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Abstract

‘
ur aim in this paper is to provide the reader wit~3

&me feel for what quality software entail~~
___ overview of various aspects of optimization softwar~~

4 £~formation on solution techniques and available software in

the form of a decision tree.

An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear prograimning, non—linear unconstrained

optimization and related areas, and non—linear progranining.

This paper is intended to supplement an earlier oral presenta—

tion at the Texas Conference on Mathematical Software entitled “State

of Software for Optimization”.
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SOFTWARE FOR OPTIMIZATION

by

L. Nazareth

1. Introduction

This paper is intended to supplement an earlier oral presenta-

tion on developments in optimization software.* Since very many

mathematical problems can be posed in terms of function optimization,

and since software for each optimization area ranges from small scale

pilot programs to the large scale systems of which commercial LP systems

are the most familiar example, we are of necessity selective in our

choice of subject matter. We concentrate upon the areas of linear

programming, non—linear unconstrained optimization (and the related

areas of non—linear least squares and systems of non—linear equations),

and non—linear programming. In particular, the very important areas

of discrete variable programming and dynamic programming are not

covered here.

Our aim in this paper is to provide the interested reader with:

: a) Some feel for what quality software entails.

b) An overview of various aspects of optimization software.

*ttState of Software for Optimization” —— invited presentation at Texas
Conference on Mathematical Software, April 1978.
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c) Information on solution techniques and available software for the

above areas in the form of a decision tree.

-

~~~ 3 d) An extensive bibliography, so that the reader can further pursue

specific topics of interest.

The paper is organized as follows: Section 2 provides some

historical background to the optimization areas covered. Section 3

gives an overview of the software development process, and discusses

attributes of ‘quality’ mathematical software, illustrating these

with specific examples. Section 4 deals with software primarily

• intended to aid algorithm and code development, and discuss the idea

of a language for mathematical programming. Section 5 deals with

available optimization software for the areas covered here. A detailed

decision tree is given. Section 6 discusses the testing of software

and the bibliography is given in the final section.

We make no claims to being complete, but the author would

welcome feedback on important omissions and inaccuracies, particularly

with regard to material in Section 5.

2
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2. Background

Table 1 is designed to give the reader a time frame for develop—

• ments in optimization. Some of the important theoretical and algorithmic
• references are listed along with a few parallel developments in software

and computers, and the reader can superimpose his own set of favorite

• topics.

Table 2, adapted from Wolfe (1975b], shows how our ability to

solve problems has increased substantially. The vertical axis repre-

sents complexity of the problem and the horizontal axes lists different

0 
areas of optimization.

0 For further historical details see the survey articles of

Dantzig [1977], Orchard—Rays [19771 and Wolfe (1975b].
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LP 12 UN QP LC/ NLC/

NLO NLO

U.N. — Unconstrained minimization, QP—Quadratic Programming
LC/NLO — Linear constraints, non—linear objective, NLC/NLO-non linear

constraints and objectives
Complexity - (number of rows + number of variables)
$ —— indicates the figure given is only a rough approximation between

the bounds indicated
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3. Quality Software

3.1. Overview of Software Development

The design of an item of mathematical software depends very

0 much upon the intended use of the software. We wish to stress the

distinction between implementations of an algorithm designed primarily

for studying the behavior of an algorithm, and implementations designed

primarily for solving problems. The former are called algorithm/code

oriented versions and the latter user/problem..oriented versions. The

distinction is, of course, not clear cut, since algorithm/code oriented

versions can and should be used to solve practical problems, and user/

problem oriented versions can and should be used to study the encoded

algorithm. However an implementation will usually place emphasis on

one of these two goals; and often an algorithm/code oriented version

will be developed as a preclude to a user/problem oriented version.

An algorithm/code oriented version should not be construed to

mean a hastily thrown together version. Rather it indicates a version

• in which emphasis is placed upon the goals of flexibility, generality

and modifiability, even if this results in a sacrifice of efficiency.

In a user/problem oriented version, increasing emphasis is placed upon

efficiently solving a wide class of problems and providing a wide range •

of options. This may call for substantial reformulation and reorgani-

zation of the calculations to reduce overhead and circumvent numerical

difficulties.

6
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• We feel that insufficient attention has been paid to develop—

• ing tools to aid the implementation of algorithm/code oriented versions

and this has contributed to the proliferation of untested algorithms

• which abound in the literature~ 
I 
This will be discussed further in

Section 4. In contrast, a number of software aids have been developed

to aid the process of tailoring a code to a particular compiler/machine

configuration, i.e., to develop portable versions. For further

details see Boyle [19761. Since such aids can be applied to most

items of mathematical software and are not specialized to optimization,

we shall not discuss them f’irther he~e.

• For a more detailed discussion of the process of mathematical

software development see Nazareth [l978a].

3.2. Attributes of Quality Software

Both algorithm/code oriented and user/problem oriented software

should meet certain standards. What is it that characterizes ‘quality ’

software?

Recent efforts to develop good mathematical software, Rice

[1971], Smith et al. [1974], Ford and Hague [1974], identify

several attributes. We quote thes~ and illustrate them with specific

examples.

(a) Robustness refers to the ability of a computer program to •

detect and gracefully recover from abnormal situations without unneces—

sary interruption of the computer run. In situations when a 
calculation7



does fail, the code should fail gracefully. Robustness involves, for

example, the filtering out of improper arguments, the avoidance of

-
O destructive overflows, and the reorganization of a calculation to mini-

mize the effect of rounding error.

Example 2: Cody [1976], Avoiding both destructive overflows and

non—destructive underf lows in the computation of lxi — 
~~jl 

~~j
1.f2.

The usual FORTRAN calculation proceeds as follows:

SUN 0.0 DO

DO 1 O I — l , N

SUN = SUN + X(I)**2

10 CONTINU E

XNORN = DSQRT(SUM)

SUN can overflow even though XNORN may be a machine repre-

sentable member. In order to avoid this, the calculation can be done

as follows, where we assume for convenience, that the largest element,

in absolute value, is x(1).

SUM = 1.0 DO

DO l O I — 2 , N

A = X(I)/X(l)

SUN - SUM + A*A

10 CONTINU E

XNORN — DAE S(X(I)) *DSQRT(S UN )

H 8
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Now x(I)/x(l) can underf low (non—destructively) leading to

• • .~~ troublesome interrupt messages. To avoid this the computation can be

further reorganized as follows:

SUN 1.0 DO

B — DABS(X(1))

DO 1 0 I = 2 , N

• A = O . O DO

IF (B + DABS(X(I)).NE.B)A = X(I)/X(l)

SUN SUN . + A*A

10 CONTINUE

XNORM = DABS(X( l) ) *DSQR~ (SUN)

• 1

Example 2: Reorganizing calculation to minimize effect of roun ding

error. When variable metric methods were first suggested for solving

the problem mln XE J(n f ( x ) , the calculation was stated in terms of

updating an approximation to the inverse Hessian H of f(x). Given

a step & x* — x and the associated change of gradient of f(x),

— ~f(x*) — Af(x) — g* — g, a new approximation 11* is developed,

• for example, by the BFGS (see Broyden [1970]) update

— H + ~~~~—Ip ~x ~~~ — 
~~ ~~~ H — H~ g Ax

T
] (3.1)

• ~x~~g

• where

O ~ H (3.2)
LAx Ag

9

N

