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Unlike component mode substitution methods, no appreximating assumptions
are made. Thus, natural frequencies and mode shapes for the finite element
model employed are the same with or without the substructuring algorithm.
This is demonstrated by computing first ten natura) frequencies and the
corresponding mode shapes for an open truss helicopter taii~boom structure.
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I. INTRODUCTION

Analysis of structures for transient dynamic loads is of considerable
importance in many fields of engineering. Design of aircraft structures,
spacecraft structures, ship structures, machine components and framed
structures for earthquake loading are some examples where transient
dynamic analysis procedures are required. Many of these structures must
be represented by large finite element models. Therefore it is desirable
to divide the structure into smaller components or substructures for
efficient dynamic analysis.

This paper addresses the question of dynamic analysis of large
structures with substructures or components. A simple and efficient
numerical method for such analysis is developed. The method does not
require generation and storage of stiffness and mass matrices for the
entire structure. It requires generation of only substructural stiffness
matrices and storage of their decomposed factors. Thus the method is
quite compact requiring minimum computer storage.

The method of modal superposition is adopted for dynamic structural
analysis. In this approach free vibration modes and the corresponding
natural frequencies must be first computed. This information is then
used to define uncoupled equations of motion for the system. Uncoupled
equations of motion are then easily solved using Duhamel Integral. Thus
the problem of structural dynamics is reduced to finding natural
frequencies and mode shapes with substructures.

Methods of component mode substitution for calculating system

eigenvalues and corresponding eigenvectors are briefly reviewed in the
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next subsection. Section II defines the dynamic structural analysis
problem. the method of dynamic structural analysis with substructures
is developed in Section III. An example problem is considered in

Section IV to demonstrate applicability of the method.

Component Mode Substitution Methods

In component mode substitution methods of free vibration analysis,
the structure is divided into a number of smaller structures. Mode
shapes of each substructure are calculated for a variety of boundary
conditions. Compatibility and equilibrium conditions at the inferfaces
of all substructures are invoked and a reduced eigenvalue problem for
the entire structure is generated. After the reduced eigenvalue problem
has been solved, system mode shapes are generated using previously
defined transformations in terms of component modes.

Advantage of component mode substitution methods is in the experi-
mental determination of system mode shapes. It is easier to measure
mode shapes and natural frequencies of smaller components as compared to
measuring mode shapes for the entire system. Knowing mode shapes of
each component,a method is needed to synthesize the system modes. The
component mode substitution methods [1-7] then provide such a means for
generating system modes.

Many variations of the component mode substitution method have been

presented since Hurty's 1960 paper on the subject [1]. Several review

articles on the subject have appeared in the literature [2,3,4,5]. Some




other recent articles that deal with component mode substitution concept
are the Refs. 6 and 7.

The method developed in the paper does not use component mode substi-
tution concept. Therefore details of these techniques are not presented
here. Reader may consult Refs. 1-7 and articles cited in them for more
details on component mode substitution methods. In the method presented
in the paper one calculates eigenmodes and the corresponding eigenvalues
for the system with the substructural data, but without calculating mode

shapes of any substructure. No assumptions other than the usual assumptions

of linear elastic systems modeled by finite elements, are made.
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II. PROBLEM OF STRUCTURAL DYNAMICS

The finite element technique of analysis is used. The equation of
motion for a typical finite element model for the structural system with

n independent degrees-of-freedom can be written as
Mu + Ci + Ku = F(t) (D

with initial conditions specified on u and i. Here M, C and K are
(n x n) mass, damping and stiffness matrices, respectively; u,  and u
are the displacement, velocity and acceleration vectors, respectively
and F(t) is a forcing function. These equations are derived using the
Lagrangian approach [8]. If it is assumed that the system described by
Eq. (1) is linear, then M, C and K are constant; that is they are not
functions of time or motion.

Most commonly used procedure of dynamic analysis of linear systems
is the normal modes method. This is also referred to as the modal or
mode superposition analysis and is adopted in the present paper. In

this method, one first considers the free vibration problem:
Mu + Ku = 0 )
Substituting

u = ¢ sinw(t - to) (3)

into Eq. (2), the following generalized eigenvalue problem is obtained:

Kp = w Mg ()




i

195 5
A The n eigenvalues of Eq. (4) give the natural frequencies of the system 1
[ and the corresponding eigenvectors are the mode shapes. The complete 3
N
L : solution to Eq. (4) can be written as
2
Ko = MoQ (5)

in which the columns in ¢ are the eigenvectors ¢i and Qz = diag (wi).

