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I.  INTRODUCTION

For the past several years, the ElectroScience Laboratory (ESL) has
been very successful in developing numerical solutions via the Geometrical
Theory of Diffraction (GTD) approach for the radiation patterns of antennas
mounted on aircraft [1-7]. These numerical solutions provide a useful, ef-
ficient, and economical way for the evaluation, location, and design of
fuselage-mounted antennas based on their pattern performance in the principal
planes. However, if modern systems are to function properly, the antenna
pattern must meet certain specifications. These specifications are usually
given in terms of a coverage diagram for a particular sector in space for
the antenna mounted on the aircraft not on a finite ground plane where the
original antenna design was made. Thus, the desire for an accurate solution
for the complete pattern performance of antennas mounted on a complex air-
craft structure for given applications requires a more thorough study of
ways to handle the volumetric pattern.

First, it has been shown by numerous scale model measurements that our
roll plane model can be extended to almost cover the complete volumetric
pattern except for two conical sectors (fore and aft) [3]. The limitations
of the roll plane model result are due to the finite length fuselage. Yet,
the finite length fuselage has been solved, previously, in our elevation
plane model analyses. Furthermore, based on our previous three-dimensional
studies of geodesic rays which contribute to the pattern of an antenna on
various spheroids, one is able to combine the analyses of these two principal
planes to give the complete volumetric pattern [6,7]. In addition, the
cockpit/radome section and stabilizers .are taken into account using the flat
or bent plate model previously used to analyze the wings in the roll plane.
Using this approach, the complete volumetric pattern is obtained using a
model consisting of a composite elliptic cylinder to which are attached flat
or bent plates. As a result of this simplified model, the program is very
efficient and requires little computer storage space. This numerical solution
also provides both amplitude and phase data.

This report describes briefly the way our elevation and roll plane
model solutions are combined to give the complete volumetric pattern for
fuselage-mounted airborne antennas. For more details on this solution
refer to Reference [7]. The aircraft simulation model used in the
analysis is discussed in Section II. A complete description of the
input data and organization of the main program is presented in Section
III. A sample simulation of the 737 aircraft is considered in Section
IV. Various examples which illustrate the versatility of the code are
presented in Section V. Finally, a numerical technique is developed
in Appendix A which can be used to simplify the simulation of the
fuselage.




II. COMPUTER MODEL OF AN AIRCRAFT

In our study, computer simulation models are considered that resemble
a wide variety of aircraft shapes and yet can, also, be analyzed with
reasonable accuracy and economy. In this case, the three-dimensional nature
of the fuselage must be modeled if one is to adequately determine volumetric
patterns. This requirement resulted in the development of a general surface
of revolution model of the aircraft fuselage as presented in Reference [2].
Through an extensive study of geodesic paths on a general surface of revolution,
the number of dominant rays that contribute to the radiation pattern was shown
to be finite except for a sphere. Furthermore, the numerical result showed
that, for a prolate spheroid, the dominant rays needed to be considered would
not exceed four; in most cases, it is even less than that. These four rays
are illustrated in Figure 1 in which two rays are propagating around the

DIFFRACTION
POINTS

Figure 1. The four dominant GTD terms that radiate
at 6 = 90°, ¢ = 145°,

cross-section of the prolate spheroid; the other two are propagating along

the profile. To demonstrate the significance of these four rays, the
elevation plane pattern of an axial slot mounted on a prolate spheroid was
calculated using a two-dimensional (two rays) and three-dimensional (four rays)
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solution as shown in Figure 2. Experimental results were also shown to
verify the calculated three-dimensional result. It is immediately obvious
from those results that the back lobe region is not predicted using the two-
dimensional result. The two-dimensional result being the principal plane
pattern of a slot on an elliptic cylinder where the elliptic cross-section
simulates the profile of the prolate spheroid. This model only considers
the two rays which propagate along the profile (i.e., rays A and D in

Figure 1). However, the three-dimensional solution for the prolate spheroid
[2] is in good agreement with the measured pattern. The prolate spheroid
solution requires excessive computer time and storage and for those reasons
the present approach to handle the three-dimensional fuselage was developed.

As determined previously, our roll plane model of the aircraft
(refer to Figure 6a§ was capable of successfully computing the volumetric
pattern except for the fore and aft sectors illustrated in Figure 3.
However, these two sectors were accurately treated using our elevation
plane model of the aircraft (refer to Figure 6b). Consequently, a
method was developed which combines these two solutions to give the
complete pattern. Recall that four rays contribute to the radiation
pattern in the shadow region for an antenna mounted on a prolate spheroid.
Since there are only two significant rays which propagate around an
electrically large elliptic cylinder, both the elevation and roll plane
cylinders are needed to calculate the four ray effect. In order to
blend these two cylinder solutions together, a belt region is used as
illustrated in Figure 4. Within this region the elevation plane model
applies in that it provides the dominant two rays. Outside the belt
region the roll plane model is used in that it provides the dominant
rays. The angle a is chosen such that the roll and elevation solutions
blend smoothly together. In fact, a is a function of the size of elevation
and roll plane cylinders used to simulate the aircraft fuselage. For
most cases in our model, the angle a is set at 20°. This 20° belt has
been tested and found to be satisfactory, based on comparisons with
measured results.

Using this new efficient solution, the elevation pattern of an axial
slot mounted on a prolate spheroid was calculated using the input data
given in Section V and is illustrated in Figure 5. The comparison between
the measured and calculated results is very persuasive. This is a very
effective test for the solution in that the spheroid is small and nearly
spherical as opposed to the large and more cylindrical fuselage shape.
The curvature of the fuselage in the vicinity of the antenna location plays
a dominant role in predicting the radiation pattern. Thus, the elliptic
cylinders which are used to represent the fuselage profile and cross-section
should model the aircraft structure as accurately as possible near the
antenna location. In order to simulate the aircraft shape at the antenna
location a best fit ellipse routine is included in Appendix A. This routine
can be used to generate the roll (or cross-section) ellipse and elevation
(or profile) composite ellipse.
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Figure 5. Elevation plane pattern of an axial slot mounted
on a 4x x 2X prolate spheroid using newly
developed volumetric solution. (Geometry
illustrated in Figure 1.)

