
AO—A06’e 396 AIR FORCE INST Off TECH WR IGHT—PATTERSON Afl 01410 SCH—ETC F/S 9’2
DESIGN OF A SEt. 86/1.51—11 INTERFACE MOt4ITOR.(U)
DEC 78 J E BARALL.I

UNCLASSIFIED AFIT/SCS/EE/78—9 Nt. Ioc2
~04 06 4 396

• I

__ __
I_____I

______ fl
_ I

I

I” ‘~~I1~I2=~ 2~I .V L~~~~~~~~~V IM~~~~2 2.2
~~~~~~ 36 —

I I 
p~ ~2.O

lIIII~IOU 1 .25 IIDI~ n~II~
MICROCOPY RESOLUTION TEST CHART



— ~~~ ~~
—

~~ —-~----- ~—-- ____________________________________

AFIT/GCS /EE/ 78— 9
1~~~~~~~~~

~ ~

~~L-LJ

DESIGN OF A SEL 86/LSI—l 1

C.3 INTERFACE MONITOR
—.- THESIS

AFIT/GCS/EE/78 — 9 Janet E. Baralli r~’
Capt USAF ; ‘  H

h t
~~~~~~~ 

L.__/

Approved for public release; distribution unlimited .

-

t

~~~~~ ~~~-: -



- -

~~~~iiT/GCS/EE/78 9]~~~

~~~~DES I GN OF A SEL 86/ LSI- 11

INTERFACE ~ONITOR .

~~~~~~~ 

(
THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air Training Command

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

~I~~ane t E./Baralli9_3~~~II~ I
Capt USAF

Graduate Computer Systems

b~~~~ 978~~~~~ I

Approved for public release; distribution unlimited

O1.~j ii~~~i~~~

~~. - -~~~~~~~~~~~~~
-
~~~~~~

. ---~---- - -
~~~

- — -
~~~~~

.
-~~~~

— -~~~~—- ----- - - - — - ----- — — --- - - - —--  -



Preface

My experience with “programming” has shown me that I

have wasted valuable time debugging inefficient code

because I have not spent enough time defining the require-

ments and considering a well—structured design. The formal

tools becoming available to software engineers is helping

to alleviate this problem . No one tool is the answer, but

by blending these tools one can make considerable headway

in tackling the problem .

The design I am presenting in this thesis is a result

of devoting considerable time to the analysis and design

phases of the software life cycle. In attempting to

define requirements I stumbled through SofTech’s SADT and

Tom De Marco ’s Structured Analysis and found that drafting

a user’s manual best served as my analysis phase product.

I had exceptionally good luck with Yourdon and Constantine’s

transform and transaction analyses. I also used Parna’s

and Jackson ’s methods in developing the design. Use of

these tools , with sound structured design heuristics , led

me to the development of a well—structured design. Coding

and debugging this design should be much easier. Even

errors will be more easily correctable due to the cohesive

modularity of the design. I feel the resulting product is

I indeed a good one.

ii



I must extend my thanks and appreciation to my sponsors

at the Air Force Materials Laboratory, Mike Dennis and Frank

Beitel , and also to Lt Dave Summer at AFML for his assis-

tance. I must give special thanks to my thesis advisor ,

Capt Peter Miller. I am not sure how he survived being my

advisor. But miraculously, the thesis is completed. I

must also thank Maj Alan Ross. He put up with a lot of

my struggling during this thesis project. And I cannot

forget to thank Rusti Gaudreau. She had so little time to

do a splendid job in typing this report.

Janet E. Baralli

I

iii



— - 

