressure transducer and digital readout to
monitor sample pressure was needed since the pressure regulator and gauge sup-
plied with the analyzer would not maintain the pressure setting accurately at
low pressures. Using the digital pressure readout, the sample pressure could be
monitored and easily maintained to within 0.05 inHj0.

Oxides of Nitrogen. Oxides of nitrogen (NOx) are measured by a modified
Beckman model 951H atmospheric pressure, heated, chemilluminescent analyzer
(CL). This analyzer has a full-scale range of 10,000 ppm with six inter-
mediate ranges. Nominal minimum sensitivity is 0.1 ppm on the 10-ppm full~-
scale range.

The atmospheric pressure analyzer was chosen because of its simplicity,
ease of maintenance, and compactness. Anticipated water vapor problems in the
atmospheric pressure unit were to be handled by the heating of the internal
sample train. Interference from CO2 quenching, common in the atmospheric
pressure type CL analyzer, was checked and found to be nonexistnet.

A series of major modifications were performed by the manufacturer on this
analyzer to insure compliance with specifications. One such modification was

12
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installed in order to maintain the temperature of the sample stream above the
dew point of the sample gas. Originally, this analyzer was specified to main-
tain a temperature of 140° F at all points in contact with the sample, After
a survey of the 951H analyzers in use on FAA projects, it was determined that
this temperature was not being achieved because the method used to heat the
components was inadequate., A recommendation was made to the manufacturer to
install a positive method of heating the sample tube compartment and reaction
chamber that would be thermostatically controlled. In time, the modification
was made and this problem was eliminated. Increasing the temperature of the
internal sample components eliminated the condensed water problem; however,
the elevated temperature caused an ingtability in the photomultiplier tube out-
put. Another recommendation was made to thermostatically control the tempera-
ture of this tube. This was accomplished by installing an electronic cooling

jacket designed to maintain the photomultiplier tube at a constant temperature
below the internal case temperature.

A further modification required was the addition of a flow control value
to adjust and balance the flow rate through the NO and NOx legs. This value
replaced a restrictor clamp that was used by the manufacturer to set the NO to
NOx flow balance. The problem that was encountered with this clamp was that it
was not a positive method of adjusting the restriction on the capillary. The
clamp compression was affected by the flexible material on which the clamp was
mounted and the variable flexibility of the Teflon® capillary as it was heated.
This caused the restriction on the capillary to change with time and caused

permanent deformation of the capillary, allowing only an adjustment that would
increase the restriction.
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Oxygen Measurement. Oxygen (02) was measured by a Beckman model OM-11

oxygen analyzer. This analyzer uses a polagraphic-type sensor unit to measure
oxygen concentration. An advanced sensor and amplification system combine to
give an extremely fast response and high accuracy. Specified response for

90 percent of final reading is less than 200 milliseconds (ms) with an accuracy
of less than H+0.l-percent 02. The range of this unit is a fixed 0 to 100 per-
cent 02 concentration.

EMISSTONS INSTRUMENTATION MODIFICATION STATUS DURING THE TESTING OF THE

10-360-B1BD ENGINE. The tests conducted with the Avco Lycoming to I0-360-B1BD

engine utilized the model 742 oxygen (02) analyzer and a prototype Beckman
model 951H oxides of nitrogen (NOx) analyzer.

The model 742 oxygen (02) analyzer did not have the extremely fast response
rate of the Beckman model OM-1l analyzer, and it was not as accurate. The
data recorded with this analyzer reflect these deficiencies.

DESCRIPTION OF SAMPLE HANDLING SYSTEM.

Exhaust samples are transported to the analysis instrumentation under pressure
through a 35-foot-long, 3/8-inch o.d., heated, stainless steel sample line.
The gas is first filtered and then pumped through this line by a heated Metal
Bellows model MB~158 high temperature stainless steel sample pump., The pump,
filter, and line are maintained at a temperature of 300° iﬁ° F to prevent con-
densation of water vapor and hydrocarbons. At the instrument console, the
sample is split to feed the hydrocarbon, oxides of nitrogen, and C0/C02/02
subsystems which require different temperature conditioning. The sample gas
to the total hydrocarbon subsystem is maintained at 300° F, while the tempera-
ture of remaining sample gas to the NOx and C0/C02/02 system is allowed to
drop to 150° F. Gas routed to the oxides of nitrogen subsystem is then main-
tained at 150° F, while the gas to the C0/C02/02 subsystem is passed through

a 32° F condenser to remove any water vapor present in the sample. Flow rates
to each analyzer are controlled by a fine-metering value and are maintained at
predetermined values to minimize sample transport and system response time,
Flow is monitored at the exhaust of each analyzer by three l5-centimeter (cm)
rotameters. Two bypasses are incorporated into the system to keep sample
transport time through the lines and condenser to a minimum without causing
adverse pressure effects in the analyzers.

