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INVARIANTS AND CANONICAL FORMS UNDER FEEDBACK

I
P. L. Faib and W . A. Wolovich

•1
Abstract: This paper is concerned with the development of a complete -

set of invariants and canonical forms under feedback for linear

systems characterized by proper rational transfer matrices. The 
- .

invariants are determined in the frequency domain and consist of the

Kronecker set of controlla bil ity indices together with a canonica l form

for the numera tor of the transfer matrix under the action of a i
stabilizer subgroup of the unimodular group of polynomial matrices.

The techniques used are algebro-geometric in nature.
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ITT~~~~~~~~~~~~~~~~~~~~~~INVARIANTS AND CANONICAL FORMS UNDER FEEDBACK

I
1. Introduction

I Let k be an infinite field and let x be an indeterminate

over k. Denote by kix] the ring of polynomials in x with

I coefficients in k and by k (x)  the quotient field of k[x].

Call an element n(x)/d(x) of k(x) proper if degree n(x) <

degree d(x). Let M~ m = M~ m~~~~
Cj) be the set of 

~ 
‘< m matrices with

I entries in kEx] . Elements of Mp,m are called polynomial matrices.

Let Z = E (k(x)) be the set of p X m matrices of fullp,m p,m
I rank with entries in k(x) which are proper. Elements of Zp,m

are called proper transfer matrices. It is well—known that if

T(x) is an element of Ep,m f then T(x) can be factored as a

product R
T
(x)P

~~~
(x) where R.~(x) and PT(x) are relatively

right prime polynomial matrices. Thus, T(x) can be identified

I with the (m+p) x m polynomial matrix

I r~cx)1
( O

T
(X) = 

LPT X]

Let 
~ m 

= 

~~~~~~~~ 
be the group of m x m unimodular poly-

nomial matrices. Then, acts on Ep m  via right multiplication .

I DefinitiOn 1.1. J M = (m jj) be an element of Mq,r• Then

= max{degree mii i i — l,...,q} is called the j-th column

I degree of M. M can thus be written in the form

-

~~ I
C..



2

a
M = ~~(M)diag(x ,...,x r] + M1 ( 1 . 2 )

where t~ (M) is a q X r matrix with entries in k,
a

diag (x ~~~~~~~~ 
r
1 is an r X r diagonal matrix with main diagonal

entries x ]
~~~~~~~ 0~~~~ 

r 
~~~ 

M1 is an element of Mq,r with

3~~(M1) < 3~~(M) = for j  = 1,...,r. ~c (M) is called the

column coefficient of M. M is column proper if tS
~~
(M) is of

full rank. Thus, if q r, M is column proper if and only if

~C
(M) c ~~(k,r). Let n = a 1 + •. .  + 8r and let S

M
(x) be the

n X r polynomial matrix given by

1 0~~~ -. 0

x 0 •. .  0

a —1
x l 0 ... 0

o 1 .

SM (x) = . X (1.3)

. 
a2—i

0

: a —i
0 0

so that M1 
= FMSM (x) where FM is a q x n matrix with entries

in k.

It is well-known that if P is a nonsingular element of

11

-,- ~~~~ ~~~~~—
.—. . - - -- . . -
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Mm ,m f then there is a U in 
~ m 

such that PU is column

proper (11]). Thus, under the action of 01
m ’ aTt

~
c) is equivalent

to a O~~(x) for which P~~(x) is column proper.

Definition 1.4. ~ T be an element of Ep,m with

= [
~]‘ ~

T column proper. Let n = degree det Let G

be an element of GL(k,m) ~~~ F be an element of

Call (F,G) a state feedback pair. Set

= G
~~

{PT 
— FS~ } ,  R,~ = R.~ (1.5)

F,G T F,G

~~~~ 
TF G  

= ‘
~
TF,G TF,G 

Then T1 C Ep,m is equivalent to T

under state feedback if there exist state feedback pairs (P,G),

(F1,G 1 ) such that T1 = T and T = T
a. a. a. F,G l F 1,G1

Note that it is implicit in Definition 1.4 that aT is
1

equivalent to 0
T under the action of *m and that a

T is
F,G

equivalent to a
T 

under the action of
1

The main result of this paper will be the determination of

a complete set of invariants and corresponding canonical form for

this equivalence. Loosely speaking, the complete set of invariants

is (Rcea i~
...sa ) where Rc is a canonical form for R under

the action of an appropriate subgroup of

Section 2 contains a discussion of the system module and the

Kronecker indices. State feedback and properly indexed systems

are analyzed in section 3. The main results are stated and proved

I
- -- . - _ .  _ 

- - . - __-
C..
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in section 4. Several examples are examined in 3ection 5 including

the so-called “controllable” case ([2), [3], [4]). Finally, some

concluding remarks are made in section 6.

2. The System Module and the Kronecker Indices

Let T be an element of Ep,m and let aT be an element

of Mp+m,m which corresponds to T. In other words, aT is an

element of Mp+m,m such that a
T 

= 

[PT] 
with RT f PT relatively

right prime and T = RTPT
1. Any such aT shall be called a

linear system (minimal) with transfer matrix T. If E isp,m

viewed in this way as a subset of M , then E is invariantp+m,m p,m

(stable) under the action of ‘
~~ . Let S CM be the
in p,m p+m,m

set of all linear systems.

Proposition 2.1. ~~~ a be an element of 
~~~~ 

and let =

be the j-th column of a (so that a~ £ (k[X])~~
’m). Then

are free over k[x].

m
Proof: Suppose ~ ~..(x)a.(x) = 0 where ~~~~. ~ k[x]. Let

3 3
rRl In

= 
a~ so that det 

~c ~ 
0. Then 

~ ~
‘
~~a 

= 0 where P
La ]  ~°1~~ 

j
is the j—th column of P .  In other words, P~~ = 0 where ip is

the element of (k[X])m with components 
~l~~•~~~

I IP m * Since

det P ~ 0, ‘p = = ‘P = 0. 
-

a 1 m

Definition 2.2. Let a be an element of Sp, m and let M0 ~~

the free submodule of (k(xJ )P’~
m with generators ~~~~~~~~~

I
C..
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is called the system module of a.

Proposition 2.3. M0 is a complete invariant for the action of

I ‘
~m

Proof: If a , ’ £ ~~~~ and there is a U in such that

atj = I , then M 0 = M,. For, aU = T implies that

= Iu . 2.a9,
, j = l,...,m, so that M1 C Ma• Similarly , Mc C M1

and so M
~ 

is an invariant.

I On the other hand , if M
~ 

= M, for a ,T in ~~~~~ then

a. = ~~~~~~~~ and 
2. 

m~~
l
rn~~~

r 
for j = l,...,m, 2. =

But this implies a. = ~ u.2.v2. a for j = 1,... ,m . Since
~ L=l r=1 3 r r

the a~ are free generators of Mcf ~~
uj2.v2.r 

= 

~jr’ 
i.e. UV = I

so that TU = a with U in ‘
~m 

and the invariant Ma is complete.

