
Pl’AO—AOoO 3’i3 STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB FIG 9/2
SOFTWARE FOR OPTIMIZATION. (U)
DEC 18 L NAZARETH N00014—75—C—0267

UNCLASSIFIED SOL—78—32 Nt.

I
I END

I

— —

~~

m t

C

LL V LL .

>-
cD
C)
I I I

-

‘
1

—
—

I
~~~~ 

-

Department of Operations Research
Stanford University
Stanford, CA 94305

7 Q) 

____________________

- fl — . .  - - .  . .
~~~~ - ~~~~~

. --- .. - .‘-~~

— .— ~~~~~ ---~~~---. — —~~~-~~ — ——--~~~~~ -~~~~~-~~~~ -- — ~~~~~~— - -. ~~~~~~~~~~~~~~ — -~~~~..

Ca)
SYSTEMS OPTIMI ZATION LABORATORY

DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

/ l

~ ~4 ~

(f ’~

__) .. ___ . .

~

‘
~
—.—71SOFNARE FOR OPT IMIZATION~ ‘-

by

H _
Ec~~~~~~~~~~~~~~~78 3 2

(-
~~~~~~~~ ‘~~~~Jt7g~3;~ 

/

H
Research ~nd rep~~duction of this rep artia upported by
the Office of Naval Research Contract N 4- - - 67, he National
Science Foundation Grants MCS76-20 ~~~~~~~~~~ ~1 AOl ; andthe Department of Energy Contract Y-76-S- - 326 A #18.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution Is unlimited.

qo8 7’~~

— 
~~~~-

.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:r~ ~~~~~~~~~ ~~~~~~ . 4~~~~~~~~~~~~~



- ‘  

~~~~~ 
—,

~
-—— - -. .

~~~~~~~~~
..

Abstract

‘
ur aim in this paper is to provide the reader wit~3

&me feel for what quality software entail~~
___ overview of various aspects of optimization softwar~~

4 £~formation on solution techniques and available software in

the form of a decision tree.

An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear prograimning, non—linear unconstrained

optimization and related areas, and non—linear progranining.

This paper is intended to supplement an earlier oral presenta—

tion at the Texas Conference on Mathematical Software entitled “State

of Software for Optimization”.

_____ ________ 

~~~~~~~~~~~


Acknowledgment

My grateful appreciation to Professor C.B. Dantzig and the

many others who helped make my visit to the Systems Optimization

Laboratory an interesting and valuable learning experience.

My thanks also to the Applied Mathematics Division, Argonne

National Laboratory, who jointly with the Systems Optimization

Laboratory supported my appointment at Stanford.

ii

1
a s — ________________ ~~~~~~ s~ -- • , .-~~~~~

-

~
________ i_ _

—

~~
--.--

SOFTWARE FOR OPTIMIZATION

by

L. Nazareth

1. Introduction

This paper is intended to supplement an earlier oral presenta-

tion on developments in optimization software.* Since very many

mathematical problems can be posed in terms of function optimization,

and since software for each optimization area ranges from small scale

pilot programs to the large scale systems of which commercial LP systems

are the most familiar example, we are of necessity selective in our

choice of subject matter. We concentrate upon the areas of linear

programming, non—linear unconstrained optimization (and the related

areas of non—linear least squares and systems of non—linear equations),

and non—linear programming. In particular, the very important areas

of discrete variable programming and dynamic programming are not

covered here.

Our aim in this paper is to provide the interested reader with:

: a) Some feel for what quality software entails.

b) An overview of various aspects of optimization software.

*ttState of Software for Optimization” —— invited presentation at Texas
Conference on Mathematical Software, April 1978.

1

- -~~~~~~~~~~~~~~~~~~~~~ -— ~~-~~~~~ ----— __________________

-
~~~~~~ TT_ ~~~~~~~~~_~~_ . _________  ~~~~~~~~~~~~~~~~~~~~~~~~~ 

0

c) Information on solution techniques and available software for the

above areas in the form of a decision tree.

-

~~~ 3 d) An extensive bibliography, so that the reader can further pursue

specific topics of interest.

The paper is organized as follows: Section 2 provides some

historical background to the optimization areas covered. Section 3

gives an overview of the software development process, and discusses

attributes of ‘quality’ mathematical software, illustrating these

with specific examples. Section 4 deals with software primarily

• intended to aid algorithm and code development, and discuss the idea

of a language for mathematical programming. Section 5 deals with

available optimization software for the areas covered here. A detailed

decision tree is given. Section 6 discusses the testing of software

and the bibliography is given in the final section.

We make no claims to being complete, but the author would

welcome feedback on important omissions and inaccuracies, particularly

with regard to material in Section 5.

2

- - ~~~~~~~~~~~~~~

0 ’

•

0

2. Background

Table 1 is designed to give the reader a time frame for develop—

• ments in optimization. Some of the important theoretical and algorithmic
• references are listed along with a few parallel developments in software

and computers, and the reader can superimpose his own set of favorite

• topics.

Table 2, adapted from Wolfe (1975b], shows how our ability to

solve problems has increased substantially. The vertical axis repre-

sents complexity of the problem and the horizontal axes lists different

0
areas of optimization.

0 For further historical details see the survey articles of

Dantzig [1977], Orchard—Rays [19771 and Wolfe (1975b].

~

- j
~

I

3

• - — - ~~~~~~0~ 0~0_ ~~•0_ • •~~~~~ •~~~ . . • • •~~~~0 __•__•__ ~~~~~~~ -.~~ ,~~~~~ ———— -.,- , ---

—— ..
~.-•- -• •~~~~.- •—•

~
• •-—

~~
—-— •~~~~~~~~ 0•_ •____ ..__~~~ •I••___.. _ • •_____ __ _ • • _ _ __ _ _ ._•____ ___ _ _ - -—-~ •0-•-- 0--- • •~~~.•~~~~~ _•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • 
0



— ______________________ ~~~~ . :
•
~~

• - 
~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•0_ ~~ • • -

U 0 0 5
• 0 0 0 00 1.1o rn rI~~0 00 0)

•rI 4 U

h I

-4 %O 0) ~ P4 4) -~ UNIn I n 0~~~In o. a-. w I-’ ~ o 0 1.4 N-
0% ,-4 r-4 00 rz~ I-I .~I 0 ~ a.

~~~ _  0 I U O ~~~~~f-I~~.I0 14 H O  (~~~U4) 5 5 rI 0 C.) U N 1’ 0
14 S~~~ 

(~~~U C )
0 ~~~ O O i.i ( •‘-, w
r1 0 1.i 14 .4 ~ 0 •~~) 0 rI 0)

14 n a - .  0 1.1 0 r- 
~~~~~~~~~~~~~~0 % ~ — %0 P 4 $4 C~)

U 0 0 In U 0 P4 ~ 0 0
f_I ‘I’

• 4) P4
i-I

~~~~~~~~~~~~~~~~~~~~~~

5 ,-.. * 0
0 f-I

0 ‘~~ O N -  ‘-I 14
14 0 ) . . W 0~ U
4) 0 5 4 ) U r.I .o tD
.-4 0 .-I

‘0 ~~~. S •* ‘i-i ~~ Ii 4) .—I •—
0 ~~ 1 1 4  •- 0 .* z • 1 J0 ~~~~~1 4 0  U) 4)
.0 .r4 .—s 4 )  00 0 0 0  - I X  W C.D rI

0 1.1 
~V) C.) .H 0 rI 0 .~ • ~) (4 .* f—I S I .0O 1.1 0) In .-I ~~ 

1.1 ._I 5 0 U 0 •. 0 ,-.
~ 

&5 (4- 
• .‘ 0 1 . I 0 % 0  I U r . ) 5 r I O 4 )  W C .~~~O W  .-I~~~ r4-... 4) ~. 0 .-4 1’~ I “.1 S S S r I OO P4~~~~~ r4 ’I.I 5 (4N- 14• 0 

~~ .0 1.. H 4-~~~~ 14 14 0 4 )~~~ .iJ 0 I V ~~~U 1 4 , -I O 0~ ( 4 0
~~ N ~-l o o~ Ii U 0. 14 .-I 14. r~ ,- I 4)~~~d 4) <p-I ~~

. 0
p~ CD 0) u-I 01 ,-I 00 01 I 0 0 ( 4N 0  %0,-. N U U  .—. I • r I
~~ ~-I ~~. .0 0. ~d W ’ 0  0 ~~ 0 0 0 r I O ~~~~~~~~~~0 1 4  4)

U • 5 ~~~III 14 I. U 1 4~~~~IO  *‘0 5~~~~4) U~~ N - 4 )  0
‘4 ~4 P 4  ,.4 UrI 0 P4 4) 0 ) 0 .  .r4 I ~0 0 % r 4  m 0 ~ N- N