The eigenvectors of Eq. (4) are linearly independent and can be
orthonormalized with respect to the mass matrix M. These vectors, there-
fore, form a basis for the n dimensional vector space. The vector u(t)
can be expressed as a linear combination of the eigenvectors ¢i. This

relationship may be expressed as the following linear transformation 1

et

TONB LY

u(t) = dn(t) (6)

where n(t)ERn is usually called the normal coordinate vector. Substituting

Eq. (6) into Eq. (1) and pre-multipying by ¢T, then givs

n + C*n + an = F*(t) (7)

TK¢ = 92 and C* = ¢TC¢. If the damping matrix C

Here F*(t) = ¢TF(t), ®
for the system is of a restricted form [9,10], then C* is a diagonal
matrix. Equation (7) then represents a system of n uncoupled equations.
These equations can be solved exactly using the Duhamel Integral [8,10].
It is noted that the finite element model for practical systems is
generally quite large; that is n is generally very large. For many

dynamic analysis problems, it is reasonable to assume that only a first

few eigenmodes contribute significantly to the dynamic response. Thus,

approximate analyses are carried out with only p << n eigenvectors. In
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this case, ¢ forms an M-orthonormal basis for the p dimensional vector

T
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space and Eq. (7) represents a system of only p uncoupled equations.

r~:.=_.;‘__
e

Integration of Eq. (7) determines the normal coordinates nERP, and

i> Eq. (6) then determines the real displacement u.
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III. DYNAMIC ANALYSIS WITH SUBSTRUCTUKES

The problem of dynamic structural analysis is reduced to formulation
of the eigenvalue problem of Eq. (4) and generation of the desired eigen-
vectors and eigenvalues. Once eigenvalues and eigenvectors are known,
the uncoupled system of Eqs. (7) is readily obtained.

Several methods for solving the eigenvalue problem of Eq. (4)
have been developed in the literature [11-15]. These methods take
advantage of bandedness property of the K and M matrices. It has been
recognized that it is desirable to divide a large structure into a
number of smaller structures for the purpose of calculating system
eigenmodes and eigenvalues. The stiffness and mass properties of a
substructure are used to calculate its eigenmodes. This requires solution
of several smaller eigenvalue problems. Eigenmodes of all substructures
are then synthesized to generate system eigenmodes. Different methods
of synthesis generate various component mode substitution methods [5].
Most of these methods generate approximate eigenvalues and eigenvectors
for the system.

The method presented in the paper, however, does not use the com-
ponent mode synthesis concept, since the eigenmodes for substructures
are never computed. The method directly generates the desired number of
system eigenmodes and eigenvalues using the substructural stiffness
matrices and the mass matrix for each finite element. The stiffness or
mass matrix for the entire system is never generated. Moreover the mass

matrix for any substructure is not required to be generated and stored.

The method developed here uses the subspace iteration algorithm of
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Ref. 12 for solving the eigenvalue problem of Eq. (5). The basic idea
of the subspace iteration method is quite similar to the general Rayleigh-
Ritz method. In the method, one starts with a set of p << n linearly
independent vectors. These vectors form a basis for the p-dimensional
vector space. The mode shapes for the system are expressed as linear
combinations of the assumed basis vectors. The parameters of these
linear combinations are obtained by solving a reduced eigenvalue problem.
An iterative process is then used to improve the assumed basis vectors
until conve}gence is obtained.

It is suggested [12] that when p mode shapes are required, one should

start with q > p linearly indpendent vectors, where q is given as
q = min{2p, p+8, n} (8)

This improves accuracy of the first p eigenvectors and the corresponding

eigenvalues. Let us define a linear transformation

+

0"

® (°)¢* 9

(0)

where X is an (n x q) matrix whose columns are the assumed basis

vectors for RY and ¢* is a (q x q) matrix whose elements are the unknown

multipliers of the transformation. Substituting Eq. (9) into Eq. (5)

0T

and premultiplying by X one obtains

Kko* = MAQRQKZ (10)

where

T T

(0) v

kx = x(O k(O Mk = X ) (11)

¥
The superscript indicates the iteration number.




