" AD=A066 343

UNCLASSIFIED
| oF |

STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB

SOFTWARE FOR OPTIMIZATION.(U)
DEC 78 L NAZARETH
SOL-78-32

END

DATE
FILMED

5-7

bpc

F/6 9/2
NOOO14=T75=C=0267

NL

2. -

Systems
Optimization
Laboratory

e ¢

ADA0 66343

e e e

|
(o) |
O r
LJ \ ¥
e
=

: |
: |
ﬁ PEi :

v

Department of Operations Research
Stanford University
Stanford, CA 94305

Sy "l'l |"‘ \“-} ; ,‘-.lT

PR e g - - i 3 = —— >

o m— o m—— v e

R ST 2 ey e e e g

o A s Y

dasiaiaby L e

0DC

ADAQO 66343

FILE copy

- —

SYSTEMS OPTIMIZATION LABORATORY :

DEPARTMENT OF OPERATIONS RESEARCH o
Stanford University
Stanford, California

94305
OZ:SO ARE FOR OPTIMIZATION , |
Ll IR e
by

(1) Climzarern

[/ TECHNICAL REPERT, oL 78-32

C el
& B Sﬁb PR,
@%/’i& f e

Research and reproduction of this rep
the Office of Naval Research Contract/N
Science Foundation Grants MCS76-20019 AQE:End - EN&77<06761 AO1; and
the Department of Energy ContractfEY-76-S-@3-9326 PA #18.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

Yo& 769
/5

e S A S AT AT

Abstract

Ti%ur aim in this paper is to provide the reader with;

o

3
,}ﬂV 8ome feel for what quality software entails

$ J
)’ -4n overview of various aspects of optimization softwar-ej
.

) j!nfornation on solution techniques and available software in
the form of a decision tree.

//ﬂ" An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear programming, non-linear unconstrained
optimization and related areas, and non-linear programming.

This paper is intended to supplement an earlier oral presenta-
tion at the Texas Conference on Mathematical Software entitled "State

of Software for Optimization".

Acknowledgment

My grateful appreciation to Professor G.B. Dantzig and the

many others who helped make my visit to the Systems Optimization

Laboratory an interesting and valuable learning experience.
My thanks also to the Applied Mathematics Division, Argonne
National Laboratory, who jointly with the Systems Optimization

Laboratory supported my appointment at Stanford.

Sp—————

. W B

SOFTWARE FOR OPTIMIZATION

by

L. Nazareth

1. Introduction

This paper is intended to supplement an earlier oral presenta-
tion on developments in optimization software.* Since very many
mathematical problems can be posed in terms of function optimization,
and since software for each optimization area ranges from small scale
pilot programs to the large scale systems of which commercial LP systems
are the most familiar example, we are of necessity selective in our
choice of subject matter. We concentrate upon the areas of linear
programming, non-linear unconstrained optimization (and the related
areas of non-linear least squares and systems of non-linear equations),
and non-linear programming. In particular, the very important areas
of discrete variable programming and dynamic programming are not
covered here.

Our aim in this paper is to provide the interested reader with:

a) Some feel for what quality software entails.

b) An overview of various aspects of optimization software.

*
"State of Software for Optimization'" -- invited presentation at Texas
Conference on Mathematical Software, April 1978.

T —

- T e T T

c¢c) Information on solution techniques and available software for the
above areas in the form of a decision tree.
d) An extensive bibliography, so that the reader can further pursue

specific topics of interest.

The paper is organized as follows: Section 2 provides some
historical background to the optimization areas covered. Section 3
gives an overview of the software development process, and discusses
attributes of 'quality' mathematical software, illustrating these
with specific examples. Section 4 deals with software primarily
intended to aid algorithm and code development, and discuss the idea
of a language for mathematical programming. Section 5 deals with
available optimization software for the areas covered here. A detailed
decision tree is given. Section 6 discusses the testing of software
and the bibliography is given in the final section.

We make no claims to being complete; but the author would
welcome feedback on important omissions and inaccuracies, particularly

with regard to material in Section 5.

T
= 7 ﬂ‘
. 4

| B

1
]

2. Background

Table 1 is designed to give the reader a time frame for develop-

ments in optimization. Some of the important theoretical and algorithmic

references are listed along with a few parallel developments in software
and computers, and the reader can superimpose his own set of favorite
topics.

Table 2, adapted from Wolfe [1975b], shows how our ability to

= S -

solve problems has increased substantially. The vertical axis repre-

" sents complexity of the problem and the horizontal axes lists different

areas of optimization.

For further historical details see the survey articles of

Dantzig [1977], Orchard-Hays [1977] and Wolfe [1975b].

L
. g N R

e T TS

o

e L

D r——

((LL6T) *T1B 32 Sstuuag) TOSZIN
((LL6T) saspuneg

3 y3elany) FA0D SONIW

(uuoBay) NOVANIKW

A1eaqyT uoriezyuwyldo TdN

OLE/XSAR

si13ajindwo) TayTeiRg TSHI “303foag ovN
MOVdsI1d-302f01d SIVN
249 “09€/SdW

00%9 200 “09€ WAl IKNS
UOFIBIBUI) PATYL

009€ 2@D ‘060L WHI

UOT3BIAUIH puUovag

T0L WEI (¥S6T) smox Q0T d1
*S*4°N 3I®e OViS (2S6T) smox QT d1

L1eaqy1 oVSad

ovVsaa ‘IOV ‘ovAad
‘OVAINN ‘OVING
uoj3IeIaU3) 3I8AT4

sM01 000T-6/06 d1
(966T) 103eBI2ua8 XTajew 3Isayd

%0, W41 (966T) smox 967 41

uorjezyuwyldy paureilsuo) ioj
OTAIW BTqeTIBA-(LL6T) TTIM0d “(SL6T) ueH

SUOTIBZTI03IDB]
-(%L61) siapuneg § Leiany ‘qnyoH
‘TI¥D $sysfTeuy 2oualiaauo)d-(T/6T) TIMod

SUOT31BZT10308F -(696T)

qnioo R sTa3lieg {uey3ueaSe] pajusulny
-(€L6T) I3TT23e008 “(696T) TTI=>MOd “(696T)
89u931s8ay fuorlezyurldp paureilIsuod-(696T)
Aeaany ¢999-(6961) I973uadae) 3 Ifpeqy
£3T1RUS4~(9/%96T) MOTWIOIIN 3 0IVETA

sjuatpead a3e8nfuo)-(496T) S3A33Y I3YD3IaT4
fuorlezyurldp paurea3Isuo)d-(£967T)

UOSTTM :STSATEUY 10113-(096T) UOSUTITTM
¢Burmmea8oxg JuaTpean-(096T) uasoy
{uorarsodwodaq-(0961) 23ToM-37zaueq
OTAISN 3TqeTIBA-(6S6T) UOPTARQ

*d"0-(6S6T) 23ToM

‘{Burumeal8oxg 19893ul-(8GeT) LIowon

SMOTJ YI0MIAN-(¥%S6T)
uosaa[ng R pioj <sjuarpeas 23e8nluo)

-(2S6T) T23¥°3S % saualsay {poyisy
x91duys 103 apod-(%/ZS6T) SAH-PIRYd1Q
PoyIa xarduys “*4°1-(L%6T) Br¥zaueq
£109Yy], sweH-(yh6T) UUBWNBNUOA

