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Abstract

We prove a number of new properties of algorithms of the
Conjugate Gradient type, paying particular attention to methods
which utilize variable metric information in determining the conjugate
gradient search directions. We attempt a comprehensive discussion
of conjugate gradient methods, and present each algorithm within
the context of other existing algorithms, an approach which provides

fresh insights and some new algorithms.




A STUDY OF CONJUGATE GRADIENT METHODS

L. Nazareth and J. Nocedal

1. Introduction
In 1964 Fletcher and Reeves [1] showed how the conjugate

gradient method of Hestenes and Stiefel [2] for solving systems of linear

equations could be extended and used to find local minima of non-linear

functions. Since then many variants of this algorithm have appeared
in the literature. Methods belonging to the conjugate gradient family
are particularly valuable when the number of variables is large.

In this paper we prove a number of new properties of conjugate
gradient type algorithms, paying particular attention to methods which
utilize variable metric information in determining the conjugate gradient

steps. We attempt a comprehensive discussion of conjugate gradient

methods, and present each algorithm within the context of existing
algorithms, an approach which yields dividends by providing fresh
insights and some new algorithms. Our concern is with conjugate gradient
methods for non-linear unconstrained optimization. Extensive work on

conjugate gradient methods for linear systems, e.g. Concus, Golub and

O'Leary [3] is not discussed here, though we believe our work also

has applications in this area.
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Our paper is organized as follows:

Basic conjugate gradient methods are discussed in Section 2,

An important generalization of conjugate gradient methods in
which the metric is varied, are discussed in Section 3.

In Section 4 we discuss conjugate gradient methods which relax
the requirement that line searches be exact.

Finally in Section 5, we look at extensions of algorithms in
Section 4 to the case when the metric is varied.

Within each of the above sections, we discuss one or more of
the following:
a) basics--algorithms, properties and interpretations
b) generalizations--in particular to arbitrary metrics and to arbitrary

starting directions

c) strategies--scaling, and when and how often to restart.
Subsequent parts of this research deal with convergence analysis [4] and
we hope eventually to develop a documented and distributable FORTRAN

implementation.
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2. Conjugate Gradient Methods
We summarize in this section some known results about the

conjugate gradient method. We are concerned with the problems of finding

a local minima of a function f(x), x € R". We denote this gradient

of f at x by g(xk) or g,. Let Y 2 Be+1 ~ & and 8y ‘- Xe+1 = Xt

2.1. Basics

2.1.1. Algorithms
The conjugate gradient method, originally developed by Hestenes

and Stiefel [2] to solve systems of linear equations, was adapted to the
non-linear unconstrained optimization problem by Fletcher and Reeves [1]

in the following way:
Given Xq» let do = -g(xo).

For k=1, 2, ... , let

& =8 * Pty e

2
I

A 2
where B = "gk" /Ilgk_1 and ||| is the Buclidean norm.

R R (2.2)

where N is chosen to minimize f along 4. f

This algorithm is restarted every n 'or (n+1) iteration.




2.1.2. Properties and Interpretations

a) Several alternate forms of (2.1) have been proposed.

Tne two most popular are

35’k-1/"3k-1”2 Polak-Ribiere [5]
A = (2.3)

T s 4
gkyk-l/dkolyk-l Hestenes-Stiefel

When applied to the quadratic function W¥(x) = % (x-x*)T A(x-x*),

x € lf‘, when A 1is a positive definite and symmetric matrix, each of
the above three algorithms has the following properties (i) finite
termination in, at most, n steps; (ii) 3$83 =0, Vi>j, and

(111) d'fyJ =0, i # j (i.e. directions are conjugate). As long as
8 ¥ 0, g, Wwill be linearly independent of g,,...,8, , and a new

conjugate direction d, can be developed. If 8 = 0, for some k < n,

k
then the minimum is located in fewer then 1n steps.
A A
Let G = [go,...,gk_l], D= [do,...,dk_l]. Then for qQuadratics
(1) Each direction lies in the space spanned by previous gradients,
i.e. -G = DR when R is upper triangular--called the direction-
gradient relation.
(i1) DIAD = a, where a denotes a diagonal matrix
(1i1) A(xi'xi-l) = (31-81-1)’ i=1,2,...,k. These can be written as
ADA = GH where M = diag(Ny *** N_;)» ?; 1s glven by (2.2)

and H 1is a particular upper Hessenberg matrix

"}
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(iv) GTG =B, B is also diagonal
In summary
-G = DR
DIAD = a
(2.3a)
ADA = GH
66 = B

These relations can be manipulated as discussed in Nazareth [6].

All three algorithms mentioned above are the same for quadratics.
For arbitrary functions, even when line searches are not exact, successive
search directions in the Hestenes-Stiefel algorithm are "conjugate,” i.e.
d:yk_1 = 0. For arbitrary functions, the Hestenes-Stiefel and Polak-
Ribiere algorithms are the same when line searches are exact. When
applied to arbitrary functions and line searches are inexact, the
algorithms differ, and Powell [7] has explained why the Polak-Ribiere
variant is to be preferred. The reason is that if poor search directions
are being generated, and successive iterates are close, so 8 = 5k-1’
then Bk — 0; hence the search direction reverts to the negative gradient

direction, permitting the algorithm to recover,
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It has been shown that all the above algorithms have an n-step
quadratic rate of convergence when line searches are exact, Daniel (8],
Cohen [9], Polak [10]. This condition on accuracy of the line search
can be relaxed to "asymptotically exact," see Kawamura and Volz [11],

Lenard [12].

b) If the starting search direction is not along the negative
gradient direction (—gl), then the above algorithms do not usually have
finite termination on a quadratic. Indeed, Powell [13] has shown that
either termination occurs, or this rate of convergence is linear, the
second being more usual. The algorithms can be modified to retain the

quadratic termination property as described in Section 2.2,

¢) There are three interpretations of the conjugate gradient
method (2.1), as applied to quadratic functions, which are of value in
explaining some of its properties. Each interpretation also serves as
a good staging ground for extending the conjugate gradient method and

analyzing the resulting algorithms, as we shall see later.

(1) Interpretation I: Relationship to BFGS method

The BFGS method [14] is currently considered to be the most

effective member of the Broyden B-class [14] of Variable Metric updates

8
3

method or any method of the B-class is applied to a quadratic function, with

dis = di = -8 and line searches are exact, it is well known that there is

(see Appendix 1 for a definition of the B-class and d,). When the c.g.
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no flexibility in the choice of subsequent search directions up to multi-
plication by a scalar; d;g and d? are, in consequence, linearly
dependent. In Nazareth [15], it is shown that the member of the B-class

for which these vectors are precisely the same (i.e. equal in magnitude

and direction) is the BFGS update. The result is also taken a step
further in [15], where it is shown that for arbitrary functions the BFGS
algorithm may be interpreted as a conjugate gradient method in which the
metric is updated at each step, using any member of the B-class. This
observation leads to the generalized conjugate gradient methods of

Section 3, where we shall elaborate further upon these brief remarks.

