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And now I see with eye serene
The very pulse of the machine.
--William Wordsworth

Abstract

A systolic system is a network of processors which rhythmically compute and pass
data through the system. Physiologists use the word “"systole” to refer to the
rhythmically recurrent contraction of the heart and arteries which pulses blood
through the body. In a systolic computing system, the function of a processor is
analogous to that of the heart. Every processor reguiarly pumps data in and out,
each time performing some short computation, so that a regular flow of data is kept
up in the network.

Many basic matrix computations can be pipelined elegantly and efficiently on
systolic networks having an array structure. As an example, hexagonally connected
processors can optimally perform matrix multiplication.  Surprisingly, a similar
systolic array can compute the LU-decomposition of a matrix. These systolic arrays
enjoy simple and regular communication paths, and almost all processors used in the
networks are identical. As a result, special purpose hardware devices based on
systolic arrays can be built inexpensively using the VLSI technoiogy.

-1. Introduction

Developments in microelectronics have revolutionized computer design. Integrated
circuit technology has increased the number and complexity of components that can
fit on a chip or a printed circuit board. Component density has been doubling every
one-to-two years and aiready, a multiplier can fit on a very large scale integrated
(VLSI) circuit chip. As a result, the new technology makes it feasible to build
low-cost special purpose, peripheral devices to rapidly solve sophisticated problems.
Reflecting lhe changing technology, this paper proposes new muitiprocessor
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structures for processing some basic matrix computations.

We are interested in high-performance parallel ‘structures that can be
implemented directly as low-cost hardware devices. By performance, we are not
refering to the traditional operation counts that characterize classical analyses of
algo}ilhms, but rather, the throughput obtainable when a special purpose peripheral
device is attached to a general purpose host computer. This implies that time spent
in 1/0, control, and data movement as well as arithmetic must all be considered. VLSI
offers excellent opportunities for inexpensive implementation of high performance
devices (Mead and Conway [1978]). Thus, in this paper the cost of a device will be

determined by the expense of a VLSI implementation. “Fit the job to the bargain

components” -- Blakeslee [1975, p. 4]

VLSI technology has made one thing clear. Simple and regular interconnections
lead to cheap implementations and high dersities, and high density implies both high
performance and low overhead for support components. (Sutheriand and Mead
[1977] has a good discussion on the importance of having simple and regular
geometries for data paths.) For these reasons, we are interested in designing
multiprocessor structures which have simple and regular communication paths. We
are also interested in employing pipelining as a general method for using these
structures. By pipelining, computation may proceed concurrently with input and
output, and consequently overall execution time is minimized. Pipelining plus
multiprocessing at each stage of a pipeline should lead to the best-possible
performance.

Systolic systems provide a realistic model of computation which captures the
concepts of pipelining, parallelism and interconnection structures. We do not want to
give a formal definition of systolic systems here. For the purpose of this paper, it

‘suffices to view a systolic system as a network of processors which rhythmicaily
‘compute and pass data through the system. The analogy is to the rhythmic

contraction of the heart which puises biood through the circulatory system of the
body. Each processor in a systolic network can be thought of as a heart that pumps
multiple streams of data through itself. The regular beating of these parailel
processors keeps up a constant flow of data throughout the entire network. As a
processor pumps data items through, it performs some constant-time computation
and may update some of the items.

Unlike the closed-loop circulatory system of the body, a systolic computing system
usually has ports into which inpuls flow, and ports where the results of the systolic
computation are retrieved. Thus a systolic system can be a pipelined system - input

2

ey
¥l N e

e e ——

.

e A L Ak

Sl ot
& o,

: R G R B i Y 4 e
A% o R 2 o4 R
Uipimd o 2. V. m e Sy e %
o AT o $ Ry
- ) o3 Wi b=




r~

W 4y

R

Y

,‘i"*,( & 9 .n,,,;: .

and output occur with every pulsation. This makes them attractive as peripheral
précessors attached to the data channel of a host computer. Figure 1-1 illustrates
how a special purpose systolic device might form a part of a PDP-11 system. A
systolic device may also process a real-lime data siream or be a component in a
larger special purpose system.