Corollary 2.4. The transfer matrix is a complete invariant for the

¶ action of ~ on S- m — p,m

If a £ ~~~~~ let a.. = a.~~(x)~ i = l,...,p + m , j l,...,m

1 be the entries in a and let R0 = (a.~~)~ i = l ,...,p, j = l,...,m

and = (a.~~)~ i = p + l,...,p + m , j = l,...,m. Note that

Ta 
= RaP;

1 and that RasPa are relatively right prime by the

definition of 
~~~~~

Definition 2.5. Let a be in S and let P be a column proper

I 
p,m

element of Mm ,m such that P = PaU for some U j ~~ ‘
~~~~~

. Then

I
C.,
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the set of integers {a1(P),...,9~~
(P)} is called the Kronecker

set of a and is often written =

Theorem 2.6. Let a be an element of 
~~~~~ 

Then Ci) aa ~~~~~~

well-defined; and, (ii) if t = cu for some U in ‘
~k I  then

= 3a (as sets).

Proof: Clearly, in order to prove (i), it is sufficient to show

that if two column proper matrices are equivalent under the action

of ‘~c~’ then their sets of column degrees coincide. This will

also establish (ii) since I = au implies P~ = P~U and P1V

column proper implies Pa(UV ) column proper.

So suppose that P1 
= P2U where P1 and P2 are column

proper and U . is in Let ~~ j = 1,... ,m},  {3~~ j = 1,... ,m}

be the column degrees of P
1,P2 respectively. Since P2 is

invertible,

U = [Ad] P2]P1/det P2 (2.7)

where Adj P2 is the adjoint of P2. Since the adjoint is the

transpose of the matrix of cofactors and P2 is column proper ,

degree [Ad] P21~,~ < n — (2.8)

where n = degree det P2 
= degree det P1. It follows that

degree ~~~ ~ 
- a~ (since ~~ = 

r~1~~
d
~ 
P2]irj/det P2). But, ii 

-

for fixed j ,  not all ~~~ are zero and so, there is an i( j )

1
- -. -- - - -,. ---- ~~ - --~ ~—_

C..
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such that > and vice—versa. By virtue of the following

lemma , the sets ~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~ coincide.

Lemma 2.9. Let {a 1, ..., a~
}, 

l~
e
~~~~

Cm} be sets of nonnegative

integer

~ 

such that (i) 
~~~~, 

+ . • .  + 3 = £
~ 

+ . . .  + C =

(ii) for each there is an Cj(j) with ~ £~j~~j~ and vice—

versa. Then the two sets coincide.

Proof: A simple double induction ([5]).

Corollary 2.10. If Ma 
= M1, then = 3

~ 
(i.e., 3a is an

invariant for the action of ‘~j  on S ) .In — p,m

Definition 2.11. Let a be an element of S . Then
_ _ _ _ _ _ _ _ _ _ _ _  — p, In

= degree det is called the (McMillan) degree of a.

Corollary 2.12. If Ma 
= M1, then n = n

~ -- ~~~~‘‘  

~a 
is an

invariant for the action of ‘
~m ~~ ~~~~~~

3. State Feedback and Properly Indexed Systems

Let T be an element of and let aT correspond

to T with P~ = P column proper. Let G be an element of
T T

GL(k,m) and F be an element of M (k) where n = n . Asn,m

in Definition 1.4, set

~
TF G  

= G
1{P

T 
- FSPT

}t 

~~F G  
= (3.1)

I

H.



8

and

TF G = R .~
, . (3.2)
F,G F,G

Observe that is column proper with the same column degrees
F,G

as and that degree det = degree det 
~T 

= fl~ Thus, T~F G
is an element of ~ . However , R.T and P need not bep,m F,G TF,G

relatively right prime so that nT < n.~ This corresponds to
F,G

the potential loss of observability under state feedback.

Lemma 3.3. Let T and T be elements of E which are

~g~ivalent under state feedback. Let a = a
1 

=

and let (F,G), (F ,G ) i~e state feedback pairs such that1 1

TF = T and T = T. Then RT~
P and R ‘P1 — 1 F1 ,G1 TF,G 

— T1 T1 F G

are relatively right prime.

Proof: Simply note that

na~~~
nTF G

nTl
nal Tl F G

n
T~~~~ a 

(3.4)

so that (say) degree det 
~T 

degree det . But
F,G 1

RT P
’
~~ = RIr P 1 and so, if D were a greatest common right

1 1  F,G

~Note that ~T 
is, by definition , the degree of a linear system

F,G
(minimal realization) corresponding to the proper transfer matrix

TF G .

a

C..
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divisor of RT~
PT , then degree det D = 0 which implies that D
F,G

is unimodular.

If T and T
1 

are equivalent under state feedback , write

T - T 1.

Theorem 3.5. The relation -. is an equivalence relation.

Proof: Obviously, T -. T and T -.T1 implies T1 
— T. So

suppose that T - T1 and T1 
- T2. Then there exist (F,G),

(F11G1) such that TF,G 
= T1 and T

1 F1,G1 
= T2. In view of

Lemma 3.3, ‘~T ’~~T is a minimal realization of T1 and so,
F,G

R , (P ) is a minimal realization of T • ButT TF G  F11 G1

(P 
G 

= (GG1)
1{P — (F+GF )S } ( 3 . 6 )

TF,G F1, 1 T 1

since S~ = S~, as is column proper with the same
TF G  T F,G

column degrees as 
~~ 

In other words, (F+GF 1IGG1) is a state

feedback pziir (~ ,Ô) for which Tp ~ = T2. Similarly , there is
~~ 3

a state feedback pair (F2,G2) for which T2 ~ . 
= T.

The goal of determining complete feedback invariants is,

thus , reduced to the characterization of the orbits of the

equivalence relation in 
~~~~~

Lemma 3.7. Let P1,P be column proper with ~p = a~ 
= a. Then

there exist (F,G) ~ 4 U 
~~ 

such that 
~
‘l 

= PF G U

G 1{P—FS~ }U.

I
C.
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Proof: Let P = M diaglx 1
] + N S~, Cx). Since ~p = ap =

1 1 1
there are elementary row and column matrices ~~~~~~~~ such that

a.
P1 

= {ME~diag [x 
1j + NE~S~~(x)}E~ . Thus, it is enough to consider

M diag [x ~J + N.. S (x) where M = MEin, N = NEn. Take1 .~. p 1 r 1. r

G = 
~~

(P)M1 , F 
= [F - GN1] where P = ~~ (P)diag [x ] + F S (x)

and U = E ~ .

Definition 3.8. Let P be column proper. P is properly indexed

~~~~~ 
. . .  

~ 
3~~(P). Call a c Sp,m properly indexed if P

is properly indexed.

Let 0(T) denote the equivalence class of T under -

Then there exists a T1 in 0(T) such that a, = a is
a. T1

properly indexed. Thus, it is enough to consider the characteriza-

tion of the sets 0(T1) = {T21T2 - T1, aT l aT properly indexed}.

Definition 3.9. Let W~ = {
~ I P properly indexed, 3(P) = 31 and

let S(W ) = {U ~ ‘a~ w ii = w } be the stabilizer of W . Write
— a ‘n ~ .

= S(W3
). 

-

Proposition 3.10. Let 3 = {3~ ,.. . ,3~ } with 
~ 

Then

U = (u~~ ) C if and only if degree ~~~ < ~~ 
— if a~ ~

and u. . = 0 if 3. < 3..— 1] — 3 1.

Proof: Let P c W 3 and suppose U satisfies the degree conditions.

Then 31(PU) < 3~ . Since degree det P = degree det(PU) = = ~~~
and a~~(Pu) < 

~~ 
implies degree det (PU) < PU must be column

proper with the same column degrees as P.

C- ,
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Conversely, if U C and P C W3, then PU = C

so that U = P~~~ = [Adj P]~ /det P. But degree(Adj P]~~ < fl -

where n = degree det P. Since = 3~ , it follows that

degree u. . < 3. - 3. if 3. > 3. and u.. = 0 if 3 . < 3..
1 3 — ]  1 3 — 1  1] 3 1

Corollary 3.11. If P C W3 ~~~ u c 
~~~~~

, then S~~~(X) = S~~(x).