DESCRIPTION OF FILTRATION SYSTEM.

Particulates are removed from the sample at three locations in the systen,
thereby minimizing downtime due to contaminated sample lines and analyzers
(figure 5). Upstream of the main sample pump is a heated clamshell~type stain-
less steel filter body fitted with a Whatman GF/C glass fibre paper filter
element capable of retaining particles in the O.l-micron range. A similar
filter is located in the total hydrocarbon analyzer upstream of the sample
capillary. A Mine Safety Appliances (MSA) type H Ultra Filter capable of
retaining 0.3-micron particles is located at the inlet to the oxides of
nitrogen and C0/C0,/0, subsystem.

15
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COMPUTATION PROCEDURES.

The calculations required to convert exhaust emission measurements into mass
emissions are the subject of this section.

Exhaust emission tests were designed to measure C02, CO, unburned hydrocarbons
(HC), NOx, and exhaust excess 02 concentrations in percent or ppm by volume.
Mass emissions were determined through calculations utilizing the data obtained
during the simulation of the aircraft LTO cycle and from modal lean-out data.

COMBUSTION EQUATION. The basic combustion equation can be expressed very simply:

Fuel + Air = Exhaust Constituents

An initial examination of the problem requires the following simplifying
assumptions:

1 The fuel consists solely of compounds of carbon and hydrogen.

2, The air is a mixture of oxygen and inert nitrogen in the volumetric ratio
of 3.764 parts apparent nitrogen to 1,0-part oxygen (see appendix B for
additional details).

e If a stoichiometric combustion process exists, the fuel and air are sup-
plied in chemically correct proportions.

4. The fuel (which consists usually of a complex mixture of hydrocarbons)
can be represented by a single hydrocarbon having the same carbon-hydrogen
ratio and molecular weight as the fuel; usually CgH;; as an average fuel.

Applying the above assumptions for stoichiometric conditions, a useful general
reaction equation for hydrocarbon fuel is:

MgCgHy7 + Mg [02 + 3.764N2 + MGHp0]—> M3CO; + M3H,0 + MsN, 1)
3 (references 3 and 4)

Where Mf = Moles of Fuel

M; = Moles of Air or Oxygen
Moles of Carbon Dioxide (COj)
Moles of Condensed Water (H20)
Moles of Nitrogen (N2)—Exhaust
Moles of Nitrogen (N2)-~In Air
Moles of Humidity (H20)~-=-In Air

&
LI I B}

The above equation is applicable to dry air when M,; 18 equal to zero.

From equation (1), and assuming dry air with one mole of fuel (Mg=1.0), the
stoichiometric fuel-air ratio may be expressed as:

(F/A)g = Wt. Fuel = 12,011 (8) + 1,008 (17 (2)
Wt. Air Required 12.25 [32.000 + 3.764(28.161
16
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(F/la)g = 113,224 = 0,067
12,25(137.998)

The mass carbon-hydrogen ratio of the fuel may be expressed as follows:

C/H = 12,011(8) = 96.088 = 5.607 3)
1,008(17) 17.136

The atomic hydrogen-carbon ratio is
17/8 = 2,125 (%)

The stoichiometric fuel-air ratio may be expressed as a function of the mass
hydrogen-carben ratio of the fuel. The derivation of this equation is pre-
sented in reference 3,

(F/A)g = C/H+1 (5)
11.5(C/#3)

(F/A)g = 0.067 for a mass hydrogen-carbon ratio of 5.607

With rich (excess fuel) mixtures, which are typical for general aviation piston
engines, some of the chemical energy will not be liberated because there is

not enough air to permit complete oxidation of the fuel. Combustion under such
conditions is an involved process. By making certain simplifying assumptions
based on test results, the effect of rich mixtures may be calculated with
reasonable accuracy,

For rich (excess fuel) mixtures, equation (1) will now be rewritten to express
the effects of incomplete combustiocn:

MfCgHy7 + My (0 + 3.764Ny + MH20)—» M;COy + MyCO + M3H0 + MHy +
M5N + MgNO + MjCHj + MgOp + MoC (6)

Since only a limited number of the exhaust constituents were measured during
the testing of general aviation piston engines, the above equation can only be
solved by applying certain expeditious assumptions and imperical data.

An important requirement of the FAA/NAFEC General Aviation Piston Engine
Emissions Test Program was the accurate measurement of air and fuel flows.
These parameters provide the data for determining engine mass flow (Wyp) and
with the aid of figure 9 (developed from reference 5) it is a simple computa-
tion to calculate the total moles (Mtp) of exhaust products being expelled by
general aviation piston engines.

