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Abstrac t
I
.

We prove a number of new proper ties of algor ithms of the

Conjugate Gradient type , paying par ticular attention to methods

which utilize variable metric infor mation in determining the conjugate

gradient search directions. We attempt a comprehensive discussion

of conjugate grad ient methods , and presen t each algorithm within

I the context of other existing algor ithms, an approach which prov ides

fresh insights and some new algorithms.
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A S~JDY OF CONJUGATE GRADIENT METhODS

L. Nazareth and J. Nocedal

1. Introduction

In l96~ Fletcher and Reeves [1] showed how the conjugate

gradient method of Hestenes and Stiefel [2) for solving systems of linear

equations could be extended and used to find local minima of non-linear

functions. Since then many variants of this algorithm have appeared

in the literature. Methods belonging to the conjugate gradient family

are particularly valuable when the number of variables is large.

In this paper we prove a number of new properties of conjugate

gradient type algorithms, paying particular attention to methods which

utilize variable metric information in determining the conjugate gradient

steps. We attempt a comprehensive discussion of conjugate gradient

methods, and present each algorithm within the context of existing

algorithms, an approach which yields dividends by providing fresh

insights and some new algorithms . Our concern is with conj ugate gradient

methods for non-linear unconstrained optimization. Extensive work on

conjugate gradient methods for linear systems, e.g. Concus, Golub and

O’Leary 13) is not’ discussed here, though we believe our work also

has applications in this area.

1
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Our paper is organized as follows:

Basic conjugate gradient methods are discussed in Section 2.

An important generalization of conjugate gradient methods in

which the metric is varied, are discussed in Section 3.

In Section 14 we discuss conjugate gradient methods which relax

the requirement that line searches be exact.

Finally in Section 5, we look at extensions of algorithms in

Sect ion 1~ to the case when the metric is varied.

Wi thin each of the above sections, we discuss one or nore of

the following:

a) basics--algorithms, properties and interpretations

b ) generalizations--in particular to arbitrary metrics and to arbitrary

starting directions

c) strategies--scaling, and when and how often to restart.

Subsequent parts of this research deal with convergence analysis [14) and

we hope eventually to develop a documented and distributable FORTRAN

implementation.

2I.
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2. Conjugate Gradient Methods

We summarize in this section some known results about the

conjugate gradient method. We are concerned with the problems of finding

a local minima of a function f(x),  x € F~~. We denote this gradient

of f at Xk by ~(x~ ) or Let 8k+l - g~ and 
~~+l 

-

I

2.1. Basics

2.1.1. Algorithms

The conjugate gradient method, originally developed by Hestenes

and Stiefe]. [2] to solve systems of linear equations, was adapted to the

non-linear unconstrained optimization problem by Fletcher and Reeves [1)

in the following way:

Given x0, let d0 
= -g(x0).

For k = 1, 2, ... , let
= 

~~~~~~~ 
+ 

~kdk_ 1 (2.1)

where 
~ 118k02/IIsk_1112 and ~ is the Euclidean norm.

xk+l + ? %kdk (2.2)

where is chosen to minimize f along 1k•

This algorithm is restarted every n or ( n+l) iteration.



2.1.2. Properties and Interpretations

a) Several alternate forms of (2.1) have been proposed.

The two t~ st popular are

Polak-Ribiere [5)
= (2.3)

Hestenes-Stiefel

When applied to the quadratic function *(x) = ~ (x_x )
T A(x_x*),

x € F~ , when A is a positive definite and symmetric matrix, each of

the above three algorithms has the following properties (i) finite

termination in, at nx at , n steps ; (ii) g~g~ = 0, Vi > j , and

(iii) 4Yj = 0, i ~ j  (i .e. directions are conjugate). As long as

~ 0, g~ will be linearly independent of 
~~~~~~~~~~~~~~~~~ 

and a new

conjugate direction dk can be developed. If 
~~~~~ 

= 0, for some k < n,

then the minimum is located in fewer then L steps.

Let G ~ [g0, . .. ,g~~1], D ~ 
[do, . . . , dk l ) . Then for quadratics

(i)  Each direction lies in the space spanned by previous gradients,

i.e. -G = DR when R is upper triangular--called the direction—

gradient relation.

(ii) DTAD a, where a denotes a diagonal matrix

(iii) A(xi
_xi_1) = (

~~-s~_1)~ i = l,2,...,k. These can be written as

AD? = GH where ?~ = diag (~~ ~~~~ 
X~ is given by (2.2)

and H is a part icular upper Hessenberg matrix

14
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I.

-l

1 -l~

(iv ) GTG = ~~, ~ is also diagonal

In summary

-G = DR

DTAD = a
(2. 3a)

AD? = GR

GTG =

These relations can be manipulated as discussed in Nazareth [6).

All three algorithms mentioned above are the same for quadratics.

For arbitrary functions , even when line searches are not exact, successive

search directions in the Hestenes-Stiefel algorithm are “conjugate ,” i.e.

d~
yk....l = 0. For arbitrary functions, the Hestenes-Stiefel and Po].ak-

Ribiere algorithms are the same when line searches are exact. When

applied to arbitrary functions and line searches are inexact, the

algorithms differ, and Powell [ 7)  has explained why the Polak-Ribiere

variant is to be preferred. The reason is that if poor search directions

are being generated, and successive iterates are close, 80 
~k =

then .-.Oj hence the search direction reverts to the negative gradient

direction, permitting the algorithm to recover.

5
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It has been shown that all the above algorithms have an n-step

quadratic rate of convergence when line searches are exact , Daniel [8],

Cohen (9),  Polak [10). This condition on accuracy of the line search

can be relaxed to “asymptotically exact,” see Kawaznura and Volz [11],

Lenard [12].

b ) If the starting search direction is not along the negat ive

gradient direction (—g 1), then the above algorithms do not usually have

finite termination on ~ quadratic. Indeed, Powell [13] has shown that

either termination occurs, or this rate of convergence is linear, the

second being more usual. The algorithms can be modified to retain the

quadratic termination property as described in Section 2.2 .

c ) There are three interpretations of the conjugate gradient

method (2.1), as applied to quadratic functions, which are of value in

explaining some of its properties. Each interpretation also serves as

a good staging ground for extending the conjugate gradient method and

analyzing the resulting algorithms, as we shall see later.

(1) Interpretation I: Relationship to BFGS method

The BFGS method (141 is currently considered to be the most

effective member of the Broyden 8—class (14] of Variable Metric updates

(see Appendix 1 for a definition of the 8—class and d~). When the cg .

method or any method of the 3—class is applied to a quadratic function, with

d~~ — d~ — —$1 and line searches are exact, it is well known that there is

- 
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no flexibility in the choice of subsequent search directions up to multi-
cgplication by a scalar ; d~ and d~ are, in consequence, linearly

dependent. In Nazareth [ 1 5] ,  it is shown that the member of the n-class

for which these vectors are precisely the same (i.e. equal in magnitude

and direction) is the BFGS update. The result is also taken a step

further in [15), where it is shown that for arbitrary functions the BFGS

algorithm may be interpreted as a conjugate gradient method in which the

metric is updated at each step, using any member of the n-class. This

observation leads to the generalized conjugate gradient methods of

Section 3, where we shall elaborate further upon these brief remarks.

(ii) Interpretation II: Specialized Gram-Schmidt

Given any vector ~~ 
and a set of search directions d1,.. ~~~~~~

which are conjugate w.r.t A (orthogonal in the inner product defined

by A), then vector d~ which lies in the subspace ~~ ~~~~~~~~~~
and is conjugate to d1,..., d . 1, will have a component in each of the

directions ~~~~~~~~~~~ However when is the gradient vector at

X
j~ then gj  is itself conjugate to ~~~~~~~~~~~ Thus the conjugate

gradient method can be viewed as a specialized version of Gram-Schmidt

where the vector d~ is chosen to lie in the space spanned by gj
and d~~1 which is conjugate to d~~1. Note that these statements

require that line searches be exact. Later we show that when line

searches are not exact, another specialized version of Gram-Schmidt

arises, and this in turn leads to a very natural extension of the conjugate-

gradient method.

7
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(iii) Interpretation III: Implicit Lanczos

This Lanczos process is a particular generalized Hessenberg

process, the latter being defined as follows:

Given a matrix A and a set of n linearly independent vectors

x~ which are columns of X, and an arbitrary initial vector g0, develop

vectors g1, g2, ... , g~ with G = (g0,g1,...,g~~1) s.t .

AG =

T (2.14)
G X  =U

where H is upper Hessenberg and U is upper triangular. xi need not

be specified beforehand . If they are taken to be the same as and

if A is a symmetric matrix , then (2. 4) becomes Arnold’ s method or

the symmetric Lanczos method, (see Wilkinson 116]) for tridiagonalizing

a symmetric matr ix, the latter two methods being equivalent . This is

given by

AG =

1’ ( 2 .5 )
G G  = a

T tridiagonal, a diagonal.

Note in particular that € [g0, Ag0,..., A’~g0) and is orthogonal

to 
~~~ 