*d*1-(6€6T) UY23TAOIOJUEY
{109yl AL3yTEnbaul-(9€6T) UTNZION

(o¥81) 28eqqeg
$(€Z8T) a9Fanog {(LZLI) uolImeN

XYOFHL ® SWHLI¥OOTV

i!
Table 2 'a
107 1
£} 1978 :
3 10° /
E: # ;
10° - !
’ &
C
0
- 4 M 104 -
E] P
i | L
E
X 3
I 10 L
a T
| Y
|
k| I 102 -
1955 f
10 4 ;
E
DECOMPOSABLE . i : ; ¢ E
LP e UM QP Lc/ NLC/ :
NLO NLO
U.M. — Unconstrained minimization, QP-Quadratic Programming ;
LC/NLO -- Linear constraints, non-linear objective, NLC/NLO-non linear i
constraints and objectives §
Complexity -~ (number of rows + number of variables)
¥ -=- indicates the figure given is only a rough approximation between ‘

thé bounds indicated

TR

i e AT [N T ST Y

3. Quality Software

3.1. Overview of Software Development

The design of an item of mathematical software depends very
much upon the intended use of the software. We wish to stress the
distinction between implementations of an algorithm designed primarily
for studying the behavior of an algorithm, and implementations designed
primarily for solving problems. The former are called algorithm/code
oriented versions and'the latter user/problem. oriented versions. The
distinction is, of course, not clear cut, since algorithm/code oriented
versions can and should be used to solve practical problems, and user/
problem oriented versions can and should be used to study the encoded
algorithm. However an implementation will usually place emphasis on
one of these two goals; and often an algorithm/code oriented version
will be developed as a preclude to a user/problem oriented version.

An algorithm/code oriented version should not be construed to
mean a hastily thrown together version. Rather it indicates a version
in which emphasis is placed upon the goals of flexibility, generality
and modifiability, even if this results in a sacrifice of efficiency.
In a user/problem oriented version, increasing emphasis is placed upon
efficiently solving a wide class of problems and providing a wide range
of options. This may call for substantial reformulation and reorgani-

zation of the calculations to reduce overhead and circumvent numerical

difficulties.

T B TR T P T TSI TP S N T M T v e 2

We feel that insufficient attention has been paid to develop-
ing tools to aid the implementation of algorithm/code oriented versions
and this has contributed to the proliferation of untested algorithms
which abound in the literaturei‘ﬁThis will be discussed further in
Section 4. In contrast, a number of éoftware aids have been developed
to aid the process of tailoring a code to a particular compiler/machine
configuration, i.e., to develop portable versions. For further
details see Boyle [1976]). Since such aids can be applied to most
items of mathematical software and are not specialized to optimization,
we shall not discuss them further heqe.

For a more detailed discussion of the process of mathematical

software development see Nazareth [1978a].

3.2. Attributes of Quality Software

Both algorithm/code oriented and user/problem oriented software
should meet certain standards. What is it that characterizes 'quality'
software?

Recent efforts to develop good mathematical software, Rice
[1971], Smith et al. [1974], Ford and Hague [1974], identify
several attributes. We quote thes2 and illustrate them with specific
examples.

(a) Robustness refers to the ability of a computer program to

detect and gracefully recover from abnormal situations without unneces-

sary interruption of the computer run. In situations when a calculation

sudoe oy

VORPY WaE(e. Sy

A T B SRCETRATIV A YO

does fail, the code should fail gracefully. Robustness involves, for
example, the filtering out of improper arguments, the avoidance of
destructive overflows, and the reorganization of a calculation to mini-

mize the effect of rounding error.

Example 2: Cody [1976], Avoiding both destructive overflows and
n
non-destructive underflows in the computation of lxl -[Zi_1 xi 1/2.

The usual FORTRAN calculation proceeds as follows:

SuM = 0.0 DO
DO 10 I =1, N
SUM = SUM + X(I)**2
10 CONTINUE

XNORM = DSQRT (SUM)

SUM can overflow even though XNORM may be a machine repre-
sentable member. In order to avoid this, the calculation can be done
as follows, where we assume for convenience, that the largest element,

in absolute value, is X(1).

SUM = 1.0 DO
DO 10 I =2, N
A = X(I)/X(1)
SUM = SUM + A*A
10 CONTINUE

XNORM = DABS (X(I))*DSQRT(SUM)

Now x(I)/x(1) can underflow (non-destructively) leading to

troublesome interrupt messages. To avoid this the computation can be

further reorganized as follows:

SUM = 1.0 DO
B = DABS(X(1))
DO 10 I =2, N
A = 0.0 DO
IF (B + DABS(X(I)).NE.B)A = X(I)/X(1)
SUM = SUM + A*A
10 CONTINUE

XNORM = DABS (X(1))*DSQR1(SUM) .

Example 2: Reorganizing calculation to minimize effect of rounding
error. When variable metric methods were first suggested for solving
the problem minxe RD f(x), the calculation was stated in terms of
updating an approximation to the inverse Hessian H of f(x). Given

a step Ax 4 x* - x and the associated change of gradient of f(x),

Ag 4 Af (x*) - Af(x) g g* - g, a new approximation H* is developed,

for example, by the BFGS (see Broyden [1970]) update

H* = H + % [p Ax AxT - Ax AgT H-HAg AxT]
Ax Ag

mrsranre

e 1 p—

In theory H > 0 (i.e., positive definite) = H* > 0 whenever
AgT Ax > 0. However rounding error in the computation of H* can
destroy this property. Another difficulty is that even when H* > 0
but ill-conditioned, rounding error in computing the next direction of
search d* & -H* g* can result in d: g* > 0, where d: = —fo(H*g*) is
the computed search direction. See Gill, Murray and Pitfield [1972].
The above difficulties can be circumvented by reorganizing
the calculation following the suggestions of Gill and Murray [1972].
They suggest working with an approximation to the Hessian B which is
maintained in the factored form B = LDLT, where L 1is lower triangu-
lar and D diagonal. In this case we can ensure positive definite-
ness by keeping D > 0. In addition a bound on the condition number
of B can be improved by modifying D. See also the Example 2 under
Reliability.
(b) Reliability refers to the ability of an item of software
to perform a calculation both efficiently and accurately and to
reflect the basic characteristics of the algorithm e.g., its scale

invariancies.

Example 1: Estimating gradients of f(x) by finite differences. 1In
theory each component gj can be estimated by first order finite

differences

gy = [f(x + he,) - f(x)]/h

3

where h 1is an infinitesmal step.

10

(3.3)

Y ——— e, . e e e

T T Y T Ry

In finite precision arithmetic however this is a difficult

computation. A good routine must be designed with considerable care
and we state some of the issues which arise in designing such a

routine.

-= Choice of step length, h.
- Should h vary with each component?

- Should h be chosen to balance rounding and truncation? i

In this latter case estimates of second derivatives are needed to esti-

B e s

f ; mate truncation error. How are these obtained? Should h be estimated

:“ at every iteration or should it be only periodically recomputed in a

separate subroutine and held fixed in between calls to this subroutine.

—— Should a switch to central differences be made when forward dif- 4
ferences are insufficiently accurate?

-- Should the increment h be relative to |x,| or should it be

3

b | absolute? 1In the former case gj is invariant under a simple
|

scaling of variables xj > o x,, whilst in the latter case gj

3

is invariant under a translation of variables x =+ x + c.

-- Should gradients be estimated in a transformed space of variables?

i.e., consider the function
f(z) = £(x) + gT(z -x) + %(z - x)T B(z - x)

where B = (JJT)-1 and non-singular.