A D e T :

] ] | | I
Primary Systolic ) / y
CPU Memory Baviie Disk s Tape

Figure 1-1: A sysfolic device connected to the UNIBUS of a PDP-11.

This paper deals largely with systolic systems where the underlying network is
array structured. (See also Kung and Leiserson [1978]) An array network is
attractive for it enjoys simple and regular communication paths. In Section 2, we
describe the basic hardware requirements and interconneclion schemes for the
syslolic arrays proposed and discuss the feasibility of building them in VLSL Section
3 deals with the matrix-vector muitiplication problem. Muitiplication of two matrices
is considered in Section 4. In Section 5, we show that essentially the same systolic
arrays for matrix muitiplication in Section 4 can be used to find the
LU—d&composition of a malrix. Section 6 is concerned with solving triangular linear
systems. We show that this problem can be solved by almost the same systolic
array for matrix-vector muitiplication described in Section 3. Section 7 discusses
applications and extensions of the results presented in the previous sections. The
applications include the computations of finite impulse response filters, convolutions,
and discrete Fourier transforms. Some concluding remarks are given in the last
section.

The size of each of our systolic arrsy nelworks is dependent only on the band
width of the band matrix to be proco'sud, and is independent of the length of the
bsnd. Thus, a fixed size systolic array can pipeline band matrices with arbitrarily
long bands. The pipelining aspect of our arrays is, of course, most effective -for
band matrices with long bands. Band malrices are interesting in their own right,
since many important scienlific compuiatiom involve band matrices. For these
reasons, most of the resuits in this paper will be presented in terms of their
spplications to band matrices. All the resuits spply {0 dense matrices since s dense

,.
Mt

v Q-hvm'»:

,,.qwu-.h v




|
f
.

malrix can be viewed as a band matrix having the maximum-possible band width.

2. The Basic Components and Systolic Array Structures

2.1 The Inner Product Step Processor

The single operation co'mmon to all the computations considered in this paper is

" the so-called inner product step, C « C + A x B. We postulate a processor which

has three registers Ry, Rg, and Rc. Each register has two connections, one for inpu}
and one for output. Figure 2-1 shows two types of geometries for this processor.

A
)

C = = C
B —=| = 8
[+
A
(a)

Figure 2-1: Geometries for the inner product step processor.

Type (a) geometry will be used for matrix-vector multiplication and solution of
triangular linear systems (Sections 3 and 6), whereas type (b) geomeiry wili be used
for matrix multiplication and LU-decomposition (Sections 4 and 5). The processor is
capable of performing the inner product step and is called the inner product step
processor. We shall define a basic time unit in terms of the operation of this
processor. In each unit time interval, the processor shifts the data on its input lines
denoted by A, B and C into Ry, ‘Rg and R, respectively, compules
Re « Rc + Rp x Rg, and makes the input values for Rp and Rg together with the
new value of Rgp available as outpuls on the outpul lines denoted by A, B and C,
respectively. All outputs are lalched and the logic is clocked so that when one
processor is connected to another, the changing output of one during a unit time
interval will not inlerfere with the input to another during this time interval. This is
not the only processing element we shall make use of, but it will be the work horse.
A special processor for performing division will be specified later when it is used.
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r 2.2 Systolic Arrays

* H A systolic device is typically composed of many interconnected inner product step 1
:L processors. The basic network organization we shall adopt is the mesh-connected

scheme in which all connections from a processor are to neighboring processors.
(See Figure 2-2.)

(a) linearly connected

1
(b) orthogonally connected

(ILLIAC IV) '
; (c) hexagonally connected

4 Figyre 2-2:'Mosh-comodod systolic arrays.

B

The most widely known system based on this organization is the ILLIAC IV (Barnes
et al [1968]). If diagonal connections are added in one direction only, we shall call
the resulting scheme hexagonally mesh-connected or hex-connected for short. We
shall demonstrate that linearly connected and hex-connected arrays are natural for
matrix problems.