g1,..., g,~~1], where [uO,.. . ,uk ] denotes the subspace spann ed

by u0, ..., u~. It is not difficult to see that the c.g. method

implicitly carries out the above process, where G is identified with

the matrix of gradients.

1 
_ _ _ _ _  _ _ 
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If , for some k , ~~~ € [g0, g1,..., ~~ 
= (g0, Ag0, ... , Akg~ ]

then the successive gradients g0, ... ~~~~ are linearly dependent .

In this case the minimum lies in the subspace spanned by d0, ... ,
(see Nazareth [17]) and ~~~ = 0. When A has only m < n distinct

eigenvalues, it is easy to show that the Krylov sequence

g0, Ag0, A2g0, •.. , has only m linearly independent vectors . Thus

the conjugate gradient method will terminate in cn steps.

We shall later show that the Lanczos process and an associated

Krylov sequence also underlies a member of the conjugat e gradient family

of methods, called the three term occurrence .

Some convergence results very closely related to the above

interpretation are given in Luenberger [18], where the c.g. method is

viewed as an optimal process over a space of polynomials .

Given an arbitrary starting point x0 let

= x0 +

where Pk
(A) is any polynomial of degree k.

If x~ is the optimum point, then

= A(x0 - x*) (2.6)

and

(Xk+l 
- x~ ) = [I + APk(A)](xo - x*) (2.7)

It can be shown that :

L - - ______________________



(i) E(xk÷l) 4 f(xk+l) - f (x*) = 
~ 

(x
O
_x*

~~
A (I+AP

k
(A)]2 (x0_x*) (2.8)

(ii) The conjugate gradient method implicitly selects the polynomial

Pk~
A) of degree k for which E

k+l is minimized.

(iii) E(xk+l) ~~ 
max[ 1 + A P k(1~j

) ] 2 E(x0) (2.9)

where the maximum is taken over all eigerivaluea of A. If there

are m distinct eigenvalues, then can be chosen so that

E
~~1 

= 0 and from (1) it follows that the conjugate gradient

method converges in as many steps as there are distinct eigenvalues

(as was seen above in the discussion on the Lanczos process).

Luenberger [18] also shows that

-

E(xt) 
~ 

2 E(x0) , 0 < t < n (2.10)
+

where ~~~~~~~~ are the eigenvalues of A in non-decreasing order.

2.2. Generalizations

Let F be the strictly convex quadratic function

F(x) ~ (x_x *)
T A(x_x*) (2.11)

and let H be a symmetric and positive definite matrix (H > 0). H

can be factorized in various ways, e.g. as H = LLT, where L is Lower

triangular and nonsingular.

Let us define the transformation of variables (x_x *) = Lz and

let us represent the function in the z-space by h(z). Then

10
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and 

h(z) ~~ f (x * + Lz) = f (x) = ~ zTLTALz (2.12)

‘7h(z) = (LTAL)z L~~7f (x )

Also vh(o) = 0, and correspondingly 7f(x*) = 0.

Suppose that we apply the conjugate gradient method, say the

Fletcher-Reeves to h(z). Let us denote Vb(zk) by and search

directions in the z-space by 1k• Thus = LTg~ and d.
~ 

L~~.

Then:

A A It~,,jI A (2.13)
d~~ = _ g ~~+ A 2 dk l

Also if ak is the step from a point x~ along dk which minimizes

f(x), then a~ is also the step from z = L
~~

(xk_x*) along dk which

minimizes h(zk
) . (g(~~)T~~ = g(~~ ) T~~)

In the space of the original variables (2.13) becomes

= -Hg~

ii 112 (2.114)
d~~~~ -Hg~~+ 2 dk l

H

where ‘1~ ’1H = v By.

V We call (2.114) the conjugate gradient method with metric H

or preconditioned conjugate gradient method (Axelason [28]). Some

properties ~f the method, analogous to those discussed in Section 2.3., are:

U

L V 
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(i) g~Hg~~= O , i~~~j

A (o
(ii) E(z t ) < + 

~ 
E(z~) (2.15)

when (c 1,..., cr~) are the eigenvalues of LTAL in increasing order and

E(z t ) = ~~ ZTLTALZ = E(xt), and so the conjugate gradient method with

metric H satisfies (2 .15) .  If H resembles A~~ we can expect that

LTAL “approaches” the identity so that the function values will

decrease faster.

Suppose that H was obtained from a quasi-Newton iteration, which

for a quadratic satisfies

By
1 

= s~ , j = l,2,...,t (2.16)

when Sj denotes c~ step and the corresponding change of gradient.