(Mtp) = Wm (engine mass flow) + (exh. mol, wt) (7)
Since the unburned hydrocarbons (HC) and oxides of nitrogen (NOx) are measured

wet, it becomes a very simple matter to compute the moles of HC and NOy that
are produced by light-aircraft piston engines.
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M7 (Moles of HC) =(ppm + 106) x Mg (8)

Mg (Moles of NOy =(ppm + 106) x M, 9

If the dry products (Mdp) of combustion are separated from the total exhaust
products (Mtp) it is possible to develop a partial solution for five of the
products specified in equation 6.

This can be accomplished as follows:

The summation of the mole fractions (MF)4q for dry products is:
m + my +my + mg + mg = 1,0000 (10)
m) = MF(CO2) = ZCO2 (measured dry), expressed as a fraction
mp) = MF(CO) = ZCO (measured dry), expressed as a fraction

m; = MF(H2) = K4 (%CO) (see figure 10, also references 4, 5, and 6),
expressed as a fraction

mg = MF(03) = %02 (measured dry), expressed as a fraction

m5 = 1.0000 - (m1 + mp + my + mg) = ZNp (dry), expressed as a (11)
fraction

Utilizing the nitrogen balance equation, it is now possible to determine the
moles of nitrogen that are being exhausted from the engine.

Ms = 3,764 My - (Mg + 2); Mg = moles (NO) (12)

The moles of exhaust dry products (MJp) may now be determined by dividing
equation 12 by equation 11,

Mgp = M5 + ms ' (13)
Using all the information available from equations (7), (8), (9), (10), (11),

(12), and (13), it is now possible to determine the molar quantities for seven
exhaust products specified in equation 6.

Moles (CO2) = My = my x My, - 14)

Moles (CO) = My = my x My, ' @s)

Moles (Hy) = M, = m4 x Mgp (16)

Moles (Np) = Mg = ms5 x Mg, Qa7
19
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Moles (02) = Mg = mg x Mdp (18)
Moles (CH;) = M7 = (ppm ¢ 106) x Mep (19) |
Moles (NO) = Mg = (ppm ¢ 106) x Mep (20)

To determine M3 (Moles of condensed H20), it is now appropriate to apply the
oxygen balance equation.

M3 =My (2 +My) = (2M) + My + Mg + 2Mg) = Moles (H20) (21) |

The remaining constituent specified in equation 6 may now be determined
4 from the carbon balance equation 22,

Mg = 8Mg - (My + Mg + M7) (22)

A check for the total number of exhaust moles (Mtp), calculated from equation
9 may now be determined from equation 23.

Mep = My + M2 + M3 + M, + Ms + Mg + My + Mg + Mg (23)

; ,;1+n;2+;13+|;4+|;15+m.6+m.7+n:8+m.9-1.0000 (24) .
m = MF(CO2) = M) + Mgp
my = MF(CO) = My + Mgp

R [ ]

m =MF(H20) = M3 ’Mtp

MF(H2) = M4 + Mpp
= MF(N7) = M5 + Mo
MF (NO) = Mg + My,
= MF(CH;) = M7 + M,
= MF(02) = Mg + Mg,
mg = MF(C) = Mg + Mg,

g & & & &

The exhaust constituent mass flow rates may be computed in the following manner
using each exhaust constituents molar constant with the appropriate molecular

weight,
M} x 44,011 = CO2 in 1b/h (25) ’
My x 28,011 = CO in 1b/h (26) |




M3 x 18,016 = H20 in 1b/h (27)
M; x 2,016 = Hz in 1b/h (28)
M5 x 28.161 = N2 in 1b/h (29)
Mg x 30.008 = NO in 1b/h (30)
M7 x 16.043 = CH; in 1b/h (31)
Mg x 32,000 = 02 in 1b/h (32)
Mg x 12,011 = C in 1b/h (33)
The exhaust fuel flow (Wgp), base on exhaust constituents, can now be calculated
i on a constituent by constituents basis as follows:
| (M1 + My + Mg) x 12.011 = 1b/h (34)
| M; x 16.043 = 1b/h (35)
| [M3 - MM,) + M4 + 2.016] = 1b/h (36)
Wee = (34) + (35) + (36) = 1b/nh @37
In a similar manner the exhaust airflow (Wy,) can also be calculated on a
constituent by constituent basis:

| M; x 32.000 1b/h (38)
Mz x 16,000 = 1b/h (39)
] (M3 x 16.000) + (MaM,; x 18.016) = 1b/h (40)
: Ms x 28.161 = 1b/h : (41)
Mg x 30.008 = 1b/h (42)
; Mg x 32.000 = 1b/h (43)
Wae = (38) + (43) = 1b/h (44)

Using equations (37) and (44) it is now poséible to determine a calculated
fuel-air ratio on the basis of total exhaust constituents.