2 11

Contours of f(z) are illustrated in Figure 3.
If we make the transformation z = x + Jy, then £(z) trans-

forms to ?(y)
s T A 4
) =fx) +k y+Ty vy

where k = JT g. The contours of f(y) are illustrated in Figure 4.

ki are estimated by

f(x + J1 h) - f(x)
ki = h -

Nz

and g 1is then given by g = (JT)-l k.

- @

Figure 3 Figure 4

12

T T e

Example 2: Invariance w.r.t. transformations of variables. It is
well known that apart from the initial choice of the approximation,
the variable metric algorithm is invariant w.r.t. transformation of

the variables. However, if the algorithm is modified to ensure that

the search direction dk = -Hk 8, satisfies
T
Idk gkl > glgklldk| 3 for ¢ a small constant, (3.4)

(for example by modifying Hk suitably), then this destroys scale
invariance, since (3.4) is not invariant. For a fuller discussion,
see Powell [1976b].
(c) Structured refers to whether the program is designed along
the principles of good programming, i.e., whether it has a top to
bottom flow of control, is formatted to display its structure and so
on. See Dahl et al. [1972] and Kerninger and Plauger [1974]. | g
(d) Usability refers to the ease with which a user can choose »
a program and apply it to his problem. For example, how well designed
are the calling sequences and documentation. See Gill et al. [1977].
(e) Validity refers to the existence of evidence that the
software has performed well in a particular computer environment, and
to the existence of testing aids which demonstrate that the present
installation of software is performing as expected. We discuss testing

further in Section 6.

13

g R ARSI

(f) Transportability refers to whether an item of software can

be moved from one computer installation to another without degredation

of performance and with minimal change.

Example: Features of COMMON statement in FORTRAN which can hinder

transportability. A very complete discussion of difficulties which

arise in transporting FORTRAN programs is given in Smith [1976]. When

using the COMMON statement some of the difficulties which arise are:

-- The order of variables affects portability, e.g., some IBM machines
require that variables in a COMMON statement which use two storage
units, begin on an even word boundary, else aljgnment errors or a
degredation in efficiency can result.

-- Variables in labelled COMMON may become undefined upon execution
of a RETURN (or END) statement, unless there is a COMMON statement
for that block, in at least one of the higher level program units
in the chain of active programs.

-- Other inconveniences associated with COMMON are that variable
dimensioned entities cannot be used in COMMON, and that the size of
a labelled COMMON block may be required to be the same in each

program unit in which the COMMON block occurs.

14

4. Software Designed to aid Algorithm/Code Development

Implementing an optimization algorithm is a difficult and a
time consuming task. For this reason it is essential that the algo-
rithm or software developer be provided with suitable tools which
facilitate his task. wé can distinguish three approaches:

Approach 1. Develop a high level language, for example along
the lines of the Mathematical Programming Language (MPL) of Dantzig
et al. [1970]. The aim is to design a language in which highly
readable programs can be written and which parallels the venacular of
applied mathematics. This would make it possible to write programs
quickly and easily and would serve as a means of communicating ideas
precisely. In the early creative stages of algorithm development
such a language is an invaluable aid since one's intuition can now be
supplemented by hard computational results. This can then in turn
lead to new ideas. Such a language is also a valuable educational
aid. However, once the main features of an algorithm have been laid
out, a fundamental difficulty remains, namely that numerically sound
procedures are difficult to write in any language, no matter how
convenient. What is then needed is a good library of procedures,
tailored to optimization, from which an optimization algorithm can

be built. This is particularly useful when one wants to test out a

new algorithm on real life problems. Building optimization algorithms

from a library of procedures also makes for a more uniform comparison

of algorithms since their implementations can be made to differ only

& |
E |

in the essentials and test results are thus less subject to variations
in programming style. It is difficult for a new language to gain

wide acceptance and for compilers to be made available on a wide range
of machines. Often therefore, we have to fall back upon FORTRAN,
although other high level languages, e.g., PL-1 and ALGOL-68 are making
some headway.

Approach 2. Use individual components of a user /problem oriented
implementation (or optimization system) which has a modular design.
Examples in the area of Linear Programming are discussed in Nazareth
[1978]. For examples of such systems in the area of non-linear program-
ming see Muralidharan and Jain [1975], Hillstrom [1976]. The main
difficulty with this approach is that one has usually very limited
flexibility. Each component in a user/problem oriented system is
usually designed within the context of the overall system and often
utilizes a common data structure. Using a component on a stand alome
basis usually requires that it be substantially modified.

Approach 3. The idea behind the third approach has already
been mentioned. Here one seeks to develop a carefully specified
set of modules which can be viewed as being the 'primitives' or 'basic
operators' of a language for building optimization algorithms. Two
efforts along these lines are discussed in Nazareth [1977] and [1978].
The former describes a pilot system based upon a set of algorithms
developed by the author in the area of non-linear unconstrained optimi-

zation. Building upon this experience, a software organization and

t‘;
t
'
H
A

e L

development effort was undertaken in the area of Linear Programming,

as described in Nazareth [1978]. It is important to emphasize that

the development of a code requires careful craftmanship and should not
be viewed as the mere stringing together of modules. However if such
modules are carefully designed and correctly implemented, they can
greatly ease the task of implementing an algorithm and perhaps they
should be viewed as a way of developing an "artists sketch" of a code,
which can then be further refined. They also serve as a valuable means
of cooperation and communication between different researchers. Finally

they are a useful educational aid.

e ————————————— - —— T

P

s et 4

5. Optimization Software

In this section we give a detailed decision tree of the major
categories of optimization methods together with references to some
recent implementations and/or algorithms in each category. References
are given to journal articles or technical reports and implementations
are identified by a symbol indicating their source.

Available software varies widely in quality and we do not
set out here to make any value judgements. Clearly such a compact
presentation is also far from complete. Our more modest aim is to
provide the reader with some selected information on individual
items of software. Other surveys e.g., Dennis [1976], Dixon [1973],
Fletcher [1976], Wolfe [1975a], Wright [1978] should also be con-

sulted.

5.1. Some Major Sources of Optimization Software (Alphabetical)

[a] Argonne National Laboratory, Applied Mathematics Division([hp]-
Hillstrom's Package [1976] and [m]-MINPACK-1).

[b] Bell Telephone Laboratory, Murray Hill, New Jersey, (PORT
Library).

[h] Atomic Energy Research Establishment (A.E.R.E.) Computer
Science and Systems Division, Harwell, England.

(ibm] IBM Mathematical Subroutine Library (SL-MATH).

[imsl] International Mathematical and Statistical Libraries, Inc.

[w] Computer Center, University of Wisconsin, Madison.

D I ———

[nag] Numerical Algorithms Group (NAG) Library.
;f [nber] National Bureeu of Economic Research, Cambridge, Massachusetts
(now part of M.I.T.).
[noc] Numerical Optimization Center, Hatfield College of Technology,
Hatfield, Herts., England.
[npl] National Physical Laboratory, Division of Numerical Analysis
and Computing, Teddington, England. (The NPL Optimization

: Library is the most comprehensive collection of optimization

¥

3 software currently available.)
E [s] Computer Science Department, Stanford University.
[sol] Systems Optimization Laboratory, Department of Operations

Research, Stanford University.

B e T T ——

The symbol associated with each establishment in the above
list is used to identify the establishment in the Decision Tree.
o Note that software referred to in this manner is not necessarily
available for general distribution. Conversely when an algorithm
in the Decision Tree does not have a symbol associated with it or
when the symbol [au] is used, an implementation may be available from

the author(s) of the cited reference.