Then

HAs~ ~~TA s s~, j = l,2,...,t (2.17)

(LTAL)(L
_
~ s~) = (L~~s1

) , j  = l,2,..., t (2.18)

The vectors L 1 s
~ 

are linearly independent so that LTAL has t

unit eigenvalues. The conjugate gradient method with metric H would

find the solution in at most n-t steps. Although this result is only

true for quadratics, it should motivate the use of the conjugate gradient

iterat ion (2.114) where the metric is obtained by quasi-Newton updates,

e.g. Broyden [11+) , Davidon ( 19) .

12 



2.2.2. Generalization to Arbitrary Starting Direction

So far we have assumed that d0 
= -g0. Beale [20] has shown

how d0 may be taken to be an arbitrary starting direction and the

quadratic termination properties of the conjugate gradient method

retained by modifying the defining relations as follows:

d0 given

Tg1y0
(2.19)

doyo

= + dk l  + d0, k > 2
d0y0

= 7
~k + CZ

kd~x~ 
where is chosen to minimize the

function along d~.

Equations (2.19) defines a cycle of n-steps. When the cycle is finished,

a new direction d0 is defined, and a new cycle is stated. Note that

when d0 is the negative gradient, we obtain the usual conjugate

gradient method.

It is easily seen that Beale’s method applied to a quadratic

function develops conjugate directions and find the solution in, at

most, n iterations.

Also it ii easily seen that

d1 € (ge, d0, Ad0]

d2 € [g0, Ag0, d0, Ad0, A
2d0)

and in general

1k € [g0, Ag0, ... , A’I lg0,do~Ado~ ...,A a0].

3.3
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Therefore

[d.~
,...,dk] € [g0, Ag0,...,A’~ 1g0, d~, Ad0, ... , Akd0] (2.20)

Let E(xk) be defined as in (2.8) and suppose that

0 < a < ?~~<X ~ <

(2.21)
b < 

~n-k+l ~ 
2’n-k+2 <

where the l~s are the eigenvalues of A.

We now prove the following result, which extends (2.10).

Theorem 2.1. For any x0 E ]R~ , but x1, x2, ... , x5 be generated by

Beale’s Method when applied to the quadratic function *(x) = ~~ (x_x*)TA (x_x*).

Assume that d0 is such that

[d0,..., d,~] = [g0, ~~~~~~~~~~~~ d0, Ad0,..., A’~d0] ~~ (2.21a)

for l < k < n .  Then

E(xk+l) (b a)
2 

[E(x0) + d~A(x0 - x* + ~~ d0
)] .

Proof. Beale’s method is a conjugate direction method, and therefore

minimizes *(x) (also the function I) over the space

Consider the iteration

Xk+l = xo + P~_1(A) g0 + 

~k~~~’o . (2.22)

~~ Conditions which ensure this are given below.

1 
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where and are polynomials in A of degree k-I. and k

respectively . Thus the polynomials that minimize E(x~÷1) are those

obtained by Beale’s method. Now

- x*) = (x0_x*) + Pkl (A) A(x0_x
*
) + Sk (A)d0 (2.23 )

= (I + PK l (A)A] (x0_x
*
) +

Choose

8k = (I + P
kl(A )A] (2.21+)

We have

E(xk+l) <~~~ [(xO~x
*) + d0J

T [I+ Pk l (A)A] A [I+Pkl
(A)A ] (~~~x

*
+a0)]

= ~ (x0-x~)~ A[I + Pkl (A)A}
2 (x0

_x*)

÷ ~ A [I + P
kl

(A)A]2 (x0
_x*) + ~~ d~A [I + P

kI.(A)A1
2 d0

(2 .25)

Let t
~ i~ 

be an orthonormal set of eigenvalues of A and let

(x0
_x*) = 

~~ 
~~
ei and Pkl (A) = a0

I + a
1A 

+...+ Ak~~ (2.26)

Then

I’k_l (A)( xO_ x )  = + 

i=l ~je~
+.” + ak l  ~~~~~~~~ (2.27)

( I + A P k_l (A ) J ( x o
_x*) = 

~ 
+ E e1~~

+~
.
~~~~~1E ~~~~~

V 
= E ~1e1(l + 

~~~ 
+...÷a.~1i4 ) (2.28)

V 

15



- V

Pk_l (A)[I+AP k_l(A)](xO
_ x )

= a0 lei(b 0~i
+...

~~kl
?
~ 
+...+a

l iei (l+aO
)j+...+ak~~~~

) (2.29)

[I + A P k l (A )) 2 (xO
_x*)

= 
~~ ~i~ i + a0~~~i~~

ei(].+ 
.. .+ ~~~~~~ +

~~
“÷ 

~~_i E
~~i

ei~~
( l÷  “ - +  a~ç j 7~) (2.30 )

A[I +APk1 (A)]
2(xO

_ x)

= 
~~ 1iei~i

(l+a0~~
1
~ ..‘ i~~

) ( b oAi~~
..+ a~~1~~)

= 
~~ ~i~i~i~

1 + 

~i~k-1~ ’i~
1 (2 . 31)

(x~_x*) A(I + APk l (A ) ] 2 (xo
_x*) = 

~~ ~~~~~ 
+

Let d0 
= 

~~~~~~ ~i
ei, then

~~A[I + APk l (A)]2(xo
_x*) = E ~~~~[l ÷ 

~~~~~~~~~~ 
(2.32)

d~AL I + APkl (A)]
2d0 

= E I~~~[l + x
~
Pk l (?%i

) ]2 (2.33)

Therefore, for any

E(x
k+l) <~~(~ ~ + Ii~i 

+ ~ ~~
) )~~[l +

[
~ + 

~i
Pp 1(~j

) ) 2 
~ 

+ ~)\ (2.34)

-
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or alternatively

E(xk+l ) < max [1 + ~iPk l (
~~~

)] 2(E (X o ) + d
~

A(Xo
_ X +

~~~d o)]  ( 2.35)

The rest of the proof follows as in Luenberger [18] .

Observe that (2.20)

[dO....,dk] 
€ [g~,Ag0, ;A~~~g0, d0,Ad0,...,

Akd0] (2.36)

only shows that the first space is contained in the other. In order to

use Theorem 2.1, we must establish conditions wh&ch ensure equality

of the two spaces.

(1) Clearly 
do 

= -g0 will do, which gives the usual conjugate gradient

method.

(2) Another possibility is that d0 is an eigenvector of A. We do not

know these eigenvectors . However this suggests that we consider

Beale’s method with arbitrary metric H, where the directions are

defined by

= + 
~kdk_l + r kdO

_ T
-

g~Hy0/d~y0 
if k > 1

= (2.37)

0 if k = 1

L~~VL~~~
V

V _____ I_______ 
_ _ _ _ _ _
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In this case we have that

€ [Hg0, (HA)Hg0,...,(HA)’~~ Rg01d0,HAd0,...,(H.A)
’
~d0] . (2.38)

If H was obtained by a quasi-Ne’w+on update formula using d0, then

= HAd0 = d
0 

(2.39)

so that do is an eigenvalue of HA and (3.38) will hold with equality.

Theorem 2.1 will hold (except that the ~ now are the eigeva].ues of a

different matrix). Beale’s method then takes advantage of the eigenvalue

distribution of A, which is a very desirable property.

