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Unlike component mode substitution methods , no approximating assumptions
are made. Thus, natural frequenciesand mode shapes for the finite element

- 

-

- 
model employed are the same with or without the substructuring algorithm.

- This is demonstrated by computing first ten natural. frequencies and the
corresponding mode shapes for an open truss helicopter tail—boom structure.
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.- ‘ ~ I. INTRODUCTION

• Analysis of structures for transient dynamic loads is of considerable

importance in many fields of engineering. Design of aircraft structures ,

spacecraft structures, ship structures, machine components and framed

structures for earthquake loading are some examples where transient

dynamic analysis procedures are required. Many of these structures must

be represented by large finite element models. Therefore it is desirable

to divide the structure into smaller components or substructures for

efficient dynamic analysis.

This paper addresses the question of dynamic analysis of large

structures with substructures or components• A simple and efficient

numerical method for such analysis is developed . The method does not

require generation and storage of stiffness and mass matrices for the

entire structure. It requires generation of only substructural stiffness

matrices and storage of their decomposed factors. Thus the method is

quite compact requiring minimum computer storage.

The method of modal superposition is adopted for dynamic structural

analysis. In this approach free vibration modes and the corresponding

natural frequencies must be first computed . This information is then

used to define uncoupled equations of motion f or the system. Uncoupled

equations of motion are then easily solved using Duhamel Integral. Thus

the problem of structural dynamics is reduced to finding natural

frequencies and mode shapes with substructures.