19

([s]1[€L6T] B1dUa10g 3 qnyo09H)

([sL6T] y3aezeN ([1du]([q9/eT] Aeaany

9 IT1O ‘[asqullLL6T] °T® 32 Syuusq)

([w] [€96T] 3Ipaenbaer-81aquaa)

([du] [u] [eTL6T] TTM04)

([6961] 4£a1puads)

([8L6T] 3Iurol 3 TT2MOJ)

([8L6T] T¥mxew ‘[LL6T] 3Iurol)

([L61] ouueys “[y][c/6T] TT3MOd)
([vL61] 2310M)
([LL6T1] uesuaaog

3 2a0K ‘[GL6T] uewaaxg 3 I3Yd3IaT4
‘[1du)[zL6T] ua%dTd ¥ Leaany ‘ITI9)

[ne][q‘e/L6T] YI2aezeN R uoplAe(Q)
‘[1du][ezL6T] Aeiany R TTT9)
([S][ecL6T] 3ueag “[y][%96T] TT2MOd)

([1L6T] uosurydany
3 uosuryaed ‘[G96T1] PeaW % I3PT3N)

IT1EVIVdaS—

L3
TVNAISTY momﬁﬁn|ww_

SLNVIYVA
NOIMAN SsSn
== TVAQISTd TIVKS

(r‘3)
/3

NVIEOOVL Ol S3Lvadn

zoasmzuum<aqu||4 |

ﬂ‘WK

Houvas Lomure— 3

NOLMAN EM&U%HJ&

OT¥LAN
4T9VINVA ASYVAS (3°3)

INAIQVEOD FLVONCNOd—yg.)

o

JA®h] 1w

€
MAQ<HHzmmm&hHQIZOZIL /3
(4°3°3)
NOLMIN QNHMHQOEIIII!\A)
aANIV1
)R AACI MJ£H¢<>|||~MJMv|\WI.,
aasvd WU<UD.—,ZOUI||_ ROIQTH a2 DX
3 /TIVRS (X)3 upm
HO¥VAS HU&MHQIIII_ANV m

291] uofsyoad

STIVNDS 1SVA1
WVANIT-NON

NOILVZIWILdO
TINIVILSNOODNN

e WY 7 SFIT VR PEVEISGR TS

20

ol

FANLONULS
ONILIOTdX3
019 81z3jueq ¢°8-
([8L6T] PTOI24 ® 37 a ?) S Gorvas v
NOodn @asve _
S
TANLONYLS
onEmo,Eooma.Il._
ne Of ‘89
([ne}[%L6T1] oH) NOdn QASVE ONIZITILIN
(0LE/XSdN "33 ‘sapod TeFII3WWO)) ATVOS FOUV'T =
0< X
(Ire] ([826T) u3aaezeN “([u][9L61] PF=Y i q = Xy 3ey3 yons
‘{10s][LL6T] sispuneg 3 yselany) PTG it , CRNLONALSN X5 Uy
([vL61]
uaspel ‘[LL6T] UTTD ‘[8L61] sT°3aeq ATVOS TIVKH
‘[1du] [qsL6T] Aexany 3 TT1T9 “[Tsur])
([%£6T] PT®4 % TT2M04 “SF3Ian)) NOLMAN Emmoﬂnll._

([846T] TImaew ‘[0L6T] 312qnydS) NOIMAN-ISYNO ummcmmlll_ s

ud 32X

([oL6T] 3IrTOoquUIayy ® e8ajzap ¢°3°a 23§ zoEszﬂq.
([w] “[dy]“[y]
[0L6T] TTomog 238 ‘uaploag - [[3amod) NOLMAN-ISVN
([w](qgL6T] Iuvag &
“[dy] [tsur][996T] umoig) adsve ¥0/N'E 3
([a6S6T] @23ToM) INVOE

0 = (X)j aat0g

- e Rlma s LR £

ONIWWVYO0Nd
UVANI'T

SNOILVNDE
YVANIT-NON
d0 SWALSAS

40 NOILNTOS

21

B v v

F,

Ay

Sy g

—‘-‘,ﬁ’f" "

([9,61) urer a9s ‘saspunes § uopse] ‘uyer)

([re][9,6T) *T1e 32 uopseET]
‘[ne][16T][696T] noBIny 3 ar1pEQY)

([8Lé1] 3uBTam 3 Leaany ¢[ne}
[£L6T] TToMmod “[GL6T] ueH ‘[d0u][ZL6T]
s8814d ‘[696T] Aeaany °[£96T] UOSTTIM)

([ne][sL6T] uasoy)

([Tdu][q/L6T)
Leaang 9 TT1O ‘[U){SL6T] I2Ud3IaTJ)

([m][TL6T] aesnaxy 3 uasoy
‘{oc61] ®ws3yooT ‘[ne]([TL6T] “TB 32
I9pueTAN ‘[%96T] NOTFWIO)ION R O0OIOBTJ)

([Tos][LL6T]) saspunes 3 ydelany)

([1du] [e9,6T) Aeaany % TTT9)

([Tdu)l [e9£6T] Aeaany 3 TTTO ‘[SL6T]
1sulem 3 uasoy ‘[yY][SL6T] L3T1yong)

([T°8][9L6T] uyTWOL)

([LL6T) °1330) “*8°2 99s)

([1du][esL61] Aeaany
2 IT1O ‘[u)[0L6T] adyd3914)

T

INAIAVYO aaonaay mu&<ﬂl4

INIIAVEO aIdnaayd sznmz\AA<zmlL

SWATE0¥ddns
ONTIWAVEDOYd OILVY

-avnd/ NVIONVIOVI

9 aaLdarodd

SKATI0¥ddNs

QINIVILSNOD ATIVANIT

\oz<Hoz<mu<A
QaLIIrodd

NVIONVIOVT

—_—

QILNIWONV

NVIONVIOVT
NO aasvd

S

0> (x)°

YITIEVE/ ALTVNA &

OINLAW ATAVIEVA

(83)

/INAIAVED QAdNATH
/Q3aLIIrodd

NOILMAN QIIJIA

OINLEW FATAVIEVA

/INIIAVIO nmusnmxllldwdwv\w

/Q3LIIArodd

ALTYVINIWA TdWOD

(28°3)
/(3%3

(x)3 um

q > xy

NOdN aIsvd
XdANOD
_ ATIYVRIYd
JOHLIW XdTdWIS 29UV

NOdfl 4asvd

SAIDALVILS

0
JLINIJFANI/XIANOD | 9

®3 tm

eyl yons

L3S FAILOV

TTVKHS X 9

X) X u
J Tu

ONIWWVIO0Nd
YVINIT-NON

NOILVZIWILdO
QINIVILSNOD
ATIVANIT

ONTHRVEO0¥d
011V¥avNd

22

e g P e T

Footnotes to Decision Tree

1

A particular case of this problem is that of 1 - D optimization,
both stand alone and for use within n-dimensional optimization
routines. See e.g., Brent [1973a], Gill and Murray [1974].

The symbols f, g, B and J are used to indicate the type of

information about the function that is usually required when

f stands for function value
g stands for gradient
B stands for Hessian

J stands for Jacobian.

Thus e.g., £/(f,g) means function value or (function value and
gradient).

Currently a very active research area. For an overview see
Nazareth and Nocedal [1978].

The distinction between small, medium and large scale is as
follows. In small scale L.P. no account is taken of the sparsity
of the L.P. matrix, i.e., it is assumed that the matrix is dense
and is usually stored as a 2 - D array. In medium scale L.P. it
is assumed that the L.P. matrix will fit in core provided only
non-zeros are stored in packed form, e.g., as a column list/row
index data stfucture. Finally, large scale systems e.g., MPSX/370
make extensive use of secondary storage.