In short one would implement the method as follows,

(a) Choose any do /
(b) Find H satisfying By0 = do’ using some quasi-Newton update formula.
(c) Continue with Beale’s with metric H, given by (2.37).

Notice that if (2.39) holds then = 0 and therefore a1 = -Hg1. So

we obtain the conjugate gradient method with metric H. For inexact line

searches or geLeral nonlinear functions ~ 0 and a different algorithm

will be obtained.

2.3. Strategies

Two strategies which have a great Impact on performance are

(1) How often to restart. This is nicely discussed in Powell [7] .

(2) Initial scaling of the search direction. For a good discussion of

this see Shanno [21).

18 
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3. Conjugate Gradient Methods with Variable Metric

An important generalization of the conjugate gradient method

(2.1) is based upon the first interpretation, see p. 6 . Two variants

that have been suggested are the variable storage generalized conjugate

gradient method (VSGCG), Nazareth [ 15 ] and the Interleaved quasi-Newton-

conjugate gradient method of Buckley [22].

3.1. Variable Storage Generalized Conjugate gradient (VSGCG) method,,

Nazareth [15].

When line searches are exact, it is shown in [15) that the BFGS

method can be stated as follows:

d~~
5 =~~H1g.

- + f 
~~~~~~~~~ 1 dBFGS (3.1)

1 
- - 1_1g

1 T d~~
’
~~ 

I
L Yj_1 j~i J

BFGS
whose x 1 

and H1 > 0 are given, x
1~1 

X
1 

+ ~1
d
1 

,

= arg mm f (x  + ?d~~~
8) and H~ is developed from H~ using

A

any member of Broyden’s ~=class (see Appendix).

By comparing (3.1) and (2.114) it can be seen that the BFGS method

can be interpreted as a conjugate gradient method in which the metric is

changed at each step. When storage is limited this suggests that some

simple H.1~ be used, e.g. a diagonal matrix and that the vectors defining

the rank 1 or 2 updates be saved. These are then used to define the

~ F

_ _

~~~~~

- --i

~~ 

- -- -1- -~~~~~~~~~~~~~~~~~~V---~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V — -— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

- -~

metric which can vary or stay the same from one iteration to another,

depending on the storage available. The resulting family of algorithms

is discussed in Nazareth [15] and is as follows: Let (x1,x2,...) be

the points generated and (H~,H~ ,H~ , . . .)  the matrices. H~ indicates
~‘1 ~2that it is the third matrix and that it was generated at x4 . (N.B. In

practice these will be defined implicitly by the vectors defined in

the update functions.,) d~~(H) will denote a conjugate gradient at

using metric H. Let T = 

~~1’~2’•
•
~ 

be the set of indices where up-

dates are performed. The VSGCG Iteration is

5k-l’ ~
‘k-]) if k € T

undefined for k ~ T

Here U denotes the update function of Broyden’s ~-class (see Appendix)

and 2 € T is the integer preceding k in T.

dk 
= ~~

G(Hr)

xk+1 = x k
+a

kdk.

Note that matrix used is not the most recent one, but the previous one.

Theorem 3.1. Let H be any symmetric and positive definite matrix.

Then the VSGCG method with exact line searches, starting with H~ H

has the quadratic termination property.

j  
20
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Proof. d1 = 4G(~ ), ~2 = d~~(H).

By the orthogonality properties of the CG:V

T T Tg3Hg2 = g
3
11g1 = g

2Hg1 =

T T T
g
3
d2 

= g
3
d1 = g2d1 = 0

Assume that d~~(H~~) ~~G (H) for 2 < k where H~’ € 
~~~~~~~~~~~~~

and t < k-i. (That is, we are assuming that it is equivalent to use any

of the previous matrices to do the step.) Also assume that

T =0

j  = l,2,...,k

We write Broyden’ s formula as

H
1~3. 

= H
1 

+ a
1
s~ + b~Y~H1

.

Then

j~~k+l ~~~~~~~ + a
1 _l

s~~_l~k+l 
+ ~~~~~~~~~~ H~~~

1
~~+1

V 
Hjm_ic+l 

= Hjm_2~~+l 
+ a

1 ~2
5j -2~~+l 

+ bjm
_2Y

~m
_2Hjm2~~+l

= Hgk+l + a1s~g~~1 +

_ _ _ _ _  

21
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We have deleted some superscripts, for simplicity. By the induction

hypothesis, the above equations give

j1 k+1 = 
~~~~~+1) . ,H~~_2~~÷1 =

=

Then T Hm
j

dk+i jm 
- ~~~~~~~ 

+ 

gT

= 
~ k+l 

+ 
k+l k d,~ = d~~1(H)

So the induction holds and shows that each step of the VSGCG method is

the same as a CG step with metric H. The result follows from the

quadratic termination property of the CG method.

Observe that the above result is independent of what member of

Broyden’s class one chooses. This is in sharp contrast with the Inter-

leaved Method where BFGS has to be used, as discussed next.

Some specific updating strategies allowed by Theorem 3.1 are

the following: (a) updating Hi at every iteration, (b) resetting

H1 to H after a certain number of steps, and (c) resetting Hi to

any previous matrix H
1
.

1 22

~~~ tir 
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3.2. Interleaved Quasi-Newton-Conjugate Gradient Method, Buckley 122]

Thi s method performs QN and c.g. steps intermittently. The c.g.

iteration is carried out with the metric defined in the previous Qi~

cycle. The metric is not updated during the c.g. iterations. Again the

quasi-Newton updates are defined by rank 2 corrections, and they will

not be stored in matrix form, but will be kept individually. Again as

in the VSGCG method as many corrections are retained as our storage

capacity allows us. In what follows, it is only important to keep in

mind that during each QX~ iteration the matrix is updated and during

each c.g. iteration it is held fixed.

An interleaved QN-CG has been studied by Buckley. In [22] he

states a theorem (see Theorem 3.3 below), which we generalize slightly

to show that it does not depend on the use of conjugate gradient iterations.

Consider the general iteration

d
1 

= -Hg
1 

+ c~ d~~1 is any constant

= x
1 

+ a
1
d
1 

j = 1,2,... (3.3a)

~~~~~~~~

For the case of general nonlinear functions -we can ask if the VSGCG

method will produce nonsingular matrices, preferably positive definite

too. We use the following result of Powell [23) for Broyden’s a-class.

Theorem 3.2. Let Bk be symmetric and positive semi-definite, let

~1 0 be in the space spanned by the columns of H and let be

such that > 0. Also assume that vector Wk is nonzero. Then if

23
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~~~~~~~~~~~~~~~~ - (s~~,k )2
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(3.2)

we will have that rank(Bk+1) = rank(Bk) and Hk~~ 
will be positive

semidefinite. H
+ 

is the generalized inverse of H. It can be shown

that

t•~~~.~3 
+ (l~t)~~~,~ > ~ for t € [0,1) (3.3)

where = (y~Hy~/a~) gives rise to the BFGS method and 
~DFP = 0

to the DFP method.