(F/A)calculated = (37) + (44) (45)
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RESULTS

GENERAL COMMENTS.

General aviation piston engine emission tests were conducted to provide the
following categories of data:

1. Full-rich (or production fuel schedule) baseline data for each power mode
specified in the LTO test cycle.

2. Lean-out data for each power mode specified in the LTO test cycle.
3. Data for the above categories at different spark settings.

4, Data for each power mode specified in the LTO test cycle utilizing
different quantities of cooling air.

RESULTS OF BASELINE TESTS (LANDING-TAKEOFF CYCLE EFFECTS).

Based on an analysis of the factors affecting piston engine emissions, it can
be shown that the mode conditions having the greatest influence on the gross
pollutant levels produced by the combustion process are taxi, approach, and
climb when using the LTO cycle defined in tables 3, 4, and 5. The five-mode
LTO cycle shows that approximately 99 percent of the total cycle time

(27.3 min) is attributed to these three modal conditions. Furthermore, the
taxi modes (both out and in) account for slightly less than 59 percent of the
total cycle time. The remainder of the time is almost equally apportioned to
the approach and climb modes (22 and 18 percent, respectively).

As a result of these time apportionments, it was decided that an investigation
and evaluation of the data should be undertaken to determine which mode(s) has
the greatest influence on improving general aviation piston engine emissions.
The subsequent sections of this report will.show the exhaust emissions char-
acteristics for an Avco Lycoming I0-360-B1BD engine (S/N 887-X) and what
improvements are technically feasible within the 1imits of safe aircraft/engine
operational requirements based on sea level propeller test stand evaluations
conducted at NAFEC,

The first set of data to be presented and evaluated is the five-mode baseline
runs conducted to establish the current production full-rich exhaust emissions
characteristics of the I0-360-B1BD engine. These .are summarized in tabular
form in appendix C (see tables C-1 through C-16) and includes data that were
obtained for a range of sea level, ambient conditions specified as follows:
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T

PRI

50° F to 110° F

Ty +10° F

29.20 to 30.50 inHgA
0.0690 to 0.0795 1b/ft3

Induction air temperature (Tj)
Cooling air temperature (T¢)
Induction air pressure (Pi)
Induction air density (p)

Figure 11 presents five-mode baseline data in bargraph form (for different sea
level ambient conditions). It also compares the total emissions characteristics
of the 10-360-B1BD engine (current production configuration) with the proposed
EPA standards as a function of percent of standard. The data that were utilized
to develop figure 11 are tabulated in appendix C and plotted in various forms
for analysis and evaluation in figures C-1 through C-19, Tables C-14 and

C-15 provide the data tabulation that was used to construct the bargraphs for
T{ = 60° F and T{ = 103° F.

RESULTS OF LEAN-OUT TESTS.

In the subsequent sections of this report it will be shown what improvements
can be achieved as a result of making lean-out adjustments to the fuel
metering device: (1) taxi mode only, (2) taxi and approach modes combined,
and (3) leaning-out the climb mode to "best power" in combination with taxi
and approach mode leaning.

EFFECTS OF LEANING-OUT ON CO EMISSIONS. The test data obtained as a result of
NAFEC testing the Avco Lycoming I0-360 B1BD have been evaluated on the basis
of leaning-out the taxi, approach, and climb modes while continuing the opera-
tion of the test engine at the production rich and lean limits in the takeoff
mode. The results of leaning-out under this procedure are shown in bargraph
form in figure 12,

When the taxi modes (out and in) were leaned-out from the production rich or
lean limits to a fuel-air ratio of 0.075 or lower, but not lower than stoichio-
metric (F/A = 0.067) (see figure 12), CO emissions were reduced approximately
20 percent. However, adjustments to the taxi mode fuel schedule alone are

not sufficient to bring the total five-mode LTO cycle CO emission level below
the proposed federal standard.

Simultaneously, leaning-out both the taxi and approach modes to fuel-air ratios
between 0.067 to 0.075 will result in additional improvements in CO emissions.
In the case of operating the engine at production rich limits for takeoff and
climb while operating taxi and approach at F/A = 0.075, the total five-mode
LTO cycle CO emission level will be reduced approximately 60 percent as shown
in figure 12. .

Additional improvements in the total five-mode LTO cycle for CO emissions can
be achieved, as shown in figure 12, if the engine as adjusted to operate at
"best power" fuel-air ratios in the climb mode while operating the approach
and taxi modes at F/A = 0,075 or lower (not lower than fuel-air ratio = 0.067).