~~~~~~~~~~~~~~~~ 
‘
~~~~

‘—
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~--~~~ .~~~~- 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—

__________Contents

Page

Preface . . . . . . . . . . .  . . . . . . ii
List of Figures   .  .     vi

List of Tables • •  .   .  .  .  .vii

Abstract  .   .  .  .  viii

I Introduction  .   .  .  .        . . 1

Problem . . . . . . . . . .          1
Constraints and Considerations . . . . . . . . 2
Approach . . . . . . .             3
Outline . . . . . . .  4

II. Analysis of Existing System  5

Introduction . . . . .             5
Overview . . . . . . . . 5
LSI—11 . . . . . , . . . . . . .  . . .  . . 6
SEL 86 . . . . . . . . . . . . .  . . .  . . 7
Current Procedure for Operating an LSI—11

in a Data Collecting Experiment . . . . . . 8
Weaknesses of the Current System . . . . . . . 9
Sum mary . . . • 10

III. Techniques Employed in Developing the
Interface Design . . . . . . . . . 11
Introduction . . . . . . . . . . .       11.
Software Engineering . . . . . . . . . . . . . 11
Tools for the Requirements Analysis . . . . . 12
Tools for the Structural Design . . . . . . . 14
Summnary . . . . . . 18

IV. The lnterface Design . . . . . . . . . . . . . .19
Introduction . . . . .          . . . 19
Design Structure . . .    . . .19
Design Decisions . . .     . . . 21
Summary . . . . . . .          . . . 26

V. Conclusions and Recommendations . . . . . . . . 27

Introduction 27
Conclusions . . . . . . • • • • • 27
Implementation . . . . . .     .   •  . 28
Recommendations . . . . .     .   .  . 30
Final Sumnmary . . . . . .     .   .  . 31

iv

_____



- 

~~~~~~~~ ~
.-—-

~

Bibliography . 32

Appendix A: SEL 86/LSI—l1 Interface Monitor
User ’s Manual 33

Appendix B: Bubble Charts for SEL 86/LSI—11.
Interface Monitor 54

Appendix C: Structure Charts for SEL 86/LSI—11
Interface Monitor 60

Vita 101

*

~

-

~

1__

~

_ ~~~~~~~

List of fl~~~~s

Figure Page

1 LSI—11 Interface Monitor Bubble Chart 55
2 LOAD Bubble Chart...56
3 SEND Bubble C h a r t57
4 TRANS Bubble Chart 5 8

5 SEL 86 LSINTR Bubble Chart . . . 59
6 LSI— 11 Interface Monitor Structure Chart . . 61
7 LOAD Structure Chart 70
8 FILE/SEND Structure Chart 78
9 RUN Structure Chart82
10 TRANS Structure C h a rt 8 3