Corolilary 3.12. .~~! 3] = ~2 
= then = GL(k,m).

Corollary 3.12 indicates that the prospect of determining a

canonical form for the quotient under is favorable. More

precisely, if R £ Mp,m with 31(R) < a1,.. .,3 (R) < a~, then

3~~(RU) < for U in and if X~ = {RI a
~~
(R) < 3.}, then

X3 is stable under ‘
~~~~

. Call R,R1 equivalent modulo if

R = R1U for some U in 
~~~~

. Then it is of interest to

characterize the quotient X3/ *3.

4. Invariants and Canonical Forms

rRl
Let a = j aj be a properly indexed element of S with

LaJ p,m
= 3a 

= 

~
3l’ ”’~ m~ 

and let = {RI 3~~(R) ~ Then X
3

is stable under the action of on the right and X
3 is stable

under the action of GL(k ,p) on the left.

Definition 4.1. R is equivalent to R1 modulo if R R1U

f for some U in In such a case, write R -
~~ 

R1. R is

equivalent to R1 modulo GL (k,p) ~ if R = HR1U for some H

in GL(k,p) and some U in ~~~ In such a case, write R -3,~ R1. 

. _ _
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It is clear that —
~~~ and 

~3 p  
are equivalence relations.

Consider now the quotients X3/~~ 3 and X3/GL(k ,p) X The

existence of canonical forms for these quotients will be established

in the sequel. So, suppose, for the moment that such canonical forms

Rc~
Rc,p l respectively, exist. Then:

Theorem 4.2. A complete system of invariants for equivalence under

state feedback is given by (R
~~

3) and a complete system of in—

variants for equivalence under state feedback and output transformations

(i.e. action of GL(k,p)) is given by (R
~~~~

3).

Proof: Suppose first that a1 
= 
[1] 

and a2 
= 

[
~2] are properly

indexed systems which are equivalent under state feedback. Then,

there is a feedback pair (F1,G1) such that (1) R1,G1
1{P1 

- F1S~ } =1

F are relatively right prime and (ii) R1P1
1 

G 
= R2P2

1. ButF1, 1
G1
1{P1 

- F1S~~ } is column proper and properly indexed. Thus,

there is a U in * such that R = R U and P = P U.m 1 2 1 F 1,G1 2

Hence, 3a 3a as ordered sets. Moreover , by the argument used
1 2

to prove Theorem 2.6, degree ~~~ < 3~ 
- a~ if a~ > and

= 0 if 3~ < so that U C in view of Proposition 3.10.

Hence , R1 -
~~ 

R2 so that R1~ 
= R2c~ 

In other words, (Rc~
3) is

an invariant.

Suppose now that a1 
= [
~
] and a2 

= 
[21 

are properly

indexed systems with 3 = 3 = a and R = R = R . Then,lc 2c c

there are U1,U 2 in *~, such that R1U1 
= 

~~~ 
R2U2 Rc and

p
1 

= 

~~~~~ ~2 
= are properly indexed with 
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I A ...l
I T1 

= R P 1 , T2 
= R

~
P2 . But, there exist G1,G2 in GL(k,m)

such that

G1
1P1 

= diag [x 1) + F1S3 (x)

= diag [x ~] + F253(x)

and it follows that

- I - 
G2[G1

1P1 + (F2—F1)S3(x)] 
= P2

G1[G2
1P2 + (F1—F2)S3(x) ] = P1

In other words, ~~ G1(F1-F2),G1G~
1 = P2 and P2 G2(F2-F1),G2G~

1 = p
1

and the systems are equivalent under state feedback. This completes

the proof of the first part of the theorem. The proof of the second

part is entirely similar and is omitted.

5o it remains to demonstrate that the canonical forms R
c

and 
~~~~ 

exist. There are three essential ideas. The first idea

is to show that the action of on X3 is equivalent to the

action of a group r 3 of constant matrices on a representation of

I as a subset {(CR,ER)} of M~~~ (k) x M
~ ,~~

(k). The second idea

is to show that is a semidirect product of a normal subgroup

N3 and a reductive subgroup G3 ([7]) so that it will be

sufficient to determine a canonical form under the action of N
3.

The third idea is to show that certain columns of (C
RIER

) are

invariant under N3 and to “project” the remaining columns on the

orthogonal complement of the range of the invariant columns.

I
- I
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Now let R be an element of X3. Then

R = CRS3(x) ÷E~~diag[x 
1~ (4.3)

where C~ C M~~~ (k) and E
R 

£ Mp,m (k)~ 
If U is an element of

then RU = CRS3 (X)U + E~diag [x ‘JU and, as is readily

established by direct computation ,

S3(x)U 
= V

~
Sa (x) (4.4)

3. 3.
diag[x ‘JU = W~diag[x 

1
] + O

~
S3(x) (4.5)

where Vu C GL(k,n), Wu 
£ GL(k,m), and 8u C Mm n Ck)•~ 

Thus,

RU = [CRVU + ER
Ou]S3(X) + E~W~diag[x ’] (4.6)

and , similarly,

a .
HRU = H(CRVu + ER

O
u]S3

(X) + HE~W~diag (x 
1
] (4.7)

for H in GL(k,p). In effect, equations 4.6 and 4.7 provide the

basis for determining the quotients X3/ *~ and X
3/GL(k

,p) X ]
Let r = GL(k,n) X Mm ,n(k) ~ GL(k,m) as a set and define

a multiplication in F via 
,

C

~These relations follow from equations 4.27-4.30 and Lemma 4.31.

________

C
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(V,6,W)~~(V,O ,W) 
= CVV,OV + WO ,WW). (4.8)

I
Further, define the “action” of 1’ on M (k) x M (k) viap,n p,m

(C,E).(V ,6,W) = (CV + EO ,Ew) . (4.9)

Then:

Proposition 4.10. r is a group which acts on M (k) X M (k).p,n p,m

Proof: Simply note the following relations:

(1,0,1) (V,O ,w) = (V,8,W) = (V,O ,W) (1,0,1)

(V,6,W) (v~~,- v ~~,W~~) = (1,0,1) = (V~~,— V ~~,W~~) (V,O,W)

(V,6 ,W) [(V,O,W) (v,~,~) ]  = (V,8,W) [(V~,O~ + W~ j ~ ) J

= (V , e~ + + W~ ,~4ô)

[(V,8,W) (V,O ,W)] (‘Q,G,~) = [(W,8V + WO ,WW)]

= (VV~, OV~ + w ’ ~ + ~~~
[( c,E) (V,e ,w)](v ,e ,w) =

= (cw + E(ev4~~) ~~~~~~~

= (C,E)((V~,O’~~+P$,?ü)]

Proposition 4.11. Let U be an element of *.~ and let ‘P (U) =

~~~~~~~~~ 
where ~~~~~~~~ are given by 4.4 and 4.5. Then ‘P is

an injective homomorphism of into F.

I

- - - - - .- , I - . 