Methods of component mode substitution for calculating system

eigenvalues and corresponding eigenvectors are briefly reviewed in the

~~~~~.. 
.5
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next subsection. Section II defines the dynamic structural analysis

problem. the method of dynamic structural analysis with substructures

is developed in Section III. An example problem is considered in
4

Section IV to demonstrate applicability of the method.

Component Mode Substitution Methods

In component mode substitution methods of free vibration analysis,

the structure is divided into a number of smaller structures. Mode

shapes of each substructure are calculated for a variety of boundary

conditions. Compatibility and equilibrium conditions at the inferfaces

of all substructures are invoked and a reduced eigenvalue problem for

the entire structure is generated. After the reduced eigenvalue problem

has been solved , system mode shapes are generated using previously

c~ fined transformations in terms of component modes.

Advantage of component mode substitution methods is in the experi-

mental determination of system mode shapes. It is easier to measure

mode shapes and natural frequencies of smaller components as compared to

measuring mode shapes for the entire system. Knowing mode shapes of

each component,a method is needed to synthesize the system modes. The

component mode substitution methods [1—7] then provide such a means for

generating system modes.

Many variations of the component mode substitution method have been

presented since Hurty ’s 1960 paper on the subject [1]. Several review

articles on the subject have appeared in the literature [2,3,4,5]. Some

,S
~~i ___________________ _____ I

I ~
5t .~5~4
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other recent articles that deal with component mode substitution concept

are the Refs. 6 and 7.

The method developed in the paper does not use component mode substi-

tution concept. Therefore details of these techniques are not presented

here. Reader may consult Ref s. 1—7 and articles cited in them for more

details on component mode substitution methods. In the method presented

in the paper one calculates eigenmodes and the corresponding eigenvalues

for the system with the substructural data, but without calculating mode

shapes of any substructure. No assumptions other than the usual assumptions

of linear elastic systems modeled by finite elements, are made.

T T ~ ~~~~ ‘:~:~i~~~ 
‘T 11 ~~~ ~
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4

II. PROBLEM OF STRUCTURAL DYNAMICS

The finite element technique of analysis is used. The equation of

motion for a typical finite element model for the structural system with

n independent degrees—of—freedom can be written as

Mti + Ci~i + K u=F(t ) (1)

with initial conditions specified on u and C~. Here M, C and K are 
S

(n x n) mass, damping and stiffness matrices, respectively; u, Ct and ~i

are the displacement, velocity and acceleration vectors, respectively

and F(t) is a forcing function. These equations are derived using the

Lagrangian approach [81. If it is assumed that the system described by

Eq. (1) is linear, then M, C and K are constant; that is they are not

functions of time or motion.

Most commonly used procedure of dynamic analysis of linear systems

is the normal modes method . This is also referred to as the modal or

mode superposition analysis and is adopted in the present paper. In

this method , one first considers the free vibration problem:

M~i + K u O  (2)

Substituting

u = 4 sinw(t — t )  ( 3)

into Eq. (2), the following generalized eigenvalue problem is obtained :

- 
K~ = w2M~ (4)

_ _ _ _ _ _ _ _  L ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5 5 ~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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The n eigenvalues of Eq. (4) give the natural frequencies of the system

and the corresponding eigenvectors are the mode shapes. The complete

solution to Eq. (4) can be written as

= M~~
2 (5)

in which the columns in ~ are the eigenvectors and = diag (w~).

The eigenvectors of Eq. (4) are linearly independent and can be

orthonorinalized with respect to the mass matrix M. These vectors, there-

f ore , form a basis for the n dimensional vector space. The vector u(t)

can be expressed as a linear combination of the eigenvectors 4~~
. This

relationship may be expressed as the following linear transformation

0 ( t )  = ~r~( t)  (6)

- where n (t)€R
5 
Is usually called the normal coordinate vector. Substituting

Eq. (6) into Eq. (1) and pre—multipy ing by ~
T
, then givs

(7)

Here F*(t) 41TF(t) ~
T
K~ = ~2 and C* = ~~~ If the damping matrix C

for the system is of a restricted form [9,10] ,  then C* is a diagonal

matrix. Equation (7) then represents a system of n uncoupled equations.

These equations can be solved exactly using the Duhamel Integral [8,101.

It is noted that the finite element model for practical systems is

generally quite large; that is n is generally very large. For many

dynamic analysis problems, it is reasonable to assume that only a first

few elgenmodes contribute significantly to the dynamic response. Thus,

approximate analyses are carried out with only p << n eigenvectors. In

(S

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-
- - -  this case, ~ forms an M—orthonormal basis for the p dimensional vector

• space and Eq. (7) represents a system of only p uncoupled equations.

S Integration of Eq. (7) determines the normal coordinates ~€R
1’, and

Eq. (6) then determines the real displacement u.

_ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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III .  ‘)YNANIC ANALYSiS WITH SUBSTRUCTURES

The problem of dynamic structural analysis is reduced to formulation

of the eigenvalue problem of Eq. (4) and generation of the desired eigen—

vectors and el genvalues. Once elgenvalues and eigenvectors are known,

the uncoupled system of Eqs. (7) is readily obtained .

Several methods for solving the eigenvalue problem of Eq. (4)

have been developed in the literature [11—15]. These methods take

advantage of bandedness property of the K and H matrices. It has been

recognized that it is desirable to divide a large structure Into a

number of smaller structures for the purpose of calculating system

eigenmodes and eigenvalues. The stiffness and mass properties of ~

substructure are used to calculate its eigenmodes. This requires solution

of several smaller elgenvalue problems . Eigenmodes of all substructures

are then synthesized to generate system eigenmodes. Different methods

of synthesis generate various component mode substitution methods [5].

Most of these methods generate approximate eigenvalues and eigenvectors

for the system.

The method presented in the paper , however , does not use the corn—

portent mode synthesis concept , since the eigenmodes for substructures

are never computed . The method directly generates the desired number of

• system eigenmodes and eigenvalues using the substructural stiffness

matrices and the mass matrix for each finite element. The stiffness or

mass matrix for the entire system is never generated . Moreover the mass

matrix for any substructure is not required to be generated and stored.

The method developed here uses the subspace iteration algorithm of

_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~
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5
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— Ref. 12 for solving the eigenvalue problem of Eq. (5). The basic idea

- 

of the subspace iteration method is quite similar to the general Rayleigh—

Ritz method. In the method , one starts with a set of p << n linearly

independent vectors. These vectors form a basis for the p—dimensional

vector space. The mode shapes for the system are expressed as linear

• combinations of the assumed basis vectors. The parameters of these

linear combinations are obtained by solving a reduced eigenvalue problem .

An iterative process is then used to improve the assumed basis vectors

until convergence is obtained .

It is suggested [12] that when p mode shapes are required , one should

start with q > p linearly indpendent vectors , where q is given as

- q = min{2p, p+8, n} (8)

- This improves accuracy of the first p eigenvectors and the corresponding

eigenvalues. Let us define a linear transformation

1-
= (9)

where X~~~ is an (n x q) matrix whose columns are tho assumed basis

vectors for and ~ * is a (q x q) matrix whose elements are the unknown

multipliers of the transformation. Substituting Eq. (9) into Eq. (5)

and premultiplying by X’ one obtains

= M *D *~2*2 (10)

where

= x
(0)

T
~~(o) 

, M* — x(0)
T
~~ (0) (11)

~The superscript indicates the iteration number.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ 
-: 
: Z -~~ ~~~ S

-
‘
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~~~~~~~~~~~ 
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Equation (10) is a reduced eigenproblem of dimension q that is solved for ,*

and ~i*
2
. Equation (9) is then used to obtain approximate system mode

shapes. An improved set of basis vectors X~
1
~ Is now determined from S

= ~ (0) (12)

where

~ (O) 
= M~~°~ (13)

The iterative process is continued until the eigenvalues determined

from Eq. (10) converge to within a prescribed tolerance.

Subspace Iteration with Substructuring

- In using the subspace iteration algorithm outlined in the preceding

with substructuring , one needs to modify calculations of Eqs. (12) and

(13) only. If one can perform these calculations with the substructural

matrices rather than the system matrices, then one has a method of

- - 
structural dynamics with substructuring. Calculations of Eqs. (12) and

(13) can indeed be performed with only the substructural data. This is

explained in the following.

Le us consider Eq. (13) first. Since the mass matrix M is generated

by considering contribution to it from each finite element [101, Eq. (13)

may be written as

( ~ A
1
m
i
A~~~

(0) (14)
/
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where e is the number of finite elements, m
i 
is the mass matrix for

I
S the ith element and A is a Boolean transformation matrix taking contri-

butions from into N. Note that for each i, the matrix under the

summation sign is an (11 x n) matrix. Equation (14) may be rearranged

as

~ (O) 
= 

1
~
1
~~

(
~~~