With the roll and elevation plane cylinders defined, one attaches flat
or bent plates to them to simulate the wings and horizontal stabilizers
in the roll model and nose section and vertical stabilizer in the
elevation model. These models are illustrated in Figure 6. Note that
there is a separate coordinate system used for the two models. The
elevation model coordinates are defined by the subscript "e" or "elev";
whereas, the rol1 model coordiates use "r" or "rol1". The connection
between the two coordinate systems is depicted in Figure 7.
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The flat or bent plates used to simulate the aircraft wings and
stabilizers are described by defining the location of the plate corners
in terms of appropriate Cartesian coordinate system (XYZ,o11 or XYZele
system) as shown in Figure 6. The corners are numbered ;n a counter c¥ock-
wise sense with the first corner being on the cylinder. The plate can be
horizontally mounted up and down on the cylinder as illustrated in Figure
8. However, when the plates are mounted on the lower half elliptic
cylinder (Xp or Xe is negative), the y component of the first and last
corners are set equal to the semi major or minor axis of the ellipse as
seen in Figure 8. This modification is made to eliminate the interior
wedge problem which leads to multiple reflections and diffractions. Since
the antenna is restricted to be on the top or near the top of the cylinder,
this modification is reasonable. In addition, the field contribution from
this edge is small compared with the other edges of the plate. This is due
to the great attenuation of the surface wave propagating along the cylinder
surface in reaching the edge. Note that the plates are not restricted to
lie horizontally. They can be tilted forward, backward, or sideways as
seen in Figure 9. However for the forward or backward tilting, the plates
are required to lie below the y axis with x negative. This requirement is
necessary because the wedge angle (the angle between the cylinder and plate)
must be constant for a given edge. '

In general, flat plates in the roll plane model are used to model the
aircraft wings. However for some aircraft such as the F-4, bent plates are
necessary to simulate the bent wings. Bent plates can, also, be used to
simulate the wing flaps.

The scale model drawings of the aircraft are used to determine the
coordinates of the corners of the plates which simulate the nose section,
wings and stabilizers. The Xy and Y, coordinates of the corners which
specify wings or horizontal stabilizers are measured from the front view
of the aircraft. The Z, component is determined from the top view of the
scale model drawing. Similarly, the X and Ye coordinates of the corners
specifying the vertical stabilizer and nose section are measured from the
side view of the aircraft. The Ze component is obtained from the top view
of the aircraft. Note that if the antenna is mounted on the bottom of
the fuselage, then the aircraft should be flipped over so that the antenna
appears to be mounted on top of the aircraft.

12




Figure 8. Fuselage and wing geometry for theoretical
aircraft model looking from the front. The
ante?na is always mounted on top of the
models.




Figure 9(a). Illustration of wings tilted forward and backward.




Figure 9(b). Illustration of wings tilted sideways.
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III. DEFINITION OF INPUT DATA

As stated earlier, the input data associated with the aircraft
geometry is defined by the two composite ellipse models (roll and
elevation). Each of these models has its own coordinate system as shown
in Figure 6. A1l linear dimensions are iven in terms of inches and all
angular dimensions in degrees. In most cases angular quantities are expressed
in terms of theta and phi, the usual spherical coordinates.

It is felt that the maximum usefulness of the computer code can be
achieved using it on an interactive computer system. As a consequence,
all input data are defined in free format such that the operator need
only put commas between the various inputs. This allows one on an inter-
active terminal to input data without being concerned with the field length
associated with a fixed format.

The organization of the input data is illustrated in Table 1. Note
that unless indicated otherwise all read statements are made on unit number
5, i.e., READ (5,-), where the "-" symbol refers to free format. In all
the following discussions associated with logical variables a "T" will imply
true, and an "F" will imply false. The complete words true and false need
not be input in that most compilers just consider the first character in
determining the state of the logical variable. The following list defines
in detail the function associated with each of the input variables.

1. READ: LPLT, LTEST, LDEBUG, LOUT

a) LPLT: This is a logical variable defined by T or F. It is
used to determine whether a pen plot of results is
desired by the operator. If set true, the program
plots both the E-theta and E-phi patterns in polar
form. In addition if set true, input data must be
supplied on unit #8. This data is described later.
If set false no data is necessary on unit #8.

b) LTEST: This is a logical variable defined by T or F. It is
used to test the input/output associated with each sub-
routine. The data, written out on unit #6, are associated
with the parameters in the window of the subroutine.
They are written out each time the subroutine is
called. It is, also, used to insure initial operation
of the code. Only one pattern angle is considered and
this pattern angle is specified by IPHI (refer to item 11b
for its definition).
(normally set false)

16
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EXECUTE_PROGRAM
y

READ: LPLT,LTEST,LDEBUG,LOUT

Y

READ: AR, BR,CR,AE,BE,CE, FRQG
5 _y

' READ: NS ,MPR,MPE
X

READ: (JANTP(I),BETAP(I),PHSOP(I),ZSP(I),

WM(1) WP(1) ,SLENG(I) ,I=1,M5) |

¥

- rEs IF (WPR.EQ.0) 1

lm

[ READ:  (MXFR(I),I=1,MPR) |
Y

‘ D0 21 I=1,MPR |
| ; a
Y READ: ((WGR(I,M,N),N=1,3),M=1,MXR)

¥

ﬂ\ READ: MBCR(I,1),MBCR(I,2),BPAR(I),LBENTR(I) ’
¥ |8
i 21 CONTINUE
: ¥

E’ -<— IF(MPE.EQ.O)

