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Chapter 1

INTRODUCTION

1-1. Historical Background

The concept of reactively loaded antennas with parasitic excita-
tion has been studied by several authors in recent years [1-11]. The
following is a brief summary of important papers and reports written in
this area.

In 1961 Simpson and Tillman [1] found that sidelobe zontrol could
be obtained by tuning a reactively loaded center element of a parasiti-
cally excited circular antenna array. In addition to the center element,
the antenna consisted of N identical parallel dipoles spaced uniformly
around the circumference of a circle. The antenna was excited by driving
one of the ring dipoles. By commutating the excited ring dipole, the
antenna beam was steered.

In 1963 Berry, Malech, and Kennedy [2] investigated an antenna which
consisted of a surface or aperture which was characterized by a surface
impedance and a primary radiator that illuminated this surface. An ex-
perimental example consisted of an array of shorted waveguides illuminated
by a waveguide in front of the array face. Bv moving the short positions,
the beam pattern was steered.

In 1964 Coe and Held [3] obtained endfire radiation from a slot
equivalent of a Yagi array of magnetic current elements. The antenna
consisted of tunable parasitic directive slots (shorted waveguides), a

parasitic reflector slot to reduce backlobe radiation, and a driven slot.




In 1973 Seth and Chow [4] found a significant shift of the center

operating frequency and a widening of the bandwidth for a center re-
actively loaded parasitic array of dipoles radiating in the endfire
direction. The array consisted of unloaded reflector and feed dipoles
and capacitively loaded director dipoles.

In 1974 Mathur [5] found that beam scanning could be achieved for
a cavity-backed narrow slot array by varying the cavity backing widths.

From 1974-1978 Harrington and others investigated reactively loaded
parasitically excited linear dipole arrays [6-7], circular dipole arrays
[8-9], and waveguide-backed linear aperture arrays [10-11]. The exci-
tation scheme for all of the various antenna geometries consisted of one
driven element with the other elements parasitically excited and reac-
tively loaded. By varying the reactive loading, a directive beam was
steered.

In this dissertation a study is made of the reactively loaded
parasitically excited waveguide-backed aperture antenna array. A part
of the analysis involves the calculation of a half-space admittance
matrix. The calculation of half-space admittance (mutual coupling)
between apertures in a perfectly conducting ground plane has been
studied previously by several authors [12-18].

Borgiotti [12] obtained an expression for the mutual admittance
between two identical radiating apertures in the form of a Fourier
transform related to the power pattern of the element.

In the first of two papers [13-14] Mailloux found the near field

coupling between two collinear open-ended waveguide slots by formulating




the problem as a set of simultaneous integral equations which he solved
approximately by expanding the aperture field in a Fourier series. In the
second paper Mailloux found the near field coupling between two closely
spaced open-ended square waveguide slots by a first-order analysis, based
on the method of moments [15], using a single-mode approximation to the
aperture field. He also presented an improved first-order analysis which
used a higher order mode solution.

A paper by Cha and Hsiao [16]) and a dissertation by Hidayet [17]
investigated a finite array of waveguide-backed rectangular apertures where
the apertures were the same size as the waveguides. In both publications
the quadruple half-space admittance integral was reduced to a sum of double
integrals by a coordinate transformation and then evaluated numerically.

The method used in this report for evaluating the quadruple half-
space admittance integral was published in [18-19]. The procedure assumes
a cosine aperture electric field. For apertures that are close together,
the normal quadruple half-~space admittance integral is analytically re-
duced tc a sum of single integrals, which are then evaluated numerically.
For apertures farther apart, the quadruple half-space admittance integral
is analytically reduced to a sum of double integrals, which are evaluated

numerically.

1-2. Statement of the Problem

This report considers an N element array of waveguide-backed rec-
tangular apertures radiating into a half-space region bounded by an electric

conductor (see Fig. 1.1). The perfectly conducting plate covers the entire
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z=0 plane except for the apertures. One apsrture is fed while the other
apertures are parasitically excited. The aperture can be smaller than

the feeding waveguide. The parasitically excited apertures are reactively
loaded by placing electrical short circuits in the backing waveguides at
variable distances from the apertures. By varying the position of the
short circuits, a directive beam can be steered through 180° in space.

The solution uses the method of moments applied to the integral equation

for the equivalent magnetic current in the aperture region.

In Chapter 2, a formulation is presented for analyzing the reactively
loaded waveguide-backed aperture antenna array. The formulas derived have
been used to obtain computer programs for expressing the antenna character-
istics of power gain, bandwidth, and match for both linear and two dimen-
sional reactively loaded aperture antenna arrays. Some calculated results
obtained from the computer programs for several antenna cases are given
in Chapter 3. Several examples of single and double frequency magnitude
pattern synthesis are presented in Chapter 4. Chapter 5 summarizes and
suggests further research areas for reactively loaded aperture antenna
arrays.

This report contains two appendices. The first appendix is a
mathematical supplement to the half-space admittance formulation in
Chapter 2. The second appendix contains a summary of the major computer

program subroutines used in generating the calculated results.




Chapter 2
GENERAL FORMULATION
2-1. Introduction

In this chapter a formulation which uses the method of moments
is presented for analyzing the reactively loaded aperture antenna array
problem. The basic approach is to use the equivalence principle [20, Sec.
3-5] to divide the problem into two separate regions. Once this
is done, the aperture characteristics are expressed in terms of two
aperture admittance matrices, [ng] and [Yhs], which are independent of
each other. A single expansion function is used per aperture region to
minimize the number of multiplicative operations required for analyzing
large finite arrays.

A solution is obtained for the unknown magnetic current for
each aperture region by multiplying the impressed sources in the driven
waveguide by the inverted sum of the two admittance matrices. Once the
unknown magnetic currents are found, the antenna characteristics can be

determined.

2-2. Aperture Formulation

Figure 2.1 shows the problem to be considered and defines the
coordinates and parameters to be used. The perfectly conducting plate
covers the entire z = 0 plane except for the apertures which are rec-
tangular in shape with side lengths a' and b' in the x and y directions,
respectively. The apertures are centered in the waveguide cross sections.
Note that all of the waveguides have the same dimensions (a,b) and all of

the apertures have the same dimensions (a',b'). Also z is less than zero
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in the waveguide region and z is greater than zero in the half-gpace

region.
We first consider the problem of a single waveguide-fed aperture

o radiating into a half~space region

excited by impressed sources i}mp, M
(see Fig. 2.2a). The equivalence principle is used to divide this problem
into two separate regions as follows (see Fig. 2.2b). The aperture is
covered by an electric conductor. The fields in the waveguide region are

imp

produced by the impressed sources gimp’ M , and the equivalent magnetic

current M
-~

B2 *E (2.1)

over the aperture region with the aperture covered by an electric conductor
and n is a unit vector normal to the aperture. The fields in the half-space
region are produced by the equivalent magnetic current, -M, with the aper-
ture covered by an electric conductor. The condition that the equivalent
magnetic current in the waveguide region is +M and in the half-space region
-M, ensures that the tangential component of electric field is continuous
across the aperture.

Another necessary boundary condition is the continuity of the
tangential component of magnetic field across the aperture. The tangential

magnetic field over the aperture on the waveguide side, E:g’ is equal to
wg _ imp + 18
BB tEC® (2.2)

where ﬂ:mp is the tangential magnetic field due to impressed

sources
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ﬂ:g(g) is the tangential magnetic field due to the
equivalent magnetic source M.
On the half-space side of the aperture we have !
hs hs hs

Et = Bt (15) = b Et (M . (2.3)
The last equality in (2.3) is a consequence of the linearity of the
y?s operator. Note that y:mp, y:g(g), and y:s(y) are all computed with
an electric conductor covering the aperture. The true solution is ob-
tained when H:g of (2.2) equals y:s of (2.3) or

oD +Hoon = - i (2.4)

This is the basic operator equation for determining the equivalent mag-
netic current y. In reality, only an approximate solution of equation
(2.4) can be obtained.

At this point in the formulation we will extend our results to
consider the multiple aperture case where one aperture is driven by

imp

impressed sources gimp’ M , and the other apertures are parasitically

excited. In this case the waveguide region is considered to include all
of the waveguides and the half-space region is as before. For this case,

(2.4) becomes

0 i # NFP
wg . i . hs, j
ROy + ) By . (2.5)
. o iy < pp
ﬁt_i

L &1y, 2, couy N
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(N is the number of apertures and NFP is the aperture number correspond-

ing to the driven port of the array.) 1In Eq. (2.5),}1j is the equivalent

magnetic current for the jth aperture. The subscript i denotes magnetic

field evaluation in the ith aperture.

Let
w o= v, M (2.6)
~ 173
where Vj is a complex constant to be determined and yj is an expansion
function to be specified. Substituting (2.6) into (2.5), we obtain
0 i # NFP
wg
v, B (M ) + Z vj (Mj) (2.7)
i=1
g™ 4 - npp

fomily 2, S =y N

Next, we define the symmetric product <A,B> of two vectors A and_g by

<A,B> = ff A - Bds (2.8)
apert.

where the integral is over all aperture regions. Also, we define a

set of testing functions {yi, i=1,2,...,N} which may or may not be

equal to the expansion functions. Then, taking the symmetric product

of (2.7) with the testing function Ei’ we obtain
0 i # NFP

w8 -
v, oW, Hti(Mi)> + jz v, W, Hti(Mj)> (2.9)

1= 1,2y500sy5 N

-
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Solution of this set of linear equations determines the coefficient V

A

and, therefore, the equivalent magnetic current gj.

Equation (2.9) can be rewritten in matrix notation as follows: {

Define an element of the admittance matrix for the waveguide regions as

wg= <= w8 2
YyS = 8, <9, e 1> (2.10) | 9

where Gij is the Kronecker delta function

1 i=1]
Gij = (2.11)
SRy § 8 :
j and for the half-space region as ‘
hs _ __ hs o |
Yij wi. Hti(MJ)» . (2.12)

The minus signs are placed in (2.10) and (2.12) on the basis of

power considerations. Define an element of the source vector as

imp _ < imp '
Ii 61 NFP wi, Hti > (2.13) |
and a coefficient vector
q 1 (2.14)
\Y [V1 NX1 .
The resulting matrix equation which is equivalent to (2.9) is
[YV8 &+ Y'¥ « TI%P (2.15)

The physical interpretation of (2.15) is that of two generalized

admittance networks, [ng] and [YhS], in parallel with the current ;
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>im
source 1P, By inverting (2.15),we obtain the resulting voltage

>
vector V which is the vector of coefficients which determines M

V = [¥V8 4 yb81 POP (2.16)
The expansion (yi) and testing (!1) functions are defined as
m
= = - D o R — F - 9
gi Ei 4y \l(x,y) cos (x xi) (2.17)
where
a' a'
f‘r L Bt g St e
a'b’ 3 b,
Yy g EFEY T
Pl(x.y) = 7 & (2.18)
0 all other x, vy

2-3. Determination of \'wg

“1]

To evaluate the aperture admittance in the waveguide region
(2.10), we consider two separate cases. The first case will be the
aperture admittance for the driven waveguide while the second case will

be for the shorted waveguide (reactive load).

2-3.1. Driven Waveguide Aperture Admittance

Consider a single expansion function 51 on the 2=0 plane in the
ith waveguide region where i = NFP. The tangential field produced by

gi can be expressed in modal form as [20, Sec. 8-1]




R N R

.

<2a— o~

ol < i A L R ST

|

wg
EC(Y,) = ) Ay © k' o

ve » =
e (M) PhgTe o™ 3508,

where Aik are modal amplitudes, Yk are modal propagation

constants, Yk are modal characteristic admittances, and 9k are

normalized modal vectors. The modal vector orthogonality relation-

ship is 0 g # 1
IJ e, * e ds =

guide i i=3j

where the integration is over the waveguide cross section. At z=0, we

have

wg
= X
<l TR Gl

z=0 k

Multiply each side of this equation scalarly by v, X gj and integrate

over the waveguide cross section obtaining

14

(2.19)

(2.20)

=lAju e . (2.21)

II - R MR des =] Al JJ o, X &3 * e * gj)ds . (2.22)

guide K guide

By orthogonality (2.20), all terms of the summation are zero except the

k=j term. Hence

Ay ™ JJ Mocu xe ds. (2.23)

apert,

We have replaced the integral over the waveguide cross section by one




over the aperture since 51 exists only in the aperture region. Sub-

stituting the second equation of (2.19) evaluated at z=0 into (2.10),

we obtain
wg _ )
1 " %y E Ak Yk JJ Woew xe ds . (2.24)
apert.
Since Mi - Eio (2.24) becomes

wg _ 2
Y43 = %44 E Aoy %

TE.2 .TE ™.2 . T™
- 513 {E (A" Y7+ () Y, 1) (2.25)

where A1k and AI: are respectively the TE and TM modal amplitudes while

Y:E and Y:M are respectively the TE and TM characteristic admittances.