. . . .
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Proof: First note that S3(x) (UU1
) = V S (.x)U1 

= V V S3(x) andu u 1

that diag [x 1](UU1) 
= [W~diag[x

’1 + OUS3 (x)].Ui 
= W~W~~diag[x

1] +

W~~~~S3 (x) + O V S 3 (x) . In other words, ~p ( [u u 1] )  = (V uV , e V  +

WuOu iWuWu ) 
~~~~~~~~~~~~~~~~~~~~~~ 

= ‘P(U)’P(U1). If ‘P(U) =

(1,0,1), then diag [x ‘Ju = diag [x ‘1 implies U = I so that

kernel ~ = {i}.

Let F3 
= 4’(*~) be the image of in F. Proposition 4.11

essentially states that F 3 and are isomorphic groups. More—

over, since the representation 4.3 of an element R in X3 is

unique, R -
~~ 

R1 if and only if (CR,ER) is equivalent to

(C ,E ) modulo the action of r~ . Similarly R -

~~~ 

R1 if (R1 R1 ~
,

and only if (CRIER) is equivalent to (CR ~
ER ) modulo the action

1 1

of GL(k,p) X Now, it will be instructive to consider the

following examples which serve, to motivate the general development

of the sequel.

Example 4.12. Let m = 2, n = 
~~~ = 2, 

~2 
= 1, 3 = {2,1}, and

p > 1. Then U £ if and only if

U = I I (4.13)
L b + c x  dJ

where a,b,c,d C k and ad ~ 0.~ It follows that

I
V..
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a

and that 
-

[2~~~ra ~ ff;2~~1 {
~ 0

diag [x ‘] U =  I I I  I = I I I  I + 10 b O lI x 01

~~~x J L~~~ dJ LC d JL O XJ

In other words, F 3 is the group with elements given by

[ a o~~1 r o o o I  ra~(v~
,e

~~w~ ) = 

[o 
a 
0]
~ [o 

b ‘ Lc d] (4.14)

b c d

where a,b,c,d £ k and ad ~ 0 and witi multiplication given

by 4.8. Let N3 and G3 be the subgroups of F
3 

with elements

(V
~~

8
N~
WN) ~

[0 ~ ~1, ~ ~. (4.15)

(VG~
O
~
WG) 

= : ~~~, ~ ,

0 O d

respectively. It is easy to check that (i) N3 is a normal subgroup

I
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of V 3, (ii) N3 is the unipotent radical o~ F 3 ([7]), (iii) G3

acts on N3 via inner automorphisms , and (iv) F3 
=

N3 fl = (1,0,1) so that F 3 is a semi—direct product of N3

and G3. Now let (C ,E) (C1 C2 C3 E1 E2) where C’,E~ are

the columns of C,E respectively. Then

(C,E) (V i
~~~

W
~
) = (a(C’+bC3) a(C2+cC3+bE2) dC3 a(E1+cE2) dE2)

and a canonical form for (C,E) under this action is sought. Since

the group G3 is reductive ([7]), it will be sufficient to

determine a canonical form for the action of N3. If (VN~
O
N,WN) £

N3, then

(CI E)(VN V 6N ?WN) 
= (C1+bc3 C2+cC3+bE2 C3 E

1+CE~ E
2). (4.16)

Several cases must be considered .

Case 1: E2 ~ 0

2Let CE ) denote the orthogonal complement of E . Then

there is a unique c~ in k such that E1 + c*E
2 is an element

2~I.. 2 3 2of (E ) and a unique b* in k such that C + c*C + b*E

is an element of (E2)
i
. Note that b* = b*(C,E) and c~ = c*(C,E).

Let (C*,E*) = (Cl+b* C3 C2 + c*C3+b*E2 C3 El+c*E2 E2). Then (C*,E*)

is equivalent to (C,E) modulo. N3 and set

‘P(C,E) = (C*,E*). (4.17)

To show that ‘P defines a canonical form for equivalence modulo N3

I
I •..‘— . . — .—— - —,— -1.-— , . — — — ______________________

C
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it will be sufficient to show that ‘P(C,E) = ‘P(C1,E1) if and only

I if (C,E) is equivalent to (C1,E1) modulo N
3
. Since

(C*,E*) 
~N 

(C,E) and (C~ ,E~ ) ~N 
(C1,E1), it is clear thatI 3 3

‘P (C,E) = ‘P (C1,E1) implies equivalence of (C,E) and (C1,E1).

Conversely,  if (C,E) N3 
(C1,E1), then E~ = E

2 and C~ = C
3 and

C~ C1 +bC 3, C~ C
2 +cC3 +bE 2, E~~~~E

1 
+ CE2

for some b,c in k. But E~ = E~ + c~E
2 is a (unique) element

of (E2)
1 

implies that c~ = c~ + C and hence, that

E~~ = E1 + c*E
2 

= El*. Similarly , = C~ + c~ C
3 

+ b~E
2 is a

(unique) element of (E2)
± 

implies that C~~ = C2 + (c+c~ )C
3 

+

(b1+b)E = (C +c C ) + (b1+b)E and hence, that b = b1 + b.

Thus, C~ = C2 and C~ = C~ + b~C
3 

= C1 + b*C3 = C1~ . In other

words, ‘P(C1,E1) = ‘P(C,E).

Case 2: E2 = 0, C3 ~ 0.

3 1 3 -
Let (C ) denote the orthogonal complement of C . Then

I . * * 
‘ 1 * 3p there are unique elements b ,c of k such that C + b C and- 

C2 + c*C
3 are in (C )~~. Let (C* ,E *) = (Cl+b*C3 C

2+c*C3 C
3 E’ 0)

7 3

and set ‘P(C,E) = (C *,E*). Just as in Case 1, ‘P defines a

canonical form for equivalence modulo N3.

2 3
I Case 3: E 0,C 0. 

,

In this case, it is clear from 4.16 that (C,E) 
~N 

(C1,E 1)

if and only if C1 = C~ , C2 = C~ , 0 = C3 = C~ , E
1 

= E~ , 0 =  E
2 

= E~ .

Hence , (C*,E*) = ‘P(C,E) = (C,E) defines a canonical form in this case.

I 
-- - - - - - -

C
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Thus, a canonical form for the action of N3 has been

determined and a fortiori for the action of F
3 (since G3 is

reductive).

Example 4.18. Let m = 2, n = 
~~‘ ~l 

= 

~2 
= 2, 3 = {2,2} and

p > 1. Then U C if and only if

ra~~1
U = I (4.18)

L c d J

where a ,b,c,d C k and ad - bc ~ 0 i.e., if and only if

U £ GL(k,2). It follows that

r l o l I b l  [ o b ~~~ r1~~
S3(x)U = Lc d] = a 0

[o xj [ 0 c O d J LO XJ

and that

diag[x
3h

J U = [x

2 

:21~~ ~ 
= [a 

~~~~~ 

x2}

In other words, F 3 is the group with elements given by

(Vu~
O u~

Wu) = , 0, [ 
~
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and with multiplication given by 4.8. Since F 3 
is isomorphic to

I GL(k,2), F 3 is reductive and a canonical form for its action on

(CR IER) exists ([6], [7]). For example, if E
R is of rank 2, then

I is a reduced column echelon matrix with E = E
RW

*, W~ unique ,

I 
and C~ = CRV

*, with V~ having the “same” non—zero entries as W~ .

Note that if p > 4, then the canonical form will exist on an

I appropriately chosen “stratification ” of X3 and will not be a

continuous canonical form ([8]).