Ii f-I • 4) (I) I 4) 0. v-I ~~ 1.1 U ~~. C. v~4 U 4) 4) 0 rI
c~ 5 .. U 14 .0 I U 0 Q~ •4• v-I ‘-‘ P. .~~ 00’0 ~ l 5
~~ 0 I (4 -t U) •

~~ 5 4) 4) “ 0 1 40  0 ~~ 0 0% 0 ~ 14 0 ~~14 0 • ~~.. s 00 .rI 0 4) 1.4 0% 14 ‘0 (4 0) 0 U
0 4) 0% I 04 C’1& 8 U 0  4) 14 ‘0 r I~~~~’0v-I .H 0 l ’0 O% rl ~~~4)

• 0 p.1 0 O C’ ) .~~~ . In ~~ ,-I U . 4) C~ ’0 I W~~~ U .rl W e.4 0 0  0 U)  f-I
• ~~ P4 I_ I 0% -t ~~ 0 P 4~~~ 

r.I 4 ) ,- .~~0 ,4 U 0
~~~~ 0 N 0 4)

8 _
I v-I ‘* I u-I 4) .r4 I-I • I ~~~I4 O -rI S 5 0 r 4 4)~~~ Q u O) ‘00% ~~~. ~~

.. 0 ‘o .~~ I 0 ~~~. 0 ~0 4) 4) 1.1 4) 4) ‘-I 14 I ,.. 0 41
f~~ ~~ O ‘0 ._I N- 4) 4) 1 . 4 ~~~ I 0 % W I 0 % 1 4~~ O 0 . 1 4 r - I00 ~~~~~~~ 0 . 0
~~ N- -4 m .0 ~~ -~~ 5 U 1.1 0 00 ~~~. In 44 ~-I U 4) U 14 U 0) 4) u-I 4) ,~ r4

N CD 0% U 0~ ~~
.. 5 0 ~ In 0% 0% i-I 0 ‘—‘ 5 4) 1.) (5 (4 ~ p.~ N- 14 • 4)

N- u-I u-I U 0 ‘-I 4) 4) U C~ In u-I 0 ” 0 0 ~ ~ U 0 0 ~, U ‘~‘ ~~
~~ rI 0 4) 4) u-I 0% ~5 0’. 0 0 0 P4

~I.4
In U

I U~~~ ~~~ u-I l~~~~~~O U 1 4 ‘ 4u4 U 4) N - S4) 0 00 ‘0 .~~ 4) I -‘ 0 00 ~ I 4) I U I 0%0 00 14 0 .rI 1 4’0 40 P4 0 u-I 0 .~-. .0 0 4) 0 u-I0 4) . H 0 4) N (4 O 0 ..t 1 4 4)’ 0 N0.I - I~~~~~U U r I C’. O% OJ C’ f_ I ’0 o ~~~~~U.0 51.1 Z U .O . 0’- ,In 0 ’I4 vl U 4) .H ’.C U U ’ 0 ’ 0 % 0 (4 % 0 4) 0~~ J 0) ‘0 U 0 0 0 U U O O ’ . (5 ’-I~~~ 0 S’ - I a- . 4) 4) 4) 0 % 0 % 0 0 0 ’ . 1’-l • 0 1 44) (4 0 4) 0 0) 1 4 4) 0 . - I 0 0 (4 4) 0 . r l r-I ,-I r I ’ 0 I . _ I O v I O Q . . 4) 0Z~~~ Z~~4 ~ ~~ O Z U ’-’ 0~~~ 0 ~~~~~~~~-‘ P4 ~~~~~~~~~~~~~~~~~~~ ~~~~rz~
X ’.’4

In 0 In 0 In 0 In 0 In.t .4 In In N- N-•
0 0% 0’. 0% 0% 0% 0% 0% 0% 0%• — — r.I — u-I u-I u-I u-I u-I

4

~~~~ ~~~~~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



Tabl e 2

10~ -

106 
1978

10~~
+
C
0
M l0~P
L
E
X 3
i lO
T
Y

2

DECOMPOSABLE
LP 12 UN QP LC/ NLC/

NLO NLO

U.N. — Unconstrained minimization, QP—Quadratic Programming
LC/NLO — Linear constraints, non—linear objective, NLC/NLO-non linear

constraints and objectives
Complexity - (number of rows + number of variables)
$ —— indicates the figure given is only a rough approximation between

the bounds indicated

5
• C

Ft  (
~ ~~

‘

r C u
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - ______ - 
_ _ _ _ _  —

3. Quality Software

3.1. Overview of Software Development

The design of an item of mathematical software depends very

0 much upon the intended use of the software. We wish to stress the

distinction between implementations of an algorithm designed primarily

for studying the behavior of an algorithm, and implementations designed

primarily for solving problems. The former are called algorithm/code

oriented versions and the latter user/problem..oriented versions. The

distinction is, of course, not clear cut, since algorithm/code oriented

versions can and should be used to solve practical problems, and user/

problem oriented versions can and should be used to study the encoded

algorithm. However an implementation will usually place emphasis on

one of these two goals; and often an algorithm/code oriented version

will be developed as a preclude to a user/problem oriented version.

An algorithm/code oriented version should not be construed to

mean a hastily thrown together version. Rather it indicates a version

• in which emphasis is placed upon the goals of flexibility, generality

and modifiability, even if this results in a sacrifice of efficiency.

In a user/problem oriented version, increasing emphasis is placed upon

efficiently solving a wide class of problems and providing a wide range •

of options. This may call for substantial reformulation and reorgani-

zation of the calculations to reduce overhead and circumvent numerical

difficulties.

6



_____ - - ~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~ 
-
~ ____ ~~~~~~~~~~~~~~ •:~

• We feel that insufficient attention has been paid to develop—

• ing tools to aid the implementation of algorithm/code oriented versions

and this has contributed to the proliferation of untested algorithms

• which abound in the literature~ 
I 
This will be discussed further in

Section 4. In contrast, a number of software aids have been developed

to aid the process of tailoring a code to a particular compiler/machine

configuration, i.e., to develop portable versions. For further

details see Boyle [19761. Since such aids can be applied to most

items of mathematical software and are not specialized to optimization,

we shall not discuss them f’irther he~e.

• For a more detailed discussion of the process of mathematical

software development see Nazareth [l978a].

3.2. Attributes of Quality Software

Both algorithm/code oriented and user/problem oriented software

should meet certain standards. What is it that characterizes ‘quality ’

software?

Recent efforts to develop good mathematical software, Rice

[1971], Smith et al. [1974], Ford and Hague [1974], identify

several attributes. We quote thes~ and illustrate them with specific

examples.

(a) Robustness refers to the ability of a computer program to •

detect and gracefully recover from abnormal situations without unneces—

sary interruption of the computer run. In situations when a 
calculation7



does fail, the code should fail gracefully. Robustness involves, for

example, the filtering out of improper arguments, the avoidance of

-
O destructive overflows, and the reorganization of a calculation to mini-

mize the effect of rounding error.

Example 2: Cody [1976], Avoiding both destructive overflows and

non—destructive underf lows in the computation of lxi — 
~~jl 

~~j
1.f2.

The usual FORTRAN calculation proceeds as follows:

SUN 0.0 DO

DO 1 O I — l , N

SUN = SUN + X(I)**2

10 CONTINU E

XNORN = DSQRT(SUM)

SUN can overflow even though XNORN may be a machine repre-

sentable member. In order to avoid this, the calculation can be done

as follows, where we assume for convenience, that the largest element,

in absolute value, is x(1).

SUM = 1.0 DO

DO l O I — 2 , N

A = X(I)/X(l)

SUN - SUM + A*A

10 CONTINU E

XNORN — DAE S(X(I)) *DSQRT(S UN )

H 8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-•~~~ • .-•~ 

_ i _ _ _ _

-
•

-

- -

00 ~ —

~~~~~~

— - —

~~~~~~~~~~~~~~~

• -‘•

~~~~~~~~

O - —

~~~~~~~~

-, •

Now x(I)/x(l) can underf low (non—destructively) leading to

• • .~~ troublesome interrupt messages. To avoid this the computation can be

further reorganized as follows:

SUN 1.0 DO

B — DABS(X(1))

DO 1 0 I = 2 , N

• A = O . O DO

IF (B + DABS(X(I)).NE.B)A = X(I)/X(l)

SUN SUN . + A*A

10 CONTINUE

XNORM = DABS(X(l)) *DSQR~ (SUN)

• 1

Example 2: Reorganizing calculation to minimize effect of roun ding

error. When variable metric methods were first suggested for solving

the problem mln XE J(n f (x) , the calculation was stated in terms of

updating an approximation to the inverse Hessian H of f(x). Given

a step & x* — x and the associated change of gradient of f(x),

— ~f(x*) — Af(x) — g* — g, a new approximation 11* is developed,

• for example, by the BFGS (see Broyden [1970]) update

— H + ~~~~—Ip ~x ~~~ —
~~ ~~~ H — H~ g Ax

T
] (3.1)