(ii) Interpretation II: Specialized Gram-Schmidt

Given any vector gj, and a set of search directions dl,...,dJ v

which are conjugate w.r.t A (orthogonal in the inner product defined

by A), then vector dj which lies in the subspace gy dl""’dj-l

and is conjugate to dl""’dj-l’ will have a component in each of the
directions dl""’dj-l' However when gJ is the gradient vector at

xj, then 83 is itself conjugate to dl""’ Thus the conjugate

d3_2.
gradient method can be viewed as a specialized version of Gram-Schmidt

where the vector d is chosen to lie in the space spanned by g.

J J

and which is conjugate to d Note that these statements

dJ-l J-l.
require that line searches be exact. Later we show that when line

searches are not exact, another specialized version of Gram-Schmidt

arises, and this in turn leads to a very natural extension of the conjugate-

gradient method.

SRS




(iii) Interpretation III: Implicit Lanczos

This Lanczos process is a particular generalized Hessenberg
process, the latter being defined as follows:
Given a matrix A and a set of n 1linearly independent vectors

x, which are columns of X, and an arbitrary initial vector 8y’ develop

i
vectors 81> 8y cor 5 By with G

np

(80,81,...,811_1) s.t.

AG = GH

(2.4)
GX = U

where H is upper Hessenbterg and U is upper triangular. x, need not

i
be specified beforehand. If they are taken to be the same as 8; and
if A is a symmetric matrix, then (2.4) becomes Arnold's method or
the symmetric Lanczos method, (see Wilkinson (16]) for tridiagonalizing
a symmetric matrix, the latter two methods being equivalent. This is
given by

AG = GT

N (2.5)

1
Q

T tridiagonal, a diagonal,

Note in particular that 8y € [go, Ago,...,Akgo] and is orthogonal
to [80, Byreves gk_l], where [uo,...,uk] denotes the subspace spanned
by Ugs eees Upe It is not difficult to see that the c.g. method
implicitly carries out the above process, where G is identified with

the matrix of gradients.




If, for some Kk, Agk € [go, Byrenes gk] = [80, AGO, ) Akso]

then the successive gradients 8y +or 2 By are linearly dependent.

0
(see Nazareth [17]) and By = O. When A has only m < n distinct

In this case the minimum lies in the subspace spanned by 4., ... , dk

eigenvalues, it is easy to show that the Krylov sequence
&g’ Ago, Aego, e.s 5 has only m 1linearly independent vectors. Thus
the conjugate gradient method will terminate in m steps.

We shall later show that the Lanczos process and an associated
Krylov sequence also underlies a member of the conjugate gradient family
of methods, called the three term occurrence.

Some convergence results very closely related to the above
interpretation are given in Luenberger [18],where the c.,g. method is

viewed as an optimal process over a space of polynomials.

Given an arbitrary starting point X, let
X1 = %o * P(A)g,
where Pk(A) is any polynomial of degree k.
If x* 1is the optimum point, then
& = A(xo - x*) (2.6)
and
- = - xX*
(%e0q = x*) = [1 + AP (A)](x, - x*) (2.7)

It can be shown that:

S T AU s L X

A e 4585 i




(1) Elxg,) 2 £q,,) - £%) = 2 (xgx) ALT+AR, (A) 1P (xy-x*) (2.8)

(i1) The conjugate gradient method implicitly selects the polynomial

Pk(A) of degree k for which Ek+ is minimized.

1
2
{
(111) E(xy,,) < m;x[l + AP (AT E(xp) (2.9)
i
where the maximum is taken over all eigenvalues of A, If there
are m distinct eigenvalues, then Pln can be chosen so that
B ™ O and from (1) it follows that the conjugate gradient
method converges in as many steps as there are distinct eigenvalues

(as was seen above in the discussion on the Lanczos process).

Luenberger [18] also shows that

(xn-t - Al)e

5 E(xo) y 0<t<n (2.10)
(xn-t & Al)

cre Al,...,xn are the eigenvalues of A in non-decreasing order.

E(x,) <

2.2. Generalizations

Let F Dbe the strictly convex quadratic function
il it
F(x) = 5 (x-x¥)" A(x-x¥) (2.11)

and let H be a symmetric and positive definite matrix (H >0). H
can be factorized in various ways, e.g. as H = LLT, where L is lower
triangular and nonsingular.

Let us define the transformation of variables (x-x*) = Lz and

let us represent the function in the z-space by h(z). Then

10
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h(z)

f(x* + Lz) = £f(x) = % 2T LIALz (2.12)

and

“h(z) (LTAL)z = Lme(x) .

Also Vh(0) = 0, and correspondingly Vf(x*) = 0.

Suppose that we apply the conjugate gradient method, say the

Fletcher-Reeves to h(z). Let us denote Vh(zk) by ak and search
~ ~ " T i A
directions in the z-space by dk' Thus 8 = L 8 and dk = Ldk.

Then:

S e T (2.13)
de = 8 * 7 5 Y
lgy_, !

Also if o is the step from a point X, along dk which minimizes

f(x), then o is also the step from z = L'l(xk-x*) along d which
PR P

minimizes h(zk) (S(Xk) q, = S(Zk) dk)‘

In the space of the original variables (2.13) becomes

e (2.14)
e, Il e
= - + —
* e B %

T %

where "V"H = v Hv,
We call (2.14) the conjugate gradient method with metric H
or preconditioned conjugate gradient method (Axelsson [28]). Some

properties of the method, analogous to those discussed in Section 2.1, are:

11
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(1) 811"83 =0, 143
~ (O’ -0 ) A
(11) E(z,) < an't - 01 E(z,) (2.15)
n-t 1
when {cl,...,cn] are the eigenvalues of LTAL in increasing order and

E(zt) = % zTLTALz = E(xt), and so the conjugate gradient method with

metric H satisfies (2.15). If H resembles A'l we can expect that
LTAL "approaches" the identity so that the function values will
decrease faster,

Suppose that H was obtained from a quasi-Newton iteration, which

for a quadratic satisfies

WJ i BJ ’ Jd = 1)2,---,t (2.16)

when s‘j denotes u step and y‘j the corresponding change of gradient.

