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j ABSTRACT

\~
We consider an r—player version of the f amous problem of the points

which was the stimulus for the correspondence between Pascal and Fermat

in the seventeenth century. At each play of a game, exac tly one of
• .- —

the players wins a point — p layer i winning with probability p .

The game ends the first time a player has accumulated his required

number of points — this requirement being n1 f or p layer i . Our

main result is to show that N , the total number of play s, is an
increasing failure rate random variable. In addition,we prove some
Schur convexity results regarding P(N < k) as a function of a
(for n~ n) and as a func tion of n (for p~ l/r )
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ON THE DURATION OF THE PROBLEM OF THE POINTS

by

Sheldon N . Ross , Mehrdad Shahshahan i and Gideon Weiss

0. INTRODUCTION AND SUWARY

We are given an r—sided coin and numbers n1,n2, ••
~~ 

n~ along with

instructions to continue to flip the coin until side I has appeared n~

times for at least one i . Each flip of the coin is assumed, independently 4

of other flips , to land on side I with probability p~, . Let the random

variable N denote the number of flips that are performed. We are inter-

ested in studying the properties of N

In Section 1, we derive expressions for the mean and variance of N

and in Section 2 we show that N has the increasing failure rate property——

namely that £01 • k + 1. N > k} is monotone nondecreasing in k

k • 0,1,2 In Section 3, we show that P{N k} is a Schur convex

S f inction of (n1, ..., nr) when p~, 1/v and is a Schur concave function

of (p 1, 
~~
• ‘ ‘  

~~ 
when n1 n

1~

a
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1. MEAN AND VARIANCE OF N

Assume that the flips are not performed at fixed times but rather at

times chosen in accordance with a Poisson process with rate A — 1 . In

addition, let us imagine that this process of coin—flipping continues in—
•

definitely (even after some side has appeared the required number of times).

Letting t~ denote the time of the n1th appearance of side I , then T

the length of time of the experiment, can be expressed as

(1) T mm
i~’l ,... ,r

Now it follows from well—known facts about the Poisson process that the

are independent gamma random variables with respective parameters (n15p 1)

I 1, ..., r . Hence,

E(T1 P(T > t}dt

(2) / \n —J.
I I ir 

~ 
— p . s \ p ~ s/

aj  (n
1 

— 
~~~~ 

ds

Now the relationship between T and N , the number of flips required , is

that

N
(3) T~~ ~ 

X~
i— I.

where the X are independ ent exponential random variables having rate 1
i

which are also independent of N . Thus , from (3) , we have

E CT I • E (N J

I L
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which in conjunction with (2) yields an expression for E[N)

The variance of N can also be obtained in a similar fashion. Namely

- 
from (3) , upon conditioning, we obtain

• Var [TI — BEN] Var [Xl + E
2[X ] Var (N]

implying that .

Var [NI Var (TI — E[N]

and Var [TI can be obtained from the representation (2).

S

~i .- 1•
•

I 
_ _ _

~
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2. N IS AN INCREASING FAILURE RATE (IFR) RANDOM VARIABLE

Theorem:

N is an increasing failure rate random variable in the sense that

P {N — k + 1 N > k} is nondecreasing in k , k — 0 ,1 

Proof:

The proof is by induction on r . For r — 1 , N n
1 

is constant

and hence is Ifl. We now assume IFR for r — 1 ; in particular, we assume

that N’ , the number of required flips for an experiment with a coin

having sides 2, ..., r , integers n2, 
~~
‘ 

0r and probabilities

p
2 

_______, ..., , is IFR.1 — p 1 1 — p 1

Letting D
k 

denote the side obtained on the kth flip and X~ (k) the

number of occ urrences of side i in the first k flips, we note that

r
P(N k + 1 I N > k) 

~ ~~
Dk+l i , X~ (k) — n

1 
— 1 I N > k)

1—1

= ~ p~P(X~ (k) - n~ — 1 I N > k)
i—l

since Dk+l is independent of X
1
(k) and of the event N > k .

Thus, it is enough to show that for all I , P(X
i
(k) n~ — 1 N > k)

is nondecreasing in k . Obviously, it is enough to consider i — 1 , and

as P(X
1
(k) — n

1 
— 1 I N > k) 0 for k — 0,1, ..., n1—2 , we need only

consider k > n
1 

— 1

We use the definition of N’ to write



TJ~~~~~~~~~~~I~~~~~~TTTTT~ 
-~~~~ :. — -

P(X
1

(k) — a
1 — 

1 , N > k)
P(X 1(k) a1 

— 1 I N > k) — n1— l

~ P(X 1
(k ) = j , N > k)

- 
j—0

P (X 1
(k) = a1 — 

1)P(N > k I X1
(k) - a1 — 

1)
— 

n
1
—1

~ P(X 1(k) — j)P( N > k 1 X1
(k) = j )

j—0

P(X 1
(k) — a1 — 

l)P(N’ > k — a1 
+ 1)

n1—l

~ P(X 1(k) — j ) P ( N ’ > k — j )
.1—0

To show that this expression is nondecreasing in k , it is enough to

show that for 0 < j  < n
1 

— 1 ,

P(X
1
(k) — j)P(N’ > k — j)

P(X1(k) — a1 
— l ) P (N I  k — a

1 + 1)

is nonincreasing in k (where k > a1 — 1)

The assumption that N’ is IFR implies P(N’ > k — j)/P (N ’ > k — a1 
+ 1)

is nonincreasing in k . Finally, for 0 < j < a
1 

— 1 < k

P(X 1(k) — j )  
— 

(~~)p~ (l — )k_ i

P(X 1(k) — n
1 

— 1) / k \ n1_ 1j \k_ n1+l

— i,Pi ~~ — 
~ iJ

/ \nl~
l
~

j
11 — p

i~ 
(n
1 —l) (k — n

1 
+ 1)

— ‘ p1 / j!(k—j)

is in~ ediate1y seen to be noniacreasing in k . I I
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3. SCHUR CONVEXITY OF P{N ..~ k}

For an r vector x = (x 1, ..
~~
, Xr) , 

we denote by X (j )  
the

i
th largest component of x . We say that the permutation invariant

function f is a Schur convex function if f(x) > f(~) whenever x

(written 
~ 

.y~) 
where 

~ I if X
(j) I Y(j)

j  1, ..., r — 1 and ~ X ( .)  
= 

~ 
y
~ 1~ 

. If the inequality between

1 
f ( x )  and f (~) is reversed,we say that f is Schur concave.

Proposition 1:

If n
1 

a , i 1, ..., r , then P01 < k} is a Schur convex function

of ~ 
(p1, 

~
• •

~ ~~ 
for each k .

Proof:

Consider first the case when r equals 2. Then

O , O < k < n

H P {N < k }  = ~~ (k)[pJ (l - ~) k_ i 
+ (1 - p)ip~~J J , a < k  < 2n - 1

j n

1 , 2 n — 1 < k .

Differentiating with respect to p , when a < k < 2n — 1 , we obtain

P01 < k} = k(~~~ i)[P(l 
- )J

k f l[~
2 f l l k  - (1 - ) 2n-1-k}

which is positive for p > 1/2 thus implying that P01 < k} is Schur

convex when r • 2 .

I

S