Processors lying on the boundary of the systolic array may have external
connections to the host memory. Thus, an input/output data path of a boundary
processor may somelimes be designated as an external input/output connection for
the device. A boundary processor may receive input from the host memory through
such an exiernal conneclion, or it may receive a fixed value such as zero. On the |
other hand, a boundary processor can send data to the host memory through an !
external output connection. An oulput of a boundary processor may sometimes be
ignored. This will be designated by omitting the corresponding output line.
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In this paper we assume that the processors in a systolic array are synchronous
as described in Section 2.1. However, it is possible to view the processors being
asynchronous, each computing its outpul values when all its inputs are available, as
in a data flow model. For the results of this paper we believe the synchronous
approach to be more direct and intuitive.

The hardware demands of the systolic arrays in this paper are réadily seen to be
modest. The processing elements are uniform, interprocessor connections are simple
and regular, and external connections are minimized. It is our belief that
construction of’ these systolic arrays will prove to be cost-effective using, for
instance, the modern VLSI technology.

3. Matrix-Vector Multiplication on a Linear Systolic Array

We consider the problem of multiplying a matrix A-(aii) with a vector

x = (x l'-'--"n)T- The elements in the product y = (y 1,..,yn)T can be computed by the
following recurrences.

Y! 1 . o,
yiella R o o
¥i = y'(ml )

Suppose A is an nxn band matrix with band width w = p+q-1. (See Figure 3-1 for
the case when p = 2 and g = 3.) Then the above recurrences can be evaluated by
pipelining the x; and y; through a systolic array consisting of w linearly connected
inner product' step processors. We illustrate the operation of the systolic array tor
the band malrix-vector muitiplication problem in Figure 3-1. For this case the
linearly connected systolic array has four inner product step processors. See
Figure 3-2.

The general scheme of the computation can be viewed as follows. The y;, which
are inilially zero, are pumped o the left while the x; are pumped to the right and
the s;; are marching down. (For the general problem of computing Ax+d where
d-(dl,...,dn)f is any given vector, y; should be initialized as d;). All the moves are
synchronized. It turns out that each y; is able to accumulate all its terms, namely, 3
=2%_2, 8 .1%i-1» ;% and 3;;,1%;,|, before it leaves the nelwork. Figure 3-3
illustrates the first seven puisations of the systolic array. Note that when y, and y,
are output they have the correct values. Observe also that at any given time
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Figure 3-1: Muiliplication of a vector by a band matrix withp = 2 and q = 3.
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Pulse Configuration
Number
¢ -~ el = - Y,
0 = £ L3 £l
- £ - Y, |-
) Bhk - R, W
=y, £l =3
_ -] = Y= a2 Y.}
2 = = A, |= £l
1]
3 _"J y. . —1 b y! ]
- x'.u Bl —| x' '" j=2.
Y, = La Y, l= = Y,
4 2J = X, W |= Fin u
= Y, e - Ys L:
5 1 x '” _-_‘_ - x '3! :
3 ;— 2
6 Y, = o= Y,|=] .-_-.{ Y.
- e B

Comments

% » initialized as zero,
is pumped into the fourth
processor.

x, 1s pumped into the first
processor while y, is moved
left one place. (From now

on the x and y, keep moving
right aad left, respectively.)

a, enters the second
processor where y, is
updated by y, ~ v, + 3, X, -
Thus y, = a, X,.

a,and a, enter the first

and third processors,
respectively. y = a,x,+ a,x,
and y,* a, x,. :

y, is pumped out
V2 T apX,+ agxs
V3 * &%,

Y2 = &%, + &, X4
Vg = 8%V 8%,

y, is pumped out.
V3™ % ,* &%+ a,X,-
V4= &yX2

Figure 3-3: The first seven pulsations of the linear sysiolic array in Figure 3-2.

siternate processors are idle. Indeed, by‘coucscing pairs of adjacent processors, it
is possible to use w/2 processors in the network for a general band matrix with
band width w.
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We now specify the operation of th¢ :ystolic array more precisely. Assume that
the processors are numbered by integers 1, 2,... w from the left end processor to
the right end processor. Each processor has three registers, Ra, R, and Ry, which
will hold entries in A, x and y, respectively. Initially, all registers contain zeros. .
Each pulsation of the systolic array consists of the following operations, but for odd
numbered pulses only odd numbered processors are activated and for even

numbered pulses only even numbered processors are activated.

