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Abstract

Ti%ur aim in this paper is to provide the reader with;

o

3
,}ﬂV 8ome feel for what quality software entails

$ J
)’ -4n overview of various aspects of optimization softwar-ej
.

) j!nfornation on solution techniques and available software in
the form of a decision tree.

//ﬂ" An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear programming, non-linear unconstrained
optimization and related areas, and non-linear programming.

This paper is intended to supplement an earlier oral presenta-
tion at the Texas Conference on Mathematical Software entitled "State

of Software for Optimization".
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SOFTWARE FOR OPTIMIZATION

by

L. Nazareth

1. Introduction

This paper is intended to supplement an earlier oral presenta-
tion on developments in optimization software.* Since very many
mathematical problems can be posed in terms of function optimization,
and since software for each optimization area ranges from small scale
pilot programs to the large scale systems of which commercial LP systems
are the most familiar example, we are of necessity selective in our
choice of subject matter. We concentrate upon the areas of linear
programming, non-linear unconstrained optimization (and the related
areas of non-linear least squares and systems of non-linear equations),
and non-linear programming. In particular, the very important areas
of discrete variable programming and dynamic programming are not
covered here.

Our aim in this paper is to provide the interested reader with:

a) Some feel for what quality software entails.

b) An overview of various aspects of optimization software.

*
"State of Software for Optimization'" -- invited presentation at Texas
Conference on Mathematical Software, April 1978.
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c¢c) Information on solution techniques and available software for the
above areas in the form of a decision tree.
d) An extensive bibliography, so that the reader can further pursue

specific topics of interest.

The paper is organized as follows: Section 2 provides some
historical background to the optimization areas covered. Section 3
gives an overview of the software development process, and discusses
attributes of 'quality' mathematical software, illustrating these
with specific examples. Section 4 deals with software primarily
intended to aid algorithm and code development, and discuss the idea
of a language for mathematical programming. Section 5 deals with
available optimization software for the areas covered here. A detailed
decision tree is given. Section 6 discusses the testing of software
and the bibliography is given in the final section.

We make no claims to being complete; but the author would
welcome feedback on important omissions and inaccuracies, particularly

with regard to material in Section 5.
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2. Background

Table 1 is designed to give the reader a time frame for develop-

ments in optimization. Some of the important theoretical and algorithmic

references are listed along with a few parallel developments in software
and computers, and the reader can superimpose his own set of favorite
topics.

Table 2, adapted from Wolfe [1975b], shows how our ability to

= S -

solve problems has increased substantially. The vertical axis repre-

" sents complexity of the problem and the horizontal axes lists different

areas of optimization.

For further historical details see the survey articles of

Dantzig [1977], Orchard-Hays [1977] and Wolfe [1975b].
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3. Quality Software

3.1. Overview of Software Development

The design of an item of mathematical software depends very
much upon the intended use of the software. We wish to stress the
distinction between implementations of an algorithm designed primarily
for studying the behavior of an algorithm, and implementations designed
primarily for solving problems. The former are called algorithm/code
oriented versions and'the latter user/problem. oriented versions. The
distinction is, of course, not clear cut, since algorithm/code oriented
versions can and should be used to solve practical problems, and user/
problem oriented versions can and should be used to study the encoded
algorithm. However an implementation will usually place emphasis on
one of these two goals; and often an algorithm/code oriented version
will be developed as a preclude to a user/problem oriented version.

An algorithm/code oriented version should not be construed to
mean a hastily thrown together version. Rather it indicates a version
in which emphasis is placed upon the goals of flexibility, generality
and modifiability, even if this results in a sacrifice of efficiency.
In a user/problem oriented version, increasing emphasis is placed upon
efficiently solving a wide class of problems and providing a wide range
of options. This may call for substantial reformulation and reorgani-

zation of the calculations to reduce overhead and circumvent numerical

difficulties.

T B TR T P T TSI TP S N T M T v e 2




We feel that insufficient attention has been paid to develop-
ing tools to aid the implementation of algorithm/code oriented versions
and this has contributed to the proliferation of untested algorithms
which abound  in the literaturei‘ﬁThis will be discussed further in
Section 4. In contrast, a number of éoftware aids have been developed
to aid the process of tailoring a code to a particular compiler/machine
configuration, i.e., to develop portable versions. For further
details see Boyle [1976]). Since such aids can be applied to most
items of mathematical software and are not specialized to optimization,
we shall not discuss them further heqe.