T
m~~ i) ~(o)} (15)

Thus calculations for ~(0) from Eq. (15) can be performed without ever

generating the system mass matrix M. It is noted , however , that calcu-

lations of Eq. (13) must be performed in each subspace iteration. There-

fore computational effort with Eq. (15) is greater as compared to

calculations with a system mass matrix that is calculated once and

- stored in the computer core. This is due to the fact that calculations

with Eq. (15) essentially imply generation of M at each subspace

iteration. Thus, there is a trade—off between the computational effort

and the computer core requirement for calculations of Eq. (13). Note that

there is also a possibility of computing M only once and storing it on

some external device such as a disk or magnetic tape. In every subspace

iteration the stored M can be readily used. This procedure, however ,

will also require more computational time as compared to storage of M in the

core because of the time delay in linking and rewinding the external device.

(1)
Calculations for X from Eq. (12) can also be performed with only

substructural matrices. The reason for this is that one can view

Eq. (12) as an equilibrium equation governing static response of the

system to a pseudo—load matrix ~
(0) whose each column represents a

7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~T-~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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loading conditions. Equilibrium equations of the type of Eq. (12) can

4 
be solved using the substructuring concept [101. The reader who is

familiar with static structural analysis with substructures will readily

recognize the following development. Others may consult Ref. 10 for

more discussion on static structural analysis with substructures.

For the purpose of solving from Eq. (12) using the substructuring

concept, one divides the entire structure into several substructures.

Each substructure is viewed as a hyper—finite element that is connected

to other substructures only at its interfaces. For each substructure a

set of interior generalized coordinates and another set of interface or

boundary generalized coordinates is defined. The hyper—element force—

displacement relationships are derived in terms of only the boundary

generalized coordinates by using essentially the static condensation

- procedure [10]. The hyper—element force—displacement relationships are

synthesized to generate a reduced system of equilibrium equations in terms

of only the boundary generalized coordinates for the system. This reduced

system of equations is solved for boundary generalized coordinates and

following the usual finite element approach, displacements at all points

of the structure are calculated . This procedure is developed in the

following.