Equation (10) is a reduced eigenproblem of dimension q that is solved for ¢%*
and Q*% Equation (9) is then used to obtain approximate system mode

(1)

shapes. An improved set of basis vectors X is now determined from

Kx(l) = Y(O) (12)

where

v(0) _ ye(® (13)

The iterative process is continued until the eigenvalues determined

from Eq. (10) converge to within a prescribed tolerance.

Subspace Iteration with Substructuring

In using the subspace iteration algorithm outlined in the preceding
with substructuring, one needs to modify calculations of Eqs. (12) and
(13) only. 1If one can perform these calculations with the substructural
matrices rather than the system matrices, then one has a method of
structural dynamics with substructuring. Calculations of Eqs. (12) and
(13) can indeed be performed with only the substruc;ural data. This is
explained in the following.

Le us consider Eq. (13) first. Since the mass matrix M is generated

-
by considering contribution to it from each finite element [10], Eq. (13) =

may be written as

e T
@ -( o miAi>¢(o) (14)
i
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where e is the number of finite elements, mi is the mass matrix for

the ith element and Ai is a Boolean transformation matrix taking contri-
butions from m1 into M. Note that for each i, the matrix under the
summation sign is an (n x n) matrix. Equation (14) may be rearranged

as

) _

i

Y

o~

{(AiTmiAi> ¢(°)} (15)
1

(0)

Thus calculations for Y from Eq. (15) can be performed without ever
generating the system mass matrix M. It is noted, however, that calcu-
lations of Eq. (13) must be performed in each subspace iteration. There-~
fore computational effort with Eq. (15) is greater as compared to
calculations with a system mass matrix that is calculated once and

stored in the computer core. This is due to the fact that calculations
with Eq. (15) essentially imply generation of M at each subspace
iteration. Thus, there is a trade-off between the computational effort
and the computer core requirement for calculations of Eq. (13). Note that
there is also a possibility of computing M only once and storing it on
some external device such as a disk or magnetic tape. In every subspace
iteration the stored M can be readily used. This procedure, however,

will also require more computational time as compared to storage of M in the
core because of the time delay in linking and rewinding the external device.

Calculations for X(l)

from Eq. (12) can also be performed with only
substructural matrices. The reason for this is that one can view

Eq. (12) as an equilibrium equation governing static response of the

(0)

system to a pseudo-load matrix Y whose each column represents a
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loading conditions. Equilibrium equations of the type of Eq. (12) can
be solved using the substructuring concept [10]. The reader who is
familiar with static structural analysis with substructures will readily
recognize the following development. Others may consult Ref. 10 for
more discussion on static structural analysis with substructures.

For the purpose of solving X(l)

from Eq. (12) using the substructuring
concept, one divides the entire structure into several substructures.

Each substructure is viewed as a hyper-finite element that is connected

to other substructures only at its interfaces. For each substructure a
set of interior generalized coordinates and another set of interface or
boundary generalized coordinates is defined. The hyper-element force-
displacement relationships are derived in terms of only the boundary
generalized coordinates by using essentialiy the static condensation
procedure [10]. The hyper-element force-displacement relationships are
synthesized to generate a reduced system of equilibrium equations in terms
of only the boundary generalized coordinates for the system. This reduced
system of equations is solved for boundary generalized coordinates and
following the usual finite element approach, displacements at all points
of the structure are calculated. This procedure is developed in the

following.

First, let us partition Eq. (12) as follows:

a (0)
%8 Spr||*s '3

= (16)

(1) (0)
o !
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where subscripts B and I refer to variables associated with the boundary

and interior generalized coordinates for the entire structure. Now,

using the second line of Eq. (16), Xil) is eliminated from the first
line to obtain
£8Y -
KBXB FB (17)

where

T, (0)

1 (18)

L S0
FB YB + Q

Ky = Ky + KgyQ | 9)

-1

== Bt Fon s

It is interesting to note that matrices FB and KB in Eqs. (18) and (19)
can be generated using the substructural matrices without ever generating
KBB’ KII or KBI for the entire structure. For this purpose one also

partitions the equilibrium equation for the rth substructures as

r r (1) (0)r
Kgp  Xa1||%s Yg
= (21)
r r (Dr (0)r
KIB KII xI YI

where superscript r refers to the rth substructure. From the second line

of Eq. (21), one obtains
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Eliminating X

obtains

where

13

r A  _(0)x r (L

KIIXI = YI - KIB X (22)

gl)r from the first line of Eq. (21), using Eq. (22), one

r (1. T

KB XB = FB (23)
I Lt .r

Kp = Kgs * Kp1® 4

A A QrTY(O)r (25)
B B I
r E =1 -r

Q == [K,IT K, (26)

