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INVARIANTS AND CANONICAL FORMS UNDER FEEDBACK

P. L. Falb and W. A. Wolovich

Abstract: This paper is concerned with the development of a complete
set of invariants and canonical forms under feedback for linear

systems characterized by proper rational transfer matrices. The
invariants are determined in the frequency domain and consist of the
Kronecker set of controllability indices together with a canonical form
for the numerator of the transfer matrix under the action of a
stabilizer subgroup of the unimodular group of polynomial matrices.

The techniques used are algebro-geometric in nature.
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INVARIANTS AND CANONICAL FORMS UNDER FEEDBACK

1. Introduction

Let k be an infinite field and let x be an indeterminate

over k. Denote by k[x] the ring of polynomials in x with

coefficients in k and by k(x) the quotient field of k(x].

Call an element n(x)/d(x) of k(x) proper if degree n(x) <

degree d(x). Let Mp,m = Mp'm(k[x]) be the set of p X m matrices with
? entries in k([x]. Elements of M are called polynomial matrices.

p,m
Xp m(k(x)) be the set of p X m matrices of full
’

t =
Le zp,m

rank with entries in k(x) which are proper. Elements of Zp -
’

| are called proper transfer matrices. It is well-known that if

T(x) 1is an element of Zp m’ then T(x) can be factored as a
’

product RT(x)P;I(x) where RT(x) and PT(x) are relatively
right prime polynomial matrices. Thus, T(x) can be identified

with the (m+p) * m polynomial matrix

RT(x)

o_(x) = X
T
\ PT(x)

Let @h“ = ﬁhn(k[x]) be the group of m X m unimodular poly-

nomial matrices. Then, QKm acts on zp - via right multiplication.

’

Definition 1.1. Let M = (mi-) be an element of M . Then

J q,r

aj(u) = max{degree mijl i=1,...,9}) is called the j-th column

‘ degree of M. M can thus be written in the form




al ar
M= AC(M)diag[x pesasX ] * M (1.2)

1

where AC(M) is a g X r matrix with entries in k,

] F)
diag[x l,...,x r] is an r *x r diagonal matrix with main diagonal
9
entries x l,...,x * and Ml is an element of Mq " with
e —— S ’

aj(Ml) < aj(M) = aj for i = Lpeoea, L Ac(M) is called the

column coefficient of M. M is column proper if AC(M) is of

full rank. Thus, if q =r, M is column proper if and only if

AC(M) € GL(k,r). Let n = al + oo 4 ar and let SM(x) be the

n X r polynomial matrix given by

P —
1 (Ol 20 0
X 0 -+« 0
9,-1
X 1 o)
0 1 .
SM(x) = . X % (1.3)
. a -1
. x 2 b
. o .
i : 2 -1
0 0 X

so that M1 = FMSM(x) where FM is a g * n matrix with entries

in k.

It is well-known that if P is a nonsingular element of

el

m—



Mm = then there is a U in ?%n such that PU is column
’

proper ([l]). Thus, under the action of qav oT(x) is equivalent

to a o;(x) for which P;(x) is column proper.

Definition 1.4. Let T be an element of Zp = with

’

g, = T e P column proper. Let n = degree det P,,. Let G
T PT T T =
be an element of GL(k,m) and F be an element of Mn m(k).
’

Call (F,G) a state feedback pair. Set

-1
P =G {p, - FS_ 1}, = (1.5)
o T Py RTF'G Rp
e -3 2 :
and TF,G = RT PT . Then T1 € Zp'm is equivalent to T
F,G "F,G

under state feedback if there exist state feedback pairs (F,G),

(Fl,Gl) such that T1 = TF,G and T = T, Fl'Gl.
Note that it is implicit in Definition 1.4 that O is
1

equivalent to o under the action of %_ and that o, is

TF G m 2

’

equivalent to o under the action of % .

T m

1 Fl'Gl

The main result of this paper will be the determination of
a complete set of invariants and corresponding canonical form for
this equivalence. Loosely speaking, the complete set of invariants
is (nc,al,...,am) where R, is a canonical form for R under
the action of an appropriate subgroup of 2,

Section 2 contains a discussion of the system module and the
Kronecker indices. State feedback and properly indexed systems

are analyzed in section 3. The main results are stated and proved




in section 4. Several examples are examined in section 5 including
the so-called "controllable" case ([2], [3], [4]). Finally, some

concluding remarks are made in section 6.

2. The System Module and the Kronecker Indices

Let T be an element of Zp ik and let Op be an element
’
of Mp+m,m which corresponds to T. In other words, GT is an
RT
element of Mp+m,m such that Op = PT with RT,PT relatively
right prime and T = RTP;l. Any such o, shall be called a

linear system (minimal) with transfer matrix T. If Zp o is

’
viewed in this way as a subset of Mp+m,m’ then Xp'm is invariant
(stable) under the action of QKn. Let S, o C:Mp+m,m be the

set of all linear systems.

Proposition 2.1. Let 0 be an element of Sp ” and let Oj = oj(x)
’ oL

be the j-th column of o (so that °j € (k[x])p+m). Then

Opreeer0, are free over k([x].

Proof: Suppose

J

R m
g = {‘1 so that det P, # 0. Then } y.P_ = 0 where P
P Y ply "0 O 0.
o j=1 J J
is the j-th column of Po' In other words, Pcw = 0 where y is

wj(x)oj(x) = 0 where V. € k[x]. Let

1 J

the element of (k[x])m with components wl""'wm' Since

det P # 0, wl = vov = wm = 0.
Definition 2.2. Let o be an element of Sp - and let M, be
the free submodule of (k[x])p+m with generators OpreeerOpe

- e e




M is called the system module of o.

Proposition 2.3. ", is a complete invariant for the action of

%m ea sp,m'

Proof: If o,T € Sp o and there is a U in @% such that

20

ou = T, then Mo M For, oU = T implies that

m
jElujlol, j=1,...,m so that M C M . Similarly, M_ C M,

T°

T
J

and so MO is an invariant.

Oon the other hand, if Mo =M for o,T in S , then

T p,m
5 3
G, = ., T and T = v, O for = iy my = e M
j j=1 3L 2 L pai Lr r
m m
But this implies oj = E z ujzvlror for 3 =1,...,m. Since
2=1 r=1
m
the oj are free generators of Mc’ R‘Zlujmvzr = Gjr' i.e. V=1

so that TU = 0o with U in ‘@h and the invariant M0 is complete.

Corollary 2.4. The transfer matrix is a complete invariant for the

action of Q%‘ on S 5

p.,m

If o € Sp,m' let oij = oij(x), L = LpssegD 0 1 = Lioee,n
be the entries in ¢ and let Ro = (oij), I = YovessPe 3= Lisnsym
and P0 = (cij), i=p+1l,...,p+m j=1,...,m. Note that
" ROP;1 and that Ro’Pc are relatively right prime by the

definition of S s
in n p,m

Definition 2.5. Let o0 be in S
’

p,m and let P be a column proper

element of Mm such that P = Pou for some U in @m' Then

,Mm




the set of integers {Bl(P),...,am(P)} is called the Kronecker

set of ¢ and is often written 30 = {81(0),...,8m(0)}.