11 IMCHAR Structure Chart 86
12 IMEXIT Structure Chart 88
13 SEL 86 LSINTR Structure Chart 89

vi

_
~~~~

_L_ _~

__
__ ~~_~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~——-- - -~ —  ~ ---- - - ---~ -~~ -.- A



— 
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

List of Tables

Table Page

I LSI— l1 Interface Monitor Data and
Control Flow . . . . . . . . . . . . . . . 66

II LOAD Data and Control Flow Table . . . . . . 73

III FILE/SEND Data and Control Flow Table . . . 79

IV RUN Data and Control Flow Table . . . . . . 82

• V TRANS Data and Control Flow Table . . . . . 84
VI IMCHAR Data and Control Flow Table . . . . . 87
VII IMEXIT Data and Control Flow Table . . . . . 88

VIII SEL 86 LSINTR Data and Control Flow . . . . 95

;

H

vii

_ _  - —•-~~~~~~~~~~~ 

_j



_ _ _  
_ _ _ _ _ _ _ _

Abstract

The Air Force Materials Laboratory (AFML) uses LSI—11

microcomputers as one of several computer systems available

for collecting test data. For conducting these tests ,

LSI—11 programs must be loaded into and data collected from

the LSI—11 using paper tapes. Data is later stored on a

larger computer system at AFML, the SEL 86.

The purpose of this investigation has been to design a

SEL 86/LSI—11. interface that will automate manual procedures.

The interface design enhances the current LSI—11 system by

providing the following capabilities: load binary programs

and data residing on a SEL 86 file into LSI—11 memory ;

transmit data stored in LSI—l1 memory to one or more SEL 86

files; and place the LSI—11 memory into a transparency

mode such that it is a peripheral as viewed by the SEL 86.

The principles of software engineering have been applied

in both the analysis and design phases. Formal tools have

been used in defining the requirements and developing the

structured design. The resulting design is an interface

monitor with software residing on both the LSI—11 and the

SEL 86. The added capabilities are provided using either

a series of commands entered at the LSI—11 console or as

call statements in LSI—11 FORTRAN compiled programs.

vii i

-• ---—- - •-- - • - •~~~~~~~~~~- --~~



— — __
~~__ _—__ -r

DESIGN OF A SEL 86/LSI—11

INTERFACE MONITOR

I. Introduction

Problem

The Air Force Materials Laboratory (AFML) is involved

in experimental research. Testing is conducted in a variety

of areas within the field of materials including research

in such areas as corrosion crack growth , electronics , and

lasers . In support of this research , laboratory personnel

t use Digital Equipment Corporation LSI—11 microcomputers for

some data acquisition testing . The data collected on the

LSI—11 is stored on the Systems Engineering Laboratories 86

computer (SEL 86). The data is then analyzed on the SEL 86

or the data is transferred to the Control Data Corporation

6600 computer (CDC 6600) for analyses.

The purpose of this investigation is to design a

general—purpose SEL 86/LSI—11 interface . At present all

communication between the SEL 86 and any LSI—11 is limited

to paper tape inputs/outputs and associated manual opera-

tions. The proposed SEL 86/LSI—1l interface enables

laboratory personnel to transmit data to and from an LSI—l1

automatically using keyboard inputs at the LSI—11. The

modification of both SEL 86 and LSI—11 software 
alsoI



— - - - • - -
~~

- - - - -
~~~

-
~~~~~
-

~~
- - ——••

~~~~~
-

~~~~~~~~~~~~~~~~~~ ~~~
-

~~~~

~
—-- •--

~~~~~~V -
~~~~~~~~~

provides added capabilities in designing and performing

laboratory experiments. The purpose of the new software

design is to meet the needs of the personnel performing

the experiments by adding an automated LSI—11 interface to

the SEL 86.

Constraints and Considerations

There are several limitations imposed upon the system

design . A major constraint is the memory space ava iable

on the LSI—11 for the modified software . The maxi~ium

memory size is 8192 (8K) words . In an effort to stay

within these boundaries , LSI—11 software must be useful ,

but short and straightforward in keeping memory overhead

to a minimal .

Any modifications must remain within the present

framework of existing hardware . No hardware changes are

permitted on the SEt 86. Available equipment must be used .

• The only hardware change allowed on the LSI—11 is the

addition of a read—only memory (ROM) to store the LSI—11

software modifications .

Modification to existing LSI—11 software is required

in the FORTRAN library and the FORTRAN compiler in recog-

nizing and interpretting new FORTRAN callable routines.