I
Example 4.20. Let m = 2, n = ~~ , = 

~~~ 
~2 

= 1, 3 = {3,l} and

I p > 1. Then U £ *3 if and only if

I r a  ol
I U = 2 I (4.21~I L~~

c 
e]

I
where a,b,c,d,e C k and ae ~ 0. It follows that

I 
S~~(x)U =~~~

C 
[
b+cx÷dx2 ~~~~~ 

~ ~
- [
~ ~I 

x2 0 0 0 a 0 x2 0
1 0 1 b c d e [o 1

I
and that

I

II
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diag [x ’JU = 

~ ~~ 
] = [

~ 
~2] 

+ 

~ : : :] [2 
~
1

In other ~~rds, F3 is the group with e1a~~nts giv~~ by

(V
~
,@
~
,W
~
) = : : ft : : ~ ,

b c d e

and with multiplication given by 4.8. Let N
3 and be the sub-

groups of F~ with elements

(VN,
O
N,WN) 

= , ft

(VG~
OIWG

) = , 0,

respectively. It is easy to check that (i) N3 is a normal subgroup

1
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of F3, (ii) N3 
is the unipotent radical of F

3 
([7]), (iii)

I acts on N 3 via inner automorphisms, and (iv) F
3 

=

I 
ñ G3 

= (1,0,1) so that F3 
is a semi—direct product of N

3

and G3. Since the group G3 is reductive ([7]), it is enough to

determine a canonical form for the action of N3. Such a canonical

form can be determined by the same methods used in Example 4.12 (as

will be shown in the sequel).

Now, recall the following:

Definition 4.22. Let A be an n x in matrix and B be a p x q

matrix. Then the np > mq matrix

Ab11 ~~lq

- A~~~B . . (4.23)

~~pl 
Abpq

is called the Kronecker product of A and B.

Note that if the dimensions are compatible, then

(A Q B)(C~~~D)= (AC~~~BD).

I Now let 3 = 

~~
l’••• ,3~ } be properly indexed and suppose

that

I
I
F

- __________ — — ‘ ‘ ‘ - - — - -. -~~- r r ~~ -
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3 = 3  . . . . = 3 = 6
1 2 q1 1

3q 4-1 . = = £
2

(4.24)

= = 3~ =

where

> > . . . > > 1. (4.25)

-Then

~ 
q~ in , ~ = n (4.26)

i=1 i=l

where n E3~~. It follows from Proposition 3.10 that U is an

element of if and only if U is of the form

q11q 2 °q1,q2 °q11q3 
0q,q

~1
C
2

~ B3 x3 A 0 ... 0
j=0- q2,q1 q2,q2 q21q 3

U =

S’ B3 x3 ~ B3 x3 A 0
~~~ 

q3,q1 j 0  q31q 2 q3 1q 3 q ,q

I
j=O 

B~~ ,q1
XJ 

j~ 0 
B~~ ,q X3 

j 0  
B~~ ,q XJ ... Aq,q . -

(4.27)

C..
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where Aq ,q 
£ GL (k

~c1~ ). Let Sq c ,q (X) be the q.c. X q.

matrix given by

l~ 0 . . .  0

x 0 ... 0

Ci—1x 0 . . .  0
Sq 6 ,q (X) = 0 i. ... 0 (4.28)

C .—l
10 x ... 0

: 1

0 0 x ’ -

1.
so that

Sq 6 ,q (x) °q1
61,q2

Sq 6 ,q2
(x) ~~~~~~~

S3 (x) 
= . .(4.29)

- °q~ C~ ,q2 
... Sq 6 ,q (x)

Moreover,

- I
I

___________ __________. - , - —
~~~ 

-. , . - . -
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r C l
~ ‘qi,qi 

0q1,q2
£2

diag[x 1] 
°q2,q ~ q2,q2 °q2,q~ (4.30)

0q ,q 0q,q 2 
X~~Iq,q

and so the following lemma holds via a direct computation .

Lemma 4.31. If U £ 
~~~~~~ then

I ® A  0 0C1,61 q11q 1 q1
61,q2

6
2

= 

~~~~~~~ 

E~2, Cl ,q1 
162, C2 

Ag ,q2 °g2
6
2 ~~~~ 

(4. 31)

~~0
E~~,62

® B~~,q 16 ,6 0 Aq,q

0 0 ..‘ n
q1,q2

6
2 

. 

- “q1~q~,
c~

e = ~ E3 ® B3 0 • 1I  o (4.32)
u - j=O 1,C1 q21q1 q2,q2

C2 q2~q~C~

C1— C2—1

j~ 0 
E~ , ~~ 

0 B~~ ,q 
~~~ 

E~ £
2
0 B~~ ,q ~~~~~~~~

1~ I
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I — —

Aq1,q1 °q1,q2

Bq
1

,q~ Aq , q 2 q2 ,q
w = (4.34)u

B i t  
~~~~~~ A

where A C GL(k ,q . )  and E3 are matrices of the appropriater,s

! rank with unit or zero columns.

I
For example, if n = qm + r , 0 < r < m - 1, and 3

~ 
= =

q + 1, 3r+1 = = 3m 
= q (the so—called “generic ” case), then

= r, q2 = m - r, 3
~ 

= q + 1, 
~2 

= q and

I E~ ,q~1 
= [Iq,q 0g,11

I E~ ,q~1 
= 10q,1 Iq,q]

I. E~,q41 = [0 . . .  0 1]

and

1 ~~Iq+1,q+l Ar,r 0(q+1)r ,q(m—r)

I 
Vu 

= 

.~ 0
E
~ ,q+I ® B

~_r ,r ‘q,q ® A m_r ,m_r

I
I

—1

I
C.,
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~~or (q+l)r 0r,q(m—r)

0 = l
U 1 0  0I E  O B  0l,q+l m—r ,r m—r ,q(m—r)

0
I r,r r,m—r

w = 1
u I B1

m—r ,r Am_r ,m_r

with Ar,r C GL(k ,r ), Am_r ,m_r C GL(k ,m-r).

Definition 4.35. Let N3 be the subset of F
3 

with elements

(V ,0 ,W ) such that A = I ,...,A = I andN N N q1,q1 q1,q1 —

let be the subset of with elements (VG,OG,WG) such that

all the Br are zero (note this implies 0 = 0).q1,q~ G

Lemma 4.36. Let *N be the subset of with elements UN
such ~hat A = I ,...,A = I and let * be - -

q1,q1 G —

the subset of * with elements U such that all the Br3 G gj,qj
are zero. Then: (i) *N is a normal subgroup of (ii)

is a subgroup of which acts on *N via inner automorphisms;

(iii) *3 
= *N*G ~~~ *N 

fl = {I} so that *~ is a

semi-direct product of 
~~~~~~~~~ ~