Theorem 2.6. Let ¢ be an element of Sp - Then (i) 80 is
7 Saies] gt

well-defined; and, (ii) if T = oU for some U in ‘%h’ then

BT = 80 (as sets).

Proof: Clearly, in order to prove (i), it is sufficient to show
that if two column proper matrices are equivalent under the action
of Q%U then their sets of column degrees coincide. This will

also establish (ii) since T = oU implies P, = PaU and PY

column proper implies PO(UV) column proper.

So suppose that P1 = P2U where Pl and P2 are column
proper and U is in Q%V Let {8;| JR=01, . .o}, {3?[ )i S

be the column degrees of P respectively. Since P is

1'F2 2

invertible,

U = [Ad] P2]Pl/det P (2.7)

2

where Adj P2 is the adjoint of P2' Since the adjoint is the

transpose of the matrix of cofactors and P2 is column proper,
degree [Adj P,] < n- a? (2.8)
2°ij = i '

where n = degree det P2 = degree det Pl. It follows that

< 3% - 8? (since u = ? [Adj P,]
- %3 ij 2

degree u,
i
r=1

ij /det Pz)- But,

irj

for fixed 3j, not all u;4 are zero and so, there is an 1i(3J)




il 2

such that 9, > 9, ,. and vice-versa. By virtue of the following

7 = " 2(3)

1 2 ; :
l lemma, the sets {ai,...,am}, {ai,...,am} coincide.

Lemma 2.9. Let {al,...,sm}, {El,...,em} be sets of nonnegative
integerc such that (i) al + cee + am = el + e + em =
(ii) for each aj, there is an ei(j) with aj > Ei(j)

versa. Then the two sets coincide.

Proof: A simple double induction ([5]).

n, and

and vice-

Corollary 2.10. If M0 = Mo then 30 = aT (i.e., ao is an
invariant for the action of é%n on Sp,m)'
Definition 2.11. Let o0 be an element of Sp e Then
’
n, = degree det P0 is called the (McMillan) degree of o.
Corollary 2.12. 1If Mo « M., then n, = n, (i.e., n is an
invariant for the action of %%l on Sp,m)'
3. State Feedback and Properly Indexed Systems
Let T be an element of Zp - and let O correspond
’
to T with Py, * PT column proper. Let G be an element of
T
GL(k,m) and F be an element of M (k) where n=n_. As
n,m O
! in Definition 1.4, set
| -1
. P =G “{P, = P8, }; = (3.1)
Py T Py RTF'G Ry




and
T = R, p-l (3.2)
F.G F,G 'F,G
Observe that PT is column proper with the same column degrees
F,G
as PT and that degree det PTF . = degree det PT = n. Thus, TF,G
’
is an element of I . However, RT and P need not be
p.,m
F,G F,G
relatively right prime so that nT < n.+ This corresponds to
F,G

the potential loss of observability under state feedback.

Lemma 3.3. Let T and Tl be elements of T which are

’

R
T
equivalent under state feedback. Let o = [;ﬁ] and P 1

T T,
and let (F,G), (Fl,Gl) be state feedback pairs such that
A -
T =T and T = T. Then o P and R_ ,P
F6 - 1 2 T r G Rp g LN Fy €
are relatively right prime.
Proof: Simply note that
n_>n =n =n >n =n_ =n (3.4)
3 Tp,c 3 o B L & i
; 1771
so that (say) degree det P = degree det P_ . But
T T
F,G 1
RT P-l = R P-l and so, if D were a greatest common right
b T T
A ¢ F,G
+Note that nn is, by definition, the degree of a linear system
F,G

(minimal realization) corresponding to the proper transfer matrix

TF,G'

b et



divisor of RT'PT , then degree det D = 0 which implies that D
F,G
is unimodular.

If T and Tl are equivalent under state feedback, write

b ERS Tl.

Theorem 3.5. The relation ~ 1is an equivalence relation.

Proof: Obviously, T ~ T and T ~Tl implies Tl ~ T. So
suppose that T ~ Tl and T1 ~ T2. Then there exist (F,G),
(Fl,Gl) such that TF,G = Tl and T, Fl'Gl = T,. In view of
Lemma 3.3, RT'P is a minimal realization of T and so,
Tp G 1
’
RT, (PT )F e is a minimal realization of T2’ But
P.G “1"71
-1
(P ) = (GG,) “{P,, - (F+GF,)S_ } (3.6)
TF,G Fl'Gl 1 T 1 PT

since S =S as P is column proper with the same

P P T

TF G i F,G

’

column degrees as P In other words, (F+GF1,GG1) is a state

T

feedback pair (F,G) for which Ta &= T,- Similarly, there is
’ 3

a state feedback pair (FZ’GZ) for which T2 ﬁz'éz = .

The goal of determining complete feedback invariants is,
thus, reduced to the characterization of the orbits of the
equivalence relation ~ in S .

p.m

Lemma 3.7. Let Pl,P be column proper with apl = 3P = 3. Then

there exist (F,G) and U in % such that P, =P U =

e — —

m ===mms t1 F,G
G'l{P-FsP}U.




10

a1

Proof: Let P, = M diag[x l] + N Sp (x). Since 3p = 3P = 3,

there are elementary row and column matrices E?,En,Eg such that

9.
Py = {ME:diag[x 11 + NE?SP(x)}Eg. Thus, it is enough to consider

3,
: + o m - n
Mldlag[x ] + Nl SP(x) where Ml = MEr' Nl NEr' Take
= - 1 - —-— - 1 i
G = AC(P)Ml , F = [FP GNl] where P AC(P)dlag[x ] + FPSP(x)
_ .m
and U = Ec.

Definition 3.8. Let P be column proper. P }s properly indexed

2 E al(P) F e am(P). Call o € Sp'm properly indexed if Po
is properly indexed.
Let @(T) denote the equivalence class of T wunder S
Then there exists a T, in  A(T) such that 0p = Op is
1

properly indexed. Thus, it is enough to consider the characteriza-

*
tion of the sets & (T,) = {T,|T, ~ T
1 2172 5

Definition 3.9. Let wa = {P| P properly indexed, 3(P) = 3} and
let S(wa) ={Uv e %] WU = W,} be the stabilizer of W,. Write
%, = S(W,).

Proposition 3.10. Let 3 = {31,...,am} with al > > 3_. Then
U= (u;,) € %, if and only if degree Ugy 8 % - 9; if 9y 2 3
and uij =0 At aj < 31'

Proof: Let P e W and suppose U satisfies the degree conditions.

9
Then ai(PU) < ai. Since degree det P = degree det(PU) = n = zai

and 3,(PU) < 5, implies degree det(PU) < 13;, PU must be column

proper with the same column degrees as P.

1’ 9p ¢ 9 properly indexed}.
1

———d
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3’ then PU =P ¢ Wa

so that U = P-lﬁ = [Adj P]P/det P. But degree[Ad]j P]ij <n- ai

Conversely, if U € Q% and P €W

where n = degree det P. Since ai(ﬁ) = ai, it follows that
degree Yij = aj - 9; if aj 293 and Ugy ™ 5 S % aj < 9.