1. Shift.

- Ry gets a new element in the band of matrix A.

- Ry gels the contents of register Ry from the left neighboring
node. (The R, in processor 1 gets a new component of x.)

- Ry gets the contents of register R, from the right neighboring
node. (Processor 1 outputs its %y contents and the Ry in
processor w gets zero.)

2. Multiply and Add.
Ry - Ry ‘,RA b's Rx'.

Using the type (a) inner product step processor postulated in section 2, we note
that the three shift operations in step 1 can be done simultaneously, and that each
pulsation of the systolic array takes a unit of time. Suppose the bandwidth of A is
w = p+q-1. It is readily seen that after w units of time the components 6f the
product y = Ax are pumped out frcm the left end processor at the rate of one
output every two units of time. Therefore, using our systolic network all the n
components of y can be computed in 2n+w time units, as compared to the Q(wn) time
needed for a sequential algorithm on a uniprocessor computer. ‘

4. Matrix Multiplication on a Hexagonal Systolic Array

This section considers the problem of muitiplying two nxn matrices. It is easy to

see that the matrix product C = (ci‘-) of A= ('ij) and B = (bii) can be computed by
the following recurrences.

cf,“ - o,
‘f}‘+l). efk) + 2y

C' i - Cf,’"”.
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Let A and B be nxn band matrices of band width w) and w,, respectively. We show

ie. By :
oy J
through a systolic array having w|wo hex-connected inner product step processors.

how the recurrences above can be evaluated by pipelining the a and ¢;
‘We illustrate the general scheme by considering the matrix multiplication problem
depicted in Figure 4-1. The diamond shaped systolic array for this case is shown in
Figure 4-2, where processors are hex-connected and data flows are indicated by

arrows.
a, a, 0 b,, b, b, 0 ] :,, B Cn Cu
8 8, W, By By by by : £ En Eu twn
8y Ap 85 8, by by b, by, — S B T Cu
84 . bes . €, Ca -
0 e 0 o4 0 :
e - L= — e

Figure 4-1: Band matrix multiplication.

The elements in the bands of A, B and C are pumped through the systolic netwdrk in
.three directions synchronously. Each Gij is initialized to zero as it enters the
network through the bottom boundaries. (For the general problem of computing
AB+D where D-(di,-) is any given matrix, Gij should be initialized as dii') One can
easily see that with the type (b) inner product step processors described in Section
2, each Cij is able to accumulate all its terms before it leaves the network through
the upper boundaries. Figure 4-3 shows four consecutive puisations of the
hexagonal systolic array. The reader is invited to study the data flow of this
problem more closely by making tranparencies of the band matrices shown in the
figures, and moving them over the network picture as described above.

Let A and B be nxn band matrices of band width w; and wj, respectively. Then a
systolic array of w,;wo hex-connected processors can pipeline the matrix
multiplication AxB in 3n+min{w,, w2) units of time. Note that in any row or column of
the network, out of every three conseculive processors, only one is active at given
time. It is possible to use about (w;w5)/3 processors in the network for multiplying_
two band matrices wilh band widlhs w; and wj.
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Figure 4-2: The hex-connected systolic array for the matrix multiplication problem

in Figure 4-1,







(c)
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Figuro 4-3: Four pulsations of the hoxagonal systolic array in Figure 4-2,




5. The LU-Decomposition of a Matrix on a Hexagonal Systolic Array

% The problem of factoring a matrix A into lower and upper trianguiar matrices L
and U is called LU-decomposition. Figure 5-1 illustrates the LU-decomposition of a
band matrix with p =4 and q=4. Once the L and U factors are known, it is
relatively easy to invert A or solve the linear system Ax = b. We deal with the

4 latter problem in section 6. This section describes a hexagonal systolic array for

computing LU-decompositions.