For a good overview see Dantzig [1968], Geoffrion [1970].

Terminology of Murray and Wright [1978].

23

6. Testing

Evaluating optimization routines is a difficult task, and one

which requires both qualitative and quantitative measures of perfor-
mance. A fundamental requirement is that the testing environment
simulate an actual environment of use since, if it did not, the evalua-
tion would be valid but in all likeiihood, irrelevant. Furthermore,
the overall quality of a code can only be gauged after investigating
a broad range of issues, for example, efficiency, robustness, usability,
usefulness of documentation, ability of fail gracefully in the presence
of user abuse, rounding error difficulties or violation of underlying
assumptions. A testing method usually concentrates on efficiency and
robustness, evaluating these by exercising the code on a set of well }f
chosen and hopefully realistic problems.
To date the most common method of evaluating optimization
routines has become known as 'battery' or 'simulation' testing.
Comprehensive studies along these lines are described in
Colville [1968], Hillstrom [1977], Himmelblau [1972]. Battery testing
has two basic components, namely a set of test problems and a set
of measures of performeznce. The approach is subject to limitatioms
which sometimes make a clear ranking of methods difficult to discern.
For example, it is difficult to know how much confidence should be
attached to a particular measure of performance when slight variation
of starting point or geometry of test problem leads to a substantial
variation in the measure of performance. For a discussion of these

difficulties see Nazareth and Schlick [1976]. This has motivated

D e I e oS et . s 3t

|
1
E
]
Al

the approach which employs "problem families'" or '"parameterialized

test problems" introduced originally into the evaluation of routines
for numerical quadrature by Lyness and Kaganove [1976]. See also
Dembo and Mulvey [1976]. A careful a priori experimental design and
the use of statistical sampling theory and analysis are implicit in
this approach, which is sometimes referred to as 'pefformance profile’
testing to differentiate it from 'battery' testing.

A second distinction which it is worth emphasizing is the dis-
tinction between algorithm and software evaluation. In particular
testing an algorithm usually places most emphasis on efficiency whilst
software evaluation attaches a great deal of importance to reliability
and robustness.

Finally it is worthwhile making a distinction between decentral-
ized and centralized testing of routines. The former is illustrated
by the original study of Colville [1968], and the latter is illustrated

by the study of Hillstrom [1977]. 1In decentralized testing a set of

software tools are usually made available to developers of routines
who then use them to develop information about how well their routines
perform. For an example in the area of non-linear programming see

Nazareth [1977 where the testing tools comprise:

(1) Subroutines which return function and/or gradient information
for a set of different test functions.
(i1) Subroutines which return starting point and expected solution

(1f known), for each function.

25 ' ;

e

(111) Report writer whose features include:
—=- Flexible and convenient way of specifying which functions
to test.
== Replaceable section of code for routine being tested.
== Interface subroutines between user form of function call
and subroutines in (i) above.

== Output summaries and graphical display.

Systems Optimization Laboratories (see Dantzig et al. [1973])
are a natural environment for centralized testing, i.e., gathering
and testing a number of routines at one particular site. This usually
requires a substantial commitment of resources, but it makes for a much
more uniform comparison and permits the use of much more stringent
test problems, in particular problems arising from real life applica-
tions (see Dantzig and Parikh [1977]).

Until fairly recently, the development of a testing methodology
for optimization routines has been sorely neglected. However, the
crucial importance of the subject is now being recognized. For a
description of some recent work see Bus [1977], Crowder, Dembo and
Mulvey [1977], Nash [1975], More et al. [1978], and consult the
minutes of meetings of the Committee on Algorithms of the Mathematical

Programming Society.

26

R

T ——

Bibliograph

Abadie, J. and Carpentier, J. (1969), "Generalization of the Wolfe
Reduced Gradient Method to the Case of Non-linear Constraints,"
in Optimization, R. Fletcher, (ed.), pp. 34-39, Academic Press,
London and New York.

Bartels, R.H. (1978), "A Penalty Linear Programming Method Using Reduced
Gradient/Basis Exchange Techniques," Johns Hopkins University,
Math. Sci. Dept., Report No.

Bartels, R.H. and Golub, G.H. (1969), '"The Simplex Method of Linear
Programming Using LU Decomposition,'" Comm. ACM 12, pp. 266-268.

Biggs, M.C. (1972), "Constrained Minimization Using Recursive Equality
Quadratic Programming," in Numerical Methods for Non-linear
Optimization, F.A. Lootsma, (ed.), pp. 411-428, Academic Press,
London and New York.

Boyle, J.M. (1976), "Mathematical Software Transportability Systems —-
Have the Variations a Theme?" In Portability of Numerical Software,
W. Cowell, (ed.), pp. 305-360, Springer-Verlag Lecture Notes in
Computer Science, Berlin-Heidelberg-New York.

Brent, R.P. (1973a), Algorithms for Minimization Without Derivatives,
Prentice-Hall, Englewood Cliffs, New Jersey.

Brent, R.P. (1973b), "Some Efficient Algorithms for Solving Systems
of Non-linear Equations," SIAM J. Numer. Anal. 10, pp. 327-344.

Brown, K.M. (1966), "A Quadratically Convergent Method for Solving
Simultaneous Nonlinear Equations," Purdue University, Ph.D.
Dissertation, Lafayette, Indiana.

Broyden, C.G. (1970), "The Convergence of a Class of Double-rank
Minimization Algorithms, Part 1 and 2," J. Inst. Math. Applics. 6,
76-90, pp. 222-231.

Buckley, A.G. (1975), "An Alternate Implementation of Goldfarb's
Minimization Algorithm," Math. Prog. 8, pp. 207-231.

Bus, J. (1977), "A Proposal for the Classification and Documentation
of Test Problems in the Field of Nonlinear Programming," Proceedings
Of NATO Advanced Study Institute on the Design and Implementation
of Optimization Software.

27

T ST T v

e e et e A A S et S o PR RS ST

et S8

Cline, A.K. (1977), "Two Subroutine Packages for the Efficient Updating
of Matrix Factorizations," University of Texas at Austin, Department
of Computer Science Report TR-68.

Cody, W.J. (1976), "Robustness in Mathematical Software', Proceedings
of the Ninth Interface Symposium on Computer Science and Statistics,
PP. 76-84, Prindle, Weber and Schmidt, Inc. i

; Colville, A.R. (1968), "A Comparative Study of Nonlinear Programming
9 Codes," Report No. 320-2949, IBM New York Scientific Center.

e e

Cottle, R.W. (1977), "Fundamentals of Quadratic Programming and Linear
: Complementarity," Systems Optimization Laboratory, Technical Report
E ! SOL 77-21, Department of Operations Research, Stanford University.

Crowder, H.P., Dembo, R.S. and Mulvey, J.M. (1977), "Guidelines for 3
Reporting Computational Experiments in Mathematical Programming,' r
Working Paper HBS 77-8 (rev.), Graduate School of Business, Harvard)
University.

Curtis, A.R., Powell, M.J.D. and Reid, J.K. (1974), "On the Estimation
of Sparse Jacobian Matrices," J. Inst. Math. Applics. 13, pp. 117-119.]

Dahl, 0.J., Dijkstra, E.W. and Hoare, C.A.R. (1972), Structured
Programming, Academic Press, New York.

Dantzig, G.B. (1948), "Programming in a Linear Structure," USAF,
Washington, D.C.

Dantzig, G.B. (1968), "Large-Scale Linear Programming," in Mathematics
: of the Decision Sciences, G.B. Dantzig and A.F. Veinott, Jr., (eds.),
: | pp. 77-92, A.M.S., Providence, R.I.