Equation (23) is a force-displacement relationship for the rth sub-

structure in terms of its boundary generalized coordinate. The boundary

stiffness matrix KB and the effective boundary load matrix FB for the

entire structure are synthesized from the substructural data of Egs. §

(24) and (25) using the standard finite element procedures:

and
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Kg= 1 8 R B , (27
r=1
L T
AR Lt {1 o (28)
r=
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where L is the number of substructures and Br is a Boolean transformation

matrix. It is noted here that the matrix K;I in Eq. (26) is usually not

inverted. This matrix is symmetric and banded. Efficient procedures

4

are used to decompose KII and to solve for Qr in Eq. (26) using forward

and backward substitution. Also K;B is usually quite sparse and

advantage of this property is realized in calculations.

Now the matrix xél) is calculated from Eq. (17). The matrices

X§l)r, r=1, 2, ..., L, are calculated from Eq. (22). Finally the

(1) (1)

matrix X is assembled from XB and Xél)r. It is noted that the

matrices, such as decompositions of KB and K;I, Qr, K;B, and Br are
available from the static structural analysis for use in the preceding
equations. Thus, the proposed subspace iteration algorithm with sub-
structuring blends quite nicely into the static structural analysis

with substructuring.

The subspace iteration algorithm with substructures is then

summarized as follows:

Step 1 Start with an (n x q) matrix x(o) whose columns are estimates

of q eigenvectors.
Step 2  Compute

v(® - x(® (29)

using finite element operations similar to that of Eq. (15).

Step 3 Solve for i(l)

from the equation




Step 4

Step 5

Step 6

Step 7

Step 8

15

k(1) = y(© (30)
using Eqs. (17) and (22).
Compute

§0 <@ (31)

using finite element operations of Eq. (15).
Calculate the following (q x q) matrices
T i
Kk = i(l) Y(0) { Mk = i(l) Y(1) (32)

Solve for all eigenvalues and eigenvectors of the projected
eigenvalue problem of Eq. (10). Note that the generalized
Jacobi iteration [14] or any other method of solving an eigen-

value problem may be used in this step.
Compute

O T 6 | S @ 5

3 Y (33)

Check for convergence of eigenvalues. If all the ratios

(1) (0) (1)
wi - wi I////;i (34)

are within a specified tolerance, then stop the iterative

process. Otherwise return to Step 3 with Y(o) = Y(l)

After convergence, the first p columns of X(l) are the

e, o : e RO W T ¥ N R SN O
T TR e R NNRON T s e gl 0 T NN

e e il P S —
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¥ required eigenvectors and the first p elements in 9*2 are the

; corresponding eigenvalues.
|

L ¢ The rate of convergence of the subspace iteration algorithm depends
on how close the starting subspace is to the eigenvectors of the system.
Many times eigenvectors from previous analyses are available and form an
excellent starting subspace. For many structural problems, authors have
simply used first q columns of an (n x n) identity matrix as the starting
subspace [16-18]. The procedure suggested in Ref. 12 had also been used

s successfully [19,20]. Here the first column of X(O) contains simply
diagonal elements of the mass matrix and other columns are unit vectors

with +1 at the coordinates with largest ratios mii/kii'
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IV. AN EXAMPLE PROBLEM .

As an example of calculating eigenvalues and eigenvectors with sub-
structures, an open helicopter tail-boomstructure is considered. The
structure is modeled by 108 truss members and 28 joints as shown in
Figure 1. The structure has 72 degrees of freedom, so the eigenvalue
problem of Eq. (4) is of dimension 72 x 72. For sample calculations,

cross-sectional area of all members is 1.0 in.2, the material weight

density is 0.10 lb/in.3 and Young's modulus is 106 psi.

The first 10 natural frequencies and the corresponding mode shapes
for the structure are obtained using the subspace iteration algorithms
with and without substructuring. Two computer programs based on the
subspace iteration have been developed, one without substructuring and
the other with substructuring. These programs are used to obtain the
results reported herein. Note that the generalized Jacobi iteration [14]
is used to solve the eigenproblem of Eq. (10) in both programs. .