• ~x~~g

• where

O ~ H (3.2)
LAx Ag

9

N

~~~~ •0~~~~•~~~~~~~~~~~~~ • • • • . - - •  ~~~~~~~
—- —~~ •~~~~~~~~* ~~~~~~~~~~ ~~~~~0~~~~~~~— ••- -• •- --- •--• • •—••-— •-----~- -—.O• - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ _• ~~~~~~~~~~~~~~~~~~~~~~~



In theory H > 0 (i.e., positive definite) ~~0H* > 0 whenever

AgT Ax > 0. However rounding error in the computation of H* can

destroy this property. Another difficulty is that even when H* > 0

but ill—conditioned, rounding error in computing the next direction of

search d~ _H* g* can result in d* g* > 0, where d* = _ft(1{*g*) isc c

the computed search direction. See Gill, Murray and Pitfield [19721.

The above difficulties can be circumvented by reorganizing

• I the calculation following the suggestions of Gill and Murray [1972].

• They suggest working with an approximation to the Hessian B which is

maintained in the factored form B LDLT, where L is lower triangu—

- 0~ 

lar and D diagonal. In this case we can ensure positive definite—

- ness 5y keeping D > 0. In addition a bound on the condition number

• 
0 of B can be improved by modifying D. See also the Example 2 under

Reliability.

• (b) Reliability refers to the ability of an item of software

to perform a calculation both efficiently and accurately and to

reflect the basic characteristics of the algorithm e.g., its scale

invariancies

Example 1: Estimating gradients of f(x) by finite differences. In

theory each component g
j 

can be estimated by first order finite

differences

gj — [f(x + h ej) 
— f(x)]/h (3.3)

where h is an infinitesmal step .

10

______ a —----•‘• • . - ~~0~~ - . ___________• —

-~~~ 
:__ 

_-~~~~--~~ “ -- ~~~~~ —~~~~~~- —--- S~~ —-



In finite precision arithmetic however this is a difficult

computation. A good routine must be designed with considerable care

and we state some of the issues which arise in designing such a

• routine.

—— Choice of step length, h.
— Should h vary with each component?

- Should h be chosen to balance rounding and truncation?

In this latter case estimates of second derivatives are needed to esti—

mate truncation error. How are these obtained? Should h be estimated

at every iteration or should it be only periodically recomputed in a

separate subroutine and held fixed in between calls to this subroutine.

—— Should a switch to central differences be made when forward dif-
ferences are insufficiently accurate?

Should the increment h be relative to Ix~ I or should it be

absolute? In the former case g
j is invariant under a simple

scaling of variables x
1 

-‘ ~ x1, whilst in the latter case g
1

• is invariant under a translation of variables x -
~~ x + c.

—— Should gradients be estimated in a transformed space of variables?
i.e., consider the function

f(z) = f(x) + gT
(z — x) + ~(z 

— x)T B(z — x)

T - lwhere B (JJ ) and non—singular.

0

1 11 H

——-———.4-- ~z ’~ ~•_ — ~ __~~_ •_ 
-‘•-- —

~
—- —— - —.‘ --•.-----— — -

~~~~


Contours of f(s) are illustrated in Figure 3.

If we make the transformation z x + Jy, then f (z) trans-

forms to f(y)

— T l Tf(y) f(x)+k y+~~
y y

T -

where k — J g. The contours of f(y) are illustrated in Figure 4.

are estimated by

k -
f(x + J1 h) -

f(x)
-
h

i h 2

and g is then given by g — (JT)~~ k.

(~~
)

Figure 3 Figure 4

12

_____ ____ __________
____________________________________ II

- - - — -•-
~I•-

~~•1-- —— ~~0~0 ~~~

•• ~O_ ~ 0 • • • - • • . O
~~~

0
~~~ ••_~~~~~ • ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—•—-~~-~ —~ -~~~~~~ — -~~~~~~ __•t___•• —
,— -•-% ~r~•-•.=~~ “,~~~ _-o~-- ~~~~~ ~— ——- —— — —

Example 2: Invariance w.r.t. transformations of variables. It is

well known that apart from the initial choice of the approximation,

the variable metric algorithm is invariant w.r.t. transformation of

the variables. However, if the algorithm is modified to ensure that

the search direction dk — satisfies

Id~ ~~ > cl g.~lld~l , for c a small constant, (3.4)

(for example by modifying Hk suitably), then this destroys scale

invariance, since (3.4) is not invariant. For a fuller discussion,

see Powell [l976b].

(c) Structured refers to whether the program is designed along

the principles of good programming, i.e., whether it has a top to

bottom flow of control, is formatted to display its structure and so

on. See Dahl et al. [1972] and Kerninger and Plauger [1974].

(d) Usability refers to the ease with which a user can choose

a program and apply it to his problem. For example, how well designed

are the calling sequences and documentation. See Gill et al. [1977].

(e) Validity refers to the existence of evidence that the

software has performed well in a particular computer environment, and

• to the existence of testing aids which demonstrate that the present

installation of software is performing as expected. We discuss testing

further in Section 6.

13

-- -—~~~~~~~-- ~~ • -~~ ~~~~~•: _ _ _ _ _ _ _ _ _ ~~0

•

• -•

0

(f) Transportability refers to whether an item of software can

-
0

be moved f rom one computer installation to another without degredation
• of performance and with minimal change .

Example: Features of COMMON statement in FORTRAN which can hinder

t ransportability. A very complete discussion of difficulties which

arise in transporting FORTRAN programs is given in Smith (1976]. When

using the COMMON statement some of the difficulties which arise are :

—— The order of variables affects portability, e.g., some IBM machines

require that variables in a COMMON statement which use two storage
0 units, begin on an even word boundary , else alJ gnment errors or a

degredation in efficiency can result .

— Variables in labelled COMMON may become undefined upon execution

of a RETURN (or END) statement , unless there is a COMMON statement

for that block, in at least one of the higher level program units

in the chain of active programs.

—— Other inconveniences associated with COMMON are that variable

dimensioned entities cannot be used in COMMON, and that the size of

• a labelled COMMON block may be required to be the same in each

program unit in which the COMMON block occurs.

H 14i i

0 1

______________I •—

- — ___O---•-- —
~0_ ~

-
___ •~__~_~~

~~~~ ~~~~~~~~ _ _ _ _ _ _ _  j~
_ _

~~~~~~~~~—~~~
_

~~~~~~~~ —_~~--~~~~--~~~~~~ — -~~-~



_ ‘~~~~~~~~~~~~~ • •— -• - ------— - •-——- -

4. Software Designed to aid Algorithm/Code Development

Implementing an optimization algorithm is a difficult and a

time consuming task . For this reason it is essential that the algo-

rithm or software developer be provided with suitable tools which

facilitate his task . We can distinguish three approaches :

Approach 1. Develop a high level language, for example along

the lines of the Mathematical Prograimning Language (MPL) of Dantzig

et al. [1970]. The aim is to design a language in which highly

readable programs can be written and which parallels the venacular of

applied mathematics. This would make it possible to write programs

quickly and easily and would serve as a means of communicating ideas

O precisely . In the early creative stages of algorithm development

such a language is an invaluable aid since one ’s intuition can now be

supplemented by hard computational results. This can then in turn
O lead to new ideas . Such a language is also a valuable educational

aid. However, once the main features of an algorithm have been laid

out, a fundamental difficulty remains, namely that numerically sound

• procedures are difficult to write in any language , no matter how

convenient . Wha t is then needed is a good library of procedures ,

tailored to optimization, from which an optimization algorithm can

be built. This is particularly useful when one wants to test out a

new algorithm on real life problems . Building optimization algorithms

f rom a library of procedures also makes for a more uniform comparison

of algorithms since their implementations can be made to differ only

15

~~~~~~~~~~~~~~~~~~~~~~~~~ • _~~~~~ è ~~~~~~~~~~~~~~~~~~~ • • • • • • ~~~~~• o~~ J~~~~~~~ • ________ •~ ~~~~~~~~~~~~~~~ —••-


_ _ 0~~~~~~

in the essentials and test results are thus less subject to variations

in programming style. It is difficult for a new language to gain

wide acceptance and for compilers to be made available on a wide range

of machines. Often therefore , we have to fall back upon FORTRAN ,

although other high level languages, e.g., PL—l and ALCOL—68 are making

some headway.

Approach 2. Use individual components of a user/problem oriented

implementation (or optimization system) which has a modular design .

Examples in the area of Linear Programming are discussed in Nazareth

[1978]. For examples of such systems in the area of non—linear program—

-
ming see Muralidharan and Jam [1975], Hillstrom [1976]. The main

difficulty with this approach is that one has usually very limited

flexibility. Each component in a user/problem oriented system is

usually designed within the context of the overall system and often

utilizes a common data structure. Using a component on a stand alone

basis usually requires that it be substantially modified.