~~~~ •0~~~~•~~~~~~~~~~~~~ • • • • . - - •  ~~~~~~~
—- —~~ •~~~~~~~~* ~~~~~~~~~~ ~~~~~0~~~~~~~— ••- -• •- --- •--• • •—••-— •-----~- -—.O• - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ _• ~~~~~~~~~~~~~~~~~~~~~~~



In theory H > 0 (i.e., positive definite) ~~0H* > 0 whenever

AgT Ax > 0. However rounding error in the computation of H* can

destroy this property. Another difficulty is that even when H* > 0

but ill—conditioned, rounding error in computing the next direction of

search d~ _H* g* can result in d* g* > 0, where d* = _ft(1{*g*) isc c

the computed search direction. See Gill, Murray and Pitfield [19721.

The above difficulties can be circumvented by reorganizing

• I the calculation following the suggestions of Gill and Murray [1972].

• They suggest working with an approximation to the Hessian B which is

maintained in the factored form B LDLT, where L is lower triangu—

- 0~ 

lar and D diagonal. In this case we can ensure positive definite—

- ness 5y keeping D > 0. In addition a bound on the condition number

• 
0 of B can be improved by modifying D. See also the Example 2 under

Reliability.

• (b) Reliability refers to the ability of an item of software

to perform a calculation both efficiently and accurately and to

reflect the basic characteristics of the algorithm e.g., its scale

invariancies

Example 1: Estimating gradients of f(x) by finite differences. In

theory each component g
j 

can be estimated by first order finite

differences

gj — [f(x + h ej) 
— f(x)]/h (3.3)

where h is an infinitesmal step .

10
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In finite precision arithmetic however this is a difficult

computation. A good routine must be designed with considerable care

and we state some of the issues which arise in designing such a

• routine.