For the algorithm without substructuring, the half-bandwidth of
matrices K and M is 21. Thus 72 x 21 stiffness matrix is computed. It
is decomposed and stored for use in Step 3 of the algorithm. The 72 x 21
mass matri# for the structure is also computed and stored for use in
Steps 2 and 4 of the algorithm.

For the algorithm with substructuring, the tail-boom structure is
divided into three substructures by partitioning it at nodes 9-12 and
17-20 as shown in Fig. 2. Nodes 25-28 are also treated as boundary nodes.

Figure 2 shows global and local (or substructural) numbering systems for

various substructures. Substructure 1 has 36 members, 12 boundary degrees
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Figure 2. Nodal Numbering Systems for Substructural Formulation
for the Finite Element Model of the Helicopter
Tail-Boom Structure
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of freedom and 24 interior degrees of freedom. Substructures 2 and 3
each have 24 boundary degrees of freedom, 12 interior degrees of freedom
and 36 members. The boundary stiffness matrix KB for the entire struc-
ture is a 36 x 36 matrix with half—bandwidth of 12. Decomposed part of
this matrix is stored for use in Eq. (17). The decomposed part of the
matrix K;I for each substructure is also stored for use in Eq. (26).
The matrix Qr is calculated from Eq. (26) and stored for each substruc-
ture. In this program the mass matrix for the structure is not stored.
Rather, calculations of Eqs. (29) and (31) are carried out memberwise.
Therefore, one should expect computational time to be slightly greater
with this program.

The starting subspace for both programs is obtained by taking the
first 18 columns of a 72 x 72 identity matrix. It should be noted, how-
ever, that degrees of freedom with substructuring formulation are numbered
differently as compared to formulation without substructuring. Therefore,
the starting subspace for the two programs is different. However, the
two programs converged to exactiy the same natural frequencies and the
mode shapes. The results are summarized in the Table. The ten eigen-
vectors are listed in the Appendix. The tolerance limit for eigenvalue
convergence in Step 8 was 10-6 for both programs.

For the results given in the table the subspace iteration algorithm
with substructuring took 9 iterations to converge. The computing time
was 72.3 sec on IBM 370-168(G) computer. The program based on the algo-
rithm without substructuring took 13 iterations to converge with a com-

putational time of 82.5 sec. The reason for four more iterations with

this program is that the starting subspace is apparently not as good as




i bl |
3
i
% TABLE NATURAL FREQUENCIES WITH OR WITHOUT
SUBSTRUCTURING
1‘ Natural Natural
! Frequency Frequency in Hz
No.

1 21.8236

2 23.1330

3 101.5989

4 105.2161

5 107.3932

6 200.8760

7 227.5787

8 239.3666

9 241.9844

10 377.4557

|

e
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for the prévious program. However when the same starting subspace is
chosen for the second program, the algorithm converges to the same solu-
tion in 9 iterations with a computational time of 61.0 sec. This time
is less than the computing time with the substructuring program. The
reason is that with the substructuring program, the mass matrix is cal-
culated in each subspace iteration for use in Step 4 of the algorithm.
When the substructuring program is modified to calculation of the mass

matrix only once, the computing time is reduced to 57.8 sec.
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V. DISCUSSIONS AND CONCLUSIONS

An efficient numerical procedure for structural dynamics with sub-
structuring is developed. The method is based on the subspace iteration
algorithm for calculating eigenvalues and eigenvectors of a general
eigenproblem of Eq. (4). No approximating assumptions are made in
developing the procedure. Thus, for a given finite element model of
the structure, the natural frequencies and the corresponding mode shapes
are the same with or without the substructuring method.

The method proposed herein does not use the component mode sub-
stitution ideas developed during the past 18 years. Thus, solution of
the eigenproblem for each componént is not necessary.

Conceptually the method is fairly straightforward and simple to
program. Another advantage of the method is that it uses most of the
data that is already available from structural analysis for static
response. Thus the method blends quite nicely into static structural
analysis with substructures. On the other hand this will not be true
if component mode substitution methods are used, as some additional
calculations with substructures would be necessary for obtaining static
response of the structure.