Approach 3. The idea behind the third approach has already

been mentioned. Here one seeks to develop a carefully specified

set of modules which can be viewed as being the ‘primitives’ or ‘basic

operators ’ of a language for building optimization algorithms. Two

efforts along these lines are discussed in Nazareth [1977] and [1978].

The former describes a pilot system based upon a set of algorithms

developed by the author in the area of non—linear unconstrained optimi—

zation. Building upon this experience , a software organization and

16

_____ •

• —
• • 0 ~•O _ O

- O 0~~~~

development effort was undertaken in the area of Linear Programming,

as described in Nazareth (1978) . It is important to emphasize that

the development of a code requires careful craftmanship and should not

be viewed as the mere stringing together of modules. However if such

modules are carefully designed and correctly implemented, they can

greatly ease the task of implementing an algorithm and perhaps they

should be viewed as a way of developing an “artists sketch” of a code ,

which can then be f urther refined . They also serve as a valuable means

of cooperation and communication between different researchers . Finally

they are a useful educational aid .

17

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



t 

_ _  

1
5. Optimization Software

In this section we give a detailed decision tree of the major

categories of optimization methods together with references to some

recent implementations and/or algorithms in each category. References

are given to journal articles or technical reports and implementations

are identified by a symbol indicating their source. S

Available software varies widely in quality and we do not

set out here to make any value judgements. Clearly such a compact

presentation is also far from complete. Our more modest aim is to

provide the reader with some selected information on individual

items of software. Other surveys e.g., Dennis [1976], Dixon [1973),

Fletcher [1976], Wolfe [l975a], Wright (1978) should also be con—

• sulted.

5.1. Some Major Sources of Optimization Software (Alphabetical)

[a] Argonne National Laboratory , Applied Mathematics Diviaion([hp)—

Hillstroin’s Package [1976] and [m)—MINPACK—1).

[b] Bell Telephone Laboratory, Murray Hill, New Jersey , (PORT

Library).

(h] Atomic Energy Research Establishment (A.E.R.E.) Computer

Science and Systems Division, Harwell, England.

[ibm ] IBM Mathematical Subroutine Library (SL—MA TH) .

(imal] International Mathematical and Statistical Libraries, Inc.

[w) Computer Center , University of Wisconsin, Madison.

18

_________________________________________ ______________________________________________ 1
IA~ ~~~~~~~~~~~~~~~~~ 

— 

~~~~~~~~~~~~~~~
-
~~ — ~~~~~~~ -~~ -~--- --

_ _ _ _ _ _ _ _ _ _ _ _ _

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -• ~~~~~~~~~~~ 0 0 0

(nag] Numerical Algorithms Group (NAG) Library .

• (nb er) National Burecu of Economic Research , Cambr idge , Massachusetts

(now part of M.I .T.) .

• (noc] Numerical Optimization Center , Hatfield College of Technology ,

Hatfield , Herts., England .

[up 1] National Physical Laboratory, Division of Numerical Analysis

and Computing, Teddington, England. (The NPL Optimization

Library is the most comprehensive collection of optimization

software currently available.)

[s] Computer Science Department, Stanford University.

[sol] Systems Optimization Laboratory, Department of Operations

Research, Stanford University.

The symbol associated with each establishment in the above

list is used to identify the establishment in the Decision Tree.

Note that software referred to in this manner is not necessarily

available for general distribution. Conversely when an algorithm

in the Decision Tree does not have a symbol associated with it or

when the symbol [au] is used , an implementation may be available from

the author(s) of the cited reference.

19

___ ____

~

-
-

~
--

~~ ~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~ - -  _ _ _  _ _ _ _ _



JTT~~~~
’ O ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ o . ~~~~~~

—S -,
•

.4 0 .—. I-.
— .-4 .4 .~~~ ‘-I a’

0 0 0.o o w .r4 _
— ,S_ F.,

0 r- —. - • 0 a’ —, .0._4 0’ • .0 C’1 X .-4 B • i.~.~~ .- 4 — F-. — — — w —1.4 — .—I t~ a~ — I— — 1.4 1.4 0
0. r— .-4 —. 0 a’ ~~~ W 0 —

5. 0 r- — .-4 .4 .0 N .~~0 — a’ F’- — .—. .—. a’ 0
• 0 .—. — 0 a’ Ca — .-I — Z

II — S .-4 .0 r 4 ~~ 0. — a’
~~ ci .~~ — ,4 i—. .0 1— •

‘.0 r- .0 0’ — IJ f.- .—. —

a’ .—. — a’ ~~ .p4 0 1.4 .—4 ~0 a’ , 4
-~ —. .-4 0 P~ Ca .—‘ Ca — ‘-‘. .0 II 0. 0
— .-4 .0 — B ~

—. .0 Z —‘ — Ca — 0
F’- — 0 .4 0 —’ — 1.~ a’ —. S —

‘0 a’ — u’.. N 5 .—. —. • ‘.~~ . .—. 0
‘a —i -~~ Ca Cd)., Ii F—. —‘ —. a’ .-4 1.*

~
-4 . 0 ai

S — 1.’ Z Ca a’ -~~ F-- F-- 0 4 F-- Ca ‘.0 IiZ a’ 1.4 1.~ -~ I’-. 0’ F-- F-I — a’ F’- 0
0 0.4 1.4 ‘4— a’ —4 a’ ,-4 I ~J a’ 04

‘4 0 — 0 . 4 * 4 .4 Pp’. — 0 r-4
0 0 — 5 ‘4

1~ 0 .-I .4 0 0 0 .-4 ..4 _4 0
0 ~~4 ~—4 ‘0 • .0 0 0 .—4 4.1 —4 ‘0 .-4 .0 ~u4 p’., .~~‘0 . 0 0 —4 ..4 .-4 CJ 0 “.~ w a w 0 w 0 0 0 0

‘-4 0 ~ .4~~~ -4 1.1 5 ,-4 ~~ •i’I ~ S P 0 1.i .-I
5 4 . 1 0 .,.4 Cd .

~l W 1 . i 0 0 0 0 0. 0 0 W 1.i 0
Z O 04 F.D~~~ F~~~.-4 O ~~ P.. 5.. Cfl 5.

.-,
~ - ‘-

. S.-, ri.. FO ‘-~ -‘ ‘- .‘ ~~~~ ‘~~~ ‘-‘ ‘.-‘ ‘.

F-’
‘-~ Z ‘-I I

U Z r’~ z I

_ ~~~~~~~~~~~~~~~
_ _

_ _ _ _ _ _

(‘4 4.4 ‘_. S.-’ ~ê1 ‘~~~ 4.1 %

4.1 • .. _________________________
.5-. 4.4 9.4
‘.1-I

—5-

(‘4

—-S
—S ICrai

C.D —
“.4

IC
0 r 4 0

E~~.-J I

_ K

‘-4 —

Z FI)

0 I F l ~Q I-4
Z O..

0 Z

20

_ _ _ _ _ _ _ _

-O

.4

~~1~~II
Z

~~ -~
< 0~ u~ F-’ ,-~ ‘-I ~~ ri~o
~~

‘

~
;;-

~~t _

_ _ _ _ _

.00
0 II A I

_ _
_ _ _ _ _ _

iF

p.~~l)Z~~O~ ’..00

21

—. ~~-~~~~~ —— . • • 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~I r 

‘• 

T 

~~~~~~~~~ 

~~

I

~ I 0

H -

H ___ I

IC
01.1 ~~ ‘

‘a 14 140
• E4 .0

“4 .0 ‘4.I V I

.0
0 0 0 0 1 4

C, C,
z

I-’

‘ - 4 05 .

-
•
~
—O—-•

~ ~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ____ •_~ •
_ .••__

-
__o~ • — _o_o _ • - O

Footnotes to Decision Tree

1 A particular case of this problem is that of 1 — D optimization,

both stand alone and for use within n—dimensional optimization

routines . See e.g., Brent [l973a1, Gill and Murray [1974].

2 The symbols f , g, B and J are used to indicate the type of

information about the function that is usually required when

f stands for function value

• g stands for gradient

B stands for Hessian

J stands for Jacobian .

Thus e.g., f/ (f ,g) means function value or (function value and

gradient).

3 Currently a very active research area. For an overview see

Nazareth and Nocedal [1978].

4 The distinction between small, medium and large scale is as

follows . In small scale L.P. no account is taken of the sparsity

of the L.P. matrix, i.e., it is assumed that the matrix is dense

and is usually stored as a 2 — D array . In medium scale L.P . it

is assumed that the L .P . matrix will fi t in core provided only

non—zeros are stored in packed form, e.g., as a column list/row

index data structure. Finally, large scale systems e.g., MPSX/370

make extensive use of secondary storage.