For a more detailed discussion of the process of mathematical

software development see Nazareth [1978a].

3.2. Attributes of Quality Software

Both algorithm/code oriented and user/problem oriented software
should meet certain standards. What is it that characterizes 'quality'
software?

Recent efforts to develop good mathematical software, Rice
[1971], Smith et al. [1974], Ford and Hague [1974], identify
several attributes. We quote thes2 and illustrate them with specific
examples.

(a) Robustness refers to the ability of a computer program to

detect and gracefully recover from abnormal situations without unneces-

sary interruption of the computer run. In situations when a calculation
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does fail, the code should fail gracefully. Robustness involves, for
example, the filtering out of improper arguments, the avoidance of
destructive overflows, and the reorganization of a calculation to mini-

mize the effect of rounding error.

Example 2: Cody [1976], Avoiding both destructive overflows and
n
non-destructive underflows in the computation of lxl -[Zi_1 xi 1/2.

The usual FORTRAN calculation proceeds as follows:

SuM = 0.0 DO
DO 10 I =1, N
SUM = SUM + X(I)**2
10 CONTINUE

XNORM = DSQRT (SUM)

SUM can overflow even though XNORM may be a machine repre-
sentable member. In order to avoid this, the calculation can be done
as follows, where we assume for convenience, that the largest element,

in absolute value, is X(1).

SUM = 1.0 DO
DO 10 I =2, N
A = X(I)/X(1)
SUM = SUM + A*A
10 CONTINUE

XNORM = DABS (X(I))*DSQRT(SUM)




Now x(I)/x(1) can underflow (non-destructively) leading to

troublesome interrupt messages. To avoid this the computation can be

further reorganized as follows:

SUM = 1.0 DO
B = DABS(X(1))
DO 10 I =2, N
A = 0.0 DO
IF (B + DABS(X(I)).NE.B)A = X(I)/X(1)
SUM = SUM + A*A
10 CONTINUE

XNORM = DABS (X(1))*DSQR1(SUM) .

Example 2: Reorganizing calculation to minimize effect of rounding
error. When variable metric methods were first suggested for solving
the problem minxe RD f(x), the calculation was stated in terms of
updating an approximation to the inverse Hessian H of f(x). Given

a step Ax 4 x* - x and the associated change of gradient of f(x),

Ag 4 Af (x*) - Af(x) g g* - g, a new approximation H* is developed,

for example, by the BFGS (see Broyden [1970]) update

H* = H + % [p Ax AxT - Ax AgT H-HAg AxT]
Ax Ag
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In theory H > 0 (i.e., positive definite) = H* > 0 whenever
AgT Ax > 0. However rounding error in the computation of H* can
destroy this property. Another difficulty is that even when H* > 0
but ill-conditioned, rounding error in computing the next direction of
search d* & -H* g* can result in d: g* > 0, where d: = —fo(H*g*) is
the computed search direction. See Gill, Murray and Pitfield [1972].
The above difficulties can be circumvented by reorganizing
the calculation following the suggestions of Gill and Murray [1972].
They suggest working with an approximation to the Hessian B which is
maintained in the factored form B = LDLT, where L 1is lower triangu-
lar and D diagonal. In this case we can ensure positive definite-
ness by keeping D > 0. In addition a bound on the condition number
of B can be improved by modifying D. See also the Example 2 under
Reliability.
(b) Reliability refers to the ability of an item of software
to perform a calculation both efficiently and accurately and to
reflect the basic characteristics of the algorithm e.g., its scale

invariancies.

Example 1: Estimating gradients of f(x) by finite differences. 1In
theory each component gj can be estimated by first order finite

differences

gy = [f(x + he,) - f(x)]/h

3

where h 1is an infinitesmal step.

10

(3.3)
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In finite precision arithmetic however this is a difficult

computation. A good routine must be designed with considerable care
and we state some of the issues which arise in designing such a

routine.

-= Choice of step length, h.
- Should h vary with each component?

- Should h be chosen to balance rounding and truncation? i

In this latter case estimates of second derivatives are needed to esti-

B e s

f ; mate truncation error. How are these obtained? Should h be estimated

:“ at every iteration or should it be only periodically recomputed in a

separate subroutine and held fixed in between calls to this subroutine.