—— Choice of step length, h.
— Should h vary with each component?

- Should h be chosen to balance rounding and truncation?

In this latter case estimates of second derivatives are needed to esti—

mate truncation error. How are these obtained? Should h be estimated

at every iteration or should it be only periodically recomputed in a

separate subroutine and held fixed in between calls to this subroutine.

—— Should a switch to central differences be made when forward dif-
ferences are insufficiently accurate?

Should the increment h be relative to Ix~ I or should it be

absolute? In the former case g
j is invariant under a simple

scaling of variables x
1 

-‘ ~ x1, whilst in the latter case g
1

• is invariant under a translation of variables x -
~~ x + c.

—— Should gradients be estimated in a transformed space of variables?
i.e., consider the function

f(z) = f(x) + gT
(z — x) + ~(z 

— x)T B(z — x)

T - lwhere B (JJ ) and non—singular.

0

1 11 H

——-———.4-- ~z ’~ ~•_ — ~ __~~_ •_ 
-‘•-- —

~
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~~~~



Contours of f(s) are illustrated in Figure 3.

If we make the transformation z x + Jy, then f ( z )  trans-

forms to f(y)

— T l Tf(y) f(x)+k y+~~
y y

T -

where k — J g. The contours of f(y) are illustrated in Figure 4.

are estimated by

k - 
f(x + J1 h) - 

f(x) 
- 
h

i h 2

and g is then given by g — (JT)~~ k.

(~~
)

Figure 3 Figure 4

12
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Example 2: Invariance w.r.t. transformations of variables. It is

well known that apart from the initial choice of the approximation,

the variable metric algorithm is invariant w.r.t. transformation of

the variables. However, if the algorithm is modified to ensure that

the search direction dk — satisfies

Id~ ~~ > cl g.~lld~l , for c a small constant, (3.4)

(for example by modifying Hk suitably), then this destroys scale

invariance, since (3.4) is not invariant. For a fuller discussion,

see Powell [l976b].

(c) Structured refers to whether the program is designed along

the principles of good programming, i.e., whether it has a top to

bottom flow of control, is formatted to display its structure and so

on. See Dahl et al. [1972] and Kerninger and Plauger [1974].

(d) Usability refers to the ease with which a user can choose

a program and apply it to his problem. For example, how well designed

are the calling sequences and documentation. See Gill et al. [1977].

(e) Validity refers to the existence of evidence that the

software has performed well in a particular computer environment, and

• to the existence of testing aids which demonstrate that the present

installation of software is performing as expected. We discuss testing

further in Section 6.

13
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(f)  Transportability refers to whether an item of software can

- 
0 

be moved f rom one computer installation to another without degredation
• of performance and with minimal change .

Example: Features of COMMON statement in FORTRAN which can hinder

t ransportability. A very complete discussion of difficulties which

arise in transporting FORTRAN programs is given in Smith (1976]. When

using the COMMON statement some of the difficulties which arise are :

—— The order of variables affects portability, e.g., some IBM machines

require that variables in a COMMON statement which use two storage
0 units, begin on an even word boundary , else alJ gnment errors or a

degredation in efficiency can result .

— Variables in labelled COMMON may become undefined upon execution

of a RETURN (or END) statement , unless there is a COMMON statement

for that block, in at least one of the higher level program units

in the chain of active programs.

—— Other inconveniences associated with COMMON are that variable

dimensioned entities cannot be used in COMMON, and that the size of

• a labelled COMMON block may be required to be the same in each

program unit in which the COMMON block occurs.