24




T T T o T

41050 0IT FAOW-FAII WAWINIW § FTEVI--STINIVIIIWAL IV
NOIIONANI TIATT VAS ONIXNVA ¥AANA ONIIVYAJO ANIONA Q4TE-09¢-0I
HONIWOOAT ODAV NV ¥0d SOILSIVAIOVYVHD SNOISSIWA TVIOL IOVHIAV  °TT FAMNOI4

11-828L

TinTT Tvaadaal : 0ot

002

00¢

YVANVLS 4O LNIDYId - SNOISSINI LSNVHXI

00¥




EXHAUST EMISSIONS - PERCENT OF STANDARD

NOTE:

1. THIS FIGURE IS BASED ON THE TABLE 5 LTO CYCLE WITH THE
CLIMB MODE AT APPROXIMATELY 75 PERCENT POWER,

2. THE MINIMUM F/A RATIO SETTING FOR THIS FIGURE IS 0, 075
FOR THE APPROACH AND TAXI MODES; T. O. AND CLIMB WERE

208 SET AT BEST POWER F/A'S FOR THE LOWEST BARGRAPH.,

FEDERAL LIMIT

100 r

O LU # o L o

o v

" ] Q
O :Cz> L T CZ) o & g L =T g
FULL RICH TAXI MODE TAXI & APP. MAX. SAFE
FUEL LEANED-OUT MODES LEANED- LEAN-OUT
SCHEDULE ONLY OUT ONLY . FUEL SCHEDULE
78-28-12

FIGURE 12. TOTAL EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING
10-360-B1BD ENGINE WITH DIFFERENT FUEL SCHEDULE
ADJUSTMENTS-~SEA LEVEL STANDARD DAY
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The preceeding evaluation of CO emissions characteristics was based on the LTO
cycle defined by table 5. However, the EPA five-mode LTO cycle defined by
table 2 implies that the climb mode power levels can range from 75 to 100 per-
cent. The exhaust emissions produced will be drastically affected. Examina-
tion of the measured data produced at NAFEC show that there is a significant
difference in each engine's total LTO cycle emissions output when climbing at
100-percent power compared to climbing at 75-percent power. This data evalua-
tion also show that whereas a CO limit of 0.042 pounds per cycle per rated
brake horsepower may be achievable as described previously by using the LTO
cycle defined by table 5; it is not achieveable using an LTO cycle defined by
table 4. When one considers the following safety considerations: (1) sea
level, hot-day takeoff requirements with an aircraft at heavy gross weight

and (2) altitude hot-day takeoff requirements with an aircraft at heavy gross
weight, it would appear that the EPA 0.042 limit for CO is not realistic and

cannot be complied with, unless engine operational and safety limits are
totally ignored.

Table 6 provides a summary of the NAFEC data which indicate what levels of
improvement in CO emissions can be achieved by applying simple fuel management
techniques (leaning-out by mixture control manipulations), albeit with drasti-

cally reduced margins between actual measured maximum cylinder head temperature
(CHT) and the maximum CHT limit.

Example: Consider the engine installed in a sea level propeller stand and

operating with cooling air at a AP = 3,0 inH20 and the following critical
test conditions:

e Ambient conditions (pressure, temperature, and density)--sea level
standard day

2. Fuel schedule--production rich setting
3. Power setting--100%

4, Measure max, CHT--435° F

5. Max, CHT limit--500° F

6. Margin-—— (Sminus (&) —-65° F

If this engine fuel schedule setting is adjusted to best power (all other

parameters constant based on above conditions), the following changes take
place.

l. CO emissions are improved by 105% (nominal)

2. Measured max., CHT increases 9.2% (from 435° F to 475° F)
3. Max. CHT -- 500° F

4, Margin --@minus @- 25° ¥

5. Reduction in margin (max CHT) -- (40 ¢ 65) x 100 = 61.5%
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Now, if we apply the above results to a sea level hot-day condition, we arrive
at the following results:

Production Rich Limit Schedule (100% power)

1. Ambient conditions--sea level hot day
2. Fuel schedule-~production rich setting
3. Power setting-~100% (nominal)

4., Measured max, CHT--445° F

5. Max, CHT limit--500° F

6. Margin-(:)minus(:)= 55° F

Best Power Fuel Schedule (100% Power)

1. Ambient conditions--sea level hot day
2. Fuel schedule--best power fuel schedule
3. Power setting--100% (nominal)

4. Measured max, CHT--495° F

5. Max, CHT limit--500° F
6. Margin-<:)minus(§)- 5° F

7. Reduction in margin (max. CHT)——(50 ¢ 55) x 100 = 90.9%

EFFECTS OF LEANING-OUT ON HC EMISSIONS. The test data show that the Lycoming
engine can be leaned-out sufficiently in the taxi mode to bring the unburned
hydrocarbon emissions below the federal standard (figure 12). Additional
leaning-out in the approach and climb modes provides added improvements, but
is not required to produce HC emission levels below the federal standard.