—— Should a switch to central differences be made when forward dif- 4
ferences are insufficiently accurate?

-- Should the increment h be relative to |x,| or should it be

3

b | absolute? 1In the former case gj is invariant under a simple
|

scaling of variables xj > o x,, whilst in the latter case gj

3

is invariant under a translation of variables x =+ x + c.

-- Should gradients be estimated in a transformed space of variables?

i.e., consider the function
f(z) = £(x) + gT(z -x) + %(z - x)T B(z - x)

where B = (JJT)-1 and non-singular.

2 11




Contours of f(z) are illustrated in Figure 3.
If we make the transformation z = x + Jy, then £(z) trans-

forms to ?(y)
s T A 4
) =fx) +k y+Ty vy

where k = JT g. The contours of f(y) are illustrated in Figure 4.

ki are estimated by

f(x + J1 h) - f(x)
ki = h -

Nz

and g 1is then given by g = (JT)-l k.

- @

Figure 3 Figure 4
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Example 2: Invariance w.r.t. transformations of variables. It is
well known that apart from the initial choice of the approximation,
the variable metric algorithm is invariant w.r.t. transformation of

the variables. However, if the algorithm is modified to ensure that

the search direction dk = -Hk 8, satisfies
T
Idk gkl > glgklldk| 3 for ¢ a small constant, (3.4)

(for example by modifying Hk suitably), then this destroys scale
invariance, since (3.4) is not invariant. For a fuller discussion,
see Powell [1976b].
(c) Structured refers to whether the program is designed along
the principles of good programming, i.e., whether it has a top to
bottom flow of control, is formatted to display its structure and so
on. See Dahl et al. [1972] and Kerninger and Plauger [1974]. | g
(d) Usability refers to the ease with which a user can choose »
a program and apply it to his problem. For example, how well designed
are the calling sequences and documentation. See Gill et al. [1977].
(e) Validity refers to the existence of evidence that the
software has performed well in a particular computer environment, and
to the existence of testing aids which demonstrate that the present
installation of software is performing as expected. We discuss testing

further in Section 6.

13
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(f) Transportability refers to whether an item of software can

be moved from one computer installation to another without degredation

of performance and with minimal change.

Example: Features of COMMON statement in FORTRAN which can hinder

transportability. A very complete discussion of difficulties which

arise in transporting FORTRAN programs is given in Smith [1976]. When

using the COMMON statement some of the difficulties which arise are:

-- The order of variables affects portability, e.g., some IBM machines
require that variables in a COMMON statement which use two storage
units, begin on an even word boundary, else aljgnment errors or a
degredation in efficiency can result.

-- Variables in labelled COMMON may become undefined upon execution
of a RETURN (or END) statement, unless there is a COMMON statement
for that block, in at least one of the higher level program units
in the chain of active programs.

-- Other inconveniences associated with COMMON are that variable
dimensioned entities cannot be used in COMMON, and that the size of
a labelled COMMON block may be required to be the same in each

program unit in which the COMMON block occurs.

14




4. Software Designed to aid Algorithm/Code Development

Implementing an optimization algorithm is a difficult and a
time consuming task. For this reason it is essential that the algo-
rithm or software developer be provided with suitable tools which
facilitate his task. wé can distinguish three approaches:

Approach 1. Develop a high level language, for example along
the lines of the Mathematical Programming Language (MPL) of Dantzig
et al. [1970]. The aim is to design a language in which highly
readable programs can be written and which parallels the venacular of
applied mathematics. This would make it possible to write programs
quickly and easily and would serve as a means of communicating ideas
precisely. In the early creative stages of algorithm development
such a language is an invaluable aid since one's intuition can now be
supplemented by hard computational results. This can then in turn
lead to new ideas. Such a language is also a valuable educational
aid. However, once the main features of an algorithm have been laid
out, a fundamental difficulty remains, namely that numerically sound
procedures are difficult to write in any language, no matter how
convenient. What is then needed is a good library of procedures,
tailored to optimization, from which an optimization algorithm can

be built. This is particularly useful when one wants to test out a

new algorithm on real life problems. Building optimization algorithms

from a library of procedures also makes for a more uniform comparison

of algorithms since their implementations can be made to differ only
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in the essentials and test results are thus less subject to variations
in programming style. It is difficult for a new language to gain

wide acceptance and for compilers to be made available on a wide range
of machines. Often therefore, we have to fall back upon FORTRAN,
although other high level languages, e.g., PL-1 and ALGOL-68 are making
some headway.