- ~~~~~~~~~~~~~~~~~~ .~~~~~~ ~~~~~~~~~~~~~~~
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For the case of general r , it is well known (see (11, p. 47) that

it suffices to show that

P{N(p
1
, 

~~ 
< k} > P {N( q

1
,q7

,p 3, ..., p ) < k}

when p
1 

> p
2 , q

1 
> , p

1 
> q

1 
, p

1 
+ p

2 
q
1 

+ q2 
. Now, let us

suppose that the two experiments (the first in which the outcomes occur

with probabilities 
~~~~~~~~~ ~~~ 

p~
) and the other in which they

occur with probabilities (q1,q21p 3, 
~~~~~ ~~~ 

are performed by first

flipping a coin having r — 1 possible outcomes with probabilities

+ p2 ,p 3
, ... , p )  . If the outcome having probability p

~

i — 3, ..., r occurs, then we say that outcome i was the result for

both experiments. If the outcome having probability p1 
+ p2 occurs,

then for experiment 1 we determine its outcome (either 1 or 2) by flipping

• 
p
1 

p2
a coin having respective probabilities 

+ 
and 

+ 
; whereas

p
1 

p2 p
1 

p2

in experiment 2 we flip a coin whose probabilities are

q1 
________and + 

. Now, by conditioning on the number of the first
q1 

q
2

k flips that the coin (with r — 1 possible outcomes) results in outcome

1, we reduce the problem to the case r — 2 , and so the proof is complete.

Let us assume that the p~ are constant, then there is also a Schur

result when the n~ are allowed to be distinct.

Proposition 2:

If p~ — 1/v , i — 1, ..., r , then P{N < k} is a Schur convex

function of n • (n1, 
~~~~~~ 

!
~r
) for each k .



Proof:

Again consider first the case when r — 2 . As

P01 < k} a (1)k 

~~~~ 

(
~

) 
~ ~~ 

(
~)] 

, k 
~ 

n
~ 

+ - 1

we must show that

~~~1 
~~~ 

+ I 
j~~~~1 

(
~ ~~$+1 

(
~

)
where k < a

1 
+ a2 

- 1 , n
1 

> a2 . The above inequality reduces to

k
_ 1 /

• - which is easily verified to hold under the above conditions. The

general case follows exactly as in Proposition 1. 11

t

~~



¶ — •~ _•-_••__ -•_._ _ 
~~~~~~~~~~~~~~~~~~ ---—•-— ——-—‘---

~~~~~~~~~ 
-

- - • ._ ~~~~~ T TTTT ~~~~~~~~~~~~ -—-~r~ ‘~~
‘

9

4. FINAL COMMENTS

The model considered has applications in reliability theory . Namely ,

consider an r component system in which each component is subject to

shocks. Every shock affects exactly one of the components——it affects com-

ponent i with probability p~ . Component i can absorb at most n~ 
— 1

shocks before failing (one possibility being that with probability p
1 

a

shock knocks Out the component in position i for which there are a total

of a
1 

— 1 spares), Assuming that the system structure is a series

structure which means that the system is failed when at least one component

is failed, it follows that N represents the number of shocks required to

cause system failure.

Of course, the model is an r—player version of the famous problem

of the points which was the stimulus for the interchange of letters

between Pascal and Fertnat in the seventeenth century. They were mainly
$ 

concerned with the probability of each player winning when n = 2 (winning

means that a
1 

type 1 events occur before a
2 

type 2 events). In the r—

player version, the probability of player j winning can be expressed as

P{j wins) P{T~ mm (T1, ..., T)}

n

= 

~ 
l)~ 5 [i f  5 e iS

s
hlCl

ds] 
e . 1 . 1

S

1 ’
I i
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