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EVALUAT ION

RADC is currently building a computer emul ation facility to assist

in evalua tion of hardware/sof tware/fi rmware tradeof fs necessary in

the development of system architectures,under TPO 5, Thrust 5.1.

part of this effort, RADC has purchased a QM -l microprogrammable

computer which is designed to run computer emulations , and to get

access to SMITE which is a Higher Order Language for describing

computer architecture emulations and a compiler which produces code

to emulate said architectures on the QM-1 computer. This effort

also studied the possibility of being able to extend SMITE to make

it a more useful hardware description language.. The results of this

study are being incorporated into an Advanced SMITE which is being

written in a subset of PL-l to be run on the MULTICS operating

system at RADC.

~~~ C K A ~~NO~~~~~~~~~
’

Project Engineer -

iv 

•..,- -.,- ~~::~P~ ~~~~~~

-~ - - - •  - -~~~~~~~~ -~~~~~m- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . • • • ~~~~~~



_
—

~~~~~~ •- -  _______________  —-—~~--- —.-—-- - —  T

P r e f a c e

This  r e p o r t , CDRL A00 3 ,  Is the f i n a l  t e c h n i c a l  r epor t  of c o n t r a c t
F 3 O 6 0 2 — 7 7 — C— 0 0 8 9 ,  w h i c h  addressed  the  the  f o l l o w i n g  t e c h n i c a l  i t ems :

1. I n s t a l l a t i on  of the  SMITE c o m p i l e r .

2. I n s t a l l a t i on  of the  SMITE A p p l i c a t i o n s  Support  So f twa re
( S A S S ) .

3. Training of RADC personnel in the  use of the SMITE language.

4. Analys is of the use of extensibility features within SMITE
inclu ding use of’ technology derived from the Aiphard language.

The SMITE compiler was installed on the CDC—6000 system at the Air
Force Wea pons La bora tory (AFWL ), Kirtland Air Force Base , New
Mex ico. This allows access to the compiler by RADC personnel through
the use of the ARPANET. SASS was installed on the Nanodata QM— 1 at
the Rome A ir Develo pment Center (RADC ), Rome , New York to support
RADC use of emulat ions produced by the compiler. The test plan and
procedures used for both of these installations are contained in
CDRL A 004 , SMITE INSTALLATION & ANALYSIS — TEST PLAN AND PROCEDURES ,
of t h i s  c o n t r a c t .

T r a i n i n g  of RADC personnel was accomplished in a one week cour se at
RADC during the contract. As part of’ the training preparation CDRL
AOO5 , SMITE INSTALLATION & ANALYSIS - SMITE TRAINING MANUAL , was
pub l i shed .

This report presents the findings of the extensibility analysis.
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1 .0 Introduc tion

1 . 1  S u m m a r y

This  r e p o r t  p r e s e n t s  the  f i n d i ng s and c o n c l u s i o n s  of r e s e a r c h  and
studies into the use of extensible features within computer
d escr ipt ion language technolo gy . Re ad ers of t hi s report are
assum ed familiar with SMITE computer description language Cl i  and
the Nanodata QM— 1 Computer {2).

The v a l u e  of .  SMITE as a com puter d esc r ip t ion language and
emul at ion develo pmen t tool can be s ign ificantl y enhance d by
providing extensibility features within -the lan guage. With
a d d i t i o n  of e x t e n s i b i l i t y ,  n o n — s t a n d a r d  a r c h i t e c t u r e s  can  be
desc r ibed  and emula t ed . Also , t he  d e s c r i p t i o n s  of e x i s t i n g
ar chitectures for which SMITE is not quite suited (such as
v a r i o u s  fo rm s of a r i t h m e t i c  o t h e r  t h a n  2 ’ s c o m p l e m e n t )  w i l l  be
e n h a n c e d . E x t e n s i b i l i t y  w i l l  also allow SMITE to be used for
a r c h i t e c t u r e s  no t  yet e n v i s i o n e d .

These s t u d i e s  a d d r e s s  two a r e a s  of e x t e n s i b i l i t y :

1. Downward  e x t e n s i b i l i t y  w h i c h  g i v e s  the  user  access  to the
M u l t i  l a n g u a g e  and Q M — 1 sys tem f u n c t i o n s .

2. Upward  e x t e n s i b i l i t y  w h i c h  a l lows  the user  to m o d i f y  the
e x i s t i n g  l a n g u a g e  to define a new language that corresponds to
his  s p e c i f i c  needs .

The downward extensibility features studied provide the ability
to p roduce  more  e f f i c i e n t  e m u l a t i o n s  by a l l o w i n g  the  user  to
force  in to  the mic rocode  leve l  those f u n c t i o n s  w h i c h  are
pe r fo rmed r e p e a t e d l y  or a re  not  ea s i ly  d e s c r i b e d  in SMITE.  These
f e a t u r e s  a l low the  user  to code d i r e c t l y  i n  MULTI  and also a l low
the  a b i l i t y  to define new MULTI instructions the compiler did not
i n i t i a l l y  r e c o g n i z e .

The upward extensibility features studied allow the user to
“t a i l o r ” the  l a n g u a g e  to h is  own needs .  Us ing  t h i s  a b i l i t y  the
user  can  add new l a n g u a g e  c o n s t r u c t s  to aid in the  r e p r e se n t a t i on
of t he pro b lem at hand . This  m e c h a n i s m  w i l l  also pr ov ide  the
user with more refined methods of abstraction than current SMITE
allows . Com plete and modularized descriptions must be composed
of seve ra l  l eve l s  of c o m p l e x i t y ,  s u c h  as f u n c t i o n a l , b e h a v i o r a l ,
and s t r u c t u r al . To p r o v i d e  these  l eve l s  i t  is n e c e s s a r y  to have  a
h i g h  d e g r e e  of a b s t r a c t i v e  a b i l i t y  in  a l a n g u a g e .
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This report is di v id ed into sev eral sect ions conta ining the
following inform at ion:

1. Overview and summary of the extensibility features to be
added to SMITE as determined by this study (Section 2.0).

2. Working notes produced as the studies of the various
• extensibility areas pr ogressed . These are not formal

descriptions of the f -~~t ur e s  b ut m er e l y  a com pi la tion of some
of the  no te s  p roduced  d u r i n g  t h e  s tud y to g i v e  an i n d i c a t i o n
of the  t h o u g h t  p rocesses  i n v o l v e d . ( S e c t i o n s  1.0 , 2 . 0 , and
3 .0  of A p p e n d i x  A , c o r r e s p o n d i n g  to the  a r e a s  of t h e  o v e r a l l
extensibility mechanism , syn tax macros , and direct code ,
respectively)

3. The semant ics an d syn t ax of the ex tensib le fe atures to
actually be added to the SMITE language (section 3.0).

14. SMITE Compiler Implementation notes produced during the
stud y (Section 4.0).

5. SASS re quirement notes produced during the stud y (Section
5.0).

6. Conclusions (Section 6.0).

1.2 References

1. TRW Defense and Space System s Group, SMITE Reference Manual ,
RADC—TR— 77— 364 , Nov em ber 1977.

2. Nano data Corporation , QM— 1 Hardware Level Us er ’s Manual ,
• Mar ch 1976.

3. L i v i n g s t o n , S. H., History of Manchester Com puters ,
U n i v e r s i t y  of Manchester , 1975.

4. W u l f , W.  A . ,  R .  L.  London , and NI .  Shaw , A b s t r a c t i o n  and
V e r i f i c a t i o n  in A i p h a r d : I n t r o d u c t i o n  to L a n g u a g e  and
M e t h o d o l o g y ,  C a r n e g i e  M e l l o n  U n i v e r s i t y  D e p a r t m e n t  of C o m p u t e r
Science , 1976.

5. B i x i e r , D. C , SMITE L a n g u a g e  R e s e a r c h  F i n a l  R e p o r t , TRW IOC
64 13 . 14 0 — 10 , October  1975 .

6. Shaw , N I . ,  W.  A.  W u i f , and R.  L. London , Abst r ac t ion  and
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Verification in A LPHARD: Defining and Specifying Iteration and
Generators , Comm. ACM 20, 8 ( A u g  1977), 553—56 24.

7. Bixier , D. C , CPDL Requirements , TRW Internal Repor t , May
1977.

8. Bixier , D . C , and H. M. Hart , CPDL Constructs , T RW Internal
Report , July 1977.

9. Bixier , D . C , and H. M. Hart , CPDL Specification , TRW
Inte rnal Re por t , Sept 1977.

10. Dahi , 0.—J ., E. W. Dijkstra , and C . A. R. Hoare , St ru ct ured
Programming , Academic Press , 1972.

11 . Early, J ., An Efficient Context— Free Parsing Algorithm ,
Comm . A CM 1 3 ,  2 (Feb. 1970), 914— 102.

12. Crocker , S. D., Sta te De lt as : A Forma li sm for Re pr esent ing
Segments of a Computation , University of Southern California
Info rmation Sciences Institute , 19~ 7.

13. Newcomer , J. M. ,  Machine Independent Generation of Op timum
Local Code , Carnegie Mellon Univ ersity Department of Computer
Sc ien ce , 1975.

14. Fraser , C . W . ,  A Knowledge — Based Code Generator Geflerato r ,
ACM Sigplan Notices , August 1977 , pp l2 6— l2 9 .

1.3 S y n t a x  N o t a t i o n

Since this stud y describes the syntax for the extens ion features
• of SMITE , some method of language description is needed to
• p r e s e n t  the  i n fo r m a t i o n  in a clear , precise fashion. The method

chosen for th is study i s a loose ly formal grammatical notation.

A formal grammar is composed in part of rules or productions.
Each production specifies a textual replacement. 6y starting
with a chosen initial symbol , wh ich for SMITE is <smite—program> ,
and substituting as necessary using the productions , all
legitimate forms of the language may be developed.

Three general classes of symbols appear in productions , namely
terminal symbols , non— terminal symbols , and meta — linguistic
sym bols.

4
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T e r m i n a l  symbols a re  those c h a r a c t e r s  and c h a r a c t e r  s t r i n g s
which  w i l l  a c t u a l l y  a p p e a r  in a SMITE prog r am . E x a m p l e s  of
term inal symbols include REGISTER , M E M O R Y , and D E C L A R E , and
the characters ‘ , ‘ and ‘

; ‘ . Any symbol which is not a
n o n — t e r m i n a l  or r n e t a — l i n g u i s t i c  symbol  is by d e f a u l t  a
t e r m i n a l  symbol .

Non— terminal symbols represent abstract entities in the
p r o g r am , a n d  w i l l  a lwa ys be w r i t t e n  as

< n a m e >

where “name ” is an i d e n t i f i e r  of the  e n t i t y .  Ex amples  of
n o n — t e r m i n a l s  f r o m  SMITE i n c l u d e  < d e c l a r a t i o n>  and
(p roces so r> .

M e t a — l i n g u i s t i c  symbols  a r e  those characters  use d to wr i te
p r o d u c t i o n s .  The c h a r a c t e r s  ‘ < ‘  and ‘ > ‘  are such c h a r a c t e r s ,
and are  used to d e n o t e  n o n — t e r m i n a l  symbols .  The
meta—l inguistic symbols in addition to corner brackets in the
stud y a r e  i n t e r p r e t e d  as f o l l o w s :

B r a c k e t s  ‘C’ and ‘3 ’ are use d to ind icate t he op tional
o c c u r r e n c e  of the  p h r a s e  w r i t t e n  w i t h i n  them . For e x a m p l e :

C” ,” <id>]

A dd it ionally,

C < n a m e >

is used to i n d i c a t e  t h a t  any  n u m b e r , including zero , of
o c c u r r e n c e s  of the phrase  m a y  a p p e a r .  F u r t h e r ,

[<name>]+

is used to i n d i c a t e  t h a t  one or more  o c c u r r e n c e s  m a y
appear.

The symbol  ‘ ::: ‘ is used to d e n o t e  the  d e f i n i t i o n  of a
n o n — t e r m i n a l . Al l  p r o d u c t i o n s  a re  of the  fo rm

<non— terminal> ::~ phrase

where <non— term inal> is thereby defined to be “phrase ” .

The symbol  ‘I’ is use d to des ignate a l ternat ives.  If
<name> is to be derived to be A or B , the production to
ex press this would be

S

a

_ 
- -_ - —. -~~~~~~~~~ --- — ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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<nam e> : :z  A / fl

The s ym b o l  ‘ “ ‘  is used to i n d i c a t e  t h a t  a m e t a — l i n g u i s t i c
symbol or other symbol that could cause confusion is being
used as a terminal symbol. Thus

IV [ H

is the terminal symbol  ‘ C ’  , and not the beginning of an
optional or repeated phras e .

Pa r en theses , ‘(‘ and ‘ ) ‘ , are used to group several symbols
into one logical entity to avoid confusion or to reorder
ev a lua tion of’ meta— symbols in the production. For example:

<name> ::z (SAM / PETE) <type>

There is no hierarchy of met a—symbols. Productions are
evaluated from left to right with symbols within
parentheses evaluated first.

6
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2.0 Overv iew and Summary

C o m p u t e r  de sc r i p t i o n  l a n g u a g e s  p r o v i d e  concise , u n a m b i g u o u s ,
s p e c i f i c  d e s c r i p t i o n s  of the  o p e r a t i o n  of d i g i t a l  d e v i c e s .  The
functional mo dular it y ma d e possi ble by MSI , LSI , and VLSI implies
the  need for  a c o r r e s p o n d i n g  d e s c r i p t i v e  m o d u l a r i t y ,  w h e r e b y the
devices composing a digital system may be descr ibed  along w i t h  the
structural info rmation defining their interconnection s . This
modularity must be provided , however , without losing sight of the
func tion ali ty of t he com p lete s ystem . Contem porary com puter
d e s c r i p t i o n  languages fail to satisfy this requirement.
Spec if ica tion of m odular it y an d struc tur e is di fficult , an d obscures
the overall system view. Specification of distributed system s is
virtually impossible.

The a d d i t i o n  of the  ability to specify abstract devices , sim ilar to
the  s p e c i f i c a t i o n  of a b s tr act ions or vi rtual mach ines in sof tware ,
p r o v i d e s  a so lu t i on  to t h i s  d e s c r i p t i v e  problem .

To i l l u s t r a t e  the  use of the  d e v i c e  a b s t r a c t i o n  and p r o v i d e  e x a m p l e s
of  the  s y n t a x  for  d e f i n i n g  d e v i c e s  a d e s c r i p t i o n  of a s imple
com puter is first presented in basic SMITE. This  c o m p u t e r  is the
U n i v e r s i t y  of  M a n c h e s t e r  Mark  1 [3 )  and the  d e s c r i p t i o n  b e g i n s  w i t h
the  d e c l a r a t i o n  of the  m e m o r y ,  r e g i s t e r s  and s u b r e g i s t e r s  used
w i t h i n  the  c o m p u t e r .  F o l l o w i n g  the  d e c l a r a t i o n s  is a d e s c r i p t i o n  of
the  i n s t r u c t i o n  f e t c h , decode  and e x e c u t e  c y c l e .

M A R K — i :  PROCESSOR;
D E C L A R E

M [ O : 8 1 9 1 ] < O : 3 1 >  M E M O R Y ,
P1<0: 15> REGISTER ,

F( O : 2 >  D E F I N E D  P 1 < 0 : 2 > ,
S < 0 : 1 2 >  D E F I N E D  P 1 < 3 : 15 > ,

C R < O :  12> R E G I S T E R ,
ACC <O:3 1> REGISTER ;

D E C L A R E
STOP EXTERNAL;

DO FOREVER;
BEGI N ;

P1 <—  M ( C R ] < O : 15 > ;
CASE F ;

1 ‘‘  0: b r a n c h  ‘‘
CR <— M [ S ) < 1 9 : 3 1 > ;
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‘ ‘  1 : b ran ch relat ive ‘‘
CR <— CR + M[S)<19:31>;

‘‘  2: load negat ion ‘ ‘
ACC (—  —

‘‘  3: s tore  ‘‘
M [ S ]  <— ACC;

‘ ‘  4,5: subtract
ACC <— ACC — M[S];
ACC <— ACC —
6: s k i p  if  n e g a t i v e
IF SE (ACC) < 0

THEN CR <.. CR + 1 ;
END IF;

‘‘  7: halt ‘ ‘
STOP;

END CASE;
CR <— CR + 1;
END;

MARK 1: END;

2.1 Abstraction Concepts

A di chotom y ex ists in the use of s ing le level com puter
description languages. If a description is written to accurately
reflect the mechan ization of a computer , the functional ity may be
completely obscured . Conversely, wr it ing the d escr ipt ion to
clearly define the functionality may distort or completely
sup press description of the implementation. For example , the
f o l l o w i n g  e x c e r p t  is the  d e s c r i p t i o n  of the f l o a t i n g  po in t
m u l t i p l i e r  fr om a d e s c r i p t i o n  of the  R a y t h e o n  Fau l t  To le ran t
Spaceborne Com puter:

FLOATING—MULT IPLY: PROCESSOR ;
F L O A T I N G - P R E P ;
REG—O P <— SLL (REG—OP , 8);
M U L T I P L Y ;
IF REG—O P 0

THEN REG—OP <— X ’ 80 ’ ;
ELSE B E G I N ;

REG— OP— EXP <— R E G — O P — E X P  + OPERAND—EX ? ;
DBL—NORMALIZ E;
END;

END IF;
FLOATING-MULTIPLY: END;

The description was written to obtain a bit—accurate emulation of
the  compu te r  v i a  c o m p i l a t i o n  of the SMITE c o m p u t e r  d e s c r i p t i o n  to
m i c r o c o d e , and  t h e r e f o r e  the  d e s c r i p t i o n  is s t r o n g l y  o r i e n t e d
towards a representation of the computer implementation. The
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functionality of performing a float ing point multiplica tion is
obscured in the process.

The abstra ction concepts proposed by Wulf , London , and Shaw in
Al phard [ 4 4 ) provide a resolution of the
f u n c t i o n a l i t y / i m p l e m e n t a t i o n  d i c h o t o m y  by  s u p p o r t i n g  the
ex pression of both abstraction and concrete realization. In the
co~ntext of so f tware , Wu lf et al. state:

“A k e y  c o n c e p t  in  s t r u c t u r e d  p r o g r a m m i n g  is a b s t r a c t i o n :  the
r e t e n t i o n  of the  e s s e n t i a l  p r o p e r t i e s  of an ob j ec t  and the
corolla ry neg lect of inessen t ial deta ils. . . . Abstrac t ion is
i m p o r t a n t  to s t r u c t u r i n g  p r o g r a m m i n g  p r e c i s e l y  b e c a u s e  it
perm its a pro g r ammer  to i g n o r e  i n e s s e n t i a l  d e t a i l  and t h e r e b y
r e d u c e  the  a p p a r e n t  c o m p l e x i t y  of  h i s  t a s k . ”

In our t e r m s , a b s t r a c t i o n  p e r m i t s  the  user  of a d e v i c e  to igno re
the  in e s s e n t i al  d e t a i l s  of i t s  i m p l e m e n t a t i o n , u s i n g  i n s t ead  the
s p e c i f i e d  f u n c t i o n a l i t y  of  the  d e v i c e .

The m o d u l e  of a b s t r a c t i o n  in  Al phar d is the  fo rm , c o m p r i s e d  of
par ts for  spec i f ica t ion , representation , an d implementation. The
s p e c i f i c a t i o n s  p r o v i d e  at  l eas t  the  names  of the  f u n c t i o n s  of the
form t o g e t h e r  w i t h  the  types  of t h e i r  a r g u m e n t s  and r e s u l t s .  The
re presenta ti on de f ines the d ata s truct ures use d w it hi n the fo rm
to i m p l e m e n t  t he  a b s t r a c t i o n .  The i m p l e m e n t a t i o n  p r o v i d e s  the
spec i f i c  m e c h a n i s m s to r e a l i z e  t h e  abs t r ac t f u n c t i o n s .  O n l y  t he
specifications are visible to users of the form . In this way,
A iphar d em phas izes the funct ional i ty of  t he interface between
modules , ye t reta ins the ca pabili ty to spec i fy concrete
real izations of the functions.

2 . 2  A b s t r a c t i o n  In The Smite  Compute r  D e s c r i p t i o n  L a n g u a g e

The pr imary  m o d u l e  of a b s t r a c t i o n  to be used in SMITE is the
DEVICE , wh ich has structur e , use , and concept der ive d fr om the
Al phar d ‘form ’ . A DEVICE is composed of the following elements:

1. A header , wh ich specif ies t he nam e , connect ions , and
sizing pa rameters of the device.

2. A S P E C I F I C A T I O N S  s ec t i on , w h i c h  de sc r i be s  the
funct ionality of the device. This specification is presently
given as a prose segment; current research is underwa y to
re pl ace the prose description with an axiomatic definition of
the device function.
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3. A REPRE SENTATION section , wh ich d ef ines the stat ic data
base required to implement the device.

24 .  An I M P L E M E N T A T I O N  s ec t i on , w h i c h  o p e r a t i o n a l l y  d e f i n e s  the
fun ctions and operations of the device.

The D E V I C E  e x t e n s i o n  to SMITE p r o v i d e s  a m e a n s  for  both  c r e a t i n g
n ew d ev ices , an d extending existing devices. Characteristics may
be inherited from previous device s when an extended device is
being defined .

A b s t r a c t i o n  u s in g  d e v i c e s  p r o v i d e s  a method  of d e s c r i b i n g  a
“ b l a c k — b o x ” and i t s  i n t e r n a l  i m p l e m e n t a t i o n .  The user knows
nothi ng of the d ev ice other than the functions it provides , the
inputs it ex pects , an d the outputs it produces. The
implementation of the device knows nothing of its usage except
t he  c o n n e c t i o n  and s i z i n g  s p e c i f i c a t i o n s  p rov i ded  to the d e v i c e
when i t  is i n s t a n t i a t e d .