Corollary 3.11. If P € wa ‘and U € %.,, then SPU(x) = SP(x).

Corolllary 3.12. If 9, = 3, ... = am, then %

1 2 3 = GL(k,m).

Corollary 3.12 indicates that the prospect of determining a
canonical form for the quotient undér @% is favorable. More
precisely, if R € Mp,m with al(R) < 81,...,3m(R) < am, then
9;(RU) < 3; for U in %, and if X, = {R| 3;(R) < 3;}, then
X, is stable under Q%. call R,R; equivalent modulo %% if
R = RjU for some U in %,. Then it is of interest to

characterize the quotient xa/‘%a.

4. 1Invariants and Canonical Forms

R
Let o = | 9| be a properly indexed element of S with
PU p.,m
9 =23, ={8;,...,0,} and let X, = {R| 9;(R) < 3;}. Then Xy
is stable under the action of Q% on the right and Xa is stable

under the action of GL(k,p) on the left.

Definition 4.1. R is equivalent to R, modulo Q% if Rw R,U

for some U in %,. 1In such a case, write R ~3 Ry« R is

equivalent to R; modulo GL(k,p) X @% if R = HR,U for some H

in GL(k,p) and some U in ‘Qb. In such a case, write R ~3 pRl'
’
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It is clear that Ay and “3,p are equivalence relations.
’

Consider now the quotients Xa/@3 and XB/GL(k,p) X 9 The

5°
existence of canonical forms for these quotients will be established
in the sequel. So, suppose, for the moment that such canonical forms

’

RC,Rc p’ respectively, exist. Then:

Theorem 4.2. A complete system of invariants for equivalence under

state feedback is given by (Rc,a) and a complete system of in-

variants for equivalence under state feedback and output transformations

(i.e. action of GL(k,p)) is given by (Rc p,a).
’

1
indexed systems which are equivalent under state feedback. Then,

R R
; 3 1 2
Proof: Suppose first that o, = [?:} and 02 = [;;] are properly

there is a feedback pair (Fl,G ) such that (i) R1 1 1
-1 -1
= R,P s

l 1 Fl,G1 22

FlsP } is column proper and properly indexed. Thus,
1 ;

=1 E

P are relatively right prime and (11) R But
1 F.G

1
{Pl

there is a U in Qg“ such that R, = R,U and Py Fl'G = P,U.

1 2 1

Hence, 80 = 80 as ordered sets. Moreover, by the argument used
1 2

to prove Theorem 2.6, degree uij < aj = ai if aj > % and
uij = 0  1if aj < 3; so that U e @% in view of Proposition 3.10.

Hence, Rl 3 R so that R = R

2 lc In other words, (Rc,a) is

Rz
P are properly

2c’

an invariant.

Suppose now that o [ } and o

2
indexed systems with a o) = o, and Rl = R2c - Rc. Then,
there are Ul,U2 in ﬁka, such that Rlul = R, R,U, = R, and
Pl = Plul, P2 = PZUZ are properly indexed with




e

o— —— -
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v, = RP7Y, o, = R 871, But, there exist G.,G. in GL(k,m)
1 "ab P c2° ' 1293 '
such that
6 1. = dia [xail + F.S. (x)
3 %1 g 1”3
c-lp. = dia [ ai] + F,S. (x)
3 *3 glx 23
and it follows that
G, IGTYP, + (F,-F,)S.(x)] = P
L B R Ll 2
=]1a _ a
G, [6;°F, + (F,-F,)8,(x)] = B, .
In other words, P - -1 =P and P - -1 =P
1 G, (F,-F,),G,G; 2 2 G, (F,~F,),G,G 1

and the systems are equivalent under state feedback. This completes

the proof of the first part of the theorem:. The proof of the second

part is entirely similar and is omitted.

So it remains to demonstrate that the canonical forms Rc

and Rc p exist. There are three essential ideas. The first idea

’

is to show that the action of Z. is equivalent to the

]
of constant matrices on a representation of

action of a group Fa

{(CR'ER)}, of Mp,n(k) x Mp'm(k).

is a semidirect product of a normal subgroup

X as a subset The second idea

9

is to show that Fa

and a reductive subgroup Ga ([7]) so that it will be

=

sufficient to determine a canonical form under the action of Na.

The third idea is to show that certain columns of (CR,ER) are

invariant under Na and to "project" the remaining columns on the

orthogonal complement of the range of the invariant columns.
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Now let R be an element of xa. Then ‘
ai ‘
R = CRSa(x) +ERd1ag[x ] (4.3) :
where cRe Mp,n(k) and ER € Mp'm(k)aj If U is an element of
‘%a, then RU = CRSa(x)U + ERdiag[x YU and, as is readily
established by direct computation,
Sa(x)U = Vusa(xA) (4.4)
diag[x "JU = W diag[x "] + 8 S.(x) (4.5)
u u 3
+
where Vu € GL(k,n), wu € GL(k,m), and Gu € Mm'n(k). Thus,
G
RU = [CRVu + EROu]Sa(x) + ERWudlag[x ] (4.6)
and, similarly,
93
HRU = H[CRVu + EReu]Sa(x) + HERwudlag[x ] (4.7)
for H in GL(k,p). 1In effect, equations 4.6 and 4.7 provide the

basis for determining the quotients xa/ 023 and xa/GL(k,p) " %a.

Let T = GL(k,n) X Mm n(k) X GL(k,m) as a set and define
’

a multiplication in T via

+'l‘hese relations follow from equations 4.27-4.30 and Lemma 4.31.




(C,E) - (vle W)

Then:

— —— GEmn GBS WS e

1 Proposition 4.10. r

Proof:

(1,0,1) (V,8,W)

: w,8,w v 1, tevL,wd

(v,8,W [(v,6,W) v,8,@)]
[(v,0,W) v,6,W)],6,/)

| [(C,E) (v,0,W)] (V,8,W)

Proposition 4.11.

Further, define the "action" of T on Mp n(k) X Mp
’

is a group

(V,8,W) -+ (V,6,W) = (VV,0V + W6 ,WW).

’

(CV + E6,EW).

Simply note the following

relations:

(Vlelw) (Vlelw) (IIOII)

1,0,1) = (v, YovL,wl) v,0,w

(V,0,W) [ (W,60 + WO, W) ]
(VWV,0W0 + WOU + Wb , W)
(V9,67 + W0, W) ] (0,6,
(VW00 + W U + WO, W)
(CV + E9,BW) (V,6,W)

(CW + E(0V+w0) ,EWR)

(C,E) [(W,0V + WO,W)] .

(v,,0 ,W )

o' where

u’ u

V_.W

u’ u

6 are given by 4.4 and 4.5.