The communication support available is the SEt 86

Terminal Support Subsystem (TSS) (Ref6:2—1). This system

imposes some restrictions since it is constrainted to

operate at the slow rate of 300 baud and transmits ASCII

_
- ---~~~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ “•--~‘j



,~~_ ~~~g:;r-- --- ---—- —
~~

—-
~~~~~~~~

“‘- -
~--~

————-- —
.~~

characters only. This latter restriction requires encode/

decode procedures into both SEL 86 and LSI—11 software .

The limited computer background of laboratory personnel

using the new software must be considered in determining

trade—off s in system complexity and user input requirements.

The system must be easy to use for those unfamiliar with

any computer interface , yet allow enough flexibility to

• provide powerful capabilities for those experienced in

SEL 86 interface procedures.

Approach

The goal of this investigation is to design a well—

structured interface system to automate the current LSI—1i.

procedures. The approach consists of two major stages: an

analysis of the interface system requirements and the

design of the system using the requirements obtained by the

analysis. In analyzing the requirements it is necessary

to have a clear understanding of the current operating

procedures and environment . Once this is achieved , a

definition of requirements for the new system is made .

This involves continued interviews with personnel at the

Materials Laboratory to gain a concise requirements

definition. A draft user ’s manual is then prepared .

• A design can be developed once requirements have been

clearly defined. This design is based upon various

4
structured design techniques used to produce a “good”

3

L~~~~~~- .- •- - --
.
— --. •~~~~~

.
~ •• •~~~~~• • • . . .~~~~~~~~~~~~~~~

design (Ref 4). The finished design incorporates the

expanded capabilities without degrading present capabilities

by using the “best” possible design structure .

Outline

Chapter II presents an analysis of the existing system .

It includes a description of the SEL 86 and the LSI—lIs

used in AFML. Chapter II describes techniques used in

developing the design through both the analysis and design

phases. Chapter IV deals with the design of the actual

interface , considering the overall design structure and

specific design decisions that have been made in creating

the design . Chapter V sites conclusions in examining

the design product , specifies particular implementation

requirements , and presents recommendations to enhance the

capabilities acquired with the SEL 86/LSI—11 interface .

Three appendices are also included . Appendix A is

the draft user ’s manual for operating the SEL 86/LSI—11

interface . Appendix B is a series of bubble charts (see

Chapter III) representing output of the analysis phase.

• Appendix C is the actual software designs of the interface

needed for both the SEL 86 and the LSI—11.

H
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ - -• --  

II. Analysis of Existing System

Introduction

This chapter deals with the znalysis of the system as

it is presently operating at AFML. It presents a descrip-

tion of how the SEL 86 and the LSI—11 operate in data

collecting experiments and summarizes the current procedure

for collecting and storing data generated during execution

of an LSI—11 data—collecting program .

Overview

AFML personnel make use of three computer systems in

conducting their research. Many test computations are

performed using the ASD CDC computer system . This computer

system can be viewed as a host computer . The laboratory

operates and maintains a SEL 86 computer which , when inter-

faced with the CDC system , serves as a satellite computer

to the CDC 6600. The laboratory also owns eleven LSI—11

microcomputers located in several building on the base.

By using the SEt 86/LSI—11 interface as presented in this

thesis , these micricomputers become satellites to their

host, the SEL 86 computer.

4 -

5

-



• LSI—11

The LSI—11 is a 16—bit , byte addressable microcomputer.

AFML operates eleven such computers: one dedicated solely

for program testing , assembling , and compiling purposes;

and ten employed for data—gathering while conducting

experimental research.

The LSI— 11 system , dedicated to program testing and

development , is the largest of the eleven systems . All

testing , debugging and compiling of LSI—1i. programs is

done on this computer system. Its operating system , RT—11,

includes a PDP—11 assembler , a FORTRAN compiler and the

FORTRAN library (Ref 3:681—693). Memory size is 32768

words (32K). Floppy disks are used to augment memory

storage. Both inputs and outputs are handled through

either a keyboard and printer or a paper tape reader/punch.

All I/O processing is interrupt—driven.

The other ten LSI—11 computer systems are uniquely

configured system designed to meet the needs of individual

experiments. Currently, six LSI—lls are being used in

data—collecting procedures. These computers all have

limited memories ranging from 8K to 28K words. The com-

puters have only a few standard features: keyboard with

CRT scope or printer , fast or slow paper tape reader , a

line to the SEL, and a modem . Other features are available

to some of the LSI—Ils , but not standard to all ten of

them: real—time clock; X—Y recorder , and paper tape punch.

6

~

• •

~ 

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~
•
~~~~~~ •~~~~~~~~~~~~~~~~~~~ 

_ _ _ _



(at present all six LSI—lls being used for collecting data

have paper tape punches available.)

SEL 86

The SEL 86 is a 32 bit , general purpose computer. It

is used extensivel y by AFML personnel for local processing.