5 For a good overview see Dantzig (1968], Geoffrion (1970].

6 Terminology of Murray and Wright [1978).

23

~~
-.

~~~~‘~~~~~~~--- 
- -5- •-=~ _-:-ff-_ i~ ~2



~ 0 0 

~~~~~~~~

O O 0 1~

6. Testing

Evaluating optimization routines is a difficult task, and one

which requires both qualitative and quantitative measures of perfor-

mance. A fundamental requirement is that the testing environment

simulate an actual environment of use since, if it did not, the evalua-

tion would be valid but in all likelihood, irrelevant. Furthermore,

the overall quality of a code can only be gauged after investigating

a broad range of issues, for example, efficiency, robustness, usability,

usefulness of documentation, ability of fail gracefully in the presence

of user abuse, rounding error difficulties or violation of underlying

assumptions. A testing method usually concentrates on efficiency and

robustness, evaluating these by exercising the code on a set of well

chosen and hopefully realistic problems.

To date the most common method of evaluating optimization

routines has become known as ‘battery’ or ‘simulation’ testing.

Comprehensive studies along these lines are described in

Colville [1968], Hillstrom [1977], 1{immelblau [1972]. Battery testing

has two basic components, namely a set of test problems and a set

of measures of performance . The 3pproach is subject to limitations

which sometimes make a clear ranking of methods difficult to discern.

For example, it is difficult to know how much confidence should be

• attached to a particular measure of performance when slight variation

of starting point or geometry of test problem leads to a substantial

• variation in the measure of performance. For a discussion of these 0

difficulties see Nazareth and Schlick [1976]. This has motivated

24

• 0 - - •~~~~~~
- - - -— -

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~

_s O • - • _
~~~~~~~~

-
~~~

_ 0-- - -- 0~~~~~ •
•
~~



_____________________________ 0~~ -•

* 0

the approach which employs “problem families” or “parameterialized

test problems” introduced originally into the evaluation of routines

for numerical quadrature by Lyness and Kaganove [1976]. See also

Dembo and Mulvey [1976]. A careful a priori experimental design and

the use of statistical sampling theory and analysis are implicit in

this approach , which is sometimes referred to as ‘performance profile’
0 testing to differentiate it from ‘battery ’ testing .

? O I

A second distinction which it is worth emphasizing is the dis—

Unction between algorithm and software evaluation. In particular

testing an algorithm usually places most emphasis on efficiency whilst

software evaluation attaches a great deal of importance to reliability

J O and robustness.

Finally it is worthwhile making a distinction between decentral—

ized and centralized testing of routines. The former is illustrated

by the original study of Colville [1968], and the latter is illustrated

by the study of Hillst rotu [1977]. In decentralized testing a set of

software tools are usually made available to developers of routines

who then use them to develop information about how well their routines

perform . For an example in the area of non—linear programming see S

O Nazareth [1977 where the testing tools comprise:

* (1) Subroutines which return function and/or gradient information

for a set of different test functions.

(ii) Subroutines which return starting point and expected solution

(if known) , for each function.

25 ’

~~~—0- • 
* ~~~.—• —-5— — 5 _ __0 — 0

00 ~
_
~0 0-000 •_ — ~~~~~~~~~~~~ —

—
——-— .--—-—. — 0--. — lO•____O_ •~~0~~~_ — -. ~~~—. —~ — .r—~— -

~~~~~
- - — - — -



(iii) Report writer whose features include :

— Flexible and convenient way of specif ying which functions

to test.

—— Replaceable section of code for routine being tested.

—— Interface subroutines between user form of function call

and subroutines in Ci) above.

—— Output sumsaries and graphical display .

Systems Optimization Laboratories (see Dantzig et al. [1973])

0 are a natural environment for centralized testing, i.e., gathering

and testing a number of routines at one particular site. This usually

- requires a substantial coninitment of resources , but it makes for a much

more uniform comparison and permits the use of much more stringent

test problems, in particular problems arising from real life applica—

tions (see Dantzig and Parikh [1977]).

Until fairly recently, the development of a testing methodology

for optimization routines has been sorely neglected . However, the

crucial importance of the subject is now being recognized. For a

description of some recent work see Bus [1977], Crowder , Dembo and

Mulvey [1977], Nash (1975], More et al. (1978], and consult the

minutes of meetings of the Coninittee on Algorithms of the Mathematical
- 

Programming Society.

01

26

_ _ _ _ _ _— 0~~ — — _ _ _ _ _ _  -
0-

i ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~ 0 T ~:~~~ 

0 as ~~~~~~~~~~~~~~~~~~~~

Bibliography

Abadie, J. and Carpentier, J. (1969), “Generalization of the Wolfe
Reduced Gradient Method to the Case of Non—linear Constraints,”
in Optimization, R. Fletcher, (ed.), pp. 34—39, Academic Press,
London and New York .

Bartels, R.H. (1978), “A Penalty Linear Programming Method Using Reduced
Gradient/Basis Exchange Techniques,” Johns Hopkins University,
Math . Sci. Dept., Report No.

Bartels, R.H. and Colub, G.H. (1969), “The Simplex Method of Linear
Programming Using LU Decomposition,” Comm. ACM 12, pp. 266—268.

Biggs, M.C. (1972), “Constrained Minimization Using Recursive Equality
Quadratic Programming,” in Numerical Methods for Non—linear
Optimization, F.A. Lootsma , (ed.), pp. 411—428 , Academic Press ,
London and New York .

Boyle, J.M. (1976) , “Mathematical Software Transportability Systems ——
Have the Variations a Theme?” In Portability of Numerical Software,

- V. Cowell, (ed.), pp. 305—360 , Springer—Verlag Lecture Notes in
Computer Science, Berlin—Heidelberg—New York.

Brent, R.P. (l973a), Algorithms for Minimization Without Derivatives,
Prentice—Hall , Englewood Cliffs , New Jersey.

Brent, R.P. (l973b), “Some Efficient Algorithms for Solving Systems
of Non—linear Equations,” SIAM J. Numer. Anal. 10, pp. 327—344.

Brown, K.M. (1966), “A Quadratically Convergent Method for Solving
Simultaneous Nonlinear Equations,” Purdue University, Ph.D.

0 Dissertation, Lafayette, Indiana.

Broyden , C.G. (1970), “The Convergence of a Class of Double—rank
• Minimization Algorithms, Part 1 and 2,” J. Inst. Math. Applics. 6 ,

76—90, pp. 222—231.

Buckley , A.G. (1975) , “An Alternate implementation of Goldfarb’s
0 Minimization Algorithm,” Math. Prog. 8, pp. 207—231 .

Bus, J. (1977), “A Proposal for the Classification and Documentation
of Test Problems in the Field of Nonlinear Programming,” Proceedings
Of NATO Advanced Study Institute on the Design and Implementation
of Optimization Software.

27

_ _ _ _ _
_ _ _ _ _ _ 0 - -

— :~~~~ -.‘ —.--_ - 0- ~ • —s-- —~~~~~~~~~~~~~~ --0- 0-0-_i - ;-_ i
~~~~--— - _T~

_
~:

_
~~~ 0-


-
~~~~~~~~~~~~~~~~~~~~~~ 0 0  

- 0 - 0  -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~
__ •

~ 
___  0 - - - - -

Cline, A.K. (1977), “Two Subroutine Packages for the Efficient Updating
of Matrix Pactorizations ,” University of Texas at Austin, Department
of Computer Science Report TR—68.

- 
0 Cody, W.J . (1976) , “Robustness in Mathematical Software” , Proceedings

of the Ninth Interface Symposium on Computer Science and Statistics,
pp. 76—84 , Prindle , Weber and Schmidt , Inc.

O Colville, A .R . (1968) , “A Comparative Study of Nonlinear Programming
Codes ,” Report No. 320—2949 , IBM New York Scientific Center .

Cottle, R.W. (1977) , “Fundamentals of Quadratic Programming and Linear
Complementarity, ” Systems Optimization Laboratory , Technical Report
SQL 77—21 , Department of Operations Research , Stanford University .

Crowder , H.P. ,  Dembo , R.S . and Mulvey , J .M. (1977) , “Guidelines for
Reporting Computat ional Exper iments in Mathematical Programming, ”
Working Paper HES 77—8 (rev.), Graduate School of Business , Harvard
University .

Curtis, A .R. ,  Powell , M.J.D. and Reid , J.K. (1974) , “On the Estimation
of Sparse Jacobian Matrices,” J. Inst. Math. Applics. 13, pp. 117—119 .

Dahl , 0.J., Dijkst ra , E .W. and Hoare , C.A.R. (1972) , St ructured
Progr amming, Academic Press, New York.

Dantzig, G.B. (1948) , “Programming in a Linear Structure ,” USAF,
Washington , D .C.

