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ESTIMATING THE TAILS OF A DISTRIBUTION OF KNOWN FORM

Ingram 01km

1. Introduction

A problem that has received considerable attention is that

of estimating the tail probability of a distribution belonging to

a specified family. This area received its impetus in a paper by

Lieberman and Resnikoff (1955) , who provided an application to

acceptance sampling, and by Vajda (1955) , who was concerned with an

insurance model. Actually, there was an earlier paper by Kolmogorov

(1950) in Russian; this paper was relatively unknown until later

when a translation appeared in 1962. The history of the subject is

confounded by the fact that several different points of origin and

paths have led to the same goal. The present paper provides a survey

of some of the results in this field and shows how the various

developments relate to one another. In the process some new results

are obtained.

To fix notation write p(x,e) to denote a parametric family.

Here x and/or 0 may be a scalar or a vector. Then the tail pro-

bability may be written as an expectation:

R(0) — f A(t) p(t,0)dt

The choice

1, if L < t < U ,

0, otherwise ,

.
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then yields a tail probability if L — —
~~~ or U —

Given a sample of size n from p(x,O), we wish to estimate

R(e). Three classes of estimators of R(e) have generally been

considered: maximum likelihood estimators (MLE), minimum variance un-

biased estimators (MVUE) , and Bayesian estimators (BE).

The determination of the MLE is usually straightforward in

that if 0 is the MLE of 0, then for each fixed t, p(t 0) is the

MLE of p( t,0), and R(0) is the MLE of R(e).

This simplicity is lost when dealing with unbiased estimators .

If 0 is an unbiased estimator of 0 then p(t ,~
’) need not be an

-

unbiased estimator of p(t,0), and R(e) need not be an unbiased

estimator of R(0). However, if h(t,u(I.~ ... , X ) )  is an unbiased

estimator of p(t,6) for each fixed t, then

f A( t) h(t,u(X1, ... , X ) )  dt

is an unbiased estimator of R(0). Consequently, R(0) may be

estimated unbiasedly by estimating p(t ,O) unbiasedly, or it may be

estimated unbiasedly directly.

There is indeed yet another route. In the case of densities,

p(t,0) — dF(t,e)/dt, where F(t,e) is the c~~ulative distribution

function. Consequently, by estimating ?(t,0) unbiasedly, p(t,e)

can be estimated unbiasedly since (under certain regularity conditions)

the derivative of the unbiased estimator is an unbiased estimator

of the density. Estimating the c.d.f. rather than the density has the

advantage that an unbiased estimator of V(t,8) may exist , whereas an
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unbiased estimator of p (t,O) may not exist.

In the discussion we have assumed that the data available is

a sample from p(x,0) and p(t,8) is to be estimated for each fixed t.

However , in some instances the sample may be from a related distribution
4

p*(x,O) rather than from p(x,0). For example, the underlying distri-

bution may be a A’(I.L,a2) distribution but the sample is from a

.A~(i.i,g(a 2)) distribution. Clearly the .IV(u,a
2) density will not be

estimable for all functions g. The function g(o2) — ka2 arises

naturally in some sampling procedures. In this case Ghurye and 01km

(1969) obtain results for a variety of families of distributions.

Notation. We adopt the notation

a, if a > 0,
(1.1) 

*
(a) — 

—

0, if a < 0 .

When A is a symmetric matrix, we write

det A, if A is positive semi—definite ,
(1.2) ip(A) —

0, otherwise.

2. Applications

In this section a review is given of several applications

for which tail probabilities are of interest.

Insurance Claims. An application to insurance claims was formulated

by Vajda (1951). Consider an insurance company that handles casualty

i~~~~~
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insurance. The total amount of claims per year varies from year to

year. Assume that the claims X
1
, . . • ,  for each of k years

are independent, identically distributed from a distribution p(x,O).

(This means that the value of money remains constant and the volume

of business remains constant. These assumptions can be avoided by

inflating or deflating the claims appropriately . )

Because the insurance claims can vary considerably, the

company could be in financial straits if any claim exceeds a

critical value c. Thus, the company may reinsure itself against

the contingency that a claim is greater than c. This is called

“stop—loss reinsurance”. For this model the net reinsurance premium

is

R(8) f (x—c) p(x,0) dx.

Unbiased estimation of R(0) is developed by Vajda (1955); the bias in

estimating R(e) via the MLE is studied by Conolly (1955).

Reliability Context. Barlow and Proschan (1965) provide an extensive

study of the mathematical theory of reliability. They quote a defini-

tion taken from the radio—electronics—television manufacturers associa-

tion, namely, that “Reliability is the probability of a device performing

its purpose adequately for the period of time intended under the operating

conditions encountered.” Let X(u) — 1 if the device is performing

adequately at time u, and X(u) — 0 otherwise. Then P{X(T) — i} is
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• the probability that the device performs adequately over the intended

period [O ,T] and represents the reliability.