The taxi-out mode data from this engine were not influenced by procedural
effects such as clearing-out prior to conducting tests. Therefore, this
engine exhibits somewhat higher hydrocarbon levels than other naturally
aspirated engines in the same power/size category.

EFFECTS ON NOy EMISSIONS. Oxides of nitrogen emissions are not improved as
a result of applying lean-out adjustments to the fuel metering devices. In
fact, the NOx levels are at their lowest when the engine is operating full
rich as shown in figure 11. Test results have shown that if all the test
modes (take-off, climb, approach, and taxi) were leaned-out excessively (F/A
= 0.067), the NOx emission level would exceed the federal standard.

The negative effect on NOyx emissions is one of the reasons why it was decided
to evaluate and study the effects of adjusting/manipulating selected mode con-
ditions rather than adopt the philosophy of adjusting all modes.

EFFECTS ON ALLOWABLE MAXIMUM CYLINDER HEAD TEMPERATURE. One of the major

problems that occurs as an effect of leaning-out general aviation piston engines
in order to improve emissions is the increase or rise in maximum cylinder head
temperatures.
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Most general aviation aircraft are designed to operate with cooling air pres—
sure differentials of 4.0 inH20 or less. The tests conducted with the Avco
Lycoming engine utilized 3.0 inH20 as the basic cooling flow condition.

Additional tests were conducted using variations in cooling air flow to
evaluate these effects on different lean~-out schedules. Scme of the tests were
also conducted under different ambient conditions so that changes in ambient
conditions could also be evaluated.

Data shown in tables C-1 through C-15 and plotted in figures 13 through 15
show the results of these tests.

In summary, it can be concluded that any attempts to lean-out current produc-
tion type horizontally opposed general aviation piston engines in the takeoff
mode to F/A ratios lower than production lean limits will produce CHT's that
are higher than the manufacturer's specified limit.

Any attempt to lean—out the climb mode to F/A ratios below best power will
result in higher than normal CHT's, This could become particularly acute
under hot-day takeoff and climb conditions at sea level or altitude.

RESULTS OF TESTS WITH VARYING SPARK SETTINGS.

This engine was also evaluated with different spark settings, The basic pro-
duction setting is 25° before top dead center (BTC.) Two other settings were
evaluated: 20° BTC and 15° BTC. Table 7 summarizes the results of all the
tests conducted and presents the data on an average-of-three runs basis. The
three basic power modes (takeoff, climb, and approach--100, 75-80, and

40 percent, respectively) are tabulated using average data based on three test
runs for each power mode condition and each spark setting.

The percent changes in emission output are shown in table 7. For a change in
the spark setting from 25° BTC to 20° BTC it may be noted that the CO increases
0.3 to 5 percent in the takeoff and climb modes for a 5-percent reduction in
power and a nominal 3.85-percent reduction in maximum CHT. Even though the
percent changes in unburned HC and NOx appear to be significant, it should be
noted that both of these pollutants are being measured on a fraction of a
percent basis, Changing the spark setting from 25° BTC to 15° BTC shows that
the CO emissions increase (0.8 to 1.6 for takeoff and climb, respectively)

with a nominal 14.5-percent reduction in power and a 7.7-percent reduction in
maximum CHT.

The data presented in table 7 and the plotted results in figures 16 through 21,
for the various power conditions and spark setting indicate that the most
optimum condition for the I0-360-B1lBD engine is the 25° BTC spark setting if
it is important not to compromise the available power at the significant modal
conditions (takeoff, climb, and approach).
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SUMMARY OF RESULTS

EXHAUST EMISSIONS.

1. The I0-360-B1BD engine did not meet the proposed EPA carbon monoxide and
hydrocarbon standard for 1979/80, under sea level standard-day conditionms.

2. The I0-360-BlBD engine meets the proposed EPA oxides of nitrogen standard
for 1979/80.

3. The engine fuel metering device could be adjusted on the test stand to
reduce the current CO exhaust emission level, but not to levels required by
proposed EPA standards when operating under the most severe LTO cycle require-
ments.

4, The engine could be adjusted on the test stand to reduce the unburned
hydrocarbon exhaust emission level, but not to levels required by proposed
EPA standards.

MAXIMUM CYLINDER HEAD TEMPERATURES.

1. Adjusting the fuel metering device in the takeoff mode to the constant best
power operation results in an increase in maximum CHT, which will exceed the
engine specification limit on the test stand if cooling air AP = 3.0 inH20 or
less.