‘G’ (iv ) 
ae is the unipotent

radical of ‘
~~~~; and , (v) ‘P ( ’ èN ) = N9

, ‘P (~
IG) = where ~‘ is

the map given in Proposition 4.11. Hence, r 3 is a semi-direct

I 
--- -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

—- - - -- - - - . -~~~~~-
4.-
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product of its normal subgroup N9 and its subgroup G9.

I
I 

Proof: Clearly, 1lI(*N) 
= N3 and IP(*G

) = C3
. Moreover , it is

obvious that is a subgroup and that ~ = {I}. If

U i is given by (4.27), then U = UN UG where
1

I 0 ... 0

C
1
_6
2 

iC1 x~ I 0
j=0 q2,q1 q11q1 q2,q2 

“

C — C  C — C

~ B
3 A 1 x~ ~ B3 A 1 x~ I

j=0 ~~~~ 
q1,q1 j=0 ~~~~ q2,q2

t
and UG 

= block diagonal [A q q ]t so that *3 
= *N *G~ 

Since

F
q1,q2

I
- (B3 +B’3 )x3

j=0 q2,g1 q2,q1 q2,g2
i U

N
UN,

_

C
1
—C
3 

x3 + 

C
1

— C
3 

B 1 B
’
~
2 ~J 

C2 C3 
(B3 +B ) x~j=0 q3,q1 j=j1+j2=O 

q3,g2 q2,q1 j=0 q3,g2 q3,q2

I -
.

I
I it is straightforward to check that *N is a sub9roup. Now let
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U = U U be an element of and let U be an element of

= UN UGUNU~
1U

1 and so it will be enough to

show that UGUNUG
1 is an element of *N~ 

However, direct

computation gives

0 ... 0q11q1 q1,q2 q1,q~

j=O g2 ,q2~~2 ,q
Aq
’ 
,q X3 ‘q q 0q q

UGUNU~
’ =

6 — 6  C — C

B A x I A  B3 A x3 I
j=0 ~~~~ g~

,q1 q1,q1 j=0 ~~~~ 
q,q q,q

and so the lemma is established .

For example, in the “generic” case n = qm + r , 0 < r < in — 1,

= T 3r 
= g + l, 3r+l = = 9m 

= q, it is clear that 
. 

-

~~1q+i,q+i ® ‘r,r 0(q+l)r ,q(m_r)~~

VN 1 . . I
‘g,q ® I m_r ,m.~~j

[~0r (q+1)r 0r,q(m—r) 7
0
N 

= I I (4.37)

~~ 
® B

~~r,r 
Om...r,q(m...r)]

_ _ _  _ _ _ _ _ _ _ _ _  

1,
- --- . - - ----~~~ ------ - ‘  - .... - -.-
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°r,m—r 1I WN 
= 

~~ 
Im_r,mrj

I
and that

‘qf1,q~l 
® Arr °(qfl)r,g~~ r) 1

I VG 
= 

~ 0q(~_r),(q~l)r Iq,q® A ~ r,~~r]

I
r’~r,r °r ,m-r 1

I

~ 
WG I 

]I L0~r ,~ 
Am_r,m_r

( Moreover,

I (VGIOIW G) (VN,
O
N,WN) (V~~ ,0,w~

1) = (VGVNV~~
,WG

0
NV~~

,WGWNW~~
)

I and

I rIqfl,qfl ® ‘r,r 0(q4-l)r,q~m-r) 
T

I VGVNV~
1 

= 

~ E
3
~~~~® ~~ B3 A~~ I 01r,m-r m-r,r r,r g,q m_r~m_rJ

1-

[r ,(qfl)r - 0r,q(m-r) 1WG
O
NVG 

= 

[
~‘q# ® &_

~,
_
~
Bi~_ rrA;

’
r 0~.r,q~~ r)]I

I ~Note Am_r ,m_r = 11,1 ® A m_r,m_r so that Am_r ,m_r (E~ ,q41 0 B° )m—r , r
= E~ ,q~1 GO Am_r ,m_rB.~_r ,rF

C
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rlr ,r °r,m—r
w w w 1

= I  1 —lAm_r,m_r m—r ,r r ,r m—r ,m—r

imply that (VG,0,WG) (VN,
O
N,WN) (VG

’l 0,W~~
) is an element of N3.

Lemma 4.36 shows that the properties of F 3 used in the

examples hold in general. Since G3 is reductive, it again will

be sufficient to determine a canonical form under the action of N
3
.

The method is entirely analogous to that used in the examples and

will first be illustrated for the “generic” case.

So let n = gm + r, 0 < r < m — 1, 
~l 

= 3r 
= q + 1,

3r+l 
= = 3m 

= q, 3
~ 

= q + 1, 
~2 

= q. Then N3 consists of

elements (VN,
ON , WN) given by 4.37. If p > 1 and (C,E) is an

element of M (k) X M (k), thenp,n p,m

C = (C D) , E = (E F) (4.38)

where C = (C1 . . .  ~ (~ +l’~r) D = (~~(g+1)rI~l . . .  C~ ) =

(D1 . . .  ~~(m_r) ) E = (E1 ... Er), and F = (E~~
1 ... Em) =

(F 1 . . .  Fm_r) are elements of Mp,(q+l)r (k)l Mp,q(m_r) (k)~ 
Mp,r (k)~

and Mp,m_r (k)~ 
respectively. It follows that

(C,E) (VN,
O
N,WN) 

= (CVN + EO N ,EWN)

and

II
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CVN 
= (~ . + 

~~
(E
~ ,q+i 

0 ~~~~~~ + E~~q~1 GO B1 ) ~

I E 
N 

= (
~~
(E
~ ,q+l 

® B
~_r,r

) °p,q(m—r)~ 
(4.39)

EWN 
= 

~~~~ . 
+ !~~_r,r ~~

I
Thus, D and F are invariant under the action of N3. Again ,

there are several cases to consider .

Case 1: D = 0, F = 0.

I In this case, it is clear from 4.39 that (C,E) 
~~ 

(C,,E1)1 3

if and only if C = C1, 0 = D =  D1, F = E1, and 0 = F = F1. Hence

(C ,E ) = ‘P(C,E) = (C,E) defines a canonical form.

Case 2: D ~ 0, F = 0.

I Let ~R(D)
1 

denote the orthogonal complement of the range

of ~~ . Consider the set {~ + ~ (.I E ~ ,q~1 0 ~~~~~~~~ n ~~~�)~~ 
If

C + DX and C + DX1 are elements of this set, then D(X-X1) 
= 0

I (being an element of 9~(D) fl 9~(D)
1). Thus, if the set is non-empty ,

it contains a unique element ~ + ~
(IE

~ ,q+l 
0 ~~~~~~ =

I (caution: 
~~~~~~ 