First, let us partition Eq. (12) as follows:

K 1r~ufl r~(O~~~~~ BI l  B B
(16)

~x~~’’ I~~(o) ILIB K
11 LI J Li J

I)Sk~~~~~~~~~~~~~~~ 

~~~~ ~ - 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~ Si

‘- — -
‘

-S- S..—- . .P.~{~ffl3~ -- -~ 
S
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where subscripts B and I refer to variables associated with the boundary

and interior generalized coordinates for the entire structure. Now,

using the second line of Eq. (16), 41) is eliminated from the first

line to obtain

K
B4~~ 

— F
B (17)

where

F
B 

= ~
(O) 

+ QT4O) (18)

KB KBB + K BI Q (19)

Q — — K
1~ KIB (20)

It is interesting to note that matrices F
B and K

B in Eqs. (18) and (19)

can be generated using the substructural matrices without ever generating

KBB’ K11 
or KBI for the entire structure. For this purpose one also

partitions the equilibrium equation for the rth substructures as

- KBB ~~ 
4l)

~1 ~ (O)r

u (21)

KIB K~1 
4l)ij ~ (O)r

where superscript r refers to the rth substructure. From the second line

of Eq. (21), one obtains

45-~~.T_ J ~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT TTc~T 
~~~~

--
•

!-
~~~~ ~TTJ.~~-j~ - • :  5S~~~4 • ~~~~ — -S - 

•
- 

- -

~

r -
~~~~

- 
~~ 

~~~~~ ~~~~~ - S~I • r- 
~~~ 

‘- 
I- —— ~‘-S•~•=~~~ S.

-- 5
- - -- -‘-5 - - S - 5-5
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-

- 
41x~

l)r 
= ~ (O) r 

- K~ 3 ~
(l ) r  

(22)

Eliminating ~
(l) r 

from the first line of Eq. (21), using Eq. (22), one

obtains

K~ 
4I5)1~ = F~ (23)

where

= K~8 
+ K~1Q

r (24)

F~ = ~~ 0)r 
+ Qr~~~~~ (25)

Q
r 

= - [K~1]~~ K~8 (26)

EquatIon (23) is a force—displacement relationship for the rth sub-

structure in terms of its boundary generalized coordinate. The boundary

- 

• stiffness matrix KB and the effective boundary load matrix F8 for the
entire structure are synthesized from the substructural data of Eqs.

(24) and (25) using the standard finite element procedures:

L T
8
r ~~~8

r 
- 

(27)

and

F
B 

‘
~B 

+ 
r~l 

~r
T 
Q
r y (O) r (28)

~~~~~~~~~~~~~~ ~~ ~~ ~~~
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where L is the number of substructures and Br is a Boolean transformation

matrix. It is noted here that the matrix K~1 
in Eq. (26) is usually not

inverted . This matrix is symmetric and banded. Efficient procedures

are used to decompose K~1 
and to solve for Qr in Eq. (26) using forward

and backward substitution. Also K~8 
is usually quite sparse and

advantage of this property is realized in calculations.

Now the matrix 41) is calculated from Eq. ( 17) . The matrices S

r = 1, 2, . . . ,  L, are calculated from Eq. (22). FInally the

matrix is assembled from 4]) and ~
(l) r 

It is noted that the

matrices, such as decompositions of KB and ~~ 
Q
r
, 4B~ 

and 6r are

available from the static structural analysis for use in the preceding

equations. Thus, the proposed subspace iteration algorithm with sub—

structuring blends quite nicely into the static structural analysis

with substructuring.

The subspace iteration algorithm with substructures Is then

summarized as follows:

Step 1 Start with an (n x q) matrix whose columns are estimates

of q eigenvectors.

Step 2 Compute

= (29)

using finite element operations similar to that of Eq. (15).

Step 3 Solve for ~~1) from the equation

~~~~~~~~~ ~~~~~~ -5~- 5 5~~~ -55--5 ~
,—5----. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ‘

5
’ 

.. 0~~~~ 
5’ 

.~~~~~~~
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= ~ (O) 
(30)

using Eqs. (17) and (22).

Step 4 Compute

1) 
= (31)

using finite element operations of Eq. (15).

Step 5 Calculate the following (q x q) matrices

= 
(1)T 

~ (O) 
, M* = 

(1)
T 
~

(l) ( 32) 
5

Step 6 Solve for all eigenvalues and eigenvectors of the projected

eigenvalue problem of Eq. (10) . Note that the generalized

Jacobi iteration [14 ) or any other method of solving an eigen—

value problem may be used in this step.

Step 7 Compute

= ~(1) 
~~ , 

,~(l) = ~ (l) 
~ * (33)

Step 8 Check for convergence of eigenvalues. If all the ratios

2~~~ 2~°~ /2~~w1 
_ W

i / W i

are within a specified tolerance, then stop the iterative

process. Otherwise return to Step 3 with =

After convergence, the first p columns of are the

____________ _________________________ — ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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required eigenvectors and the first p elements in ~~~ are the

• 

- 

corresponding eigenvalues.