—-.n a; &3 A 0 o _—l % —un Uy Ug Uy 0
8, 3 3y B 3, L 1 0 Uy Upy Uz Uy
8, Ay A 3, A, Wbl Ups Uy Use
8 8 8y - | bl b 1 |

W . Y ; { 0 ' :

- y i - : g

Figure 5-1: The LU-decomposition of a band matrix.

We assume that matrix A has the property that its LU-decomposition can be done
by Gaussian elimination without pivoting. (This is true, for example, v.vhen Ais a
symmetric positive-definile, or an irreducible, diagonally dominant matrix.) The
triangular matrices L = (I;;) and U = (“ij) are evaluated according to the following

recurrences.
LB

afft e ol ¢ htuy,
- ' : 0 iti<k,
e = { 1 ik,
lfk)uu iti> K
! - 0 if k>j,
| ™ { oy RS

We show that the evalustion of these recurrences can be pipelined on
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| hex-connected systolic array of hex-connected processors. A global view of this
pipelined. computalion is shown in Figure 5-2 for the LU-decomposition problem
depicted in Figure 5-1. The systolic array in Figure 5-2 is constructed as follows.

-

The processors below the upper boundaries are the standard type (b) inner product
step processors and are hex-connected exactly same as the matrix multiplication
network presented in Section 4. The processor at the top, denoted by a circle, is a
special processor. It computes the reciprocal of its input and pumps the resuit
f 3 southwest, and also pumps the same input northward unchanged. The other
processors on the upper boundaries are again type (b) inner product step
processors, but their orientation is changed: the ones on the upper left boundary
are rotated 120 degrees clockwise; the ones on the upper right boundary are
rotated 120 degrees counterclockwise.

The flow of data on the systolic array is indicated by arrows in the figure. As in
the hexagonal systolic array for matrix multiplication , each processor only operates
every third time pulse. Figure 5-3 illustrates four consecutive pulsations of the
systolic array. Note that in the figure, because A is a band matrix with p = 4 and
q = 4 we have that af'j?,'i- 3,3, and a,"'i‘la- 3isafor lsksiandi22 Thus agy,
for example, can be viewed as agg when it enters the network.

There are several equivaleni systolic arrays that reflect only minor changes to
the network presented in this section. For example, the elements of L and U can be
retrieved as output in a number of different ways. Also, the "-1" input to the
network can be changed to a "+1" if the special processor at the top of the network
computes minus the reciprocal of its input.

If Ais an nxn band matrix with band width w = p+g-], a systolic array having no
more than pg hex-connected processors can compute the LU-decomposition »f A in
s 3n+min{p,g) units of time. If A is an nxn dense malrix, this means that n?

! hcx-ﬁonmc!ed processors can compule the L and U matrices in 4n units of time
which includes [/0 time.

' The remarkable fact that the matrix multiplication network forms a major part of
FL the LU-decomposilion nelwork is due to the similarity of their defining recurrences.
In any row or column of the LU-decomposition systolic array, only one out of every
three consecutive processors is active at a given time. As we observed for matrix
multiplication, the number of processors can be reduced to about pq/3.
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Figure 5-2: The hex-connected systolic array for pipelining the LU~-decomposition
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6. Solving a Triangular Linear System on a Linear Syslolic Array

Suppose that we want to solve a linear system Ax = b. Then after having done
the LU-decomposition of A (e.g., by methods described in Section 5), we still have to
solve two triangular linear systems Ly = b and Ux = y. This section concerns itseif
with the solution of triangular linear systems. An upper triangular linear system can
always be rewrillen as a lower triangular linear system. Without loss of generality,
this section deals exclusively with lower triangular linear systems.