are not unique in general). In this case, set

I (C*,E*) = ‘P(C,E) = ([C* DJ , [E 0]). Then, (C*,E*) 
~N 

(C,E) and

I 3

it is claimed that (C*,E*) defines a canonical form. Clearly, if

I (C~ ,E~) = (C~ ,E~), then (C,E) 
~N 

(C1,E1). On the other hand, if

(C,E) N3 
(C1,E1), then ~~~ 

= 
~~~~~ 

= 0 and = 
~l 

so that E =

and = + ~ (IE ~ ,q+1 ® ~~—r ,r~ 
for some Bm_r,r But
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~ 
E3 0 ) = C + D( ~ E

’ 0 B 3 ) where+ 

~~j=0 
q,q+l m—r ,r — — j=O q,q+l m—r ,r

1 .
* I E3 +1 ® Bi~ _ r r )B 3 = B3 + B 3 so that C1 

= + 

~~j O  
q,qm—r ,r m—r ,r m—r ,r —

is a unique element of ~(D)
1 implies that C~ = C +

1 .  .
D( I E3 q+l + B ]) is an element of ~ (D) nm—r ,r lm—r ,r —— 

j=0 q,

{c + D( ~ E
3 0 B3 ) } Since C~ is a unique such element,

j=0 q,q+l m-r ,r —

it follows that C~ = C* and hence that (C*,E*) = (C~,E~) .
1

Finally,  if the set {~~ + ~~I E ~ q+1 0 B
3 ) }  fl ~(D)

1 is empty ,m—r ,r —

set (C*,E*) = P ( C , E )  = ((C D], [E 0]) = (C,E). It is clear that

(C*,E*) is a canonical form in this situation .

Case 3: D~~ 0, F = 0

Let 9~(Fi
t denote the orthogonal complement of the range

of F. Consider the set f E  + FB1 } fl 91(FYL . If this set— — m—r ,r
is non—empty, it contains a unique element = +

(caution : is not necessarily unique). Let ~R(D,F)
1

m—r , r
denote the orthogonal complement of the range of (D,F). Consider

the set + 
~
(E
~ ,g+l 

®B 0 + E~ 1 +m—r ,r q,q+ m—r ,r

!~~~,q+i 
0B

~_r ,r
)} fl 91(D,FY

L
. Again, if this set is non—empty,

it contains a unique element C~ = C + D(E0 ® B 0 +
— q,q+1 m—r ,r

E~ ,q~1 ® Bi~_r ,r
) + 

~
(E
~ ,q+i ® ~~~~~~~~ 

Note that ~~ is in-

dependent of the choice of 81 for which E* = E + F~
1

m—r ,r — — — m—r ,r
since, if C + DX + FY and c + DX1 + FY1 are in ~R(D,F1

L.
, then
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-I-
D(X-X1) + F (Y-Y 1) is an element of ~R ( D , F )  fl 9~(D ,F) and so ,

D(X—X 1) + F (Y—Y 1) 
= 0. So set (C * ,E *) = ‘P(C,E) = ( [C * Dl [E * F ] )

Then (C*,E*) N (C,E) and it is claimed that (C*,E*) defines
3

a canonical form. Clearly, if (C*,E*) = (C~ ,E~ ), then (C,E) N3

(C 1, E1) .  Conversely ,  if (C, E) 
~~ 

(C 1, E1) ,  then F = F1 and
3

D D .  Since E = E + F B 1 , E  + F B 1 = E + F ( B 1 + B 1
— —l —l — — m—r ,r —1 — m—r ,r — — m—r ,r m—r ,r

and it follows that = E* and that 
~~m-r ,r 

can be taken so

that + B
~ _r ,r 

= Brn_r,r~ 
Arguing in a manner entirely

analogous to that used in Case 2, it is easy to show that C~ = C~ .

The situation when the various intersections are empty can also be

treated in a manner entirely similar to that used in Case 2.

Case 4: D = 0 , F ~ 0.

Let ~R ( F )1 denote the orthogonal complement of the range of

and consider the sets ~~ + ~.B~~~r ,r } fl (!Y~ and

+ ~~~~~~~~ 0 B~~_r , r ) } fl ~~~~~~~ If these sets are non-empty ,

they contain unique elements E*,C* respectively and (C*,E*) =

‘ P ( C , E) = ( [C * 0 ] ,  [E~ F ] )  is the desired canonical form (as is

readily demonstrated via the methods used in the previous cases).

If either of the sets are empty, then the appropriate B
~~r r  is

taken to be 0 to obtain the canonical form. Thus, a canonical

form exists for the generic case.

Now it is time to consider the general case. So let

= 

~
3i’’”’3m~ 

be properly indexed and let

be given by 4.24 and 4.25. Let p > 1 and let (C, E)

-S
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be an element of M (k) ~ M (k). Thenp,n p,m

C = (C 1 C 2 C 9
~) ,  E (,.E1 E2 E 2

~) ( 4 . 4 0 )

where C~ is in M 
C 

(k )  and E1 is in M (k ) . Let
— p,q 1 ~ 

— p,q 1

(VN,~
i
N ,WN

) be an element of N3 so that

1
6 , 6 

~ 
‘q1 ,q1 °q, 6

1 
,q
2 
£
2 

0
q Cl, q9 £~ 

—

v —  1 E3 ® B~ I v i  0N 
— 

j=0 
C2,C1 q2,q1 62, 62 q , q  ~~~~~~~~~

~ E3 
~ B~ ~ E3 0 B3 ... I GO I

j=0 ~~~~ ~~~~ j=O 6i~
6
2 q~,q2 ~~~~~ ~~~~

-

~ E3 0-B3 0 0N 3=0 1,Ci g2,q1 q2,q2
6
2 q q C

£1
_C

t
_l 

. 
£
2
_C
t
_l 

.

~ 
E3 ® B~ I E3 0-- B3 0

j=O 1,61 ~~~~ j=0 1,C2 ~~~~ ~~~~~~

II
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I
I 0 . . .  QI q1,q1 q1,q2

I W
N 

= Bq~~q
2 1q2,q2 

(4.41)

I
B 1

~~~ B 2 t  . .. I

I ~~

and

£ — C . .1 . 1 1 .
CV = cc’ ÷ I çi~ I E~ C 0- B3 ) ,. .. ,c~ )N i=2 j=0 1’ ~. 

q~
,q1

C —C .—].
EO
N 

= (
~~~~~( 

~ 
~~~~ 

0- B~~~ q ) 0) (4.42)

EW = (E 1 + ~ E
1

B~~~~~~~~~
1

, .  . . ,EZ)
- 

N i=2 ~~~~~~~ 
—

These equations determine the action of N 3 on X 3.
I

Definition 4.43. Let A., i = 1, . . .s  be p r. constant matrices.
Let k~ be the space of column vectors with p rows. Then

denotes the subspace of k~ spanned by the columns

of the A
~ ~~~ ~~~~~~~~~~~~~ 

denotes its orthogonal

complement.

I 

—— - ——————- --- - - — - I- - — - - ——-——-—-———. ———.——
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Lemma 4.44. Let A~ 1 i = 1, . . .  ,s be p X r . constant matrices.

Let d2,. . . ,d~ be positive integers. Consider the set

Q = ( A, + ~ A.B
3 

d ~ fl~R(A2,...A )
1 where B3 d C M d (k).

~ j=2 3 r3
, 
~ 

— —s ~~~ 
~ 

r.,

Then either Q is e~npty or Q contains a unique element.

S . I .

Proof: Let X = A + I A.B3 and X = A + ~ A.B be1 —l j=2 3 r~ d~ 2 —1 j=2~~ 
r~~1d~

elements of Q. Then - X2 
= I~~ j

(B
~~ ,d 

- B . ,d ) is an

element of 
~~~2’” ~~~~~~~~~~~~ 

~ ~~~2’” ~
A )  = {0} so that X 1 X2 .

Theorem 4.45. A canonical form for the action of N3 on X3

exists.

Proof: The proof is essentially a tedious exercise in the repeated

application of Lemma 4.44 and should he clear from the examples

and the generic case.

Thus, the existence of a complete system of invariants under

feedback equivalence has been established .

5. Some Examples -

Several examples shall be examined in this section. The first

illustrates the fact that the Kronecker set 3 is not a complete

invariant -for either equivalence under feedback or equivalence

under feedback and output transformations. The second contains a

treatment of the “controllable” case. The third involves an

analysis of output feedback.