H 14i i

0 1 
____  

____  

______________I •— 

- — ___O---•-- — 
~0_ ~ 

- 
___ •~__~_~~

~~~~ ~~~~~~~~ _ _ _ _ _ _ _  j~
_ _

~~~~~~~~~—~~~
_ 

~~~~~~~~ —_~~--~~~~--~~~~~~ — -~~-~



_ ‘~~~~~~~~~~~~~ • •— -• - ------— - •-——- -

4. Software Designed to aid Algorithm/Code Development

Implementing an optimization algorithm is a difficult and a

time consuming task . For this reason it is essential that the algo-

rithm or software developer be provided with suitable tools which

facilitate his task . We can distinguish three approaches :

Approach 1. Develop a high level language, for example along

the lines of the Mathematical Prograimning Language (MPL) of Dantzig

et al. [1970]. The aim is to design a language in which highly

readable programs can be written and which parallels the venacular of

applied mathematics. This would make it possible to write programs

quickly and easily and would serve as a means of communicating ideas

O precisely . In the early creative stages of algorithm development

such a language is an invaluable aid since one ’s intuition can now be

supplemented by hard computational results. This can then in turn
O lead to new ideas . Such a language is also a valuable educational

aid. However, once the main features of an algorithm have been laid

out, a fundamental difficulty remains, namely that numerically sound

• procedures are difficult to write in any language , no matter how

convenient . Wha t is then needed is a good library of procedures ,

tailored to optimization, from which an optimization algorithm can

be built. This is particularly useful when one wants to test out a

new algorithm on real life problems . Building optimization algorithms

f rom a library of procedures also makes for a more uniform comparison

of algorithms since their implementations can be made to differ only

15
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in the essentials and test results are thus less subject to variations

in programming style. It is difficult for a new language to gain

wide acceptance and for compilers to be made available on a wide range

of machines. Often therefore , we have to fall back upon FORTRAN ,

although other high level languages, e.g., PL—l and ALCOL—68 are making

some headway.

Approach 2. Use individual components of a user/problem oriented

implementation (or optimization system) which has a modular design .

Examples in the area of Linear Programming are discussed in Nazareth

[1978]. For examples of such systems in the area of non—linear program—

- 
ming see Muralidharan and Jam [1975], Hillstrom [1976]. The main

difficulty with this approach is that one has usually very limited

flexibility. Each component in a user/problem oriented system is

usually designed within the context of the overall system and often

utilizes a common data structure. Using a component on a stand alone

basis usually requires that it be substantially modified.

Approach 3. The idea behind the third approach has already

been mentioned. Here one seeks to develop a carefully specified

set of modules which can be viewed as being the ‘primitives’ or ‘basic

operators ’ of a language for building optimization algorithms. Two

efforts along these lines are discussed in Nazareth [1977] and [1978].

The former describes a pilot system based upon a set of algorithms

developed by the author in the area of non—linear unconstrained optimi—

zation. Building upon this experience , a software organization and

16
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development effort was undertaken in the area of Linear Programming,

as described in Nazareth (1978) . It is important to emphasize that

the development of a code requires careful craftmanship and should not

be viewed as the mere stringing together of modules. However if such

modules are carefully designed and correctly implemented, they can

greatly ease the task of implementing an algorithm and perhaps they

should be viewed as a way of developing an “artists sketch” of a code ,

which can then be f urther refined . They also serve as a valuable means

of cooperation and communication between different researchers . Finally

they are a useful educational aid .
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5. Optimization Software

In this section we give a detailed decision tree of the major

categories of optimization methods together with references to some

recent implementations and/or algorithms in each category. References

are given to journal articles or technical reports and implementations

are identified by a symbol indicating their source. S

Available software varies widely in quality and we do not

set out here to make any value judgements. Clearly such a compact

presentation is also far from complete. Our more modest aim is to

provide the reader with some selected information on individual

items of software. Other surveys e.g., Dennis [1976], Dixon [1973),

Fletcher [1976], Wolfe [l975a], Wright (1978) should also be con—

• sulted.

5.1. Some Major Sources of Optimization Software (Alphabetical)

[a] Argonne National Laboratory , Applied Mathematics Diviaion([hp)—

Hillstroin’s Package [1976] and [m)—MINPACK—1).

[b] Bell Telephone Laboratory, Murray Hill, New Jersey , (PORT

Library).

(h] Atomic Energy Research Establishment (A.E.R.E.) Computer

Science and Systems Division, Harwell, England.

[ibm ] IBM Mathematical Subroutine Library (SL—MA TH) .

(imal] International Mathematical and Statistical Libraries, Inc.

[w) Computer Center , University of Wisconsin, Madison.

18
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( nag ] Numerical Algorithms Group ( NAG) Library .

• (nb er) National Burecu of Economic Research , Cambr idge , Massachusetts

(now part of M.I .T. ) .

• (noc ] Numerical Optimization Center , Hatfield College of Technology ,

Hatfield , Herts., England .

[up 1] National Physical Laboratory, Division of Numerical Analysis

and Computing, Teddington, England. (The NPL Optimization

Library is the most comprehensive collection of optimization

software currently available.)

[s] Computer Science Department, Stanford University.

[sol] Systems Optimization Laboratory, Department of Operations

Research, Stanford University.