Sampling Inspection. Lieberman and Resnikoff (1955) study sampling

plans for inspection by variables. In lot—by—lot acceptance sampling,

a random sample is drawn from a lot and each item in the lot is

classified as defective or non—defective . The entire lot is then

accepted or rejected depending on the number of defectives. In in-

spection procedures by variables, the item is measured as to a

variable quality characteristic, and the lot is accepted or rejected

depending on these measurements.

Upper and/or lower specification limits U and L are

provided and the item is considered defective if it falls outside

of the interval [L U] , and is considered acceptable if it falls

within the interval. The form of the underlying distribution is

known to be in some parametric f amily .

Pollution Data. Suppose that we have p chemicals or pollutants and

obtain measurements )C1. X2, ... , X~ of some characteristic of

the pollutants. For the jth pollutant there is a regulated threshold

C
j  

such that if X
3 

> c1, then there is a violation of the regulations.
.1 p p

Then we are concerned with the events U (X > c } or fl {X > c
1 1 ~~~~~

Transformation of Variables. A variety of transformations are used in

statistical analyses, e.g., (i) z — (x_a)~~
’2, (ii) z — arcsin

-5-
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(iii) z log x, etc. Neyman and Scott (1960) are concerned with

correcting for the bias in estimating EX based on observations on z.

In the above examples, (1) x = z
2 

+ a , (ii) x sin2 z , (iii) x =

exp z. In general we have z f(x) and x = f~~(z). For the

normal family, conditions on f for the existence of unbiased

estimators are given by Neyman and Scott (1960) and by Schmetterer

(1960). Hoyle (1968) considers a closely related problem.

3. Estimation Procedures

Several key methods have been used to obtain unbiased estimators.

We give a brief review of the essential ideas in each method.

(i) Conditional Expectation: The Rao—Blackwell Procedure. This method

is central to almost all techniques. If U(X) is an unbiased estimator

of 0 and if {p(x,0), 0 E 0} admits a complete sufficient statistic

T(X) , then E(U(X) !T(X) ) is the UMVUE of 0.

Since most of the standard f amilies considered admit a complete

sufficient statistic, this method has had widespread applicability.

Other methods have been proposed for special problems mainly because

conditional expectations are not always easily computed. However, it

should be noted that almost all results obtained could have been derived

• using this procedure.

This procedure is particularly suited to estimating the tail

probability since the indicator function serves as a natural choice for

the candidate unbiased estimator.

—6—
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f In the case of estimating densities, if {p(x,0),O ~ 0) has an

• 
• unbiased estimator, then the conditional density (if it exists) of

X1IT(X1
, ..., X) evaluated at x is the UNVIJE of (p(x ,0) ,  0 € 0).

This conditional density can be determined directly from the joint

density of the sample , or (under suitable conditions) it can be ob—

tam ed from the conditional c . d .f .  by differentiation, namely ,

3/3x P { x  < xIT(X)}. Consequently , estimating a c.d.f. (or relia—0 1

bility) unbiasedly will also yield an unbiased estimator of the

density, if it exists.

(ii) Transform Theory. For many problems involving the exponential

family, the determination of an unbiased estimator of a function g(e)

requires the solution of an integral equation

(3.1) f h(x) p (x,0) dx — g(8)

If the left—hand side can be rewritten as a transform (e.g., Laplace,

Mellin , etc.) then the solution can be obtained from transform theory.

Washio , Morimoto , and Ikeda (1956) and Tate (1959) make extensive use

of transform theory.

Mehran (1973) notes a relation to the theory of convolutions.

Suppose p(x;0) — f (x— 0 ) ,  then (3.1) becomes

• (3.2) f h(x) f (x—0) dx — g(0)

• But (3.2) is in the form of a convolution so that the inversion

~

___________________________________________________ 
________ 

______ 
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formula yields

h(x) g(x) + 
m~1 

am g
(m)(x)

where the a
j 

are terms in the Taylor expansion at E (exp—Xt) .

(iii) Ancillary Statistics. The idea of using an ancillary statistic

is contained in papers by Sathe and Varde (1969) and Eaton and Morris

(1970). Suppose T(X) is a complete sufficient statistic, A(X) is

an ancillary statistic, and h(X) W(A(X) , T(X)). Then

EA w(A,T) E h*(T),

where the expectation is with respect to the marginal distribution of

A, is the MVUE of

— E0 
h(x)

The result above is given by Eaton and Morris (1970) .

(iv) The Jackknife. Since the jackknife is a technique to reduce

bias , it can be used in conjunction with conditional expectation to

yield MVUE. The essential idea is contained in Gray , Watkins and

Schucany (1973). Suppose that 0 is an estimator of 0 , then we

• estimate f(0) by f(0). Further, suppose that f(0) has a bias

• expansion of k terms, then we can apply a kth order generalized

_ _ _ _ _  _ _ _ _ _ _  
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jackknife to eliminate the bias and then ~se the Rao—Blackwell theorem.

• More specifically , suppose X1, ... , is a random sample of

size n and 0l~ ~~ 
0k+l 

are estimators of 0 such that

k
EG = 0 + ~ a14 b~ ( 0)  , j l, ..., k + l .

i=l

If 0 (0 1, °k+l~ ’ A = (a
ij
)
~ 

e = (1, ... , 1), and

G(0 1, 
~~~ 