. e e e

an injective homomorphism of @% into T.

m k)

i X
which acts on Mp,n(k)

Let U be an element of ‘%a and let VY (U) =

15

(4.8)

via

(4.9)
J

Mp’m(k). ;
]
]
1
b

Then V¥ is
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Proof: First note that Sa(x)(UUl) = vuSa(x)Ul = VuVu Sa(x) and

1
ai ai ai
that diag(x ](UUl) = [wudlag[x 1] + Gusa(x)]-ul = wuwuldlag[x ] +
wuvu Sa(x) + euvu Sa(x). In other words, w([UU1]) = (Vuvu '6uvu +
1 1 1 1
w6 W W ) = (V 0 W ) (V .0 W) =y (U)Y(u,). If y(Uu) =
u ul u ul u ua u uy uy agl 1

(r,0,1), then diag(x l]U = diag[x 1] implies U = I so that
kernel y = {I}.
Let T, = W(Qka) be the image of ‘%a in TI'. Proposition 4.11

essentially states that Fa and Q% are isomorphic groups. More-

over, since the representation 4.3 of an element R 1in xa is
unique, R ~3 Ry if and only if (CR.ER) is equivalent to

(CRl,ERl) modulo the action of Fa. Similarly R ~3,p R, if

and only if (CR,ER) is equivalent to (CR +E_. ) modulo the action

1 M

of GL(k,p) X T Now, it will be instructive to consider the

a.
following examples which serve.to motivate the general development

of the sequel.

Example 4.12. Let m =2, n= 3, 3, = 2, 9 1, 3 = {2,1}, and

1 2
p>1. Then U e %, if and only if
a 0
U = (4.13)
b + cx d

where a,b,c,d € k and ad # 0. It follows that

—

o~

re
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a 0||1 o0 a 0 Oo|[1 o
sa(x)U = x 0] = [0 a O|(x O
b+cx 4|0 1 b ¢ d||0 1
and that
) x2 o|| a 0 a o0 x2 0 0O 0O o/l o
diag[x "JU = = +(0 b O||x O
0 x||btex d c d/|0 x 0 1
In other words, Pa is the group with elements given by
a 0 o 0 0 O 0
(vu.eu,wu) = ||/0 a 0|, [0 b O0f , c d (4.14)
b ¢ d

where a,b,c,d € k and ad # 0 and with multiplication given

by 4.8. Let Na and Ga be the subgroups of Fa with elements

([1 0 (N i @
(vu,GN,wN) 0 0|, |0 b 0|, |ec 1
b ¢ 1
W W : (4.15)
r'_ =
a 0 o0 0
(leo'wG) - 0 a 0 ’ 0' 0 d
0 0 d
L_ o

respectively. It is easy to check that (i) N, is a normal subgroup
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of ra, (ii) Na is the unipotent radical of Fa ([71), (iii) Ga

acts on Na via inner automorphisms, and (iv) Fa = NaGa,

N, NYG, = (I,0,I) so that T is a semi-direct product of N

) 9 9
and G,. Now let (C,E) = (Cl C2 C3 E1 E2) where Cl,EJ are

d

)
the columns of C,E respectively. Then

(C/E) (V,8 /W ) = (a(clebed) a(c?+cc3+bE?) dac? a(El+ce?) 4E?)

and a canonical form for (C,E) wunder this action is sought. Since

the group G is reductive ([7]), it will be sufficient to

3

determine a canonical form for the action of Na. If (VN,GN,WN) €
Na, then

(C.E) (v, W) = (clebc® cZeecd+bE® 3 Er4cE? EY). (4.16)
Several cases must be considered.

2
Case 1l: E™ # 0
1 .
Let (Ez) denote the orthogonal complement of E2. Then

there is a unique c¢* in k such that El + c*E2 ie an element

1
of (Ez) and a unique b* in k such that C2 + c*C3 + b*E2

. 2.4 ® % * _ %
is an element of (E”) . Note that b  =b (C,E) and c¢* = c*(C,E).

Let (c*,E*) = (ct+b* &3 c? + c*c3+b*E? 3 El4c*E? E?). Then (c*,E)

is equivalent to (C,E) modulo»Na and set
¢ (C,E) = (C*,E"). (4.17)

To show that ¢ defines a canonical form for equivalence modulo Na

- T e e e
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it will be sufficient to show that ¢ (C,E) = ¢(C1,El) if and only

if (C,E) 1is equivalent to (Cl'El) modulo Na. Since
* % LI . .
(C ;B ~N3 (C,E) and (Cl,El) ~Na (Cl,El), it is clear that
$(C,E) = ¢(C1,El) implies equivalence of (C,E) and (Cl,El).
Conversely, if (C,E) ~ (C,,E,), then E2 = E2 and C3 = C3 and
Na i 1 1
Ci = Cl + bC3, Ci = C2 + cC3 + bEz, Ei = El + cE2

*
for some b,c in k. But Ei = Ei + ciE2 is a (unique) element
c

1
of (E,) implies that c* = cI + and hence, that
* *
B el v e v, simitariy, 02" = ® S0 4 b'ER s a
1 1 1 1 1
. 118 P : Dl | LD *y .3
(unique) element of (E7) implies that G =€ # (c+c1)c +
(bj+b)E> = (c*+c*c?) + (b]+b)E® and hence, that b* = b] + b.
* %* * *
Thus, Ci = C2 and Ci = Ci + b;c3 = Cl + Q*C3 = C1 . In other
words, ¢(C1,El) = ¢ (C,E).
Case 2: E2 =0, C3 # 0.
m— ) :
Let (C3) denote the orthogonal complement of C3. Then
there are unique elements b*,c* of k such that C1 + b*C3 and
il
c? + ¢*c¢? are in (C4)7. Let «c*,g*) = (ct+p*c® c?+c*cd 2 ! o)

and set ¢ (C,E) = (C*,E*). Just as in Case 1, ¢ defines a

canonical form for equivalence modulo Na.

In this case, it is clear from 4.16 that (C,E) “N (Cl,El)

3
if ana only if c' =cj, c? =c}, 0=c®=c3, B = ], 0 = E? = EZ.

Hence, (C',E*) = ¢(C,E) = (C,E) defines a canonical form in this case.
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Thus, a canonical form for the action of NB has been

determined and a fortiori for the action of Pa (since Ga is

reductive).
Example 4.18. Let m = 2, n = 4, 31 = 32 =2, 9 = {2,2} and
P>1l. Then U € Q% if and only if
a b
U = (4.18)
c d

where a,b,c,d € k and ad - bc # 0 i.e., if and only if

U € GL(k,2). It follows that

1 0 E; %] a 0 b o0 1 0
_|x 0l |[e 4] _ [0 a 0 b|] |[x 0
S =15 1 =lc 0 a of [0 1
0 x 0 ¢c 0 d |0 x
and that
2 x2 o lla b s Bl &
diag[x "Ju = 2 = 2
0 X ¢ d c df|o X

In other words, Fa is the group with elements given by

(Vureuiwu) o

ocnow
oo
oor
Qoo o
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and with multiplication given by 4.8. Since T is isomorphic to