Then
- 11T 2
HAs, = LL Asj = 8y, §w18,...,% (2.17)
(LTAL)(L-]'SJ) = (L°lsj) " 3= 3,8,.t (2.18)

18
J
unit eigenvalues. The conjugate gradient method with metric H would

The vectors L~ are linearly independent so that LTAL has t

find the solution in at most n-t steps. Although this result is only
true for quadratics, it should motivate the use of the conjugate gradient
iteration (2.14) where the metric is obtained by quasi-Newton updates,

e.g. Broyden [14], Davidon [19].
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2.2.2. Generalization to Arbitrary Starting Direction

So far we have assumed that do = -8y Beale [20] has shown
how do may be taken to be an arbitrary starting direction and the
quadratic termination properties of the conjugate gradient method

retained by modifying the defining relations as follows:

do given

gy
" 1Yo

G =5 ts 4 (2.19)
do¥o
T T
E¥k-1 €Yo

de = & * dk-l+dT S *2Z%
de-1Yk1 oYo

a1 - X i Qidk’ where ak is chosen to minimize the

function along dk'

Equations (2.19) defines a cycle of n-steps. When the cycle is finished,
a new direction do is defined, and a new cycle is stated. Note that

when do is the negative gradient, we obtain the usual conjugate
gradient method.

It is easily seen that Beale's method applied to a quadratic
function develops conjugate directions and find the solution in, at
most, n iterations.

Also it is easily seen that

d]. € [gO’ dO’ Ado]
4, € [&y gy doy Ady, A%4y]

and in general
k

4 € (8 Mgy -ov , A"Tgy,dpsAdgs - sA dgl

13




Therefore

[dyseeerd ] € [y, Ago,...,Ak'lgo, dyy Ady, ..., AkdO] (2.20)
Let E(xk) be defined as in (2.8) and suppose that
GraE s SR o8P
(2.21)

P Al ENgeo S SN,

where the A's are the eigenvalues of A,

We now prove the following result, which extends (2.10).

Theorem 2.1, For any X, € na“, but X:» x2, cee s X be generated by
Beale's Method when applied to the quadratic function v(x) = % (x-x*)TA(x-x*).
Assume that do is such that

k

[do:---,d-k] = [80) Aeo)-u:A -150: dO’ Adox---: Akdo] (1) (2.21a)

for 1 <k <n. Then

2 *
Bley) < (B2) (B0xy) + Aty - =" + 2 a)1 .

Proof. Beale's method is a conjugate direction method, and therefore
minimizes ¥(x) (also the function E) over the space [do""’dk]'

Consider the iteration
ey = %o * Py g (A)gg + 8y (A)d, . (2.22)

KIJConditions which ensure this are given below.
1k




where Pk-l and Sk are polynomials in A of degree k-1 and k
respectively. Thus the polynomials that minimize E(xk+1) are those
obtained by Beale's method. Now
* g (A * % (A
(xk+1 - X ) = (xo'x ) Pk-l ) A(xo-x ) sk )do (2-25)
*
= [X + Pk_l(A)A] (xo-x ) # Sk(A)dO
Choose
s, = (I+p . (A)A] (2.24)
We have

Elxy) <5 [(xpx ) + 47 [1+P,  (A)A] ALT+P, | (A)A)(xy-x"+d)]

i SRR, 2 oA
=5 (x=x )" A[I + P, (A)A]" (x,-x)

+ QAT + B (MA1R (xy=x") + 2 &CAlT + P

2
1 PIAT ag

(2.25)

Let [ei] be an orthonormal set of eigenvalues of A and let

* n
(Xp-x ') = 1Z=11 ¢,e;, and P (A) =T +aA +...+ok_1Ak'1
Then
n n k 1
Peoa (W) (xgx) = + b N (2.27)
(14A7 (M) (xpx ) =T eyey + 0 Ztiehterta T e
=L g,e (1 + o *""’"‘x-x": ) (2.28)

15
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Py (AT +AR, | (A)](xy-x")

[1+8p, ) ()% (xy=x")

i sais KY Fass k
=Legey * A INEe (et o (N) et o Do N (14

o
A[I+AP,__, (A) ]E(xo-x*)
c o0 k L) k
=L gyeg N (1 raghteect o M) (L+agh oot o ) N)

=T e+ AR, (A

(xg-x ) ALT + A2, (A)1%(xp=x") = Z €2a(1 + A2 (\)TP .

_sn
Let dy =Z;_, Bie,, then

G

T 2 *
doAlT + AP, (A)]%(xy-x ) = Z &,B, A (1 + 2P (N

apAlT + AP (A)1%a) = T €A (1 + AR, ()T

Therefore, for any Pk-l

1.2 12 2
B(xy,)) LG & + 6,8, + 5 8 N1+ AP (N)]

< max [1+ MPp-l"‘i)]a %Z(gi ¥ 61)27\1

"

16

K k-1 k
= OpRtge, (Legohreratay hy ooty Thoo 1o+ odg 42 (2.29)

ik cxk_lxli‘) (2.30)

(2.31)

(2.32)

(2.33)

(2.3L4)




or alternatively
B(xyyy) < max (1 + APy (A PIE(x) + dgA(xy - x +2 a)]  (2.35)

i

The rest of the proof follows as in Luenberger [18].

Observe that (2.20)
k-1 k
(dgs 24, ] € [ByrA8y, A &y dysAdy,...,ATd,] (2.36)

only shows that the first space is contained in the other. In order to

use Theorem 2.1, we must establish conditions which ensure equality
of the two spaces.
(1) Clearly dy = -, will do, which gives the usual conjugate gradient

method.

(2) Another possibility is that do is an eigenvector of A. We do not
know these eigenvectors. However this suggests that we consider
Beale's method with arbitrary metric H, where the directions are

defined by
4 =B *BQ "%
T T
By = &l /4 1Y)
g lyy/dpy,  if k>1

. (2.37)
0 if k=1

17




In this case we have that

[dy...,q,] € [Hgo,(HA)Hgo,...,(HA)k‘lngo,do,HAdo,...,(HA)kdOJ . (2.38)

If H was obtained by a quasi-Newton update formula using do, then

Hy, = HAQ, = d, (2.39)

so that d, is an eigenvalue of HA and (3.38) will hold with equality.
Theorem 2.1 will hold (except that the A now are the eigevalues of a
different matrix). Beale's method then takes advantage of the eigenvalue
distribution of A, which is a very desirable property.