2. Adjusting the fuel metering device in the climb mode to constant best
power operation will result in an increase in maximum CHT. This latter change
will necessitate an increase in cooling air flow to provide adequate tempera-
ture margins for hot-day operations. An increase in cooling air differential
pressure of approximately 1.0 inH20 may be required for certain critical
installations.

3. No critical maximum CHT's result from leaning-out the approach and taxi
modes.

CRITICAL LANDING AND TAKEOFF CYCLE.

1, The most critical LTO cycle is the cycle defined in this report as maximum
five-mode LTO cycle (table 4). Engine operation in accordance with the maximum
five-mode LTO cycle could not be adjusted to meet the proposed EPA emission
standards for 1979/80 without exceeding engine maximum CHT limits.

2, Engine operation in accordance with the minimum five-mode LTO cycle

(table 5) could be adjusted to meet the proposed EPA emission standards for
1979/80 without exceeding engine maximum CHT limits.
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OPTIMUM SPARK SETTING.

1. The 25° BTC spark setting produces optimum test results:

a., Optimum Power
b. Optimum Maximum CHT

c. Emissions (CO, HC, and NOx) compatible with optimum power and accept-
able CHT margins.

2. The 15° and 20° BTC spark settings produced higher CO emissions even though
HC and NOx were lower. However, these settings also resulted in 5 to 25 percent
decreases in power for the takeoff, climb, and approach modes.

CONCLUSIONS

The following conclusions are based on the testing accomplished with the Avco
Lycoming I0-360-B1BD engine.

g Simple fuel management adjustments (altering of fuel schedule) do not

appear to provide the sole capability to safely reduce light-aircraft piston
engine exhaust emissions.

2. The test data indicate that fuel management adjustments must be combined
with engine/nacelle cooling modifications before safe and optimum low-emission
aircraft/engine combinations can be achieved.

3. Spark settings other than the 25° BTC setting do not appear to produce
significantly beneficial improvements in exhaust emissions,

4, The EPA CO limit of 0.042 1b/cycle/rated BHP did not appear to be achiev-
able when hot-day takeoff and climb requirements are impacted by aircraft heavy
gross weight and the need to pay close attemtion to CHT limitations.

5. An accessment of the maximum five-mode LTO cycle (table 4) test data

indicate that the following standard changes should be made to the proposed
EPA emission standards:

Proposed EPA STD.

For 1979/1980 Recommended Standard for 1979/80
glb[czcle[rated BHP) (1b/cycle/rated BHP)

CO Standard 0,042 0.075

HC Standard 0,0019 0.0025

NOy Standard 0.0015 0.0015

6. To avoid CHT problems in the takeoff mode (100-percent power), it is
advisable not to adjust the fuel metering device. Engine operation in this

mode should continue to be accomplished within current production rich/lean
limits,
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APPENDIX A

FUEL SAMPLE ANALYSIS

COMBUSTIBLE ELEMENTS IN FUELS (AVIATION FUEL).

2e Carbon and hydrogen are the predominant combustible elements in fuels
(aviation type), with small amounts of sulphur as the only other fuel element.

2, Liquid fuels are mixtures of complex hydrocarbons.

3. For combustion calculations gasoline or fuel oil can be assumed to have
the average molecular formula CgHj7.

Note: The Exxon® data presented in table A-1 may be found in reference 7.

TABLE A-1. TYPICAL SPECIFICATIONS FOR AVIATION FUELS

D910-76 Exxon D910-70 Exxon
Grade Aviation Gas Grade Aviation Gas
Item 100/130 100/130 115/145 115/145
Freezing Point, °F -72 Max. Below -76 -76 Max. Below -76
Reid Vapor Press., PSI 7.0 Max. 6.8 7.0 Max, 6.8
Sulfur, 7 by Weight 0.05 Max. 0.02 0.05 Max. 0,02
Lower Heating Value, 18,720 Min, 18,800 Min,
BTU/1b
Heat of Comb. (NET). 18,960 19,050
BTU/1b
Distillation,
Z%Evaporated )
At 167° F (Max.) 10 22 10 21
At 167° F (Min.) 40 40
At 221° F (Max.) 50 76 50 62
At 275° F (Max.) 90 97 90 96
Distillation End 338° F Max. 338° F Max.
Point
Final Boiling 319 322
Point °F ¢
Tel Content, 4.0 Max, 3.9 4.6 Max, 4.5
ML/U.S.Gal.,

Color Green Green Purple Purple




4, NAFEC used 100/130 (octane rated) aviation gasoline for the piston engine
emission tests. The following analysis of a typical fuel sample (table A-2)
was made at the U.S. Naval Air Propulsion Test Center (NAPTC), Trenton, N.J.

(reference 8).