It also serves as an input device to the ASD CDC system ,

like the 1700 used in building 640. Job processing is

handled in a real—time operating environment. The system

is essentially time—shared in an interactive mode . Batch

jobs are processed on a priority basis (Ref 5:1—6).

Memory consists of 96K words. Two 100—megabyte disks are

also available. Over 7517~ of space on the disks is

available to the user since less than one—fourth of the

space for the operating system is reserved. The operating

system , Real—Time Monitor , (Ref 8:1—1) includes a compiler

for FORTRAN and a basic interpreter . Cross—compilers

are available for the INTEL 8080 system and two less

sophisticated SEt computer systems . The systems 85186

Macro Assembler processes assembly language into object

programs. There are two pre—processors for structured

FORTRAN. The SEL library includes the standard FORTRAN

and CALCOMP routines. Devices available for I/O handling

include : two magnetic tape drives, one each for 7—track

and 9—track tapes; one fast paper tape reader and punch;

and two 600 wpm printers. There are sixteen communications

lines available for interfacing with terminals. These

7

_ _ - _

~

_ •-



lines operate under 110, 300, or 9600 baud rate. Presently

thirteen lines are being used : three 110 baud lines , three

300 baud lines , and seven 9600 baud lines. Future plans

include converting two 110 baud lines to 300 baud lines

and chnaging several 9600 baud lines to 300 baud lines.

Easy terminal access to SEL functions is available through

• use of the SEL 86 interface package, the SEL Terminal

• Support Subsystem (TSS), residing in the SEL operating

system.

Current Procedure for Operating an LSI—11 in a Data

Collecting Experiment

Using an LSI—11 in data collection to support research

is , at presetn , a manual process. Generating a data—

collecting program , loading it into LSI—11 memory , and

later collecting the test data for transfer to SEL 86 file

storage are a series of paper tape actions.

An LSI— 11 program is designed and tested on the large

LSI—~l system . Once the program has been debugged , it

is compiled or assembled . The absolute binary version

of the program is punched Out Ofl paper tape. Storing this

binary program into the appropriate LSI—11 consists of

reading in two paper tapes: a “bootstrap” loader that

enables the LSI—11 to read in an absolute load followed

by the absolute binary load tape . This procedure varies

in length from f ive minutes to one and one half hours,

depending upon the length of the absolute binary load

8

• • -



~~PuPuuI~~?-~—~ — — - ‘- •-‘“
~~~~~~~

• -
~~~~~~~~~

---.-— • -- 
• -

module. The entire effort fails if , sometime during the

load , a checksum error is detected . The absolute binary

program must be reloaded into LSI—11 memory .

Experimental data is collected by the executing LSI—11

program while an experiment is being conducted. The program

may collect raw data or process a string of raw data and

store only refined data points. In either case the data

is stored in LSI—11 memory.

The data collected during the experiment is later

analyzed on the ASD CDC system. Since an interface exists

between the CDC 6600 and SEL 86 systems , all data stored

in LSI—11 memory must be transferred to the SEL 86 for

later transmission to the CDC 6600 system. This procedure

also requires paper tape handling . The data stored in

LSI—11 memory is punched out on paper tape. That tape is

loaded into the SEL 86 and the data is stored on a SEL 86

file. This file is later checked for errors by SEL 86

software before transfer to the CDC 6600 system . Analysis

is then done using CDC resident software .

Weaknesses of the Current System

The major weakness of the current system is the use

of paper tapes for program loading and all data collection

and transfer. Paper tape processing has inherent problems .

It is a manual , time—consuming , and unreliable procedure .

Reading and punching paper tapes is slow. The current

loading procedure can take large amount of time especiall

y9



- .- -- — 
~~

- -
~
- —fl •~~~~~~~~~ • •  — ~~~~~• 

• - 
~
-- --,• • - •••- -

when errors in the load are detected . Simple program

changes are major modifications since the program must be

recompiled and punched out on a new paper tape. As paper

tapes age due to handling , paper tape read errors become

more common. All these problems are costly shortcomings

of the paper tape—based system.