Approach 2. Use individual components of a user /problem oriented
implementation (or optimization system) which has a modular design.
Examples in the area of Linear Programming are discussed in Nazareth
[1978]. For examples of such systems in the area of non-linear program-
ming see Muralidharan and Jain [1975], Hillstrom [1976]. The main
difficulty with this approach is that one has usually very limited
flexibility. Each component in a user/problem oriented system is
usually designed within the context of the overall system and often
utilizes a common data structure. Using a component on a stand alome
basis usually requires that it be substantially modified.

Approach 3. The idea behind the third approach has already
been mentioned. Here one seeks to develop a carefully specified
set of modules which can be viewed as being the 'primitives' or 'basic
operators' of a language for building optimization algorithms. Two
efforts along these lines are discussed in Nazareth [1977] and [1978].
The former describes a pilot system based upon a set of algorithms
developed by the author in the area of non-linear unconstrained optimi-

zation. Building upon this experience, a software organization and

t‘;
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'
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development effort was undertaken in the area of Linear Programming,

as described in Nazareth [1978]. It is important to emphasize that

the development of a code requires careful craftmanship and should not
be viewed as the mere stringing together of modules. However if such
modules are carefully designed and correctly implemented, they can
greatly ease the task of implementing an algorithm and perhaps they
should be viewed as a way of developing an "artists sketch" of a code,
which can then be further refined. They also serve as a valuable means
of cooperation and communication between different researchers. Finally

they are a useful educational aid.

e ————————————— - —— T
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5. Optimization Software

In this section we give a detailed decision tree of the major
categories of optimization methods together with references to some
recent implementations and/or algorithms in each category. References
are given to journal articles or technical reports and implementations
are identified by a symbol indicating their source.

Available software varies widely in quality and we do not
set out here to make any value judgements. Clearly such a compact
presentation is also far from complete. Our more modest aim is to
provide the reader with some selected information on individual
items of software. Other surveys e.g., Dennis [1976], Dixon [1973],
Fletcher [1976], Wolfe [1975a], Wright [1978] should also be con-

sulted.

5.1. Some Major Sources of Optimization Software (Alphabetical)

[a] Argonne National Laboratory, Applied Mathematics Division([hp]-
Hillstrom's Package [1976] and [m]-MINPACK-1).

[b] Bell Telephone Laboratory, Murray Hill, New Jersey, (PORT
Library).

[h] Atomic Energy Research Establishment (A.E.R.E.) Computer
Science and Systems Division, Harwell, England.

(ibm] IBM Mathematical Subroutine Library (SL-MATH).

[imsl] International Mathematical and Statistical Libraries, Inc.

[w] Computer Center, University of Wisconsin, Madison.




D I ———

[nag] Numerical Algorithms Group (NAG) Library.
;f [nber] National Bureeu of Economic Research, Cambridge, Massachusetts
(now part of M.I.T.).
[noc] Numerical Optimization Center, Hatfield College of Technology,
Hatfield, Herts., England.
[npl] National Physical Laboratory, Division of Numerical Analysis
and Computing, Teddington, England. (The NPL Optimization

: Library is the most comprehensive collection of optimization

¥

3 software currently available.)
E [s] Computer Science Department, Stanford University.
[sol] Systems Optimization Laboratory, Department of Operations

Research, Stanford University.

B e T T ——

The symbol associated with each establishment in the above
list is used to identify the establishment in the Decision Tree.
o Note that software referred to in this manner is not necessarily
available for general distribution. Conversely when an algorithm
in the Decision Tree does not have a symbol associated with it or
when the symbol [au] is used, an implementation may be available from

the author(s) of the cited reference.

19
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Footnotes to Decision Tree

1

A particular case of this problem is that of 1 - D optimization,
both stand alone and for use within n-dimensional optimization
routines. See e.g., Brent [1973a], Gill and Murray [1974].