• Dantzig, G.B. (1968) , “Large—Scale Linear Programming, ” in Mathematics
of the Decision Sciences, C.B. Dantzig and A.F. Veinott, Jr., (eds.),

• pp. 77—92 , A.M.S.,  Providence , R.I.

Dantzig, C.B. et al. (1973) , “On the Need for a Systems Optimization
Laboratory, ” Optimization Methods for Resource Allocation,
English University Press , London.

Dantzig, G.B. (1977) , “Linear Programming, Its Past and Its Future ,”
• Science Perspectives .

Dantzig, G.B.,. Eisenstat, S.C., Magnanti , T .L .,  Maier , S.F. , McGrath ,
N .E ., et al. (1970) “MPL —— Mathematical Programming Language ——Specification Manual,” Computer Science Department , Stanford
University, Technical Report STAI4— CS—70—l87.

Dantzig, G.E. and Parikh , S.C. (1977) , “At the Interface of Modeling
and Algorithms Research ,” Systems Optimization Laboratory Report 0

SOL 77—29 , Department of Operations Research , Stanford University .

28

• 
~~~0 • ~0-00-~~~~~~ 0- ~~~~~ 

— 0 0 0 _ 0 0 ~~~~~~~ __ _0~0-0-~~ 0-0- 0 0O ~~ - 00 -~~~~~~~~
0-

-0-.— — — _ 0-__0- 0--_
0- -

~~
—..--—- _ __—

___._1 -~ ~~~~~~~~~~~~~~~~~ —0--- - —--- -0- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s~.- ~~ ~~~~~~~

Dantzig, G.B. and Perold , A. (1978) , “A Basis Factorization Method
for Block Triangular Linear Programs,” Systems Optimization
Laboratory Report SOL 78—7 , Department of Operations Research ,
Stanfo rd University .

Dantzig, G.E . and Wolfe , P. (1960) , “Decomposition Principle for Linear
Programs ,” Operations Research 8, No. 1, pp. 101—111.

Davidon , W .C. (1959) , “Variable Met ric Method for Minimization,”
Argonne National Laboratory , Report No. ANL—5990 (Rev.).

Davidon , W.C . (1975), “Optimally Conditioned Optimization Algorithms
Without Line Searches,” Math. Prog. 9 , pp. 1—30.

Davidon , W.C. and Nazareth , L. (l977a) , “OCOPTR -- A Derivative Free
FORTRAN Implementation of Davidon ’s Optimally Conditioned Method ,”
ANL—AMD Technical Memo . No. 303, Applied Mathematics Division ,
Argonne National Laboratory.

Davidon , W.C. and Nazareth , L. (l977b) , “DRVOCR - A FORTRAN Implementa-
tion of Davidon ’s Optimally Conditioned Method ,” ANL-AND Technical

- Memo. No. 306 , Applied Mathematics Division, Argonne National
Laboratory.

Dembo, R. and Mulvey, J .M. (1976) , “On the Analysis and Comparison of
Mathematical Programming Algorithms and Software ,” Proceedings of
the Bicentennial Conference on Mathematical Programming, pp. 106—
116, (to appear) .

Dennis , J .E. (1976) , “Non—linear Least Squares and Equat ions ,” A.E.R.E.
Harwell , Computer Science and Systems Division , CSS 32.

Dennis , J.E ., Gay, D.M. and Welsch , R.E. (1977), “An Adaptive Nonlinear
Least—squares Algorithm,” N.B.E.R. Working Paper No. 196, Cambridge,
Massachusetts. (Also available as Technical Report No. 142,
MIT Operations Research Center.)

Dixon, L.C.W. (1973), “Nonlinear Opt imization: A Survey of the State
of the Art,” Numerical Optimization Center, Technical Report 42,
The Hatfield Polytechnic.

Fiacco, A.V. and McCormick, G.P. (1964), “Computational Algorithm for
• the Sequential Unconstrained Minimization Technique for Non-linear

Programming,” Management Science 10, pp. 360—366.

0 Fiacco, A.V., and McCormick , G.P. (1966), “Extensions of !~JMT f or Non-
linear Programming: Equality Constraints and Extrapolation,”
Management Science 12, pp. 816—829.

29

_____________________________ • - .a*as -
- -

~~~~~~~~~~~~~~~~~ 
0

L _ _ _ _ _ _ _ _ _ _ _ _



Fletcher , R. and Reeves , C.M. (1964), “Function Minimization by Con-
jugate Gradients ,” Comput. J. 7 , pp. 149— 154 .

- 

- Fletcher, R. (1976), “Methods for Solving Nonlinearly Constrained
Optimization Problems,” Proceedings of York Conference on “State

O of the Art in Numerical Analysis,” D. Jacobs, (ed.)

* Fletcher , R. (1970), “A FORTRAN Subroutine for Quadratic Programming,”
A.E.R.E ., Harwell Report No. R6370.

Fletcher , R. (1975), “An Ideal Penalty Function for Constrained
• Optimization,” J. Inst. Math. Applics. 15, pp. 319—342.

Fletcher R. and Freeman, T.L. (1975), “A Modified Newton Method for
Minimization,” University of Dundee, Report No. 7. -

Ford , L.R. and Fulkerson, R.E. (1954), “Maximal Flow Through a Network,”
The RAND Corporation, Paper P—605.

Ford, B. and Hague, S.T. (1974), “The Organization of Numerical
Algorithms Libraries,” in Software for Numerical Mathematics,
D.J. Evans, (ed.), Academic Press, pp. 357—372.

Geoffrion , A.M. (1970), “Elements of Large Scale Mathematical Program-
ming,” Management Science, 16, No. 11, pp. 652—691. V

Gill, P.E. and Murray, V. (1972), “Quasi—Newton Methods for Unconstrained
Optimization,” J. Inst. Math. Applics. 9, pp. 91—108.

Gill, P.E. and Murray, V. (1974), “Safeguarded Steplength Algorithms
for Optimization Using Descent Methods,” National Physical
Laboratory , Report NAC 37.

Gill, P.E. and Murray, V. (l976a), “Linearly Constrained Problems
Including Linear and Quadratic Programming,” in Proceedings of
York Conference on “State of the Art in Numerical Analysis,”
D. Jacobs, (ed.).

Gill , P.E. and Murray, V. (l976b), “Algorithms for the Solution of
the Non—linear Least Squares Problem,” National Physical Laboratory,

• Report NAC 71.

Gill, P.E. and Murray, V. (1977a), “Numerically Stable Methods of
Quadratic Programming,” National Physical Laboratory , Report

• NAC 78.

Gill, P.E. and Murray, V. (1977b), “A Brief Guide to the Numerical
Optimization Software Library,” NPL Algorithms Library Document ,
DNAC , National Physical Laboratory, England.

30

-0- -- ~~~~~~~~~~~—- 0- 0- -— - — -- —



0~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~~ —‘--fl—0- - 0-fl0- 0-~ O • • •0-fl0- 0-fl~~~ o o 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- • -r

Gill , P.E., Murray , W. and Picken S.M. (1972), “The Implementation
of Two Modified Newton Algorithms for Unconstrained Optimization,”
National Physical Laboratory, Report NAC 24.

Gill, P.E., Murray , V. and Pitfield, R.A. (1972), “The Implementation
- of Two Revised Quasi—Newton Algorithms for Unconstrained Optimiza-

tion,” National Physical Laboratory, Report NAC 11.

Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A. (1974),
0 

“Methods for Modifying Matrix Factorizations,” Math. Comput. 28,
pp. 505—535.

Gill, P.E., Murray , W., Picken, S.M. and Wright, M.R. (1977), “The
Design and Structure of a FORTRAN Program Library for Optimization,”
Systems Optimization Laboratory, Technical Report SQL 77—7,

• - 
Department of Operations Research, Stanford University.

Golub, G.H. and Pereyra, V. (1973), “The Differentiation of Pseudo—
Inverse and Non—linear Least Squares Problems whose Variables 0

Separate,” SIAN J. Numer. Anal. 10, pp. 413—432.

Gomory , R.E. (1958), “Essentials of an Algorithm for Integer Solutions
to Linear Programs,” Bull. Amer. Math. Soc. 64, No. 5.

• Guigou, C. (1971), “Presentation et Utilization du Code GREG,”
Note ff158212, Electricite de France, 12 Av. de la Liberation —— 92
Clamart, France.

Han , S.P. (1975), “A Globally Convergent Method for Nonlinear Program-
ming,” Report No. 75—257, Department of computer Science, Cornell
University.

• 
0 

Ran, S.P. (1976), “Superlinearly Convergent Variable Metric Algorithms
for General Nonlinear Programming Problems,” Math. Prog. 11,
pp. 263—282.

Hestenes, MR. (1969), “Multiplier and Gradient Methods,” J.O.T.A. 4,
pp. 303—320.