If Bk is positive definite, any 5k will be in its column

space; and all we have to insure is that > 0. This can always

be done by performing a sufficiently accurate line search, see [14] .

Bk-i will then be positive definite and the VSGCG will be a descent

method where H is a symmetric and positive definite matrix and a
1

is a steplength. Now consider the interleaved method that uses iteration

(3. 14) and QN steps from Broyden ’s n-class (A-i). Let the points generated

by this method be

= x0, 1, x0 2 , . . . ,  xO ,F~~
. xll ,  xl,2 , . . . ,  xl F = x2 l ,..., xR F

where the QN steps were performed at x1, 1 I = 0,1 H
i 

is the

new matrix obtained at x~ ~ 
and d, the displacement from x, .‘.,j ij

to

214

~~~~~~~~~~~~~~~~~~~~~~~~~
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Now we shall see that in the interleaved method one obtains

positive definite matrices for any ~ satisfying (3.3).

Lemma 3.1. Let H
1 

be symmetric and positive definite. Consider the

interleaved method that uses Q$ updates and the general iteration (3.lc).

If sufficiently accurate line searches are performed (see below) one

can choose £ E (i ,i, i,2 , . . ., i ,F—l } such that the following is true :

If s and y are used in (A .i) to obtain H 
+ , 

and if w / 0,
~ > then H1~1 will be positive definite.

Proof.

di,2 
= -H1g1 2 

+ 
~i,!~i,I_l 

(3. 14) 
V

Since H1 is nonsingular di £ 
is in its column space. Let us drop,

the first index, i.e., d12 d2. Now

d1 = -Hg1, d~g1< 0

d~g~ = -g~Hg2 + cr~d~~1g1 (3.5)

Let the accuracy of the search be such that

mitt ~-~- g~~1Hg1÷1, Id~gj I }  for all i (3.6)

Then from (3.5), d~g1 < 0  and

25
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T T
a~d2y2 

= a~[d~g~~1 - d2g2) > 0

Therefore > 0. We assume that a
1 

> 0 for all j. Applying

Theorem 3.2 we conclude the proof.

The lemma tells us that we can use any of the general iteration

steps to do the next quasi-Newton update and retain positive definiteness.

In order to obtain termination for a quadratic we will have to use the

last step.

Algorithm 3.1. Consider the interleaved method that uses the general

iteration (3.3a) and which satisfies the following:

(a) in the previous iteration to an QN step an exact line search

is employed.

(b) for all other iterations we do sufficiently accurate line searches

(in the sense of Lemma 3.1).

(e) the QN updates use the last displacement vector.

The following theorem says that the intermediate steps do not

undo the progress of the Q~ steps.

Theorem 3.3. If Algorithm 3.1 is applied to the quadratic function

1 *T * *
•(x) = ~ (x-x ) A~x-x ), starting from any x0 then the minimum x

will be reached after r QN steps, where 0 < r < it.

26
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Proof. Let Sik = (v :AH1v = v, vTHjgjj = 0, j = l,2,...,k). First we

show that

~ ~~~~~ 
for i S  k < F

1 
. (3.i)

Let V E S ik

= X
i,k 

+ ~1
H1g11 for some constants

51,k+l 
= + E

T T Tv H~g1~~~1 = v Higi k + L. ~1
g
11H1

AH1v

k
= Z ~- g ~ Hiv = O .
1=1 ~

Therefore, Sj,k ~ 
8i,k+l

Next we will show that 
~~ F ~ 

~~

. To simplify the, i_i
notation we will drop the subindex of F, I.e., ~1 F x . LetI, 

~v € 5i,F~l 
then

AE1v = v, vTH~gjj = 0, j =

Let us call ~ = 51,F-1 and r =

T

V H~~1 = H~ 
H~YTH1 + +

M y
i i- Q  T~~~~~T 

(~~~.8)

y H ~,y 8r

27
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AHfl~H v  T ~~H v  T
= AH

1
v - 

YTH 
~ + 

A:~~V + ~kwa 
T
TH T  

-

= - + 
A5~

Tv 
+ 

~~~ 
- (3.9)

TTHiY 
81 IHir 8i

Now ~
TAH y  =

F-i
8 = ~ H4 g4 therefore 8 v = 0

=~~ 
~. -& J.,j

Using this in (3.9) we obtain

Mli+iv = v . (3.10)

We only need to show that g~~1H~v = 0

Xi+l,l 
= X

1~~~ _3. 
+ ~~

= 
~~~~~~~~~ 

+ ~~

g~~1 H1~1v = g~~~~3.
H
1~1

v + 

~~

= g~~~~1
H
1~1

v + E ~~g~~1H1v (front 3.10)

=

=

= g~~~3.
A~~AH1v = 0 (3.11)

28 
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t
Therefore ~ F C S 

~~~

. Note that we have not used the exact line
1, —i ii ,

search hypothesis.

Finally, we will show that if x~ F was obtained by doing an,
exact line search from Xi,F_l 

then 8i,F...3. c ~~~~~~~~~~ 
Front the quasi-

Newton equation, 8 = Hi÷11, therefore

= A8 = 3.l2

5Tg = 0 (exact search)

then

(H~~1~)
T 
H1÷1g1~1 ~ 

= r
T
H g  = 0 . (3.i3)

Hence r € S~+1,1. Assume that r €

T
= 0 , AH

1
y = y

Therefore

g~~~~1
A~~y = g~~~ 18 = 0 . (3.114)

This is not possible; in the proof of Lemma 3.1 it is shown that g~d1 
< 0

for all 1. This shows that 5i,F..l ~ ~~~~~ 
So, the linear spaces

8i,k are nondecreasing and their dimension increased by at least 1

after the QN-step.

It is clear front the proof that we could do a QN after a step

with inexact line searches and this would not destroy the termination

property. Theorem 3.3 can be paraphrased as follows: after at most n

QN steps that were preceded by exact-line search steps we will reach

the minimum x~. The BFGS update formula is

29
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(
~ 

+ - - (3.15)
5k~k

which we will write as

Hk+l = Bk + + bky~Bk 
(3.16)

where the vectors ak and bk are found by comparing with (3.15).

V 

Theorem (3.7) is a weak result; we shall now show that these

iterations can be chosen so that (n-step) quadratic termination is obtained.

Algorithm 3.2. Consider the Interleaved method that uses BFGS steps

and conjugate gradient iterations with respect to the newest

matrix. An exact line search is performed at each step.

Theorem 3.14. If Algorithm 3.2 is applied to the quadratic function

1 *T *

~(x) = (x-x ) A(x-x ) starting from any x0
€ R with any symmetric

and positive definite H~, then the solution x will be obtained in at

most n steps.