To illustrate the use of t he  D E V I C E  a b s tr a c t i o n  the  Mark  1
description is rewritten using abstractions to describe
fun ctional boxes within the computer. These boxes are then
c o n n e c t e d  and the necessary control added . To provide the
ex ample the Mark 1 is artificially decomposed into the structure
shown in Figure 1.

Af ter defining this structure , we s pec i f ied the funct ion of ea ch
device used to build the complete computer. After functional
specification , we then specif ied the imp lementat ion of the
d e v i c e s , includi ng internal stora g e , dev ices , and data paths.
One met hod available for specifying the function of a device is
to add a new statement to the language. For example , a new
s t a t e m e n t  is added  by t he  s p e c i f i c a t i o n  of the  PROGR A M — C O U N T E R
d e v i c e :

P R O G R A M — C O U N T E R  : D E V I C E  ( Y : D E V I C E , Z : D E V I C E )  <W> EXTENDS W O R D
{ <— } ;

SPECIFICATION
‘A PROGRAM— COUNTER provides internal storage for the
p r o g r a m  add ress re g ister , and mechanism s to load and
inc rement. ’
USES REGISTER ;
STATEMENT BUMP;

REPRESENTATION
DECLARE Q < 1 :W> REGISTER ;

I M P L E M E N T A T I O N
BUMP: STATEMENT “BUM P A:ID”

WHERE
A: PROGRAM — COUNTER
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I ACCUMULATOR: _________________________

REGISTER

M: MASS-MEMO RY

GET-INSTRUCTION :
INSTRUCTION-FETCHER

~~~GRAM- ER 

_ _ _ _ _

n ..-1 
~~~~~ F—

~~~~~~~ BO~~
1
~~~NsTRUcTIO N - REGISTER]

• 

I 

ALU-OP :
REG ISTER

DEC : DECODER

I 
STOP-OP:
REG I~ fER

STOPPER :
STOP-BOX

Figure 1

Mark 1
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MEANS
Q.A <— Q.A + 1;

BUMP: END STATEMENT;
PROGRAM— COUNTER: END DEVICE;

Tht. program counter increment function is invoked by the
S t a t  em en t

BUM P A ,

w h e r e  A is a P R O G R A M — C O U N T E R .

Device fun ctions returning info rmation are implemented similarly,
as in the MASS—M EMORY device:

MASS—M EMORY : DEVICE (X:DEVICE , Y:DEVICE , Z:DEVICE ) EL] (W>;
SPECIFICATION

‘A MASS—M EM ORY provides mass storag e , assoc iated ports
(mar and mdr) and read/write operations. ’
USES REGISTER , MEMORY ;
STATEMENTS MAR , MDRIN ;
PRIM ITIVE MDROUT ;
OPERATORS READ , WRITE ;

REPRESENTATION
D E C L A R E

MEM [0:L—1 ] <1 :W> M E M O R Y ,
MDR< 1 :W> REGISTER ,
MAR < 1 : W I D T H ( L ) >  R E G I S T E R ;

IMPLEMENTATION
OPERATOR READ

OPERAND A: MASS—M EMORY;
RESULT VALUE : WORD ;

VALUE <— MDR.A <— M E M [ M A R . A ) . A ;
OPERATOR WRITE

OPERAND A: MASS—M EMORY;
RESULT VALUE : W O R D ;

VALUE <— M E M [ M A R . A ) . A  < — M D R . A ;
M A R :  STATEMENT “ M A R  A : I D  <— B : E X P R E S S I O N ”

WHERE
A: MASS—MEMORY ;

MEANS
MAR.A <— B;

MAR: END STATEMENT ;
MDROUT : PRIMITIVE “MDR OUT A:ID”

WHERE
A:  MASS —M E M O R Y ;

R E T U R N S
VALUE : WORD< 1:W.A);

MEANS
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VALUE <— MDR.A ;
MDROUT : END PRIMITIVE ;

MDRIN: STATEMENT “MDRIN A :ID <— B:EXPRESSION”
WHERE

A: MASS-MEM ORY;
ME A NS

MDR.A <— B;
MDRIN : END MACRO ;

MASS—M EMORY: END DEVICE;

The fetch of data from the memory data register after a read
opera tion is d ef ined as t he pr i m i t i v e  MDROUT , allow ing the result
of th is function to be used as a part of a more complex
operation.

New operators m ay also be defined for devices , suc h as in the
I N S T R U C T I O N — R E G I S T E R  d e v i c e :

INSTRUCTION—REGISTER: DEVICE (V:DEVICE , X:DEVICE , Y:DEV ICE ,
Z:DEVICE ) <W> EXTENDS WORD I <— };

SPECIFICATION
‘An INSTRUCTION—REGISTER provides local storag e for the
current instruct ion , as well as the means for loadi ng
and fetching various sub— fields. ’
USES REGISTER;
O P E R A T O R S  A D D R E S S — F I E L D , OP—CODE ;

REPRESENTATION
D E C L A R E

IR< 1 :W> REGISTER ,
OP—CODE <0:2> DEFINED IR < 1:3> ,
ADDRESS < 1 :W— 3> DEFINED IR<4:W>;

IMPLEMENTATION
OPERATOR ADDRESS—FIELD

OPERANDS A: INSTRUCTION—REGISTER ;
RESULT VALUE : WORD ;

VALUE <- ADDRESS .A ;
OPERATOR OP—CODE

OPERANDS A: INSTRUCTION—REGISTER;
OPERATORS VALUE : WORD;

VALUE <— OP—CODE.A ;
INSTRUCTION—REGISTER: END DEVICE;

The unary operator ADDRESS—FIELD accepts an INSTRUCTION—REGISTER
type operand , an d returns one of its sub— fields as the result.

In general , new operators are defined for unary and binary
funct ions that retur n one value . New pr imitives are defined for
funct ions that have more than two operands and return only one
value . Statements are created for functions do not fall in the
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previous two categories. The distinction between pr imitives (or
operators) and statements is similar to the distinction between
funct ions and subroutines in conventional prog ramming languages.
Statements are invoked only for their effect; primitives may have
s id e effe cts , but also retur n a value.

A D E V I C E  a b s t r a c t i o n  de s c r i b e s  the  f u n c t i o n s  of the d e v i c e .
DEVICES are cre ated by declarat ion of the d ev ice with all the
necessary parameters supplied . More than one instance of a
d ev ice ma y be d ec lare d . For exam p le:

DECLARE
PCO (A ,-B) <5> PROGR AM—COUNTER ,
PCi (A ,B) <25> PROGRAM— COUNTER ,
PC2 (A ,B) <16> PROGRAM— COUNTER ,
MEMO (C ,D,E) [1024] <60> MASS—M EMORY ,
MEM 1 (C ,D,E) [1638)4] <8> MASS—MEMORY ;

One of the ad vanta ges of ab stra c t ion is that a dev ice need only
be specified once. Specific characteristics of the devic e may be
left unspec i fied throug h the use of parame ters until an instance
of the  d e v i c e  is dec l a r ed . The use of p a r a m e t e r s  to pe rmi t  the
s p e c i f i c a t i o n  of d e v i c e  c o n n e c t i o n s  at d e c l a r a t i o n  t i m e  is
i l l u s t r a t e d  by the  d e s c r i p t i o n  of the DECODER device:

DECODER: DEVICE (JM P:JUMP— BOX , ALU:REGISTER , STOP:REGISTER ,
IR :INSTRUCTION—REGISTER) ;

S P E C I F I C A T I O N
‘The instruc t ion DECODER d ev ice d ecodes the pr imary Mark
1 op— code into secondary op— codes suitable, for execution
by each of’ the functional boxes. A DECODE R expec t s  to
be connecte d d irectly into a jump box , op—code registers
for alu box and stop box , and to an instruction
register. ’
STATEMENT ENA BLE ;

I M P L E M E N T A T I O N
ENA BLE:  STATEMENT “ENABLE A : I D ”

WHERE
A: DECODER ;

MEANS
J M P — O P C O D E  <— 0;
ALU <— 0;
STOP <— 0;
CASE OP—CODE IR;

“J M P ”  JMP—OPCOD~ <— 1;

“ R J M P ”  J M P — O P C O D E  <— 2;
“LDA” ALU <— 1 ;
“STA” ALU <— 2;
“SUB” ALU <— 3;
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“SUB” ALU <— 3;
“SKP” JMP—OPCODE <— 3;
“HLT” STOP <— 1;
END CASE;

DECODE:END STATEMENT;
DECODER: END DEVICE;

The DECODER abstraction only specifies that the device is to be
connected to dev ices of type s JUMP—BOX and REGISTER , and not
wh ich devices. The declaration of the device serves to
instantiate a DECODE R and connect it to other devices.

Since the DEVICE abstraction only specifies the types of the
connecting devices , the specification retains flexibility in the
interconnection of devices. Frequently used devices need be
def ined and ver i f ied only once , and may be declared and connecte d
in a system as required .

Following are the rest of the devices need ed for a description of
the MAR K1 .

STOP—BOX: DEVICE (OP: REGISTER);
SPECIFICATION

‘This device halts the computer. The device expects its
op—code to be In an external register , and has two
operations (hal t and no—op). ’
USES EXTERNAL;
STATEMENT ENABLE;

IMPLEMENTATION
ENA BLE : STATEMENT “ENABLE A:ID” ;

WHERE
A: STOP—BOX;

MEANS
DECLARE

STOP EXTERNAL ;
CASE OP .A ;

“NO—OP” NULL;
“HALT” STOP;
END CASE;

STOP: END STATEMENT;
STOP—BOX: END DEVICE;

ALU—BOX: DEVICE (OP:REGISTER , IR:INSTRUCTION—REGISTER ,
ANYM EM:MASS—M EM OR Y, ACC:REGISTER ) <W>;

SPECIFICATION
‘This device is an a].u functional box with the 44
funct ions no— op, load accumulato r , store accumulator ,
and subtract. The device expects its op—code to be in an
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external register. Access to a memory and instruction
reg ister are need ed , as is an external accumulator. ’
USES REGISTER;

• O P E R A T O R  E N A B L E ;
IMPLEMENTATION

OPERATOR ENA BLE
OPERANDS A :ALU— BOX ;
RESULT VALUE :WORD;

CASE O P . A ;  
-

“NO—OP ” VALUE <— U N D E F I N E D ;
“LDA ” V -ALUE <— ACC.A  <— F E T C H — O P E R A N D ;
“STA” STORE—OPERAND (VALUE <— ACC .A );
“SUB” VALUE <— ACC.A <— ACC.A — FETCH—OPERAND;

FETCH—OPERAND: PROCESSOR< 1 :W>;
MAR ANYMEM <- ADDRESS—FIELD IR;
R E A D  ANYM EM ;
F E T C H — O P E R A N D  <— MDROUT ANY H EM ;
FETCH—OPERAND: END;

S T O R E — O P E R A N D  P R O C E S S O R ( I N ) ;
DECLARE

- IN < 1 :W> REGISTER;
MAR ANYMEM < — A D D R E S S — F I E L D  I R ;
M D R I N  A N Y M E M  <— I N ;
W R I T E  A N Y M E M ;
S T O R E — O P E R A N D :  E N D ;

ALU—BOX: END;

JUMP-BOX:  DEVICE (P C : P R O G R A M - C O UN T E R , I R : I N S T R U C T I O N — R E G I S T E R ,
ANYMEM:MASS—M EMORY , AC C:REGISTER , Z:DEVICE );

SPECIF ICATION
‘This  d e v i c e  p r o v i d e s  a j u m p  f u n c t i o n a l  box w i t h  44
f u n c t i o n s  ( n o — o p ,  j u m p ,  r e l a t i v e  j u m p ,  and s k i p  if
negative) . The d ev ice expe cts to be connecte d to a
prog ram coun ter , instruct ion reg ister , and mass memory.
It has its own internal op—code register and provides
the outsid e world a method of loading it. This device
also expects to be connected to an external register
used as an accumulator. ’
USES R E G I S T E R ;
S T A T E M E N T  ENA BLE , J M P — O P C O D E ;

REPRESENTATION
DECLARE OP <0:1> REGISTER ;

IMPLEMENTATION
E N A B L E :  STATEMENT “ E N A B L E  A : I D ”

W H E R E
A: JUMP— BOX;

MEANS
CASE OP.A ;

“ N O — O P ”  N U L L ;
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“JMP” PC <— FETCH— JUMP;
“RJMP” PC <— PC + FETCH— JUMP;
“ SKP ” IF S E ( A C C . A )  < 0

T H E N  BUMP PC;
END IF;

END CASE;
ENABLE: END STATEMENT;

FETCH— JUMP: PROCESSOR<1 : 13>;
DE CLARE MEM—WORD <1: 32> DATA ,

ADDRESS —MA SK <1:1 3> DEFINED MEM—WORD <20:32>;
MAR ANYMEM <- ADDRESS-FIELD IR;
READ ANYMEM ;
FETCH— JUMP <- MDROUT ANYMEM .ADDRESS—MASK;
FETCH— JUMP: END;

JMP—O PCODE : STATEMENT “JMP—OPCODE <- A:EXPRESSION ”
MEANS

OP <- A;
JMP—OPCODE : END STATEMENT ;

JUMP—BOX: END DEVICE;

INSTRUCTION—FETCHER: DEVICE (PC:PROGR AM— COUNTER ,
IR:INSTRUCT ION—REGISTER , ANYM EM :MASS—M EMORY );

SPE C IFICATION
‘Th is d ev ic e fetches an instruc t ion fr om memory and
p l a c e s  it in the instruction register. It expects to be
connecte d to a pro gram coun ter , instruct ion reg ister ,

• an d memory. ’
STATEMENT ENA BLE;

IMPLEMENTATION
ENABLE: STATEMENT “ENABLE A:ID”

• W H E R E
A: INSTRUCTION— FETCHER

MEANS
DECLARE MEM—WORD < 1:32> DATA ,

I N S T R U C T I O N — M A S K  < 1 : 1 6 >  D E F I N E D  MEM —WORD
< 1:16>;

MAR ANYMEM <— PC;
READ ANYME M ;
IR <- MDR OUT ANYMEM .INSTRUCT ION—MASK ;

ENABLE : END STATEMENT ;
INSTRU CTION— FETCHER: END DEVICE ;

Hav ing spec i fied all t he com ponent d ev ices of t he com puter , we
then instan tiat e an d conne ct them toget her:

DECLARE
PI (JUMPER , GET— INSTRUCTION , DEC , ALUER ) <16>
INSTRUCTION—REGISTER ,
M ( J U M P E R , G E T — I N S T R U C T I O N , A L U E R )  [8192 ]  <32>  M A S S — M E M O R Y ,

I)
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CR (GET—INSTRL ’CTION , JUMPER ) <1 3> PROGRAM—COUNTER;
ACCUM ULATOR <0:31> REGISTER ,
GET— IN STRUCTION (CR , P1 , M) INSTRUCTION— FETCHER ,

• JUMPER (CR , P1 , M , A CCUMULATOR , DEC ) JUMP—BOX ,
ALU— OP< 1 :0> REGISTER ,
ALUER (ALU—O P , P1 , M , A CCUM ULATOR ) <32> ALU—BOX ,
STOP—OP FLAG ,
STOPPE R (STOP-OP) STOP-BOX ,
DEC (JUMPE R , ALU— O P, STOP—OP , P1) DECODER;

The declarations specify the connections as parameters to the
devices. For example , the d eclarat ion of JUMPER indicates that
the device is connected to devices CR , PI , DEC , and M , and has
access to the accumulator.

The complete computer is then described operationally using the
interconnected set of devices:

MAR K 1: PROCESSOR ;
USES

INSTRU CTION—REGISTER , MASS—M EMORY , PROGRAM— COUNTER ,
INSTRU CTION—FETCHER , JUMP— BOX , REGISTER , ALU— BOX ,
FLAG , STOP—BOX , DECODER;

DECLARE
P1 (JUMPER , GET— INSTRUCTION , DEC , ALUER ) <16>
INSTRUCTION—REGISTER ,
M (JUMPER , GET—INSTRUCTION , ALUE R ) [8192] <32)

• MASS—MEMORY ,
CR (GET—INSTRUCTION , JUMPER ) <13> PROGRAM— COUNTER ;
ACCUM ULAT OR <0: 31> REGISTER ,
GET—INSTRUCTION (CR , P1 , M) INSTRUCT ION—FETCHER ,
JUMPER (CR , P1 , M , ACCUM ULATOR , DEC) JUMP— BOX ,
ALU— OP< 1 :0> REGISTER ,
ALUER (ALU—OP , P1 , M , ACCUM ULATOR ) <32> ALU— BOX ,
STOP—O P FLAG ,
STOPPER(STOP—OP) STOP-BOX ,
DEC (JUMPER , ALU—OP , STOP—O P, PI) DECODER ;

• DO FOREVER ;
BEGIN;

ENABLE GET— INSTRUCTION;
ENABLE DEC;
PARALLEL— BEGIN;

ENABLE JUMPER;
ENABLE ALUER;• ENABLE STOPPER;
PARALLEL —E ND;

B UMP CR ;
END;

MARK 1 : END;
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The d es cr ip t ion of the Mar k 1 i tself con tai ns only the top layer
of’ abstraction which , coupled with the functional ity of each
device , provides a functional description of the computer. The
d e s c r i p t i o n  c o n ta i n s  the inter—component connection schem e and
the invocations for control functions.

The nex t lowe r level of abstraction provides the complete
d esc r ipti on of eac h dev ice.  These lower level descr ipt ions
contain the input/output specification and concrete
implementation of each device. Anoth er , lower level of
abstraction could conceptually be added , in which the ac tual
h a r d w a r e  it ems (ch ips , tr ansistors , etc.) are used to build the
pr imitive components of’ the computer.
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3.0 Syntax and Semantics

This section contains the detailed syntax and semantics of the
c o n s t r u c t s  n e c e s s a r y  to i m p l e me n t  the  SMITE e x t e n s i b i l i t y  f e a t u r e s
discussed in this report and is organized as follows :

1. O v e r a l l  extensibility description (Section 3.0)

2. DEVICE d e s c r i p t i o n  ( Sec t ion  3 . 1 )

3. S y n t a x  Macro  d e s c r i p t i o n  ( Sec t i on  3 . 2)

24~ Direc t co d e d escr ip t ion (Se ct ion 3 .3 )

5. Descr iption of additional constructs needed to implement the
extensi bility features (Section 3.44)

The ma jor vehicle of extensibility within SMITE will be the DEVICE.
• Th is mechan i sm is b ase d on a s implified vers ion of the Ai phard

“fo rm ” and cons i s t s  of the  fo l lowi ng four  sec t i ons :

1. Header

2. Specification

3. Re p resent at ion

4 4 .  I m p l e m e n t a t i o n

The DEVICE c a p a b i l i t y  is used to d e f i n e  a new SMITE data type . Two
constructs are provided to support functions which operate upo n the
new type: operator and syntax macro. The operator construc t can be
used to define new binary and unary operations on the type . The
com piler automatically provides the mechanism to extend the syntax
it r e c o g n i z e s  to i m p l e m e n t  t h i s  c o n s t r u c t .  If fu n c t i o n s  o t h e r  t h a n
t h i s  c a p a b i l i t y  s u p p o r t s  a re  need ed , s y n t a x  macros  m a y  be used .
Syntax macros allow user definition of new compiler legal syntax
which significantly increases the flexibility of the definition of
fun ctions to support the new types.
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To e f f ici ently imp lement areas of common cod e or pro vid e modular ity ,
helper processors may be used by either syntax macros or operators.
Hel per processors cannot be accessed outside of the DEVICE; however ,
they may be indirectly used through syntax macros. Helper
process ors are id entical to bas ic SM ITE processors wi th the
follow ing exce pt ions:

1. They can have the optional inline/closed specification. If
neither is specified , the compi ler d ec id es how they are to be
implemented .

2. Helpe r processors are cons idered  to be w i t h i n  the scope of
the DEVICE for context pur poses , but cannot refe r e ither to data
in the representation section or parameters into the DEVICE. If
a n y  of ’ these  i tem s a r e  needed  t h e y  m u s t  be passed as parameters
into the helper processors.

3. Direct code blocks may appear within a helper processor.

4. The declaration part can contain a DEFAULT d e c l a r a t i o n .

5. Helper processors may not be nested .

Syntax macros , helper processors and operators are separate and
a u t o n o m o u s  e n t i t i e s  within the implementation section. Operators or
syntax m acros defined within a DEVICE cannot be used by any
operator , s yntax ma cro , or hel per processo r within the same DEVICE.
This is consistent with the notion of DEVICEs in that the outside
worl d knows only the abstracted operators and syntax macros passed
out , and the DEVICE knows only of it s i n t e r n a l  w o r k i n g s  and
parameters and operands passed in.

The ex pansion of operators and syntax macros at compile time is
based on an optional inline/closed indicator. If the  i n d i c a t o r  does
not a ppear , the c o m p l i e r  m a k e s  a dec i s ion  as how to ex pand the
e n t i t y .  No m a t t e r  how they are actually expanded (inline or closed)
t h e y  a re  t r e a t e d  l i ke  closed e n t i t i e s , and a l l  p a r a m e t e r s  a re  passed
e i t h e r  CBV or CBVR .

O p e r a t o r s  and  s y n t a x  m a c r o s  are within the scope of the containing
D E V I C E  and  m a y  r e f e r  to any d a t a  in the  r e p r e s e n t a t i o n  s ec t ion
a n d / o r  a n y  f o r m a l  p a r a m e t e r s  of t he  D E V I C E .  S ince  an o p e r a t o r  or
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syntax macro may have more than one instance of the DEVICE as
parameters , there need s to be a method of qualifying representation
sec t ion  d a t a  i tem s and fo rmal p a r a m e t e r s .  The problem can be seen
in the following exam p le:

INTEGER :DEVICE<W> ;

REPRESENTATION
DECLARE 1< 1 :W>REGISTER;

IMPLEMENTATION
OPERATOR +

OPERANDS A: INTEGER ,B:INTEGER;
RESULT C:INTEGER;

If th e operator + is to add the two operand s A and B together a
metho d of specifyi ng the concrete data representations of A and B is
needed . This is because the implementation section can only
man ipulate the concrete data , and not the abstract  data ty pe
INTEGER. The metho d of specification is to qualify the concrete data
with a post—qualifier consisting of the operand name. For example
the +‘ operator can be coded as:

I.C <— l.A + I .B ;

In the same manner , the value of the fo rmal parameter W can be
referen ced within the operator or syntax macro definition as:

W.A or W.B

This allows referen ce to the value of the parameter for either
instance of INTEGER.