Hestenes, M.R. and Steifel, E. (1952), “Methods of Conjugate Gradients
for Solving Linear Systems,” J. Res. Nat. Bur. Stan. 49,
pp. 409—436.

Hillstrom, K. (1976), “Optimization Routines in ANDLIB,” ANL—AND
Technical Memo . No. 297, Applied Mathematics Division , Argonne
National Laboratory.

31



~~~~~ -~~~~~~--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~ - — -~~~~~

Hullstrom, K. (1977), “A Simulation Test Approach to the Evaluation
of Nonlinear Optimization Algorithms,” ACM Trans. Math. Software 3,
No. 4, pp. 305—315.

Himmelblau, D.M. (1972), Applied Nonlinear Programming, McGraw—Hill,
New York.

Ho, J .K. (1974),  “Nested Decomposition of Large Scale Linear Programs
with the Staircase Structure,” Systems Optimization Laboratory ,
Report 74—4, Department of Operations Research, Stanford University.

Jam , A. (1976), “The Solution of Nonlinear Programs Using the
Generalized Reduced Gradient Method,” Systems Optimization
Laboratory, Report SQL 76—6, Department of Operations Research ,
Stanford University.

Kantorovitch, L.V. (1939), “Mathematical Methods in the Organization
and Planning of Production,” translated in Manag. Sci. 6, (1960) ,
pp. 366—422.

- 
Kerninger , B.W . and Plauger , P .J. (1974), The Elements of Programming

Style, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.

Lasdon , L.S. ,  Waren , A.D.,  Jam , A. and Ratner , M. (1976) , “Design 
0

and Testing of a Generalized Reduced Gradient Code for Nonlinear
Programming, ” Systems Optimization Laboratory, Report SQL 76—3,
Department of Operations Research, Stanford University.

Lootsma , F.A. (1970) , “Boundary Properties of Penalty Functions for
constrained Minimization,” Phillips Res. Reports, Suppi. No. 3.

Lyness , J.N. and Kaganove , J.J. (1976), “Comments on the Nature of
• Automatic Quadrature Routines ,” ACM Trans. Math. Software 2 ,

No. 1, pp. 65—81.

Madsen , R.E. (1974), “Users Manual for SEXOP (Subroutines for Experi-
mental Optimization),” Release 4, Sloan School of Management,
Massachusetts Institute of Technology .

Marquardt, D.W. (1963), “An Algorithm for Least Squares Estimation
of Non—linear Parameters,” SIAN J. 11, pp. 431—441.

Marwil , E.S. (1978), “Exploiting Sparsity in Newton—like Methods,”
Ph.D. Thesis, Report TR 78—335, Computer Science Department,
Cornell University.

More, J.J. and Sorensen, D. (1977), “On the Use of Directions of
Negative Curvature in a Modified Newton Method,” ANL—AMD Technical
Memo. 319, Applied Mathematics Division, Argonne National Laboratory.

32



~~~~~~

“ T
- 0 - - 0--w—--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--- — - 0 -  •---—- ‘ —-“ -0- ‘ —

~~-- ‘-0-- • — • • -- ,
~~
----— 0 ~~~~~~~~~~~~~~~~~~~~~~~ • •0-~~ •0-

More , J.J., Garbow , B. and Hillstrom, K.H. (1978) , “Testing Uncon—
strained Optimization Software,” ANL—AMD Technical Memo ~o. 324,

-~~ 
• Applied Mathematics Division, Argonne National Laboratory.

• Motzkin, T.S. (1936), Doc toral Thesis, University of Zurich.

Muralidharan, R. and Jam , R.K. (1975), “MIN: An Interactive Educa-
tional Program for Function Minimization,” Technical Report 658,
Division of Engineering and Applied Physics, Harvard University.

Murray, V. (1969), “An Algorithm for Constrained Optimization,” in
Optimization, R. Fletcher, (ed.), Academic Press, New York and London.

Murray , W. and Wright, M.H. (1978), “Projected Lagrangian Methods
Based on the Trajectories of Penalty and Barrier Functions,”
Systems Optimization Laboratory, Report SOL 78—23, Department of
Operations Research , Stanford University.

Murtagh, B.A. and Saunders, M.A. (1977), “MINOS —— A Large Scale
Nonlinear Programming System (for Problems with Linear Constraints),

- 
Users Guide,” Systems Optimization Laboratory, Report SQL 77—9,
Department of Operations Research, Stanford University. 

0

Mylander, W.C., Holmes, R.L. and McCormick, G.P. (1971), “A Guide
to SUMT—Version 4,” Research Analysis Corporation Report RAC—P—63.
Doe. AD—73l39l, National Technical Inf ormation Service, Springf ield ,
Virginia.

Nash , J. (1975) , Bibliography of Non—linear Least Squares (microfiche) .

Nazareth , L. (1977) , “Minkit —— An Optimization System,” ANL—AND
Technical Memo. No. 305 , Applied Mathematics Division , Argonne
National Laboratory .

Nazare th, L. (1978) , “Modules to aid the Implementation of LP Algorithms,”
Systems Optimization Laboratory Report SOL 78—28, Department of
Operations Research, Stanford University.

Nazare th, L. (1975), “A Hybrid Least Squares Method,” ANL—AND Technical
Memo . No. 254 (rev.) ,  Applied Mathematics Division , Argonne National
Laboratory, (to appear in A.C.M. Trans. on Math. Softw.) .

Nazareth, L. and Nocedal, J. (1978), “A Study of Conjugate Gradient
Methods ,” Systems Optimization Laboratory Report SOL 78—29 ,
Department of Operations Research, Stanford University.

33
-

~ 
O- -’-• - --—--—.- - -’

~~
--- •-. _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_ _-_ -,
~~~~

..-*-.-,.•-
~~~~ —--~-~~~~ 

-
~~~~~

:‘-“
~~~~~~~

_‘
— —a

~~
‘— - - 0- — ‘--- ‘0-0-- _•0~~ 0- - •1

Nazareth, L. and Schlick, F. (1976), “The Evaluation of Unconstrained
Optimization Routines,” Proceedings of Bicentennial Conference on
Mathematical Programming, N . B .S . , Gaithersburg.

Nelder , J.A. and Mead, R. (1965) , “A Simplex Method for Function
Minimization,” Comput. J. 7, pp. 308—313.

• Orchard—Hays , V. (1954) , “A Composite Simplex Algorithm —— It ,” The
RAND Corporation , Research Memo . Rm— 1275.

Orchard—Hays, W. (1977) , “History of Mathematical Programming Systems,”
(manuscript).

Ortega, J.M. and Rheinboldt, W.C. (1970), Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York—San Francisco—
London .

Parkinson, J.M. and Hutchinson, D. (1971), “An Investigation into
Variants of the Simplex Method ,” in Numerical Methods for Nonlinear
Optimization, F.A. Lootsma, (ed.), Academic Press, London and
New York , pp. 115—135.

Powell, M.J.D. (1964), “An Efficient Method for Finding the Minimum
of a Function of Several Variables Without Calculating Derivatives,”
Comput. J. 7, pp. 155—162.

Powell, M.J.D. (1969), “A Method for Nonlinear Constraints in Minimiza-
tion Problems,” in Optimization, R. Fletcher, (ed.), Academic Press,
London and New York, Chapter 19.

0 Powell, M.J.D. (1970), “A FORTRAN Subroutine for Solving Systems of
• Non—linear Algebraic Equations,” in Numerical Methods for Nonlinear

Algebraic Equations, P. Rabinowitz, (ed.), Gordon and Breach,
pp. 115—161.

• Powell, M.J.D. (1971a), A.E.R.E., Rarwell Library Subroutine, VAO5A.

Powell, M.J.D. (1971b), “On the Convergence of the Variable Metric
Algorithm,” J. Inst. Math. and Applics. 7, pp. 21—36.

Powell, M.J.D. (1975), “Restart Procedures for the Conjugate Gradient
0 Method,” A.E.R.E. Harwell, Computer Science and Systems Division,

Report No. CSS 24.

Powell, M.J.D. (l976a), “Algorithms for Non—linear Constraints that
use Lagrangian Functions,” Presented at the Ninth International
Symposium on Mathematical Programming.

34

- 0- -0- ~~~~- -~~ —~~~~

- __ ,,_ . •iiiiII~

Powell , M.J.D. (1976b), “A View of Unconstrained Optimization ,” in
Optimization in Action, L.C.W. Dixon, (ed.), pp. 117—152 , Academic
Press , London—New York—San Francisco .

Powell , M.J .D. (1977) , “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” presented at the 1977 Dundee Conference
on Numerical Analysis.

Powell , M.J.D. and Toint, Ph.L. (1978), “On the Estimation of Sparse
Hessian Matrices,” Repor t DAMTP 78/NAl , University of Cambridge.

Reid, J.K. (1976), “FORTRAN Subroutines for Handling Sparse Linear
Programming Bases,” A.E.R.E. Harwell Report R 8269.