AI& and AI? are obtained by first splitting the ey into a set

of TE modes given by [20, Equations (8-34, 3-86), and (3-89) and Sec. 4-3]

TE ‘// e Fmrn n mmx nmy
e = s [ = 08 — #in
~ + ~

m+n(Lm 1) (mb)2 + (na)2 X b a b

- g E sin 25 cos E%X] (2.26)

a

y

m+n#0

and a set SZM of TM modes given by




™

ab m mmx nn
e =2 [u = cos — gin B¥
~m+(n-1)Lm (mb)2 % (na)2 X a a b
n mimx oy
+ gy b sin 5 Cos b ] (2.27)
me= 1, 2, 35.dss Lm
U R s e Ln s ’
Note that Eqs. (2.26) and (2.27) are valid only when the origin is at
the corner of the waveguide,
Substituting (2.17), (2.26), and (2.27) into (2.23), we obtain
TE TE
Atk ” S1 R de
apert.
m zsmgn
TR e Vv aa'bb' T (525
mn

R 0 e T Lm
k = m+n(Hm+l) mtn ¥ 0

o 0 B (R TR |
n

and

™ ™
Ak H Yoy, xg ds

apert.

‘-I-(Z_Ml; /;{,zb—b,- I(m,n) (2.29)
mn

me Ly Zy Iyaeis Lm
k = m+(n--1)Lm

ns 1’ 2, 3,.--. Ln

e i
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where
[ mm, 2 nn, 2
= — —= )
k= &5 e, (2.30)
| (b+b') /2 (ata') /2
E I(m,n) = dy cos any dx cos 3; (x - %) sin - !
b a 2 a
(b-b")/2 (a=a')/2
| sin -JU1{
2b' 1 mn nn mua' 2b |
E el ‘m2 “‘*;“* sin~3— cos 5 cos 'EﬂfAr*Eﬁﬁ;rg_ . (2.31)
E - 5 2
2

-
-
=

9 D> 9
If (a/a' =m) in (2.31), the cos (mnma'/2a)/(m /a” - 1/a'") term is to be

2
replaced by its limit (-ma'“/4). 1If n is zero in (2.31), the sin ( )/()

term is to be replaced by unity.

The characteristic admittances Yi of a rectangular waveguide with

relative dielectric constant £ and relative permeability unity are classi-

fied as either TE admittances Ylh or ™ admittances YTM given by [20,

i
Sec. A‘}]o

| k V¢ < k
n r mn
TE _ -
Y1 (2.32)
1 k vE_ > k
- r mn
n
me O, 1. 2 y &
m ]
i = mtn(L +1) mtn # 0
- n=0,1, 2,0y L

and




P i St P
*

v Mt

. e

RTINS Al S TR S 2 NN b v .

18
“r
T WE < k
n g —— r mn
b
/ (D -«
,T™ k
L y (2.33)
e
e ke >k
) e r mn
e - (97
vVor k
n=1, 2, 3, » L
m
i=m+ (n-1)L
m
n = l- 2‘ 3| » L
n
In (2.32) and (2.33), n is the characteristic impedance of free space,
k is the free space wave number, and kmn is the cutoff wave number given
by (2.30).
2-3.2. Reactively Loaded Waveguide Aperture Admittance
Consider a single expansion function gi on the z=0 plane in the
waveguide region for the ith waveguide where i # NFP, A short is placed
at z = - di with respect to the aperture. The tangential field produced
by M, where only the dominant mode is propagating is
Y.z -=y_ (2d,+2) w© Y, 2
SWE = ' i -0 < i 3 + S‘ ' 3 k 3
Et (vi) Alo(e 5 ) .0 . Aik ¢ ~k
i k=1
(2.34)
: Y.2 =y (2d,+2)
WBM,) = -~A'Y(e® +e © 1 g xe
-t1 “i io o ~ig *0
\ Y,.2
] ALY e s u X e
kel ik k ~z o~k

\J

where the subscript o denotes the dominant mode and ' distinguishes Aik

f rom Alk used in the previous section. In (2.34), d{ is assumed to be

e




sufficiently large so that no evanescent modes are reflected by the
short.

At 2z = 0, we have

M, =u x E®
~i ~z -l
z=0
-2y d
= Al e T D) - T 2.35
Ain(l ¢ ) v, \ o ) Alk yz \-:k (2.35)

k=1

Multiply each side of (2.35) scalarly by u_ ¢, and integrate over

the waveguide cross section obtaining

-.'\ d
L D s = ¥ | - o @ . o) s
JJ t{t gz N (‘J\l.“ t\h\(l ¢ ) j.’{ (:l_“ X 30) (~u2‘. X f])db
guide puide
por f
puide

By orthogonality, all terms ot the summation in (2.36) are zero except
the k=i term.

Hence,

1 - .----li-_ n, . . » o
Al\‘ _2\.\‘11 'b"i Roong ds
AT apert.
A
g (2.37)
-2y d
s T
l\;k - t\lk = JJ b.‘i . U-. X 5‘1\ ds & (2.38)
(k ¢ 0) apert.

Substituting (2.37) and (2.38) into (2.34) and then substituting (2.34)

into (2.10), we obtain
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wg _ g wg '
T ™ & Hti (M,)>
(i # NFP)
-Yd
i
1+e °H
8y Ay, T d, ‘o ¥oru xg ds
i
(1 -e ) apert.
v LAY I[ My B ¥ e el
k=1
apert.
-zYodi o
b 2 d+e ) TE. 2 JTE
613 {Aio Yo -2y d, ¥ Z [(Ai Y
(o s k=1
1-e )
™,2 TM
+ (Aik) Yk ke (2.39)
Substituting jBo for o in (2.39), we obtain
wg _ e © TE.2 ,TE ™, 2, T™
Yij 51j { jay, Y, cot B d, + kzl Blag)” ¥, + (A 0 %, 1} . (2.40)
2-4. Determination of Yhs
‘_‘ij

The first part of this section will derive the aperture admittance
in the half space region (Y??) while the second part will treat the singular
hs
ij”®

points of the integrands for the single integral representation of Y

2-4.1. Derivation

Since the apertures are covered by conductors, the z=0 plane is
a complete conducting plane and image theory applies. The magnetic cur-
rent expansion functions are on the surface of the z=0 plane. Their

images are equal to them and are also on the z=0 plane. The result is

il i sy
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that [Yhs] is the admittance matrix obtained using expansion functions
Zyj radiating into free space everywhere. Therefore, (2.12) can be
written as
hs fs
B - < >
Ty = - 2 W, B0 (2.41)
where His(yj) is the magnetic field in the ith aperture region produced
o {
by yj radiating into free space. The magnetic field gis(yj) can be ex-
i
pressed in terms of an electric vector potential Eij and a magnetic scalar
potential ¢ij as [21]
atm,) = ~ 10F,, - 6., (2.42)
~ty ~j ~ij =i
where
-ikle-g"|
[> e - 2
== [[ M, —— ds (2.43)
~1ij 47 ~3 Ir B r'l
apert. “ ~
—. — '
6., = 1 JJ 0 E__J_k_l}-_al dg (2.44)
ij  4mu N
apert. * 7
o, 3 Y |
i & e T (2.45) |

where r and E' are respectively the vectors to the field and source
points, w is the angular frequency, € is the permittivity of free
space, U is the permeability of free space, and k is the free space
propagation constant. Substituting (2.42) into (2.41) and using (2.8),

we obtain




) el B ” Wt QB+ Y0 0ds (2.46)

apert.

Because of the identity

0= “ y . (‘blj‘fi)ds = ” .wi . Y‘bijds + ” ¢)in . yids 5 (2.47)

apert. apert. apert.

(2.46) becomes

hs
& ( o
Yij 2jw JJ ‘fij Ei + ¢ijpi)ds (2.48)
apert.
where
Ve,
i T (2.49)

Substituting (2.17), (2.43), (2.44), and (2.49) into (2.48), we obtain

b' a'
Sl e
hs _ _jWE - it UL
Yij s I iy dy J o dx cos = (x - xi)
o R
bl (l'
L +
yj + 3 xj 3
C J dy! j dx' cos — (x' = x,) G(x' - x, y' = y)
b' ﬂ' L j
T e ek
j s i) 2
b' “l
R A
i 2 i 2
- ~~J1%f- J dy J dx sin 5% (x - xi)
wpa'’b! < Bt ¢ u .
g T
b' a'
yj + ? xj + —-2-
. J ’dy' J ’dx' sin l% (x' - x,) G(x"'-x, y'-y)
b a
37 2 s T3 (2.50)

sl i

RS S
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r

3k \/(x'-x)2 + (y'-y)2
Gl iy, YY) = At : (2.51)

\/?x'-x)z + (.v'-y)2

Substituting the coordinate transformation x' = u + x and y' = v + y

into (2.50), interchanging the order of integration and carrying out

the integrations in the two variables x and y (see Appendix A.l), we

obtain
s _ jk s
Yot ™ Tnatt { j dv(K +v)
= =
Yy™Yy b
xj-xi mu Tu
L | I du G(u,v)[(k2+k3u) cos = + (KA+K5u) sin ;T]
= iy
xj X -a
x,-x,+a’
I - e m . Tu
+ du G(u,v)[(k7—k3u) cos § + (RB-KSU) sin ;T]]
xj-xi

— ' —

yj yi+b x" x" mu mu
+ dv(K6—v)[ j du C(u.v)l(k2+k3u) cos + (K4+k5u) sin aT]
— - L
yj Yy xj X -a

x,-x, +a'

+ji du G(u,v) [(Ky=K,u) cos 2 4+ (Ko-K.u) sin 11} (2.52)
u G(u,v 77Kqu) cos 5 g~Kgu) sin -5 e
.l \ - X, =X
o J 1

(constants l(1 - KS are defined in Appendix A.1l).




Equation (2.52) can be further reduced by substituting the coordinate

transformation u = p cos 6 and v = p sin 6 into (2.52) and integrating

out the p variable to obtain (see Appendix A.1l)

)
2
hs " jk
Yy ™ Zma'p’ {f (K (KL, (0) + KyLa(0) + K, L,(8) + KL, (0)]
6
1
(1)
+ [K2L5(8) + K3L7(6) + K4L6(6) + K5L8(6)11 de
%
+ f [K1[K7L1(6) - K3L3(6) + K8L2(6) = KSLA(B)]
63
(I1)
+ [K7L5(6) - K3L7(6) + KSLG(G) - KSLB(G)II de
8
+ [ [K6[K2Ll(6) + K3L3(9) + KALZ(O) + KSLA(B)]
%
(111)
- [szs(e) + K3L7(0) + K4L6(0) + KSLB(B)]] de
%
+ f [K6[K7L1(6) - K3L3(0) + K8L2(0) - KSLQ(G)]
%
(1v)

- [K7L5(0) - k3L7(0) + K8L6(9) - KSLB(G)]]}dB (2.53)

(constants Ll(O) - Ls(e) are defined in Appendix A.1l).
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hs

2-4.2. Singular Points of the Single Integral Formulation of YJJ
1

The integrand of the single integral representation of Y?j (2.53)
has removable singularities when ka' < m, When either lﬁ% cos 6 - k| < ¢
(small value) or Ii% cos O + kl < €, we replace equations (A.25-A.32)

by their respective limits. For an example, consider Eq. (A.25)

MI(G) - MZ(O) M3(6) - M&(O)

= o 3
L,(8) = 5~ { M C0) H.00) }
5 6
P m m
302(9)(37 cos 0 - k) 301(0)(—7 cos 6 - k)
a
e :1{e - e
g (v cos 6 - k
a7 cos 6 - )
L ; el
e-jOZ(O)(a. cos 0 + k)_ e-Jol(O)(a. cos 6 + k)
- = } (A.25)
(— cos 0 + k)
a
If lﬁ% cos 0 - k| < ¢, then by retaining the first three terms

of the Taylor series for the exponentials in the first half of (A.25),

we obtain
.- | s -k} 3 L - 112
Ll(e) 3 {1+ jpz(O)(a, cos 0 - k) 5 [02(9)(8, cos O - k)]
1 4
«] = jpl(O)(§¥ cos 0 - k) + 5 [pl(a)(§¥ cos 0 - k)]
i% cos O - k

M3(0) - MA(G)
M6(0)

(2.54)

If we take the limit as i% cos 0 approaches k for the first half of

(2.54), we obtain

ik




- . 13
Ly (@) = 3 (000 = 0, () + 5 gy (2.55)
I1f |§% cos 0 + k| < €, then by retaining the first three terms

of the Taylor series for the exponentials in the second half of (A.25),

we obtain

o m® - w00,
L® = G gy ) g 0,00 -0y ) (2.56)

The results for applying the preceding procedure to Eqs. (A.26-A.32)

can be found in Appendix A.2.

2-5. Gain Formulation

2-5.1. Determination of Measurement Vector - 3m

A linear measurement is defined as a number which depends linearly
on the source. Measurements made in the half-space region will depend
linearly only on the equivalent current -Ei.

Consider the measurement of a component Hm of magnetic field at
a point b in the half-space region for a single aperture i (see Fig. 2.3).