YES
l o

READ: (MXFE(I),I=1,MPE)
| v DO 22]:I=1.MPE
| ) READ: ((WGE(I,M,N),N=1,3),M=1,MXE)
READ: MBCE(I.I).MBCE:I,2),BPAE(I),LBENTE(I.)
| - 221 1'comeus
, | READ: ITHI.ITHF.?THS.IPHI.IPHF,IPHS

v
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v

READ: THC,PHC

[ ]
| —— D0 120 ITH=ITHI,ITHF,ITHS
Y
s DO 100 MSM=1,MS
; [ 7
COMPUTE PATTERN
7
100 CONTINUE |
(7
? OUTPUT WRITTEN DATA
YES Y
IF(.NOT.LPLT)
NO
B~ o T, A T N TR e e S| 3715 T
| [ReAD: RADIUS,IPLT {RESD LN,
I____'__*_ = __ LUNIT #§;
PEN PLOT DATA
: Y
; | ‘ 120  CONTINUE
* EXIT

7 TABLE I

t Block Diagram of Input Data and
Main Program Organization
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c) LDEBUG:

d) LOUT:

READ: AR,BR,
a) AR,BR,CR:

b) AE,BE,CE:

c) FRQG:

READ: MS,MPR,MPE

a) MS:

b) MPR:

c) MPE:

This is a logical variable defined by T or F. It is '
used to output debug data on unit #6. If set true,

the program prints out results pertinent to its internal

operations. These data can, then, be compared with

previous data which are known to be correct. It is,

also, used to insure initial operation of the code.

Only one pattern angle is considered and this angle is

specified by IPHI (refer to item 11b for its definition).

(normally set false)

This is a logical variable defined by T or F. It is
used to output data associated with each of the
scattering terms. It is used to identify which section
of the code is having problems. It is, also, used to
insure initial operation of the code.

(normally set false)

CR,AE,BE,CE,FRQG

These are real variables used to define the roll
model ellipse in inches. The definition of these
variables is shown in Figure 6a.

These are real variables used to define the
elevation ellipse model in inches. The definition
of these variables is shown in Figure 6b.

This is a real variable used to define the
frequency in gigahertz.

This is an integer variable. It is used to specify 1 4
the number of antenna elements used in the computation. : ’
Presently, 1 < MS < 9.

This is an integer variable. It is used to specify
the number of plates employed in the simulation of

the wings and horizontal stabilizers. This data is
used in conjunction with the roll model simulation

illustrated in Figure 6a. Presently, 0 < MPR < 8.

This is an integer variable. It is used to specify

the number of plates employed in the simulation of

the nose section and vertical stabilizer. This

data is used in conjunction with the elevation simu-
lation illustrated in Figure 6b. Presently, 0 < MPE < 8.

19
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4. READ: (JANTP(I),BETAP(I),PHSOP(I),ZSP(I),WM(I),WP(I),SLENG(I),I=1,MS)

a) JANTP(I): This is a dimensioned integer variable. It is used
to define the Ith antenna type as follows:

infinitesimal slot

arbitrary length slot with cosine distribution
infinitesimal monopole

arbitrary length monopole with cosine distribution
Presently, 1 < I < 9.

PSwWN -~
nmuwunmn

b) BETAP(I): This is a dimensioned real variable. It is used to
define the siot angle on the Ith antenna in degrees i
relative to the aircraft axis. For example, an axial
slot is defined with BETAP=0. and a circumferential slot
with BETAP=90.. It is always input but only used if
JANTP = 1 or 2. Presently, 1 < I < 9.

c) PHSOP(I): This is a dimensioned real variable. It is used to specify
the Ith antenna location in the cross-sectional view of the
aircraft as shown in Figure 10. It is an angular quantity
given in degrees. Presently, 1 < I < 9 and ~90.< PHSOP < 90.

d) ZSP(I): This is a dimensioned real variable. It is used to
specify the Ith antenna location in the profile view
relative to the reference coordinates as shown
in Figure 10. It is a linear dimension given in
inches. Presently, 1 <1 <9.

e) WM(I),WP(I): These are dimensioned real variables. They are
used to specify the magnitude and phase, respectively,
of the excitation on the Ith antenna element. Note
that WP is the phase in degrees. Presently, 1 <1 < 9.

f) SLENG(I): This is a dimensioned real variable. It is used to
specify the length of the antenna element. Note it

5 is input in wavelengths. The length is always input,

but 1t 1s only used if JANTP(I)=2 or 4. Presently,

1<I1<9,

5. READ; (MXFR(I),I=1,MPR)

a) MXFR(I): This is a dimensioned integer variable. The mag-
nitude of MXFR(I) defines the number of corners
associated with the Ith plate. If MXFR(I) is
positive, then the first ard last corner attach to the
fuselage. If MXFR(I) is negative, then only the first
corner attaches to the fuselage. Normally MXFR is
positive. Note MXFR(I) just refers to the roll model
plates. Presently, 1 < I < 8.

20
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Figure 10. Definition of the source location for
i computer code. Note that PHSOP = ¢g
! and ZSP = - |Zg| in the above drawings.
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READ: ((WGR(I,M,N),N=1,3),M=1,|MXFR(I)]|)

a)

WGR(I,M,N): This is a triply dimensioned real variable. It is
used ﬂ define the corner locations (in inches) of
the I*" plate in the roll model coordinates as
shown in Figure 6a. Note that N=1,2,3 specifies
the x,y,z coordinates respectively of the Mth
corner. Presently, 1 <1 <8, 1<M< 10 and
1< N3,

Note that more information about the corner location definition is given
in the next section.

To input the bent plate geometry into the computer program, two options

are provided. One is to input the I-th flat plate geometry with LBENTR(I) =
F and specify a desired bend angle by BPAR(I). The corners [MBCR(1,1) and
MBCR(1,2)] about which the plate is to be bent by the computer code should
also be specified and are illustrated in Figure 11(a). The computer program
will then bend the plate to give the desired geometry as seen in Figure 11b,
The second way is to input directly the desired bent plate geometry into the
computer program with LBENTRI(I) = T and the wing is input as a bent plate.
In this case, the computer program will bypass the wing bending section since
the plate is already bent and proceed as usual. The quantities LBENTR, BPAR,

MBCR, ..
7.