I
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Example 5.1. Let

r ,ix 2 
(x+l)/xl r(lx)/x

2 0
I T(x) = I I , T~~(x) =

L°  l/x J L ° l/x

Then T(x) = R(x)P ’(x) , T1(x) 
= R1(x)P1

1(x) where

I R(x) = [ x:i11 
, R1

(x) = [ I
and

1 r 2
~~
x 0

P(x) = =

Lo x

Note that R,P and R1,P1 are relatively right prime, that

- , p = p
1 is properly in dexed, and that 3T 

= f2 ,l} = 3
T However ,

R is not equivalent to under *~ (or GL(k , 2) X since

R is unimodular but is not unimodular . The fact that R

I and R1 are not equivalent under can also be established via

examina tion of the canon ical forms Rc~
R1~~ 

For,

R(x)
19 ~~~~~~ 

~~~
[x

2 
~

II

I
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R~ (X)~~~~~~~~~O ~~ ~
ffl2 

~
so that

ro~~1
C~ , E =

L ° °~~i L° °J
r i - i 1

C
~~~~~ L 

0 ] f E
R L  0].

and (C*,E*) ~ (C~ E*R R R1 ,R 1

Example 5.2. “The Controllable Case” ([2], [3)).

Let C ~ be the set of n X in transfer matrices T(x)n, m n, m -

such that T(x) = I(xI-A) 1B for some controllable (A,B,I). Then

it is claimed that 3T is a complete invariant under state feedback

and output transformations. Since is an invariant, it is enough

to show that if T,T1 are elements of 
~~~~ 

with 3T 
= 3T1

’ then

T and T1 are equivalent. However, as is well—known ([2], [3], (4]),

T is equivalent under state feedback to ~ where

= 
~~~

1S
(x)1 

.

diag [x ]

for some Q C GL(k,n) and similarly, for T1. In other words ,

_ _ _ _ _ _ _  

I,
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—l —1In other words, R = Q S3
(x) and = Q1 S3(x). Hence,

= (Q 1Q1)~~1 and ~ is equivalent to

Example 5.3 “Output Feedback”

Let C I be the set of p X m transfer matrices T(x)p,m p,m

which are strictly proper i.e., if T(,x) = 

~~~~~~~~~~~~~~~ 
then

degree flj~ < degree d
13
. Let ~~~~ c ~p,m be the corresponding

set of strictly proper linear systems.

Definition 5.4. ~~~ T be an element of with a
T 

= [
~
j ,

column proper. Let n = degree det 
~~~ 

Let C be an element

of GL(k,m) ~~~ H be an element of M
~~~

(k). Call (H,G) an 
-

output feedback pair. Set

= G ’{PT 
- HRT}~ 

~~H,G 
= 

~~~~ (5 5)

and TH G 
= R P 1 

. Then T1 C is equivalent to TTH,G TH,G p,m

under output feedback if there is an output feedback pair such

that T1 
= TH G .

Note that if T1 is equivalent to T under output feedback,

then 
~T ~~~ are relatively right prime since AR,~ + BPT 

= I
H, G

implies (A+BGG 1H)R~ + (BG)PT 
= I. This corresponds to the

H,G H,G
preservation of both controllability and observability under output

feedback. Moreover, since T1(_ff,C_l) 
= T and R,~ = C~~S3 (x)

so that HRT = (HC~~)S9(~ ), it is clear that equivalence under output
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feedback, implies equivalence under state feedback.

Now, if T is an element of with 0
T 

= ~~T], then

there is a U in such that RTU 
= R , the canonical form

T C

under *~~~, and P
TU 

= 

~c 
is properly indexed. Since T = RT

P
T
’ = 

-

RcPc
’
~ 

it may be assumed that a = 0
T 

=

Lemma 5.6. If T is equivalent to T1 under output feedback,

then is equivalent to 
[P
lC] under output feedback and

conversely. -

Proof: If T is equivalent to T1 under output feedback , then

R1 
= R•U and P1 

= PH G U for some U in *m Since P11 P are I

properly indexed , is properly indexed and U is an element

of *~ . But R1 
= R1V1 with V1 in *3 and R = R W  with 

-

W in *3 together imply that R = R (WUV ) and P = P UV .~~lc c 1 lc H,G 1

= G ’(PCW - HR
C

W}UV
1 

= PCH,G(WUV1). Thus, [~] is equivalent to

[ R1
1 1c 1 under output feedback. The converse is demonstrated by
L lcJ -

1

~ 

- - ——_ - 
I f



I
reversing the argument.

I
Definition 5.7. Let a = rRl be an element of and let
_ _ _ _ _ _ _ _ _ _ _ _ _  — L~J p,m

r1,. ..,r , p1,.. .,p denote the rows of a. Then 
~
Rk(a) =

sPank Er lI...~
rp~P1s...~ Pm

] is ~he span over k of the rows

Theorem 5.8. T is equivalent to T1 under output feedback if

and only if 3T 
= 3T1’ 

R
~ 

= 
~~~~~~ ~~~~~~ 

=

Proof: If T is equivalent to T1 under output feedback, then

T is equivalent to T1 under state feedback and so, 3T 
=

and R = R1 . Moreover , in view of Lemma 5.6,

TI - 0 7 r
~1

I —G 1H G 1 I
I r rcp lcp

pci 
= 

~icl

F pcm p1cm

so that [n c1 .. r
1 1~ ~

‘ici ~lcm
1 c 

~k
(a
T). Similarly,

[r
~1 

.. r~~ ~~~ 
.. 

~cm 
C 

~k
(aT1

) and so, 
~k~

”T~ 
=

Conversely,  if 3T 
= 3T1’ R

~ 
= and 

~k
(a
T) 

=

then r = r  ,...,r = r  and [r ... r p ..p Jid ci ].cp cp id icp lcl lcp

C 
~~~~~~~ 

It follows that

I
I
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r I 0
~1 r 1 r

~i

LN M]
cp = cp

~ci ~lcl

~cm p1cm

for suitable N,M i.e. NRc + 
~~~c 

= 

~lc~ 
But 3

~~
(R
~
) <

column proper, together imply M C GL(k,m). Thus,

1
~lc = 

~cH,G 
with H = —GN , C = M 1 and so, T is equivalent to

T1 under output feedback.

Theorem 5.8 may be interpreted as stating that (R
~~

3
~ ~

Rk(a))

is a complete invariant under output feedback.

6. Concluding Remarks

Considerable research has been done on the problem of finding

invariants and canonical forms for linear systems under various

equivalence relations (e.g. [2], [3], [4], [5], (9], [10], [11] ,

[12].) For controllable systems, Brunovsky ([-2]) and others

([3], [4], [111, (12]) determined a complete set of invaniants

under state feedback and a corresponding set of canonical forms. Kalman

([4]) and Rosenbrock ([11]) related feedback invariants to the

classical Kronecker theory of singular pencils of matrices. Morse

((10]) studied invariants under a rather large group and Wonham

and Morse ([12]) examined state feedback invariants. In a pivotal

paper, Wang and Davison ((9]) developed a sound complete set of

invariants under feedback with a reasonable indication of the true

1
4
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algebraic group acting on an algebraic set nature of the problem.

Hermann and Martin ([3]) treated the controllable case using

algebro—geometric methods and a result of Grothendieck. More or

less with the exception of [3], all the results were developed in

state space form for systems with strictly proper transfer matrices.

- 

In addition , the techniques used do not seem to be readily

generalized to systems where k need not be a field.

Here a complete set of invariants and canonical forms are

determined in the frequency domain for systems with proper transfer

matrices. Moreover , the algebro-geometric nature of the problem is

evident (see [8] for example) and the techniques used can be extended

to the case of systems over integral domains without any difficulty .

In addition , the methods used to obtain the canonical form under

can be enployed to prove a “modul i” result for general groups of the

form N 3G3 where N3 has certain properties.

— I 

— - - .- — —---
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