O~~~ ) = det (
~) / 

det (~
)

is def ined , then

EG(011..., e~ 4) — 0

The usual jackknife is obtained by special choices of the

If the MLE is used as the initial estimators 0 in the above

procedure , then under certain circumstances, the tJMVUE is the MLE plus

a correction for bias. When the result is in the form of an infinite

series, then approximations are obtained by truncating t~’.e series.

(v) Location — Scale Parameter Families. When concerned with location

and scale parameter families , some simplification can be obtained by

splitting the problem into two subproblems , where the first problem is

to carry out the estimation assuming that the scale parameter is

f ixed , and the second is to estimate an appropriate function with

-9-



• the scale—parameter unknown. Ghurye and 01km (1969) use this

principle based on the following lemma.

Lemma: Let S and T be independent statistics with a joint c . d . f .

F(t;a,T) G(s;a) depending on the parameters (a,r) € 0.~ 
x 02• 

If for

each ~ € Eb(a ,T) = h(a ,t), T c ®2’ and if for each t E

Ea(s,t) = b(a,T), a c 
~~~~
, then a(S,T) is an unbiased estimator of

{h(a ,r), (a,r) € 01 X 02}•

4. Estimation of Density Functions, Cumulative Distribution Fuctions,

and Tail Probabilities.

The number of densities studied is large, and a variety of procedures

have been developed for special distributions or for special classes

of distributions. We here describe some of these results.

4.1. The Normal Distribution: Univariate and Multivariate Case.

In the case of the normal distribution with unknown mean and

known variance and with unknown mean and variance, results have been

obtained by Kolmogorov (1950), Lieberman and Resnikoff(l955) , Vajda

(1955) and Healy (1956) . The procedure in all cases is an application

of the Rao—Blackwell theorem. Subsequent papers by Barton (1961) and

Basu (1964) also yield these results.

The UMVUE of the ..4’(t;ii,a2) density f unction is

(4 1) /~ 1 1 n (t— ~ ) 2
~~~~~~~~~~ exp 

202 n—l

q .4 4 

- 

44 ~~~~~~~~ ‘~~~~~ 4.



when a is known, and is

I
/ 2

4 2  _ _ _  
v 

~~ 
( t—x) n~~~ 2

vc~T B(~~~ ’4) ‘, 2 n_ 1J

when a is unknown. Here iE = 
~ 

x~/n, v
2 

= 
~ 

(x
i—~
)
2
, and ~ is

defined in (1.1).

This result has been generalized to the multivariate case by

Ghurye and 01km (1969) and by Lumel’skil and Sapazhnikov (1969) :  the

UMVUE of the jV (t;ii,E) density function is

—1/2
(4.3) /2 expE— ~(

_
1)(t—x) E 1(t— ~ ) ’]

[2ir(n—l)/n]~

when E is known ; and is

1
4 ~ 

‘ 2 / 
______ r (1 — 

(t x) S
2. .2. 

~S~
112 L n—l

n p—l 2 2
2 ) ir (n—i)

when ~ is unknown . Here t (t1, ..., t~~) i — (Li, ...~ S (S jj )~

ij  = 

a l  
(xja

_ 
~i

)(x
ja 

- X
j
)/fl~ and *(a) is defined by (1.1) .

Ghurye and 01km also consider the case when E

where ~
2 

is unknown arxl is known , and the case E — a2((l—p)I+pe’e],

where 
2 

and p are unknown. This latter format is the intraclass

• correlation model. The method of Lumel’skiT and Sapazhnikov is a

variant of the Rao—Blackwe].1 theorem, whereas the method of Ghurye and

01km is based on a reduction of each problem into two subproblems (see

— 11—
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Lemma in Section 3(v) ) .  This involves obtaining an estimate with the
If 

scale parameter fixed, and then estimating a derived function with the

scale—parameter unknown.

4.2. The Normal Distribution: Multivariate Case with a Linearly

Restricted Mean.

Suppose we wish to estimate the normal density

(4.1) IE I
_m/2 

exp [_
4 ~ (c~_ OB~ ) E ’(c~_0B~)’ ]

where 8 is an unknown i—dimensional vector, B1, ~~~~ 
B are given

2. x k matrices and the vectors c1, ..., cr are k—dimensional . The

• covariance matrix ~ may be known, may be known up to a scalar multiple,

may have the intraclass correlation format, or may be unknown.