. etc are input parameters in the computer program as described below.

READ: MBCR(I,1),MBCR(I,2),BPAR(I),LBENTR(I)

a)

b)

c)

MBCR(I,1),MBCR(I,2): These are dimensional integer variables.
They are used to dﬁfine the first and last corners, respectively.
about which the Ith plate is to be bent. Thus, if a plate is to
have a bend, then it should be defined such that two corners
correspond to the bend line. HNote that if the plate is flat

(no bend), MBCR(I,1) = MBCR(I,2) =|MXFR(I)|. This input is for
roll model plates only. Presently, 1<I<8.

BPAR(I): This is a dimensioned real variable. It is used to
specify the bend angles in degrees of the Ith plate. Note that
if the plate is flat, BPAR(I) = 180.. Presently, 1<I<8.

LBENTR(I): This is a dimensioned logical variable defined by
Tor F. It is used to specify to the code whether the Ith plate
is already bent (T) or not (F). If LBENTR(I) = F, then the Ith
plate is bent by the computer code about the corners MBCR(I,1)
and MBCR(I,2) to the angle BPAR(I). If the Ith plate is flat,
then LBENTR(I) = T. Presently, 1<I<8.

Note that the bent plate may be used in the roll model to simulate the bent
up wing on the F-4 or flaps.
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8. READ: (MXFE(I), I=1, MPE)

a) MXFE(I): This is a dimensioned integer variable. The magnitude
of MXFE(I) defines the number of corners associated with the
I1th plate. If MXFE(I% is positive, then both the first and
last corner of the Ith plate attach to the fuselage. IF MXFE(I)
is negative, then only the first corner attaches to the fuselage.
Note that MXFE(I) just refers to the elevation model plates. It
is normally used as a negative quantity to simulate the vertical
stabilizer as shown in Figure 6b. Presently, 1<I<8.

9. READ: ((WGE(I,M,N), N=1,3), M=1,|MXFE(I)|)

a) WGE(I,M,N): This is a triply dimensioned real variable. It is
used to define the corner locations (in inches) of the 1th plate
in the elevation model coordinates as shown in Figure 6b. Note
that N=1,2,3 specifies the x,y,z coordinates, respectively, of
the Mth corner. Presently, 1<I<8, 1<Mc10, and 1<N<3.

Note that more information about the corner location definition is given
in the next section.

10. READ: MBCE(I,1), MBCE(I,2), BPAE(I), LBENTE(I)

a) MBCE(I,1), MBCE(I,2): These are dimensioned integer variables.
They are used to define the first and last corner, respectively,
about which the Ith plate is to be bent. Thus, if a plate is to
have a bend, then it should be defined such that these two corners
correspond tc the bend line. Note that if the plate is flat (no
bend), MBCE(I,1)=MBCE(I,2)=|MXFE(I)|. This input is for the
elevation model plates only. Presently, 1<I<8.

b) BPAE(I): This is a dimensioned real variable. It is used to
specify the bend angle in degrees of the Ith plate in the
elevation model. Note that if the plate is flat, BPAR(1)=180.
Presently, 1<I<8.

c) LBENTE(I): This is a dimensioned logical variable defined by
T or F. It is used to specify to the code whether the Ith
plate is already bent (Tg or not (F). If LBENTE(I)=F, then
the Ith plate is bent by the computer code about the corners
MBCE(I,]g and MBCE(I,2) to the angle BPAE(I). If the It
plate is flat, then LBENTE(I)=T. Presently, 1<I<8.

The next two read statements are associated with the conical pattern
desired during execution of the program. The pattern axis is defined by
the spherical angles (THC,PHC) as illustrated in Figure 12. These angles
define a radial vector direction which points in the direction of the
pattern axis of rotation. These angles actually set-up a new coordinate
system in relation to the fixed reference coordinates. The new cartesian
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Figure 12. Illustration of the rotation angle (8.,¢c)
in spherical coordinate system.

coordinates defined by the subscript "p" are found by first rotating
about the z-axis the angle PHC and, then, about the y-axis the angle
THC. The pattern is taken in the "p" coordinate system in terms of the
spherical angles. The theta angle of the pattern taken about the
Zp-axis is defined by THP, which is input to the code in terms of ITHI,
I?HF, ITHS. The phi angle is defined in the "p" coordinate system in
terms of IPHI, IPHF, IPHS. These angles are input in terms of integer
variables so that the data can be stored in associated arrays. In the
present form the program will, then, compute any conical pattern or a
series of conical patterns about an operator defined pattern axis.

11. READ: ITHI, ITHF, ITHS, IPHI, IPHF, IPHS

a) ITHI, ITHF, ITHS: These are integer variables used to define
angles in degrees. They are, respectively, the initial, final,
and incremental values of the theta pattern angle. Note that
for each theta angle a complete pattern is taken in terms of
the phi pattern angles.
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b) IPHI, IPHF, IPHS: These are integer variables used to define
angles in degrees. They are, respectively, the initial, final
and incremental values of the phi pattern angle. Note that
for each theta a complete phi pattern is taken.

12. READ: THC, PHC

a) THC,PHC: These are real variables. They are input in degrees
and define the axis of rotation about which various conical
patterns will be computed.

This completes the input data necessary to compute the desired patterns.
If the operator wishes to generate a set of pen plots (LPLT=T), then the
following data must input on unit #8.
1. READ: RADIUS, IPLT

a) RADIUS: This is a real variable. It is used to specify the
radius of the outer circle of the polar plot in inches.

b) IPLT: This is an integer variable. It is used to specify the
type of plot desired:

1 = field plot
2 = power plot
3 = dB plot.

Note that all plotted patterns are normalized such that the
maximum value corresponds to the outer circle. The dB plot is
drawn with each circle corresponding to 10 dB.