Dantzig, G.B. et al. (1973), "On the Need for a Systems Optimization
Laboratory," Optimization Methods for Resource Allocation,
English University Press, London.

Dantzig, G.B. (1977), "Linear Programming, Its Past and Its Future,"
! Science Perspectives.

Dantzig, G.B., Eisenstat, S.C., Magnanti, T.L., Maier, S.F., McGrath,
M.B., et al. (1970) "MPL -- Mathematical Programming Language --
Specification Manual," Computer Science Department, Stanford
University, Technical Report STAN-CS-70-187.

Dantzig, G.B. and Parikh, S.C. (1977), "At the Interface of Modeling
and Algorithms Research,'" Systems Optimization Laboratory Report
SOL 77-29, Department of Operations Research, Stanford University.

28

T O R P TR W YRR P
.

A NS T

Dantzig, G.B. and Perold, A. (1978), "A Basis Factorization Method
for Block Triangular Linear Programs," Systems Optimization
Laboratory Report SOL 78-7, Department of Operations Research,
Stanford University.

Dantzig, G.B. and Wolfe, P. (1960), "Decomposition Principle for Linear
Programs," Operations Research 8, No. 1, pp. 101-111.

Davidon, W.C. (1959), '"Variable Metric Method for Minimization,"
Argonne National Laboratory, Report No. ANL-5990 (Rev.).

Davidon, W.C. (1975), "Optimally Conditioned Optimization Algorithms
Without Line Searches," Math. Prog. 9, pp. 1-30.

Davidon, W.C. and Nazareth, L. (1977a), "OCOPTR -- A Derivative Free
FORTRAN Implementation of Davidon's Optimally Conditioned Method,"
ANL-AMD Technical Memo. No. 303, Applied Mathematics Division,
Argonne National Laboratory.

Davidon, W.C. and Nazareth, L. (1977b), "DRVOCR - A FORTRAN Implementa-
tion of Davidon's Optimally Conditioned Method,'" ANL-AMD Technical
Memo. No. 306, Applied Mathematics Division, Argonne National
Laboratory.

Dembo, R. and Mulvey, J.M. (1976), '"On the Analysis and Comparison of
Mathematical Programming Algorithms and Software," Proceedings of
the Bicentennial Conference on Mathematical Programming, pp. 106-
116, (to appear).

Dennis, J.E. (1976), "Non-linear Least Squares and Equations," A.E.R.E. {
Harwell, Computer Science and Systems Division, CSS 32. |

Dennis, J.E., Gay, D.M. and Welsch, R.E. (1977), "An Adaptive Nonlinear
Least-squares Algorithm," N.B.E.R. Working Paper No. 196, Cambridge,
Massachusetts. (Also available as Technical Report No. 142,

MIT Operations Research Center.)

e il

Dixon, L.C.W. (1973), "Nonlinear Optimization: A Survey of the State
of the Art," Numerical Optimization Center, Technical Report 42,
The Hatfield Polytechnic.

Fiacco, A.V. and McCormick, G.P. (1964), "Computational Algorithm for
the Sequential Unconstrained Minimization Technique for Non-linear
Programming," Management Science 10, pp. 360-366.

Fiacco, A.V., and McCormick, G.P. (1966), "Extensions of SUMT for Non-
linear Programming: Equality Constraints and Extrapolation,"
Management Science 12, pp. 816-829.

Fletcher, R. and Reeves, C.M. (1964), "Function Minimization by Con-
jugate Gradients," Comput. J. 7, pp. 149-154.

Fletcher, R. (1976), "Methods for Solving Nonlinearly Constrained
Optimization Problems," Proceedings of York Conference on '"State
of the Art in Numerical Analysis," D. Jacobs, (ed.).

Fletcher, R. (1970), "A FORTRAN Subroutine for Quadratic Programming," :
A.E.R.E., Harwell Report No. R6370. i

Fletcher, R. (1975), "An Ideal Penalty Function for Constrained i
Optimization," J. Inst. Math., Applics. 15, pp. 319-342. %

Fletcher R. and Freeman, T.L. (1975), "A Modified Newton Method for
Minimization," University of Dundee, Report No. 7. .

Ford, L.R. and Fulkerson, R.E. (1954), "Maximal Flow Through a Network,"
The RAND Corporation, Paper P-605.

Ford, B. and Hague, S.T. (1974), "The Organization of Numerical
Algorithms Libraries," in Software for Numerical Mathematics,
D.J. Evans, (ed.), Academic Press, pp. 357-372.

Geoffrion, A.M. (1970), "Elements of Large Scale Mathematical Program- I
ming," Management Science, 16, No. 11, pp. 652-691. 1

Gill, P.E. and Murray, W. (1972), "Quasi-Newton Methods for Unconstrained
Optimization," J. Inst. Math. Applics. 9, pp. 91-108.

Gill, P.E. and Murray, W. (1974), "Safeguarded Steplength Algorithms
for Optimization Using Descent Methods," National Physical
Laboratory, Report NAC 37.

Gill, P.E. and Murray, W. (1976a), '"Linearly Constrained Problems
Including Linear and Quadratic Programming," in Proceedings of
York Conference on '"State of the Art in Numerical Analysis,"
D. Jacobs, (ed.).

Gill, P.E. and Murray, W. (1976b), "Algorithms for the Solution of
the Non-linear Least Squares Problem,'" National Physical Laboratory,
Report NAC 71.

Gill, P.E. and Murray, W. (1977a), "Numerically Stable Methods of

Quadratic Programming," National Physical Laboratory, Report
NAC 78.

Gill, P.E. and Murray, W. (1977b), "A Brief Guide to the Numerical ?
Optimization Software Library," NPL Algorithms Library Document, :
DNAC, National Physical Laboratory, England.

30

Gill, P.E., Murray, W. and Picken S.M. (1972), "The Implementation
of Two Modified Newton Algorithms for Unconstrained Optimization,"
National Physical Laboratory, Report NAC 24.

Gill, P.E., Murray, W. and Pitfield, R.A. (1972), "The Implementation
of Two Revised Quasi-Newton Algorithms for Unconstrained Optimiza-
tion," National Physical Laboratory, Report NAC 1ll1.

Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A. (1974),
"Methods for Modifying Matrix Factorizations," Math. Comput. 28,
pp. 505-535.

e e —

Gill, P.E., Murray, W., Picken, S.M. and Wright, M.H. (1977), "The
Design and Structure of a FORTRAN Program Library for Optimization,"
Systems Optimization Laboratory, Technical Report SOL 77-7,
Department of Operations Research, Stanford University.

Golub, G.H. and Pereyra, V. (1973), "The Differentiation of Pseudo- |
Inverse and Non-linear Least Squares Problems whose Variables i
Separate,' SIAM J. Numer. Anal. 10, pp. 413-432.

Gomory, R.E. (1958), "Essentials of an Algorithm for Integer Solutions
to Linear Programs," Bull. Amer. Math. Soc. 64, No. 5.

Guigou, G. (1971), "Presentation et Utilization du Code GREG," s
Note HI582/2, Electricite de France, 12 Av. de la Liberation -- 92 !
Clamart, France.

Han, S.P. (1975), "A Globally Convergent Method for Nonlinear Program-
ming," Report No. 75-257, Department of Computer Science, Cornell
University.

for General Nonlinear Programming Problems,'" Math. Prog. 11,

|

'i Han, S.P. (1976), "Superlinearly Convergent Variable Metric Algorithms
|
' pp. 263-282.