3
GL(k,2), Fa is reductive and a canonical form for its action on
(CR,ER) exists ([6], [7]). For example, if ER is of rank 2, then
E; is a reduced column echelon matrix with E; = ERW*, w* unique,

and C; = CRV*, with v* having the "same" non-zero entries as W¥*.
Note that if p > 4, then the canonical form will exist on an

appropriately chosen "stratification" of X and will not be a

9
continuous canonical form ([8]).
Example 4.20. Let m= 2, n = 4, 31 = 3, 82 =1, 9 = {3,1} and
P>1. Then U € % if and only if
a 0
U = (4.21)

b+cx+dx2 e

where a,b,c,d,e € k and ae # 0. It follows that

1 0 a 0 0 1 0
2
Sa(x)U - |x 0 b+cx+dx el _ |0 a 0 0 X
x2 0 a 0 . 0
0 x b c d ?J 0
and that
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3 1 3 B L]
ai x 0 a Q a 0}]|x o g 0 0 0 X 0
diagx “JU = 2 = 2 1
0 x||btcx+dx™ e d e{|0 x O b < 0 x 0
x2 0
0 1

In other words, I', 1is the group with elements given by

)

(Vo8 W) =

Qa o & o
QA M o o

[0 o o » |
L © © o]

and with multiplication given by 4.8. Let N and Ga be the sub-

d

groups of Fa with elements

R o o o o ol i

0 1 0 0 b c E} d
Vefu ™ = 1o 0o 1 of - '

B ¢ @ 1

T 1

a ¢ @ @ a 0

0 a 0 0 Eé ;]
VerO¥Wg) = 116 0 a o

0 0 0 e

respectively. It is easy to check that (i) N is a normal subgroup

9




N ——_T

&

3 is the unipotent radical of Fa ([71), (iii) G

via inner automorphisms, and (iv) Fa = NaGa,

acts on N

]
Na [ Ga ='(I,O,I) so that Fa is a semi-direct product of Na
and Ga. Since the group Gy is reductive ([7]), it is enough to
determine a canonical form for the action of Na. Such a canonical

form can be determined by the same methods used in Example 4.12 (as
will be shown in the sequel).

Now, recall the following:

Definition 4.22. Let A be an n x m matrix and B be a p x g

matrix. Then the np X mg matrix

Abj; - . - - Aby.
A®B = . . (4.23)
WL gl i
Abpy pq_]

is called the Krcnecker product of A and B.

Note that if the dimensions are compatible, then
(A ® B) (C ® D) = (AC © BD).
Now let 3 = {81,...,am} be properly indexed and suppose

that

B VS e ————— - = ——




= = =t
4 %0 Tty 1
3 - =9 = ¢
ql+l ql+q2 2
am—q 5 S ™ b,
L
where
el > 62 > > El > 1
Then
3 i
q; = m, q;€; = n
=1 1 ol
where n = Zaj. It follows from Proposition 3.10 that U
element of Q% if and only if U is of the form
A (0] (0]
q;r9, ql'qZ qqu3
b - o :
§ BJ xJ A 0
j=0- 92’9 d3+93 92793
U:
21-83 . . 52-5 5
j=0 q3/9; j=0 d3/95 95:9,
€1-€, €,-€, €3-€,
Poag . oW § 8l J P Bl xJ
j=0 'Y j=0 9gr92 j=0 9’93

24

(4.24)

(4.25)

(4.26)

is an

—

(0]
qqul

(0)
qzlqz

0
93+

A
qllql

(4.27)




q I 2
| '
i | € GL(k,9.). Let s _ X be the AB K h
i ' where Aqi’qi ( ,ql) qibi'qi( ) q; €5 q;
k matrix given by
| Hadt W
' X 0 L 60
€.-1
X 0 0
S (x) = (4.28)
qiei'qi 0 1 eee 0
€.-1
0 X erater 10
5 €.-1
0 0 x T
so that
— e
| S (x) (0] S e 1O
‘ 95109 9 %9; q %109
| o} S (x) 0
n DErqy G953 93829
Sa(x) = » . .(4.29)
‘ ! (o} (o} s S (x)
. PSR S] qp €y 9 qp €y 9y,
. —
|
Moreover,
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== ==
1
I O * o e o
* qqul qquz qqu
(0] xezl (0]
3, d,.9 Garby = @5eq
diag[x 1] = e e % ok (4.30)
. (A
)
0 0 Ty I
Q09 q,.9, -
and so the following lemma holds via a direct computation.
Lemma 4.31. If U € %a, then
I ® A 0 0
S e 9 &% 9598
Elgez j J
v = Bl _®B I ®A 0 (4.31)
a j=0 %2'f1 %9 €05 T 9y EPAPIE N
51;: 5 5 ezgsmj 5
E ®B E ® B I A
jeg @t Meh - g IR % - Sy W
0 0 X
qqulf-l qquzez qu'qlel
e1';2'13. ; ,
8 = E ®B o s 10 (4.32)
R mo TG WY 995 BRr%sy
el-;z-l 5 5 € ez—l ) j
E ®B ! E _®B ves Q
=0 1 Y 4o LS G T T9qpE
S -

e WIS TR e
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riA (o] oo o
-€
le qz S ras SOk B
’ ’ ’
& - 271 2'72 il (4.34)
u . .
Bel-ez B€2-El &
£ qﬂ,'ql qzlqz qzlqz—
where A € GL(k,q,) and EJ are matrices of the appropriate
TR ‘-Il:ql 1 e r,s

rank with unit or zero columns.

For example, if n=gm + r, 0 < r <m - 1, and 81 = t.. = 93

q+1, 3r+1 = s = am = gq (the so-called "generic" case), then

q; = r, 9, =m - r, 81 =q+ 1, 32 = q and

0
E =
q,q9+1 [Iq,q Oq,l]
1
E =
q,9+1 [OQll Iq:q]
Eg'q+l = [0 ... 01]
and
Iq+1,q+l e Ar,r O(q+l)r,q(m—r)
Ve "rjeag o) 3
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Or, (g+l)rx or,q(m—r)
0 =
“ 0
P E:l,q+l ® Bm-r,r 0m-r,q(m-r)
Ar,r Or,m—r
Wu =
1 A
m-r,r m-r,m-r
with Ar,r € GL(k,r), Am-r,m-r € GL(k,m-r).
Definition 4.35. Let Na be the subset of I‘a with elements
v,.,9 ,W such that A =1 PP\ =1 and
( N’ N N) —_— ql'ql ql'ql : qzrqg Sprlly =
let Ga be the subset of I‘a with elements (V ,GG,WG) such that
all the BX are zero (note this implies 6_, = 0).
e qi,qj G
Lemma 4.36. Let %N be the subset of ‘2‘3 with elements UN

N
radical of %a: and, (v) W(?N) = Na, v (

the map given in Proposition 4.11. Hence,

such fhat A _ =1 . 1 =1 and let be
S Ty T ey Sy Gl T8 #c be
k the subset of 713 with elements UG such that all the B; q
i’y
are zero. Then: (i) %, is a normal subgroup of ”la; (ii) @G
is a subgroup of @a which acts on %N via inner automorphisms;
(iii) ‘Ia = @N@G and 2, N %G = {I} so that %a is a

semi-direct product of %, and %G: (iv) %, is the unipotent

N
@G) =G

3 where ¢ 1is

I‘3 is a semi-direct
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product of its normal subgroup Na and its subgroup Ga.