Th is type of qualification is need ed to refe r to any concrete data
r e p r e s e n t a t i o n  of a DEVICE where an amb iguity arises as to wh ich
i n s t a n t i a t i o n  copy of  the concrete data is desired . This ambiguity
can occur where there is more than one parameter of the type of the
DEVICE into either an operator or a syntax macro.

2 2

- - • • ~~
• . -- ~~~~~~~ • .• • • •• • • •  ~~~~~~~~~~~~~~~ • • •~~ ~~~~~ • - •



T here w ill be a ma jor di v is ion between the ex tens ions provided by
the DEVICE capability and the actual computer descriptions written
in SMITE that use the extensions. DEVICEs will be main tained in a
l i b r a r y  to aid in t h i s  d i v i s i o n  and also to remove  the  need of
r e p e t i t i v e l y  coding the sam e extensions. Whenever a description is
compiled the compiler needs to be notified where the library resides
(host computer file). The description itself indicates which of the
DEVICEs are needed from the library by way of the USES statement.
The com piler must also provide the ability to create and maintain
the d ev ice lib rary.

The direct code capability is provided for by allowing its use
w i th in opera tors , syntax macros , an d helper processors. Direct code
is not allowed in the actua l description itself.

3.1 DEVICE

3 .1.1 S e m a n t i c s

1. Header Section

A header is need ed to identify the name of the device , an
opt ional list of param eters for the devi ce , and any
inherited capabilities. The id specified as the device
nam e is the nam e which is use d as a ty pe in declarat ions of
instances of the device. This nam e must be specified in a
USES clause before the new d a ta (dev ice ) type (and an y
o perators , primitives , and statements associated with it)
may be used within a description. This id must not be a
SMITE reserve d wor d pr ior to declarat ion of the d ev ice , and
becomes a SMITE reserved word within the scope of the
d e v i c e  and a n y  d e s c r i p t i o n  c o n t a i n i n g  a USES c l a u s e  n a m i n g
it.

The p a r a m e t e r s  i d e n t i f i e d  in the  d e v i c e  heade r  are  f o r m a l
p a r a m e t e r s , and  m a y  be used t h r o u g h o u t  the  d e v i c e
d e s c r i p t i o n .  T h e y  m u s t  be m a t c h e d  in type  and q u a n t i t y  by
each SMITE declaration using the device nam e as a data
type .

The parameter list surrounded by parentheses is used to
transmit a list of devices to which this devic e is
connected . The elements of this list indicate the internal
nam e and t y p e  of e a c h  d e v i c e  c o n n e c t e d  to t h e  d e v i c e  b e i r ~g
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described . If a legal connection can be made to several
different entities one of the global types , DEVICE or WORD ,
ma y be used as the connection type indicator. The type
WOR D is used for a connect ion to any base SMITE type or a
user defined device extending WOR D, wh ile the type DEVICE
is used for  a c o n n e c t i o n  to any user  de f ined  dev ice .  The
other two types of parameter lists hav e no pre—defined
meanings , and may be used in any way. However , to confo rm
to standard SMITE notation , the parameter list surroun d ed
by wedges should be used to transmit values that have a
w i d t h  c o n n o t a t i o n , and the  p a r a m e t e r  l i s t  su r rounded  by
square brackets should be used to transmit values that hav e
a length connotation.

An exten ds clause specifies inherited capabilities of the
new data type . In this way any new data type may build on
a com patible existing data type and there is not a need for
d u p l i c a t i o n  of f u n c t i o n s  for  the new type  when the
funct ions of’ the existing type will suffice. The source of
the capabilit ies is the ty pe specif ied in the clause . If
no ca pab ilit ies list appears , the new d ata type inherits
all capabilities that exist for the type . If an inclusion
c a p a b i l i t i e s  l i s t  appea r s , only those capabilities listed
are inherited . If an exclusion capabilities list appears ,
only the existing capabilities of the type not listed are
i n h e r i t e d .

At least one data item of the type extend ed must be
dec l a r ed  in the R E P R E S E N T A T I O N  s ec t ion  of the  new d a t a  type
as a concret e data item . This is to insur e that the
i n h e r i t e d  c a p a b i l i t i e s  h a v e  a d a t a  i tem upon w h i c h  t h e y  can
opera te. If more than one data i tem of the ty pe exten d ed
ex ists there is a confusion as to which concrete data item
the inher ited capabilities are to operate on. This
confus ion is solved by preceding the extended type with an
id ent if ier specifyi ng wh ich of the concrete d ata item s is

• to be used with inherited operators. For example:

WIDGET: <W> EXTENDS A:REGISTER (+ , — }

REPRESENTATION
DECLARE A< 1 :W> REGISTER ,

COUNTER<0:7> REGISTER ,

Whenever the in herited operators + or — are used with
o peran d s of WIDGET the con cre te d ata item A will be the
i tem ope ra t ed  u p o n .
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A device trailer must be present to terminate the DEVICE
and it must conta in a label id ent ical to the one in the
corresponding device header.

2. Spec i f icat ion Sect ion

A device description must contain a specification section
wh ich describes the functionality of’ the device , specifying
everyt hing need ed to use the language extensions in the
device , an d ide n t i fy i ng ot her d e v i c e s  em p loye d in the
d e s c r i p t i o n  of the  c u r r e n t  d e v i c e .

The specification contains a required text block that can
b e used as a prose funct ional descr ipt ion of the new d ata
ty pe , and/or the new operators , pr imit ives , and statements.
The prose should includ e complete descriptions of the
ex ternal behav ior of all language extensions in the device ,
and assum ptions or cond it ions tha t mus t hold in using the
ex tensions in SMITE code. The text block may be repl aced
with a formal functional specification of the DEVICE in the
futur e , if the technology becomes available.

There mus t b e a me tho d of indi cat ing wh ich fun ctions
(syntax macros and operators) described within the DEVICE
are used by the outside world. This is accomplished by
em ploying a set of’ lists. Only functions that appear on
these lists may be exported . The operators list identifies
a set of tokens whi c h are opera to rs d es c rib ed in the
DEVICE. The syntax macros list identifies a set of
identifiers which are labels on syntax macros describing
ei ther new statements or new primitives in the DEVICE.

Another list is use d to spec ify all data typ es nee d ed
within the scope of its definition. This list can appear
in the specification section of a DEVICE and before the
ma in processo r in a SMITE program . By using the optional
pseud o r e f e r e n c e  m e c h a n i s m  the user  m a y  g i v e  a d a t a  type  an
additional pseud o name. This pseudo nam e can then be used
an ywhere the data type is desired . For example:

USES F A S T — R E G I S T E R  AS REG ;

DECLARE A <0:15> REG ;

woul d result in the decl ara t ion of d ata i tem A of ty pe
FAST-REGISTER.

• 3. Re p resen tat ion Se cti on
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A re prese nta t ion sect ion is nee d ed to def ine the sta tic
data base used in the implementation of the DEVICE. One
copy of this data base is allocated for each SMITE
declaration of the type described by the DEVICE. The data
d ec lared in the represen tatio n se c tion may be referenced
and manipulated in the descriptions of the new language
ext ensions in the DEVICE. The data declared in this
sec tion are not di re ctly access ib le b y SMITE code outs id e
the device description (or by helper processors described
within the device); this data may be indirectly accessed by
using the language extensions described in the device.

4. Im plementation Section

An implementation section is need ed to contain the concrete
implementations of all operators and Syntax Macros
asso ciated with a DEVICE. These implementations are
realize d through manipulation of operand s and concrete data
desc r i bed  w i t h i n  the  r e p r e s e n t a t i o n  s e c t i o n .  This  sect ion
also c o n t a i n s  a n y  h e l p e r  processors  n e c e s s a r y  fo r  these
implementations.

An operator definition mechanism must be pr ovided for the
definition of new prefix unary and infix binary operators.
These operators will ta ke on the same prece d ence as the
base SMITE unary and binary operators respectively. There
must be a metho d of indicating whether the operator is
implem en t ed as in l i n e  or as closed and if t h i s  i n d i c a t i o n
is m i s s i n g  i t  is to be l e f t  up to the compiler to decide.
In a l l  cases , the  code associa ted  wi th  the  opera to r is
cons idered  a log ica l  e n t i t y  and does not interact w i th any
surroun ding code or data item s except throug h the operands
and resul t mechanism . The operator nam e listed may
redefine an existing operator or create a new one. This
mechan ism also indicates whether the operator is unary or
binary b.y the presence of one or two operands respectively.

Besides indicating typing info rmation for the operator
i m p l e m e n t a t i o n , the  t y p i n g  of o p e r a n d s  a l lows the compi ler
to perfo rm di sc r im inat ion between mult ip le ident ical
opera tors whi c h pe r fo rm di f ferent actions for d i f ferent
operand types. The type(s) of the operand(s) in the actual
operator invocation must be compatible with the types
spec i f i ed  in the  dpe rands  c l ause . For e x a m p l e :

OPERATOR +

OPERANDS A:VECTOR , B:VECTOR
and

O P E R A T O R  +
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OPERANDS A:DE CIMAL ,B:DECIMAL

There is no ambiguity if both + ‘s are avai la b le because the
oper and ty pi ng req ui rements need to be met before the
implementation is actually invoked.

To fur ther aid in implementation discrimination , optionally
fol low ing the operands clause are any num ber of a ttr ib ute
requirements. These are compile time expressions which
mus t all evaluate to boolean TRUE (in addition to the
operand type checking mentioned above) be fore the
implementation is invoked . These compile time expressions
may perfo rm functions suc h as placing restrictions on the
width of either or both operands. If an ambiguity does
r esul t af ter al l di scr im in at ion tes ts  h a v e  b een met  t he
com piler reports an error and attempts recovery.

In addition to describing the attributes of the operands , a
method of indicating the shape and attributes of the result
of the operation must also be provided . The result clause
accom plishes th is fun c tion by list ing a d ata i tem and an y
necessary at tr ib utes.

The operator clause must also contain the actua l code for
the implementat ion of t he opera tor.  The value of t he
operation is “returned ” by storing into the data item named
in the resul t cl aus e somew here w i t hi n the actua l cod e of
the implementation.

3 .1.2 Syntax

<device>
<device —header> <specification —sect ion>
[<representation— section>] <implementation — section>
<device—trailer>

< d e v i c e — h e a d e r )
<device — label> DEVICE [<device—parameter — clause>]
[<extends— clause>] “ ; “

<d e v i c e — l a b e l >
<device—name> “ :“

< d e v i c e — n a m e )  :::
<id>

< d e v i c e — p a r a m e t e r — c l a u s e >  ::~(<type— square> [<type—point>] [<type—paren> ]) /
• (<type—square> [<type—p aren >] [<type—point>]) /
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(<type—point> [<type—square>] [<type—paren>]) /
(<type—point> [<type—paren > ) [<type— square>]) /
(<type—paren> [<type—point>] [<type—square>]) /
(<type—paren> [<type— square>] [<type—point>])

<type— square> :::
“ [“  <element— list> “ ] “

<element—l ist> :::
< e l e m e n t >  t ” , ” <element>]*

< e l e m e n t >  ::~
< i d >  1” : ” <id>]

< t y p e — p o i n t >  :::
“ < “  < e l e m e n t — l i s t >  “> “

<type—paren>
“(“ <typed— id— list> “)“

<typed — id— list>
<typed—id> [‘I

,
” <typed_ id> )*

<typed— id> ::~
<id> [<type—square> ] [<type—point> ] [<type—paren> ] <type >

<type>: : =
“ : “ <type—name> [<capability—list>]

<ty pe—name>: :=
< b a s e — s m i t e — t y p e >  / < d e v i c e — n a m e >  / <pseudo—name> / WORD /
DEVICE

<pseudo—name>
<id>

< c a p a b i l i t y — l i s t > :  :=
“ C ”  C <exclusion> / < i n c l u s i o n >  ) “ } “

<exclus ion> :::
ALLBUT <capability — string>

< c a p a b i l i t y — s t r i n g >  : : =
< c a p a b i ’  i t y — n a m e >  C “ ,“ < c a p a b i l i t y — n a m e > ] ’

<capability—name>:: :
• < o p e r a t o r — n a m e >

< i n c l u s i o n >  : ::

2 
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< c ap a b i l  i t y — s t r i n g >

<exten ds—clause>
EXTENDS <typed— id> [(capabilities—list> ]

<specification—section> ::=
SPECIFICATION <text—block>
[<operators—list> /

< s t a t e m e n t — m a c r o s — l i s t >  /
< p r i m i t i v e — m a c r o s — l i s t >  /
< u s e s — l i s t >  1’

< t e x t — b l o c k >
<an y—legal—character — except ‘>

< o p e r a t o r s — l i s t >
(OPERATOR / OPERA TORS ) [ IS / ARE 3 < o p e r a t o r — n a m e >  C ” , ”
< o p e r a t o r _ n a m e ] * .

< o p e r a t o r — n a m e >  :
< o l d — o p e r a t o r >  / < n e w — t o k e n >

<old — operator >
< b i n a r y o p >  / < u n a r y o p >

( n e w — t o k e n >
any str ing cons ist ing of legal token charac ters that is not
an old token

< s t a t e m e n t — m a c r o s — l i s t >  :::
STATEMENT / STATEMENTS ) [ IS / ARE 3 <macro—name> C ” , ”

<m a c r o ~ n a m e > ] *

<ma cro—name> ::=
( i d >

< p r i m i t i v e — m a c r o s — l i s t >  : : =
C PRIMITIVE / PRIMITIVE S ) [ IS / ARE 3 <macro—name> C ” , ”
(ma cro—name>] ’ “ ; “

< u s e s — l i s t >  :::
USES <uses—element> [ “ ,

“ <uses~ elemen t>)’ “ ;
_
“

<use s— element> ::~<base— smite— type> /
< device— name> /
< pseudo—reference>

< pseudo— reference>
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<pseudo—name> AS (<device—name> / <base— smite— type>)

< r ep r e s e n t a t i o n — s e c t i o n >  : : =
REPRESENTATION [<extend ed— decdrive r> ] *

< ex t e n d e d — d e c d r i v e r >  : :=
[ D E C L A R E  < e x t e n d e d — d e c p h r a s e >

C “ ,“ <extend ed~ decphrase>J* “ ; t ’ 3 *

<exte nded— decp hrase> :::
<decphrase> / <temporary —declaration>

<implementation— section> :::
IMPLEMENTATION [< o p _ d e f_ s t a t e m e n t > J *  [<operator—definition>
/ < s y n t a x — m a c r o — d e f i n i t i o n >  / <helper—processor> )’

<operator -definition> :::
[ I N L I N E  / CLOSED 1 OPERATOR <operator—name>
<operands—clause> <resul t— clause> <operator—clause>

<operands— clause> ::=
OPERANDS <ty ped— id> [ “ ,

“ <typed— id>]
[<attr ibute—requirement>] ’ “ ; “

<resul t—clause>
RESULT <ty ped-id’)

<operator—clause> :::
<exten ded— decdriver> <operator—body>

<operator—body> :::
[<statement> / <direct—code—block> ]+

<hel per—processor> ::=
[ INLINE / CLOSED I <procheader ) <extend ed—decdriver>
<helper— processor— body> <helper—processer—trail er>

<hel per—pr ocessor—body>
[<statement> / <direct— code—block>J+

<hel per—processor—trailer> :
[<label> ] END “ ; “

< device—trailer>
<device—label> C E N D D E V I C E  / END DEVICE ) “ ; “

• 3.2 Syntax Macro
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3 .2 . 1  S e m a n t i c s

A syntax macro is composed of five parts:

1. HEADER clause

2. TEMPLATE c lause

3. WHERE cl au se

14~~ MEANS clause

5. END clause

3.2.1.1 HEADER clause

The HEADER clause contains the label. It must also appear
on the END clause and be identical.

3.2.1.2 TEMPLATE clause

The TEMPLATE clause specifies the syntax of the macro call.
It contains stand alone identifiers and qualified
i d e n t i f i e r s .  The q u a l i f i e d  i d e n t i f i e r s  a r e  fo rmal
p a r a m e t e r s  i n to  the  s y n t a x  m a c r o  and w i l l  be r ep laced  by
t h e  a c t u a l  p a r a m e t e r s  when  c a l l s  to the  s y n t a x  m a c r o  a r e
compi l ed . The p a r a m e t e r s  to a s y n t a x  m a c r o  can  be one of
two s y n t a c t i c  e n t i t i e s :  ID or E X P R E S S I O N .  The fo r m a l
p a r a m e t e r s  a r e  used t h r o u g h o u t  t he  r e s t  of t he  s y n t a x  m a c r o
w h e r e v e r  i n f o r m a t i o n  or a c t i o n  c o n c e r n i n g  the  p a r a m e t e r s  is
need ed .

The s t a n d  a l o n e  i d e n t i f i e r s  a re  e i t h e r  a l read y SMITE
k e y w o r d s  or  t h e y  a r e  added  to the  k e y w o r d s  l i s t .  The

• k e y w o r d s  in the  t e m p l a t e  c l a u s e  m u s t  be such  t h a t  the  m a c r o
c a l l  is u n a m b i g u o u s , when  added  to the  r e s t  of the  s y n t a x .

3 . 2 . 1 . 3  W H E R E  c l a u s e

The WHERE cl au se allows th e s ta t ement of semant ic
requirements levied against the syntax macro parameters.
These r e q u i r e m e n t s  m u s t  be me t  for  the  m a c r o  to be
expanded .

The sem anti c re q ui remen ts can b e b roken into two area s:
type requirements and attribute requirements.

Syntax macro parameter type requirements are stated
in a type requirement statement by listing the
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p a r a m e t e r  in q u e s t i o n  f o l l o w e d  by t h e  type  and an
o p t i o n a l  c a p a b i l i t i e s  l i st .  The c a p a b i l i t i e s  l i s t
can  e x p l i c i t l y  r e q u i r e  c e r t a i n  c a p a b i l i t i e s  to eithe r
be p r e s e n t  fo r  the  a c t u a l  p a r a m e t e r  or s t r i p  awa y
c e r t a in  c a p a b i l i t i e s  of the  a c t u a l  p a r a m e t e r  w i t h i n
the  c o n t e x t  of  t h e  s y n t a x  m a c r o .  U s i n g  t he
capabilities list the user can verify that the
parameters into the syntax macro support the
operations need ed with in the syntax macro. They can
also strip awa y propertie s , such as transfer , so as
to retain the integrity of’ the pa rameter. Using this
type requirement mechanism various syntax macros
consisting of the same keywords can exist and the
type requirements of the parameters can be used to
decide which macro to actually e.xpand for any
specific call.

In addition to the capabilities list , the type
requirement statement al so allows the user to
label the various attributes a data type can have:
square bracket , angle bracket and parenthesized
attributes. This attributes list is optional . If
present , it must correspond to the attributes of
the corresponding actual parameter or a subset of
them . This attribute labeling mechanism allows the

• syntax macro to refe r to the attributes of data
types that are not being created by the specific
form the syntax macro is within.

The attribute requirements consist basically of
compile time expressions. Each requiremen t is an
expression that is evaluated and all must evaluat e to
a true value for the syntax macro to be expa ied .
These compile time expressions are composed of the
normal ex p ress ion en titi es (suc h as bi nar y o pera tors ,
unary operators , constants ).

In addition , th e fun ctions WIDTH , LENGT H, MAX an d
MIN can be used wherever a constant is allowed.
The parameters of MAX and MIN must also be compile
time expressions while the parameters to WIDTH ard
LENGT H can be id en t if iers.  They are al so use d to
“talk about” the various attributes of the s y n t a x
m acro parameters labeled as described above. The
identifiers may need qualification to uniquely
define the data required . A syntax macro
parameter of type EXPRESSION cannot be used as a
parameter to LENGTH. (Note: A data item that was
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not defined with a length attribute has a length
of 0).

3.2.1.4 MEANS clause

The MEANS clause actually describes the “mean ing ” or action
of the syntax mac ro , It is basically a SMITE processor
minus the PROCESSOR statement and declarations for the
parameters. It can have a declaration part and the
declarations are identical to standard SMITE declarations.

The MEANS clause can contain any standard SMITE statement.
In addition , any syntax macro formal parameter typed ID can
appear &nywhere an identifier is legal and any syntax macro
formal parameter typed EXPRESSION can appear in any place
an ex p ress ion is legal.

When macro expans ion occurs , as perm i t te d by the TEMP LATE
and WHERE clauses , the formal paramet ers within the macro
body (MEANS clause) are replaced with the actual parameters
and that instance of the macro is then ready for the rest
of the compilation process.