TABLE A-2. ANALYSIS OF NAFEC FUEL SAMPLE, 100/130 FUEL

NAFEC Grade 100/130 (MIL-G-5572E) |
Sample Spec Limits -

Item 100/130 Min. Max,

Freezing Point, °F Below -76° F =76

Reid Vapor Press., PSI 6.12 5.5 7.0

Sulfur Z By Weight 0.024 0.05

Lower Heating Value 18,700

BTU/1b

Heat of Comb., (NET) 18,900

BTU/1b

Distillation, Distillation

%Evaporated %Evaporated

At 158° F 10

At 167° F (Min) 167° F 10

At 167° F (Max.) 40 167° F

At 210° F 40

At 220° F 50

At 221° F 221° F 50

At 242° F 90

At 275° F 275° F 90

Distilliation 313° F 338° F

Er! ¢ int

Spe. « .1lec Gravity 0.7071 Report Report

@60~ ¥

API Giavity 68.6 No Limit i

@60° F

Tel Content, 1.84 4.60

ML/U.S. Gal.

Computation for the fuel hydrogen-carbon ratio is based on the fuel net heat-
ing value, hf, equal to 18,900 BTU/1b and figure A-1.

C/H
(¥

5.6

12.011

8 x 12.011 = 96.088
(96.088) + 5.6 = 17,159
1.008

Q
~<=*é=oo
[ I I B B |

(17.159) + 1.008 = 17,022

Use Y =17

A=2
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APPENDIX B

COMPOSITION OF AIR (GENERAL PROPERTIES)

1. Dry air is a mixture of gases that has a representative volumetric analysis
in percentages as follows:

Oxygen (02)--20.99%

Nitrogen (N2)--78.03%

Argon (A)--0.94% (Also includes traces of the rare gases neon, helium,
and krypton)

Carbon Dioxide (CO2)--0.03%

Hydrogen (H2)=--0.01%

2, For most calculations it is sufficiently accurate to consider dry air as

consisting of: \

02 = 21.0%
N2 = 79.0% (including all other inert gases)

3. The moisture or humidity in atmospheric air varies over wide limits,
depending on meteorological conditions. Its presence in most cases simply
implies an additional amount of essentially inert material. '

Note: Information given in items 1, 2, and 3 is recommended for computation

purposes (references 3, 4, 9, and 10).

TABLE B-1. MASS ANALYSIS OF PURE DRY AIR

Volumetric Mole Molecular Relative
Gas Analysis %7 Fraction . Weight Weight
02 20.99 0.2099 32.00 6.717
N» 78,03 0.7803 28.016 21.861
A 0.94 0.0094 39.944 0.376
Co2 0.03 0.0003 44,003 0.013
Inert Gases 0.01 0.0001 48.0 0.002
100.00 1.000 : 28.969 = M for air

4, The molecular weight of the apparent nitrogen can be similarly determined
by dividing the total mass of the inert gases by the total number of moles of
these components:

MApparent = 2225 = 28.161
Nitrogen 79.01




5. This appendix advocates the term nitrogen as referring to the entire group
of inert gases in the atmosphere and therefore the molecular weight of 28.161
will be the correct value (rather than the value 28,016 for pure nitrogen).

6. In combustion processes the active constituent is oxygen (02), and the
apparent nitrogen can be considered to be inert. Then for every mole of
oxygen supplied, 3.764 moles of apparent nitrogen accompany or dilute the
oxygen in the reaction:

79.01 = 3, 764 Moles Apparent Nitrogen
20.99 Mole Oxygen

7. The information given in items 4, 5, and 6 is recommended for computational
purposes in reference 4. Therefore, one mole of air (dry), which is composed
of one mole of oxygen (02) and 3.764 moles of nitrogen (N2), has a total weight
of 137.998 pounds.

(02 + 3.764 Np) = 137.998

This gives the molecular weight of air = 28,97,

B-2
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APPENDIX C

NAFEC TEST DATA AND WORKING PLOTS FOR ANALYSIS AND EVALUATION
OF AVCO LYCOMING IO0-360-B1BD ENGINE
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TABLE C-16. ARITHEMATIC AVERAGING OF BASELINE DATA AVCO LYCOMING
I0~360-B1BD ENGINE

Avg,
co HC NOx cycle T4
Baseline No. (lb/cycle/RBHP)  lb/cycle/RBHP lb/cycle/REHP _ (°F) -
1 0.0690 0.00254 0.00017 54
2 0.0781 0.00132 0.00015 51
3 0.0713 0.00303 0.00020 58
4 0.0752 0.00472 0.00011 76
5 0.0731 0.00608 0.00012 77
Avg. Baseline 0.0733 0.00354 0.00015 63
Fed. STD. 0.0420 0.00190 0.0015
%Z of STD, 174.5 186.3 10.0 63
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