There is, however , an additional point, namely, that the

k—dimensional observations X1, ..., may come from a normal population

with means, namely, 2’(X1) ....4’(0A~,E) , and A
i 

are knowt~ 2. x k matrices,

rank (A1, ..., A~) 1. Results for these four cases are obtained by

Ghurye and 01km (196E :

(i) E Known . The UMVUE of (4.1) is

exp[—~ (c—zQ~~ 
•B) (I—B’Q~~ B)~~ (c—zQ~~ B)’ I ,

~~1m/2 I I_BtQ
]
BI
l
~
2

— 12—
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where z~~~~~ xj Zo
’Ai , Q Ai E o

1 A j + . + A
~~~o

’A~~ ,

B = (B 1 
~-••l/2 

~~~~ 
B
r 
~;
_l/2
)

( i i )  ~ ~,2 bo~ E Known. The UNVUE of (4.1) is -

2 
mk/2 F(v/2) [~p (s - (c-zQ 1B) (I-B ’Q~~BY~ (c-zQ~~B)’)] (v-rn k-2)/2

r(”r )  ~E~~
m/2 

I I_B~Q
_l

BI
i
~
2 (v—2)/2

n
r — 1 .  — 1 ,  2 2where s = )
~ 
x~ ~~ 

x~ — zQ z a x

• 1  
1 V

• Remark: Normally when z and s arise from a sample of size n, the

• parameter v nk — 2. .

(iii) ~ = a~ [(l—p ) I +p e’eJ. In (4.1) let B~ — b~e, where the b~
are i—dimensional vectors. The observations X1, ..., ~~ are distributed

as .jV(0a~e, E), J. ‘ 1, ..., n, where the a
~ 

are i—dimensional vectors.

The IJMVUE of (4.1) is

• ~1~~ 2 ,
J I—B ’ A0

’ B I ”2

where

• B — (b~e1 ..., b ,e), A
0 

— k E a
~
a
~ ‘

4,

—13—
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• 

2m12r(~~) [*(u1-(~
-zA~~~

2 B)(I-B’A
0

B)~~ (~-zA0~~~
2 B)’)](n-~~L-2)/2

— 
(n—2.—2)/2

2 ) U
1

E(x  e ) —1/2 —

U
1 

— 
k 

— zz ’, z x(e’a1
, ..., e’a )  A

0 
, c = (c

1e
’e, ...,

- 
2m~

(-1)12
r(~~~

-1)) L~ (X(I~~~~~)X
,_C(I_~~~ )C,)l

((n_m)(k_1) 2)12

• = 

r((
m)
~~~~

))

(iv) E Unknown: The observations consist of independent statistics

z and S, where z : 1 x k, S : k X k with 2(z) ~~~~~~~~~

2~S) ‘W(k,v,~ ). Then

k
2b0~

/2 2 / 

— 
k/2 

~ — 
(c—z)’ (c—z) (v—k—rn—i) /2

l r ( m 
) 

—

is the UMVUE of

—m/2 1
i l l  exp [ — -

~~ (c—0) E (c—0)’J

This result is contained in Ghurye and 01km (1969) and Lumel’skii

and Sapozhnikov (1969) .

— 14—
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4.3. Reliability Function for Normal Models.

In stress versus strength reliability analyses we have a

measurement X of strength and a measurement Y of stress. A

failure occurs if X < Y and the device survives if X > Y. The

distribution Is generally assumed to be normal with an unknown mean

and variance. The distribution of Y may be normal with known

or unknown parameters, or may be a known truncated normal

distribution.

Regardless of the underlying assumptions, the reliability is

given by

R— P{X > Y}

Lipow and Eidemiller (1964) present two examples involving

proof—pressure testing of an empty solid propellant rocket motor case.

In this application the testing occurs to a given level of pressure y
0
.

Consequently, they assume that X - , , t ( p1,o~ ) and Y is a TN(ii2,o~)

truncated at y
0. They then show that R may be computed from tables

of the bivariate normal distribution. When no truncation occurs the

reliability is given by

R ~~~~~~~~~~~~~ —

When Y has a known distribution , say .A’(O,l) ,  in which case the

• reliability is

~‘ 1  ~J~~~
•

- -  .
. 

• —15—
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Church and Harris (1970) study the MLE of R(i.a ,o2) ,  and Downton (1973) ,

using the Rao—Blackwell theorem , obtains the UMVIJE of R(ii,a
2
) in the

case a is unknown to be

• n-2

1 2 2

• (4.5) f •(~~ tv) (1_t
~~ 2 1 dt,

— 2 

B(_j_~~)

where x — Ex
i/n, V ~ (x~_x) in.

When the distributions of X and Y are both unknown and

samples x1, ..., x~ and y1~ ••
~~~ 

y~ from X and Y are available ,

the UMVUE was obtained by Downton (1973). Define

— — — 2  — 2x — Ex
1/n, y — Ey1/n, v1 — Z(x~_x) /n , v2 

= E(y ~—y ) Ira

A — (~ —~ )/v 2, B — v
1/v2.