Proof: Clearly, l4)(0)(1\]) = N, and W(%G) = G,. Moreover, it is

) ' obvious that %G is a subgroup and that %G N %N = {1}. If
U € %, is given by (4.27), then U = U_ U, where
] Nl G
e 0 s 0 B
ql'ql q, 9, 99y
Tag o g
B A X I GO (@)
UN = ‘Zo qzlql qqul q2Iq2 qzqu
1 ]
e A .
Bl Al B) T - RS
j=0 Yrd WY j=0 Y% %Y Yy
and Us = block diagonal [Aqi'qi] , so that %a = %N %G. Since
g P I O
: N 9,9,
’ €, ~€
i : ;
5 @ 4B’ ) I
| =0 %9 B9 9,9,
O =
| - g W e T N TR
B x+ B B x7 5 ® 4B )x?
=0 WA =jiai=0 B T =0 U WY
' it is straightforward to check that %N is a subgroup. Now let
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U = UN UG be an element of %8 and let UN be an element of
1
% . Then uyu Ul = Uy UgUygU “1,-1  and so it will be enough to
N N 1 G N G Nl g
show that UGUNUG1 is an element of %N. However, direct

computation gives

r i (o) el 0
99 99, 99
C -
2 . 2
J -] J
A A I ese O
20 qz:qz qzlql qllql qZ'qZ q2'q2
-1 _
Ul = : {
E E € -E
] -1 3 j Lo
E A B2 A 2 A B A cws F
L__ =i

and so the lemma is established.

For example, in the "generic" case n=qgqm + r, 0 < r <m -1,

81=...=_ar=q+l, 8r+l=...=am=q, it is clear that
Iq+l,q+l v Ir,r o(q+1)r,q(m-r)
VN = 5
2 Eq,q+l®B -r,r a,q ® Tn-r,m-r
Or,(q+1)r or,q(m-r)
0 = (4.37)
G g? ® B’ 0
1,9+l m-r,r m-r,q(m=-r)
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Ir,r Or,m—r
" " 1
m-=r,r m-=x ,mr
and that
Tgr1,g1 ® 2er O(gtl)r,q(mer)
v, =
Loqun—r) (atl)r Iq.q® Am—r,m—r
rArlr or’n‘-r
o, &
Lom-r,r Am-r,m—r
Moreover,
-1 e -1 -1 -1
Y -
(VG,O.WG) (VN, N,WN) (VG ,O.WG ) (VGVNVG ,wGeNVG ,wGwNwG )
and
1 ferian ® T O(q+1)r,qmr)
Véu's " | 1 3 ; i
J'EoEq"?"l 5 Av-r -, r x Iq,q . Tor ,mer
L- —
.1.
E o
. r,(g+l)r r,q(m-r)
WO v =
GNG 0 0 -1
l":l,q+l ® Ah\::,rm:Bm--r,r:‘"r,r 0xn—r:,q(m—r)
' 0 T
Not =
e Am-r,m-r Il,l ® Am-r,m-r so that Am-r,m~r (El,q+1 ® Bm-r,r)
0 0
= E
1:‘1"'1 ® Aﬂ\"r,m-er-r,r'

——— =
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r,r r,m~-xr
G"Ne 1 -1

B
m-r,m-r m-r,r r,r Im—r,m—r

l,O,WEl) is an element of Na.

imply that (Vg,0,Wg) (Vy,8,W) (v;
Lemma 4.36 shows that the properties of Fa used in the
examples hold in general. Since Ga is reductive, it again will
be sufficient to determine a canonical form under the action of Na'
The method is entirely analogous to that used in the examples and

will first be illustrated for the "generic" case.

So let n=qgm+r, 0 <r<m-1, al =it - ar =q+ 1,
3r+1 =™ e = am = q, 31 =q + 1, 82 = g. Then Na consists of
elements (VN,GN,WN) given by 4.37. I1f p >1 and (C,E) is an
element of Mp,n(k) X Mp’m(k), then

C=(CD), E= (EPF) (4.38)
where c = (¢! ... cl¥*1)Ty o (clarlirdl | ony
" ... 0% s B o e L N
1 m-r -
r ... 7 ) are elements of Mp,(q+l)r(k)’ Mp,q(m—r)(k)’ Mp,r(k)'
and Mp m_r(k), respectively. It follows that
’

(CIE) (ere Iw ) - (CVN + E@N,EWN)

N N

and

-~
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. 0 Q 1 1
Vy c + E(Eq,q+l i m-r,r Eq,q+l QOBm-r,r) 2l
E_ = (F(E ® B 0 ) (4.39)
N -*"1l,q+l1 m-r,r’ p,q(m-r)
EW. = (E + FB. F)
N - - m-r,r
Thus, D and F are invariant under the action of Na. Again,
there are several cases to consider.
Case l: D=0, F = 0.
In this case, it is clear from 4.39 that (C,E) “N (Cl,El)
3
if and only if C =C,;, 0 =D =D,;, E = E,, and 0 =F = F,. Hence

(C*,E*) = ¢(C,E) = (C,E) defines a canonical form.

Case 2: D¥ O, F = 0.

AL
Let R(D) denote the orthogonal complement of the range
1

of D. Consider the set {C + D( } EJ

j p—
L Fa,qn ®B_ )} N wO. If

C + DX and C + DX; are elements of this set, then D(X-X;) =0
(being an element of R(D) N W(QYL). Thus, if the set is non-empty,
] e -

" - i Jj a] a =

it contains a unique element C + Q(jEOEqu+l ® B8R, el = €

(caution: ﬁ;_r ¢ are not unique in general). In this case, set

’
(c*,E*) = ¢(c,E) = (Ic* D], [E 0]). Then, (C*,E*) ~, (C,E) and
9

it is claimed that (C*,E*) defines a canonical form. Clearly, if

(C;,EI) = (c;,E;), then (C,E) ~. (C;,E;). On the other hand, if

N

9
(C,E) ~Na (Cl,El), then F = El =0 and D = 21 so that E = El
: 23 - -
and ¢, =C+ E(jzosq'q+l ® B;_, ) for some B .. But
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1

. . I i
J BJ = + gl ® B J where
RE L INEY SEEY-EY-: )

c -
= j=0 q,q+l m-r,r

|0

~_

3 de :
"3 [ * Al
3 < 3 = & gJ 33
ML O S LA R that ¢C, = C, g(jgo g ® Bin-r,r)

£ :
is a unique element of R(D) implies that QI = C +

1 .L
~J 3 q
8 1 ® (B _ A + Bl -r, ]) 1is an element of R(D) N

{c + D( } Eg arl ® B%_r () 1. Since c* is a unique such element,
j=0 ’ ’

it follows that g; = g* and hence that (c*,E*) = (C;,EI).