The rate of convergence of the subspace Iteration algorithm depends

on how close the starting subspace is to the eigenvectors of the system.

Many times eigenvectors from previous analyses are available and form an

excellent starting subspace . For many s tructural  problems , authors have

simply used f i r s t  q columns of an (n x n) identity matrix as the starting

subspace [16—18]. The procedure suggested in Ref .  12 had also been used

successfully [19,20]. Here the first column of contains simply

diagonal elements of the mass matrix and other columns are unit vectors

with +1 at the coordinates with largest ratios m
~i

/k
ii
.
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IV. AN EXAMPLE PROBLEM

As an example of calculating eigenvalues and eigenvectors with sub—

structures, an open helicopter tail—boom s t ructure  is considered . The

structure is modeled by 108 truss members and 28 joints as shown in

Figure 1. The structure has 72 degrees of freedom, so the eigenvalue

problem of Eq. (4) is of dimension 72 x 72. For sample calculations,

- 2
cross—sectional area of all members is 1.0 in. , the material weight

density is 0.10 lb/in.
3 
and Young’s modulus is io

6 psi.

The first 10 natural frequencies and the corresponding mode shapes

for the structure are obtained using the subspace iteration algorithms

with and without substructuring. Two computer programs based on the
— 

subspace iteration have been developed, one without substructur ing and

the other with substructuring. These programs are used to obtain the

results reported herein. Note that the generalized Jacobi iteration [14]

is used to solve the eigenproblem of Eq. (10) in both programs. -

For the algorithm without substructuring, the half—bandwidth of

matrices K and H is 21. Thus 72 x 21 stiffness matrix is computed . It

is decomposed and stored for use in Step 3 of the algorithm. The 72 X 21

mass matrix for the structure is also computed and stored for use in

Steps 2 and 4 of the algorithm.

For the algorithm with substructuring, the tail—boom structure is

divided into three substructures by partitioning it at nodes 9—12 and

17—20 as shown in Fig. 2. Nodes 25—28 are also treated as boundary nodes.

Figure 2 shows global and local (or substructural) numbering systems for

various substructures. Substructure 1 has 36 members, 12 boundary degrees

- - 
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(a) Geometry of Helicopter Tail—Boom
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TOP VIEW

FRONT VIEW

(b) Finite Element Model for the Tail—Boom Structure
(Degrees of freedom for joints 5 and 28 are
1, 2, 3 and 70, 71, 72 , respectively.)

Figure 1. Helicopter Tail—Boom Structure -
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/1 ~~~~~~~~~~~

(a)  AN OVERALL NUMBERING SYSTEM FOR
BOUNDARY NO DES .

o
2 

5

12

1
4

SUBSTRUCTURE 1 SUBSTRUCTURE 2 SUBSTRUCTURE 3

(b) NUMBERING SYSTEM FOR BOUNDARY AND
INTERIOR NODES FOR EACH SUBSTRUCTURE.

NOTE: FOR CLARITY DIAGONAL MEMBERS ARE NOT SHOWN.

Figure 2. Nodal Numbering Systems for Substructural Formulation- 
for the Finite Element Model of the Helicopter

Tail—Boom Structure
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of freedom and 24 interior degrees of freedom. Substructures 2 and 3

each have 24 boundary degrees of freedom , 12 interior degrees of freedom

and 36 members. The boundary stiffness matrix K
B for the entire struc—

ture is a 36 x 36 matrix with half—bandwidth of 12. Decomposed part of

this matrix is stored for use In Eq. (17). The decomposed part of the

matrix K~1 for each substructure is also stored for use in Eq. (26).

The matrix Q
r 
is calculated from Eq. (26) and stored for each substruc-

ture. In this program the mass matrix for the structure is not stored .

Rather, calculations of Eqs. (29) and (31) are carried out memberwise.

Therefore, one should expect computational time to be slightly greater

with this program.

The starting subspace for both programs is obtained by taking the

first 18 columns of a 72 x 72 Identity matrix. It should be noted , how-

ever, that degrees of freedom with substructuring formulation are numbered

differently as compared to formulation without substructuring. Therefore,

the starting subspace for the two programs Is different. However, the

two programs converged to exactly the same natural frequencies and the 
S

- 
- mode shapes. The results are summarized in the Table. The ten eigen—

vectors are listed in the Appendix. The tolerance limit for eigenvalue

convergence in Step 8 was 10
6 

for both programs.