The intent of this investigation is to overcome these

shortcomings by designing an interface between the SEL 86

and an LSI— 11. The interface will provide a much more

efficient handling of program loading and data transfers

by eliminating the use of paper tape .

Summary

This chapter has described the current procedure for

using an LSI—11 system in data collection experiments. In

doing so, the chapter has presented a general description

of the LSI—11 and the SEL 86 in determining interface

capabilities. Finally, this chapter has covered the weak—

nesses of the current LSI—11 procedures. The following

chapter will describe the various tools used in developing

the interface design.

10 



—

~
— - • - 

~~~~~~~~~~~~~~ 
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

III. Techniques Employed in Developing

the Interface Design

Introduction

This chapter presents the basic concepts of software

engineering . It includes a description of specific tools

used in analyzing the requirements and designing the

capabilities of the LSI—11 system under investigation .

Software Engineering

As software continues to be more and more costly in

system developments the application of sound software

engineering principles plays a more critical role. Software

engineering is concerned with the design and construction

of software programs and their related documentation . By

making use of various disciplines available , software

engineering concerns itself with the development , operation ,

and maintenance of software packages (Ref 2:3).

I Goals. Software engineering has seven goals: efficiency,

reliability, understandability, generality, maintainability,

modifiability, and utility (ease of use) (Ref 4 and 9:9—12).

In any product of software engineering, as well as all

engineering in general , it will not be possible to success—

fully attain all these goals. For example , efficiency

constraints and reliability criteria may greatly impair

11



— -~~~

efforts for generality and modifiability. However, the

test software product results from a successful combination

of several software engineering disciplines. Trade—off s

are made in an attempt to meet all the goals of software

engineering.

Life—cycle. An important concept of software engineering

is that it covers the entire software life—cycle. It does

not end with a tested software package , but continues on

through redesign and modification of that software. Any

software package goes through five stages in its life—

cycle: analysis of requirements; design ; coding and debug—

gin; testing and integration ; and operations and maintenance

(which includes modification). This thesis is concerned

with the first two states in the life—cycle , analysis and

design. These are critical phases in any software develop-

ment. Well defined requirements followed by a highly

L 

structured , well—developed design are major contributions

to a useful software product. The goals of software

engineering cannot be met without a structured , disciplined

approach in software analysis and design stages.

Tools for the Requirements Analysis

A software system designed using the techniques of

software engineering must carefully examine and define the

requirements of that system before ettempting to actually

create a system design. A clear representation of what the

specifications are is essential before a good design can

12



________________ -- ~~~~~~~~~~~~~~~

be developed . For this thesis , two techniques have been

used in performing this analysis phase: Structured Analysis

and Design Techniques (SADT) and Structured Analysis.

SADT. SADT is a comprehensive methodology designed by

SofTech. Inc. for analyzing the requirements of a system.

The language of SADT is a diagramming technique. A model

of the problem is built using a precise set of rules.

The model consists of a structured decomposition , using

these rules to introduce new levels of detail. This tech—

nique shows component parts of the problem , the interrela-

tionships between these parts , and their place in the

hierarchical structure. The finished model has several

characteristics: it is top—down, hierarchical , structured ,

modular , and functional .

It defines the “what” of the problem without intro-

ducing the design “how” (Ref 1:1—1—2—1 and 7:2—1—2—3).

Structured Analysis. Structured Analysis is a techni-

que described by D~’Marco that can be applied in specifying

the requirements of a r—~~lem. This approach uses several

tools: the Data Flow Diagram (commonly known as a bubble

chart), the Data Dictionary and the Transform Descriptions.

A bubble chart is a network representation of a system ,

showing major decomposition of functions and all interfaces

among the pieces. A bubble chart portrays data and the

processes which act upon the data. Like an SADT model , a

bubble chart is decomposed into several levels of detail.

13 

- ---  - - — • - --~~~- -



,-.---

The Data Dictionary and the Transform Descriptions clearly

define the data and the processes presented in the bibble

charts. Techniques of structured English , decision tables ,

and decision trees are employed to make the definitions

clear and concise , avoiding ambiguities and inconsistencies

often found in written English. By using these tools of

structured analysis , a concise specification of what the

system must do can be achieved (Ref 4).

Tools for the Structured Design

Structured design is a technique employed to assist

the designer in determining the modules and their inter-

connections which best solve a well—stated problem . Once

analysis has successfully been accomplished , the design

phase begins. Like SADT and Structured Analysis , Structured

Design produces a top—down, hierarchical , modular design .

Tools available for developing the “best” structured design

include design heuristics and design techniques. This

thesis employs the following techniques: transform analysis ,

transaction analysis , Jackson’s method , and Parnas ’ method

of structured design. Both transform and transaction

analyses are techniques developed by Yourdon and Constan-

tine ; the latter two techniques are not.

Heuristics. There are five guidelines to be employed

in any good structured design. Cohesion between modules

should be maximized while coupling should be minimized .

This means that a good design has a strong degree of

14

- •---

~

- -—

~

-•-  --•-~—• •~~~~~~~~-~~~~~~~~~~..— --•---~~~~~~~~~ -- - - -~~~~~~ •--— - - - -