Hestenes, M.R. (1969), "Multiplier and Gradient Methods," J.0.T.A. 4,
pp. 303-320.

Hestenes, M.R. and Steifel, E. (1952), '"Methods of Conjugate Gradients
for Solving Linear Systems,'" J. Res. Nat. Bur. Stan. 49,
pp. 409-436. .

Hillstrom, K. (1976), "Optimization Routines in AMDLIB," ANL-AMD
Technical Memo. No. 297, Applied Mathematics Division, Argonne
National Laboratory.

31

R e s i

g Gaibeg o e R

Hillstrom, K. (1977), "A Simulation Test Approach to the Evaluation
of Nonlinear Optimization Algorithms,' ACM Trans. Math. Software 3,
No. 4, pp. 305-315.

Himmelblau, D.M. (1972), Applied Nonlinear Programming, McGraw-Hill,
New York.

Ho, J.K. (1974), "Nested Decomposition of Large Scale Linear Programs
with the Staircase Structure," Systems Optimization Laboratory,
Report 74-4, Department of Operations Research, Stanford University.

Jain, A. (1976), “"The Solution of Nonlinear Programs Using the
Generalized Reduced Gradient Method," Systems Optimization
Laboratory, Report SOL 76-6, Department of Operations Research,
Stanford University.

Kantorovitch, L.V. (1939), "Mathematical Methods in the Organization
E and Planning of Production," translated in Manag. Sci. 6, (1960),
PP. 366-422.

Kerninger, B.W. and Plauger, P.J. (1974), The Elements of Programming
Style, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.

Lasdon, L.S., Waren, A.D., Jain, A. and Ratner, M. (1976), "Design
and Testing of a Generalized Reduced Gradient Code for Nonlinear
Programming," Systems Optimization Laboratory, Report SOL 76-3,
Department of Operations Research, Stanford University.

Lootsma, F.A. (1970), "Boundary Properties of Penalty Functions for
Constrained Minimization," Phillips Res. Reports, Suppl. No. 3.

e S T T ——————————

Lyness, J.N. and Kaganove, J.J. (1976), "Comments on the Nature of
Automatic Quadrature Routines,” ACM Trans. Math. Software 2,
No. 1, pp. 65-81.

Madsen, R.E. (1974), "Users Manual for SEXOP (Subroutines for Experi-
mental Optimization),”" Release 4, Sloan School of Management,
Massachusetts Institute of Technology.

Marquardt, D.W. (1963), "An Algorithm for Least Squares Estimation
of Non-linear Parameters," SIAM J. 11, pp. 431-441.

Marwil, E.S. (1978), "Exploiting Sparsity in Newton-like Methods,"
Ph.D. Thesis, Report TR 78-335, Computer Science Department,
Cornell University.

More, J.J. and Sorensen, D. (1977), "On the Use of Directions of
Negative Curvature in a Modified Newton Method," ANL-AMD Technical
Memo. 319, Applied Mathematics Division, Argonne National Laboratory.

More, J.J., Garbow, B. and Hillstrom, K.H. (1978), "Testing Uncon-
strained Optimization Software,'" ANL-AMD Technical Memo Mo. 324,
Applied Mathematics Division, Argonne National Laboratory.

Motzkin, T.S. (1936), Doctoral Thesis, University of Zurich.

Muralidharan, R. and Jain, R.K. (1975), '"MIN: An Interactive Educa-
tional Program for Function Minimization," Technical Report 658,
Division of Engineering and Applied Physics, Harvard University.

Murray, W. (1969), "An Algorithm for Constrained Optimization," in
Optimization, R. Fletcher, (ed.), Academic Press, New York and London.

Murray, W. and Wright, M.H. (1978), "Projected Lagrangian Methods
Based on the Trajectories of Penalty and Barrier Functions,"
Systems Optimization Laboratory, Report SOL 78-23, Department of
Operations Research, Stanford University.

Murtagh, B.A. and Saunders, M.A. (1977), "MINOS -- A Large Scale
Nonlinear Programming System (for Problems with Linear Constraints),
Users Guide," Systems Optimization Laboratory, Report SOL 77-9,
Department of Operations Research, Stanford University.

Mylander, W.C., Holmes, R.L. and McCormick, G.P. (1971), "A Guide
to SUMT-Version 4," Research Analysis Corporation Report RAC-P-63.
Doc. AD-731391, National Technical Information Service, Springfield,
Virginia.

Nash, J. (1975), Bibliography of Non-linear Least Squares (microfiche).

Nazareth, L. (1977), "Minkit -- An Optimization System,'" ANL-AMD
Technical Memo. No. 305, Applied Mathematics Division, Argonne
National Laboratory.

Nazareth, L. (1978), "Modules to aid the Implementation of LP Algorithms,"
Systems Optimization Laboratory Report SOL 78-28, Department of
Operations Research, Stanford University. '

Nazareth, L. (1975), "A Hybrid Least Squares Method," ANL-AMD Technical
Memo. No. 254 (rev.), Applied Mathematics Division, Argonne National
Laboratory, (to appear in A.C.M. Trans. on Math. Softw.).

Nazareth, L. and Nocedal, J. (1978), "A Study of Conjugate Gradient
Methods," Systems Optimization Laboratory Report SOL 78-29,
Department of Operations Research, Stanford University.

33

g

Nazareth, L. and Schlick, F. (1976), "The Evaluation of Unconstrained
Optimization Routines," Proceedings of Bicentennial Conference on
Mathematical Programming, N.B.S., Gaithersburg.

Nelder, J.A. and Mead, R. (1965), "A Simplex Method for Function
Minimization," Comput. J. 7, pp. 308-313.

Orchard-Hays, W. (1954), "A Composite Simplex Algorithm -- II," The
RAND Corporation, Research Memo. Rm-1275.

Orchard-Hays, W. (1977), "History of Mathematical Programming Systems,"
(manuscript).

Ortega, J.M. and Rheinboldt, W.C. (1970), Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York-San Francisco-
London.

Parkinson, J.M. and Hutchinson, D. (1971), "An Investigation into
Variants of the Simplex Method," in Numerical Methods for Nonlinear
Optimization, F.A. Lootsma, (ed.), Academic Press, London and
New York, pp. 115-135.

Powell, M.J.D. (1964), "An Efficient Method for Finding the Minimum
of a Function of Several Variables Without Calculating Derivatives,"

Comput. J. 7, pp. 155-162.

Powell, M.J.D. (1969), "A Method for Nonlinear Constraints in Minimiza-
tion Problems," in Optimization, R. Fletcher, (ed.), Academic Press,
London and New York, Chapter 19.

Powell, M.J.D. (1970), "A FORTRAN Subroutine for Solving Systems of
Non-linear Algebraic Equations," in Numerical Methods for Nonlinear
Algebraic Equations, P. Rabinowitz, (ed.), Gordon and Breach,
pp. 115-161.

Powell, M.J.D. (1971a), A.E.R.E., Harwell Library Subroutine, VAOS5A.

Powell, M.J.D. (1971b), "On the Convergence of the Variable Metric
Algorithm," J. Inst. Math. and Applics. 7, pp. 21-36.

Powell, M.J.D. (1975), "Restart Procedures for the Conjugate Gradient
Method," A.E.R.E. Harwell, Computer Science and Systems Division,
Report No. CSS 24.

Powell, M.J.D. (1976a), "Algorithms for Non-linear Constraints that
use Lagrangian Functions," Presented at the Ninth International
Symposium on Mathematical Programming.