For the results given in the table the subspace iteration algorithm

with substructuring took 9 iterations to converge. The computing time

was 72.3 sec on IBM 370—168(G) computer. The program based on the algo—

rithm without substructuring took 13 iterations to converge with a corn—

• putational time of 82.5 sec. The reason for four more iterations with

this program Is that the starting subspace is apparently not as good as
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t -

TABLE NATURAL FREQUENCIES WITH OR WITHOUT
5 

S 

SUBSTRUCTURING

4
Natu ral Na tu ra l

Frequency Frequency in Hz
No. 

_________________

1 21.8236

2 23.1330

3 101.5989

-~ 4 105.2161

5 107.3932

6 200.8760

7 227.5787

- 8 239.3666

9 241.9844

10 377.4557
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for the previous program . However when the same starting subspace is

chosen for the second program , the algorithm converges to the same solu-

tion in 9 iterations with a coaputational time of 61.0 sec. This time

I 
- 

is less than the computing time with the substructuring program . The

reason is that with the substructuring program , the mass matrix is cal—

culated in each subspace iteration for use in Step 4 of the algorithm .

When the substructuring program is modified to calculation of the mass

matrix only once, the computing time is reduced to 57.8 sec.

_ _ _ _ _ _ _ _
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V. DISCUSSIONS AND CONCLUSIONS

An efficient numerical procedure for structural dynamics with sub—

structuring is developed. The method is based on the subspace iteration

algorithm for calculating eigenvalues and eigenvectors of a general

elgenproblem of Eq. (4). No app rox imating ass umptio ns are made in

developing the procedure. Thus, for a given finite element model of

the st ructu re , the natu ral f r equencies and the corr esponding mode shapes

are the same with or without the substructur ing method .

The method proposed herein does not use the component mode sub-

stitution ideas developed during the past 18 years. Thus, solution of

the eigenproblem for each component is not necessary.

Conceptually the method is fairly straightforward and simple to

program . Another advantage of the method is that It uses most of the

data that is already available from structural analysis for static

response. Thus the method blends quite nicely into static structural

analysis with substructures. On the other hand this will not be true

if component mode substitution methods are used , as some additional S

calculations with substructures would be necessary for obtaining static

response of the structure.

It should be noted that the method of calculating natural frequen—

des and eigenvectors with substructures can be easily Integrated into

the optimal design algorithm with substructures [21] to treat constraints

on natural frequencies of the structure. Also optimal design procedures

with substructuring can be now developed for structures subjected to

transient dynam ic loads.
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ETCENVECTORS FOR OPEN TRUSS HELICOPTER TAIL-BOOM

AN APPENDIX
S~XS
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DYNANIC STRUCTURAL ANALYSIS WITH SUBSTRUCTURES
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0.22051) 00 0.25650—02 —0.3825 0—31 0.23840 00 0.5871D—02

_0.3153O_01 0.20920 00 -0.61300—02 0.38260—01 0.20840 00
—0.59740—02 0.37540—01 0.20920 00 0.60280—02 —0 .36500—01
-0.10550 00 —0.3969D—02 —0 .35700—01 —0 .1056D 00 0.37320—02
0.36510—01 -0.IOSSD 00 0.3816D—u2 0.35690—01 —0.10560 00

-0.3884D—02 0.19050-01 -0.22730 30 —0 .94730—02 0.1876D—01
-0.22170 00 0.93400-02 -0.19050—01 —0.22730 00 0.93010—02
—0.18760—01 —0 .2277D 00 —0.95120—02 0.62750—01 —0.31620—01
-0.61360—02 0.61550—01 —0.31 710—31 0.63200—02 —0.62760—01
-0.31620—01 0.59710—02 —0.61550—01 — 0 .31710—01 —0 .61940 -02

• 0.68530—01 0.28660 00 —0.14930—02 0.67170-01 0.28680 00
0.13120—02 —0.68550—01 0.28660 00 0.13430—02 —0.67160—01
0.28680 00 —0 .14620—02
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- 5  -5 -