It should be noted that the method of calculating natural frequen-
cies and eigenvectors with substructures can be easily integrated into
the optimal design algorithm with substructures [21] to treat constraints
on natural frequencies of the structure. Also optimal design procedures

with substructuring can be now developed for structures subjected to

transient dynamic loads.
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EIGENVECTORS FOR OPEN TRUSS HELICOPTER TAIL~BOOM

AN APPENDIX

TO

DYNAMIC STRUCTURAL ANALYSIS WITH SUBSTRUCTURES
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EIGENVECTOR NO.
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0.1183D-02
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-0.11700-03
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0.3234D 0O
~04990D-01
‘0.367“0‘03

4
0.58420-01
-0.5026D0-03
-0.5525D-01
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0.20920 00
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~0.2299D0-01
0.94600-01
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0.16500-02
-0.52660-01
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0.73060D-02
-0.26730-02
0.20840 00
0.38260-01
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-0.1956D 00
0.3569D0-01
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0.6275D0-01
0.60280-02
-0.31710-01
0.67170-01
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0.1785D 00
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0.22670 00
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0.23120-01
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0.2084D 00
-0.36500-01
0.37320-02
-0.1056D 00
0.1876D0-01
0.93010-02
-0.31620-01
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-0.6194D-02
0.2868D 00
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EIGENVOCTOR NOG- 8
0.5489D0-02 -0.32080-02
-0.22600 00 0.54950-02
-0.25070-02 ~-0.2256D Q)
0.40350-01 0.5724D-02
-0.20300 00 0.4035D-01
0.39750-02 0.1145D 09O
-0.3584D-01 -0.4480D-02
0.1149D 00 0.2206D-01
-0.8867D-02 0.2244D 00
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0.2512D-01 -G.6588D-01
-057220-02 0.2510D0-01
0.7198D-01 0.1328D0-02
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0.12580-02 -0.2835D 00
EIGENVECTOR NO. 9
-0.1044D-02 -0.1488D 00
-0.13950 00 0.9040D-03
0.14860 00 0.14000 00
-0.2744D-03 0.19410 00
018400 00 -0.3101D-04
-0.7368D0-01 -0.6909D-01
-0.126430-02 -0.7366D-01
0.6769D-01 0.9645D-03
-0.7891D-01 0.7196D-01
0.8058D-03 -0.7892D-01
0.1558D 00 -0.6266D-03
0.1689D0 00 -0.1561D OO0
0.1378D-04 0.1863D0 00
016670 00 -0.4992D0-03
-0.1866D0 00 -0.1665D 00
EIGENVECTOR NO. 10
0.33090-03 0.17630 00
0.1653D0 00 -0.33430-03
-0.17870D 00 -0.1653D 00
0.19880-02 -0.4233D-01
-039900-01 -0.1986D-02
-0.20200 00 -0.1893D 00
0.18560 00 0.18110-02
0.8544D-01 -0.7785D-01
0.17964D-02 0.8544D-01
0.1073D 00 -0.9941D-03
0.1159D 00 -0.1073D 00
0.1175D-02 0.20100 00
0«1777D 00 -0.11920-02
019850 00 =-0.17770 00

-0.22610 30
0.27600-22
-0.40710-01
-0.20340 00
-0.5107D-22
0.3538D-01
0.1150D 00
0.9156D-02
0.2205D-01
0.2246D 00
~0.5614D~-02
-0.65890~-01
~0.2834D J0
-0.11980-02

-0.14200 20
-0.14880 29
0.16130-03
-0.18010 00
0.1941D 20
-0.1166D-02
0.6896D-01
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-0.11780 00
0.9976D-03
0.18120 00
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-0.,2257D0 00
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-0.40710-01
-0.2028D 00
-0.3855D-02
0.3538D-01
0.2246D 00
-0.9348D-02
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0.25040-01
0.56060-02
-0.71720-01
-0.28350 00

0.91630-03
0.1426D0 00
-0.194¢00 00
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0.1807D 00
0.7378D-01
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-0.39050-01
0.20440 00
-0.38410-04
-0.73500-01
-0.87300-01
0.18430-02
C.1053D0 00
~0.11780 00
~0.12310-03
-0.18120 00

0.2930D-02
-0.5516D~-02
-0.2036D 00
0.5359D-02
-0.3583D-01
0.1144D 00
0.43040D0-02
-0.22230-01
0.2248D 00
0.57560-02
0.6602D0-01
0.25020-01
-0.1309D0-02
-0.71730-01

0.14860 00
-0.1011D0-02
-0.1835D 00
-0.1940D0 00

0.10390-02
-0.67830-01

0.7379D-01
-0.1153D0-02
-0.73790-01

0.16890 00
-0.8439D0-03
-0.15320 00

0.12560-04

-0.17870 00
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0.4288D-01
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