3.2.2 Syntax

<syntax—macro — definition> ::=
<macro—head er— clause> <tempi ate— clause> [<where—clause>]
[<returns—clause> ] <means— clause> <end— clause>

<m acro— header— clause>
<macro—la bel> C INLINE / CLOSED 3 ( STATEMENT / PRIMITIVE )

<ma cro— label>
• <m acro—name> “ : “

<template — clause>
[<template—element> ]+

<t emplate—element> ::=
< token> / < sm—parameter>

< token>
<ol d—token> / <new— token>

<ol d—token> :::
<ol d— operator> / <reserved—word>

<reserve d—word> :
<old—reserved — word> / <new—reserved — word>
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< o l d — r e s e r v e d — w o r d >
AND / BEGIN / CASE / CLOCK / DATA / DEBUG / DECLARE /
DEFA ULT / DEFINED / DO / DOWN / ELSE / END / ENDCASE /
ENDIF / ESCAPE / EXTERNAL / FLAG / FOR / FOREVER / IF / IN
/ LIGHT / MEMORY / MICROSECONDS / MILLISECONDS / MS /
NAN OSECONDS / NOT / NS / NULL / OR / P A R A L L E L - B E G I N  /
PARALLEL-END / PORT / PROCESSOR / REGISTER / S / SE /
SECOND S / SLA / SLC / SLL / SRA / SRC / SRL / STEP / SWITCH
/ THEN / TO / UNTIL / UP / US / WHILE

<new—reserved—word>
<n ew—dev ice—reserv ed—word> / <new— sm— reserved —word>

<ne w—device—reserved—word>
ALLBUT / ARE / AS / DEVICE / DEVICES / ENDDEVICE / EXTENDS
/ IMPLEMENTATI ON / IS / OPERANDS / OPERATOR / OPERATORS /
REPRESENTATION / RESULT / SPECIFICATION t USES / WITHIN /
WORD

<new— sm—r eserved—word> :
CLOSED / COPY / DECODE / DIRECT / ENDPR IMITIVE /
ENDSTATEMENT / EXPRE SSION / ID / INLINE / LENGT H / MAX /

• MEANS / MIN / OPDEF / PRIMITIVE / RETURNS / SMITE /
STATEMENT / TEM PORARY / WHERE / WIDTH

<sm— parameter>
<id> “ :“ <typer>

• < typer> :::
ID / EXPRESSI ON

< w h e r e — c l a u s e >  : : =
WHERE <where— list> “ ; “

<w here—list> ::=
<where— statement> C” ,” <where—statement>] ’

< w h e r e — s t a t e m e n t >
< s e m a n t i c —  r e q u i r e m e n t s >

< s e m a n t i c — r e q u i r e m e n t s >  :::
• < t y p e d — i d >  / < a t t r i b u t e — r e q u i r e m e n t >

• < a t t r i b u t e — r e q u i r e m e n t >
<compile — time—ex pression>

< r e t u r n s — c l a u s e >  :
• RETURNS < typed— id> “ ; “
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<means— clause>
ME~ NS <extended — decdriver> <means—body>

<means—body> ::=
[<sm—stat ement>]+

<sm—s tatement>
< s t a t e m e n t >  / < d i r e c t — c o d e — b l o c k >

<e n d — c l a u s e >  : : =
<m acro—label> ( END ( STATEMENT / PRIMITIVE ) /
ENDSTATEMENT / ENDPRIMIT IVE ) “ ; “

3 .3  Direct Code

3 .3 .1 Semantics

A method is needed to declare a SMITE variable used to
commun icate between SM ITE cod e and direct code. This is
achieved through the use of the TEMPORARY data type . A
TEMPORARY declaration designates that the declared identifier
is to be maintained in 1 , 2, or )4 QM registers (depending on
declared width) throughout the scope of its declaration The
expression indicating the width (in bits) must evaluate to one
of the following numbers: 18, 36 , 72. The optional ability to
declare which specific QM registers to actually u~ e is
provided . If the register designation does not appear the
com piler selects an available local store register (s). The
expression used to indicate the specific QM register (s) must
evalua te to a number between 0 and 31 , inc lus iv e .

Alt hough id ent if iers of type TEMPORARY may be use d like ot her
d ec lare d id ent i f iers in SMITE sta temen ts , they are the only
SMITE identifiers that may be referenced in direct code , where
they may appear as register designators in microcode
instructions. It will appear to the user that the QM
register(s) associated with a TEMPORARY identifier is not used
in the generation of compiled code within the scope of the
TEMPORARY d ec lara tion , other t ha n for  r e f e r e n ces to the
TEMPORARY identifier. However the com p i ler has the op t ion of
us ing tem porary s tora g e i f  the  r e g i s t e r( s )  is nee d ed for other
p u r p o s e s .

A method is need ed to notify the compiler of new
microinstructior i s to be used in direct code. This is
a c c o m p l i s h e d  by u s i n g  an OPDEF s t a t e m e n t  w h i c h  i n f o rm s the
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SMITE compiler of the format of new microinstructions that are
to be used in direct code and that have been separately
entere d into t he QM syst em.

For each new mic roinstruction the following info rmation is
needed :

1. The instruction mnemonic which is used within the
direct code.

2. The instruction op code which indicates where the
instruction resides within the MULTI instruction set.

3. The instruction format type which indicates to the
compiler how to assemble the instruction by indicating the
type and number of operands.

Alternatively, the info rmation needed to define a new
microinstruction may be obtained from a text file maintained
in the host file system . This file is named by the sys tem
fi le  nam e of a copy c l a u s e , and is expected to contain the
imag e of any num b er of o p d el s tatemen ts.

A direct code block is assumed to be a reducible single— entry,
single— exit “nod e” . Labels declared in micro instruction
statements are known only in the containing direct code block.
SMITE identifiers of type TEMPORAR Y are the only SMITE
identifiers that may be referenced in microir istructions , and
they may appear anywhere a register is valid in an
instruction. Also , a compile time constant may be used in a
direct code block anywhere a constant is valid as an operand
in a microinstruction.

Because of’ the difficulty of determining the effect of direct
co d e ref e rences to ab solute and relat ive add resses , the SMITE
com piler maintains no set/use info rmation over a direct code
block , ex cept for SMITE statemen ts inters perse d w i th in the
direct code block.

A m icroinstruction is a member of the subset of MULTI
m ic roco d e in s t r u c t ions , a s augmente d by the new m icro cod e
instruc tions introduced by o p d ef statemen ts known wi th in the
scope of the direct code block. TEM PORARY references may he
involved in compile tim e expressions for reference to
TEMPORARY declarations need ing more than one register , in
which c a se t he TEMPORARY re ference in di rect co d e d es ig na tes
the first assigned register. For example:

• DEC A TEMPORARY< 36>;
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LDMSX A , .. . ; references the first register allocated to
A
LDM S A÷ 1 , . ..  ; r e f e r e n ce s  the second r e g i s t e r .

A metho d of inters pers ing SM ITE st a tements withi n a d i rec t
code block is provided . Direct code labels are known around
the interspersed SMITE statements in one direct code block.
Across these SM ITE statements , t he  com pi ler  gu a r a n te e s
preserva ti on of only those QM re gi sters asso c iate d w i th
TEMPORARY identifiers.

As an alternative decoding method to the CASE statement the
DEC ODE statement is pr ovided . The pr imary differences are
t ha t th e widt h of t he selector ex p ress ion d oes no t d eterm ine
the num ber of sele ct ed sta tement s, an d that the user
determines the metho d of decoding by providing the decode
algorithm in nanocode which is separately load ed into the ~Ms ystem .

When the compiler detects a DECODE statement , t he  fo l l ow i ng• act ions occur :

1. generate code to evaluate the expression (selector);

2. ver i fy th at t he num ber of statemen ts b etwe en DECODE and
END DECODE (selected statements) is equal to the decode
length (if present) ;

3. com pi le all sele c ted sta tements wi th a tr ansfer to a
common collecting point (statement after END DECODE ) at the
end of each ;

~I . generat e an add ress ta b le w it h an entry that po ints to
t he begi nn ing of the com pi led co d e for ea ch selec te d
statemen t;

5. enco de the MULTI instruction DECODE and indicate the
locat ion of the value of the selector and the begi nning of
the statemen t table by operands to the instruction.

it is up to the user to actually write the nanocode for MULTI
instru ction DECODE to decode the selector and transfer to one
of the selected statements indicated in the statement table.
Thi s nano code coul d also prov id e addi t ional actions such as
instruction fetch for the described machine.

The following actions occur when the DECODE statement is
e x e c u t e d :
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1. evaluate selector ;

2. execute the MULTI instruction DECODE .

The actual op code value of the DECODE instruction is TBD.

The DECODE statement generates a context block and may be
labeled . If labeled , both labels of the decode— statement

• syntax must appear and be identical .

3.3.2 Syntax

<temporary — declaration> : : :
<id > TEMPORARY <temporary —width>
[<tempor ary—defined—phrase> ]

<temporary —width>
“<“ <compile — time— ex pression ) “>“

<temporary — defined — phrase> ::=
DE F I N E D  < q m — r e g i s t e r — d e s i g n a t o r >

<qm— register — de sjgnat or> ::=
<co m p i l e — t i m e — e x p r e s s i o n >

<op—de l— statement> : : :
OPDEF <op—def— clause> C ” ,” <op_ dPf_ cla use> J * “ ; ‘!

<op—de l— clause> :::
<new—multi — instruction — clause>
/ <copy — clause>

<new—multi — instruction — clause> : : :
<instruc tion—mnemoni c> <instruction — op— code>
<instruction — format — type>

<instruction —mnemonic> : : :
< I d >

<instruction — op— code>
<compile — time— expression>

<instruction — format— type> :::
a SMITE assembler instruction type

<copy— clause> :::
COPY <system — file— name>

• <system — file— name> : : :
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a host operating system file nam e

<direct — code—block>
DIRECT “ ; “ <dir ect— statement — list> SMITE “ ; “

<direct — statement — list>
[<direct—statement> 1+

<direct — statement> ::~<micro— instruction> / <direct—smite—statement>

<m icro— in3truct ion> ::=
[<label> ] <micro— operator> <micro—operand—list>
<mic ro—com m e n t >  “ ; “

<micro—operator> :::
<Id>

<micro — operand — list> :::
< m i c r o — o p e r a n d >  C “ ,“ < m i c r o — o p e r a n d > ] ’

<micro— operand>
< i d >  / < c o m p i l e — t i m e — e x p r e s s i o n >

<micro— comment>
[<token>]’

<direct — smite— statement> :::
“II” <statement>

<decode— statement )
[<decode—length> ] <expression> “ ; “
[<statement> / <nulistate rnent> ]’
[<label> ] (END DECODE/ENDDECODE ) “ ; “

<decode — length>
“ [“ <number> “]“

3.4 Additional Changes

Following are the changes to SMITE necessary to implement the
extension features described in previous paragraphs:

1. The SMITE program structure need s to be redefined . An y
number of uses lists may appear before the main processo r to
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indic ate  whi c h D E V I C E S  f r o m the  D E V I C E  library the descr iption
will use.

<smite —program> :::
[<uses—list> ] * <processor>

2. The addition of compile time expressions. Compile time
expressions are identical to SM ITE expressions , with the
exception that they are evaluated at compile ti~ne using 2’s
ccmp le~iient arithmetic and can be used wherever a constant is
allowed . LENGT H , WIDTH , MIN , and MAX are compile time functions
that are a part of’ the compile time expression mechanism . The
resul t of the MAX(MIN) function is the maximum(minimum ) value of
t he  parameters , which must be compile time expressions. The
r e s u l t of  t he LENGT H (W I D T H ) f u n c tion is the  l en g t h ( w i d t h )
attribute of the parameter which must be an identifier declared
as a data item . A data item that was not defined with a length
attribute has an i m p l i e d  l e n g t h  of ’ zero and can be used as a
parameter to LENGTH. Additionally an expression , which has an
i m p i i e d  w i d t h , m a y  be t he  parameter to WIDTH.

< c o n s t a n t >  :
< o c r n p t l e — t i m e — c x  p r e s s  i on>

<c om pile — time — ex pression>
< com pi le— t im e— te rm > [<bi naryo p> <compile — time— expression> ]

<compile — time — term>
[<unaryop > ] <com pile — time — factor>

< c o m p i l e — t i m e — f a c t o r >  :
<compile — time —primitive> [ “1/” <compile — time— factor>)

<compile — time — primitive> :::
<compile—time — constant> /
“ (“ <com pile— time— ex pression> “)“

<compile — time— constant> ::=
<w idth> / <m m > / <max> / <number> / < l e n g t h >

<width> :::
WIDT H “C ” <qual — id> “ ) “

<length>
LENGT H “ ( “  < q u a l — i d >  “ ) “

<m m > :::
M I N  “ ( “  < p a r a m — l i s t >  “ ) “
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<max> : : :
MAX “ ( “  < p a r a m — l i s t >  “ ) “

<param — list> : : :
<co m p i l e — t i m e — e x p r e s s i o n >  C ” , ” <co m p i l e — t i m e — e x p r e s s i o n > ] ’

3. A SMITE statement can now be any statement plus any new user
defined statement. The statement macro reference cannot have a
label ; i.e., a new statement cannot define a context block .

<statement> ::=
[< l a b e l > ]  < con t e x t s t a t e m e n t >  /
<notcontext statement> “ ; “ /
<statement—macro—reference> “ ; “

< s t a t e m en t — m a c r o — r e f e r e n c e >  : : =
any reference to a new statement defined by using the
Syntax Macro mechanism

4. A SMITE pr imitive can now be any primit ive , any new user
defined primitive , or a compile — time— expression.

<primitive>
<compile — time— expression> /
<id pr imitive> /

“C” <expression> “)“ [<extract>] /
<pr imitive —macro — reference>

<primitive—macro—reference>
any reference to a new primitive defined by using the
Syntax Macro mechanism

5. The D E V I C E  e x t e n s i o n  adds  t h r ee  new a t t r i b u t e s  to a d a t a  type
which are parameters into the DEVICE. These pa rameters are used
to provide sizing and connection info rmation to the device. To
allow declarations to specify the a t t r i b u t e s  or p a r a m e t e r s , the
following changes are made to the syntactic entity decphra se .
The syntax for declaring new data types is slightly different
t han  t h a t  for  declaring base SMITE d a t a  types. The
length— declaration is still present to allow the user to declare
arrays of new data item s but following that are two of the
optional parameter type s into a DEVICE , paren —param and
point—param (in either order). These two optional parameter types
are followed by the new data type nam e (new—type ) and the
optional square—param . The square—param follows the data type
name to avoid confusion with the length— declaration , wh ich was
left in its original location to provide compatibility with
descript ions written in Version 1 SMITE.
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<decphrase>
<ba se— type — dec lr> / <new — type — dec lr>

<base — type — dec lr>
<id> [<length— declaration>] [<width— declaration>)
[<base— smite— type> / <pseudo —name> ] [<defined—phrase>)

<new— type — dec lr>
<id> [<length— declaration>) [<new—type—parameters>)
[<new—type>] [<square—param>)

<new— type—parameters> : : :
<point—param> [<paren—param>] /
paren —param> [<point—param >)

<point —param> ::~
“ < “  compile — time— expression — list> h,>tt

<compile — time— expressi on— list>
<compile — time— expression> [ “ ,“ <compile —time— expression>) ’

<pare n—para m > ::
“ (“ <id—list> “)“

<id— list> :
< id> C “ ,“ <id>] ’

<square —param>
“ C ”  < c o m p i l e — t i m e — e x p r e s s i o n — l i s t >  “ ) “

< n e w — t y p e >  : : :
<d e v i c e — n a m e >  / < p s e u d o — n a m e >

6. This  r e d e f i n i t i o n  of i d — p r i m i t i v e  is o n l y  a c t i v e  w i t h i n  the
IMPL E M E N T A T I O N  sec t ion  of a D E V I C E .

< i d — p r i m i t i v e >  : : :
<qual—id> [<reference>)

7. A contextstate ment may now also be a DECODE s t a t e m e n t .

<contextstatement>
BEGIN < s e r i a l c o n t e x t >  /
IF <if’stmnt> /
DO <dostmnt> /
CASE <casestmnt> /
IN <instmnt> /
PARALLEL — BEGIN <p a r a l l e l c o n t e x t >  /
DECODE < d e c o d e — s t a t e m e n t >
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4.0 Implementation Implications

Parsing syntax macro definitions and their use presents a problem
for predictiv e parsers — figuring out when to backup could be hard .
The alternative is a reductive parser. An answe r might be a
b o t t o m — u p  reductive parser , wh icr would not be confused by these
constructs. The technology exists on which to base the Advanced
SMITE extensible parser [11 ~ if this approach is taken.

Another possible solution for the parse problem might be a top—down
predictive parser that “carries along ” all possible parses of an
entity in parallel while doing the syntactic analysis. In this way
back up need never be perfo rmed . When a correct parse path is
discovered the rest of the paths are simply “thrown awa y” . One
consequence of this approach is that the syntactic and semantic
processing within the parser must be completely separate (perhaps
only on a statement by statement basis ) .

Further discussion about the parser for extensibility showed that
what is need ed is context — dependency — resolvable syntactic ambiguity,
not the ability to handle truly ambiguous grammars. E.g., parsing

IN <ex p> + <ex p>

as a new syntactic entity is not required .

An ambiguity may be created if a syntax macro is defined using words
that alread y are reserved and no new keywords. Extensions that
cause the language to be ambiguous may be tolerable because the
ambiguous constructs may never be encountered in actual use . Since
there is no way of pre—determining if syntax macro extensions cause
the “new ” language to be ambiguous , the best that can be done is to
find the ambiguity in a specific instance , report it and reject the
entity.

There is a general problem with processing aggregate data types.
Since there can be arrays of DEVICES there is a possibility that
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array specifications ma y be used recursively (the concrete dato
representation may also contain an array ) . If th is is no t  han d le d
properly severe object code inefficiency may result.
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5.0 SMITE A p p l i c a t i o n  Suppor t  S o f t w a r e  R e q u i r e m e n t s

The SMITE Application Support System (SASS) is in many respects a
primitive system . From our experience , it is adequate for the
development , testing , and use of SMITE emulations. Ho wever , it
requires a dedicated user to obtain necessary data fr om the emulator
and perfo rm appropriate conversions and data mappings. Many chores
m u s t b e perfo rmed manually by t he user  wh ich cou ld  be au toma te d i n to
SASS. The f o l l o w i n g  paragraphs d escr ib e l im it a t ions to SASS an d our
proposed solution.

5.1 Statement Level Stepping

During emulator checkout , it is desirable to breakpoint the
emulator at selected SMITE statements and to step through the
SMITE prog ram one statement at a time. The user currently has to
add calls to the external STEP routine to force pr edetermined
breakpoints at SMITE statements. Any additional program steps
must be inserted by examining the microcode produced by the
compiler , and placing a m icrobreak point at the appropriate
location. This is a tedious and error—prone activity, which
presumes the user is familiar with the QM— 1 instruction set and
the SMITE code generation sequences.

This process can be automated by allowing SASS to insert
microbreakpoint s fr om a table generated by the compiler which
maps SMITE statements to emulation addresses. Program stepping
can be perfo rmed by using the same table and verify that no QM— 1
branch instructions occurred for the current SMITE statement.

5.2 Symbol Display and Modify

SMITE variables may be stored in main memory or control store and
may occur as subfields of’ a QM— 1 pair of words . To modify or
display SMITE variables , the ~ser must obtain the QM— 1 address
and bit positions of the variable from the allocation map. For
modification operations , the user must clear the subfield
reserved for the variable , convert the input data , and insert it
into the subfield. For display operations , the user must extract
the subfield and convert it into the appropriate display format.

• This process could be automated in SASS , using the symbol table
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generated by the compiler . For data modification , t he  input data
wo uld contain a format indication (e.g.X’FF’) and SASS would
convert and store the data. For display operations , an input
would be created which added the variable to the state disp lay
and specified its display fo rmat. The symbol table data would
then be used to include the converted symbolic data in the state
display.

5.3 Traps Based on Data Storage

A very valuable debug featur e is the capability of  trapping when
a particular variable is stored into . This is extremely useful

• in determining the conditions which case erroneous emulator
action to occur or errors in the emulator itself.

To accomplish this the compiler must produce a table of addresses
where each variable is changed . From this table , it is easy to
cause the emulator to retur n control to SASS when a variable is
changed or even when the value falls in a specified range.

• 5.4 SASS Library

SASS contains no generalized I/O interface. Each emulated I/O
device must be simulated by a new SMITE external and the existing
I/O simulations are oriented to one specific emulation.

SASS forces the computer description to list all external
statements in a specific sequence or else rewrite the SASS
handler for emulator recal l conditions. A desirable solution is
for SASS to call a routine written in SIMPL—Q existing on a
library which has the sam e nam e as the external (i.e. the SM~~ E
external OPSTEP would be processed by a SASS routine OPS EP).

5.5 User Nanocode

If the emulation requires nanocode for new microinstr uctions used
in direct code or in the DECODE statement , the user must insert
the nanocode on the sys tem cartridge. This obviously limits the
flexibility of the system Since all users must coordinate
nanocode additions. The pr eferred solution is for the user to
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specify his nanocode file on disc and have SASS load it into
nanostore , verifying that it is load ed in free nanostore
locations.
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6 . 0  C o n c l u s i o n s  and A p p l i c a t i o n s

A b s t r a c t i o n  ha s  p r o v e n  to be a p o w e r f u l  co n c e p t  fo r  m o d u l a r i z i n g
software , i m p r o v i n g  t he  c h a r a c t e r i s t i c s  of f l e x i b i l i t y ,
c c n s t r u c t i b i l i t y ,  m a i n t a i n a b i l i t y ,  and r e l i a b i l i t y  i n s o f t w a r e
s y st e m s .  The D E V I C E  a b s t r a c t i o n  c a p a b i l i t y  in  SMITE p r o v i d e s  t h e
s a m e  a b i l i t i e s  w i t h i n  the  h a r d w a r e  d e s c r i p t i o n  l a n g u a g e  d o m a i n .
D E V I C E s  a l l o w  t h e  s e p a r a t i o n  of t h e  c o n c e p ts  o f  f u n c t i o n a l i t y  f r o m
those of implementation within a description. The improved clarity
and precision of description resulting fr om this use of abstraction
technology in hardware descriptions has value in m any areas. Two
examples of the application of the DEVICE abstraction follow:

6. 1 Hardware Security

C o m p u t e r  s e c u r i t y  d e s c r i b e s  t he  t h e o r y  and  p r a c t i c e  of
r e s t r i c t i n g  access  to i n f o r m a t i o n  to p r o p e r l y  a u t h o r i z e d
p e r s o n s  or s y s t e m s .  W o r k  i n  t h e  f i e l d  has  be en  c o n c e r n e d  w i t h
software and p r o c e d u r e s  fo r  a c c o m p l i s h i n g  that mission.
Se c u r e  o p e r a t i o n  of t h e  h a r d w a r e  is t a c i t l y  a s s u m e d . For the
sam e reasons that correctly specified software requires
verification to demonstrate correct implem entation , so does
correctly specified hardware require a similar verification to
demonstrate its correctness.