Note that both the E-theta and E-phi patterns will be plotted if LPLT=T.
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IV. SIMULATION OF BOEING 737 AIRCRAFT

To begin any simulation of an aircraft, one needs to start with a
set of scale model drawings. For our purposes, Jane's book [8] "A11 the
World's Aircraft" is most appropriate in that it provides a line drawing
for each aircraft. The line drawings for the 737 aircraft are shown in
Figure 13 along with our simulation models.

To begin the simulation procedure, one finds the elliptic parameters
for both the roll and elevation models. The elliptic curves should simulate
the fuselage surface as accurately as possible near the antenna location.
Using the best-fit ellipse routine given in Appendix A, and the scale
model drawings shown in Figure 13, the following values of a 1/20 scale
model of the 737 aircraft were obtained:

ap = 65.86" ap = 58.72"
b = 43.3" be = 308.56"
cp = 43,3 Ce = 1307.04" .

The above values were scaled and used to plot the simulation models
shown in Figure 13. Note that the roll model ellipse appears to be in-
correct based on Figure 13b. However, one must recall that the cross-
section at the antenna position is being simulated and not the cross-
section in the middle of the aircraft.

Once the ellipse dimensions are specified the plates are added to
the model. Let us first consider the roll model in which case one
wishes to simulate the wings and.horizontal stabilizers. From the front
view of the aircraft in Figure 13b, one can determine the x, values of
the plates. Note that only the wings are considered in this case. The
horizontal stabilizers are so far away from the antenna that they can
be neglected. For the wings, xp=0 in this case. From the top view of
the aircraft, the y, and z, dimensions of the wings are obtained as shown
in Figure 13c Us1ng this 1nformat1on the following input data is obtained:

Corner # wing #1 wing #2
1 x,.=0", P 43.3", Z, = 56.54" r—O" yr=-43.3“, zr=233.54"
2 Xy =0", ¥ -536 93", z =316.14" r-O" yr=-536.93“, zr=379.86"
3 r-O", ¥ -536 93", 2 -379 86" r-o" =-536.93", z =316 14"
4 r-O", ¥ -43 oy 2 -233 54" r-O", ¥y —-43 s z, 56 54"

Note that the data is input counter clockwise looking at the top view of the
aircraft as presented in Figure 13c. The data is for a 1/20 scale model
of the 737 aircraft so that the data for the wings as taken from Figure 13
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is multiplied by the appropriate scale factor. Finally, one should realize
that the program attaches the wings (or plates) to the cylinder so the user
need not worry about attaching perfectly to the cylinders.

Next, let us consider the data used to simulate the nose section and
vertical stabilizer. Before defining the nose section plate, one must
identify the location of the radome. The radome is constructed of low
dielectric constant material such that it can be considered to be free
space in the calculation. Note that the radome line is easily identi-
fiable in Figure 13a and c. The Xe and zp dimensions of the nose plate
is obtained from the side view as shown in Figure 13a. The top view is
used to determine the ze dimensions of the nose section plate. In our
simulation, the plate geometry corresponds to the maximum dimensions of
the nose section as shown in Figure 13c. The data generated for the nose
section plate is as follows:

Corner nose section plate
=" = " = "
1 Xq 0", ¥ 308.56 : z, 31.585"
2 Xe=-5.6 ye=32];6 ) Ze=-27007
3 xe=-5.6“, ye=321.6", ze=27.07"
4 xe=0", ye=308.56", ze=31.585“

Again recall that the above data is for a 1/20 scale model of the 737
aircraft. This scale model is used so that the data can be compared
with scale model measurements as shown later.

Since the antenna is assumed to be on or near the center line of the
aircraft, one must take into account the finite width of the vertical
stabilizer. As can be seen in Figure 13c, the vertical stabilizer has
some width which will cause shadowing in the aft portion of the pattern.
In order to simulate this width in our model of the aircraft, a bent plate
approximation is employed as shown in Figure 6b. The dominant features
of the vertical stabilizer which must be preserved are the width and leading
edge geometry. The width of the vertical stabilizer is given in the top
view of the aircraft as shown in Figure 13c. The xg and ye dimensions of
the vertical stabilizer are obtained from the side view as shown in Figure
13a; whereas, the zg components are taken from Figure 13c. Using this
criterion, the following data is obtained:
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Figure 13(a)

Computer simulated model for the fuselage profile
of a Boeing 737 aircraft (side view).

The antenna
is located at station 220 on top of the fuselage.
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Figure 13(b). Computer simulated model for the cross-section
(at antenna location) of a Boeing 737 aircraft
(front view). The antenna is located at
station 220 on top of the fuselage.
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Figure 13(c). Computer simulated model for a Boeing 737 aircraft (top view).

The antenna is located at station 220 on top of the fuselage.

31




Corner # vertical stabilizer plate
1 e-56 645", Yo =-478.4", z, =0"
2 e—56 645", ¥ --613 76*, z =8,25"
3 e—284 147", ye--819 056", ze8 25"
4 e-284 147", ¥ =-683.696" , z, ="
5 e-284 147", Ya --819 056", z, --8 25"
6 e—56 645", Yo --613 76", ze--8 25"

Note that a bent plate is used in this case with the bend already defined
such that LBENTE(2)=T. Further, the bend is between corners #1 and #4

and at an angle of 348.58°. As can be seen in Figure 13, this simulation
provides a good representation of the leading edge of vertical stabilizer
as well as its width.

The only remaining aspect is the location of the antenna on the aircraft
simulation model. Again using the scale model drawing of Figure 13, one
can determine the actual location of the antenna on the scale model
drawings. This data can, then, be transposed to the simulation drawings.
Once on the s1mu1at1on draw1ngs the antenna location is defined by
PHSOP = tan-1(y /xr), where Xy, yr defines the antenna location in the roll
coordinates as shown in Figure 13b. The ZSOP dimension is obtained from
the side view as shown in Figure 13a and is equal to the ze dimension
associated with the antenna location.