In short one would implement the method as follows:
(a) Choose any dy # 0.
(b) Find H satisfying Hy, = d,, using some quasi-Newton update formula.
(¢) Continue with Beale's with metric H, given by (2.37).
Notice that if (2.39) holds then By =0 and therefore d, = -Hg,. So
we obtain the conjugate gradient method with metric H. For inexact line
searches or gereral nonlinear functions Bl # 0 and a different algorithm

will be obtained.

2.3. Strategies

Two strategies which have a great impact on performance are
(1) How often to restart. This is nicely discussed in Powell [7].
(2) 1Initial scaling of the search direction. For a good discussion of

this see Shanno [21].

18
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3. Conjugate Gradient Methods with Variable Metric
An important generalization of the conjugate gradient method

(2.1) is based upon the first interpretation,see p. 6 . Two variants
that have been suggested are the variable storage generalized conjugate
gradient method (VSGCG), Nazareth [15] and the Interleaved quasi-Newton-

conjugate gradient method of Buckley [22].

3.1. Variable Storage Generalized Conjugate gradient (VSGCG) method,

Nazareth [15].

When line searches are exact, it is shown in [15] that the BFGS

method can be stated as follows:

BFGS _

e T

BFGS y?-l 18 BFGS (3.1)

d =-HB8+ J=1 Jj-173 f 4

1 J=1"J 1 dBFGS -1
¥ 51741
o BFGS
whose x, and Hl >0 are given, xj+1 = % 27 xjdj 5
BFGS p p
A, = arg min f(x, + A ) and H, is developed from H using
J A J J 3 J-1

any member of Broyden's B-class (see Appendix).

By comparing (3.1) and (2.14) it can be seen that the BFGS method
can be interpreted as a conjugate gradient method in which the metric is
changed at each step. When storage is limited this suggests that some
simple Hi be used, e.g. & diagonal matrix and that the vectors defining

the rank 1 or 2 updates be saved. These are then used to define the

19




metric which can vary or stay the same from one iteration to another,

depending on the storage available, The resulting family of algorithms
is discussed in Nazareth [15] and is as follows: Let [xl,xe,...] be
the points generated and (H%,Hil,ﬂgz’...}

that it is the third matrix and that it was generated at x

the matrices. H? indicates
2

§.°
2
practice these will be defined implicitly by the vectors defined in

(N.B., In

the update functions.) diG(H) will denote a conjugate gradient at x,
using metric H. Let T = [Jl,je,...} be the set of indices where up-

dates are performed. The VSGCG iteration is

U(H:, s if k€T

k-1 Yk-1)

undefined for k¢ T .

Here U denotes the update function of Broyden's B-class (see Appendix)

and £ €T 1is the integer preceding k in T.

B = g ()
Xeep = Xt Rdy.

Note that matrix used is not the most recent one, but the previous one.

Theorem 3.1. Let H be any symmetric and positive defirite matrix.
Then the VSGCG method with exact line searches, starting with Hi = H

has the quadratic termination property.




1”

Proof. d, = dic(ﬂ), a, = dgG(H).

By the orthogonality properties of the CG:

T Ll e 3
&ste, = g;lig, = gyflg) =0
T T e e
&, Yy &4 =0,
CG CG
Assume that d (H?m) =4 (H) for 2 <k where H?m45 [Hl,ﬂfl,...,nzl
and t < k-1. (That is, we are assuming that it is equivalent to use any

of the previous matrices to do the step.) Also assume that

T

&+ 85 = 0

- J=1L2,...,k
8y+1 dJ =0

We write Broyden's formula as
T T
H =H +as8, +byH,
o S

Then

T T
H = K + a s + Db y H
ngk+1 Jm_13k+1 3oL Jm-lgk+1 3p~t 301 Jm_13k+1

T T
H = H +a s +b H
d.am " Ty e T Yt T Ny Py s T

< T T
“315k+1 = Hgyyy * 8818y t Y HE,,-

21




We have deleted some superscripts, for simplicity. By the induction

hypothesis, the above equations give

-1 L
H313k+1 % Hgk+1’“"H?m-2gk+1 = My

H§Q5x+1 = Mgy -

Then ik

diil(ﬂ?m) = By d:y: %

T

8, ., Hy

w1y - 00
“&e+1 T T dy = dyy (H)

Uk

]

So the induction holds and shows that each step of the VSGCG method is
the same as a CG step with metric H. The result follows from the

quadratic termination property of the CG method.

Observe that the above result is independent of what member of
Broyden's class one chooses. This is in sharp contrast with the Inter-
leaved Method where BFGS has to be used, as discussed next.

Some specific updating strategies allowed by Theorem 3.1 are
the following: (a) updating H, at every iteration, (b) resetting
H1 to H after a certain number of steps, and (c) resetting H, to

i
any previous matrix HJ'




3.2. Interleaved Quasi-Newton-Conjugate Gradient Method, Buckley [22]

This method performs QN and c.g. steps intermittently. The c.g.
iteration is carried out with the metric defined in the previous QN
cycle. The metric is not updated during the c.g. iterations. Again the
quasi-Newton updates are defined by rank 2 corrections, and they will
not be stored in matrix form, but will be kept individually. Again as
in the VSGCG method as many corrections are retained as our storage
capacity allows us. In what follows, it is only important to keep in
mind that during each QN iteration the matrix is updated and during
each c.g. iteration it is held fixed.

An interleaved QN-CG has been studied by Buckley. In [22] he
states a theorem (see Theorem 3.3 below), which we generalize slightly
to show that it does not depend on the use of conjugate gradient iterations,

Consider the general iteration

dj = -HgJ + cj -1 oj is any constant

Xgpy = X + O, b0 - SRR (3.3a)

-ty

For the case of general nonlinear functions we can ask if the VSGCG

c{)a

method will produce nonsingular matrices, preferably positive definite

too. We use the following result of Powell [23] for Broyden's B-class.

Theorem 3.2, Let H be symmetric and positive semi-definite, let
Sy # 0 be in the space spanned by the columns of H and let Yy be

such that B:Yk > 0., Also assume that vector Wy is nonzero. Then if
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(vehy) (sy3,)° ]
5 > - T 'IT.’_ T 2 B (5-2)
Oi(ykﬂkyk)(sk"ksk) - (syyy)

we will have that ra.nk(Hk+1) = ra.nk(Hk) and H . will be positive

+
semidefinite. H is the generalized inverse of H, It can be shown
that

*
B= t-Bppgs * (1-t)BDFP > B for t € [0,1] (3.3)

where Bpo .o = (yiﬂyk/bi) gives rise to the BFGS method and B

pFp = ©

to the DFP method.