The symbol associated with each establishment in the above

list is used to identify the establishment in the Decision Tree.

Note that software referred to in this manner is not necessarily

available for general distribution. Conversely when an algorithm

in the Decision Tree does not have a symbol associated with it or

when the symbol [au ] is used , an implementation may be available from

the author(s) of the cited reference.
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Footnotes to Decision Tree

1 A particular case of this problem is that of 1 — D optimization,

both stand alone and for use within n—dimensional optimization

routines . See e.g., Brent [l973a1, Gill and Murray [1974].

2 The symbols f , g, B and J are used to indicate the type of

information about the function that is usually required when

f stands for function value

• g stands for gradient

B stands for Hessian

J stands for Jacobian .

Thus e.g., f/ ( f ,g) means function value or (function value and

gradient).

3 Currently a very active research area. For an overview see

Nazareth and Nocedal [1978].

4 The distinction between small, medium and large scale is as

follows . In small scale L.P. no account is taken of the sparsity

of the L.P. matrix, i.e., it is assumed that the matrix is dense

and is usually stored as a 2 — D array . In medium scale L.P . it

is assumed that the L .P . matrix will fi t  in core provided only

non—zeros are stored in packed form, e.g., as a column list/row

index data structure. Finally, large scale systems e.g., MPSX/370

make extensive use of secondary storage.

5 For a good overview see Dantzig (1968], Geoffrion (1970].

6 Terminology of Murray and Wright [1978).
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6. Testing

Evaluating optimization routines is a difficult task, and one

which requires both qualitative and quantitative measures of perfor-

mance. A fundamental requirement is that the testing environment

simulate an actual environment of use since, if it did not, the evalua-

tion would be valid but in all likelihood, irrelevant. Furthermore,

the overall quality of a code can only be gauged after investigating

a broad range of issues, for example, efficiency, robustness, usability,

usefulness of documentation, ability of fail gracefully in the presence

of user abuse, rounding error difficulties or violation of underlying

assumptions. A testing method usually concentrates on efficiency and

robustness, evaluating these by exercising the code on a set of well

chosen and hopefully realistic problems.

To date the most common method of evaluating optimization

routines has become known as ‘battery’ or ‘simulation’ testing.

Comprehensive studies along these lines are described in

Colville [1968], Hillstrom [1977], 1{immelblau [1972]. Battery testing

has two basic components, namely a set of test problems and a set

of measures of performance . The 3pproach is subject to limitations

which sometimes make a clear ranking of methods difficult to discern.

For example, it is difficult to know how much confidence should be

• attached to a particular measure of performance when slight variation

of starting point or geometry of test problem leads to a substantial

• variation in the measure of performance. For a discussion of these 0

difficulties see Nazareth and Schlick [1976]. This has motivated
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the approach which employs “problem families” or “parameterialized

test problems” introduced originally into the evaluation of routines

for numerical quadrature by Lyness and Kaganove [1976]. See also

Dembo and Mulvey [1976]. A careful a priori experimental design and

the use of statistical sampling theory and analysis are implicit in

this approach , which is sometimes referred to as ‘performance profile’
0 testing to differentiate it from ‘battery ’ testing .

? O I

A second distinction which it is worth emphasizing is the dis—

Unction between algorithm and software evaluation. In particular

testing an algorithm usually places most emphasis on efficiency whilst

software evaluation attaches a great deal of importance to reliability

J O and robustness.

Finally it is worthwhile making a distinction between decentral—

ized and centralized testing of routines. The former is illustrated

by the original study of Colville [1968], and the latter is illustrated

by the study of Hillst rotu [1977]. In decentralized testing a set of

software tools are usually made available to developers of routines

who then use them to develop information about how well their routines

perform . For an example in the area of non—linear programming see S

O Nazareth [1977 where the testing tools comprise:

* (1) Subroutines which return function and/or gradient information

for a set of different test functions.

(ii) Subroutines which return starting point and expected solution

(if known) , for each function.
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(iii) Report writer whose features include :

— Flexible and convenient way of specif ying which functions

to test.

—— Replaceable section of code for routine being tested.

—— Interface subroutines between user form of function call

and subroutines in Ci) above.

—— Output sumsaries and graphical display .

Systems Optimization Laboratories (see Dantzig et al. [1973])

0 are a natural environment for centralized testing, i.e., gathering

and testing a number of routines at one particular site. This usually

- requires a substantial coninitment of resources , but it makes for a much

more uniform comparison and permits the use of much more stringent

test problems, in particular problems arising from real life applica—

tions (see Dantzig and Parikh [1977]).

Until fairly recently, the development of a testing methodology

for optimization routines has been sorely neglected . However, the

crucial importance of the subject is now being recognized. For a

description of some recent work see Bus [1977], Crowder , Dembo and

Mulvey [1977], Nash (1975], More et al. (1978], and consult the

minutes of meetings of the Coninittee on Algorithms of the Mathematical
- 

Programming Society.

01
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