: . 3 3 poses (g
Finally, if the set {C + D Eonq'q+l ® Bm-r,r)} N R(D) is empty,

set (c*,E*) = ¢(C,E) = ([c D], [E 0]) = (C,E). It is clear that

(c*,E*) 1is a canonical form in this situation.

Case 3: D¥ 0, F =0

Let R(F) denote the orthogonal complement of the range

1

1 ,
m-r,r) 1 R(E)Y . If this set
; A p : ® Al
is non-empty, it contains a unique element E" =E + FB _ .
&3

; : . ; 1
(caution: B & is not necessarily unique). Let R(D,F)
n-r, 20F

of F. Consider the set {E + FB

denote the orthogonal complement of the range of (D,F). Consider

0 ® B’ 1 ® Bl j

the set {C + P.(Eq,q-o-l m-r,r * E:q,q+l m-r,r

0

1
=g,z R(D,F) . Again, if this set is non-empty,
, =

0
F(E) g4) ®B
0 20

) : 2 * _
it contains a unique element C" = C + Q(Eq,q+l ®Bm—r,r +

1 al 0 a0 , DR P
Bq,q+1 @B, ;,r) * E(El,q+l ® Bm-r,r)‘ Note that C~ is in-

: o8 | 4 * _ a1l
dependent of the choice of Bm-r,r for which E = E + EBm-r,r
since, if C + DX + FY and C + DX, + FY, are in m(g,g)‘L, then
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" 4
D(X-X;) + F(¥-Y;) is an element of R(MD,F) N RD,F)" and so,

D(X-X,) + E(¥-Y;) = 0. sSo set (c",E*) = ¢(C,E) = ([c* D], [E* F]).
Then (C*,E*) “N (C,E) and it is claimed that (C*,E*) defines
9
a canonical form. Clearly, if (c*,E*) = (C{,E{), then (C,E) “N
)
(Cl’El)' Conversely, if (C,E) ~Na (Cl,El), then F = El and
= : = =l i il ~1 1
D™Dy 8ce B *E* Brer B P B TR BBy r Y Byer
: ;e * A1
and it follows that El E and that Blm—r,r can be taken so
that ﬁl + g = gl Arguing in a manner entirel
im-r,r @ Bm-r,r m-r,r"’ guind . 4
analogous to that used in Case 2, it is easy to show that g; = g*.

The situation when the various intersections are empty can also be

treated in a manner entirely similar to that used in Case 2.

Cagse 4: D=0, F # 0.

Let m(FTL denote the orthogonal complement of the range of

F and consider the sets {E + EB;_r gl 0 m(gf’ and
0 0 L . -
{C + E(El,q+l ® By _,, )} NRET. If these sets are non-empty,

they contain unique elements Q*,g* respectively and (c*,E*) =
¢(C,E) = ([gf o], [E* F]) 1is the desired canonical form (as is
readily demonstrated via the methods used in the previous cases).
If either of the sets are empty, then the appropriate B%—r,r is
taken to be 0 to obtain the canonical form. Thus, a canonical
form exists for the generic case.

Now it is time to consider the general case. So let

9 = {al,...,am} be properly indexed and let Qyrecerdys

cl,...,cE be given by 4.24 and 4.25. Let p > 1 and let (C,E)
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’

1 t of k) X k). The
be an elemen Mp,n( ) Mp m( ) n

c= (cte?...ch, B~ E. .Y (4.40)
” i i
where C is in Mp'qiei(k) and E is in Mp’qi(k). Let
(VN,GN,WN) be an element of Na so that
- e
I P I (0] ’ A @)
e Lo 91:% qr €098 4595
El-e 5 ;
v, = Y E ® B I ®w I s 10
A =0 21 %% ' 92 %5
€. - E,—E
) 2”5
i 2 _ ®8 ] 2 _ 8 B ® I
=0 S%'f1 %9 j=0 %2 H©'% Cor€y 99y
- e
(0] (0] vew O
995 q)r9 %2 93095
E1';2 - 5 5
6 = E ® B O LRI O
2 (4
L N w0 L1 Q9 995 909y
51';[1 5 ; Ez‘gz'l 5 ;
E ®B El _ ®B helle .
j= 1'61 99 3=0 1'62 99, qz'qlhg_
3
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I 0 P i
£ =€t
"2
W.=|3B I 0 4.41
R 9309 909, qyr9, : )
El—CE BLZ—CI S
ql'ql qziqz qRIqQ—J
and
E.=-E
2 : ] S " "
oy, SHes s GLEREER G Sgd
i=2 j=0 L | 99
€E,-€.-1
g e 0 . j
® B
E6.= (T gt £ ®, S s@a) s esesO) (4.42)
N o j=0 17¢y - ol | =
2 PR - £,
EW, = e O o T e
i=2- 909

These equations determine the action of N on X

9 9"

Definition 4.43. Let Ai, 3= Yousnll be p x r, constant matrices.

Let kP be the space of column vectors with p rows. Then

m(él,...,és) denotes the subspace of kP spanned by the columns

=
of the A and m(él,...,ﬁs) denotes its orthogonal

complement.
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Lemma 4.44. Let Ai' i=1,...,8 be p X X, constant matrices.
Let dz,...,ds be positive integers. Consider the set
- 1 j
Q= {a, + 42 éjBr.,d.} f\yuéz,...ﬂs) where B 4. Mr.,d.(k)'
3=2 2 o J

Then either Q is ewpcy or Q contains a unique element.

s = s i
Proof: Let X, = A, + ) A.BJ and X, = A, + ) A.BJ be
¥ L 181 7 L AP 4. s TRy T R g
o Bl =277 T35
S F
o < j T ;
elements of Q. Then X, - X, 'E éj(Br.,d. Br.,d.) is an
" j=2 S 33
element of  R(A,,...,A ) N S}t(z_\z,..._,és) = {0} so that X, =X

Theorem 4.45. A canonical form for the action of N, on X

9
exists.

Proof: The proof is essentially a tedious exercise in the repeated

application of Lemma 4.44 and should he clear from the examples
and the generic case.
Thus, the existence of a complete system of invariants under

feedback equivalence has been established.