Using the above procedure a series of examples were studied to il-
lustrate the various aspects of the computer code. These examples are
presented in the next section.




V. APPLICATION OF CODE TO SEVERAL EXAMPLES

1. Elevation plane pattern of an axial waveguide mounted on a prolate
spheroid is computed. The geometry is illustrated in Figure 14 and the
input data is given by

TeFoFoF

‘. "0 "0 '120'120'120 .“.
2400
200091,05¢90091e¢90600.634
29000=1¢05,0,010000000634
90¢9102¢00360¢2

,oi "o.

The axial waveguide is simulated by two infinitesimally wide slots which it
are 0.6342 long. The elevation pattern is shown in Figure 5. #

X  OPEN ENDED
WAVEGUIDE

AT s e

W/;(///[{ .
1 ‘ :

'Figure 14, Waveguide antenna mounted on a prolate spheroid. 3
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2. Roll and elevation patterns are computed for an axial waveguide,
circumferential waveguide, and A/4 monopole mounted at two locations on a
KC-135 as shown in Figure 15. The input data is as follows:

TeFoFoF

Tl
*le930012031

*1e928,5¢36.41

*1e92605¢40,41

*1le030924,61

49401800 T

=lev=3,024,61

*le0=28e5¢40.,41

=1,o9"28e¢5¢36,41

*lev=3,012,31

@e80¢1800 9T

$e6

1e5¢7¢35¢=1.36039

e775¢9¢0=1,36039

e775¢9,01.36089

1e5073541,39039

Ge491800e07

2e946¢=49,49240,

CeIHE¢=55,672¢065

14,076,=64,20940,5

14,0764-58,02540,

14,0764=64,205¢=0,5
2.9“60-55067?"005

Lol 9351607

90eILEoPBE0I2 _ o oo 0
+0e00, INSERT #2

where the data for the defined inserts is given with each of the patterns.
The roll and elevation patterns are shown in Figures 16-17. In each case
the calculated patterns are compared against measured results. The agree-
ment illustrated by these patterns are typical of the accuracy of the
solution. Note that the program outputs both an E-theta and E-phi
pattern; whereas, only the dominant polarization is plotted in the previous
figures. The definition of these terms is given in the next section. In
addition, the waveguide in this case is approximated by a set of three in-
finitesimally wide slots each with a length of .828\. This must be done
to simulate the distribution across the narrow wall of the waveguide. The
cosine distribution across the broad wall of the waveguide is simulated by
the extended slot (JANTP=2).
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Figure 15b. Computer simulated model for the cross-section
(at antenna location) of a KC-135 aircraft
(front view). ;
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Figure 16a. Roll plane pattern (Et) for a KA-band axial

waveguide forward of the wings.
INSERT #1 INSERT #2
3,2,2 0.,0.

2,0.,0.,8.34,1.,0.,.828
2,0.,0.892,8.34,1.,0.,.828
2,0.,-0.892,8.34,1.,0. ,.828
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Figure 16b. Rol1l plane pattern (Ey) for a KA-band axial
waveguide above the wings.

INSERT #1 INSERT #2
3,2,2 0.,0.

2,0.,0.,18.81,1.,0.,.828
2,0.,.892,18.81,1.,0.,.828
2,0.,-.892,18.81,1.,0.,.828
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Figure 16c. Roll plane pattern (Eg) for a KA-band circum-
ferential waveguide forward of the wings.

{ INSERT #1 INSERT #2
| 3,2,2 0.0,
2,90.,0.,8.2933,1.,0.,.828
2,90.,0.,8.34,1.,0.,.828
2,90.,0.,8.3867,1.,0.,.828
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Figure 16d. Rol1 plane pattern (Eq) for a KA-band circum-

% ferential waveguide above the wings. ;
INSERT #1 INSERT #2 3
3,2,2 0.,0. ! 4

2,90.,0.,18,7633,1.,0.,.828
2,90.,0.,18.81,1.,0.,.828
2,90.,0.,18.8567,1.,0.,.828
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figure 16e. Rol1 plane pattern (E¢) for a A/4 monopole
forward of the wings.

INSERT #1

1,2,2
4,0.,0.,8.34,1.,0.,0.25

INSERT #2
0.,0.
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Figure 16f. Roll plane pattern

above the wings.
INSERT #1

1,242
4,0.,0.,18.81,1.,0.,0.25
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Figure 17a. Elevation plane pattern for an axial KA-band
waveguide mounted forward of the wings on a
KC-135 aircraft.

INSERT #1 INSERT #2
1 3,2,2 90. ’-900

2,0.,0.,8.34,1.,0.,.828
E 2,0.,.892,8.34,1.,0.,.828
2,0.,-.892,8.34,1.,0.,.828
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Figure 17b. Elevation plane pattern for an axial KA-band
waveguide mounted above the wings on a
KC-135 aircraft.

INSERT #1 INSERT #2
3|2’2 90. ,‘90.

2,0.,0.,18.81,1.,0.,.828
2,0.,0.892,18.81,1.,0.,.828
2,0.,-0.892,18.81,1.,0.,.828
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Figure 17c. Elevation plane pattern for a circumferential
KA-band waveguide mounted forward of the wings
on a KC-135 aircraft.

INSERT #1 INSERT #2
3,2,2 90.,-90.

2,90.,0.,8.2933,1.,0.,.828
2,90.,0.,8.34,1.,0.,.828
2,90.,0.,8.3867,1.,0.,.828
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Figure 17d. Elevation plane pattern for a circumferential
KA-band waveguide mounted above the wings on
a KC-135 aircraft.

; INSERT #1 INSERT #2
f 3,2,2 90.,-90.

2,90.,0.,18.7633,1.,0.,.828
2,90.,0.,18.81,1.,0.,.828
2,90.,0.,18.8567,1.,0.,.828
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Figure 17e. Elevation plane pattern for a A/4 monopole mounted
forward of the wings on a KC-135 aircraft.