The UNVUE of R(~i1,ii 2, a~ ,o~ ) is 0 if (~—~)/ (v
1+v2) > 1, It is 1

if (~—~)/ (v
1+v2) 

.-. —1 , and it is

n-2 n-2
1 A+Bw 2 2  2 2

(4.6) 1 f~-2 ~ du dw
— —1 B~-j_~2)B( 2 ‘2)

if I (~~
—

~~ )~ 
(v
l+v2) I ~~. 

1.

Perhaps a more realistic version of the first model above is

when the strength of a material is determined from p different but

correlated teats, rather than from a single test. That is, we now

—16—
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have a vector (X1, ..., X~) of measurements of strength, the distri—

bution of which is .- 4’(ii ,~~) .  Analogously , there is a vector (Y1, ..., Y )

of stresses with known distribution .A’(O,I). A failure occurs if any

< and the device functions if X1 > for all I. Then

(4.7) R(M,E) = P {x1 > Y1, ..., X~ > Y~ }

~ exp[—~~(t—ji)(I+E)~~ (t—ji)’]... 
/2 1/2 dt

0 0 (2.11)P It-~-EI -

When the distribution of Y is unknown, samples X — .Mji,E) and

are available . Then

(4.8) R(~ ,v , E ,lp) = P {x1 > Y1, ..., X > Y }

~ exp[—~~(t—i 4v)(E+*Y
’(t._ij+v)’]

= 

0 0 (2ir)~~
2
lE+~p I

hhl2 
dt

We now obtain UNVUE of R(j.i,E) and R(ii,v,Z,*) in a slightly more

general context.

Case: Known Covariance Matrix. From an observation z ~~~~~~~~~~ where

• A is known, what is the UMVUE of

(4.9) g(t,u) — I B I _ ~ ’2 exp [—~~(t—Ii) B~~(t—p)’]

____ _ 
-17-
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i
-
I

where A < B, i.e., B — A is positive definite, and B is known. This

Is equivalent to solving the integral equation

exp [—~~(z—ji) A
1(z—Ii)’]

(4.10) f h(z;t) /2 dz g~t,~i)
(2ir) ~

Letting v — (t— 1J ) B ”2 , w z— t, and s = wA ’ B”2 in (4.6) yields the

integral equation 
-

(4.11) f k(s) exp [—va ’ —
~~~~ vCv ’J ds — 1

where C B~~
2 
A ’ B~

’2 
— I , and

k(s) — IA I
lh’2 h(sZ~~~

2 A+t) exp[ —- ~~ sB~~
’2 ~~—l/2 

~~

The solution of (4.7) is

k(s) — IcI~~
2 exp[—~~ sC~~ s’]

so that

i ll2 1/2
h(z;t) — 

Ai 
1/2 exp [—~~ (z—t)(B—A)

’(z—t)’]
I B A I

is the UMVUE of g(t,M)- in (4.9).

Note that C > 0 is required. But C > 0 if and only if

~

h / 2  A ’ B”2 > I , which is equivalent to B .> A.
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Special Case. When z is the sample mean, then A — E/n and from (4.7)

B = I + I, so that the requirement becomes I + E > E m ,  which always holds.

Remark: An alternative approach is to first estimate the conditional

probability P(X > Y~Y = y} and then integrate over y. Since this procedure

makes use of some previously known results, it yields a direct answer.

Case: Unknown Covariance Matrix. If 2(z) ‘..4’(ii,E/N),2’(S) —

S = 

~~~~~~~~~~ 

= Z(x
ia
_x
j)(xja

_x
j)/ni then from (4.4)

h(t ;z,S) - c(p,n) Is I~~
12 

[*(1 
(t-z) S~~(t-z)’ )]

( P

where c(p,n) — r(~~
1)/[r(’~~~) ~~~~ (n—l)~

’2], is the UMVUE at the

normal density function .A’(u,E) at a point t.