Proof. The Hestenes-Stiefel CG with metric H is

CG 
~~yT Hg 1 V

d
1 
(H) = —Hg

1 
+ [ ~ j nj-i . (3.18)

y
1 ~ ~ 1

Let x be a point generated by the algorithm. We define
i, 1

30
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di,j = displacement generated by Algorithm 3.2 at X
11

d~,1 
= ~H~g11 , i = 2,3,..., R

= (3.18) evaluated at x
11

.

We are using here the same notation as in Theorem (3.3) to describe when
the updates are done. We will show that di = d~~ (H0) for all (i,j),j ,j
in the sequence. In other words, the Intefleaved method is equivalent to

using the CG with metric H0 throughout .

Assume that at the (1-1) cycle:

(1) ds,k = d
~~k

(HQ) , S = O,...,j-l; k

(2) H8g1_i,t 
= H0~11~~ , s = O,...,j-2; t = l,...,F (3.19)

(3) ~~~~~~~~ = JL0~1_1~~ t = 2,3,..., F
11

The assumption is clearly true for j = 1. Now we show that (3.19) holds

for the j—th cycle. Recall that 5i l F l =

= - H~g11 
= -H

1 1
g
11 

- a1_1s~
’
1,~ _1g1,1 + b1_1y~~1~~~1H11

g
11

= - H0g1 1 
- bj_ly~_l,F_l

HOgj,l

= - H0g1 1 
+ ~~~~~~~~~~~~ ~~~~~~ 

(see (3.15)-(3.16))
8j-l,F-IYJ-l,F-l

= d~~1(H0) (5.20)

31 
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Using the conjugacy and orthogonality properties of the CG we have

H1g12 
= 1~ g1,2 + a0s~~g1 2 

+ b0y~,~H0g1,2 =

As sume that H~~1,2 = H0g~~2 
for 1 < k < j, then

= ~~~12  
+ a~s~ ~g1 2 

+ ~~~~~~~ j,2 
= H0g12

Therefore H~~12 
= H
0g~~2, k = 1,2,..., 1. Now V

T

d~~2(H1
) = - H

1
g
1 2 

+ 

~~~~~~~~ 
d
11

- 11 + 
~111

H0g112 a- - 05j,2 y~~1d11 
~~

dCG ,
-

Reasoning as before we can show that for k = l,2,...,j

= ~~g1 1  V

i = 2,3,..., F (3.21)

d
~~i

(Hj) = d~~1(H0) j

So that (3.19) holds for the (j-th) cycle. The proof no-v follows front

the quadratic termination of the CG method.

32
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If instead of BFGS one uses some other member of Broyden’s

a-class (A.1), does one obtain (n-step) quadratic termination?

Lemma 3.2. If itt Algorithm 3.2 one uses a member of Broyden’s Class

(A-i) different from BFGS, then the quadratic termination property is

lost.

Proof. We write (A.1) in a slight ly different form

~~= H _ ~~~~
H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3.23)

where = l/y
THy -

Suppose that n-i CG steps, (n-2) with metric H have been

performed and that the solution has not been reached . We now update the

matrix, which so far has remained unchanged. From Theorem (3.14) it

follows that if the solution is to be obtained in the next step, the

new direction should be parallel to the BFGS. Let s be the last dis-

placement and the current gradient. Recall that we are doing exact

line searches:
Tsg÷ 0

Ty H ~~ / T

T
y- Hy 87

yTHg T T T
= ~~~~~

+ 
+ 

~~ 
(
~ 7

T
~7 

+ 
~~‘ 

~~
+) 

- y (3.24)

33
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, T T ~j  y Hg 4 y Hg~ \ f y Hg~
-d~~~5

=Hg~~+ H y~~- T 
+ 

T ) _ s I ( T
‘ y R y  yffy

— 
7
THg -

ç

T s (3.25)
8 7

Suppose that k~d ~~=d~ for some number k. Then

/ yTHg T \ /7
T
H g \

(k-l)Hg~ + Hy~ T 
- ~y H~+) 

- 
T ) 

(it - 

~Y By) = 0 . (3.26)
y H y  s y

This equation has the form

a1
Hg + a2Hg + a

3
s = 0

As a = Z a1Bg1, where the summation is over all i such that g
1 

precedes

and as the gradients are conjugate with respect to H we have

a.1 = a3 = 0. But a3 = 0 implies

T
it = ~y By;

Ty H y

T T 
_____

~y H y - l = ~~y H g ~~- T (3. 27)
y H y

T T
T T y H g ÷ y H y - y H g~

~(y I f y - y H g~ ) = l -  T - — 

Ty Hy y H y

Therefore ~ = (7
TBy) l which is BFGS.
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The above results show again the special relation between the CG

and the BFGS methods discussed in Interpretation I p. 6 . The proof of

Theorem 3.4 iaplies the following: If BFGS and CG are applied to a

quadratic function using the same initial matrix, and if exact line

searches are used then the displacements generated by the two algorithms

are the same in direction and magnitude .
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14. Conjugate Gradient Methods with Inexact Line Searches

In this section we discuss variants Of the conjugate gradient

method which have their basis in the interpretations discussed in

Section 2 on p. 6 to 10 . The aim of each variation is to drop the

requirement that line searches be exact, and still retain the advan-

tages of the basic conjugate gradient method.

We shall give a brief description of each algorithm in Section

14.1.1. We then discuss properties of these algorithms, concentrating

on the three term recurrence.

14.i . Basics

14.1.1. Algorithms

a) Dixon’s gradient prediction method [214)

The first method along these lines was due to Dixon. His exten-

sion of the conjugate gradient method is based upon the following result:

Lemma 14.1. Given an Initial point x0 
and a set of conjugate directions

d0, ~~ ... , d~ s.t. d0 = —g0 and d
1 
€ [g0, g1, ... , d

1
], let a

sequence of points x1, x2, ... , x1÷1 be developed s.t. x1÷1 
= x

1
+1

1
d1,

where is an arbitrary ~~~~~~~~~~~ 

*

Then the gradient g1~1 at the minimum point x1~1 in the

affine space (Z = (z: z = x0 + ~~~ a1
d1, a € P) can be deduced from

~ Vf(x1
) and the search directiQns, and is given by

36
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I T
* ~~ ~ _ _ _ _ _ _g1~1

= g 1~1 - £~~~~ T
in l

\ 
d~y1

and s (14.i)
* 

- 
~ (~~~~~

+
~~~~1 \  dXj~~]~~~~~X

1~~1
_ 

- ~. T I j
j-l \ d1

y~ ,

Proof. Implicit in Dixon [214].

g1~ 1 can be used to develop a search direction d
1~
, parallel

to that developed by the c.g. method. From (2.1) this is achieved by

* 2
* 

1Ig~÷, ll
d = -~~ 

+ d (14 2)
1+1 i+1 *2 i

From (14.1) it should be clear that only two additional vectors are

needed to accumulate the corrections to 
~~~~ 

and x~~1.

b) Memoryless Quasi—Newton Methods, Shanno [21]

These are based upon the first of the three interpretations in

Section 2.1.2, and the subsequent discussion of Section 3.1. It should

be clear from (3.1) and (2.1) that the restarted BFGS algorithm