It is known that this component can be obtained by placing a magnetic

dipole K}m at I and applying the reciprocity theorem to its field and

to the original field [20, Sec. 3-8] or

- - i . s 2
HmKQm I[ E Et ds . (2.57)
apert.

Here H: is the magnetic field from K}m in the presence of a complete

conductor, and Hm is the component in the direction of KQm of the
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Fig. 2.3. Measurement vector geometry.
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) §
magnetic field at I due to -M" in the presence of a complete conductor.

To evaluate (2.57), substitute for Mi and obtain
~

e =V, <= el i
Hmk < V1 Mi' Ht (2.58)

Now since KQm is radiating in the presence of a complete conductor,
image theory applies. The result is that the tangential component of H
over the aperture from Kgm when the z=0 plane is covered by a conductor

is equal to twice what it is for the same source in free space. Hence,

m _ mo
Et =2 Ht : (2.59)
ETO denotes the tangential component of H over the aperture from K}m

when it radiates into free space. Using this fact, (2.58) becomes

BRE =29 <<l . %

m m i i t
- IT v, (2.60)

where
m - e mo>
I, =2 My, H
=-2 f[ - gf° ds (2.61)

apert.

A case of special interest is that of far-field measurement.
This is obtained by a procedure dual to that used for radiation and
scattering from conducting wires [15]. To obtain a component of B on
the radiation sphere, we take a source Kgm perpendicular to . and let

rm + o, At the same time we adjust KQm so that it produces a unit




plane wave in the vicinity of the origin. The required dipole moment

is given by

-jkr
1 - jus T m
Ko e (2.62)
m m

and the plane wave tield it produces in the vicinity of the origin

is

mo R
g = oe T (2.63)

m
Here Yo is a unit vector in the direction of H 0, km is the propagation
~ -

vector, and r is the radius vector to an arbitrary field point. Sub-
stituting (2.63) into (2.61), we obtain the components PT(0.¢) of the

*m
far-field measurement vector P where

-ik F
rT(o.o) = - 2 ff M, *u e i SR ™ 2.64)

~m
apert.

m =
(the symbol P is used for this particular measurement vector to dis-
*m
tinguish it from a more general measurement vector 1 ).
R m Jm
Two measurement vectors of interest are (Pi) and (‘i)ﬂ"
XX \

m
(P,) is for a y_ polarized measurement in the x=0 plane while
i xx X

m

(P1)0¢ is for a LU polarized measurement in the ¢ = constant plane.
m m

(P,) is used to obtain E-plane pattern gain while (P)) is used to
1" xx 1°0¢

obtain H-plane pattern gain.
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™ = -2 IJ M oy elky cos ¢

i7xx ~i wXx dxdy
apert.
¥ 1
xi + ili‘ yi + %_ {
= lq'zb' f dx cos "“T (x-xi) j ejk)' cos ¢d |
s =~ L .
i 2 yi 2
X E
& jkyicos ¢ sin(53~ cos ¢) ’
TS i : (2.65) -
2 cos ¢ :
' '
For ¢ = %, sin(kg_ cos ¢)/(k; cos ¢) in (2.65) is to be replaced by 1
its limit one.
(PT)O¢ " II Mooy oJk(x cos G+ y sinfcos ¢) dxdy |
apert. - ,
s 1 1 %; i 1 %? n jkx cos®
]
. 2/3'2b' i B J dy ejky sin 0 cos ¢ f cos — (x—xi)e dx
b' 3t
1T e Tt ¥
' :
jk(x,cos 0+ yisin(¥cos ) cos(kg— cos 6)

= - 4m/2a'b’ sin 6 e i

ﬂz-kza'zcoszﬁ

'
sin (E%— sin 6 cos ¢)

]
B%—sin fcos ¢

(2.66)

For 6 = 0 or mor ¢ = %. the sin ( )/( ) term in (2.66) is to be replaced

A 2 2

-1 47 ka' 2 2 5
by its limit one. For 0 = cos (EET)' the cos(—i—'cos 0)/ (" = k"a'"cos 0)

term in (2.66) is to be replaced by its limit f;.




2-5.2. Determination of Pattern Gain

If we extend the preceding development to the multiple aperture

case, (2.58) becomes

]
ho~—Z

¢ vV, <= M,, H" >
"m!\ » i Mi Ht

i=1 i

~m=>

=IV (2.67)

where 1" is the transpose of the measurement vector
m m
= Com > . .
I [< Mi' Hti ]le (2.68)
If we adjust KQm so that it produces a unit plane wave in the vicinity
of the origin (2.62), then substituting (2.62) and (2.64) into (2.67),

we obtain the far-zone magnetic field

-jkr

it m ~m >
H G e | AR (2.69)

The usual two radiation components Hn and H¢ are obtained by orient-
ing Klm in the 6 and ¢ directions, respectively.
The complex power Pt transmitted through an aperture is

%
JJ ExXxH ¢ uds
t -~ ~z

apert.

P

[}

]

” Moo ds (2.70)

apert.
(* signifies complex conjugate).
Since this transmitted power is only dependent on the tangential com-

ponent of H in the half-space region (H?S(—ﬁ)), (2.70) becomes for the

multiple aperture case
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| NN
* *
5 P =~ 3 ¥ wv, j[ Mo+ @) ds
| £ =1 j=1 13 #l Ry
\ apert.
i % *rk
a ST e A (2.71) 5
The gain (ratio of radiation intensity in a given direction to the
radiation which would exist if the total power, Pt’ were radiated !
uniformly over the half-space region) associated with the u, com-
ponent of the magnetic field in the half-space region (z > 0) is
given by
2nrir1|ﬂm|2
G = W . (2.72)
|
Substituting (2.69) and (2.71) into (2.72), we obtain |
Wh A 1 5 s
G = B S T T (2.73)
Real (V[Y 7] V)
The reactively loaded array gain is obtained by substituting
(2.16) into (2.73)
= k2 lﬁm[ng+Yh§l:l?imp|2 i
— —1>1 * —1% * g .
8mn Real ([ng+Yﬁs] 1?1mp[Yhs] [ng+YhS] 1 ¥imp y
The maximum array gain with all of the elements excited can be
found as follows. Using the fact that [Yhs] = [Ghs] + j[Bhs] and that
[Yhs] is symmetric, (2.73) can be written as
2 T gm zmk R
G L S \ (2.75)

"8 = mmar
8mn V[Ghs]i;
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If V is over the complex field, the stationary points of (2.75) are

-
eigenvalues 8mn G/k™ of

~m*Xx »% » %
Pt Ut §1§—9 (st . (2.76)
K

~
Since Ghs is positive definite and 6“ P is positive semidefinite,

K
all of the eigenvalues are zero or positive. Furthermore, since P

is a one term dyad, all eigenvalues are zero except one. To find this

non-zero eigenvalue, we substitute (2.75) into (2.76) and cancel the

<k %k
common term P V to obtain

~ - Mm
- ! >%
e TS N LA (2.77)
V(G SV

The quotient term on the right side is just a complex number which we
*
shall denote by 1/C . The required voltage distribution is obtained

by inversion of (2.77) which is
- *
¥ =gt . (2.78)

Substituting (2.78) into (2.75), we obtain

2
k™ sm._hs,-1 2m*
max B PG ] P . (2.79)
G is the maximum gain that can be obtained by using complex

max

equivalent sources for excitation.

AT g AL MR SRR, T
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2-6. Determination of Reactive Loads which Resonate Complex Equivalent

Voltages i

In the next chapter,reactive loads which resonate the complex

A —

i equivalent voltages required for maximum gain are used as a starting
point in an optimization subroutine which determines the final optimum
?% loads for a given array radiation requirement. The reactive loads which i
»
resonate a vector V of complex equivalent voltages are those loads which
minimize the norm of the vector I of source currents required to main- |
-
tain V.
> >
The current source I required to produce the complex vector V of
equivalent voltages required for maximum gain in a loaded waveguide-

fed aperture antenna is

hs

)

T=(Y"+ Y8y

(Y"S + Re[YY®] + j BLN (2-80)

where [B, ] is a diagonal matrix whose elements BL are real.
3 ok
We can find the reactive loads BL by minimizing the source current
i

> s
norm |I|. Since |1| is stationary with respect to the reactive loads
at its minimum, we write

vy 2
L A Y™ + Re[Y™B] + nlxﬁl‘

B B
Li Li

=28 lvi]2 + 2 Imag {V:([Yhs + Re[Y"g]]G)i}
-0 (2.81)

for all i where ( ), denotes the ith component of the enclosed vector.

Solving (2.81) for B, , we obtain




di in (2.40).

driver, BL
NFP

control over BL

In general, B

NFP

Lyrp

no adjustable parameter.

1
B =™ -
L 2
i e
i For all i except i = NFP, these loads B

L.
1

controlled by adjusting the strength of the source I

Inag {v’j:([yhs + Re[Y"8]10), }

imp
NFP*

is not essential to pattern synthesis.

2-7. Determination of Relative Power Transmitted (RPT)

[0}

]

L}

waveguide j where only the dominant mode propagates

Yz Y.z A
(e °—e°)go+§¥g(§3)
Y.z Y.z Y, 2
o o k
(e - e e + V, E A k € Sk
=Y 2z Y.z
(o) o]
+ (V.A, -1)e + V, A,
[e (VA ~De ° Je JE ik
k#0
-y z Y 2
o (o]
Y [e - (VJ.AJ,o - 1e ] u % -3
Y. 2
(] k
- vj E AjkYk e u, X &
k#0

can not be realized because (2.25) contains

However, since only the NFPth waveguide is

Therefore,

Consider the fields transverse to the z direction in the driven

(2.82)

can be realized by adjusting

, being in parallel with the source, has no effect on the

shape of the radiation pattern and the strength of the pattern can be

(2.84)

s

bt il e i
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-y 2 Y. &
Yy Yy
where the index o denotes the dominant mode, (e v - e : e is the
~ )

field due to impressed sources when the aperture is closed with a perfect

conductor, Y, are the modal propagation constants, are the modal
k pay

Ajk
constants defined by (2.28) and (2.29), V‘ is the unknown magnetic current
coefficient determined by (2.16), and the Yk are modal characteristic
admittances defined by (2.32) and (2.33).

If we define the relative power transmitted (RPT) as the real power

transmitted divided by the real incident power in the driven waveguide,

we have
*
Re | Jf E X H <« u dst
*l M 2
PT = .-_._“."’u.‘."_r.‘-',_ S S e L R "Iy - 2
L Real Power Incident A (2.8 Y)
.

Substituting (2.83) and (2.84) into (2.85), we have

- Rk Y)
e e

Re {Y (VA ) (2
IETRERSRE Tl - e
\ Y
O
= Re {A'“(2Vj - Aj“ |v‘| )} (2.86)

where the subscript | on RPT denotes the jth waveguide (driven).
Equation (2.86) represents a parameter which indicates how well the
waveguide array is matched (how much power is radiated of the inci-

dent power).




A |
ig 37 4
‘ 2-8. Conclusion

2

: In this chapter an approximation to the boundary value problem of

an antenna array of reactively loaded apertures has been reduced to a
matrix formulation using the method of moments. Equations for determin- |

;? ing waveguide and half-space admittances, power gain, relative power

transmitted, maximum array gain with all of the elements excited, and #
reactive loads which resonate complex equivalent voltages required for
maximum gain have been formulated in terms of the derived model. Some

numerical results are presented in the next chapter.

A i Mg (2l A

i R S ST WIS




Chapter 3

CALCULATED RESULTS

3-1. Introduction

38

In this chapter results are presented for reactively loaded aperture

antenna arrays using computer programs (see Appendix B) based on equations

derived in the preceding chapter. Examples chosen for detailed computa-

tional effort are three different nine element linear arrays and a 27 ele-

ment two dimensional array. The results illustrate the effect of different

array parameters on the array characteristics of bandwidth, match, and

power gain. In addition, the effect of wavegulde short position (reactive

load) perturbations on the gain and bandwidth characteristics of the an-

tenna array is presented.

3-2. Definitions

It is convenient at this point to define several terms which are
used throughout the chapter.

The useful bandwidth of an antenna depends, in general, on both its
admittance and pattern characteristics. The relative power transmitted
(RPT) over a frequency range 1s one measure of the bandwidth associated
with the antenna array. 1t depends on both the driving wave admittance
and the input admittance of the antenna array. Another measure is the
pattern bandwidth, expressed In terms of the 3 dB (half power) points of

the power gain pattern over a frequency range. Both bandwidth measures
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(RPT and pattern) can be specified as the ratio of f, (upper frequency
\ limit) - fl (lower frequency limit) to fO (center frequency), or in
‘ percent as
Fz - fl
—— x 100 . {3.1)
Yo
A |
]
The matching characteristic of the antenna can be expressed in
{
terms of the ratio of the power radiated into the half-space region to
the power incident in the driven waveguide, which is the relative power
transmitted (see equation 2.86).
The power gain characteristic of the antenna is the ratio of the
radiation intensity in a given direction to the radiation intensity which |

would exist if the total power Pt were radiated over the half-space
(see equation 2.72). For our problem we are assuming that none of the
incident power from the impressed sources in the driven waveguide is

dissipated in the antenna conducting surfaces.