5. Some Examples

Several examples shall be examined in this section. The first

illustrates the fact that the Kronecker set 3 is not a complete
invariant for either equivalence under feedback or equivalence
under feedback and output transformations. The second contains a
treatment of the "controllable" case. The third involves an

analysis of output feedback.
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Example 5.1. Let
2 2 N
1/x (x+1) /x (1-x) /x 0
T(x) = ’ Tl(x) =
0 1/x 0 1/x
A -1 a -1
Then T(x) = R(X)P ~(x), Tl(x) = Rl(x)P1 (x) where
1 x+1 l1-x 0
R(x) = IRl(x)=
0 1 0 i
and
x2 0
P(x) = Pl(x) =
0 X
Note that R,P and Rl'Pl are relatively right prime, that
P = Pl is properly indexed, and that BT = {2,1} = aT . However,
1
R 1is not equivalent to Rl under Q% (or GL(k,2) x Q%) since
R is unimodular but Rl is not unimodular. The fact that R
and R1 are not equivalent under @% can also be established via
examination of the canonical forms Rc’Rlc' For,
31 13 % 0o 1| [x?
R(x) = 1 x 0] + 0 0 X
3 5 i
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2
{ 1 -1 1l 0 0l |x 0
Rl(x) = |0 0 1 ([x of + |0 0|]0 X
! 0 1
so that
1 0 1 0 1
A x
CR- ’ ER
0 0 1 0 0
= =
CHE R [0 o
¢ = : By =
By 0 @ 1 | g @
* * * *
and (CR'ER) # (CRl'ERl).
Example 5.2. "The Controllable Case" ([2], [3]).
Let 1€ C.5 be the set of n X m transfer matrices T (x)
n,m n,m ’
such that T(x) = I(xI-A) 1B for some controllable (A,B,I). Then
it is claimed that 3T is a complete invariant under state feedback
and output transformations. Since aT is an invariant, it is enough
y c ’ i
to show that if 'r,Tl are elements of En,m with aT = aTl, then
T and T are equivalent. However, as is well-known ([(2], (3], [4]),

1
T 1is equivalent under state feedback to T where

-1
Q "S,(x)
o, = R
diag|[x 1]
for some Q € GL(k,n) and similarly, for T.. In other words,

1
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In other words, R = Q—lsa(x) and ﬁl = QIlSa(x). Hence,

R = (Q-lQl)ﬁl and T is equivalent to g

Example 5.3 "Output Feedback"

Let 1° () be the set of p x m transfer matrices T(x)
p,m p.m

which are strictly proper i.e., if T(x) = (nij(x)/dij(x)), then

degree nij < degree dij' Let s° (@ Sp be the corresponding

p,m
set of strictly proper linear systems.

M

R

Definition 5.4. Let T be an element of :° with o = T .
p,m T P

PT column proper. Let n = degree det PT' Let G be an element

of GL(k,m) and H be an element of Mm p(k). call (H,G) an
Qo anc ’ Sl =0

output feedback pair. Set

e -
Py = G AP, = HR.}, RTH Ry, (5.5)

H,G /G
-1 s : ;
= A €
and TH,G RT PT Then T1 Zp’m is equivalent to T
H,G "H,G

under output feedback if there is an output feedback pair such

that T, =T .

1 H,G
Note that if T1 is equivalent to T wunder output feedback,
relativel i i : =
then PT ’RT are Y right prime since ART + BPT I
H,G H,G
implies (A+BGG-1H)RT + (BG)P,, = I. This corresponds to the
H,G H,G

preservation of both controllability and observability under output

Rep

so that HR, = (HCRT)Sa(x), it is clear that equivalence under output

feedback. Moreover, since Tl(-H,G‘l) =T and RT = C Sa(x)




feedback,

Now, if T

there is a U in ?ka
T
under ‘%am, and PTU = Pc

1

RCP;l, it may be assumed that

Lemma 5.6. If T 1is equivalent to Tl

is an element of [

is properly indexed.

42

implies equivalence under state feedback.

Rr

Ay

. with o_ =

p,m m p |’ then

such that R_U = Rc’ the canonical form

T

Since T = RTPT

R
et pc'
(o]

under output feedback,

then

conversely.

Proof: If T

is equivalent to T1 under output feedback,

R R
I:PC:' is equivalent to E,lc:l under output feedback and
c c

1

then

Rl = R-U and Pl = PH,GU for some U in qgn. Since Pl,P are

properly indexed, PH G is properly indexed and U is an element
’

of @a‘ But R; . = R;V, with v, in @a and R = RW with

W in ‘%a together imply that R, = RC(WUVI) and R ™ PH,GUV

g | v
=G {PCW HRCW}UVl PcH,G

R
{?lé} under output feedback.
lc

(WUVI). Thus, [

R

cj| is equivalent to
Pe

The converse is demonstrated by

_1_

1
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reversing the argument.

Definition 5.7. Let o = Bﬂ be an element of S; 2 and let
’
rl,...,rp, pl,...,pm denote the rows of o. Then mk(o) =

spank[rl,...,r tPreeecsP ] 1is the span over k of the rows

P m

of o.

Theorem 5.8. T is equivalent to T, under output feedback if

and only if aT = aTl, R, = Ry, and mk(oT) = mk(oTl).

Proof: If T 1is equivalent to T, under output feedback, then

T 1is equivalent to Tl under state feedback and so, BT = aT
; 1
and Rc = Rlc' Moreover, in view of Lemma 5.6,
—  — - —
* T Fel Flcl
¢ g ¢t = -
cp lcp
Pea | © | Pia1
P P
cm lcm
A8 s | sabony
so that [r1c1 e rlcp plcl . plcm] C mk(oT). Similarly,
[rcl _ rcp pcl .5 pcm] C mk(oTl) and so, mk(oT) = mk(oTl).
i = = q Y
Conversely, if d, aTl, R, = R, and %, (9,) Rk(oTl)'

then rlcl = rcl""’rlcP = rcp and [rlcl"' rlcp plcl .s plcp]

C ﬂk(oT). It follows that
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— i I —
I 0 o ra
N M -
rcp = rcp
Pe1 Pic1
P P
cm lcm
- ol 1= o
for suitable N,M 1i.e. NRc + MPc = Plc' But ai(Rc) < ai(Pc),
PC,Plc column proper, together imply M € GL(k,m). Thus,
= y ko S | ; .
By ™ PcH,G with H = -GN, G M and so, T 1is equivalent to
T under output feedback.

1
Theorem 5.8 may be interpreted as stating that (Rc,a, mk(o))

is a complete invariant under output feedback.

6. Concluding Remarks

Considerable research has been done on the problem of finding
invariants and canonical forms for linear systems under various
equivalence relations (e.g. [2], (3], [4], (5], (9], [10], [11],

[12].) For controllable systems, Brunovsky ([2]) and others

((3], (4], [11], [12]) determined a complete set of invariants

under state feedback and a corresponding set of canonical forms. Kalman
([4)) and Rosenbrock ([l11l]) related feedback invariants to the

classical Kronecker theory of singular pencils of matrices. Morse
([10]) studied invariants under a rather large group and Wonham {
and Morse ([12]) examined state feedback invariants. In a pivotal
paper, Wang and Davison ([9]) developed a sound complete set of

invariants under feedback with a reasonable indication of the true

S e e
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algebraic group acting on an algebraic set nature of the problem.
Hermann and Martin ([3]) treated the controllable case using
algebro-geometric methods and a result of Grothendieck. More or
less with the exception of [3], all the results were developed in
state space form for systems with strictly proper transfer matrices.
In addition, the techniques used do not seem to be readily
generalized to systems where k need not be a field.

Here a complete set of invariants and canonical forms are

determined in the frequency domain for systems with proper transfer

matrices. Moreover, the algebro-geometric nature of the problem is
evident (see [8] for example) and the techniques used can be extended
to the case of systems over integral domains without any difficulty.

In addition, the methods used to obtain the canonical form under Q%

can be employed to prove a "moduli" result for general groups of the

form NaGa where Na has certain properties.
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