Then

f . . .  f h( t ; z ,S ) dt
• y1 y~

• 
is the UMVUE of the conditional probability P{X

1 
> Y1, ..., > I

= y1, ..., Y — y }  . Consequently, the UNVUE of the unconditional probability

• P {X1 > Y1, ..., X~, > Y~} is

f ... 
~ 

2 dy i... / C(p, f l ) S 2 [*(l_ z)
~~ 1

( t 5 ) )]  dt

-~~~ -
~~~ (2ir) y

1 y
~

Making a change of variables t — y — w and (y—z4w) s~~~~
12
,i~~~~i. — u and

changing the order of integration, the UNVUE reduces to

~ •~~ ; —19—
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(4.12) 
~~

— 
~~~~. /2 •

~~~
• • 

(
z+us1~

’
~ vc_r)[*(l uu~n

(n_P_3)/2 
du

r (~~~~ )ir~ o o p

where 4’ (a1, ..., a ) = 4’(a~) and 4’(a) is the standard normal c.d.f.p p 1
When p — 1, (4.12) reduces to (4.5), which is the result of Downton (1973).

In the case that the distribution of Y is unknown, we require

a slightly more complicated result. Suppose h(t;z1,S1) is a UMVUE

of the .4’(i~,E) density at a point t , and g(y;z2,S2) is a UNVUE of ,
- •

the ..4’ (v,ij) density at a point y. Then

(4.13) f •.. f g(y;z2,S2) dy 
y~~

•••
y~ 

h(t;z1,S1
) dt

is the UMVUE of P(X
1 

> Y1, ..., X~, 
> Y}.

Substitution of (4.4) for g and h in (4.13) yields

(4.14) 
~ fr(~

- 
(y-z 2)ç

’(y-z 2) ’ ~~~~~~ 
dy

c(n ,p) [ I  (t-z1
)S~~ 

_
~1
)’~]
(
~~
P 3)’2

~ 
ll2 I’~

’
~~~ n—l 

dt.
y1 ~~~~~ 

~ 
i

Letting t—y — t* and interchanging the order of integration leads

to the expression

A(m p)A(n.p) 
f f ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ dq dv
Is,I 1s21 1>qq ’ ~
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-v

[ where ~ — {w : ~~~/2 
— q~~

’2 + z1 
— z2 < 0 .  The univariate case is

obtained from (4.12) with p = 1 and is the same as (4.3) obtained by

Downton (1973).

In the context of stress versus strength reliability analyses,

X and Y are independent. However, in other contexts X and Y may

be dependent; in which case

R=P{X
1
> Y 1, ~~~~~~~~~~~

— /°... /° exp[—~~(t—ji+v)(E11+E 22—E12—z21)~~(t—p+v)’J 
dt

0 0 (2f f ) P 1Z 11+E22 —E,2— E21 1

Now if ~~~ “..4’ ((ii ,v) ,  E/ n) ,  S ”W(Z,2p,n), then

z - 4’.A’(~—v , (E 11+E124E21+E 22 )/~)

V S11+S22+S12+S21 “W(E11+E12+E 21+E 22 ,p, n),

so that we may employ our previous results, namely,

(4.17) j ... j C(P~~ ) 1*(i _ t_z~:~ t_z 1)] 
-P-3)l2 

dt
0 0 f v ~ ~~\

is the MVUE of R. Unfortunately, the evaluation of this multiple

integral is numerically complicated.

—21—
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4.4. The Exponential, Gamma and Weibull Families of Distribution.

The exponential, gamma, and Weibull distributions have been

used extensively In reliability theory. In part this is due to the

fact that they have nondecreasing failure rates. In addition to the

three named distributions, censored versions have also been considered.

The UMVUE of the gamma density

r (p)e~

at a point u, based on a sample x1, ..., x~ from a gamma distribution

• with parameters (q,O),  nq > p, is

• 1 un ’ - ~ 
nq—p—1

________ _____

B(p, nq—p ) (~~ )P

Therefore the UMVUE of R(8) — P {x > tI is given by the incomplete

beta function 
~~~~~~~~~~~~~~~ 

if t/(n~) < 1., and is unity if

t/(ni) > 1.

This result was obtained (in a different form) by Tate (1959)

and by Basu (1964). The case p — 1 reduces to the exponential dis-

tribution in which case the UMVUE is

(~~_~~~)
fl_l

for n~ > t and is 0 for ni < t. This result is, of course, con—

tam ed in Tate (1959) and was rediscovered by Pugh (1963) again using

the R.ao—Blackwell theorem.
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For the exponential distribution where the observations are

the order statistics X(1) < X~2~ < < ~~~~~ the UMVUE of the

• tail probability R(t) = P{X > t } is

r—1
(4.18) (1—i- )

where T = X (1)+ + X (r) + (u—r) X~~~. For the truncated two

parameter exponential distribution

1f(x;O) — ~~
- e , ii > 0

the UMVUE of R(t) is

~. 
/ t—X \r— 2

(4.19) 
~~~~~~~~~~ ~ 

(1)
n 

~ 
r C(l)

The expression (4.18) is obtained by Basu (1964) ; the expression (4.19)

is obtained by Basu (1964) and by Laurent (1963) for r = n.