3-3. Linear Aperture Antenna Array

In this section three different reactivelv loaded linear aperture

antenna arrays are analyzed. The following applies to all three cases:

a) There are nine elements with the center element
driven by impressed sources,

b) All of the aperture backing waveguide dimensions
are the same.

¢) Waveguide separation distance is zero.




R

The aperture dimensions are the same for all nine elements in each
case, but different from case to case.

Figure 3.1 depicts the coupling coefficients (scattering parameters)
with respect to the driven port for all three cases. Note that the aper-
tures are oriented for strong coupling and that coupling is greatest for
case (c¢), where the aperture length is 0.500A\.

The antenna characteristics of bandwidth, match, and power gain
for these arrays are presented in the following subsections. For all
of the figures other than the polar gain plots, a cubic spline function is
used as a curve fitting function for the discrete data points (indicated
by +'s). A cubic spline function is composed of piecewise polynomials of

third degree satisfying certain continuity properties at the junctions.

3-1.1. Bandwidth

In this subsection a comparison of the power gain bandwidth for
three different reactively loaded linear arravs is presented. In most
of the examples the bandwidth obtained is less than or equal to the
bandwidth associated with matching (see Figures 3.6 - 3.8 in the next
subsection).

Figures 3.2 - 3.4 show the E-plane power gain of three different
nine element reactively loaded aperture antenna arrays as a function of
frequency and beam steering angle ¢. In each example the power gain is
optimized at a frequency f = fo' Next, the short positions (reactive
loads) obtained from this optimization are kept fixed while the frequency

is varied and power gain computed. The most noticeable characteristic of
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(¢) a'/\ = 0.500

b'/A = 0.250

The coupled power 20 log |Sis‘ and phase of Syg(i=1,2,..

a/A = 0,750, b/

for a nine element waveguide fed linear aperture antenna array,
0.375, Dy/\ = 0, and D¢/X = 0.040.
The upper number in cach aperture represents coupled power in dB
while the lower number represents the phase of Si‘\ in degrees.
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the curves in these three figures is the fact that greater gain is ob-
tained at a frequency lower than f = fo. the optimization frequency.

The main reason for this is that for lower frequencies, the apertures are
closer together in terms of wavelength which increases the mutual coup-
ling. An increase in mutual coupling, especially at the lower beam steer-
ing angles ¢ (the angle ¢ is measured from the aperture plane), increases
the gain (see Figure 3.13).

Figures 3.5 summarizes the gain and bandwidth results shown in
Figures 3.2 - 3.4 as a function of beam steering angle for a frequency of
f = fo. Both the gain and bandwidth curves for all three cases have about
the same values except for beam steering angles greater than 60° where
the bandwidth curves diverge. However, if we choose a frequency of
f = 0.95 fo, case (¢) (a'/A = 0.500, b'/\ = 0.250) would show greater gain

and bandwidth at the low beam steering angles than the other two cases.

3-3.2. Match

Mismatch between the incident wave and aperture admittances of the
antenna represents a decrease in the effective antenna gain and system
efficiency. The relative power transmitted is a measure of the match
between the source and antenna. Figures 3.6 - 3.8 show the relative
power transmitted for a nine element reactively loaded aperture antenna
array as a function of frequency f and beam steering angle ¢.

A comparison of Figures 3.6 - 3.8 with the corresponding Figures
3.2 = 3.4 for gain shows that the decrease in the relative power trans-

o

mitted at the low beam steering angles (¢ = 0, 15°, and 30°) occurs when
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there is a corresponding rise in the power gain curves. In effect,
the gain increases at the expense of decreasing match.

The curves in Figure 3.8 show a better match at frequencies above
fo’ but a poorer match at frequencies below, than do the curves in
Figures 3.6 and 3.7. Besides the decrease in match associated with the
increase in gain at frequencies below fo, the relative aperture size is

reduced, which results in more energy reflected and a poorer match.

3-3.3. Power Gain

The E-plane polar gain patterns for a nine element reactively
loaded apertur: array are given in Figures 3.9 - 3.11 for five frequencies
and three beam steering angles. Two different aperture size cases
(A -a'/x =0.750, b'"/XA = 0.375, and C - a'/X = 0.500, b'/\ = 0.250) are
analyzed.

In Figure 3.9 (¢ = 0), aperture case C has greater gain at more
frequencies than aperture case A. Above frequency fo' both cases are
unusable. In Figure 3.10 (¢ = 45°), both cases have similar patterns.

In Figure 3.11 (¢ = 90°), both cases have similar patterns except that the
gain is slightly larger for aperture case A. The corresponding H-plane
pattern for the ¢ = 90° E-plane case would show the magnitude for case

A exceeding the magnitude for case C at all frequencies and the beamwidth
for both cases varying between 50° - 70° as the frequency is changed.

The E-plane polar gain patterns at a frequency fo and four beam

steering angles for cases A and C are given in Figure 3.12. The patterns

B Al and B Bua. Lo ol s
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E-plane polar gain as a function of frequency f for a nine
element reactively loaded linear aperture antenna array,
where ¢ = 0, a/\ = 0.750, b/ = 0.375, D
De/X = 0.040, case (A) - a'/X = 0.750, b
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Fig. 3.10. E-plane polar gain as a function of frequency f for a nine

() f=1.10 f_

element reactively loaded linear aperture antenna array,
where ¢ = 45°, a/A = 0.750, b/X = 0.375, Dy/X =0,
D¢/ = 0.04, case (A) - a'/X\ = 0.750, b'/X = 0.375, and

case (C) - a'/X = 0.500, b'/\ = 0.250.
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angle ¢ for a nine element reactively loaded linear
aperture antenna array, where f = f_,, a/\ = 0.750,
0.040, (---) a'/Xx = 0.750,
0.500, b'/X = 0.250.




for both cases are almost identical at every beam steering angle. The
corresponding H-plane patterns for both cases would show almost iden-
tical patterns for all beam steering angles and the beamwidths varying
between 40° - 70° as the frequency is changed.

Figure 3.13 shows the E-plane power gain that is obtained by
optimizing at each of nine discrete frequencies for a nine element
reactively loaded aperture antenna array. The gain at a beam steering
angle ¢ = 0 for cases A, B (a'/X = 0.650, b'/X = 0.325), and C increases
quite rapidly for decreasing frequencies from 1.1 fn to 0.9 fo’ at which
time the gain levels off. ‘The gain for case A at beam steering angles
of 45° and 90° increases more gradually as the frequency decreases.

Since Figure 3.13 shows that the gain for all three aperture sizes
is approximately the same for a fixed frequency and beam steering angle,
the increase in gain for decreasing frequencies is probably due to the
increase in mutual coupling resulting from a decrease in effective dis-
tance between apertures. To demonstrate this point, Figure 3.14 com-
pares the E-plane reactively loaded gain for two waveguide wall thick-
ness, Dt/k = 0.01 and Dt/\ = 0.04, and for four beam steering angles
for a nine element linear aperture antenna array at a frequency fo.

(The distance between waveguides is still zero — Dv/k = 0.) 1In every
case the gain is greater for the closer spacing without pattern degra-
dation. The waveguide wall thickness Dt/X = 0.04 was chosen for the

examples in this chapter because it approximates the wall thickness of

commercially available waveguide.
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a'/A = 0.750, b/X = b'/X = 0.375,
0, case (A) - RL, D¢/X = 0.040, case (B) - OE,
0.040, case (C) - RL, D¢/X = 0.010, and case (D) - OE,




3-3.4.

presented in the preceding subsections. No specific trend is obvious

from the values presented except that the reactive load values given for
a beam steering angle of 0° are close in magnitude for corresponding ' !
elements in aperture cases A, B, and C. Also, for a beam steering angle
of 90°, the reactive loads are approximately the same for corresponding

positions about the driven port (elements - one and nine, two and eight,

etc.).

Table 3.2 lists the corresponding waveguide short positions for

the reactive loads given in Table 3.1.

Reactive Loads

Table 3.1 lists the reactive loads required for some of the results

Table 3.1. Reactive loads for a nine element reactively loaded linear
aperture antenna array, where f = f , a/A = 0.750, b/A = 0.375,
DV/A = 0, D¢/X = 0.040, case (A) - a'/X\ = 0.750, b'/X = 0.375,
case (B) - a'/A = 0.650, b'/X = 0.325, case (C) - a'/A = 0.500,
b'/X = 0.250, and ¢ is the beam steering angle.
Case A B C A A A
¢ 0° 0° 0° 30° 60° 90°
BLOAD (1) | -1.68 my5| =1.42 m5| -0.74 my§| -0.60 m{ -1.50 m{| -1.36 m}
BLOAD (2) | -2.56 -2.21 -1.32 -1.63 =5.22 64.10
BLOAD (3) | -3.00 -2.58 -1.57 -2.25 6.57 -2.00 ]
BLOAD (4) | -3.24 -2.78 -1.70 -2.71 -1.20 1R 19 i
BLOAD (6) | -3.68 =317 -1.98 -4.73 -21.53 12.38
BLOAD (7) | -3.73 =321 =2.00 -6.26 2.69 -1.99
BLOAD (8) | -3.55 -3.06 -1.91 -10.47 -1.26 132.8 | 9
| -
BLOAD (9) | -2.86 -2.42 =1.42 19.42 -2.82 =1.42 Yol
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Table 3.2. Waveguide short positions (for corresponding reactive loads
in Table 3.1) for a nine element reactively loaded linear
aperture antenna array, where f = f,, a/A = 0.750, b/A = 0.375,
Dy/X = 0, D¢/X = 0.040, case (A) - a'/X = 0.750, b'/A = 0.375
case (B) - a'/A = 0.650, b'/X = 0.325, case (C) - a'/Xx = 0.500,
b'/X = 0.250, €, = 1.0, and ¢ is the beam steering angle.
Case A B C A A A
¢ 0° 0° 0° 30° 60° 90°
Short Position (1)| ~0.486\| -0.480A | -0.405A( -0.398X} -0.474)\| -0.464)
Short Position (2)}| -0.530 | -0.529 | -0.484 -0.483 | -0.593 | -0.007
Short Position (3) | -0.546 | -0.545 -0.509 -0.517 -0.062 -0.504
Short Position (4)| -0.554 | -0.552 | -0.519 { -0.536 | -0.452 | ~-0.036
Short Position (6)] -0.566 -0.565 -0.539 -0.586 | ~0.651 | ~0.034
Short Position (7)| -0.567 -0.566 | -0.540 | -0.606 | ~0.135 | -0.504
Short Position (8)] -0.562 -0.562 -0.534 ~-0.631 ~0.457 -0.003
Short Position (9){ -0.542 ~-0.538 | -0.495 -0.022 | -0.540 | -0.468
3-4. Two Dimensional Aperture Antenna Array

In this section a 27 element two dimensional (three columns of

nine elements) reactively loaded aperture antenna array is analyzed.

The aperture dimensions are the same as case C (a'/X = 0.500, b'/X = 0.250)

in the previous section.

sions and the separation distance between waveguides is zero.

The backing waveguides all have the same dimen-

Figure 3.15 shows the coupling coefficients of the two dimensional

array with respect to the driven center port.

greater in the vertical direction than the horizontal direction.

Note that coupling is

Since

it was shown in the last section that gain is dependent on mutual coup-

ling, a two dimensional reactively loaded aperture antenna array will




Fig. 3.15.
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usually be of rectangular shape as shown in Figure 3.15. 1In the following
sections the array is analyzed in terms of its characteristics of band-

width, match, and gain.

3-4.1. Bandwidth

Figure 3.16 shows the E-plane power gain for a 27 element two ' J
dimensional reactively loaded aperture antenna array as a function of
frequency and beam steering angle ¢. In the previous section it was
observed that the gain always peaked at a frequency lower than the de-

sign frequency fo. An attempt can be made to remedy this situation by

optimizing the gain at a frequency higher than f = fo. In Figure 3.16,
the dashed lines represent an optimization at frequencies f = 1.05 fo

and £ = 1.10 fo for a beam steering angle of 0°. If these results are

compared to that obtained for an optimization frequency fo’ one observes
that for f = 1.05 f0 there is a slight shift of the gain curve towards
the f = fo axis at the expense of gain, but for f = 1.10 fo the gain
curve is degraded. The frequency f = 1.05 fo is, therefore, the upper
limit for obtaining an acceptable curve. If one optimizes at a frequency
higher than a desired center frequency, but equal to or below f = 1.05 fo’
a more centered gain pattern results at the expense of gain. The rest of
the curves in Figure 3.16, which are optimized at a frequency f = fo’ are
very similar in shape to those for a nine element linear aperture antenna
array (Figure 3.4), except that all of the curves in Figure 3.16 have a
pronounced peak. This peak defines an operating region where increased

gain can be obtained.
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Figure 3.17 summarizes the gain and bandwidth shown in Figure 3.16
for frequencies f = 0.95 £, and f = fo. The curves ii: Figure 3.17 are
similar for both frequencies except that the curves at frequency

f = 0.95 f  exhibit a higher gain-bandwidth product.