~~~~~~~ 

= I) is equivalent to the~Hestenes-Stiefel conjugate gradient

algorithms (2.1) and (2.3), when line searches are exact. Shanno

carries this further by droppIng the requirement that line searches be

exact, and developing searth directions by

- 
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d
1~1 

= -u~~~(i, S
j~ y1

)g
1~1

= - - + 

y~y. \ d~g~~1 
- 

y
~
g
~~1 \ d + 

d~g1÷1g
~~1 I I  T I T T I j T

\\ d
1
y
1/ 

d
1
y
1 

d
1
y
1 / 

d
1
y~

A number of additions to this basic algorithm contribute to Its effective-

ness- - in particular strategies for scaling and restarting. For details

see [21].

c) The inultistep method, Nazareth and Nocedal [25]

This is based upon the second of the three interpretations of

Section 2.1.2. As noted there the c .g. method develops search directions

and gradient s which satisfy (2 .3a). Let us consider dropping the require-

ment that line searches be exact arid hence the fourth relation GTG =

but let us still insist that the direction gradient relation be satisfied

-G = DR, and that directions are conjugate, i.e. DTAD a. In addition

the matrix H in the relation AD?-~ = GH must be redefined as

u
1

1 - 1

H = 1 . , € ~ (4.14)

• 
~n-l

V 1~~i -

• n

since g~~1 
E (g1,.. ~~~ and g

~÷1 ~ 
0 in general.

The multistep method is based upon the following result, given

in [25).

38
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Lemma 14.2. Given matrices G, D, R, H, ?~, a as defined above, then

R has the form:

l e o - a  a . . . .  a
l e~~~~ ...

l ® r  . . .  r
.

R =

1

where elements denoted by the same greek letter are equal, and ®

denotes an element which is, in general, non-zero.

It is clear that for quadratics we have another specialized

version of Gram-Schmidt orthogonalization. Mainly for purposes of

illustration a particular algorithm is suggested in [25], but a number

of alternative formulations come to mind, and It is as yet unclear

ho-v to make effective use of Lemma 14.2 in an algorithm for non-linear

optimi zation. The salient point however is this: The usual c g .

method, e.g. Hestenes—Stiefel develops a search direction in [-g1,d1_1i

that is orthogonal to y
11
. Lemma 14.2 suggests that it might be worth-

while to maintain a second vector c1_1, composed 
of’ a suitable linear

combination of previous directions, and an associated change of gradient

and to develop d~ € [-~j, d11, C
j

] and orthogonal to y
11

and f11.

39
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d) The three term recurrence, Nazareth (17]

As we shall see, in the following section, the method is best

thought of as another implicit Lanczos process for symmetric matrices (see

p. 8). The defining sections for these three term recurrences are given by

/y
T y \ /7

T
7_ \

d~÷1 
= + 

\
y
j1

d.1)
1 

+ 

‘~ y~d1 
) d~ 0

(14.6)

V x1÷2 = x1÷1 + 1~d~ when is a function reducing step, but not

necessarily to the minimum of the function along

d . Also d_1~~~0 .

Details of the algorithm are given in [17]. Computational experience

reportea in [27] is encouraging. Shanno [26] however does not obtain

good results with the method. A recent hybrid implementation by Gill

and Murray [27] combines the TTR with the conjugate gradient method

and they also report encouraging computational experience. As we shall

see in the next section, the T~B method has certain advantages and dis-

advantages viz a viz the CG method, and what is clear is that an

effective implenentation aust exploit the positive aspects and circumvent

the negative aspects of the TTR.

40
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14.1. 2. Properties and Interpretations

a) When line searches are exact then the gradient prediction

method is identical to the conjugate gradient method. This holds for

arbitrary functions. This property also implies that line search

criteria can be found which ensure that the GP method develops descent

directions, see Shanno [26]. The GP method has finite termination on

quadratics.

b) The memoryless BFGS method does not have finite termination

on quadratics. However, by virtue of it being a one step variable metric

method it is clear that it develops descent directions, subject to

y~s~ > 0. This can be assured by the line search.

c) A straightforward implementation of the multistep method,

based upon Lemma 14.2, as described in [25], will not assure descent for

arbitrary functions. Such a method will retain quadratic termination.

As noted earlier, we believe that an algorithm which exploits Lemma 14.2

in a more subtle manner, may be a very useful contribution.

d) We now discuss a number of new properties of the TTR.

The first observation of some importance is that the TTR does not

require that d0 be along g0, in order to develop conjugate directions.

This is an advantage since it permits restarts of the algorithm with

d0 / -g0. A disadvantage of TTR however is that for arbitrary function
d1+i 

need not be a descent direction, even when line searches are exact.

The TTh is closely related to the Lanczos process for tn-

diagonalizing a symmetric matrix. Since y
1 

= Ad~~1 
we can write

(4.6)as

14].

I
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Ad
1~1 

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 14.7)

Define D = (do,...,dt) t < n where di,. .,dt on the set of conjugate

directions developed before the algorithm terminates, i.e. dt+i = 0.

Then (14.7) for j = 0,l,. . . ,t becomes

AD = iir

and by conjugacy (14.8)

DTAD = a

where T is a tnidiagonal matrix and Cr is diagonal, (14.8) can be

rewritten as

(14.9)
= a

where = A1~
’2D and = aT is symmetric and tnidiagonal, (11.9)

defined the Lanczos process.

It also follows directly from the above discussion that

V 

d
1 
€ Ed0, Ad.0, ... , A1

~~d0]

Thus the TTR will terminate when the above Krylov sequence d , A&0,...

attains maximum rank. If A has only k distinct eigenva].ues, then

there can be at most k steps. If d0 = -g0 then the TTh with exact
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or inexact line searches will generate conjugate directions which span

the same spaces as would the CG method with exact line searches. When

the sequence terminates, the correction step will be to the minimum.

If d0 / g0 then the T1~R can terminate (say dk 0), but the minimum

need not lie in the affine space (z:z = x0 + ~~~~ a
1
d1, a. E ]R). This

is a disadvantage of the method. We can however show the following.

Lemma 14.1. If the TTR with d0 / -g0 and exact line searches terminates

prematurely at x.~, k < n, i.e. g(x,~) / 0 and d,~ = 0, then g(x.~) is

conjugate to d1,.. .,dkl.

Proof. is orthogonal to [d0,...,d,~ 1] because d~,..., d.K l  are

conjugate and line searches art~ exact. Also by (4.6) y
1 
€ [d0,d1,.. .,d1~1

].

Thus y0, ... 
~ ~k-2 

€ [ d 0,..., dk_lJ and 
~k-1 

~ [dO,...,dk l j because

the process has terminated, i.e. d,~ = 0. Therefore

= k~~- - ’  dk_l l. Thus g.~ i~ orthogonal to [y0,..., 
~k l 1’ i.e. is

~~njugate to d1,..., dk_l.