E~IC,eM ~ L~CTO , I~W - F~
0.54890—02 —0.32080— 02 —0 .22610 30 —3 .55160—0? 3.29300—02
—0.22600 00 0.54953-0? 0.27600—32 -0.22570 30 —3.55160—02
-0.2507D—02 —0.22560 03 -0.40713—01 —0 .63290—02 —0.20360 00
0.40350—01 0.57240-02 —0.20340 30 — 0 .4371D—01 3.53590—02
—0.20300 00 0.40353—01 -0 .sIOlD— )2 -0.23280 00 —0.35830—01
0.39750—02 0.11450 03 0.35380—01 —0 .38550-02 0.11440 00
—0.35840—0 1 —3.44800—02 0.11500 00 0.35380—01 0.43040—02
0.11490 00 0.22060—01 0.91560—j2 0.22460 00 —0.22230—0 1
—0.88670—02 0.22440 03 3.22050—01 —0 .93480-02 0.22480 00
—0.22230—01 0.90360-02 0.22460 03 0.66020—01 0.57560—02
0.25120—0 1 —0.65880-01 —O .56 14D— J2 0.25040—01 0.66020—01
-0.51220—02 0.2~ 13D—01 — 0.65890—31 0.56060—02 0.25020—0 1
0.11980—01 0.13280—02 —0.28340 30 — 0 .71720— 01 —0.13090—02

—0 .28340 00 0.71980-01 -0.11980—32 —0 .28350 00 —0.7 1730—0 1
0.12580—02 —0.283 50 00

EIGE~ VECT OR P40, 9
— 0.10440—02 -0.14880 00 —0.14200 30 0.91630—03 3.14860 00
-0.13950 00 0.90400-03 —0.14880 30 0.14260 00 —0 .1011D— 02
0.14860 00 0.14003 00 0.16130—03 —0 .19400 00 —0.18350 00

—0 .27440—03 0.19410 00 —0 .18019 0) —0.29970—03 —0.19400 00
0.18400 00 —0.31010-04 0.19410 30 0.18070 00 0.10390—02
-0.13680—01 —0.69090-01 -0.11660—o2 0.73780-01 —0.67830—01
-0.12430—02 —0.73660-01 0.68960—01 0.76820—03 0.73790—01

• 0.61690—01 0.96450—03 0.78700—01 0.73310—01 —0.11530—02
—0.78910—01 O.7196D-01 -0 .13170—02 0.78720—01 —0.73790—01

5 

0.80580—03 —0.78920-01 —0.72450—01 0.38240—03 0.16890 00
0.13380 00 —0.62660-03 —0.16930 30 0.15290 00 —3.84390—03
0.16890 00 —0.15610 00 3 .33190—03 —0.16930 00 —0 .15320 00
0.13780-04 0.18630 00 0.17000 00 —0.29430—03 —0 .18660 00
0.16670 00 -0.49920-03 0.18630 30 —0.16980 00 0.12560—04
-0.18660 00 —O .166~ D 00

E1GE~4VECTOR ND . 10
0.33090—03 0.17690 00 0.16860 03 —0.20740—03 —0.17810 00
0.16530 00 —0 .33430—03 0.17690 00 —0.16860 00 0.21440—03

—0.1787D 00 —0.16533 00 —0 .19240—02 0.42880—01 0.39950—01
0.19880—02 —0.423 30-01 0.39090—01 0.19270-02 0.42880—01
-0.39900—01 -0.19860-02 —0.42330—01 —0.39050—01 —0.44730—03
-0.20200 00 -0.18930 00 0.33190—04 0.20440 00 —0.1856D 00
0.45410—03 —0.20200 00 0.1893D 30 —0.3841D-04 0.20440 00
0.18560 00 0.18110—02 — 0.87310— 01 —0.79500—01 —3.17940—02
0.85440—01 -0.77850—01 —0 .18150—32 —0.87300—01 0.79410—0 1
0.17940—02 0.85440-01 0.7782D—J1 0.18430—02 0.11590 00
0.10730 00 -0.99410-03 —0.117 8D 00 0.10530 00 —0.18510—02
0.11590 00 —0.10730 03 0.99760—03 -0.11780 00 —0 .10530 00
0.11750—02 0.20100 00 0.18120 00 —0 .12310— 03 -0.19830 00
0.17770 00 —0.11920-02 0.20100 30 —0 .18120 00 0.12630—03

—0.19850 00 —0 .17770 03
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