3-4.2. Match

Figure 3.18 shows the relative power transmitted for a 27 ele-
ment two dimensional reactively loaded aperture antenna array as a
function of frequency and beam steering angle ¢. The curves are similar
to those for the nine element linear reactively loaded aperture antenna
array (Figure 3.8). For both linear and two dimensional cases, the
matching characteristics are acceptable above a frequency fo, but de-

grade noticeably below that frequency.

3-4.3. Power Gain

E-plane polar gain patterns for a 27 element reactively loaded
aperture antenna array are given in Figures 3.19 - 3.21 for five fre-
quencies and three beam steering angles. If one compares Figure 3.19
with Figure 3.9 for the linear array (¢ = 0), one observes a small in-
crease in gain but a better mainbeam to backlobe ratio for the two
dimensional array. One might expect only a small gain increase since
the number of elements in the column containing the driven element is
still nine and the adjacent columns couple only a small amount of energy

which can be reradiated in the ¢ = 0 direction. If a comparison is made
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Fig. 3.19. E-plane polar gain as a function of frequency f for a 27
element reactively loaded two dimensional aperture
antenna array, where ¢ = 0, a/XA = 0.750, a'/X = 0.500,
b/A = 0.375, b'/X = 0.250, DX/A = Dy/k = 0 and Dt/A = 0.040.
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Fig. 3.20.

E-plane polar gain as a function of frequency f for a 27
element reactively loaded two dimensional aperture

antenna array, where ¢ = 45°, a/X = 0.750, a'/\ = 0.500,

b/X = 0.375, b'/X = 0.250, DX/A = Dy/.\=0, and D /\ = 0.040.
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Fig. 3.21.
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E-plane polar gain as a function of frequency f for a 27
element reactively loaded two dimensional aperture antenna
array, where ¢ = 90°, a/\ = 0.750, a'/\ = 0.500, b/X = 0.375,

b'/X = 0.250, D‘/\ = Dv/\ = 0, and Dt/\ = 0.040.




between Figures 3.20 - 3.21 with Figures 3.10 - 3.11 for the linear
array (¢ = 45° and 90°), a large improvement in the gain pattern can
be observed. The corresponding H-plane pattern for the ¢ = 90° E-plane
case would show the pattern beamwidth varying between 20° and 30° as
the frequency is changed. Note that the beamwidth obtained is approxi-
mately one-half the value for the nine element reactively loaded linear
aperture antenna array discussed in the last section.

The E-plane polar gain patterns at frequencies f = 0.95 fo and
f = fo and four beam steering angles are given in Figure 3.22. At three
of the four beam steering angles (¢ = 0, 60°, and 90°), the curves cor-
responding to a frequency of f = 0.95 f0 are more acceptable than those
curves corresponding to a frequency of f = fo. This fact reinforces the
previously mentioned strategy of optimizing at a frequency higher than
the desired operating frequency. The corresponding H-plane patterns for
both cases would show more acceptable patterns at all four beam steering
angles for the curves corresponding to a frequency of f = 0.95 fo. For
both cases, the pattern beamwidth varies between 20° and 30° as the beam

is steered from ¢ = 0 to ¢ = 90°.

3-5. Effect of Waveguide Short Position (Reactive Load) Perturbations
on Antenna Gain versus Frequency Patterns

In the previous section one observed the effect on the antenna gain

~versus frequency natterns when all of the waveguide short positions were

changed by a fixed amount in the same direction (frequency scaling).
These results corresponded to a shifting of the gain versus frequency

curves.
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Fig. 3.22. E-plane polar gain as a function of beam steering angle ¢ for

a 27 element relatively loaded two dimensional aperture antenna
array, where a/A = 0.750, a'/\ = 0.500, b/X = 0.375,

b'/X = 0.250, Dx/A =D /A =0, Dt/A = 0.040, (--=) f = 0.95 f
and (—) f = f y o

’
0.
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In Figures 3.23 - 3.25 a fixed percentage change in waveguide
short positions is made for a nine element reactively loaded aperture
antenna array. This change alternated from waveguide to waveguide
(for the first waveguide, a fixed percentage change in the short posi-
tion is made toward the aperture while in the second waveguide, the
same percentage change is made away from the aperture, etc.). For all
three figures the degradation in the polar gain and gain versus frequency
patterns at a frequency fo is relatively small for both 5% and 10% short
position changes. The greatest pattern degradation occurs in Figure 3.23

where the gain values are the largest.

3-6. Conclusion

In this chapter both linear and two dimensional reactively loaded
aperture antenna arrays were analyzed in terms of their antenna character-
istics of bandwidth, match, and power gain. For the linear array examples
the array corresponding to aperture dimensions a'/A = 0.500, b'/A = 0.250
exhibited more acceptable gain pattern characteristics over a larger fre-
quency range than the other cases. The two dimensional array had improved
gain pattern characteristics over the linear array examples, especially at
beam steering angles other than 0. Finally, it was shown that alternating
waveguide short positions by 5% and 10% did not significantly alter the

gain versus frequency patterns for a linear array example.

|
{
{
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Chapter 4

MAGNITUDE PATTERN SYNTHESIS EXAMPLES

4-1. Introduction

In the previous chapter the antenna characteristics of several
reactively loaded aperture antenna array examples were calculated sub-
ject to the condition of maximum reactively loaded gain at a specified
beam steering angle ¢ and frequency. In this chapter we will investi-
gate through the use of magnitude pattern synthesis the antenna patterns
which are most easily realized subject to antenna geometry and excita-
tion constraints.

In many physical cases only the far field power pattern is speci-
fied. This, in effect, specifies the far field magnitude and leaves the
far field phase arbitrary. Normally, the far field phase does not affect
system performance. The synthesis procedure used in this chapter requires
a specification of the magnitude of the far field electric field with no
restrictions on the phase. Since we are assuming dominant mode excitation
for the waveguide-fed aperture antenna array, the far electric field is
linearly polarized. Therefore, the square of the magnitude of the far
field electric field is proportional to the far field power pattern.

In addition to finding antenna pattern limitations, we will attempt
to change the gain versus bandwidth characteristics of the antenna in
the ¢ = 0 direction. If this can be done, we will attain more uniform

gain and bandwidth values as the array is scanned from ¢ = 0 to ¢ = 90°.
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General Formulation

4-2.

Consider a source v and the field g it produces on the radiation

sphere. Also, let T be a known operator representing the antenna

system. '

The analysis problem is concerned with determination of the radi-
ation characteristics g for a given voltage distribution v of an antenna T,
that is,

Tv=g (4.1)

where this is an exact relationship.
The synthesis problem is concerned with determining the voltage
distribution v of an antenna T given a specified field pattern go,

that is,

Tv=g (4.2)

where this is usually an inexact relationship.
In order to use matrix operations in the synthesis problem (4.2)

is discretized as follows. Let
N
v = Z Vs € (4.3)

where v, are constants and ei are basis elements. Since the source is

i

continuous, the e, are functions and (4.3) is an approximation to the

-+
true source. Define v to be the vector having the components vi. that is,

>

v s (4.4)

= vilya

Next, substitute (4.3) into (4.2) and evaluate (4.2) at P points
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(Bp. ¢p), p=1,2,...,P on the radiation sphere. In matrix notation,
we have

[T}V = g (4.5)

where the pth element of the Eo vector is given by

8op = g0(¢p) (4.6)

and [T] is the matrix

[El = [ ei)p]PXN . (4.7)

Here (T ei)p denotes the pattern of e, evaluated at the point (ep, ¢p).
Next we consider an array of N waveguide-fed apertures in the x-y
plane (see Figure 2.1). To find the electric field for a single aper-
ture centered at (xi,yi), we apply both the equivalence principle and
image theory to obtain a strip of magnetic current —251 radiating into
half-space producing the original fields in the half-space region. The
far electric field in the 6 = m/2 plane can then be expressed in terms

of an electric vector potential as

i & 1 i
Ey(9) = = jk F, (9 (4.8)
whece
’ : o odkln-g'l
< - X
Fx(¢) it~ JJ Ir_rf] ds (4.9)
apert.

(r and E' are respectively the vectors to the field and source points and
k is the free space propagation constant).

For our problem
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Mi my X u E
pe . 68 Y Ylapert.
= - Vi Pi(x,y) cos é%—(x—xi)yx (4.10)
|
where ' ' !
a a
- — +—-..
/__'g_' g T E® I, RS ‘
a'b : .
ut o b
T R
P (xey) = (4.11) -
0 all other x,y . -
Substituting the far-field approximation
—. —' -
e JRIE £ | e Jle iky' cos ¢ 4
7 = e (4.12)
Tex'l r
and (4.10) - (4.11) into (4.9), we obtain
b a'
: v, == P e
-jkr i 2 . )
Loy = _L/__2__8J~ v Jky'cosd paas
Fx(¢) = =g S 2 Vi Jb’d) e £ dx'cos = (x -xi)
. i) i
]
1 e-jkr jkyicos<b sin(5%~ cos ¢)
e e [
= 5 2a'b = Vi e N (4.13)
b 5 cos ¢
Substituting (4.13) into (4.8), we obtain
kb'
-jkr -jky.cos ¢ sin(=— cos ¢)
e b e G sk T
= m i —5 cos ¢
i
=K G (¢) (4.14)
where
-jkr
e (4.15)
m
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t
L jkyicos¢ sin(E%— cos ¢)
G (p) =V, e - (4.16)
i kb
—2— cos ¢
L} L}
(when ¢ = %, the sin (5%— cos ¢)/(5%-cos ¢$) in (4.16) is to be replaced
by its limit 1). Since we are interested only in pattern shape, the far
electric field can be represented by Gi(¢) or for N apertures
N
i
G(P) = } G () . (4.17)

i=1
The pattern magnitude synthesis procedure uses Nf frequencies and

>
P points from the desired pattern |§O| and finds a source V such that the

pattern error

Nf P
: 3 2
€ nzl pgl N CRORTIERERCR |
£ 5. < Te o P (4.18)

- (Y v o > ’
is minimized Here wnp is a weighting function (wnp 0) Cn(¢p) is

equal to G(¢p) at the nth frequency, and

L}
jky,cos ¢ sin(EE— cos ¢ )
v wfe * P 2 E.)
npi kb' n

5 cos ¢p

¢ }n means that the quantity in brackets is evaluated at the nth

(4.19)

frequency).
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4-2.1. Reactively Loaded Array

For the reactively loaded array, the vni in (4.18) is equal to

vo= v e fimp}ni (4.20)

hs, -1 Yimp

¢ }ni indicates the ith element of the column matrix [ng +Y ]

is evaluated at the nth frequency). Substituting (4.20) into (4.18), we obtain

N. P
€ = Zf Y w |l§ LR S B d 2 TR S RS PRC) || 2 (4.21)
n=1 p=1 "P i=1 it Saptt ~ PRa T :

There are N unknowns in (4.21), namely, N-1 unknown short circuit distances
which enter through (2.40) and one unknown excitation coefficient Ii?g.

s |
It is assumed that Ié?g does not depend on n. The error (4.21) is a com-

d

plicated function of di involving a cotangent and an inverse matrix. The
only recourse is to an optimization technique.

For the optimization of (4.21),

8 & v"S = vPS & Rea1(YVB) + iB, (4.22)
where BL = Imag (ng). With BL held constant, (4.21) is optimized
NFP
with respect to the di appearing in (2.40) for all i except NFP. For
the single frequency case, di can be restricted so that
i
0<d, <5 = (4.23)
(8]
However, for the multiple frequency case, di can take on values
(4.24)

—

P T




R sk =

b - Tl i

LB B i = e

R T i

{
i
{
|
|
{
'
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The upper limit of infinity for di in Eq. (4.24) can be explained as
follows. The argument of the cotangent function in (2.40) can be
written as Bodi or Bodi + nm where n is a positive integer. If we

choose the latter argument, we can write

cot(Bodi + nm) = D0 (4.25)

or -1
cot (Do) - nn
di = g (4.26)

(o]

(the constant Bo was determined at a frequency of fo). At a frequency
other than fo' the argument of the cotangent function becomes

B'
.Eg (cot—l(Do) - nn) + am
o

]

L}
Bodi + nm

g R!
- coc'l(no) B 6—°) an (4.27)
0 (o]

where Bé is Bo determined at the new frequency. As n is varied in (4.27),
the cotangent of this argument will vary.

The optimization algorithm chosen to minimize (4.21) was that of
Rosenbrock [22]. The Rosenbrock algorithm uses a set of N mutually
orthogonal directions in each cycle of searches (stage). After each
stage a new set of orthogonal directions are obtained by rotating the
former direction vectors.