If Hk is positive definite, any Sy will be in its column
space; and all we have to insure is that siyk > 0, This can always
be done by performing a sufficiently accurate line search, see [4].
Hk-l will then be positive definite and the VSGCG will be a descent

method where H is a symmetric and positive definite matrix and aJ

is a steplength. Now consider the interleaved method that uses iteration
(3.4) and QN steps from Broyden's B-class (A-1). Let the points generated

by this method be

%o = %0,1” %0,07**» %o, p." *

5 1,1 xl’e,..., xl,Fl= x2,1""’xR,F

R

where the QN steps were performed at x i=01,.... H, 1is the

1,1’ i

and d the displacement from x

new matrix obtained at xi’1 i3

ij

to

X, 5410
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Now we shall see that in the interleaved method one obtains

positive definite matrices for any B satisfying (3.3).

Lemma 3.1. Let Hi be symmetric and positive definite. Consider the
interleaved method that uses QN updates and the general iteration (3.1c).
If sufficiently accurate line searches are performed (see below) one

can choose £ € (1,1, 1,2,...,i,F-1} such that the following is true:

If sy , and Yy g o€ used in (A.1) to obtain H , ., and if w, ¥ 0,
B>p then H;,, Will be positive definite.
Proof.
dy g = “Hi8g 5 * 95 494 59 (3.4)
Since H1 is nonsingular di s is in its column space. Let us drop
>
the first index, i.e., d:u = dz. Now

T
9, = -Hg,, 48y <9

oo T

4,8, = -&,He, * 0,4, &, (3.5)

Let the accuracy of the search be such that

T T
|

T | 1
IngJ+1| < min ‘Ez gJ+1HgJ+1, |dJ8J for all J (3.6)

Then from (3.5), dfg‘ <0 and




P T T
a,d,y, = a,(dg,., -del>0.

Therefore 63)& > 0. We assume that aJ >0 for all j. Applying

Theorem 5.2 we conclude the proof.

The lemma tells us that we can use any of the general iteration
steps to do the next quasi-Newton update and retain positive definiteness.
In order to obtain termination for a quadratic we will have to use the

last step.

Algorithm 3.1. Consider the interleaved method that uses the general

iteration (3.3a) and which satisfies the following:

(a) in the previous iteration to an QN step an exact line search
is employed.

(b) for all other iterations we do sufficiently accurate line searches
(in the sense of Lemma 3.1).

(¢) the QN updates use the last displacement vector.

The following theorem says that the intermediate steps do not

undo the progress of the QN steps.
Theorem 3.3. If Algorithm 3.1 is applied to the quadratic function

1 R L K *
v(x) = 5 (x-x )" Alx-x ), starting from any X then the minimum x

will be reached after r QN steps, where 0 <r <n.
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T
Proof. Let S1k = [v:AHiv =v, Vv Hi.gi,:j =0, j =1,2,...,k}. First we
show that
Sk 81,k+1 for 1<k<F, . (3.7)
Let v € si,k
k
TR + le ‘533131,3 for some constants B,j
k
B,k " 8k " le BjAH.8
T . .
VHE g = VHE T BJsi iy AR v
= Z'. B:Jgi A =0,
J=1
Therefore, Si xS c S1 K+1°
Next we will show that S:l F _1 & si+1,1' To simplify the
notation we will drop the subindex of F, 1.e., x =x . Let
LF - LR,
v E si,F-l then
AH,v = v, vHg, , =0 DED =y
1 ? i i,J ) Y=y &6 ¢y .
Let us call 5"'1?1 and r'yil‘l
T
YT'H T
Hyey = 8, 'LT‘_i*Eg‘*ﬁ"T
v Hr &r
Hy
vealg—- 2 (3.8)
v Hy B8y
27




AH ‘{TTHV

YTHV

(3.10)

T T
ASS v B v
AH, v = AHv - + BAwa
L YTH Y Boy Y HT T oly
AH, 15 AH STAHv T
i A58 v 1 Bwv
e 7 * BAwa | w9
rTH Y (ST Y Hir 57r
Now STA}Iiv = STV
F-1 .
= L B,H,8 therefore & v =0 ,
184, 3
J=1
Using this in (3.9) we obtain
AHi+1v =V,
We only need to show that gfﬂ 1 0
F-1
= +
Xl 1 = 51,7 Z Mo
F-1
€i+1,1 ~ & p1 * Z 5JAH131,J
T
841 Bay¥ = 8 pyfyn¥ Z 5331 T e L
=gT H V+ZBgT H.v (from 3,10)
1,F-1"1+1 381,31 A
= 8, rain’
A, | 1
= 8y pyf T ALY
T -
= si,F 1A AHi’l =
28
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Therefore si,F-l §;81+1,1. Note that we have not used the exact line
search hypothesis.
Finally, we will show that if X, p Wwas obtained by doing an
b

exact line search from xi,F-l then Si,F-l = Si+1,1. From the quasi-

Newton equation, B = H1+1r, therefore
.
AH, v =AB =7 (3.12)
STg =0 (exact search)
1+1,1 ’
then
-1 T oo 4
(Hj1%) Hi183411 = Y Hig84y 9 =0 - (3.13)
Hence 1y € Si+1,1. Assume that 7y € si,F-l'
Lol w0 AH,y =
gi,F-l i‘l’ ) iY 2
Therefore
T = ERE. X
gi,F- A | 81,F-18 =0 . (3-1)4)

This is not possible; in the proof of Lemma 3.1 it is shown that g:;"d'j <0

for all j. This shows that S So, the linear spaces

s

1,F-1 — i+1,1°

Si x @re nondecreasing and their dimension increased by at least 1
b

after the QN-step.

It is clear from the proof that we could do a QN after a step
with inexact line searches and this would not destroy the termination
property. Theorem 3.3 can be paraphrased as follows: after at most n
QN steps that were preceded by exact-line search steps we will reach
the minimum x*. The BFGS update formula is
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T T
Y Hy s
ey =B * (l*li—s‘ﬁkyk)si’i}r&ﬂl (3.15)
Sk Sk Sie¥x
which we will write as
H = + T & ot (3.16)
el - He b 8 * Py - .

where the vectors 8 and bk are found by comparing with (%,25),
Theorem (3.7) is a weak result; we shall now show that these

jterations can be chosen so that (n-step) quadratic termination is obtained.

Algorithm 3.2. Consider the Interleaved method that uses BFGS steps
and conjugate gradient iterations with respect to the newest HBFGS

matrix. An exact line search is performed at each step.