Let A= (aij) be a nonsingular nxn band lower triangular matrix. Suppose that A
and an n-vector b = (b 1,...,bn)T are given. The problem is to compute x = (x 1,...,xn)T
such that Ax = b. The vector x can be computed by forward substitution:

ysl) oy o,

kI R

X (bi-y?’)/lii.

[ a ] s,
3, 2, g X, b,
i ﬁ 8y Oy Uy 0 Xy b,
L By g 8y 3, b - b,
A, 2, 3, A, Xy b,

'.“ . . < \

0 b I :

- - b L. -

A X b

.

Figure 6-1: The band (lower) trisngular linear system where q = 4.

Suppose that A is a band matrix with band width w = q. (See Figure 6-1 for the
case when q = {.) Then the above recurrences can be evaluated by @ systolic array
similar to that used for band matrix-vector multiplication in Section 3. (Observe the
similarity of the defining recurrences for these two problems.) We illustirate our:

St - i —




result by considering the linear system problem in Figure 6-1. For this case, the
systolic array is described in Figure 6-2.

'
1 ]
'
. - -~ '
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' ]
' 3 2 M
'
e ~ .
1 ]
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' L .u,'
: ’
' ,’1
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] ,;1 ]
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: :'d’ : :
'
: : '
a ’ ]
-t ' ' H
0’/ ! ] ]
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t
b, :
bt
A
!
]
'
'

Figure 6-2: The linearly connecled sysiolic array for solving
the trianguler linear system in Figure 6-1.

The y;, which are initially zero, are ftorced leflward through the systolic array

\vhil.o the x;, % and b; are pumped as indicated in Figure 6-2. The left end

processor is special in that it performs x;~-(b;-y;)/a;;. (In fact, the special processor

| introduced in section 5 to solve the LU-decomposition problem is a special case of
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this more general processor.) Each y; accumulatlng inner product terms in the rest of
the processors as it moves to the left. At the time y; reaches the left end processor
it has the vaiue 3 X+ %43 1 X and, consequently, the x; computed by
x;+~(b;-y;)/a;; at the processor will have the correct value. Figure 6-3 demonstrates
the first seven pulsations of the systolic array. From the figure one can check that
the final values of x|, x5, xg and x4 are all correct. With this systolic array we can
solve an nxn band ftriangular linear system with band width w = g in 2n+g units of
time. As we observed for the matrix-vector multiplication problem, the number of
processors required by the array can be reduced to w/2.

‘7. Applications and Comments

7.1 Variants of the Systolic Array

If more information is available about the specific matrices involved, an optimized
version of the systolic arrays presented above can be used. It is important that the
reader understands the basic principles so that he can construct appropriate
variants for his specific problems. No attempt is made here to list all the possible
variants.

As pointed out in Seclion i, although most of our illustrations are of band
matrices, all the systolic arrays work for regular nxn dense matrices. In this case
the band width of the matrix is w = 2n-1. If the band width of a matrix is so large
that it requires more‘ processors than a given array provides, then one should
decompose the matrix and solve each subproblem on the network. Thus, for
example, the matrix muitiplication of two nxn matrices or the LU-decomposition of an
nxn matrix can be done in O(nalkz) time on a kxk systolic array.

One can often reduce the number of processors required by a systolic array if the
malrix is known to be sparse or symmetric. For example, the matrices arising from a
set of finite differences or finite elements approximations to differential equations
ere ususlly “"sparse band matrices”. These are band matrices whose nonzero entries
appear only in a few of those lines in the band which are parailel to the diagonal. In
this case by introducing proper delays to each processor for shifting its data to its
neighbors, the number of processors required by the systolic array in Section 3 can
be reduced lo the number of those diagonals which contain nonzero entries. This
variant is useful for performing iterative methods involving sparse band matrices.
Another example concerns the LU-decomposition problem considered in Section 5. If
matrix A is symmelric positive definile, then it is possible to use only the left portion
of the hex-connected nelwork, since in this case U is simply OLT where D is the
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diagonal matrix (akk(k)).