For the calculated results illustrated in the next two sections,

(4.3) and (4.4), N variables are used in the Rosenbrock algorithm (N-1
imp,

short circuit distances d1 and the excitation coefficient INFP It
should be mentioned that (4.21) does not depend on the phase of I;?ﬁ ;

o~
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imp
NFP

(4.21) becomes a simple quadratic function in I

so that I can be taken as real and positive. When this is done,

imp
NFP®

the optimum value of I;:g can be easily obtained for fixed short circuit

distances di' If this optimum value of I

From this quadratic

imp
NFP

(4.21), only the N-1 short circuit distances di would enter into the

were substituted back into

Rosenbrock search.

4-2.2. Optimum Excitation

In this subsection a solution is given for the same array analyzed

in the preceding subsection but with all the elements driven. In the next
section (4.3) a comparison of the synthesized patterns will be made between :
the reactively loaded array and the optimum excited array to indicate the g
degree of degradation due to the restricted excitation for the reactively
loaded array.

The far electric field magnitude at a point p in the 6 = /2 plane
has the same form as the single frequency (Tnpi = Tpi) reactively loaded
case, that is,

N
|c(¢p)| = Iizl Vy Tpil . (4.28)

Here, v, can take on any complex value in contrast to the restricted

i

values for the reactively loaded case. A solution for the pattern
magnitude synthesis problem using (4.28) can be found in [23], and the
following is a summary of the formulation.

The error function to be minimized for the general synthesis problem

where both magnitude and phase of the desired pattern EO are specified is




N
e= L ow |} vt -g0)? . (4.29)

Note that Eq. (4.29) is evaluated at only one frequency while Eq. (4.18)
for the reactively loaded case is evaluated at many frequencies up to Nf.
Multi-frequency synthesis is used for the reactively loaded case to both
broaden and shift the displaced gain versus frequency curve. For the

optimum excited case the gain versus frequency curve was centered at the

<

‘design frequency. The vector v of the coefficients vy which minimize

(4.29) (see section V of [23] with a = 0) is
= » - *
v= T w T wgy (4.30)

where * signifies complex conjugate, ~ signifies transpose, and [W] is a
weighting matrix.
When the pattern magnitude only is specified, the error function

becomes

N p.
e® il % llzl v Togl = e @I” (4.31)

p=1

To circumvent the inner magnitude operation in (4.31), we consider the

following more general error function

iB

P B
v T, = legdle P17 . (4.32)

c(ﬁ) = 7 ow_ |

p=1 o

e Z

1
In other words we are specifying a phase for the pattern magnitude in
order to obtain a more easily solved expression. For vy fixed, a minimum

is obtained when both terms within the outer magnitude sign of (4.32) are

in phase, that is,
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—
[ e
]
©
e

(4.33)

<
[
-3
o
e

He—Z| o~z

e ——
—

Since substitution of (4.33) into (4.32) gives (4.31), the minimum of
(4.32) with respect to 3 and E is equal to the minimum of (4.31) with
>
respect to v.
To find the minimum of (4.32), the following iterative procedure

is used:

1. Assume starting values for Bl, R i

gree b

2. Keep the Bp fixed and calculate the vy which minimizes €

using (4.30)1.

3. Keep the v, fixed and calculate the Bp which minimizes €

i
using (4.33).

4. Go to step (2).

This procedure converges to a stationary point because steps (2) and (3)

cannot increase €.

4-2.3. Normalized Synthesis Error and Q-Factor

Two figures of merit will be used in the next section to evaluate

the synthesis results. The first figure of merit is the normalized syn-

thesis error which is defined as

llt should be noted that if [T*WT] is ill-conditioned, the procedure
will fail since small rounding errors that occur in its inversion can
cause large errors in its inverse [T*WT]=1l. To use this procedure, the
ratio of the largest eigenvalue to the smallest of [T*WT] should be on
the order of 103 or less.
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P
I ow e ] - e @0
w 8 Q) = 4
0 Fatp
‘s_vu e 3 L . (4.34)
w y
Lo e, 0]
p=1
The smaller the value of rsvn' the closer the synthesized pattern is to
the desired pattern. |
The second figure of merit is the Q or quality factor. The Q- | 4
factor is a measure of the magnitude of the element excitation required | ;
to produce a given pattern. The larger the value of Q, the more im-
practical the pattern realization becomes due to the larger element 3
excitation required. Lo, Lee, and Lee [24] defined the Q-factor as |
]
i
N n |
LA
gy Y
Q2 ———— (4.35) {
12
( fp(e,¢) (a0
J
41
where Vi is the ith element voltage excitation value and P(0, ¢) is the
pattern due to the set of voltages Vi.
An expression similar to (4.35) is
N
\ i
Ilv]
Q=P E i maaskoabl (4.36)
“ 2
Lole@)]
p
p=1
! s The multiplier P is introduced to make Q relatively insensitive to the
number of field points chosen. The main difference between the Q expres-—
{. sions of (4.35) and (4.36) is that the denominator of (4.35) is an integral

over the whole radiation sphere while the denominator of (4.36) is a

summation over P points in the yz planc.
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4-3. Single Frequenc Synthesis Results

In this section three cosine squared electric field patterns are
synthesized using both reactively loaded and optimum excited nine ele-
ment linear aperture antenna arrays. In each figure a polar pattern
comparison is made between the pattern to be synthesized and the syn-
thesized patterns obtained from reactively loaded and optimum excited
arravs. Also in cach figure, a comparison is made between the gain
versus frequency curves obtained by using reactive loads derived from
maximum gain and synthesis procedures. This comparison is necessary to
determine gain versus frequency degradation which results from satisfy-
ing an error criterion at a single frequency.

Figures 4.1-4.4 illustrate the single frequency (f = fu) synthesis
results for cosine squared patterns with half-power beamwidths of 15°,
30°, and 45° and beam steering angles of $ = 0, 30°, 60°, and 90°.

(The half-power beamwidth of an antenna is defined as the angular separa-
tion between two directions on cach side of the main beam maximum at which
the power density is reduced by half.) 1In all four figures the pattern
with a beamwidth of 45° was synthesized with the lowest error for both
reactively loaded and optimum excited arrays.

Using the reactive loads obtained from all three pattern cases in
Figure 4.1, the resulting gain versus frequency curves shifted toward a
lower frequency with a small change in the general shape of the curves in
comparison to the maximum reactively loaded gain curve. In Figures 4.2-4.4

the gain versus frequency curves for case (¢) show the greatest degradation
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from the maximum reactively loaded gain curves. The degradation cor-

responds to a broadening of the gain versus frequency curve with re-

duced gain.

The values of Q obtained for all of the synthesis examples were

rather low in relation to the values obtained from the indicated

bandwidth (gain versus frequency curves) for the reactively loaded i

array examples. The main reason for this was the fact that equation (4.36)

was used to compute Q instead of the more accurate equation (4.35). |

Therefore, the Q values calculated can be used for comparison purposes

in determining which antenna example requires greater excitation but

should not be used for bandwidth predictions.

4~4., Double Frequency Synthesis Results

In the previous section we found that by using the reactive loads
obtained from the single frequency synthesis procedure at a beam steering

angle of ¢ = 0 (see Figure 4.1), the resulting gain versus frequency curve

shifted toward lower frequencies without much change in the shape of the
curve in comparison to the maximum reactively loaded gain curve. In this
>J section for a beam steering angle of ¢ = O, an attempt is made to both
center the gain versus frequency curve at a frequency of f = fo and to
increase the bandwidth while decreasing the gain. If the latter is
accomplished, a more uniform gain versus bandwidth characteristic will
be obtained as the array is scanned from ¢ = 0 to ¢ = 90°.

Figures 4.5 and 4.6 show the results of both single and double

frequency synthesis for a 20° beamwidth sector pattern in the $=0
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{ direction for two different nine element reactively loaded linear aperture .

antenna arrays. For the double frequency results in these two figures,

d1 was restricted to vary between 0 and n/BO. (Better results might be
obtained if d1 can vary between 0 and ®.) In the following analysis of
the two figures, the results described are compared to maximum reactively

loaded gain curves.

In Figure 4.5 (a'/A = 0.500, b'/X = 0.250) the single frequency | 3

synthesis results show lower gain and a higher mainbeam to backlobe ratio

on the polar gain plot and a frequency shift of the gain versus frequency
curve (toward lower frequencies) with a minor shape change. The double

frequency synthesis results show a lower mainbeam to backlobe ratio on

the polar gain plot and a slight broadening of the gain versus frequency
curve,

In contrast, the results presented in Figure 4.6 (a'/\ = 0.750,
b'/X = 0.375) are much better than that of Figure 4.5 (a'/A = 0.500,
b'/XA = 0.250). 1In Figure 4.6 the single frequency synthesis results
show a slight decrease in gain and a higher mainbeam to backlobe ratio
on the polar gain plot and a broadened gain versus frequency curve. The
double frequency synthesis results show a lower gain and a higher main-
beam to backlobe ratio on the polar gain plot while the gain versus
frequency curve is broadened and shifted so that it is centered at a

frequency of f = fo.




4=5. Conclusion

Figures 4.1 to 4.4 show that tor both reactively loaded and
optimum excited nine element linear aperture antenna arrays, a cosine
squared pattern with a beamwidth of 45° was synthesfzed with the lowest
error for beam steering angles of ¢ = 0, 30°, 60°, and 90°.

In the ¢ = 0 dirvection the double frequency synthesis procedure
worked satisfactory in realizing lower gain and increased bandwidth
while centering the gain versus frequency curve for the case shown in
Figure 4.6 but gave unacceptable results for the resonant slot case

shown in Figure 4.5.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5-1. Summary with Conclusions

A method of moments formulation has been presented for the analysis
of the reactively loaded, parasitically excited, waveguide-backed aper-
ture antenna array. A major part of this formulation is the half-space
admittance solution, where the aperture dimensions can be less than the
backing waveguide dimensions. Several examples are given to illustrate
the effect of antenna geometry (aperture dimensions and array lattice
type) on the antenna characteristics of power gain, bandwidth, and match.
In addition, pattern magnitude synthesis results are presented to illus-
trate pattern limitations for a given linear array as a function of beam
steering angle and excitation.

The type of antenna array considered in this report has several
advantages over the more conventional types of arrays (complete exci-
tation):

a) There is no complex feed system to all of the

apertures. The excitation is accomplished by electro-
magnetic interaction.

b) Only one element is externally fed which simplifies the

problem of matching to the transmitter-receiver.

¢) Variable reactive loads provide a means for beam steering.

The results presented in Chapter 3 show that even though there is

incomplete control of the radiation characteristics for the antenna, the




s

values obtained are still satisfactory in many applications. One appli-
cation is that for which the antenna (radiating structure plus feed
system) is extremely limited in size. Since mutual coupling is the domi-
nant factor for parasitic excitation, a reactively loaded aperture antenna
array design consists of rectangular cells of possibly 3 X 9 elements,
with one externally driven element and the other elements reactively

loaded.

5-2. Recommendations for Further Research

Several areas of research still exist for further work in reactively
loaded antennas. One experimental area is reactive load realization. Two
possibilities for reactive loads which should be investigated are a shorted
waveguide transmission line in the form of a waveguide~to-microstrip tran-
sition [26] followed by p-i~n diodes imbedded in a microstrip transmission
line and a ferrite slab with a variable dc magnetic biasing field in a
waveguide terminated in a short circuit [27].

Another area for research is pattern and match improvement for the
reactively loaded antenna array at the low beam steering angles (¢ = 0 - 30°).
In Chapter 3, it is observed that the antenna pattern beamwidth is large at
low beam steering angles. One method of producing a narrower beam at low
beam steering angles is to place a dielectric sheet over the apertures.

The function of the dielectric sheet is to transform the emanating elec-
tromagnetic wave into a surface wave which results in increased direc-
tivity. Villeneuﬁe, Behnke, and Kummer of Hughes Aircraft [28] used a

surface wave structure, which consisted of 5 lavers of 8-mil thick glass
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tape for an eight element completely excited aperture antenna array,

By

to obtain an improved antenna beam shape with a higher pattern level
) at low beam steering angles with almost no pattern change in the
broadside direction. Matching over a range of scan angles can also
be improved by the addition of a dielectric sheet in front of the
array [29). Further analysis should be made to find out if a compro-
mise dielectric sheet exists for improving both pattern shape and
match at these low beam steering angles.

Another area of research would be to reduce the number of phase

shifters required for a phased array while improving the array char-

i acteristics. This might be accomplished by using phase shifters to
feed some of the elements of an array and reactive loads to control the
excitation of the other elements. Amitay, Galindo, and Wu [30] con-
sidered periodic shorted waveguides (terminal admittances) in an infinite
array environment to both eliminate surface wave effects and to improve
the overall match.

Finally, further research should include the construction of a
reactively loaded aperture antenna array to verify the results predicted

by the mathematical formulation used in this report.
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APPENDIX A

HALF-SPACE ADMITTANCE Y‘i‘g

A-1. Evaluation °£~!2§

Starting with

hs
Yy = 2w ” (Fyy * My +0,40,)ds

apert.