Hardware verification is extremely diff icult or impossible
with commonly used technology. Correlation of a prose machine
architecture description to boolean equations or to wire lists
i s a  mammoth effort , and provides little assurance that no
hidden effects can compromise security.

A computer description language , when combined with
abstraction concepts , provides a vehicle for partitioning the
verification effort into manageable units , and for
demonstrating equivalence between the hardware and its
specification. A methodology for hardware verification could
be based on the following steps , and could be perfo rmed during
hardware design and developme nt.

1. Partition the computer into devic es. Specify the
function of each device , and describe the register transfe r
implementation of the complete computer using these devices
as components.

2. Verify the register transfe r implementation of the
computer against the formal functional specific ation
assuming correct implement ation of all devices.
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3. Specify the register t r a n s f e r implementation of each
device used to construc t the computer , and verify each
implementation against its corresponding specification.
Further device partitionings may be required ; the
implementation and verification process is repeated until
a l l  devi ces a r e  c o m p l e t e l y  s p e c i f i e d , i m p l e m e n t e d , and
verified .

4. Each register transfer description must now be realized
in hardware. The hardware implementation is dev i sed for
each device , an d is v er i f ied for  eq u iv a l e n ce to the
register transfe r implementation specification.

Once this process is complete , the hardware is known to be
equivalent to the overall computer formal specification.
S o f t w a r e  and p r o c e d u r e s  m a y  now be p r o v e n  to o p e r a t e  c o r r e c t l y
on the  h a r d w a r e  u s i n g  t he  methods developed by Crocker [12].

6 . 2  A u t o m a ti c Im p leme n ta ti o n of Com pi le r  Co d e Gene r a t o r s

Abstract specification is also useful in  t he  a u t o m a t i c
d e v e l o p m e n t  of  c o m p i l e r  code  g e n e r a t o r s .  W o r k  by  Newc omer
[ 13 ]  and F r a s e r  [ 14 ]  has shown t h a t  au to m a te d co d e g e n e r a tor
p r o d u c t i o n  is f e a s i b l e  g i v e n  an u n d e r s t a n d i n g  of t he  m a c h i n e
o p e r a t i o n .  A u t o m a t i o n  of th is un d e r s t a n di n g ,  wh ic h g e n e r a l l y
consists of ’  d e r i v i n g  a set of i n p u t / o u t p u t  r e l a t i o n s  f o r  each
m a c h i n e  i n s t r u c t i o n , is d i f f i c u l t or i m p o s s i b l e  when  the
r e l a t i o n s  m u s t  be d e r i v e d  f r o m  c o n v e n t i o n a l  c o m p u t e r
d e s c r i p t i o n s .  The f o l l o w i n g  e x a m p l e  i l l u s t r a t e s  the  p o i n t .

D E C L A R E
I N T E R — C A R R Y  F L A G ,
C FLAG ,
A < 7 : 0 >  R E G I S T E R ,
B < 7 : 0 >  R E G I S T E R ,
R E S U L T  < 7 : 0 >  R E G I S T E R ;

I N T E R — C A R R Y / / R E S U L T < 3 : O >  <— 0//A<3 :0> + B<3 :0>;
C / / R E S U L T < 7 : 4 >  <— I N T E R — C A R R Y  + 0//A<7: 14> + B < 7 : 4 > ;
IF ( R E S U L T < 3 : 0 >  > 9 )  OR I N T E R — C A R R Y

T H E N  R E S U L T  <— R E S U L T  + 6;
E N D I F ;

IF ( R E S U L T < 7 : 4 >  > 9 )  OR C
T H E N  R E S U L T  <— R E S U L T  + X ’ Ô O ’ ;
E N D I F ;

The example is a specific implementation of a two digit
decimal addition without carry. An automatic code generator
would be required to detec t the particular algorithm as being
decimal addition in order to know the function of the
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instruction , even thoug h that inf Drmat lo r was known to the
hardware designer. A description using abstraction , however ,
allows the designer to express this added info rmation.

D E C I M A L  : D E V I C E  < W )  E X T E N D S  W O R D  I <— , } ;
SPEC I F IC A TI ON

‘This is a dec imal ty p e  e x t e n s i o n  t h a t  p r o v i d e s  fo r
the declaration of uns igned decimals w decimal digits
wide. It also provides add and subtract operations
without carry on decimal types of the same width. ’
OPERATORS + , —

USES REGISTER , FLAG;
R E P R E S E N T A T I O N

D E C L A R E  J <4 ’L : 1> R E G I S T E R ;
IMPLE MENTATION

• O P E R A T O R  +
O P E R A N D S  A , B : D E C I M A L ;
R E S U L T  V A L U E : < W I D T H ( A ) * 1 4 : 1 >  W O R D ;

D E C L A R E  C FLAG , MASK < 4 : 1 >  DATA ;
V A L U E  <— 0 ;
C <— 0 ;
DO FOR 1 TO WIDTH (A );

B E G I N
VALUE < — S L L ( V A L U E , 4 )  O R
A D D ( J  . A .  MAS K , J .  B. MASK , C ) ;
~L A  <— S R C ( J . A , 4 ) ;
J . B <~~~S R C ( J . B , L 4 ) ;
E N D ;

O P E R A T O R  -

O P E R A N D S  A , B : D E C I M A L ;
R E S U L T  V A L U E : < W I D T H ( A ) ’ 4 :  1> W O R D ;

DECLARE C FLAG , MASK < 4 :1> DATA , TEM P <~4 :1>
R E G I S T E R ;
C <— 0 ;
V A L U E  <— 0 ;
DO FOR 1 TO W I D T H ( A ) ;

B E G I N ;
IF J . B  0

T H E N  TEM P < — 0 ;
ELSE TEM P <— B ’ l O l O ’  — J .B .MASK;
E N D I F ;

VALUE <— SLL (RESLJLT ,4) OR ADD( J.A.MASK ,
TEM P , C);
J . A  <— S R C ( J . A , 4 ) ;
J .B  < —  S R C ( J . B , 4 ) ;
E N D :

A D D :  P R O C E S S O R  < 3 : 0 >  ( I N O , I N 1 , C A R R Y ) ;
D E C L A R E  I N O  < 3 : 0 >  R E G I S T E R , I N 1  < 3 : 0 >  R E G I S T E R ,
C A R R Y  F L A G ;
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C A R R Y / / A D D  <— 0//INO + I N 1  + CARRY ;
IF C A R R Y / / A D D  > 9

C A R R Y / / A D D  < — C A R R Y / / A D D  + 6;
EN D I E ;

A D D :  E N D ;
D E C I M A L :  E N D  D E V I C E ;

W i t h  t h e  a b s t r a c t  d e v i c e , d e c i m a l  a d d i t i o n  is d e s c r i b e d  as
f o l l o w s :

D E C L A R E
A < 2 >  D E C I M A L ,
B < 2 >  D E C I M A L ,
R E S U L T < 2 >  D E C I M A L ;

R E S U L T  <— A + B ;

Using this description , t h e  f u n c t iona l it y known to t he
designer is specified , and (once a formally recognizable
s p e c i f i c a t i o n  l a n g u a g e  is i n v e n t e d ) m a y  be used directly by an
automatic code generator. The d e v e l o pm e n t  of a u t o m a t e d co d e
g e n e r a t o r  p r o d u c e r s  is g r e a t l y  s i m p l i f i e d  by e l i m i n a t i o n  of
the need to recreate that knowledge.

In these two applications , a nd in ot he r s  to wh ich  ab str a c t ion
of hardware specification applies , i t is no t  n e c e s s a r y  to
c r e a t e  a c o m p l e t e  new dev ice set f o r  each  description.
I n s t e a d , in  the  sam e way  t h a t  s u b r o u t i n e  l i b r a r i e s  a r e
d e v e l o p e d  and m a i n t a i n e d  in  t he  s o f t w a r e  d o m a i n , d e v i c e
c a t a l o g s  c a r  be created in the hardware domain. Such catalogs
might contain registers and standard ALUs as basic elements.
More complex elements could include associative memories ,
floating point units , CPUs , and complete processors.
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A P P E N D I X  A

W o r k i n g  N o t e s

1 .0  A n a l y s i s  of A l p h a r d  T e c h n o l o g y

T h i s  s e c t i o n  c o n t a i n s  t h e  w o r k i n g  n ot e s  c o m p i l e d  d u r i n g  the s tud y
of t h e  A i p h a r d  ‘ f o r m ’ a n d  i t s  a p p l i c a t i o n  to SMITE . This study
w a s  c o n c e r n e d  w i t h  t h e  f o l l o w i n g  t a s k s :

1 . U n d e r s t a n d  the A i p h a r d  l a n g u a g e  an d  u n d e r l y i n g  c o n c e p t s  in
f u l l  d e t a i l .

2. S u m m a r i z e  f u n d a m e n L a l  c o n c e p t s  and  i d e a s  of A i p h a r d ,
in~~l u d i n g  a n a l y s i s  of a p p l i c a b i l i t y  to S M I T E .

1.1 A n a l y s i s  of Extensibility :ncor~ orating Alphar d Technology

P r e l i m i n a r y  i n v e s t i g a t i o n s  i n t o  t h e  q u e s t i o n  of d e s i g n i n g  the
s y n t a x  and s e m a n t i c s  of th e SMITE l an gu a ge r e v e a l  th a t  a
s t r o n g  i n i t ia l  a p p r o a c h  is to u t i l i z e  s y n t a x  m a c r o  and  d i r e c t
m i c r o c o d e  t e c h n i q u e s , w i t h  r e l a t e d  s t a t e m e n t s  g r o u p e d  i n to
a b s t r a c t i o n s  u s i n g  s o m e t h i n g  a k i n  to t h e  A i p h a r d  f o r m .
F u r t h e r , t he  s y n t a x  m a c r o  c o n c e p t  reported in T RW 1975 I R & D

5] , e . g .

<statement> :: IN <expression> <statement>

where this extension augments the operation of the parser , is
a more user—oriented approach than reported in the literature
[6]. Previous syntax macro ideas allow much more detailed user
control (e.g. character scan , etc. ) , and yet do not seem to
provide benefits valuable to non— ~ ompi 1er— wr iter users.

A review of the TRW CPDL IR&D effort [7,8,9] to dete rm ine
applicability to SMITE and SMITE extensibility shows the
d e v e l o p i n g  s y n t a x  and s e m a n t i c s  to be workable as a hardware
connection description language. For instance , in CPDL , one
m i g h t  w r i t e

P R O C E S S O R :  p r o c e s s o r — 2
(other attributes )
SUBSTRUCTURE: (a link to a SMITE description)

This will allow CPDL to provide the necessary connection
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language power for SMITE , and also implies that simplified
requirements (i.e. no attempt to handle connections ) may be
levied on SMITE exten sibility.

A trial Aiphard— like definition of an associative memory is as
follows:

ASSOCIATIVE—MEMORY: DEVI CE;
Syntax Specification

<data item> :: ID [1] <t> <d> ASSOCIATIVE —MEMORY;
<primitive> :: ID [t] <extract>

Representation (Unique)
DECLARE S[1;L] REGISTER ,

MWORD <1 :t+d> DATA ,
MTAG< 1 :t> DATA ,DEF INED MWORD< 1 :t> ,
MDATA <1 :d> DATA DEFINED MWORD <t+1:d > ,
1<???> REGISTER;

Implementation
<— (A D D R E S S , TAG , DATA )

SEADDRES S]. MTAG <-t;
SCADDRESS] . MDATA <— d;
or
S[ ] < — t / / d

Re ad
•S e a r c h :  DO FOR IC — 1 to 1.;

IF t StI].MTAG
THEN ESCAPE SEAR CH;
E N D IF :

RETURN S[I].MDATA
ASSOCIATIVE—MEMORY: END DEVICE;

The usage might look like

DECLARE MAP[16) <18><32> ASSOCIATIVE —MEMORY;

For a t<i8> d<32> memory of 16 cells.

MAP <— (ADDRE SS, TAG , DATA) stores ,

<— Read (MAP [TAG3 ) reads.

It seems all cases of forms (perhaps called a Device in SMITE )
will declare new storage class attributes , in this case
ASSOCIATIVE — MEMORY. We ’ll also need the capability to change
existing ones — e.g., to re—define existing operators which
are (poorly) defined for REGISTER , PO RT , etc .

The section Syntax Specification is poorly integrated into
everything, a n i  is clearly incomplete as it fails to handle
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the case of store. What is really desired here is an abstract
specification of what an associative memory does . For now , a
text block for narrative description will have to suffice.

Other than certain awkwardness , the representation section has
a problem with the declaration of I — we need to know how many
bits are required in an address (counter) register , which in
this case is equivalent to WIDTH (16)~ 4.

There is also a problem with the usage section: MAP <—
address , tag, data is poor syntax.

The essential needed concepts shown in this trial seem to be:

1. Group the abstractions/operation s for a device
together.

2. S p e c i f y  the  s y n t a x i n v o l v e d .

3. Specify the correct representation.

4. Specify th e f u n c t ion performed/the nature of the
device.

5. Specify the implementation of allowed operations.

6. Declaration implies the device (ASSOCIATIVE—MEMORY) is
a storage class attribute .

From reading the material on SIMULA [10] and Aiphard [6] the
following observations may be made:

1. The form/class concatenation idea is essential for
reasonably compact use of extensibility.

2. Aiphard presents only loop control (iteration — like )
user extensibility — the fundamental loop syntax forms are
fixed . An argument can probably be constructed for SMITE
such that new statements are either disguised function
calls (the degenerate case) or else a syntactic shorthand
for a sequence of SMITE statements. This would imply
fairly severe restrictions on what userz could do in the
way of controlling context block creation.

3. Nothing in A lph ard considers the problem of
asynchronous control. Adv an ced SMITE will provide no
capability beyond that of PARALLEL — BEGIN/PARALLEL — END ,
although it’ s clear some tasking primitives such as
synchronization and dispatching are required. For example ,
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a small nut relati vel y comp lete set of operating system
functions could in clude cispatch , recall , and wait , w i t h
meani n gs as f’oll o~ s:

i i s p a t c h  — ini tiates nh~ execution of a task.

recall — m oment a rily s~~s p e n d s  a t a s k .  R e — a c t i v a t i o n
o c c u r s  t h e  .n e x ’ t i m e  the sche d uler advances to the task.

~a i t  — m e  tw-~ i s  su~~; ; e n n e d  u n t .~~l a c o n c i t l o n  is
pos t ed .

A t a s k  t e r m i n a t i o n  r eq~~cs t  ~s a l so  r e q u i r e d , as is an
e f f i z i e n t  m e o n s  of  t e r m i ~~ct ~~1g t a sk s  a t  P A R A L L E L — E N D  to
c o n t r o l  when  t h e  m a i n  l i n e  c o n t i n u e s  and  to d e t e r m i n e  t h e
co n t i n u a t i o n  se t  of r e g i s te r s .

T h e r e  is n o c~ r~ ent n e e d  f or  c o n t r o l  of a t a s~< d u r i n g
e x e c u t i o n  by  ~n c t h e r  t a s~ ( e . g . ,  a b n o r m a l  t e r m i n a t i o n , b u t
t h i s  n e e d s  t h o u g h t  r e l e v m t  to n e e d s  f o r  e x t e n d e d  E S C A P E
( o u t  of a P R O C E S O O R ) .

1.2 T~•e D e f i n i t t o n  of New Stat~ m ents

One of the  i n i t i a l  i~~su e s  i n  ~~~TE extensibility is the degree
to w h i c h  n e w  s t a t e m e n t s  m a y  be a d d e d  t o  s M I T E .

E x a m i n a t i o n  of t he  p u b l i s h e d  A l p h a r d  m a t e r i a l  [o ]  i n d i c a t e s
t h a t  c o n t r o l — r e l a t e d  ab s~~r a c t i o n  in  A l p h a r d  is s o l e l y
concerned with extension of the types of looping constructs
available. Dther forms are n o t  discussed — e . g . ,  f o r m s  of
CASE—like decodi n g, interr u pt—h a ndling abstractions , a b n o r m a l
p r o c e d u r e  t e r m i n a t i o n s , ~~~t : .

One p o s i t i o n  w o u l d  he to t a k e  t h e  “ e x t r e m e — m a c r o ” p o s i t i o n  —
n o t h i n g  c a n  be i n t r o d u c e d  in t o  S M I T E  w h i c h  c o u l d  no t  be b u i l t
f r o m  t h e  b a s e — l a n g u a g e  set  of c o n t r o l  s t r u c t u r e s . T h i s
a p p r o a c h  i n  m o r e  p r i m i t i v e  t h a n  A i p h a r d  g e n e r at o rs , e v en , but
d oes su pp or t u sef u l ex ens ion s .  For  ex am p le , a spa r se  decode
coul d (laboriously) be represented as:

D E C O D E  o p c o d e ;
‘ J ’ O O O ’ , O ’ O O l ’  O ’ O O 2 ’~ O ’ 4 7 2 ’ , O’~~0 2 ’ : 
I T H E R W I S E :
E N D  D E C D D : ;

T h e r e  wr ~~~~l1 be ~~ q~~ir e m e n t  to d e c o d e , s o r t , an d  i n t e r p r e t
t he  o p c o d e r  it  “ m a c r o — e x n a n s i o n ” t i m e  i f  a t r a n s f o r m a t i o n  to
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the emulation— efficient SMITE CASE was desired . Further , it
w o u l d  not pr ov id e a n y  goo d w a y  to han d le the  use of don ’t ca r e
bit s in certain opcodes .  For e x a m p l e , O ’ 7 X 3 ’  m i g h t  m e a n  t h a t
t h e  m i d d l e  3 b i t s  cou ld  be a n y t h i n g  — 0 to 7.

Suppose a common operation structure is to pul se a bus , check
status , and perform one of three responses. A “nice ” way of
w r i t i n g  t h i s  m i g h t  be :

BUS F U N C T I O N : A
WHEN s i B ,
W H E N  s2 C ,
WHEN $3, D ,
OTHERWISE E;

Whe re s i , s2 , 53 are the “well— known ” status responses. The
essent ial restrictions SMITE would impose on such a scheme
wo uld be t h a t  t h e y  w o u l d  h a v e  to be s t r u c t u r e d ( 1 in , 1 out
fo rms ) , an d have to obey the established restrictions about
ESCAPES pas t  IN , PARALLEL.

The ina bi l it y to g e n e r a t e  new patterns of control is a
r e s t r ic tion nee di n g cons id erat io n .  For in s t a n c e , it is
r e a s o n a b ly  c l e a r  t ha t  a “m a s t e r  c l ea r ” or even  an abor t  f rom
de ep ins id e a m e m o r y  ma p box causes  comple te  a l t e r a t ion of
control in non— structured ways (although decidedly finite ways
— usually some registers get initialized and interpretation
begins anew) . In SMITE this implies the need for ESCAPE to
o u t s i d e  the  c u r r e nt  p r o c e s s o r .  A l t h o u g h  p r o b a b l y  to a
lexically nested point. That form of control structure
extension is not available with macro extensibility.

The ::ay property (from the s t a n d p o i n t  of the  c o m p i l e r )  we mus t
retain is reducibility of control graphs (nesting even). The
entire code generation and optimization structure assumes that
property.

It is not clear that all possible/desirable additions to the
language should be through extensibility. The generality
required to reach that goal might produce a schem e usable only
to its developers.

Further consideration of the associative memory example shows
the following view:

1. We need to add data types and operators.

2. We need  to be a b l e  to add o p e r a t o r s  to e x i s t i n g  da ta
types.
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3. We need to be able to add new statements.

It  seem s that the full power of syntax macros is too
cumbersome for simply adding data types and operators —

instead , t h e  nom pi ler c o u l d  perform automatic syntax
e x t e n s i o n .

i t  is p o s s i b l e  to w r i t e  an improved version of the assoc iative
memory using ~ne autonatt c extensi on syntax idea:

AS SOC 17TIV E-M EM CRY: ~~
‘
~ICE [1] <t ,d>;

Specification
“The assoc iative me m ory supports the storage and
r e t r i e v a l  o~ d a t a  i t e m s by  a t ag  v a l u e  used as an
address. ”

R e p r e s e n t a t  i o n
D E C  LA R E

S [ 1 : l ]  R E G I S T E R ,
M N C R D  < ‘  : t + c >  2 .~TA ,

I <W I DT H ( L ) : ~~~> O ST E R ,
Implementation

operator <—
operano s ac~~ress , tag, cata : word
ret u rns ‘;alue : wo rd

v a l u e  < -  s[a~icress1.mtag K— tag;
s [ a o c r e s s ] . m d a t a  < —  d a t a ;

operator read
operands tag : word
returns value : word
SEAR CH:  DO F O R I <- 1 to 1 ;

IF t s [ I ] . m t a g
T H E N  E S C A P E  S E A R ~T H ;
E N D  I F ;
v a l u e  < —  s [ I ] . r n t a g

A S S O C I A T I V E — M E M O R Y : E N D  D E V I C E ;

G i v e n the  a s s u m p t i o n  t h a t  the  f i r s t  o p e r a n d  for  o p e r a t o r s  on a
subscripted device has to be the address (could use * to
indicate not used) , then references would be if the form

DECLARE Y[512 ]< 1O , 17> ASS OCIATIVE—MEMORY;

Y[i] <- X’3F ’ , IN-PORT;
OUT— PORT <— read(Y [TAG—VA LUE] )

where the conventi on is th a t  m u l ti ple  o pe r a n d s a re s t r u n g  to
the right of an infix operator and are separated by commas.
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The example also demonstrates the need for a more pr imitive
da ta type in SMITE than REGISTER , etc . Cal l  i t the  WORD
(o .e., bit string ). Then , in principle , al l  the pr e sen t d ata
ty pes in SMITE can be defined as extensions of WORD. For
e x am p 1 e ,

P O R T : C E V I C E  < l b : u b >  E X T E N D S  W O R D ;
S p e c i f i c a t i o n  “ A  PORT is an e x t e r n a l l y  a c c e s s i b l e
r e g i s t e r . ”
Representation (none) (But need compile — time ordinal )
Im ple m en t a t  ion

operator <—
o p e r a n d s  v a l u e :  word
r e t u r n s  v a l u e :  word

D I R E C T ;
“ s e tup  v a l u e  in  R O ”
LD I R . A D R ,or dinal
SYSTEM USR .RCL÷ 1
S M I T E ;

PO RT: END DEVICE;

an d so f o r t h .  W e d o nee d some m echan ism to d eal w i th d ev ic es
w h i c h  m a y  or m a y  n o t  be s u b s c r i p t e d .