The optimal choice of the size of the systolic network to solve a particular
problem depends upon not only the problem but also the memory bandwidth to the
host compuler. For achieving high performance, it is desirable to have as many

processors as possible in the network, provided they can all be kept busy doing
useful computations. i

It is possible to use oug systolic arrays to solve some nonnumerical problems
when appropriate interpretations are given to the addition (+) and multiplication (x)
operations. For example, some pattern matching problems can be viewed as matrix
problems with comparison and Boolean operations. It is possible to store a
dynamically changing data structure in a systolic array so that an order statistic can
always be determined in constant time. We shall report these results in a future
paper. It can be instructive to view the + and x operations as operations in an

abstract algebraic structure such as a semiring and then to examine how our results
hold in such an abstract setting.

7.2 Convolution, Filter, and Discrete Fourier Transform

There are a number of important problems which can be formulated as
matrix-vector multiplication problems and thus can be solved rapidly by the systolic
array in Section 3. The problems of computing convolutions, finite impulse response
(FIR) fillers, and discrete Fourier transforms are such examples. If a matrix has the
property that the entries on any line parallel to the diagonal are all the same, then
the matrix is a Toeplitz matrix. The convoiution problem is simply the matrix-vector

multiplication where the matrix is a triangular Toeplitz matrix (see Figure 7-1).
L]

A p-tap FIR filter can be viewed as a matrix-vector muitiplication where the

matrix is an band upper triangular Toeplitz matrix with band width w = p. Figure 7-2
represenis the computation of a 4-tap filler.

On the other hand, an n-point discrete Fourier transform is the matrix-vector
multiplication, where the (i,j) entry of the matrix is W=10-1) gnd @ is o primitive
nth root of unity. (See Figure 7-3).

Therefore using a linearly connected systolic array of size n both the convolution
of two n-vectors and the n-point discrete Fourier transform can be computed in O(n)
units of time, rather than O(n log n) as required by the sequential FFT algorithm.
Moreover, note that for the convolution and liller problems each processor has to

‘receive an entry of the malrix only once, and this entry can be shipped to the
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Figure 7-3: The discrete Fourier transform of vector x.

processor through horizontal connections and stay in the processor during the rest
of the computation. For the discrete Fourier transform problem each processor can
in fact generate on-the-fly the powers of w il requires. As a result, for these three
problems it is not necessary for each processor in the network to have the external
input connection on the top of the processor, as depicted in Figure 3-2.

In the following we describe how the powers of w can be generated on-the-fly
during the process of compuling an n-point discrete Fourier transform. The
requirement is that if a processor is i units apart 3‘£am":he middie processor then at
time i + 2j the processor must have the value of W/~ * ') for all i, j. This requirement
can be fulfilled by using the algorithm below. We assume that each processor has
one additional register Ry. All processors except the middie one perform the
following operations in each step, but for odd (respectively, even) numbered time
steps only processors which are odd (even) units apart from the middle processor
are activated. For all processors except the middie one the conlents of bolth Ry and
Ry are initially zero.

1. Shift. If the processor is in the left (respectively, right) hand side of the
middie processor then

. = Rp gels the contents of register Ry from the right (respectively,
left) neighboring processor.

- Ry gets the contents of register R; from the right (respectively,
left) neighboring processor. '




-

2. Multiply.
RA - RA x Rt'

The middle processor is special; if performs the following operations at every
ever numbered time step. For this processor the contents of both Ry and Ry are
initially one.

I.RAO-RAlﬂtzlﬂ.
ZR"-RtXG.