INSERT #1 INSERT #2
1,2,2 90.,-90.
E‘ 4,0‘ 90098034’].,0.’0.25
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Figure 17f. Elevation plane pattern for a A/4 monopole mounted
above the wings on a KC-135 aircraft.

INSERT #1 INSERT #2
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4,0.,0.,18.81,1.,0.,0.25
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3. Roll, elevation, and azimuth patterns are computed for a A/4
monopole mounted at station 220 on a 737 aircraft as shown in Figure 13.
The input data is given by:

TeFoF ofF
05,06:43,3,43,3¢58,72,308,956,1307,04,3,18
1e202
“'0.'0.'.276.'1..0.'0025
L

Uoo#3:3¢56,54
Ve9936,93,:316,14%
00'566.95'379.86
OeoeH3e30233,54
$e4918000T
Oeoe=43,9,233,54
Uee536093,379.86
0e9°536¢93,316.14
Oee=43,3¢56.54
“elhelB0enT T
4e=6

Ve¢308,564031,585
*5,6¢321,6,=27.,07
*5,64321,6,27.,07
U..508.56931.585
Ge8¢180Ne0T
4,645,478, 4,0¢
O4,645,=613,76¢8.25
284%147¢-819,056,8.25
2840147¢-683,696+0.
2846147¢=819,056¢-8,25
O4,645,=613,76¢~8.25

Lol oe348e58,T

L e e S e } INSERT

where the insert data is defined on each of the patterns as shown in

Figure 18. Again the results are compared with measured patterns taken
at NASA (Langley, Va.).
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Figure 18a. Roll plane pattern of a A/4 monopole mounted at
station 220 on top of a boeing 737 aircraft.
(¢ = 90° at the left; ¢ = 270° at the right).
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Figure 18b. Elevation plane pattern of a A/4 monopole mounted
. at station 220 on top of a Boeing 737 aircraft.
(¢ = 0° at the left; ¢ = 180° at the right).
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Azimuth plane pattern of a A/4 monopole mounted
at station 220 on top of a Boeing 737 aircraft.
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4, Roll, elevation, and azimuth patterns are computed for a A/4
monopole mounted at station 950 on the belly of a 737 aircraft as shown in
Figure 19. The input is given by:

TeFoFoF
06,95166,5%5¢66,55¢110,312,548:325,552,72:35,18
le4el
%00¢90,¢=2706720¢1000000.25
XL XL XY
] *5,64966,55,=544%,824
*5,64,4207.5524=591.072
-5.6“0207c552'-532.“16
=5,64,466,554-413,976
%e4¢180007
*5,6440b6,55,=413,976
®9,64,¢42207,552¢=532,416
*5,6442207,552,=591,072
.506“'65.55.-5“4.82“
Gel918000T
53,84466,55¢=31,58
93,84¢529,03,=171,.46
33,84¢529,03¢=110.,54
6508“066055!157062
$e4¢18000T
03,84¢066:55,137.62
93,84 4=529,03¢=110.54%
63.6“'0529.030-171046
98,84 4=66,55,=31.58
4e4e18000T
%
16.58'206087'.38.
'“051!257018“0'380
=4 ,91¢297,184,38,
16,384206,87,38,
Ge401800eT
.9099142:0+36042

B o A ”__________:}INSERT

where the insert data is defined on each of the patterns as shown in
Figure 20. The results are compared with measured patterns taken at
NASA (Langley, Va.). Note that in this case the antenna was actually
mounted on the belly of the aircraft; yet, the program requires the
model be turned over and computed as though the antenna were on top of
the aircraft.
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Figure 19a.

ANTENNA

Computer simulated model for the fuselage profile
of a Boeing 737 aircraft (side view). The
antenna is located at station 950 on the Bottom
of the fuselage.
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Figure 19.

N\

LY

ANTENNA

Computer simulated model for the cross section
iat antenna location) of a Boeing 737 aircraft
front view). The antenna is located at
station 950 on the bottom of the fuselage.
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180°

Roll plane pattern of a A/4 monopole mounted at
station 950 on the bottom of a Boeing 737 air-

craft. (¢ = 90° at the left; ¢ = 270° at the
right).

57




MEASURED
8=0°
- = == CALCULATED

w
3 Z -
z \ Pt
90° — 90°

”~ ‘ /

/4 /
/
\
~
\ /
-_—
180°

figure 20b. Elevation plane pattern of a A/4 monopole mounted

at station 950 on the bottom of a Boeing 737 air-

craft. (¢ = 0° at the left; ¢ = 180° at the

right).
INSERT
90.,-90C.
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Azimuth plane pattern of a A/4 monopole mounted at
station 950 on the bottom of a Boeing 737 aircraft.
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5. Roll, elevation, and azimuth patterns are computed for a Lindberg
crossed slot antenna mounted at station 470 on a KC-135 aircraft as shown
in Figure 21. The Lindberg crossed slot is a circularly polarized antenna
and is described in Reference [9]. The input data for this geometry is
given by:

ToFoFofF
B003008¢93,7%508:4800934,.92
24242
€00000,02e2501000400,78
2090000002.25010090000.78
%oy

=1e030¢12¢31
=1¢928,5¢36041
-1.'28050“00“1

*lee3e 24061

$el49180e0T
*lev=3,024,61
*le9=28e5¢40,41
*1e9=28¢5¢36,41
*lev=3,012,31
494918000 T

4e=6

1e5¢7¢354-1,36039
eT7T79¢940=1,36039
e7T75¢9,91.36039
105'7035!1.39059
494018000 T
2o9%60=%9,492,40,
2e9461295,6724¢045
1“.076.‘6“.205.0.5
14,076,~58,025,0,
14,076 =64 ,205.=0.5
20986¢55,672¢=065
1e8¢35%¢0T

90¢91+¢540 0
fo'?!‘of bt L EEERR L bl e } INSERT

" s e e W @ m A M e T T Tm S A S @ = @ Wm ®m = -

where the insert data is given on each pattern as shown in Figure 22, The
results can be compared with Lindberg's measured data [9] as shown in

Figure 23, Note that the data is plotted as linear field components in

that this data format was used by Lindberg. The E-theta and E-phi components
can be combined to give

Jjoo° jo°

ECP = E-theta e + E-phi e’" ,

where Ecp is the transmitted circularly polarized field. This data is
plotted in Figure 24,
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Figure 21, Computer model used to simulate the KC-135 aircraft.