- A

W i

R

Powell, M.J.D. (1976b), "A View of Unconstrained Optimization," in
Optimization in Action, L.C.W. Dixon, (ed.), pp. 117-152, Academic
Press, London-New York-San Francisco.

Powell, M.J.D. (1977), "A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations," presented at the 1977 Dundee Conference
on Numerical Analysis.

e —

Powell, M.J.D. and Toint, Ph.L. (1978), "On the Estimation of Sparse
Hessian Matrices," Report DAMTP 78/NAl, University of Cambridge.

Reid, J.K. (1976), "FORTRAN Subroutines for Handling Sparse Linear
Programming Bases,'" A.E.R.E. Harwell Report R 8269.

Rockafellar, R.T. (1973), "A Dual Approach to Solving Nonlinear
Programming Problems by Unconstrained Optimization,'" Math. Prog.
5, pp. 354-373.

Rice, J.R. (1971), "The Challenge for Mathematical Software," in
Mathematical Software, J.R. Rice, (ed.), Academic Press, New York
and London, pp. 27-41.

Rosen, J.B. (1960), "The Gradient Projection Method for Non-linear Vo
Programming," Part I: Linear Constraints, SIAM J. Appl. Math. 8,
pp. 181-217; Part II: Non-linear Constraints, J. Soc. Ind. Appl.
9, pp. 514-532.

Rosen, J.B. and Kreuser, J.L. (1971), "GPM/GPMNLC Extended Gradient
Projection Method Nonlinear Programming Subroutines," Academic
Computing Center, The University of Wisconsin, Madison, Wisconsin.

Rosen, J.B. and Wegner, S. (1975), 'The GPM Nonlinear Programming
Subroutine Package; Description and User Instructions,'" Technical
Report 75-9, Computer Science Department, University of Minnesota.

Rosen, J.B. (1977), "Two Phase Algorithm for Nonlinear Constraint
Problems," Technical Report 77-8, Computer Science Department,
University of Minnesota.

Schubert, L.K. (1970), "Modification of a Quasi-Newton Method for
Non-linear Equations with a Sparse Jacobian," Math. Comp. 24,
pp. 27-30.

Shanno, D.F. (1977), "Conjugate Gradient Mqthods with Inexact Searches,"
MIS Technical Report No. 22, University of Arizona, Tucson.

Smith, B.T., Boyle, J.M. and Cody, W.J. (1974), "The NATS Approach to
Quality Software," in Proceedings of IMA Conference on Software for
Numerical Mathematics, J. Evans, (ed.), Academic Press, pp. 393-405.

j
35 :

-

Smith, B.T. (1976), "Fortran poisoning and Antidotes,' In Portability
of Mathematical Software, W. Cowell, (ed.), Springer Verlag Lecture
Notes in Computer Science, Berlin-Heidelberg-New York, pp. 178-256.

Spendley, W. (1969), '"Nonlinear Least Squares Using a Modified Simplex
Minimization Method," in Optimization, R. Fletcher, (ed.), Academic
Press, London and New York, pp. 259-270.

Staha, R.L. and Himmelblau, D.M. (1976), "Evaluation of Constrained
Non-linear Programming Techniques,' (manuscript), Department of
Chemical Engineering, University of Texas, Austin.

ST YA A P e .77 e

Toint, Ph.L. (1977), "On Sparse and Symmetric Matrix Updating Subject
to a Linear Equation,' Department of App. Math. and Theoretical
Physics, University of Cambridge, Report No. DAMTP 77/NAl.

Tomlin, J.A. (1976), '"User's Guide for LCPL," Systems Optimization
Laboratory, Technical Report SOL 76-16, Department of Operations
Research, Stanford University.

Von Neumann J. and Morgenstern, O. (1944), Theory of Games and Economic
Behavior, Princeton University Press, Princeton, New Jersey.

Wilkinson, J.H. (1960), '"Rounding Errors in Algebraic Processes,"
Information Processing, pp. 44-53.

Wilson, R.B. (1963), "A Simplicial Algorithm for Convex Programming,"
Ph.D. Thesis, Graduate School of Business Administration, Harvard

University.

Wolfe, P. (1959a), "The Simplex Method for Nuadratic Programming,"
Econometrica, 27, pp. 382 et seq.

Wolfe, P. (1959b), "The Secant Method for Simultaneous Nonlinear
Equations," Comm. ACM 2, pp. 12-13.

Wolfe, P. (1974), "A Method of Conjugate Subgradients for Minimizing
Non-differentiable Functions,'" Report RC 4857 (#21613), IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, 10598.

] Wolfe, P. (1975a), "Optimization: Concepts and Software," (manuscript).

Wolfe, P. (1975b), "Optimization," COSERS Panel on Numerical Computation,
(draft manuscript).

Wright, M.H. (1978), "A Survey of Software for Nonlinearly Constrained
: Optimization," Systems Optimization Laboratory, Report SOL 78-4, k
] Department of Operations Research, Stanford University. 3

. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ (NSTR ON:
REPORT DUCUMENTATION PAGE | __BEropE Jrpocd et e, T
[T REPORT NUMSER 2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
SOL 78-32 4
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
SOFTWARE FOR OPTIMIZATION
Technical Report
6. PERFORMING ORG. REPORT NUMBER
SOL 78-32
7. AUTHOR(s) §. CONTRACT OR GRANT NUMBER(#)
L. Nazareth NO0014~75-C-0267 5
[3. PERFORMING ORGANIZATION NAME AND ACORESS 0. PROGRAM ELE) PROGRAM ERLGBEN-T. PROJECT, TASK |
Department of Operations Research —— SOL PR INDNIESS
Stanford University NR-047-143
L§tanfotd, CA 94305
{1'. CONTROLLING OFFICE NAME AND ADDRESS 12. REPCRT DATE
| Operations Reagarch Program -- ONR December 1978
Department of the Navy 13 NUMBER OF PAGES
800 N. Quincy Street, Arlington, VA 22217 36
. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Oftice) | 18. SECURITY CLASS. (of thie report)
Unclassified
T8a. DECL ASSIFICATION/DOWNGRADING |
SCHEDULE

f16. OISTRIBUTION STATEMENT (of fthis Report)

This document has been approved for public release and sale;
¢ its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different froc: Report)

18. SUPPLEMENTARY NOTES

5. KEY WCROS (Continue on reverse alde if necessary and identily by block number)

Mathematical Software Optimization Software

Software Bibliography Linear Programming

Unconstrained Optimization Constrained Optimization
i 20. ABSTRACT (Continue en reverse slde If necessary and identify by bleck mumber)

b s o

SEE ATTACHED

FORM
A G UNCLASSIFIED
SRCURITY CLABHIPICATION OF THIS PAGE (When Date Bntered)

= v B T,

= e R L S

F
SECURITY CLASMPICATION OF THIS PAGE (When Date Bntered)

.'\ =

SOL 78-32
SOFTWARE FOR OPTIMIZATION
L. Nazareth

R

Our aim in this paper is to provide the reader with:

a) Some feel for what quality software entails.

: b) An overview of various aspects of optimization software.

1 c¢) Information on solution techniques and available software in the form
of a decision tree.

d) An extensive bibliography so that the reader can further pursue

specific topics of interest.

We concentrate upon linear programming, non-linear unconstrained
optimization and related areas, and non-linear programming.

This paper is intended to supplement an earlier oral presentation at
the Texas Conference on Mathematical Software entitled "State of Software
for Optimization".

w——

UNCLASSIFIED
SBCUMTY CLASKPICATION OF THIS P AGE(Then Bure Btored)