1 .3  D o m a i n  C o u p l i n g

One of the semantic issues in the definition of extensibility
in SMITE is ope n or closed procedure insertion . Although of
concern in a purel y sequential environment , where inline macro
expansion can result in a call—by—name effect , but closed
expansion results in an effect determined by the -means of
p a r a m e t e r p a s s i n g  chosen , the  i n l i n e / c l o s e d  e x p a n s i o n  issue is
even more significant in a concurrent execution environment
due to asynchronous coupling of references to shared
va r i a b l e s .

The core of the  prob lem is the  q u e s t i o n  of communica t i on  and
synchronization between separate execution domains. In an
ALGOL— like sequential world , where we are passing parameters
via CBN(call —by— name) , such as

F(A(J) ,J ,A (J+2))

where
P R O C E D U R E  F ( A , B , C)

X~ A
B~B—2
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Y:C

The result after the assignment to Y is that Y holds
i d e n t i c a l l y  t h e  v a l u e  in  c e l l  A ( J )  (J  is evaluated before the
call) as does X. What happened during execution may be
v i s u a l i z e d  as F reaching into the execution domain of the
calling procedure throu gn its para m eters to manipulate
v a r i a b l e s .  C o n s i d e r a t i o n  of “ t h u n k ”  t e c h n i q u e s  f o r
implementation of CBN reveals a direct use of the concept :
every time an evaluation of the parameter is made , a call is
executed to a thunk back i n  the calling domain. The
parameters retain scop ing and definition local to the calling
p r o c e d u r e .

The current im p~ em en t at 1cn and definition of SMITE does not
a l l o w  t n i s  b l u r r i n g  of e x e c u t i o n  d o m a i n s .  In S M I T E ,
p a r a m e t e r s  a r e  p a s s e d  by  c a l l — b y — v a l u e  or
c a l l — b y — v a l  s e — r e t u r n e d . A n y  a l t e r a t i o n  of v a l u e s  in  t h e
c a l l i n g  d o m a i n  is  p e r f o r m e l  o n l y  a f t e r  the  c a l l e d  p rocessor
r e t u r n s  c o n t r o l .  u r i n g  e x e c u t i o n  of t h e  c a l l e d  p r o c e s s o r ,
parameters are strictly local to the called processor.

Considerations of extensi b i l ity and concurrency to be
implemented in Advan cec sMITE r eq u ire us to extend this
t h i n k i n g .  C o n s i c er  e x t e n s i b i l i t y  f i r s t .

1 . 3 . 1  D o m a i n  C o u p l i n g  u n d e r  E x t e n s i b i l i t y .

The sam e form textually e x p a n d e d  e i t h e r  i n — l i n e  or in
c lose d fo rm , gets different linkages to the calling domain.
W i t h  i n l i n e  e x p a n s i o n , t h e  f o r m  is c o m p l e t e l y  m e r g e d  i n t o
the  c a l l i n g  d o m a i n  — no separate called domain exists.
W i t h  c losed  e x p a n s i o n , a s e p a r a t e  c a l l e d  d o m a i n  is f o r m e d .
This effect is unsatisfactory — the method of expansion ,
which has only vague analogs in hardware , should not
produce changes in the action i n v o k e d .

One possible solution is to mimic the SMITE CBV
( c a l l — b y — v a l u e ) and  CBVR ( c a l l — b y — v a l u e — r e t u r n e d )  a c t i o n s
in t h e ex pa n s ion o f inl i ne pro ce ssor ca l l s  on f o r m s .
Parameters would be restricted to w o r d s  — that is the
i n p u t s  to a f u n c t i o n  of a f o r m  a r e  w o r d s .  Form p a r a m e t e r s
(i.e., when the instance of the form is dec lared ) migh t not
requ ire that restriction.

The word restriction leads to the issue of coupling
asynchronous domains. Interaction between asynchronous
d o m a i n s  i m p l i e s  s y n c h r o n i z a t i o n  a n d  coo per a t ion — s o m e t h i n g
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i m p l i c i t l y  p r o v i d e d  in a s i m p l i s t i c  m a n n e r  by  p a r a m e t e r s .
Rather than overburden a basically simple , desirable
mechanism with a lot of conventions to handl e complex
interactions , another alternative is available in the
ex te n sion of t he  PORT conce p t .

1.3.2 Domain Coupling and Concurrency.

A means of coupling the domains of asynchronous
(concurrent) processes is required . Look at these two
examples: Paged CPU (Figure 2) and PD P— 11 (Figure 3).

In the Paged CPU example , al l  t he co n n e c tions  coul d b e
“simple ” — i.e., the connection is as simple as some wires ,
w i t h  no “ i n t e l l i g e n c e ” b -ehind  i t .  S y n c h r o n i z a t i o n  is
e m b o d i e d  in the  u n i t s  — no f o r m a l  l i n e  p ro toco l  is
r e q u i r e d . A n o t h e r  e x a m p l e  w o u l d  be t h e  c o n n e c t i o n s  to an
ALU. (Some implementations of the pager might involve
active intelligence in the pager — for this example imagine
tha t  it i s t r a n s pa re n t in the  sense th at t he commu ni ca ti ons
between CPU and P are the sam e as P ond M , or as CPU and M
would be if the system had no pager installed.)

This example can be handled using shared variabl es and
pro cessor c a l l s  w h e r e  r e q u i r e d . S i n c e  no a c t i v e  a s y n c h r o n y

• e x i s t s , i t  is we l l  w i t h i n  t he  c a p a b i l i t y  of w h a t  is
foreseen for Advanced SMITE , w i t h o u t  the  nee d for  th e
c o n n e c t ion l a n gu a g e. For e x a m p le , in the language
extension , we mig ht wr i te f o r m s  for  asso ci at iv e  me m ory  (as
described earlier) and the pager. The pager form might be
like this:

Pa ge r :  D E V I C E (a l ,a2 ,a3, a14 : ASSOCIATIVE —MEMORY )
<lb :ub>;

Specification
“The paging device maps memory addresses from the
CPU into physical addresses sent to real memory.
The assoc iat ive  m emory  use d is se le c te d b ase d on

F t he  pr ogr am s ta tu s . ”
Representation

Declare Global A— M— SELECT<O: 1> DEFINED
PSW<2 0: 21> ;

I m p l e m e n ta ti on
OPERATOR READ

O P E R A N D S  a dd ress :wor d
RETURNS va lue< l b :ub> :word
CASE A— N— SELECT;

value <— a l[address<O: 1>]//address< 2 :1>
value <— a2 [address<O:1> ]//address<2:l>
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Figure 2

Paged CPU
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value <— a3 [address<O: 1>]//address<2:l>
v a l u e  < —  a14 [address<O:1>]//address<2:l>
END CASE;

Pager: END DEVICE;

The third forr,~ might be a paged memory.

Paged—Memory: DEVICE (p:pager ) [1] <lb:ub>;
S p e c i f i c a t i o n

“Paged memory is e s s e n t i a l ly  the  same as normal
memory except that all address references to it
are  t r a n s l a t e d  through the pager .”

Representation
DECLARE M [O:l— 1]<lb:ub>;

Implementation
OP E RA T OR R E AD

OPERANDS address: word;
R E T U R N S  v a l u e : w o r d ;
val u e <— M[p (address )J;

O PERATOR <-
OPERANDS address , valuein: word ;
RETURNS valueout : word;
valueout <— M [p(address) ] <— valuein ;

Page d—Memory: END DEVICE;

The declaration of a CPU becomes clear and simple using
these t h r e e  fo rms .  There is a loose end with respect to
the GLOBAL in the pager — perhaps it should be forced to be
a parameter to the declaration.

CPU :PROCESSOR;
DE CLARE

PSW<O:31> REGISTER ,
A M 1 r ~~J < 2 , 12> ASSOCIATIVE —MEMORY ,
AM 2 [4 ) < 2 , 12> ASSOC I A T I V E — M E M O R Y ,
AM 3 [L ]<2,12> ASSOCIATIVE —MEM OR Y,
AM14(L~)<2, 12> ASSOCIATIVE—MEMORY ,
P(AM 1 ,AM2 ,AM 3 , AM~4)< O: 33> PAGER ,
M( P)[O’1OOOOOOOOOOO’~ <O :31> PAGED—MEMORY;

iR <— READ(M [PC])
PC <— PCi.1;

etc.

A means is required to setup arrays of forms — e.g., an
array of associative memories.

The second example , the PD P— 11 , contains this form of
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connection from FPU— CPU , CPU— UC , UC—M . The connection
language should support description of these passive
connections a: well as descriptions like given above. The
PDP— 11 also con~ ains active connections , shown with the
heavier lines , which are in fact the unibus.

In the unibus connections , active (intelligent) devices are
co n n e c t e d  to each o the r , and a c o m p l e t e  s y n c h r o n i z a t i o n
protocol exists. Contrast this to the interface of a
processor to a memory, where the interface is simply
request , data lines , and busy/data available. (This
discussion is a r t i f i c i a l  in some senses , si nce  the
differences are not absolute as the terms active and
passive would suggest , but are in fact only of degree)

For “active ” connections , the PORT—type of mechanism is
appropriate. A device defined either similarly to a PORT or
even extending PORT could then incorporate both the formal
protocols  used over the c o n n e c t i o n , and the means to
implemen t on the  Q M — 1 .  In the P D P — 1 1 , a U N I B U S — C O N T R O L L ER
processor , which itself could be a DE VICE in the PDP— 11
description would have a DE VICE UNIBUS which would be the
point of contact with the connection language.

1.4 Conclusion

The concept of an extensibility mechanism based on the Alphard
‘form ’ appears to be a viable concept for use within the SMITE
language. Coupled with the use of syntax macros this
mechanism provides a method of defining new data types
(DEVICEs) and the functions necessary to support those data
types. The definition of the new types affords a higher
degree of abstraction than previously available in the SMITE
language.

2.0 Analysis of Syntax Macros in Advanced SMITE

This section contains the working notes compiled during the study
of syntax macros and their use within Advanced SMITE. This study
was concerned with the following tasks :

1. Defining the user accessible grammer , simplified and
restricted from the full grammer accepted by the parser.

2. Determining the necessary constructs required for the
definition of syntax macros.
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3. Determining the mechanism required for the expansion of
syntax macros.

2. 1 Introduction

The syntax macro is a me thod  of e x t e n s i o n  t h a t  a l lows  the  user
to alter the actual syntax of the langua ge. Since the syntax
m ac ro a l l ows  al ter a ti o n of the syn t ax of the l a n g u a g e  the use r
must be aware of the base syntax and any additions previously
ma de when defining any additional changes. For this and other
reasons it has been decid ed early in this stud y to use syntax
macros only for changing control structures (statements and
pr i m i t i v e s )  and to adopt a version of the AL PHAR D form
(Device) for creating data and operator extensions. Using the
Dev ic e a l l ows  the use of an “a u t o m a ti c ” syntax extens ion
mechan ism associated with the Device. It is felt that this
decision is appropriate because the Device is powerful enough
and  m o r e  s t r a i g h t  f o r w a r d  in d e s c r i b i n g  d a t a  and operator
ex t e n s i o n s .  For e x a m p l e  t h e  sy n t a x  mac ro  d e f i n i t i o n  of a s t ack
type might be:

MACRO “A< ID> STACK [B<CONSTANT> ] C<DECTYPE>” EXTENDS
<DEC PHRASE>;

M E A N S
D E C L A R E  $A [ 1 : B ] C , $P <0:35> REGISTER;
MACRO “SIZE—O F A” EXTENDS <IDPRIMIT IVE > ,

M E A N S

MACRO “A” EXTENDS <IDPRIMITIVE > ,
M E A N S

IF $P <: 0
THEN ERROR ($P);
ELSE B E G I N ;

$A [$P3;
$P <— $P — 1 ;
E N D ;

ENDIF ;
M A C R O  “ A <— D < E X P R E S S I O N > ”  EXTENDS < E X P R E S S I O N > ,

MEANS
IF $P > B

THEN ERR OR ($P);
EL SE BE GI N ;

$P <— $P i~ 1;
$A[$P] <— D;
E N D ;

ENDIF ;
MACRO “ ERROR E<PROCCLL>; ” EXTE NDS<STATEMENT> ,

• MEANS
(SOME SORT OF ERROR PROCESSING) ;
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while the form definiti on might be:

STACK :DEVICE [l~ type EXTENDS WORD;
Specification “The stack type implements the

push and pop stack function and
also a l lows  the  user  to d e t e r m i n e
the  cu r r e n t  s ize  of the  s tack”

Representation: DECLARE
S[1:l] TYPE ,
P <0:35 > REGISTER;

I m p l e m e n t a t i o n :
operator <—

operands .

r et u r n s  .

IF P > 1 THEN E R R O R (P );
ELSE B E G I N ;

P <— P+1;
S.[P~ <— VALUE ;
END

ENDIF ;
ope r a t o r  pop

operands .

returns .

IF P <~ 0 THEN E R R O R (P );
ELSE B E G I N ;

value <— SC?);
~ <— P — 1;

E N D ;
ENDIF ;

operator “SIZE OF”
operands .

r e t u r n s  .

value <— P;
STACK: END DEVICE;

The f orm d e f i n i t i~ n seems m u c h  c l e a n e r  and does no t  f o r ce  the
user to know the syntactic entities for the extensions.
Therefore the only use for syntax m a c r o s  wi ll pro b ab ly  be the

• extension of control structures.

Syntax macros should be used only to create alternative
d e f i n i t i o n s  for  ( e x t e n d )  basic  SMITE s y n t a c t i c  e n t i t i e s .  They
should not be used to redefine existing syntactic entities ,
which would alter the base SMITE language. Al se , syntax
macros should not be used to create entirely new entities ,
which would amount to defining new non— terminals within the
formal definition of the language. The ability to restructure
t he  base  l an g u a g e  is definitely not needed to achieve the
goals we have defined for syntax macr ’s .
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The user should not have access to all the compiler syntactic
en t i t i e s  because  it would  be q u i t e  c o n f u s i n g  to decide which
entity to a c t u a l l y  e x t e n d . T h e r e f o r e , o n l y  t h e  s y n t a c t i c
en t i t i e s  STATEMENT and P R I M I T I V E  w i l l  be e x t e n d a b l e .  There is
no reason to go deeper into the workings of the compiler to
acco m p l i s h  the c a p a b i l i t y  t h a t  s y n t a x  m a c r o s  a re  to p r o v i d e .

The information that mus t now be determined is to which
syntactic entities (non— terminals in the grammer) the user
must have access to allow him to extend the entities STATEMENT
and PRIMIT I VE .

2.2 Definition
• S.

There must be a method of introducing the syntax macro into
the base language. One idea is that a syntax macro could look
like a declaration and appear any where a declaration may
appear. Another approach is that all the extensions would be
an entity separate from the actual SMITE description and
pre— processed before the actual compilation begins. The
usefulness of a pre—processor for syntax macros is limited by
the amount of semantics present in the syntax macro , which
will also dictate the type of pre—processing that can be done.
In either case the actual definition needs the same basic
items. A method of indicating what the macro call actually
looks like , what syntactic entity the macro expands , the
implementation of the macro in the existing language and any
sem antic notions need ed to resolve ambiguities caused by the
ex te ns ion.

It appears that a syntax macro can be used to extend data
type s and operators but it would be more use fu l  to use DEVICES
because the user is relieved of the burden of having to
explicitly extend the syntax . He could concentrate on the
DE VICE itself and let the compiler extend the syntax. The use
of the DE VICE in declaring a stack type also seem s to be
clearer :

STACK:device H) ex tends word;

instead of

macro  “ A < I D >  STACK ( B < C O N S T A N T > J  e x t en d s  < D E C P H R A S E > ” ;

Also , using the DEVICE the user does not have to expl icitly
know the syntactic entities that need extension.

• Syntax macros however are needed to add new statements. The
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question is how much of the base language syntax need be known
to allow the expression the information required .

Adding semaphores for the synchronization of concurrent
processes is a good example of statements that would be
desirable to add.

Macro “SIGNAL A<SEMAP HORE> ; ”extends <STATEMENT > ,
I N T E R N A L .  A < — I N T E R N A L .  A+ 1
if INTERNAL.A <~ 0 (direct code to wake up a waitingprocess)
macro  end ;

m a c r o - ”WA IT A < S E M A P H O R E > ; ” ex t e n d s  <STATEMENT > ,
I N T E R N A L .  A < — I N T E R N A L .  A — i ;
if I N T E R N A L . A  < O ( d i r e c t  code to suspend a process)
macro end;

and finally:

SEM A P H O R E : D e v i c e  E x t e n d s  Word ;
Declare INTERNAL Register;
semaphore description and semantics ;
end device;

Note how the SIGNAL and WAIT statements look almost like
processor calls except without the parenthesis. This is one
of the uses of a syntax macro , allowing the user defined
syntax of “processor calls” . It could be left up to the
compiler to decide if the resulting code was in— line or
actually treated as a call.

Processing of syntax macro calls consists of three operations:

1. Recog n i z ing  the macro  ca l l

2. Verification of the required semantics

3. Generation of the repl acement.

Following is an example of the description of a cache memory
using the concepts introduced and discussed so far.

CACHE—MEM ORY:DEVICE [lo:l1)<lb:ub> ;
SPE C IFI CATI ON:

“THIS IS A CACHE MEMORY EXTENSION IN WHICH THE CACHE
IS OF SIZE 8 A ND USES THE LIF O M ETH OD OF SATI SFYIN G
MEMORY ACCESSES ”

-
• OPERATORS ARE <—get—value ;

MACRO IS IN-CACHE ;
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REPRESENTATION:
DECLARE UNIQUE CACHE—A DD [0:7i<O: 15>FAST—M EMORY ,
CACHE [O:7 )<lb:ub>FAST—MEMORY ,
MEM C 10:11 ]<lb:ub>MEMO RY ,
PN T < O:  2 > F A S T — M E M O R Y ;

IM PLE M ENT A TI ON
O P E R A T O R  <— operands a ,b:word;

r e s u l t  v a l u e :w o r d ;
CACHE —ADD [PNTJ <— b;
v a l u e  <— MEM I b] <— CACHE [PNT ) <— a;
PNT <— PNT+i;

OPERATOR get—value operand b:word;
result value :word;
LOOK :BEGIN;

TEMP <— PNT— i
DO FOR 0 to 7;

IF CACHE—A DD [TEMP]=b THEN
BE G IN;

value <— CACHE[TEMP];
ESCAPE LOOK;
END ;

END IF
value <— CACHE [PNT ) <— MEM [b];
CACHE <— ADD [PNT]- <— b;
PNT <— PNT+ 1;
L~JOK : END;IN— CACHE:MACRO ”A<EX P> IS IN CACHE OF B<I D > ” ;

WHERE
T Y P E ( B )  CACHE—M EMORY ,
T EMPORARY 1< 0 : 2 >  R E G I S T E R ;

MEAN S
C: BEGIN

DO FOR I <— 0 TO 7;
IF C A C H E — A D D E I ]  :A THEN

B E G I N ;
RETUR NS 1;
ESCAPE C;
END;
ENDIF ;

RETUR NS 0;
C :END;

IN— CACHE:END MACRO;

The IN—CACHE extension brings up a pr oblem . The macro needed
an internal and unique ID to do the looking throug h the array
CACHE—A DDR. The need ed ID was declared in the representation
of the device.

A syntax macro should be composed of 3 parts. The first part
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will contain the syntax of t he  mac ro  ca l l  (p r o b a b l y  called the
s t r u c t u r e c l a u s e ) .  The second part will contain any need ed
semantics (perhaps the where clause). The third part will
actually describe the implem entation of the macro and could be
called the means clause or definition clause . The syntax macro
syntax could look like :

MACRO <structure clause>

W H E R E  < w h e r e  c l ause>

MEANS <means clause>

END MACRO ;

The s t r u c t u r e c lause  needs  o n l y  to spec i fy  the s y n t a x  of the
macro  ca l l  i . e . ,

MACRO “FOR ALL A<EXP > IN C<ID>; ”

Note also that any context— sensitive requirements are also
specified in the structure and all the parameters (which are
non— terminals in the base language) must be identified by
their non— terminal names. The other tokens that appear in the
structur e clause are considered terminals and are addded to
the r e se rved  word l i s t  if not already there. No indication
need be made to determine if the macro extends STAtEMENT or
PRIMITIVE because in the means clause the existence of a
returns statem ent (indicating the value to be returned) will
indicate an extension of PRIMITIVE otherwise it is an
extension of STATEMENT. The only non—terminals the user can
use in a syntax macro are ID and EXPRESSION. These entities
appear to be sufficient to allow complete definitions of new
STATEMENTS AND PR IMITIVES.