Theorem 3.4, If Algorithm 3.2 is applied to the quadratic function
*
v(x) = % (x-x )T A(x-x*) starting from any x, € R” with any symmetric
*
and positive definite Ho, then the solution x will be obtained in at

most n steps.

Proof. The Hestenes-Stiefel CG with metric H is

T
y;_,He
dgG(H) - -Hg, + [ —%i—i] $e1 ° (3.18)
¥ya185-1
Let x, 3 be a point generated by the algorithm. We define
2
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di j = displacement generated by Algorithm 3.2 at X134
2
dB = -H i=253 R
%3 7 ke T e
dCG = (3.18) evaluated at x, ..
i,3 i,3

We are using here the same notation as in Theorem (3.3) to describe when

the updates are done. We will show that d1 j = dgGJ(Hb) for all (i,j)
2 b4

in the sequence. In other words, the Interleaved method is equivalent to

using the CG with metric Ho throughout.

Assume that at the (j-1) cycle:

CG
(1) ds,k = ds’k(Hb) g B EQesydids KoY .00

(2) Hsgj_l,t = Hogi_l’t g o B=0y,..,38 ¢ = L...,F, (3.19)

(3) Hj-lgj-l,t - Hog,j'l,t ) t = 2,3,..-, Fj-l

The assumption is clearly true for j = 1. Now we show that (3.19) holds

for the j-th cycle. Recall that gi-l F-l- gJ 1
2
J )

< 4 T T
517 " HsBy0 = Hya85 0 - 8508500, p085,1 * P5o1Y a1, Fo1Hya185,1
v T
= - Ho@y 1 = PyaYyo1, pa1M085,1

T

y g
- Hygy ) * —Ttl‘ﬂ}-[‘-’—b—l- sy1p  (see (3.15)-(3.16))

84-1,F-1Y3-1,F-1

dgfl(nb) (5.20)
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Using the conjugacy

Hey,2

Assume that Hkgj,2

B85,

Therefore Hkgj,2

Reasoning as before we can show that for k =1,2,...,J

Heey 1 = Ho8y 4 )

CG
3 =9, ’

CG
d
Ji

So that (3.19) holds for the (j-th) cycle. The proof now follows from

the quadratic termination of the CG method.

T T
= + =
Hogy,2 * 20%r€j,2 * Po¥o,r08s,2 = Ho€j,2

T T g
= Hey ot asy p8y ot Oy P8 5,0 = HoBj o -

= Hbgj,2’ k=1,2,..., j. Now

(1

and orthogonality properties of the CG weé have

= 053,2 for 1 <k < j, then

gt

. JH.g
cG ) T8 W e
Tt et B
8
T
p o Lol s
gl = Sl 3-1
o S
CG
el

1=23,..., Fy (3.21)
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If instead of BFGS one uses some other member of Broyden's

B-class (A.1), does one obtain (n-step) quadratic termination?
Lemma 3.2. If in Algorithm 3.2 one uses a member of Broyden's Class
(A-1) different from BFGS, then the quadratic termination property is

lost.

Proof. We write (A.1) in a slightly different form

Ty T . T %
ﬁ:n-&¥—+s—;—+ﬁ Hy-%ﬂls (Hy-LTHIs (3.23)
y Hy s’y sy sy

where By = 1/y Hy.
Suppose that n-1 CG steps, (n-2) with metric H have been
performed and that the solution has not been reached. We now update the
matrix, which so far has remained unchanged. From Theorem (3.4) it
follows that if the solution is to be obtained in the next step, the
new direction should be parallel to the BFGS. Let s be the last dis-
placement and g, the current gradient. Recall that we are doing exact

line searches:

sg, = 0
y Hg T
y Hy sy
yTHs T
= Hg, + Hy ( — + ayTHs+> - ss(YT"l yTHg+> (3.24)
y Hy s’y
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T T T
- Hg +Hy<yﬂg++y“&'> (yﬂg“)
dpres = "84 . ol = 5.4
y'Hg, '
sy )

Suppose that k'd'BFGS=dB for some number k. Then

T T
y H8+ T y H8+ T
(k-1)Hg, + Hy\ 7 - By'Hg, ) - s\ (k - By'Hy) =0 . (3.26)

This equation has the form
al}lg++a2l{g+a33=0 ;

As s =X aingi » where the summation is over all i such that 8; precedes

€, and as the gradients are conjugate with respect to H we have
al=a.3 = 0. But a3=0 implies
T
k = By Hy;
T
y Hg+ T,
a,= (k-1) + —— - py'Hg, =0 ;
y Hy

T

By'Hy - 1 = By'Hg, - —— ; (3.27)
y Hy

T T T

y Hg Y Hy - y Hg
B(y'Hy -y Ha,) = 1 - — - ———— "
y Hy y Hy

Therefore B = (yTHy)'l which is BFGS.
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r
The above results show again the special relation between the CG
and the BFGS methods discussed in Interpretation I p. 6 . The proof of
; Theorem 3.4 implies the following: If BFGS and CG are applied to a
i quadratic function using the same initial matrix, and if exact line
searches are used then the displacements generated by the two algorithms

are the same in direction and magnitude.
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4. Conjugate Gradient Methods with Inexact Line Searches

In this section we discuss variants of the conjugate gradient
method which have their basis in the interpretations discussed in
Section 2 on p. 6 to 10. The aim of each variation is to drop the
requirement that line searches be exact, and still retain the advan-
tages of the basic conjugate gradient method.

We shall give a brief description of each algorithm in Section
4,1.1. We then discuss properties of these algorithms, concentrating

on the three term recurrence.

h.1. Basics

4,1.1. Algorithms
a) Dixon's gradient prediction method [24]

The first method along these lines was due to Dixon. His exten-

sion of the conjugate gradient method is based upon the following result:

Lemma 4,1, Given an initial point X, and a set of conjugate directions

do) d1, cese di s.t. do = "go and dj € [80, 81, ceey d:j], let a

sequence of points X5 X5 eee 5 X4y be developed s.t. x:j+1 = +A.d

o o

where A, 1is an arbitrary step.