The symbols f, g, B and J are used to indicate the type of

information about the function that is usually required when

f stands for function value
g stands for gradient
B stands for Hessian

J stands for Jacobian.

Thus e.g., £/(f,g) means function value or (function value and
gradient).

Currently a very active research area. For an overview see
Nazareth and Nocedal [1978].

The distinction between small, medium and large scale is as
follows. In small scale L.P. no account is taken of the sparsity
of the L.P. matrix, i.e., it is assumed that the matrix is dense
and is usually stored as a 2 - D array. In medium scale L.P. it
is assumed that the L.P. matrix will fit in core provided only
non-zeros are stored in packed form, e.g., as a column list/row
index data stfucture. Finally, large scale systems e.g., MPSX/370
make extensive use of secondary storage.

For a good overview see Dantzig [1968], Geoffrion [1970].

Terminology of Murray and Wright [1978].
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6. Testing

Evaluating optimization routines is a difficult task, and one

which requires both qualitative and quantitative measures of perfor-
mance. A fundamental requirement is that the testing environment
simulate an actual environment of use since, if it did not, the evalua-
tion would be valid but in all likeiihood, irrelevant. Furthermore,
the overall quality of a code can only be gauged after investigating
a broad range of issues, for example, efficiency, robustness, usability,
usefulness of documentation, ability of fail gracefully in the presence
of user abuse, rounding error difficulties or violation of underlying
assumptions. A testing method usually concentrates on efficiency and
robustness, evaluating these by exercising the code on a set of well }f
chosen and hopefully realistic problems.
To date the most common method of evaluating optimization
routines has become known as 'battery' or 'simulation' testing.
Comprehensive studies along these lines are described in
Colville [1968], Hillstrom [1977], Himmelblau [1972]. Battery testing
has two basic components, namely a set of test problems and a set
of measures of performeznce. The approach is subject to limitatioms
which sometimes make a clear ranking of methods difficult to discern.
For example, it is difficult to know how much confidence should be
attached to a particular measure of performance when slight variation
of starting point or geometry of test problem leads to a substantial
variation in the measure of performance. For a discussion of these

difficulties see Nazareth and Schlick [1976]. This has motivated
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the approach which employs "problem families'" or '"parameterialized

test problems" introduced originally into the evaluation of routines
for numerical quadrature by Lyness and Kaganove [1976]. See also
Dembo and Mulvey [1976]. A careful a priori experimental design and
the use of statistical sampling theory and analysis are implicit in
this approach, which is sometimes referred to as 'pefformance profile’
testing to differentiate it from 'battery' testing.

A second distinction which it is worth emphasizing is the dis-
tinction between algorithm and software evaluation. In particular
testing an algorithm usually places most emphasis on efficiency whilst
software evaluation attaches a great deal of importance to reliability
and robustness.

Finally it is worthwhile making a distinction between decentral-
ized and centralized testing of routines. The former is illustrated
by the original study of Colville [1968], and the latter is illustrated

by the study of Hillstrom [1977]. 1In decentralized testing a set of

software tools are usually made available to developers of routines
who then use them to develop information about how well their routines
perform. For an example in the area of non-linear programming see

Nazareth [1977 where the testing tools comprise:

(1) Subroutines which return function and/or gradient information
for a set of different test functions.
(i1) Subroutines which return starting point and expected solution

(1f known), for each function.
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(111) Report writer whose features include:
—=- Flexible and convenient way of specifying which functions
to test.
== Replaceable section of code for routine being tested.
== Interface subroutines between user form of function call
and subroutines in (i) above.

== Output summaries and graphical display.

Systems Optimization Laboratories (see Dantzig et al. [1973])
are a natural environment for centralized testing, i.e., gathering
and testing a number of routines at one particular site. This usually
requires a substantial commitment of resources, but it makes for a much
more uniform comparison and permits the use of much more stringent
test problems, in particular problems arising from real life applica-
tions (see Dantzig and Parikh [1977]).

Until fairly recently, the development of a testing methodology
for optimization routines has been sorely neglected. However, the
crucial importance of the subject is now being recognized. For a
description of some recent work see Bus [1977], Crowder, Dembo and
Mulvey [1977], Nash [1975], More et al. [1978], and consult the
minutes of meetings of the Committee on Algorithms of the Mathematical

Programming Society.
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