; The Lindberg crossed slot location is identified at

station 470.
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Figure 23.

Antenna radiation patterns, 1/25-scale-model measurements.

(a) Antenna location: station 470; slot length; 0.78X;

transverse vertical. (b) Antenna location: station 470,

slot length; 0.781; longitudinal vertical. (c) Antenna

location: station 470; slot length; 0.78X; conical cut

8 = 45 degrees. (d) Antenna location: station 470; slot :
length; 0.78X; horizontal plane. [Taken from Ref. 9] ]

65







VI. PROGRAM OUTPUT

The basic output from the computer code is a line printer listing of
the results. Recall that the results of the program are the Egp and E¢p
radiation pattern values. In order to again describe these pattern com-
ponents, let us consider the various principal plane patterns treated in the
previous section. The computer code allows for a rotation of coordinates
such that one can take a pattern about an arbitrary axis. This information
is input to the code using the spherical angles THC, PHC. The geometry
that applies for each of the roll, elevation, and azimuth patterns of
previous section is illustrated in Figure 25. Note that the 6p and ¢p
angles are defined relative to the rotated pattern coordinates and that
they change as THC, PHC is changed. Thus, Eep is the normal theta com-
ponent of the field (i.e., Egp=E-6p).  Likewise, E¢p=E-3p. The total
radiated electric field is denoted by E.

In addition to the printed results, one has the option of obtaining
a set of polar patterns. If LPLT=T in the input data list, the program
will automatically plot the Egp and E¢p polar patterns. These patterns
are plotted such that the outer ring corresponds to the pattern maximum
in each case. This polar plot routine was used to plot the data pre-
sented in the previous section.
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(c) AZIMUTH PLANE COORDINATES

Figure 25. Illustration of pattern coordinates for the
principal plane pattern calculations.
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APPENDIX A - BEST-FIT ELLIPSE ANALYSIS

The elliptic cylinders necessary to simulate the fuselage profile and
cross-section can be found using a best fit routine through the use of a
digital computer. A best fit ellipse or composite ellipse is generated
through a numerical process by inputting data points that described the
surface of the profile or cross-section of the actual aircraft fuselage.
Before these data points can be generated, a reference Cartesian coordinates
system is needed on a scale model drawing of the aircraft. These coordinates
can be best located by aligning one of the axes with the center line of the
aircraft fuselage with the origin being arbitrarily chosen according to
convenience. After the coordinate system is fixed, the position of data
points on the profile or cross-section is measured from the scale model
relative to the reference origin. The data points are taken in such a way
that more points are specified around the antenna location and less points
away from the source. This is due to the fact that the surface profile is
dominant near the antenna location as described earlier. Figure 26
illustrates the way data points are taken from the fuselage profile. By
feeding these data points into the best fit routine and adjusting the origin
of the coordinates in the routine, an ellipse is found to best fit these
data points.

The theory behind the best fit routine is that a function is to be
found which best approximates a set of points in a least mean square error
sense. For our computer model, a best fit ellipse is desired. The mathe-
matical expression for an ellipse is

12.+Lz=] (A-1)
a

with its origin located at point (x=0, y=0). The parameters a and b are
the semi-major and minor axes of an ellipse. To simplify the mathematical
expression, Equation (A-1) can be written as

AX + BY = 1 (A-2)

2

where X = xz, Y=y", A= , and B = - (xi,yi), i=1, *+*n,

N
¥

be n points from which a best fit ellipse is to be generated. Substituting
these points into Equation (A-2), one obtains a set of n linear equations.
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5] 1.56 |-2.16

: 6* 1.6a [-2.30
7] 169 |-2.45

8| 1.77 |-2.60

9| 1.84|-2.80

10| 1.98 |-3.28

1 | 2.08[-3.90

12 | 2.23 [-5.01

13 [ 2.30 |-6.16

14 | 2.42 [10.14

15 | 2.44 [15.72

16 | 2.28 }24.10

* Antenna Locatfon

Figure 26. Illustration of data points taken from the scale model
aircraft for the determination of best fit elliptic
cylinder using a digital computer.
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AX; + BY; =1

AX, + BY, =1

AX, + BY =1.

In matrix form, these n equations become
— e ~ - E

B Y 1 :
& A L

Z2C = I, where Z = C = and I . (A-3)
. L] B 5
« . ’

By multiplying both sides of Equation (A-3) by %, the transposed of Z, one
obtains a simple 2x2 matrix as given by

N n
72C=171
- n dig THE oY o 3
1= Py v A L

: m=1 m=1 " m=1
{ ‘ (A-4)
! n n
| ¥ x v e B Yoy
' Ly N ey __1] | me1 M|

which can be simply solved for A and B in the least mean square error
sense. Thus, the ellipse parameters are defined.

The above approach works fine provided the origin of the ellipse is
known in that Equation (A-1) assumes that x=y=0 is the origin. Con-
sequently, one must specify an origin, then specify the "n" data points
[(xi,yi)s 1<i<n] relative to the chosen origin. One then solves Equation
(A-45 and obtains the values for the ellipse (A and B). This elliptic
curve is compared with the actual data and an error criterion developed.
Thus, the procedure is to move the origin, obtain A and B, check the error,
and proceed until the error is minimized. This is not difficult in that
the origin of the elliptic curve is rather easily identified from the
scale model drawings.
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