Suppose we drop the requirement that line searches be exact. The

next lemma shows that in the quadratic case a vector can be maintained,

which permits a restart of the algorithm when premature termination occurs .

Lemma 14.2. Def ine n0 =

n
1 
€ [n~_1, d1_1) and n

1 
orthogonal to y

1~1
.

Then n
1 

is orthogoani to y0,..., Yj~~ 
and fl

1 
is conjugate to

~~~
‘“‘  

yj-.2.
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Proof. By induction, suppose n.~ is orthogonal to 
~~~~ 

••
~ ~ ~~~~

Also by conjugacy dk is orthogonal to y0, ... 
~ 
y~~~.

Since € [n.m,c] and is chosen to be orthogonal to

it clearly follows that is orthogonal to y0, ... y~. Thus

Tn1
A[ d0, ... , d11 J = 0

(An
1
) E d0, ... , d11 ] = 0

Since (y0, ... , y~_~] € E d 0, ... , d1_1]* A~1 is orthogonal to

Y0, ... ‘ Y1_2.

The above lemmas suggest ways of modifying TTR in order to circumvent

its disadvantages discussed above. In particular, Lemma 14.1 justifies the

hybrid implementation of Gill and Murray [27), and demonstrates that

terminat ion of this implementation will occur in at most a steps from

x~ (N.B. not x.
~
). We will however defer a more detailed discussion

of T~R modified along the lines suggested by Lemma 14.1 and 14.2 so as

not to unduly lengthen an already long paper.

It is also clear that methods GP and inultistep discussed in the

section can be generalized to arbitrary fixed metric and arbitrary

starting directions, and that much can be said about strategies of

scaling and restarting. Again we do not pursue this here.

_ _ _  
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5. Inexact Line Search Methods with Variable Metric

In Section 3 we discussed conjugate gradient methods in which

the metric is varied. Similar ideas can be applied to the methods of

Section 14. Here we discuss only one such method, which seeks to avoid

line searches in the conjugate gradient steps and retain quadratic

termination by using the TTR method.

I
Algorithm 5.1. Concider the Interleaved method that uses BFGS and the

TTR method in the following way: (a) at the end of a sequence of TTR

steps, the correction step, see E l i ]  is done, and (b) every BFGS step

is performed with an exact line search.

Theorem 5.1. If Algorithm 5.1 is applied to the quadratic function

1 **(x) = (x-x ) A(x-x ) starti ng from any x0 € R11 and any symmetric

and positive definite matrix H0, then the solution wi].]. be obtained in

at most n-steps. (As the correction step does not involve function

evaluations it is not counted as a step.)

Proof. First we will show that the directions generated by the TTR

are parallel to the conjugate gradient directions of d0 — ~~~

• We ‘will denote by x1, x~, ... the sequence generated by the CG

and x1, x2, •.. that produced by the TTR method.

xi = x o + aod0

V 

xi = x Q + d 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 
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therefore

4 = g1 + (a0-1)y0 = cz0y0 + g,~; y~ = a
0y0

y~~g1 = a0y~[g1 + c~y0 - y~) 
V

Ty0 d0 = a0y0d0

Using the Hestenes=Stiefel CG we have

* 
[y~g1 + y~y0a0 - ygy0]d1 = ..%y0 -g0 +% T

= - + [ + 

y~g1 
+ a0y~y0 - ~ ] dc~y0d0

r T  T Ty~y~ + cz0y0y0 - y0y0
~O
YO~~~[ y

~d0
Ty0y0

= - a~y0 + a~ -r— d0 = a~d1 
V

where d,~, d2, ... are given by ( 14.6).
Induction: Assume that d~ = a

11
d~~ I 1,2,..., k.

From ( 14.i)
* 

k
= 8k+l j—l dT 

y
1 
. (5.1)

jYj

_ _ _ _ _ _ _ _ _ _
V 
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So T T
* ~~÷1d~ 

_ _Yk Yk~~ T ~~~~~~~~~~~~dkyk dkyk
T

*
= akyk with = - —i-—

dkyk

Now

*T*  * T *
1 * 1. ~k ~‘k * 1 ~k-1~k *dk+1 = - 

~
‘k 

+ Crk Y
Td 

dk + 

Y~~l
d]~ 1 

dk l

*T *
1 1 * * ~

‘k ~k * 
Yk.lYk * 1

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ *T*~~~~~~~~~ ~T * 
dk_l I •  (5.2)

A L 7k dk ~
‘k-1c-l .1

*
* * *d.~ 

= 
~~~~~~~ 

+ 
~~~~ * ~~~~ . (

~~•3)

~
Tk_1dk_l

so *T * *1~~* *~‘r*
* Yk Yk * _ 1 Yk dk +yk Ykl *

*T* d
k _ I  - 

*T *  I dk .
Yk dk L ~k dk J

Using (5.3) and the orthogonality of gradients

*T *  *T * *

- 
~~~~~ 

+ 3’k ~~+1 - ~~~ * 
- 

~~~~~ ~~~_ ] . *— 
*~~~~~* 

dk
_ 

*T * dk (5• )
yk dk

V Substituting (5.3) in (5.2) and using (5. 14) and orthogonality

I#7

1_
_ _   _ _ _ _
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*,J~ * *T* *T *
1 * * ~~~~~~~~ * ~k ~‘k * ~

‘k-l~
’k *= 

~~~~~ 
~~k+l 

- d1~ + 
*‘]‘ * 

dk l  
+ *T * 

dk + 

*T *Yk.ldk.,1 ~k 
dk

= k [_~~+~ 
+ 

~~~~ 
d
kj 

+ 

~~ [yE!~~~l 
di..i 

+ 

Yk:ic-..l 

d
k_lJ

= 
~~~~~ [-

~
+
~ 

+ ~~~~~~~~~~~~~~~~~ 

~~~ J = dk+l .

Induction holds. Therefore CG and the TTR generate parallel directions.

After applying the correction step the TTR method produces the same point

as the CG method. Now suppose that a cycle of TTR steps plus correction

step Is completed and that the matrix will be updated. Let s be the
* *last step of the TTR method. Then s = ?~s where s is the correspond-

ing CG step and 7~, is a constant. Then y = Cs, y = ?Cs, so y = ~~ y

Looking at the BFGS update formula one readily sees that it is equivalent

* *to use (s,y) or (s ,y ). Therefore using the TTR method is equivalent

to using the CG method. The result now follows from Theorem 3.3.

Similar results hold for the other methods of Section 14.

• •
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APPENDIX

!~~yden’s a-class

Given x0 and n x n matrix H.~, we let k = 1,2,...

X
k+l 

= 
~
t
k 

- Yk~k

where is the step length and is defined recursively by

V 

Hk+l = H.~ - 
H yky~

Hk + + 
~ 

w~w]~ (A. i)V 

1k8k

Wk cZkskW
k

= 
T
YkEkYk 5k~’k

when
Also

-

~ 
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