J
* *
Then the gradient 8541 at the minimum point X in the
i

affine space (2 = (z:2z = x5 * L0 ady, @€ R) can be deduced from

g Q vr(xJ) and the search directions, and is given by
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'
Iy
S
5

i gT d
* J+l j

841 =814y - 2| =T s

J=1\ dyy
3
and , (k.1)

i g.+1d

x* =X - X i e d

i+l i+l & T 3

Proof. Implicit in Dixon [2L].

can be used to develop a search direction d parallel

*
€i+1
to that developed by the c.g. method. From (2.1) this is achieved by

i

x. 2
le, I
e i)
Bay = By © e ey (k.2)
g, |

From (4,1) it should be clear that only two additional vectors are

needed to accumulate the corrections to gi+1 and x1+1.

b) Memoryless Quasi-Newton Methods, Shanno [21]

These are based upon the first of the three interpretations in
Section 2.1.2, and thé subsequent discussion of Section 3.1. It should
be clear from (3.1) and (2.1) that the restarted BFGS algorithm
(H?_1 = I) 1is equivalent to thq”Hestenes-Stiefel conjugate gradient
algorithms (2.1) and (2.3), when line searches are exact. Shanno
carries this further by dropplng the requirement that line searches be
exact, and developing seardﬁ directions by
37




dj+1 = -UBFGS(I, SJ’ yj)g,j+l
T dT T dT
s Yy £ YEm) L YE5n :
= 854 T T T 3 T Y3
Wy | ¥ 9y 459 5

A number of additions to this basic algorithm contribute to its effective-
ness--in particular strategies for scaling and restarting. For details

see [21].

c) The multistep method, Nazareth and Nocedal [25]

This is based upon the second of the three interpretations of
Section 2.1.2. As noted there the c.g. method develops search directions
and gradients which satisfy (2.3a). Let us consider dropping the require-
ment that line searches be exact and hence the fourth reiation GTG = B,
but let us still insist that the direction gradient relation be satisfied
-G = DR, and that directions are conjugate, i.e. D?AD = . In addition

the matrix H in the relation ADA = GH must be redefined as

- 1 % -
il
1 -1 S
H = 1 . . b Hi € R (h.h)
- Hpa1
- 1 H -
n

since g € [gl,...,gn] and g ., # 0 in general.

n+l
The multistep method is based upon the following result, given
in [25].
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Lemma 4.2. Given matrices G, D, R, H, \, @ as defined above, then

R has the form:

( T o (o (o AR S
1 ® B B B

8 L TS Cenel T

where elements denoted by the same greek letter are equal, and ®

denotes an element which is, in general, non-zero.

It is clear that for quadratics we have another specialized
version of Gram-Schmidt orthogonalization. Mainly for purposes of
illustration a particular algorithm is suggested in [25], but a number
of alternative formulations come to mind, and it is as yet unclear
how to make effective use of Lemma 4.2 in an algorithm for non-linear
optimization. The salient point however is this: The usual c.g.

method, e.g. Hestenes-Stiefel develops a search direction in ['8j’d3-lj

that is orthogonal to yj 1° Lemma 4.2 suggests that it might be worth-
while to maintain a second vector cj-l’ composed of a suitable linear
combination of previous directions, and an associated change of gradient

fj-l’ and to develop d, € [-gj, dJ-l’ cJ] and orthogonal to Vi1

J

and fj-l'
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d) The three term recurrence, Nazareth [17]

As we shall see, in the following section, the method is best
thought of as another implicit Lanczos process for symmetric matrices (see

p. 8). The defining sections for these three term recurrences are given by

f .7 T
Yy y y.y
N -1 jub i+ 18
o U e e ;'l’—dl_ At S Ny 20
3-1%3-1 ¥4
(4.6)

341 + Ajdj when A

X =X

j+2 is a function reducing step, but not

J
necessarily to the minimum of the function along

d Also d_ o .

3 =
Details of the algorithm are given in [17]. Computational experience
reportea in {27] is encouraging. Shanno [26] however does not obtain
good results with the method. A recent hybrid implementation by Gill
and Murray [27] combines the TTR with the conjugate gradient method

and they also report encouraging computational experience. As we shall
see in the next section, the TTR method has certain advantages and dis-
adventages viz a viz the CG method, and what is clear is that an

effective implementation must exploit the positive aspects and circumvent

the negative aspects of the TTR.




4,1,2. Properties and Interpretations

a) When line searches are exact then the gradient prediction
method is identical to the conjugate gradient method. This holds for
arbitrary functions. This property also implies that line search
criteria can be found which ensure that the GP method develops descent
directions, see Shanno [26]. The GP method has finite termination on
quadratics.

b) The memoryless BFGS method does not have finite termination
on quadratics. However, by virtue of it being a one step variable metric
method it is clear that it develops descent directions, subject to
ygsj > 0. This can be assured by the line search.

c) A straightforward implementation of the multistep method,
based upon Lemma 4.2, as described in [25], will not assure descent for
arbitrary functions. Such a method will retain quadratic termination,
As noted earlier, we believe that an algorithm which exploits Lemma 4.2
in a more subtle manner, may be a very useful contribution,

d) We now discuss a number of new properties of the TTR.

The first observation of some importance is that the TTR does not
require that d0 be along &’ in order to develop conjugate directions.
This is an advantage since it permits restarts of the algorithm with

do # -8y A disadvantage of TTR however is that for arbitrary function

d need not be a descent direction, even when line searches are exact.

J*1
The TTR is closely related to the Lanczos process for tri-

diagonalizing a symmetric matrix. Since yd = Adj)\.j we can write
(4.6) as

L1

ol

——




- rengner S

T T
¥ ¥ vy
Al = -dp ¢ gl ), L Y, (4.7)
V3-1%3- Y33

Define D = (do""’dt) t < n where dl,.;.,d on the set of conjugate

t
directions developed before the algorithm terminates, i.e. dt+1 =0,
Then (4.7) for j = 0,1,...,t becomes
AD = DT
and by conjugacy (4.8)
DYAD = q

where T 1is a tridiagonal matrix and a is diagonal, (4.8) can be

rewritten as

BTAD = F
(L.9)
S - a
~ _,1/2 ™
where D =A"/“D and T = oT is symmetric and tridiagonal, (L4.9)

defined the Lanczos process.

It also follows directly from the above discussion that

J-1
dJEId,Ado, eer s ATTTAL)

Thus the TTR will terminate when the above Krylov sequence 4 , Ado,...
attains maximum rank, If A has only k distinct eigenvalues, then

there can be at most k steps., If d0 gl then the TTR with exact

L2

OTpa— " . e




or inexact line searches will generate conjugate directions which span
the same spaces as would the CG method with exact line searches. When
the sequence terminates, the correction step will be to the minimum.

If d, # -g, then the TIR can terminate (say d = 0), but the minimum
need not lie in the affine space {z:z = X, t Zg'l ade, a‘j € R)}. This

is a disadvantage of the method. We can however show the following.