The where clause of a syntax macro provides the necessary
semantic information. The information consists basically of
specifying particular values for various attributes of the
param eters (non—terminals) of the syntax macro . The
attributes for the non— terminals that need to be accessed are:

ID : width ,type (capabilities) ,length

E X P R E S S I O N : w i d t h , type ( c a p a b i l i t i e s)

The where clause mus t provide a method of specifying the
various requirem ents on the parameters of the macro. In
addition to the type , there must also be a method of
s p e c i f y i n g  the  f u r t h e r  r e q u i r e m e n t  of c a p a b i l i t i e s , i . e . ,
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verify that certain operators or functions are defined
conce r n i n g  the  s p e c i f i c  t y p e  r e q u i r e d .

All requirements of the where clause must be met for the
STATEMENT or P R I M I T I V E  to be cons ide red  a l ega l  sy n t a c t i c
c o n s t r u c t , no t  to m e n t i o n  t h a t  the structur e clause must be
matched . If the structure clause is met but the where clause
is not met , this does not necessarily mean that the code is
illegal , since there may be another syntax macro which has
requirements the code meets.

The means clause is straightforward . It is merely a
description of the actua l implementation of the syntax macro.
The description should be able to use all the constructs of
the base language plus any extensions added .

All parameters into the macro (as defined in the structur e
clause) can be used within the means clause anywhere it is
legal  to use t h a t  s y n t a c t i c  t ype .

To provide for the syntax macro definition mechanism described
here , the following statements must be added to SMITE:

MACRO — the overall statement for defining syntax macros.
Its p a r t s  wi ll cons is.t of the follow ing :

a structure clause whic~i describes the syntax of the
macro call and formal parameters.

a where clause which describes any semantics necessary
to further qualify the macro call.

a means clause which provides the actual implementation
of the macro plus the parameters provided by the
structure and where clauses.

RETURNS — a new construc t that is legal only within the
means  c l ause  of a sy n t a x  macro  and s ig n i f i e s  t h a t  the
syntax macro is actually on extension of PRIMITIVE.
Ab sence of the  RETUR NS s t a t e m e n t  i m p l i e s  t h a t  the  sy n t a x
macro extends STATEMENT.

The actual call of a syntax macro is handled as follows :

The c o m p i l e r  f i r s t  deduces  t h a t  wha t  i t  is c u r r e n t l y
processing is a possible syntax macro. This is achieved by
building parser tables used from the information in the
structur e clause . The where clause is then examined and
all requirements are checked. If the test is passed the
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means clause is expanded . The r e s u l t  of  t h e  e x p a n s i o n  m u s t
then be parsed and if it contains any macr o calls , th ey
will be handled in the same mann er. The context of any
expansion must be unique -’ because the means clause can
contain labels and consequently context bloo <t .

The syntax macro can be used in two roles. Cne t3 -3dd any
constructs necessary to support an abstraction added by a
device. The other role is to add general constructs. the
l a t t e r , there might be a device that c~ nsis ts only of severa l
syntax macros and no-data or operator abst ractions. One
benefit of the former use is to allow the syntax macro to use
constru cts local to the device in perfo rming, its duty. This
iso brings up the fact that it is necessary for the context

of each instance of an abstraction-described by a dev ice to be
retained so that it can be used by the expansion of a related
syntax ma cro. In fact , w h en t he ex pa n s ion o f th e s y n t a x  m a c r o
is pe r f o r m e d , the  cor rec t con tex t m us t  be foun d b y id e n t i f y i ng
wh ich in s t a n ce of the  d evi ce the par ticu l a r  c all of t h e  s y n t ax
macro is referencing .

Follow ing is a counter extension using syntax macros:

REG— COUNT ER :DEVICE <lb :ub> EXTENDS REGISTER ;
S P E C I F I C A T I O N : “THIS IS A REGISTER BASE COUNTER”

USES R E G I S T E R ;
MACROS ARE INC ,DEC;

R E P R E S E N T A T I O N
D E C L A R E  I < l b : u b >  R E G I S T E R ;

IMPLEMENTATION
I N C : M A C R O  “ I N C  TH N G < I D > ”

W H E R E  TYPE OF T H I N G  IS C O U N T E R ;
MEANS

THING.I <— T H 1 N G . I  +

R E T U R N S  T H : N G . I ;
I N C  : E N D M A C R O ;

DEC:MACRO “DEC Q<ID>”
W H E R E  TYPE ( Q ) ~~C O U N T E R ;
M E A N S

Q. I <— Q. I + 1 ;
RETURNS Q.I;

DEC :ENDMACRO ;
REG- .COUNTER : END DEV CE;

Summation ma cros for registers and vectors could be defined as
f o l l o w s :

SUMMERS: ~
E1I:CE;
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SPECIFICATION “THIS DEVICE DEFINES SUMMATION EXTENSION
FOR TYPES R E G I S T E R S  A N D  V E C T O R S ”

MACROS ARE SUM— REG , SUM—VEC ;
USES R E G I S T E R , V E C T O R ;

I M P L E M E N T A T I O N ;
SUM—REG:MACRO “SUM A< ID> FROM C<EXPRESSION> TO
D<EXPRESSION>”

W H E R E
T Y P E ( A )  R E G I S T E R ,
L E N G T H ( A )  > 0 ;

M E A N S
D E C L A R E

I N D E X  < 1 : M A X ( W I D T H ( C ) , W I D T H ( D ) ) >  R E G I S T E R ,
T E M P O R A R Y  I < 1 : W I D T H ( A ) >  R E G I S T E R ;

I <— 0;
DO FOR I N D E X  < — C TO D ;

I <— I + A [ I N D E X ] ;
R E T U R N S  I ;

S U M — R E G :  E N D  M A C R O
S U M — V E C  : M A C R O  “ S U M  A < I D >  F R O M  C < E X P >  TO D < E X P > ”

W H E R E
TYPE ( A )  V E C T O R ,
L E N G T H ( A )  > 0 ;

M E A N S
D E C L A R E

I N D E X  < 1 : M A X ( W I D T H ( C ) ,  W I D T H ( D ) ) > ,
T E M P O R A R Y  I < 1 : W I D T H ( A ) >  V E C T O R E S I Z E ( A ) ] ;

I <— 0 ;
DO FOR I N D E X  <- C TO D;

I <— I + A [ I N D E X ] ;
R E T U R N S  I ;

S U M — V E C :  E N D M A C R O ;
SUMMERS:END DEVICE ;

The summers coul d be used as follows :

D E C L A R E  A < O : 3 > [ 1 : i O ) R E G I S T E R ;
DECLARE V< 15:O> [O:31)VECTOR [10];

CASE SUM A [C] USING C <— FROM ~4 to 19;

• Q <— B~SUM V [DJ USING D <— FROM NEXT— i TO 31;

The above  e x a m p l e  some p o i n t s :

1) There also seems to be a problem in the declaration of
the tem porary, I. The width (length ) of the type needs to
be known . ( N o t e  t h a t  t he  a c t u a l  v a l u e  is no problem if a
ZERO funct ion is defined for the type). We may have to go
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so far as to indicate the bit ordering and numbering and do
the sam e for length , i.e.

TEM P O R A R Y  I < L W ( A ) : R W ( A ) > ,

where LW left width

RW right width

The f o l l o w i n g wo ul d also b e use d:

LL : LEFT L E N G T H

• R L :  R I G H T  L E N G T H

The M e a n s  c l a u s e  a p p e a r s  to be a s u i t a b l e  l o c a t i o n  for
the declarations of identifiers need by a syntax macro.
In this manner , a device that is used only to provide
s y n t a x  m ac ros t h e r e  n eed not  b e a n y  d e c l a r at ions  in the
R E P R E S E N T A T I O N  c l au se  an d the re fo re  t h a t  d evi ce nee d not
b e D E C L A R E D  in the des c r ip t ion (other t h a n  i n t he USES
clause ).

2)  T he FOR loo p i n bot h sum m at ions  assu m es i n t e g r a l
iteration. If a different type of iteration was desired it
would be necessary to write the MEANS clause using a
di f f e r e n t  i t e r a t o r .

• 3) There is another problem in the declaration of the
tem porary for the SUM—VEC syntax macro. It would be
desirable to declare the temporary vector the same size as
the summed vector but “SAME SIZE” does not seem to be the
c o r r e c t  way to do it , in f act the  rea l  pro b lem here  is the
metho d of referring to attributes that are results of
extensions. These attributes can be accessed as d e s c r i b e d
in 2 )  above  or by r e f e r r i n g  d i r e c t ly  to the p a r a m e t e r s  of
the deu ce (which will be parameters of the instantiatjon
of the 3pec ific data item in question)

These summation syntax macros bring up another aspect. For
example , suppose that the “+ “ operator was not closed over the
t y p e  V E C T O R .  This  c a u s e s  no p r o b l e m  because  the  s y n t a x  mac ro
a u t h o r  wou ld  h a v e  to know w h a t  t y p e  of t he  r e s u l t  of VECTOR
“÷“ and that would be the type of the source variable. All
users of the VECTOR type must be aware of all ramifications
and interfaces of the type .

If a d e v i c e  is g o i n g  to use o the r  a b s t r a c t ions it mus t dec la re
w h i c h  a b s t r a c t i o ns  i t  r e q u i r e s  ( w i t h  the  USES s t a t e m e n t ) .
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Even the “SUMMERS ” device , which is only used to add
statements , mus t declare any abstractions it needs to support
i ts  in t e r n a l  w o r k i n g s .

No operator or syntax macro defined within a device can be
used elsewhere within the same device. This is logical
beca use the  s y n t a x  macro and ope ra to r  a re  e x t e n s i o n s  d e s i g n e d
to work  upon  the  a b s t r a c t i o n  d e f i n e d  by t he  d e v i c e .

The dev ice can also contain helper processors to aid in
definition of the device. These processors are s t a n d a r d  SMITE
processors with the exception that they are only defined
within the context of the device.

A ny  s y n t a x  mac ro  t h a t  is an e x t e n s i o n  of s t a t e m e n t  c a n n o t  h a v e
its invocation label ed , i.e.

A: MACRO “SIGNAL A<ID> ”

(MEANS clause does not contain a RETURNS )
A: END MACRO

LABEL; SIGNAL Q;

The labe l  on the  S I G N A L  s t a t e m e n t  is i l l e g a l  because  a s y n t a x
mac ro may  no t  be l abe led ~~~ W i t h i n  the syn tax  macro  the au tho r
can create context blocks , but the syntax macro mechanism
itself does not. Also any context blocks created within the
s y n t a x macro  c a n n o t  be r e f e r r e d  to by the  c a l l i n g  p rog ram .

In the syntax macro WHERE clause the follow ing is to be used
to fo rce any  s e m a n t i c  r e q u i r e m e n t  on s y n t a x  macro  p a r a m e t e r s :

MACRO “FOR ALL A<EXP > IN B<ID> INCREMENT ”
WHERE B: ASSOCIATIVE -MEMORY ,

The above WHERE clause allows the user to declare type and
capability requirements. The WHERE clause can also specify
WIDTH and LENGT H requirements on syntax m a c r o  p a r a m e t e rs , such
as:

WHERE WIDTH(A) ~4 , LEN GTH (B) < 23;

Also the MIN and MAX functions can be used within the WHERE:

WHERE M AX (WIDTH(A), WIDTH(D)) < 26;

The L E N G T H  f u n c t i o n  can  also be used just to specify the
parameter has the LENGTH attribute:

75



~~~~~~~~~~~~~~~~

W H E R E  L E N G T H ( A ) ;

W I D T H , LENGTH , M I N  and MAX can a l l  be used in the  d e c l a r a t i o n s
of the MEANS clause. They can essentially be thought of as
compile time constants. In fact they can be used anywhere in
t he  MEANS statement where a constant is appropriate.

A n o t h e r  e x a m p l e  of the  use of s e m a n t i c  a t t r i b u t e s  i s :

W H E R E

A <W 1 :W2>[L] : VECTOR

M E A N S

D E C L A R E  I < 1 : W I D T H ( A ) > V E C T O R [ L ] ;

In a d d i t i o n  to r e q u i r i n g  A to be a v e c t o r , the  l e f t  and r i g h t
bit numbers of the parameter and the square bracket attribute
(vector— length) are labeled . The data item I could also be
d ec l a re d as fo l l ows :

D E C L A R E  I < W 1 : W 2 > [ L J : V E C T O R ;

or as

DECLARE I<A.W 1 :A.W2> [LJ:VECTOR;

If the SUM—VEC syntax macro appeared in the following VECTOR
extension:

VECTOR: DEVICE [l]<lu :rw> EXTENDS WORD;
SPEC “ — — “ . USES — — ;
REPRESENTATION DECLARE J[1 :l ]<lw :rw> ;
I M P L E M E N T A I I O N

The following could have appeared in the WHERE clause and
MEANS c l a u s e :

WHERE A :VECTOR;
MEANS
DECLARE I<lw:rw>[l]VECTOR;
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This is because the macro is w i t h i n  t h e  d e v i c e  and  has  access
to all information the device has access to. No qualificatio n
was needed , because only one vector (A) is present , and the
1w , rw and 1 can be ascertained from the A instance of VECTOR.

If the following macro:

MACRO ‘ —— A< ID> —-B<ID>
WHERE A:VECTOR ,

B :VEC TOR;
MEAN S
DECLARE I<lw :rw>VECTOR Cl ] ,
J<lw:rw>VECTOR C i ] ;

is within the same VECTOR device just described , then the
DECLARE statement is a m b i g u o u s , because  it is n o t  known w h i c h
1w , rw or 1 to use , the ones from the A instance or the ones
from the B instance.

However , if they are qualified such as:

DECLARE I<A .lw:B.rw>VECTOR [a.i)
J (B .iw:B.rw>VECTOR [B.l];

everything works correctly.

The sam e problem applies when referring to attributes
described in the WHERE clause , for example:

WHERE A<wl :w2> [l] :VECTOR;
B<ul :w2>[ll : VECTOR;

The qualification mechanism is also needed to refer to the
correct Wi , w2 and 1. The need for qualification can be
elim inated by unique names such as:

WHERE A<wi :w2>[iO] : VEC TOR;
B<w3:WJ4> (li]:VECTOR :

Qualification is needed (and required) within a device only
where names  don ’t u n i q u e l y  i d e n t i f y  the desired quantity (when
referring to concrete data items of an instance when there is
more than one instance of the same device in the same
context)

Following is a dec imal extension:
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DEC— DIG:DEVICE(C — F LAG:FLAG)EXTENDS WORD { <— } ;
SPECIFICATION “th is is a decimal digit ”

o p e r a t o r s  a re + , — ,

macro is IS—DD ;
uses REGISTER , FLAG ;

IMPLEMENTATION
operator + operands a ,b:DEC—DIG :

r e s u l t  c : D E C — D I G ;
C— FLAG // c. I <— ADD—EM(a.I ,b .I,C— F LAG);

operator — operands a ,b :DEC— DIG ;
result c:DEC—DIG ;
DECLARE TEMP<3 :0>REGISTER ;
IF b.I 0 THEN TEMP <— 0; -

ELSE TEM P (— B’ l O lO ’ — b.I;
• E N D I F ;

C — F L A G / / c . I  <— ADD—EM (a.I ,TEM P ,C— F LAG);
ADD—EM PROC ESSOR <II : 0>( A ,B , C)

DECLARE A< 3 :0>REGISTER , B<3 :0>RE GISTER , C FLAG;
ADD—EM < —  0//A + B + C ;
IF ADD—EM >9 THEN ADD—EM <— ADD—EM + 6;

• E N D I F ;
A DD—EM:END PROC ESSOR ;

IS—DD :MACRO “IS A<ID ) DEC— DIG”
WHERE A:DEC— DIG;
MEANS IF A< 1O THEN 1 ELSE 0;
IS—DD:END MACRO;

DEC— DIG:END DEVICE ;

DEC—WORD: DEVICE [l] (C—FLAG:FLAG);
SPECIFICATION

“DECIMAL WOR D OF 1 DECIMAL DIGITS”
operators are +, — ,
uses DEC—DIG ,RE GIST E R ;
m acro IS—DW;

R E P R E SENTATI ON
DECLARE J [1:1]DEC—DIG(C—F LAG);

I MP L EM E N T ATION
operator + operands atl i , b[1):DEC—WORD ,a.l=b.1;

result c [a.l] :DEC—WORD ;
DECLARE I<1:WIDTH (c.l)> REGiSTER;
DO FOR I <— 1 TO c.l;

c.J [l] <— a .J [I ]  + b.J [l];
operator — operands a fi]],b [l]:DEC—WORD , a.l:b.l;

result c [a .l]:DEC—WORD;
DEC LARE I < 1 : W I D T H ( c . l ) > R E G I S T E R ;
DO FOR I <— 1 TO c .l;

c.J [I]<— a.J [I] — b .J (I);
operator <-. operands a [i),b [l):DEC—WORD ,a.1:b.1;

resul t c [b.l] :DEC—WORD;
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DECLARE I<1:WIDTH (c.i)> REGISTER ;
DO FOR I <- 1 TO b.i ;

c.J[I) <— a .J [I) <— b .J [ I j ;
IS—DW : MACRO “ IS A<ID> DECIMAL WORD ”

WHERE
A: DE C—WORD

MEAN S
DECLARE TEMP <1 : W I D T H ( A ) )  R E G I S T E R ;
L A B O : B E G I N

DO FOR I <— 1 TO A .1;
NOT IS A .J (I) DEC—D!G THEN

— i N ;
RETURNS 0;
ESCAPE LAB O;
E D;
ENDIF ;

RETUR NS. 1;
LAB O : END

IS—DW: ENDMACRO;
DEC—WORD: EN-DDE VICE;

In the abov e example , some mechanism is needed to describe the
semantics for the operands of the operators. Al so some method
was need ed for describing the “shape ” of the results of
operators. The IS—DW syntax macro refers to data in the
repre sentation clause , (A.JtI]).

The paramete r  C—F LA G was not  e x a c t l y  car r ied  th rough
cor rec t ly .  No check was mad e to ensure  tha t  all It ems  were
declared us ing the sam e fl ag . In fac t , the en t i r e  issue was
a ide—stepped  by not  s p e c i f y i n g  which  C—F LA G , associated wi th
which  pa rame te r , to use In + for DEC—DIG for instance.

2.3 Conclus ions

It has been determined that  the only  two SMITE syn tac t ic
e n t i t i e s  tha t  can be ex tended  are STATEMENT and PRIMITIVE .
This limited method of extension coupl ed With the DE VICE
extension allows th e ex tension of d ata typ es , operations and
control structures , while keeping the Interpretation of
extensibility within reason.

A syntax macro is a separate part of the DEVICE IM PLEMENTATION
clause and along with all operations defined within the clause
follows the same rules of global visibility. Therefore any
syntax macro that is to be seen by the outside world must be
l isted in the SPECIFICATION c lause . Helper  processors can
also appear within the IMPLEMENTATION clause. The processors
c an ne v er be used directly by the outside world but they can
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• be used indirectly through the use of a syntax macro. A
s y n t a x  macro  can use any  o ther  v i s i~ le s y n t a x  macro  or
operator from other devices.

All syntax macros , helper processors and operators are
separate and autonomous entities within the IMPLEMENTATION
clause . Syntax macros can not be nested within one another bjt
helper processors may have nested processors and the scope of
names rule works as usual.

The entire mechanism of calling and expanding syntax macros is
done at compile time. Once the syntax of the call is
recognized all necessary semantic requirements are checked and
the macro is expanded if so indicated -. A syntax macro is a
closed context block with the exception that the there is no
concept of global variables , the syntax macro sees only the
data .local to itself and the device and any data passed
through parameters. Any call of a STATEMENT syntax macro
cannot be labeled since there is no method of adding new types
of context blocks to the base language and there is no way of
labeling a call of a PRIMITIVE syntax macro.

If the syntax macro is to be used in such a manner as to need
access to the concrete data representations of a device the
macro must be defined within that device and there must be a
method of indicating which instance of the device is to be
used .

• 3.0 Analysis of Direct Code in Advanced SM ITE

3.1 Direct Code Extensibility

SMITE serves the dual role of a computer description language
and a programming language for generating emulations. In the
latter capacity, when the emulator is used pr imarily for
analysis and execution speed is a secondary consideration ,
SMITE provides an ideal method for generating the emulator.

For developing emulations which have critical execution speed
requirements , it is desirable to improve the efficiency of the
object code produced by the SMITE compiler . This would allow
efficient emulations to be produced which retain the desirable
features of a SMITE computer description (structured , • ‘

maintainable , descriptive , easy—to—produce).

The improved efficiency of the SMITE compi le r  r e s u l t s  from
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opt im ization and extensibility. The compiler optimization
improves the efficiency of all the object code produced in a
manner transparent to the SMI TE programmer. The compiler
extensibility adds new construc ts to the language or permits
microcode to be Inserted directly into the computer
description . The direct microcode is used to improve the
efficiency of critical regions of the emulation to a degree
normal  op t imiza t ion  t echn iques  canno t  a t t a i n .  The e m u l a t i o n
execu t ion  speed can be improved substantially with a small
amoun t of d i rec t  mic rocode .

Direct code exten sions  to the SMITE compiler can produce
sub stantially more efficient code than an optimizing compiler
for several reasons:

a. The direct code can use new Q M — 1 m i c r o i n st r u c t i o n s
dev ised for a p a r t i c u l a r  a p p l i c a t i o n .  The
microinatructlons may initiate parallel operations , merge
ALU operations which would require several instructions ,
and eliminate the overhead encountered in the set up of
each microinstruction. In a typical QM— i emulation , the
less critical areas are coded with the MULTI instruction
Set and the more critical areas are put into n anocode .  The
direct code extension of SMITE permits this type of
optimization.

b. The SMITE compiler should not be expected in all cases
to rem ember which  r eg i s t e r s  hold e x p r e s s i o n s  and avoid a
penalty for reloading them . Likewise the compiler cannot
infer which assignments statements in- a loop can be
deferred until the end of the loop. In particular , direct
code extensions can improve execution speed sub stantially
in loops or code manipulating common data.

c. The SMITE compiler uses a subset of the CM— i Multi
instruction set and possible QM— 1 hardware. These
instructions are not necessarily less efficient than those
which a c  used in the compiler . In some cases (e.g., RAD ,
SWMS), these Instructions are used for unique operations.
In other instances (e.g., EXTR) , the instruction as part of
a code generation sequence could process only a subset of
the possible operations due to width or register
restrictions and a more generalized code sequence was
selected . For a specific application , the unused
instructions may be more efficient.

d .  The SMITE compiler  does not  pe rmi t  d i r ec t  access to
addi t iona l  Q M— i h a r d w a r e  or e x t e r n a l  SM ITE p rocessors .
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The f i r s t  task  of d i rec t  code e x t e n s i b i l i t y  is an a n a l y s i s  of
the type~of operations which might be used in direct code
ex tens ions .  The reason for th i s  stud y is to de t e rmine  how much
knowledge  of the preceding and subsequent  code mus t  be
available to the direct code and how the necessary information
must be expressed .

The interface of the direct code with the SMITE description Is
c r i t i c a l  and an analysis of representative cases should
illustrate the potential problem s . Table 1 consists of
microinstruction s which have been used m other emulations or
are used only to a lim ited c a p a c i t y  in the compiler . The type
of nanocode  opt im i zat ion  c u r r e n t l y  being performed should g i v e
some m n s i g h ~ in to  the type of d i r e c t  code e x t e n s i o n s  to
expect.
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Table I Emulation Microinstruct ions

MULTI
RAD Reg + CS to Reg and CS
SW Swap LS , CS
LDM Load multiple
STM Store multiple
PULL Pop CS s tack
SWMS Swap LS a nd ma in  store
EX E x e c u t e
EXTE Extract
SBO ,SBZ Set bit
TBO ,TBZ Test bit
LDEI Load external store
STEI Store ex t e rna l  store

QM 36
LD2 36 bIt  CS load
ST2 36 bit  CS s tore
LDM S2 36 bit MS load
STMS2 36 bit  MS s tore
ADR2 36 bit add
SBR2 36 bit sub t r ac t
36 bIt s h i f t s
36 bit logical operations

709~ALU2 36 bit  ALUX
GET ADD Get e f f e c t i v e  address
ADD2 36 bit add
NORMAL Normalize
NEXT decode instruction
UN PA C K
PA C K
LDRMI Loa d RMI
P.FETCH Institute prefetch
MPY 7O 91~SMITE
STM SK Store under mask
SHF TX Variable length shift
MPY 18 bit unsigned mult iply
DIV Divide
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Reviewing this list and analyzing the outputs of the SMITE
compiler , the following item s are potential areas for direct
microcode:

1. Instruction Decode

The instruction decode , which determines the opoode and
subfields of an instruction , is executed for each
emula t ed  i n s t r u c t i o n ; so opt imizations that are achieved
here  may  impac t  the  e x e c u t i o n  speed s u b s t a n ti a l l y .

The emulated program counter and instruction register
are m a n i p u l a t e d  in a manner which can be optimized by
new m l c r o i n s t r u c t i o n s  to take a d v a n t a g e  of the
pa r a l l e l i s m , use of a d d i t i o n a l  - Q M —1 h a r d w a r e  ( R M I ,
i ndex ed ALU ) and t a i l o r e d  microcode  to avoid r e load ing
da ta .  The d i r ec t  code needs  to access da ta  wh ich  may be
maintained in dedicated QM— i register. It may  be
desirable to continue the Instruction decode to the
point where it performs a multipl e branch (CASE) and
leaves some of the decode data in QM— 1 registers for use
by la ter  processors .

2. Ope rand  Fetch

The ope rand  f e tch  r o u t i n e  finds the effective address of
an i n s t r u c t i o n , tes ts  the  address  v a l i d i t y ,  and r e t u r n s
the  v a l u e .  Since all memory  r e f e r e n c e  i n s t r u c t i o n s  use
this code , another substantial reduction can be
obtained .

The use of new microinstructions and tailot~ed codeshou ld  s u b s t a n t i a l l y  improv e e x e c u t i o n  speed . Since the
current SM ITE applications have performed the operand
f e t c h  in a f u n c t i o n a l  processor , it can be expected that
the direct code will use control store and main store
v a r i a b l e s  as the  i npu t  and r e t u r n  a v a l u e  in the
registers allocated for function values.

3. Special Operators

There are a number of higher—level functional operations
which are translated inefficiently from their SMITE
representation.

A. Normalize

Normalization is expressed in SMITE by an
iterative loop, which shifts the variable until

84 

—-•--- -••_ _ -•- — _ - —--~- -~- _ _ _ _ - _ _



.- • • ~~--‘.-~~~

normalization occurs and increments the counter.
The i n p u t  m a y  be an exp res s ion  ( e . g . ,  X + Y) and
poss ib ly  a b i t  pos i t i on  and the Output is the
normalize d value and count.

B. Multiply

M u l t i p l i c a t i o n  is expres sed  in SMITE by an
Iterative test— and— add— loop. An easier method is
to use a multipl y microinstruction , such as the
one developed for SMITE , to m u l t i p l y  the  e n t i r e
operands or subfields of the operands. The inputs
and outputs to this code should be analogous to
functional processors.

C. Divide

Division is expressed in SMITE by an iterative
ioop which tests , shifts , and subtracts data. An
addi t ional  d i f f i c u l t y  is t h a t  the d i v i d e n d  is
usually longer than the maximum shift width (36
bits) and the SMITE programmer must manipulate
da ta  to pe r fo rm the w i d e  s h i f t s .

A ver y large number of data storages occur due to
this cumbersome code. The division code interface• should be ana logous  to tha t  for  f u n c t i o n a l
processors.

D. Long Sh i f t8

A similar problem occurs for certain double
register shift operations. The long shift
operators operate on two emulated registers and
sh i f t  them by a spec i f ied  amoun t .  The r eg i s te r
should be SMITE variables , but the amount may be
an expression.

E. Floating Point Arithmetic

Floating point operations may obviously be
described in terms of fixed point  o p e r a t i o n s  on
the mantissa and exponent. A series of related
manipulations of the mantissa . and exponent occurs
which may be optim ized by new micro instruct ions
( e . g . ,  pack , u n p a c k .  f l o a t i n g — a d d )  or by o p t i m i z e d

• MULTI code.

F. Stack Operations
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At the direct code level , emulated stack
operations could use push , pull , and block move
capabilities in the MULTI instruction set.

G. Decimal Arithm etic

The QM— 1 at the nanoprogram level or ALUX
instruction can perform dec imal arithmetic
directly. Direct code to perform dec imal
arithmetic would operate probably on SMITE
v a r i a b l e s  or f u n c t i o n a l  p a r a m e t e r s  and r e t u r n  the
r e s u l t  in v a r i a b l e s  or in a r e g i s t e r .

H. Ones Complem ent Arithmetic

Ones complement arithmetic requires an additional
level of manipulation and testing on a twos
complement machine. A significant improvement
could be a t t a i n e d  w i t h  d i r e c t  code r o u t i n e s  to
opera te  on SMITE variables and return the result
in a register

4. Subscripting

The sub script operation in SMITE requires several MULTI
operations , especially when the array is packed . A
special microinstruction could be c rea ted  to merge  the
shifting , addition , and fetch into one instruction . The
code , howeve r , would ope ra t e  on e x p r e s s i o n s .

5. Direct I/O Access and Tasking

It would be convenient to initiate tasks or I/O
o p e r a t i o n s  from the emulator rather than invoking PROD
throug h an external function. For access to QM— 1 I/O
dev ices  from SM ITE or the control  of c o n c u r r e n t  task , it
is more e f f i c i e n t  to exerc i se  control  from the emula to r
r a t h e r  than PROD.

6. Virtual Memor y or Associative Memory Actions

There may be special operations , such as SWAP or SEARCH ,
defined for extensions to the language. Since these
operations may involve block data moves or searches , it
m a y  be e f f i c i e n t  to cons t ruc t d i r e c t  code to implement
them . The SWAP ope ra t i on  wo uld invo lve  access ing  the
d i s k  to page m e m o r y ,  w h i c h  c u r r e n t l y  can be done on ly  if
the emulator returns control to PROD.
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Issues to Resolve:

1. Di rec t  Code D i r e c t i v e s

The term direct code is somewhat misleading because it
implies the programmer codes a routine in the MULTI
instruction ~et and it magically appears in the final
object. This approach is insufficient for several
reasons:

a. If the direc t code specifies actual QM— 1
registers , they may not be available at the time
(currently being used by the compiler). A method
m ust be c rea ted  for p r e s e r v i n g  the  i n t e g r i t y  of these
registers over the direct code.

b .  The d i r e c t  code mus t  access v a r i a b l e s  in the
SMITE data  base . These v a r i a b l e s  may  be a l loca ted  in
ma in  store , co n t r ol s tore , or C M — I r e g i s t e r s

c .  The d i r e c t  code must interface with the
surrounding SM ITE statements. It may require inputs
to be available from preceding statements and supply
results to subsequent s t a t e m e n t s .  There mus t  be a
method of expressing the param eters of the direct
code and t he i r  p rope r t i e s  so that invocations of the
code can be processed by the  compi l e r .

d. The direct cod e may interface with the control
structure. For i n s t a n c e , the direct code may contain
a conditional branch and for one branch it may be
des i r ab l e  to invoke  a SMITE p rocessor .  In o ther
cases , i t may  be d e s i r a b l e  to i n i t i a t e  a CASE
operation from the direct code. Althoug h MULTI code
can be generated to perform these functions , it
violates the structured programming concept.

2. Direct  Cod e In vc ~~at ion

We must  reso lve  how to process the i n v o c a t i o n  of d i r e c t

L 

code and what parameters are necessary. These tasks
include the following :

a. The compiler must recognize i~nvocation s of direct• code.

b. The compiler must be aware of the inputs and
outputs which are required by the direct code.
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c. The direct code must be checked for v i o l a t i o n  of
certain conditions (such as assembly errors).

3. Compiler Interface

From an i m p l e m e n t a t i o n  s t a n d p o i n t , s eve ra l  issues a r i s e
when a t t e m p t i n g  to i n t e r f a c e  the  d i r e c t  code wi th  the
outputs of the various compiler phases. The direct code
mus t  be t r a n s l a t e d  into an analogous representation to
parse trees which are generated from the Input SMITE
c o m p u t e r  d e s c r i p t i o n .  These new trees must contain
sufficient information to be processed during the
a l l oca t i on  and optimization phases. Additional code
generation sequences must be de f ined  to process the
direct code , its macro operations and any new
mi croinstruc tions.

3 .2 D i r e c t  Code Seman t i c s

D f r e c t code e x t e n s i o n s  p e r m i t  the p rog rammer  to force the
c o m p i l e r  to o u t p u t  s p e c i f i c  code sequences for improved
efficiency or space utilization. Although the direct code
ex t e n s i o n s  m a y  be r e g a r d e d  as the  i n s e r t i o n  of specific
microprogram sequences in the compiled code , the extensions
must  c o n t a i n  more i n f o r m a t i o n  than the MULTI code which is
desired by the programmer . The direct code extensions must
also interface with the various SMITE compiler phases.

The semantics issue then is to define the format of the direct
code extensions. The first task is to r e v i e w  the  problem s
envisioned interfacing the direct code with the SMITE
statements. Then the proposed direct code extension format
will be discussed . The proposed semantics will then be
examined to determine their adequacy.

The direct cod e must contain information specifying the object
code produced and the interface with the SMITE code. The
direct code extensions must provide , at least , the following
i n fo r m a t i o n :

1 . The direct code may require parameters at the time of
its invocation and may return a value . The number of
p a r a m e t e r s  mus t be specified along with the width of each .

2. The direct code may address all QM— 1 registers. It may
also address virtual registers the user declares as SMITE
variables. The compiler will assign the virtual regIsters
to actual registers and if necessary, save and restore
registers.
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3. The d i rec t  code may not d i rec t ly  access var iab les  in
the SMITE data base other than those described in 2).

4. Since SMITE is a struc tured programming language , the
direct  code must preserve the overall program structure.
Furthermore , several phases of the compiler depend upon the
structural nature of the program . Enoug h in fo rmat ion  mus t
be available to the compiler to check the structure of the
direct code and verify that it is Irreducible.

5. There are several compiler conventions observed in the
code generation of which the programmer should be aware if
he wishes to use them . These include the knowledge of the
dedicated zero—register , processor call convention , and
SMITE stack manipulation . It should be mentioned however ,
that the user must be very careful in using these sort of
items.

The following semantic expressions are allowed for direct code
extensions:

1. Representation

A , new representation is available for declaring virtual
registers (temporaries) . The compiler recognize s that
the variable will be maintained onl,y in a QM— 1 register
and that the actual assignment occur s during the code
generation phase of the compiler . The temporary
variable may be assigned a width . For example the
statemen ts

DECLARE TEMP1<35:O> TEMPORARY
TEMPZ< 17:O> TEMPORARY;

causes a QM-1 register pair and a single QM— 1 register
to be allocated to the two variables by the compiler . A
method of allocating these data items to specific QM— 1
registers should also be provided .

The same scope of names rules apply to temporaries .
Since the use of temporaries can lead to an
unavailability of registers at times , a compiler
diagnostic is desirable.

2. Direct Code Definition

To provide for the definition of direct code there are
three new ke ywo r d s to be processed :
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DIRECT — specifies the start of a direct code block

SMITE — specifies the end of a direct code block and
the return to SMITE statement processing

#<statement> — permits the insertion of one SMITE
statement in a direct code block. It is equival ent
to SMITE; statement ; DIRECT;.

As a sample case to show the use of the definition constructs ,
assume the target computer is 32 bits wide and a stack push
operation is to be coded as a direct code extension :

The prologue ma y be ex pressed as follows:

DECLARE TEMP1 TEMPORARY;
DECLARE TEM P2 TEMPORARY;

TEM P1 <- A;

The RUSH operation may be expressed in terms of QM— 1 MULTI
instructions as follows :

DIRE CT;
LDD TEMP2,RZER O,STACK—POINTER TEMi’~=value ofSTACK—POINTER
ADI TEMP2,1 BLIM P POINTER
ST TEMP2,R.ADR NEW
STACK—POINTER
SLLI TEM P2,1
ADN R.MX ,TEMP2,STACK—2 CURRENT TOP OF
STACK
STMSX TEMP 1 ,1
STMS TEMP1+1 ,R.MX

SMITE;

Following are the features to be provided by direct code:

1. MULTI Instructions

The direct code extensions to the SMITE compiler will be
ex pressed in a language similar to an assembly language
for all operations available to the compiler . For new
operations additional tabul ar information is required .
(See 2 following.)

A new data type used for the communication of data
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between SMITE statements and direct code must be
provided (TEMPORARY data type).

The sub set of MULTI instruc tions used by the SMITE
compiler and the mic ro ins t ruc t ions  created for the SMITE
com piler are available for direct code. These
instructions are expressed in the format used in the
MULTI lan guage. The SMITE compiler assumes the burden
of:

1. Determining whether the instruction operands are
registers , literals , or SMITE variables (TEMPORARY
data type).

2. Determ ining whether transfer labels are defined
within the direct code block.

3. Generating operator trees for the MULTI
i n s t ruc t ions .

4. CheckIng the syntax of the input Instruction for
errors. These includ e an incorrect number of
parameters , the wrong type of instruction operands
(e.g., a variable in the register field) , or illegal
characters.

5. Perform ing tests on the consistency of the
operand and the instructions. For instance , a
control store operation with a main store variable is
an illegal combination.

6. Testing the flougraph of the direct cod e to
ascertain that it adheres to the structur e condition
(reduc ibility) imposed by the compiler .

7. Generating any head er and trailer trees need ed to
alert the compiler of direct code processing which
may affect processing.

8. Determ ining whether SMITE variables used by
direct code are declared as TEMPORARY.

2. New MULTI Instruc tion Definition

Many of the direc t code extension3 will use new
m icroinstructions created for the particul ar emulation .
Typical ex amples would be floating point arithmetic ,
ones—com plement arithmetic , and instruction decoding .
Nanocode for these operations must be wri t ten  and added
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to the SM ITE Applic ation Support System tape. The new
nanocode must  be mad e resident  in nanostore in some
m anner.

In the direct code extensions , the new microins t ructions
will be referenced in the same manner as the standard
instructions. This forces the programm er to inform the
compiler about the new opoode. A new construc t, OPDEF,
must be includ ed for all new microinstructions. OPDEF
contains the following information :

1. Opcode mnemonic

2. Opcode number

3. Ins t ruc t ion  format — numbers and types of
operan d s

The design wi l l  require that  the va r ious  SMITE
programmers allocate nanostore so that there are no
confl icts.

3. User Defined Decode

A method of a l lowing the user to de fine  an inst ruc t ion
decoding schem e, other than the CASE statement or
cascaded IF statements , must be defined . This method
must allow the user to take advantage of the speed
afforded by microinstructions when designing the decode
mec hanism .

3.3 Anal ysis of Potential Direct Code Applications

The propo sed direct code capabil ity should be ex amined to see
if it is adequate for the potential direct code applications
stated in the ov erview .

3.3.1 Decode

The instruction decode will be a new microinstruction . It
is up to the user to define what this new micro instruction
ac tually does.

3.3.2 Operand Fetch

The operand fetch instruct ion uses the outputs of the
decode instruction which are.maintained in QM—1 registers.

3.3.3 Normal ize

I
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A normalize extension can be developed to perform a wide
var iety of normalizations. Three parameters (value , shift
count, bit—position) define the normalization. The bit
position specifies the normalization bit. That bit and all
bits to the left of it are unchanged by the normalization.
The bits to the right are shifted until the normalization
bit and next most significant bit differ. The number of
bits shifted is returned in the shift count parameter.
t4anoeode would be developed to perform the normalization .

3.3.4 Multiply

The fixed point 36 bit multipl y direct code extension may
use the SMITE MPY instruction twice to perform an unsigned
mul t ip ly .

An 18 bit multipl y would be accomplished by a different
code sequence which bas ica l ly  would execute one MPY
instruction . Variables wider than 36 bits would be
multipl ied by repeated calls to the 36 bit processor.

The resul t of the multipl y could be placed in contiguous
QM— 1 registers. SMITE code following the direct code could
move the data to the proper locations.

3.3.5 Long Shifts
I

The direct code for long shifts would benefi t substantially
from a nanocod ed 72 bit shift instruction. The direct
codes must be able to~ use a block of four contiguous QM— 1
registers and shift the registers singly or as 36 bit
quantities. The fo],lowing code performs a 72 bit
ar ithmetic right shift.

TEMP <— A//Q;
TEMP2 <— SHIFT—COUNT ;
DIRECT;

LOOP:
LDI TEMP3,18. 18 BIT AT A TIME
CPR TEMP2,TEMP3 SHIFT
BZS SIGN , GT18
MVR TEMP3,TEMP2 LT 18 BIT COUNT

GT 18:
SBR TEMP2 , TEMP 3 PREPARE FOR NEXT PASS
MVR TEMP4,TEMP 1+1 SAVE LOWSHIFT BITS
SHFTX TEMP 1 , TEM P2, DBL+RIGHT+ARITH
SHFTX TEMP1+2,TEMP2, DBL+RIGHT+LOG
SBI TEMP2,18 NUMBER OVFL BITS
NGR TEMP2,TEMP2 1 8—PARTIAL SHIFTCOUNT
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SHFTX TEMPU ,TEMP2, SNGL+RIGHT+LOG ISOLATE
SHFTX TEMP4, TEMP2, SNGL+LEFT+LOG
OR TEM P1+2,TEMP4 OR OVFL OF FIRST SHIFT
BNZ TEMP2,LOOP

SMITE;

3.3.6 Decimal Arithmetic

The decimal arithmetic operations will use the QM— 1 dec imal
arithmetic ALU cod e~ , which may be accessed throug h theALUX instruction . The decimal cooed sum of two 16 bit
registers is formed along with the correction word
necessary to convert the number back to dec imal coded
format . The direct code must separate the original
variables into 16 bit quantities , perform the QM— 1 dec imal
add , and correct the result.

3.3.7 One ’s Complement Ar ithmet ic

As an exam ple, ones complement addition may be expressed by
the following m icrocode:

TEMP 1 <— S E ( A) ;

TEMP2 <- S E ( B ) ;

DIRECT;

‘‘BEGIN DIRECT CODE’’

ADR TEM P1 ,TEtIP2 36 bit ADD

BZS CARRY ,DONE NO END AROUND CARRY

ADI TEMP1 ,1

DONE:

‘‘HANDLE RESULT = ALL ONES’’

SM ITE;

3.3.8 Direct I/O or Tasking

The programmer must be responsiole for the proper
nanocoding of the task control instruct ion and the
interface  with the QM— 1 system . The in ter face  of this  cod e
with  the user control system ( PROD , EASY etc ) need s
investig ation .



3.4 Conclusion

Direct code extensions will provide a powerful new capability
for the SMITE compiler . Most of the problem s interfacing
direct code with the SMITE expressions are readily solvable.

The process of informing the compiler of new microinstructions
po ses a compiler des ign problem . The new operat ion must
specify some form of table—driven logic within the compiler .
Any new operation which can be expressed in terms of these
options can be passed to the compiler . The failure to
provide for the possibility of certain options will limit the
type of microinstructions or macros that can be added .

The implem entation of the direct code capability presents
sev eral compiler problems. The direct code expressions must
be converted to compiler trees f o r  later processing. The
trees also conta in attributes of the ex pression , which must
interface with the SMITE expression attributes. The
processing of the direct code requires a true assembler
processing of the direct code , wh ich is not present in the
cu r ren t  compiler . The processing of direct code also involves
generat ion of f low graphs to de termine  if the s t ruc tur e is
red uc ible.
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