1
we define Yij by

1
Yij 2jw f[ Fij yi ds .
apert.

Substituting (2.17) into (A.1), we obtain

y1+P§' "+§i'
1 Jue £
Y1j 7a'h’ J b' J g dx cos (x
bl =
2 N SRl SR
bl al
yj+2 xj-l-2
ST
e g
b REE s

where

_x)

i

dx'cos Ta' (x' "‘j) G(x'=x,y"'-y)

e-jk.Jéx'-x)z + (y'—y)2

ez* =x, ¥ ~y) =

v/z;'-x)z + (Y'-Y)2
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(2.48)

(A.1)

(A.2)

(A.3)




Consider
A .
Y, * h.; Yy % t‘:.
24 (x' - x) = [ dy ( dy' G(x' - x, v' = )
1 bh' ) b'
- imnes e Tl

Substituting the transtormation v' = v + v into (A.4), we obtain

] '
ot t-“. i hf, -y
1t| (x' - x) = [ dy : I dv G(x' - x, V)
h' h'
3 T % £ i el

Interchanging the order of integration, we obtain (see Fig. A.1)

b'
-\ + "
- \J{)i Vi 2
lll (x'" = x) = | dv G(x' - x, v) J dy
. ... 5 b' =
O W T
L}
¥.~y,+tb' v+ h - v
3 3 | (2
+ dv G(x'-x, v) * dv
Iy
Y374 £ S
Consider
L] Al
Xy 2 ?, x‘ 2 d',
le - y dx cos Y-‘-(x-—x p g dx' cos — (x'=x ¥ (x'=x).
2 1) al a' i & a' 1° 13
i T o

Substituting the transtformation x' = y + x into (A.7), we obtain

ot '
x, + = X, + % - x
le ; $ ix cos — (x-x,) . 3 lu cos 5 (ubx=x ) 1Y (n)
- X o8 v (x=x 08 — X=X .
iJ “’ % 8 “| ( “' | (SN} “l' j ij
xi o E X ‘ o : bl -

Interchanging the order of integration, we obtain
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(A.4)

(A.5)

(A.0)

(A7)

(A.8)
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X, =X 3—
le jf i y 2 i
1 ?u 17, (u) J » dx cos ;— (x-x ) s o§ (u+x—xj)
xj-xi-a i
= ' é_ o
xj xi+a 5
+ f du Iy (u) f dx cos ;— (x-x ) cos ;— (u+x-x ) [ (A.9)
a'
ey e sy

In view of (A.4) and (A.7), (A.2) becomes

1 jwe lx
Yij = ij z (A.10)
Next define Y2 by
ij
Y2 = 250 ¢..0, d (A.11
5~ ey B
apert.

Substituting (2.17) into (A.11), we obtain

+ 2— x, + 2—
2 2 2 ™
Yij = f b' f - dx sin ;T-(x-xi)
T g T
+ b Xy =
Yy r 2 2 e
. f : I dx' sin 3 (x'-xj) G(x'-x, y'-y) . (A.12)
b a'
y - — - —
j T2 2

Substituting the transformations x' = u + x and y' = v + y into (A.12)

and interchanging the order of integration, we obtain

Y2 -jn

(A.13)
83,7 gt 5

\

-




Poa

£ AR MM * Sl Lo st = o - -

RN o ot

o e BRI

SRR

‘l»
'
.8
L

103
where
a'
- A
2x xj 1 y xi 2 m m
Iij = du Iij(u) Ja' dx sin ar (x-xi) sin ' (u+x-xj)
— -' - — —]
xj X,-a xj 7 "u
a’l
xj-xi+a x + 5 -u
+ f du Iy (u) J dx sin ;—'(x X.) sin ;— (u+x—xJ) (A.14)
ar
xj—xi xi-T
After a tedious but straightforward evaluation of two integrations for
each of the quadruple integrals Iij and Ii , we obtain
hs 1 2
Y =Y R
ij ij ij
jk {yj—yi xj_xi Tu Tu
= S Tha'p dv(K1+v) [ du G(u,v)[(K2+K3u)cos 13 + (KA+K5u)sin ;7]
yj-yi—b' xj—xi—a'
x,-x,+a'
+ : fi du G(u,v)[(K,-K,u) cos I (K,-K_u) sin EE]]
¥ 7 3 a’' 8 5 a'
xj—xi
-y .+b' X,-X,
yJ T L Tu Tu
+ f dv(K6-v)[ f du G(u,v)[(K2+K3u) cos v + (K4+K5u) sin ;T]
== = oy
yj Y4 xj x;-a
x -x1+a'
+ : du G(u,v)[(K,-K,u) cos UL S (K,-K_u) sin EE]]} (A.15)
o T3 a' 8 5 a'
X,=X
where dis
- - 1
Kl Yy yj + b (A.16)
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TR SR RO i
9 kza'z Xy xj a') cos [a' (xj - xi)]
S s s NP (.17
-~ kza'z sin [5 (xy - x, .17)
odapaan o ) |
3 kz '2) cos [a' Xy = X ] (A.18)
a
2 ]
n " n 5
KA- (l-;—z-a'—z-) (xi—xj+a) sin [a." (x-1 -xi)] :
a' n2 Ll
-— (1 + kz '2) cos [;T (xj - xi)] (A.19)
a
K -(1—~l‘—2—) in [ (x, = x)] (A.20
5 22 BaRURRY Lot Ry <203
a
K6 = yj - yi + b (A.21)
x-(l——-"~2——)( -x, +a") [ (x, = x)]
7 kza ) (%) =%y a') cos [ (x, Xy
a' n2 n
b (1 + "*2""2“) sin [;’.‘ (xj - xi)] (A.22)
; k a
x-(l———"}—- - x, +a") sin [F (x, - x)]
|l 8 kza'2) (xj x, +a') sin [0S xj X,
ég a' ﬂ2 m
,. E adh (1 + 5 '2) cos [;‘.‘ (xJ - xi)] . (A.23)
1§ k a

Substituting the coordinate transformations u = p cos 0 and v = p sin 6 into

(A.15) and integrating out the p variable, we obtain (see Fig. A.2)

o
b
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Fig. A.20 Rectangular - polar coordinate integration area.
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2
hs _ jk
Yij Fma'h’ 4 (K [K,L (0) + K,L,(0) + K Ly (0) + K(L, ()]

e

(1)

+ [KZLS(O) + K3L7(0) + KALb(O) + KSLB(U)]IdU

0

4
+ f lK1[K7Ll(0) - K3L3(0) + KBLZ(G) - KSLa(O))
9,
(11)

+ [K7L5(9) - K3L7(0) + K8L6(0) - KSLS(O)]]dO

0

5
+ J [K6[K2L1(0) + K3L3(0) + KALZ(O) + KSLA(O)]

%

(I17) - [K2L5(0) + K3L7(O) + K4L6(0) + KSLS(O)]]dO

0

+ f7 [K6[K7L1(0) - KL (0) + Kgl, (0) - K(L, (0)]
Y%
(IV)
- [K7L5(0) - KyL, (0) + KgLg (0) - K5L8(9)]]d0}

where

2

Ml(O) - MZ(O) MB(G) - MQ(O)

{ ¥
MS(O) M6(0)

L, (0) = }

Lo 1 {MI(O) = M, (0) ’ My (0) - M, (9)
2 2 M, (0) M (6)

L3(6) = cos 0 {%3 [

P2 (024, (©) - py (DM () 0y (OIM(0) = py (DM, (6)

M, (0) N (0)
L M) = My(0) M (0) - M, (O)
*g ¢ gy 71!
(Mg (0) (Mg (0))

-‘._Alllllli~f:!‘
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(A.24)

(A.25)

(A.26)

(A.27)
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0, (M (0) = 0. (OIM,(0) ., (OIM, (D) - p, (9IM, (0)
P i b  Saka gy
L,(8) = cos 6 {- 5 [ M, (0) * M_(0)
M (0) - M, (D) M. (0) - M, (0)
-1 o - 3 ) (A.28)
(4, () (M, (6))

LS(G) = L3(6) tan 6 (A.29)
L6(8) = LA(O) tan 0 (A.30)

1 P3O (0) = p2(OIMy(8)  pF(OIM(B) - pl(OIM, (0)
L,(0) = sin 6 cos 0 {- 5 [ Mg (0) £ Mg () ;

OZ(O)Ml(O) - Dl(O)MZ(ﬂ) 02(9)M3(9) - OI(O)MQ(G)
+ +

2 2
(4, () (4, (0))
M, (8) - M,(8) M, (8) - M, (B)
+3 4 § -2 g 1} (A.31)
(M5 (6)) (M (8))
2 2 2 2
1 Po(0IM, (B) = o1 (BIM,(B) P, (B)M,(0) ~ oy (BIM, ()
L8(9) = ginB cos 6 {- 3 [ “5(9) + M6(9)

P, (0IM, (8) - p, (BIM, (0) - Py (OIM,(8) = p, ()M, (6)

]

= j[ 2 2
(M5(6)) (M (0))
M. (0) - M_(6) M,(0) - M, (0)
+ -1 § P 31‘ (A.32)
E (M5(0)) (M, (0))
£
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10,(0) (ﬁ% cos 0 - k) (A.33)

MI(G) = g
jpl(ti) (2‘"—, cos 0 - k) (A.34)

MZ(O) = e
-10,(0) (v cos 0 + k) (A.35)

M3(0) = e
-jpl(e)(g% cos 0 + k) (A.36)

MA(O) = e
M (0) = ﬁ% cos 0 - k (A.37)
M (0) = i} cos 0 + k (A.38)

The variables pl(O) and 02(0) are respectively the lower and upper limits
of integration for the p integration in (A.15) after the transformations
u=opcos O and v = p sin 0 are used. They are dependent on the 0 vari-
able and the integration subarea. For instance, when integrating over
region IV between 04 and 07 (see Fig. A.2), 01(0) = (xJ - xi)/cos 0 and

02(6) = (y, - Yy + b')/sin 0.

J

A-2. Limiting Expressions for LZ(O) - L8(0)

1If we apply the procedure used in Section (2.4.2) to Lz(ﬂ) - LS(O)

(A.26-A.32), we obtain
MB(O) - MA(O)

% ik A iy |
LZ(O) > (02(0) 01(0)) > ( Mb(O) ) (A.39)
(OIM, (D) = p, (OIM, (0)
i 1 2.8 2 3 i,
M. (0) = M, (0)
+ % (s} } (A.40)

2
Mg (1))




02(0)M3(0) - pl(ﬂ)Ma(G)

M6(0)

)

2 2
02(0)M3(0) - nl(G)MA(O)

M3(0) - MA(O)

M6(0)

)}

3
(M (0))

)

2 2
L P3(OM(0) = oy (OIM, (0)

2(

M, (6)

M3(0) = MA(O)

L,(8) = cos © {- % (pg(O) - pf(ﬂ)) & % (
M, (0) - M, (0)
(4, (0))
LS(O) = L3(0) tan 0
Lb(O) = LA(Q) tan 0
L,(8) = sin€cos § (3 (03(0) = p} () + 3 ¢
P, (M, (D) = o) (DM, (9)
¥ 2 "j(
(4, (0))
Ls(n) = gin0 cos 0 {- % (03(0) - o?(ﬂ)) =
P, (OIM,(8) = p, (O)M, (0)
P s ; i, i
(1, (0))
for |§% cos 0 - k| < ¢, and
M, (6) - M,(0)
1 2
L@ = -3 om0 * 1 (0,0 - 0,

L3(6) = cos 0 {- 2 (

+ 7 (03

P, (M (0) = py (OIM,(6)

3
(MG(G))

MS(G)

RO

) +

24

2

Ml(ﬂ) - MZ(B)

2
(M5 (0))

)

)
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(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)
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0, (OIM, (8) = p. (8)M, (8) M (8) - M, (6)
% 5 ("5(6))
+ 4 @3 - o) (A.48)
LS(O) = L3(9) tan 0 (A.49)
L (8) = L, (0) tan 6 (A.50)
6 4
1 030N ©) - o @m, (0)
L7(9) = sin 0 cos 0 (- > ( MS(O) )
E "2(0)"1(") - 01(8”’2(6) S (Ml(e) - MZ(O))
Mg (007 M, (0))°

+g (3@ - pleN) (a.51)

20, (0) - p2 ()M, (8)

p -
LS(O) = gin 0 cos 0O {-% ( 2 1 MS(O)I 2 )
2 (oz(eml(e) - olmmz(e)) MO - w©
2 3
(Mg (0)) (Mg (0)) |
+ L el® - ol (A.52)
2 1

for ]i% cos 0 + k| < e.
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Appendix B

COMPUTER PROGRAM SUMMARY

The following is a summary of the major computer program sub-
routines used to compute the results in this report. All of these

subroutines can be found in a referenced report or can be programmed

directly from referenced equations.

B-1. Waveguide Admittance - Y8

The computer program subroutine AY which calculates the waveguide
admittance for the driven waveguide

Y{® (artven) = 6, ¢ [ AT + )_‘ A’ (8.1)

can be found in report [19]. To calculate yve (driven), we have to

choose the total number of m (LM) and n (LN) modes required to compute

the modal amplitudes A (2.28) and A (2.29) in (B.1) (only odd

m starting with m = 1 and even n starting with n = 0 (TE) or n = 2 (TM)
are considered due to the sin %} cos %} factor appearing in Eq. (2.31)). LM
which represents the contribution of the mth waveguide mode in (B.1)

should be chosen so that the contribution of the (1/(mza2 -1/a'"%))

cos (mm a'/2a) factor in (2.31) results in very small Ai& and Aik values.