Lemma 4.1. If the TTR with do # 8o and exact line searches terminates

prematurely at x ., k <n, i.e. g(xk) # 0 and d, =0, then g(xk) is

conjugate to dl""’dk-l'

Proof. g, is orthogonal to [do,...,dk_ll because dl""’ dk-l are
conjugate and line searches are exact. Also by (L.6) Yy € [4 ’dl!""dj+1]'
Thus ¥gs «-+ » Y0 € [do,..., dk-1] and y, , & [do,...,dk_ll because
the process has terminated, i.e. dk = 0, Therefore [yo,...,yk_l]

= [do,..., dk-ll' Thus % is orthogonal to [yb,..., yk_l], i.e. is

conjugate to dl,..., dk-l'

Suppose we drop the requirement that line searches be exact. The
next lemma shows that in the quadratic case a vector can be maintained,

which permits a restart of the algorithm when premature termination occurs.

Lemma L4.2. Define n, = &,
“j € [nj-l’ dJ-I] and nJ orthogonal to Vi
Then nJ is orthogoanl to Ygseees yd_1 and nJ is conjugate to

yo’--., yJ-Q.
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Proof. By induction, suppose n is orthogonal to Yor e+e s yk-l’
Also by conjugacy dk is orthogonal to yo, NER yk-l'
Since N, € [nk’dk] and 1s chosen to be orthogonal to Yyr

it clearly follows that Nesl is orthogonal to Yor oo s Yy Thus

¥
o

T
nJA[do’ cee dJ-l] =

T
(An.j) [do’ ceee dd-l] =0

Since [yo, vss s yj_g] & [do, e dJ_1]=¢ AnJ is orthogonal to

yo’ ece yj_z-

The above lemmas suggest ways of modifying TTR in order to circumvent
its disadvantages discussed above. In particular, Lemma 4,1 justifies the
hybrid implementation of Gill and Murray [27], and demonstrates that
termination of this implementation will occur in at most n steps from
x, (N.B. not x,). We will however defer a more detailed discussion
of TTR modified along the lines suggested by Lemma 4.1 and 4.2 so as
not to unduly lengthen an already long paper.

It is also clear that methods GP and multistep discussed in the
section can be generalized to arbitrary fixed metric and arbitrary
starting direcyions, and that much can be said about strategies of

scaling and restarting. Again we do not pursue this here.
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5. Inexact Line Search Methods with Variable Metric

In Section 3 we discussed conjugate gradient methods in which
the metric is varied. Similar ideas can be applied to the methods of
Section 4, Here we discuss only one such method, which seeks to avoid
line searches in the conjugate gradient steps and retain quadratic

termination by using the TTR method.

Algorithm 5.1. Concider the Interleaved method that uses BFGS and the
TTR method in the following way: (a) at the end of a sequence of TTR
steps, the correction step, see [17] is done, and (b) every BFGS step

is performed with an exact line search.

Theorem 5.1. If Algorithm 5.1 is applied to the quadratic function
v(x) = % (x-x*)TA(x-x*) starting from any x, € R® and any symmetric
and positive definite matrix Ho, then the solution will be obtained in
at most n-steps. (As the correction step does not involve function

evaluations it is not counted as a step.)

Proof. First we will show that the directions generated by the TTR

are parallel to the conjugate gradient directions of do = -8y*

* *
We will denote by X)) x2, ««. the sequence generated by the CG

and X)5 X55 oo that produced by the TTR method.
% * %%

s Bl R

-

L5




therefore
*

%% * &F Y5 = %Y

*
Yo & = %Yoley + ayyy - ¥p)

* +

*7 T
Yo 9 = %¥odyp -

Using the Hestenes-Stiefel CG we have

T T 0

T
%Yodo

d; %Y & * %

T 5 T
=+ -
- ayy, * [1 4+ Jof1 T %Yo¥o - Yo¥o ] 4
0 g

Yodo

T T T
% .| Yo¥o * %¥o¥o - Yo¥o
= =% T %

Yoo
T

Yo¥o
"t B A N "%

Yo%

where dys dy, ... are given by (4.6).

*
Induction: Assume that dj = aj-ldj’ =10 ey K

From (4.1)

T
* k g +ld
Bysy = By = L "L'r"lyg .
J=1 d.y
J3°J
46
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So T
* & &Y
Yy =¥ - —m—y, = - y
kY -"F ¥ T Vi
4V bV
T
* e dy
Y = QY Wwith . -
4
Now
vty vl oy
1 %, 01 Y Ve x 1 YeaYk  x
b1 ~a Nt wmF &ty 7w a
% % vy 4 oo,
y Ty vor oy
‘i- * ¥* k ¥ k-lk *
‘ak['gkﬂ*gk*—kﬁ—*dk**r* d'k-lJ' (5.2)
Ye & Yie-1%-1
*P %
* ¥ Yl *
dk=-sk+%T-rs‘:—dk_l. (5.3)
k-1%-1

Also

Using (5.3) and the orthogonality of gradients

*P * *] * * *] *
Tk B T i By T Vil x Vi By x (5.4)
*T ¥ q = *Td* a, .
Y I Y 9

>

Substituting (5.3) in (5.2) and using (5.4) and orthogonality
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|

| yor s; y Ty yor oy
] . * Yy * k Yk % . Ye1Yx o x
dk+1'a—k pC R - i Y T o e
i Yie-1%-1 Y 9 Yg-1%-1
i *T * *P % *T %
1| o+ Yk B x| 1 yk-lgk Ypady %
Y e de ' Gt T x4
| Yx I Yg- ldk 1 Yg-1%-1
X o
1 Yk Bl x| _ 1 *
r & '3k+1 *Td: % | = o ety -
Y

Induction holds. Therefore CG and the TTR generate parallel directions.
After applying the correction step the TTR method produces the same point
as the CG method. Now suppose that a cycle of TTR steps plus correction
step is completed and that the matrix will be updated. Let s be the
last step of the TTR method. Then s = As* where s* is the correspond-
ing CG step and A 1is a constant. Then y = Cs, y* = NCs, sO y = % y*.
Looking at the BFGS update formula one readily sees that it is equivalent
to use (s,y) or (s*,y*). Therefore using the TTR method is equivalent

to using the CG method. The result now follows from Theorem 3.3,

Similar results hold for the other methods of Section 4.




APPENDIX

Broyden's B-class
Given X, and n X n matrix Hk, we let k =1,2,,.. .

Xerl = Xx = &

where Qi is the step length and Hk is defined recursively by

T T
S

7
M =% - 7 T TEN% (4.2)
+ VeV YieSx
Ry, s,
W = e s

T T
VeV sy¥y
B >0

fa
B = Xpe1 - %

ykegk*-l-sk RS gkew(xk) :
Also

a & -, .
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