• For the Weibull distribution

f ( x ; 8) = -f- x~~
1 
exp (— 

~~~~
- ]

letting y — x~ and noting that y has an exponential distribution,

a direct application of the results for the exponential distribution

yields results for the Weibull distribution.
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If individual elements are tested until a prescribed number, r*,

r*_l
of failures occurs, then the UMVUE of R is (1 — t/T) for t < T,

where T is the total observed life on all the elements tested . For k

elements in series, (1 — kt/T) t~~ f or t < T/k is the UMVUE of R,

and for k elements in parallel it is

k

~ 
( J ) J l (

k) 
[~~

l_i 
~~j  =1

If a system contains k elements with redundancy in which one element

is In service with (k—i) replacements, then the system fails only if

the sum of all k lives is less than t. Now the UMVUE of R(t) is

k~1 
(r;_l)(l — ~~)

r*_i_l
(!)i = I 

~ 
(r*-.k,k)

j =o

An alternative testing procedure is to test individual elements

until a preassigned total life T has passed and we observe the number

r, of failures. Since r has a Poisson distribution with parameter

T0/O , we may then use results on Poisson probabilities given by Barton

(1961) using the Rao-Blackwell theorem, and by Patil (1963) , who equates

coefficients in a power series.

The UMVUE of R( t) is then *[ ( l_ t l T*) ] r . For k elements in

series the UNVUE is *[( 1_kt/T*) J
r ; for k elements in parallel the

UNVUE is

—24—
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k
) *[(l -

i—i

and for the redundancy case with k elements the UMVUE is

k—l r—j j

~ 
( )  ~p((l — j~~

] (j~) = I~~~~ (r—k+l , k)

where I(a,b) = 0 for x < 0.

The truncated exponential distribution

1 —x/O
f(x;O) ~ e 

~ 
, 0 < x < x

0(l— e~~O’ )

has been used in a number of applications, e.g., in fitting rainfall

data and Irrigation studies. Other examples occur in life testing

problems for which the survival probability is of interest. Holla (1967)

obtains the IJMVUE of the density function and the survival probability.

This paper contains an error as noted by Johnson (1968) , which also

- apparently has a lacuna. Sathe and Varde (1969) obtain the UMVUE

of the reliability R(t) — P{t < X < x0} as

• 

1 — 

~ (_l)i(n;1)(l
_ .~~2) 

:~

‘ 
— 

j
~~~:1:~~~~~ 

l_ (
iX
~~

t

)

• ~ (—1)
j  —o

• —25—
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where m
1 

— [ s ix 0 ] is the largest integer < s/x 0 and m
2 

— [ ( s—t )/x 0]

is the largest integer < (s— t ) /x 0

• 4.5 Other Methods of Estimation: Bayes Estimates

The development of Bayes estimators of density functions has not

been as extensive as that for MLE or UMVUE. However, some results have

been obtained.

For the exponential density and reliability function

I
—x/O

f(x;O) = 
e 

~ 
, R(t ;e )  — e t/0

- Bhattacharya (1967) obtains Bayes estimators for three priors:

(i) uniform: g(O;cz,8) — , a < 0 < B

- (ii) inverted gamma: g(0;p) — e~~’~

(iii) exponential: g(9;A) — 
~

We observe the order statistics X(1) < X (2)  
C • ‘•  < X (r) from the

exponential distribution -f(x;0). Define

T — X(1) + .
... + X( )  + (n—r) X( )

- —26-.
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• The Bayes estimators, RB
(t), of R(t) are:

I
• ta (r—l) — ‘b 

(~—l)

(i) (t) = 1 1 1
— t

b
(r_l) 

[l. + (~ / T ) ] r~~

where
t
.4

a1 
(T
r + t)/a , b1 

— (T + t)/B

- a
2 T /cz , b2 

— T / 8  ,

and 1 (n) is the incomplete gamma function .

( i i )  R.~(t)— r+v
(1 +•T +~j)

K 1(2I~~~~ +t)lA) 
_____________(iii) RB (t)  = 

K /2/17X \ 
— 

~~ 

(r—l) ’2r—1~ r 
(l+~~_.)

where K (z) is the modified Beisel function of the third kind of

• order v.

Instead of observing time to failure, we may count the number

of failures and apply the theory for Poisson probabilities. Nov we

let 6 — 1/0 and assume priors on 6:

—27—
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• 
I

(I) uniform: g(6;a,B) , a < 6 < B ,
I-

(ii) exponential: g(6;A) —

Then the Bayes estimators of the reliability function are

I*(k+ ,~~~~ n-k+l) - I~(k+ 
,~ n-k+j.)

(i) R
B
= * *n—k—l) — 1

b~~’ 
n—k+1)

T T
where a— e x p — a , b e x p— B  , and

1 (p,q) — u~~
1
(l— t)

6
~~ dt

is the nonnormalized incomplete beta function;

n—k+l)
(ii) RB AB(k+ , n-k+l)

If we let a + 0, B ~ we obtain the Bayes estimators for the improper

prior. In case (i):

1
~~~

and in case (ii):

n—k
RB fl ‘

~~
“

r—o r+b4

I
’
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Bayes estimators for the parameter 0 and ~~~ in the exponential

distribution is obtained by Bhattacharya (1967) and by El—Sayyed (1967)

respectively . The two—parameter exponential is studied by Varde (1969).

4.6. Discrete Versions.

Results for discrete distributions have appeared in a number of

contexts. For example, Girahick, Mosteller and Savage (1948) obtain

unbiased estimators of binomial probabilities based on sequential sampling.

Biackwell’s 1947 paper showed that conditional expectations were central

to this procedure. Since then a number of specific results have appeared.

• 
,• Barton (1961) shows that if X1, ~~~ 

X~ are independent binomial

random variables b(p,N), then

(Ex \ (Nn—Ex
~~r / ~~~~N—r

(Nn

is the UMVUE of (~~~) ~r(1_~)N~~ for all integral r. For the Poisson

distribution, -

, ;,,(r) n
~~~~~~~ (1