7.3 The Common Memory Access Pattern

Note that all the systolic arrays given in this paper store and retrieve elements of
the matrix in the same order.. (See Figures 3-2, 4-2, 5-2, and 6-2.) Therefore, we
recommend that matrices be always arranged in memory according to this particujar
ordering so that they can be accessed efficiently by sny of the systolic structures,

7.4 The Pivoting Problem, and Orthogonal Factorization

In section 5 we assume that the matrix A has the property that there is no need
of using pivoting when Gaussian elimination is applied to A. What should one do if A
does not have this nice property? (Note that Gaussisn elimination becomes very
inefficient on mesh-connect processors if pivoting is necessary.) This question
motivated us, to consider Givens' transformation (su.' for example, Hammering
(1974)) for triangularizing a malrix, which is known to be a numerically stable
method. It turns out that, like Gaussian elimination without pivoting, the orthogonal
factorization based on Givens' transformation can be implemented naturally on
mesh-connected processors, although a pipelined systolic array implementation

- appears to be more compiex. Our resuits on Givens’ transformation will be reported

in snother paper. (Sameh and Kuck [1978] considers paraliel linear system solvers
based on Givens' transformation, but they do not give solutions to the processor
communication problem considered in this paper.) .

8. Concluding Remarks

Systolic structures provide a model of compultation for studying paraliel algorithms
for VLS. The model lakes into account issues such as [/0, control, and
interprocessor communication. In a systolic system pipelining can overlap 1/0 with
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computation to ensure high throughput. Since loading of data into the network
occurs naturally as compu'ation proceeds, no extra control logic is required. Nor is
initialization logic needed. Communication among processors is through fixed data
paths. For a low cost and high performance implementation in VLSI (or even printed
circuit technology), it is desireable that these paths have simple and regular
geomelries. These reasons make syslolic arrays considered in this paper especially
attractive. Indeed, interconnection structures other than arrays exist which satisfy
these constraints. Future work will examine some of these connection schemes and
demonstrate that systolic systems gen'eralizo beyond simple cellular structures.

We have discovered that some data flow patterns are fundamental in malrix
computations. For example, the two-way flow on the linearly connected network is
common to both matrix-vector multiplication and solution of triangular linear systems
(Sections 3 and 6), and the three-way flow on the hexagonally mesh-connected
network is common to both matrix multiplication and LU-decomposition (Sections 4
and 5). A practica[ implication of this fact is that one systolic device may be used
for solving many different problems. Moreover, we note that almost ail the
processors needed in any of these devices are the inner product step processor
postulated in Section 2. A careful design of this processor is desirable since it is
the work horse for all the devices presented.

Research in interconnection networks and algorithms has been frequently

. motivated by parallel array computers such as ILLIAC IV. (See, for example, Kuck

(1968, 1977] and Stone [1975]) Although the resuits presented in this paper were
motivated by the advance is VLSI, they reach beyond. The systolic arrays in this
paper can be implemented as efficient algorithms on traditional parallel array
machines.

For the important problem of solving a dense system of n linear equations in O(n)
2 mesh-connected processors, we have improved upon the recent results
of Kant and Kimura [1978]. The basis of their resuits is an theorem on determinants
which was known to J. Sylvester in 1851. Their algorithm requires that the matrix
be "strongly nonsingular” in the sense that every square submatrix is nonsingular.
It is sufficient for our algorithms that the matrix be symmetric positive-definite or
irreducible diagonally dominant.

time on n

Hoare [1977], and Thurber and Wald [1975] describe some matrix multiplication
algorithms on an orthogonally connected processor array. Unlike our results, their
slgorilhms require that one or more of the three matrices involved in matrix
multiplication stay in the array statically during the computation. This introduces
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overheads in [/O time and control logic for loading the array with the static matrix.
Our systolic array makes use of the hexagonal connections to pipeline all three

matrices.

Processor communication will likely dominate the cost of parallel algorithms and
systems. Communication paths inherently require more space and energy than
processing elements do. We rcgird the problem of minimizing communicalion costs
as fundamental, and we believe systolic structures provide models that can bridge
the gap between the.ory and practice. Systolic arrays can be built in VLSL
Connected to a standard Von Neumann computer, a systolic device provides
inexpensive but massive computation power.
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