Rockafellar , R.T. (1973), “A Dual Approach to Solving Nonlinear
Programming Problems by Unconstrained Optimization,” Math. Prog.
5, pp. 354—373. •

Rice, J.R. (1971) , “The Challenge for Mathematical Software ,” in
Mathematical Software, J.R. Rice, (ed.), Academic Press , New York

0
and London, pp. 27—41.

Rosen, J .B. (1960) , “The Gradient Projection Method for Non—linear
Programming, ” Part I: Linear Constraints, SIAN J. Appl. Math. 8,
pp. 181—217; Part II: Non—linear Constraints , J. Soc. Ind. Appl.
9, pp. 514—532 .

Rosen, J .B. and Kreuser , J.L. (1971), “GPM/GPNNLC Extended Gradient
Proj ection Method Nonlinear Programming Subroutines ,” Academic
Computing Center, The University of Wisconsin, Madison, Wisconsin.

Rosen, J.B. and Wegner, 5. (1975), “The GPN Nonlinear Programming
Subroutine Package ; Description and User Instructions,” Technical
Report 75—9 , Computer Science Department , University of Minnesota.

Rosen , J .B . (1977), “Two Phase Algorithm for Nonlinear Constraint
Problems ,” Technical Report 77—8, Computer Science Department,
University of Minnesota.

Schubert, L.K. (1970), “Modification of a Quasi—Newton Method for
Non—linear Equations with a Sparse Jacobian,” Math. Camp. 24,
op. 27—30.

Shanno, D.F. (1977), “Conjugate Gradient Mqthods with Inexact Searches,”
MIS Technical Report No. 22, University of Arizona , Tucson.

‘

Smith, B.T., Boyle, J.M. and Cody, W.J. (1974), “The NATS Approach to
• Quality Software,” in Proceedings of IMA Conference on Sof tware for

Numerical Mathematics, J. Evans, (ed.), Academic Press , pp. 393—405.

35

--0-- - -_ _ _ _ • - ‘ - - -0-
-

~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- — ——0- -‘-.0- ,
~~ ~~—- •

~~~~~~~~~~~~~~~
-==:---

Smith , B.T . (1976) , “Fortran poisoning and Antidotes , ” In Portability
of Mathematical Software, W. Covell , (ed .) ,  Springer Verlag Lecture
Notes in Computer Science , Berlin—Heidelberg—New York, pp. 178—256.

• Spendley, W. (1969), “Nonlinear Least Squares Using a Modified Simplex
Minimizat~,n Method ,” in Optimization, R. Fletcher, (ed.), Academic
Press , Londin and New York, pp. 259—270. 0

Staha, R.L. and Himmelblau, D.M. (1976) , “Evaluation of Constrained
Non—linear Programming Techniques,” (manuscript),- Department of
Chemical Engineering, University of Texas, Austin.

Toint, Ph.L. (1977), “On Sparse and Symmetric Matrix Updating Subject
to a Linear Equation,” Department of App. Math, and Theoretical
Physics, University of Cambridge, Report No. DAMTP 77/NA1.

Tomlin , J.A. (1976) , “User’s Guide for LCPL ,” Systems Optimization
Laboratory , Technical Report SOL 76— 16 , Department of Operations
Research , Stanford University.

Von Neumann J. and Morgenstern , 0. (1944) , Theory of Games and Economic
Behavior, Princeton University Press, Princeton, New Jersey.

Wilkinson, J.H. (1960), “Rounding Errors in Algebraic Processes,”
Information Processing, pp. 44—53.

Wilson, R.B. (1963), “A Simplicial Algorithm for Convex Programming ,”
Ph.D. Thesis, Graduate School of Business Administration, Harvard
University.

Wolfe , P. (l959a), “The Simplex Method for Quadratic Programming,”
• Econometrica, 27, pp. 382 et seq.

Wolfe , P. (l959b), “The Secant Method for Simultaneous Nonlinear
Equations,” Comm. ACM 2, pp. 12—13.

Wolfe , P. (1974), “A Method of Conjugate Subgradients for Minimizing
Non—differentiable Functions,” Report RC 4857 (#21613) , IBM Thomas
J. Watson Research Center, Yorktown Heights, New York , 10598.

Wolfe , P. (l975a), “Optimization: Concepts and Software,” (manuscript).

• Wolfe , P. (1975b), “Optimization,” COSERS Panel on Numerical Computation,
(draft manuscript).

Wright, M.H. (1978), “A Survey of Software f or Nonlinearly Constrained
Optimization,” Systems Optimization Laboratory , Report SOL 78—4,
Department of Opera tions Research , Stanford University.

L ~ 36

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~


UNCLASSIFIED
$ECU*’~ Y CL. AS$I’~ CATION OF THIS PAGE (W~~~ Dii . Ial.n ~~

D~OADT ni~ IIaa~~ IJTATIfl J PAGE Rr.A0 £‘4STRUCT1ONS‘. ~~~“ ~~~~~~~~~~~~~~~~ — -- UEFOPI~ COMPLETIN G FORM
~~~røo~~y ~iuMb~~~ ~~. GOVT ACCESSION tio. 3 RfCIPi  ‘-r’~ CaT ALOG NUMSER

SOL 78—32 -i
• 

• 
4. TITLE (~ d SubtStS. ) I Y’y PL OF RLPORT S PENIOQ COVENEO 

-

SOFTWARE FOR OPTIMIZAT ION
Technical Report

S. PERFONMIsO ORG. REPORt NUNSER
__________________________________________________ 

SOL 78—32
• 7. AUT,4 OR(i) S. Co~itRAC1 OR GRANT NUMSER~~

L. Nazareth N00014—75—C—0267 
/

I. PERFORMING ORGAN IZAT ION NAM E ANO AOORIS$ / tO . PROGRAM EL EMENT. PROJECT . TASK
Department of Operations Research — SOL AR EA I WORK UNIT NUMSERS

Stanford University NR—047—l43
Stanford, CA 94305
fl CONTROLLING OFFICE NAME ANO AOD RESS tZ •  REPORT 0ATE

Opera tions Re~~arch Program —— ONR December 1978
Department of the Navy tS. NUMbER OF PAGES
800 N. Quincy Street, Arlington, VA 22217 36 •

IL MONITORING AGE NCY NAME & AOORESS(U ~~fl.r. ,t ito. Cc,,troIiSng OWe.) II. SECURITY CLASS. (OS thu Iiporfj —

Unclassified

1S•. OECLASSIFICATIONIDOINGRAD,NG
SCHEDULE

tS . DISTRIbUTION STATEM ENT (of SAl. R.por t) -

This document has been approved for public release and sale;
its distribution is unlimited.

17 D!S1RISUTION STATEMENT (at IA. .b.lr.cl .øl.r.d Sn Il.rk 20. ii dIU.toni item Rsp eI) I

‘I. SUPPLEMENTA RY NOTES

‘9. KEY WORDS (Consint.. en s•verll .Id. if n.e•.o.7’ .~d Sdm,tIO. 4,’ 54•ek m ,b.e)

Mathematical Software Optimization Software
Sof tware Bibliography Linear Programming
Unconstrained Optimization Constrained Optimization

20. ASS? RACY (Continue on ,.v.,.. .id. U n.ceio.y end ,*iwSt~ by bS..k .o.b.r )

SEE ATTACHED

-
• DO 

~~~~~~~ 
1473 LOITION OF I NOV S$ I$ OSSOLS?t

S/M 0103 ’ OIS ’ 440 5 • UN L SS 0
SICUSITY CLA ISIPICATION OF tWIS PASS ~~~~~ D.,.~~~ ’SrSW)

- ‘—- — •‘ •‘- • • - - -• •—• -- •~~~~0-0~0 • •
_ _ _ _ _ _

- —
-~ — ii~~ -.~~~~~~~~- . r ~~~~~ _

•

0-

~~~~~~~~

--—---.-’— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~•.• 

• - -—‘---‘-—--
—

UNCLASSIFIED .
0 SICMNT Y C4.AUIFICA?1ON QV TillS PASS (~~ i1 £JIISI

SOL 78—32
- •

SOFTWARE FOR OPTIMIZATION
L. Nazareth

•
1

Our aim in this paper is to provide the reader with:

a) Some feel for what quality software entails .
b) An overview of various aspects of optimization software .
c) Information on solution techniques and available software in the form

of a decision tree.
d) An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear programming, non—linear unconstrained
optimization and related areas, and non—linear programming.

This paper is intended to supplement an earlier oral presentation at
the Texas Conference on Mathematical Software entitled “State of Software
for Optimization”.

UNCLASSIFIED
IPSVIW?~ SLM~~ SCA?ISU ~P This P*aSl~~~~ isum ~~i~~~is

—

l~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~ • • • • ~~~~~~~~~~~~ _ _ _