LN which represents the contribution of the nth mode in (B.1) should be

chosen so that the argument nm b'/2b of the sin ( )/( ) factor in Eq. (2.31)

is greater than 7.




We can find the short circuit distances di (given BL ) by

i
solving

wg -
Y1j (parasitic) = j BLi Gij

| g T TRATE . WM 2
Gij{kzll(;\ik) T F AR - U T et Bodi} (B.2)

where the first term is calculated in (B.1) minus (AIE)Z YIE.

—

B-2. Half-Space Admittance - Yhs

E The computer program subroutine YHSP which calculates one column of

the half-space admittance matrix IYhS] can be found in report [19].

To calculate the self-admittance term, an eight point Gaussian
quadrature numerical integration is used on the single integrals Eq. (2.53). |
The same method of solution is used for calculating the half-space mutual
admittance for apertures which are close together (centers of any two
given apertures are separated by less than 4a'). For greater aperture
separations a six point double numerical integration (six points in
each variable for a total of 36 points) is performed on the double

integrals in Eq. (2.52).

2m
B-3. Measurement Vector - P

The measurement vector 7 can be programmed directly from derived

equations in Chapter 2.

m m
1)xx 2* s

sin ( )/( ) term in Eq. (2.65) is to be replaced |

m . =
(PE—plane)i (P Eq. (2.65). For ¢

by its limit one. | 3
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( m

PH—plane)

= (PT)% Eq. (2.66). For 6 = 0 or W or ¢ = %

the sin ( )/( ) term in Eq. (2.66) is to be replaced
1

i

by its limit one. For 0 = cos
ka' 2
2

n
(-—ka.), the
A 2
cos (—— cos 0)/(n” - k"a'"cos”0) in Eq. (2.66) is to

be replaced by its limit 1/4m.

B-4. Univariate Optimization Algorithm

The Univariate procedure is a nongradient algorithm that uses a
fixed step size and repetively divides the step size by two when the
neighborhood of the local maximum (minimum) has been found. The
search technique can be described as follows. First, one variable is
adjusted using a one dimensional search until no further improvement
is gained. Then another parameter is adjusted until no additional
improvement results, and so on. After each parameter has been adjusted
once, the process is repeated returning to the first parameter and
proceeding as before. If the parameters are non-interacting, which is
not very likely, once through the above cycle is enough. If strong
interactions and ridges or ravines exist, many cycles may be required.

The Univariate optimization subroutine can be found in report [8].
It was used to maximize power gain in a specified direction. The uni-
variate algorithm is very efficient in reactively loaded problems (see
report (7]) since an inverse operation was necessary only once for a
complete search in one variable. In other words, for a given set of

reactive loads and a search in the variable B, , the solution to Eq. (2.16)

o

can be written as

o i
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i
-1, 1
> ! ! - >
R . | “Jl _T}l\"] 1 jimp (B.3)
—j/nLl + (Y 1“
where
iyl = (vM 4 Y8 -y B, )
i

[1I] = identity matrix

[Uil = 1 for the iith element I
= (0 for all other elements

i # NFP (a search is made in N-1 variables).

For our problem the function f = 1/GAIN is minimized by first

varying BL until f was minimized, then Bl , and so on. After all of
1 2

the loads were varied once, the sequence is repeated. There is no

assurance that the minimum achieved is the absolute minimum.

B-5. Rosenbrock Optimization Algorithm

s

The Rosenbrock search technique [22] uses N mutually orthogonal
directions during each search cycle to find a relative minimum. This
strategy differs from a steepest descent technique which uses succes-
sive orthogonal directions, but these successive directions do not

necessarily form a mutually orthogonal set. A new set of orthogonal

directions for the Rosenbrock algorithm for each search cycle are
obtained from Eqs. (8) and (9) of Rosenbrock's paper [22].
The Rosenbrock optimization subroutine can be found in report [9].

It was used in the synthesis procedure for minimizing the synthesis
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error function. The Rosenbrock algorithm which changes all of the
loads and the excitation for each step in a search cycle was used
instead of the univariate procedure in ord.r to minimize the number of
multiplicative operations required to evaluate the synthesis error
function at P points.

The Rosenbrock subroutine ROSIEM given in [9] was originally
used in conjunction with an impedance matrix formulation. Since the
synthesis problem in this report was formulated in terms of admit-
tances, a modification should be made to the four IF statements in
DO loop 20. These four IF statements should be changed so that when
a load susceptance decreases below an arbitrary specified magnitude,
a new predetermined susceptance value is substituted with a sign

opposite to that of the original susceptance.

B-6. Magnitude Pattern Synthesis (Optimum)

The comput~r program subroutine for the optimum magnitude
pattern synthesis algorithm described in Chapter 4 can be found in

report [25].




‘ (1]

(2]

(3]

(4]

(5]

(6]

[7)

[8]

(9]

(10]

(11]

116

REFERENCES

T. L. Simpson and J. D. Tillman, "Parasitic Excitation of Circular
Antenna Arrays,'" IRE Trans. on Antennas and Propagation, vol. AP-9,
No. 3, pp. 263-267, May 1961.

D. G. Berry, R. G. Malech, and W. A. Kennedy, ''The Reflectarray
Antenna,' IEEE Trans. on Antennas and Propagation, vol. AP-11,
No. 6, pp. 645-651, November 1963.

R. J. Coe and G. Held, "A Parasitic Slot Array," IEEE Trans. on
Antennas and Propagation, vol. AP-14, No. 1, pp. 10-16, January 1964.

D.P.S. Seth and Y. L. Chow, "On Linear Parasitic Array of Dipoles
with Reactive Loading," IEEE Trans. on Antennas and Propagation,
vol. AP-21, No. 3, pp. 286-292, May 1973.

S. P. Mathur, "Analysis of a Parallel Array of Waveguide or Cavity-
Backed Rectangular Slot Antennas,'" Ph.D. Dissertation, Michigan
State University, 1974.

R. F. Harrington and J. R. Mautz, "Reactively Loaded Directive
Antennas," Technical Report No. 1, Contract No. N00014-67-A-0378-
0006, Office of Naval Research, September 1974.

J. Luzwick and R. F. Harrington, "A Comparison of Optimization
Techniques as Applied to Gain Optimization of a Reactively Loaded
Linear Array, "Technical Report No. 1, Contract No. N00014-76-C-
0225, Office of Naval Research, February 1976.

R. F. Harrington, R. F. Wallenberg, and A. R. Harvey, 'Design of
Reactively Controlled Antenna Arravs," Technical Report No. 4,
Contract No. NOOC14-67-A-0378-0006, Office of Naval Research,
September 1975.

J. Luzwick and R. F. Harrington, "Pattern Magnitude Synthesis for
a Reactively Loaded Circular Antenna Array," Technical Report No. 6,
Contract No. N00014-76-C-0225, Office of Naval Research, August 1977.

J. Luzwick and R. F. Harrington, "A Reactively Loaded Aperture
Antenna Array,'" Technical Report No. 3, Contract No. N00014-~76-C-0225,
Of fice of Naval Research, September 1976.

J. Luzwick and R. F. Harrington, "A Reactively Loaded Aperture

Antenna Array,” TEEE Trans. on Antennas and Propagation, vol. AP-26,
No. &, pp. 543-547, July 1978. See also: J. Luzwick and R. F.
Harrington, "A Solution for a Wide Aperture Reactively Loaded

Antenna Array," Technical Report No. 5, Contract No. N00014-76-C-0225,
Office of Naval Research, January 1977.

S




it AL BRSNS & 3 VR s R o

(12]

(13]

[14]

[15]

[16]

[(17]

[18]

[19]

[20]

[21]

(22]

[23]

117

G. V. Borgiotti, "A Novel Expression for the Mutual Admittance
of Planar Radiating Elements,' IEEE Trans. on Antennas and
Propagation, vol. AP-16, No. 3, pp. 329-333, May 1968.

R. J. Mailloux, "Radiation and Near-Field Coupling Between Two
Collinear Open-Ended Waveguides,'" IEEE Trans. on Antennas and
Propagation, vol. AP-17, No. 1, pp. 49-55, January 1969.

R. J. Mailloux, "First-Order Solutions for Mutual Coupling
Between Waveguides which Propagate Two Orthogonal Modes,"
IEEE Trans. on Antennas and Propagation, vol. AP-17, No. 6,
pp. 740-746, November 1969.

R. F. Harrington, '"Matrix Methods for Field Problems," Proc.
of the IEEE, vol. 55, No. 2, pp. 136-149, February 1967.

A. G. Cha and J. K. Hsiao, "A Matrix Formulation for Large Scale
Numerical Computation of the Finite Planar Waveguide Array
Problem," IEEE Trans. on Antennas and Propagation, vol. AP-22,
No. 1, pp. 106-108, January 1974.

M. A. Hidayet, "Finite Phased Array Analysis,'" Ph.D. Dissertation,
University of Michigan, 1974.

J. Luzwick and R. F. Harrington, "Mutual Coupling Analysis in a
Finite Planar Rectangular Waveguide Antenna Array,'" Technical
Report No. 7, Contract No. N00G14-76-C-0225, Office of Naval
Research, June 1978.

J. Luzwick and R. F. Harrington, 'Computer Programs for Mutual
Coupling in a Finite Planar Rectangular Waveguide Antenna Array,"
Technical Report No. 8, Contract No. N00014-76-C-0225, Office

of Naval Research, July 1978.

R. F. Harrington, Time-Harmonic Electromagnetic Fields,
McGraw-Hill Book Company, New York, 1961.

C. H. Papas, Theory of Electromagnetic Wave Propagation,
McGraw-Hill Book Company, New York, p. 23, 1965.

H. H. Rosenbrock, '"An Automatic Method for Finding the Greatest
or Least Value of a Function," The Computer Journal, 3, pp. 175-
184, October 1960.

J. R. Mautz and R. F. Harrington, "Computational Methods for
Antenna Pattern Synthesis,'" Technical Report No. 9, Contract No.
19628-73-C-0047, Air Force Cambridge Research Laboratories,
August 1973.




(24]

[25]

[26]

(27]

[28]

[29]

[30]

118

Y. T. Lo, S. W. Lee, and Q. H. Lee, "Optimization of Directivity
and Signal-to-Noise Ratio of an Arbitrary Antenna Array," Proc. of
the IEEE, vol. 54, pp. 1033-1045, August 1966.

J. R. Mautz and R. F. Harrington, “Computer Programs Antenna Pattern
Synthesis,'" Technical Report No. 11, Contract No. 19628-73-C-0047,
Air Force Cambridge Research Laboratories, October 1973.

M. E. Davis, "Integrated Diode Phase-Shifted Elements for an X-Band
Phased Array Antenna," IEEE Trans. on Microwave Theory and Techniques,
pp. 1080-1084, December 1975.

L. R. Whicker and C. W. Young, Jr., "The Evolution of Ferrite Control
Components,'" Microwave Journal, vol. 21, No. 11, pp. 33-37,
November 1978.

A. T. Villeneuve, M. C. Behnke, and W. H. Kummer, "Hemispherically
Scanned Arrays, "Hughes Aircraft Company, Scientific Report No. 2,
Contract No. F19628-72-C-0145, Air Force Cambridge Research
Laboratories, Report No. AFCRL-TR-74-0084, December 1973.

E. G. Magill and H. A. Wheeler, "Wide-Angle Impedance Matching of a
Planar Array Antenna by a Dielectric Sheet," IEEE Trans. on
Antennas and Propagation, vol. AP-14, No. 1, pp. 49-53, January 1966.

N. Amitay, V. Galindo, and C. P. Wu, "Theory and Analysis of Phased
Array Antennas," Wiley-Interscience, New York, Chapter 8, 1972.




119
BIOGRAPHICAL DATA
. Name: JOHN LUZWICK
Date and Place of Birth: March 15, 1944, Evanston, Illinois
Elementary School: Chicago and Niles, [llinois School Bystems, ‘
Graduated 1958, ]
High School: Maine East High School
Park Ridge, tllinois
Uraduated 1962. 1
College: TIllinois Institute of Technology, Chicago, Illinois
BSEE 1966,
Industrial MIT Lincoln Laboratory, Bedford, Massachusetts, from 1968
Experience: to 1970 and 1971-1974, 1
The MITRE Corporation, Bedford, Massachusstts,
from 1974-1975. |
|
Graduate Work: Purdue University, West Lafayette, Indiana !
MSEE 1968.
University of Illinois, Champaign-Urbana, I1llinois,
from 1970-1971.
Syracuse University, Syracuse, New York
Graduate Research/Teaching Assistant
from 1975-1979, |
|
|
|
i
{
|
\
A
|
' |
|
]
{

-

e —— e ————