, r n
r.n

is the UMVUE of e~~ Ar / r  I . -

In many examples for discrete distributions, the problem may be

posed in terms of equating coefficients in two power series. This

idea has reappeared throughout the literature. It is exploited by

1
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Path (1963) who considers a general class of distributions, called

generalized power series distributions of the form

• 
. p (x;0) = a(x) b(0) 0

X x — 0, 1 

Some of the results obtained, in addition to the binomial and

Poisson distributions, are:

Estimator • Family Description

• 5n—l O kn—z e 0 Poisson distribution
n -0 truncated at xeronS k!(l—e ) 

-

(m~ (mn—ms /m \ /O \ 
k / 1 \m_k binomial

• 
~~k/  ~z—k / ~k)~1—0/ ~l+0/

/mn\
~ zJ

• 
(in+k_1\ (ma z_k_l\ / H C ~l\ 0k (1...0)a negative binomial
\ k / \  a—k / k /

jmn+z-l

• 
S’~~

1
~ k

• 

nk(z—k)I 
S~~

1

~ 

log log series F

• where s~ is the Stirling number of the second kind with arguments

n and z.
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4.7.  Confidence Intervals for Reliability Functions.

The conversion of estimators to confidence bounds for reliability

functions is by no means a straightforward procedure. There have been

a number of papers in this area and we mention only a few contributions

since this topic is slightly peripheral to the main development.

El—Mawaziny and Buehler (1967) obtain confidence intervals for

the reliability of a series system where the ith component has an

exponential distribution with parameter 8~ . The methods are via

conditioning, MLE and Bayes estimators.

4.8. Estimation of Special Functions.

Many functions of the parameters of a distribution have been

studied, e.g., the moments of a distribution.

Kordonskii and Rozenblit (1976) consider the problem of

estimating the characteristic function and a kth degree polynomial

in the moments for the normal, ga~~a, Weibull , shifted exponential,

uniform, binomial, negative binomial and Poisson distribution. To

illustrate these results, the UMVUE of tbe characteristic function

for the normal distribution

- 1 2 2
• i~x 

i~u— -1~~ a
(O(~ ) E e  e ,

is

(n—3)/4 
_________

q’(F) — r ( ’~~) 
(~~~

2
8~~~~fl_ l ))  

~~~ ~(3)/2(~ 
/~2(~...1)/~~

) 
,
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where ~2 — E(x~— ) 2 and 
~a
(Z) is the Bessel function of the first

L kind.

The entropy and Kuilback—Leibler information numbers have

generally been estimated by maximum likelihood (see e.g., Miller

and Madow (1954) ) .  Churye and 01km (1969) provide UMVUE for the

normal family. For example, if X “ .~.*(~i,E) then

E log f(X ;ii ,E) — — 
~(l + log 2x) 

— log I E I

so that we need to estimate loglEl . The result is that if

2’(S) — W(p,m; E ) ,  then

E iogJ SJ — logJEJ + p log 2 + ~ d log r(a) 
a (a-i+1)/2

The last term may be obtained from tables of the digamsa function.

5. Comparisons of Alternative Methods of Estimation.

Curiously there have been few studies of the efficiency of

alternative estimators. The most extensive study is that of Zacke and

Even (l966a , 1966b). -

Glasser (1962) notes that

~~ x 1 k  1 x-k
= ~~ (~) ( 1— ;)

is a UNVUE for p(k;A) xk 5 k~/~ 1 and then obtains

H - -32-
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Var(f) and the UMVUE of V(~).

A similar result is obtained for the exponential distribution

p = P{X > t}  = e tA 
. The estimator is

= (1 — , Var(;) — ~~tA (~
At 24~fl — 1)

and the UNVUE of V(;) is

2x
(l—~~) — (l — --~)n n

Zacks and Even (1966) proceed as follows. For several families

they consider the UMVUE and MLE of the reliability. We denote these

by RMVU and 1~MLE~ 
They obtain an exact or approximate expression for

• the Var (R~~.~), Var(R
~~E

), and the Cram~r—Rao lower bound. The efficiency

of either estimator is then a ratio of the mean squared error to the

lower bound. Finally, the ratio of MSE of the two estimators is also

• plotted.

The qualitative results that prevail are as follows:

Exponential distribution, R(t;8) — ~~~
ffl~E better for moderate values of tie

UMVUE better for small and large values of t/e . 

Hr 
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Normal distribution, R(t;e) —

MLE better in central range of (t— ~i)/a

UMVUE better in tails.

Poisson distribution, R(t;0) — P {X 0} — ~~MLE better for small values of tO/n

UMVUE better for large values of to/n

_____ ~~~~~~~~
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