-
~~~~~~—- ~—.--~~~~~

.
-- —~~~ -—•—~—-~--- --, —-~~~~~~~

——-
~~

--- -
~~

~~~~~ 

- - -

relatedness among the elements of each module while there

are minimal coupling among the modules. Trade—of fs often

must be made in the design in following this guideline. A

module should be sized such that it processes a complete

function, but maintains a high degree of understandability

and modifiability. The number of immediate subordinates

to a module , called fan—out or span of control , should

generally be from 1 to 10. Fan—in , the number of subor-

dinate modules which call a specific module should be

maximized . Multiple fan—in means that some duplicate code

has been avoided . Lastly, the scope of effect should be

a subset of the scope of control of the module in which

the decision is located . This means that all of the

modules that are affected , or influenced , by a decision .

The scope of effect should be subordinate to the module

that makes the decision. (Scope of control of a module

consists of the module itself and all its subordinates

(Ref 4 and 9:76—125, 148,169).

Transform Analysis. Transform analysis is a particular

structured design technique based on the analysis of data

flow. The system being designed is viewed as central

transforms which digest and create major system inputs

and outputs. This technique takes advantage of the overall

perspective of the problem and leads to a fully, or almost

fully, factored structure in which the lowest level modules

perform the “work” while intermediate levels control and

15

-~~~~ - -~~~~~~~~~ -~~~~~~~- •—~~~~ •~~~~ -~~~-- - -~~~~~-- . - -~~~~ • •



- - - - - -~~~~~~~~ - .~~~- - r-r -, —- - - - -

I
coordinate the work of their subordinates. Transform

analysis uses the data flow diagrams created during the

analysis phase in generating a “first—cut ” design model.

A “first—cut” design generally consists of an input module

and its hierarchical decomposition , followed by central

transform modules , and lastly a factored output module. By

using the previously described heuristics of structured

and making design trade—offs where necessary , the initial

design is refined to develop a final design model (Ref 4

and 9:171—185).

Transaction Analysis. Like transform analysis , trans-

action analysis is based upon the analysis of data flow.

A supplementary strategy to transform analysis , this

technique handles processes suggested by data flow diagrams

in which one of several possible outputs occur as a result

of a process (transaction). The transaction center functions

consist of: getting the transaction in raw form , analyzing

the transaction to determine its type , dispatching the

transaction , and completing the processing of each trans-

action . Common use of transaction centers might include

conversion of input or output to its appropriate formatted

version or validation of an input transaction (Ref 4

and 9:202—221).

Jackson ’s Method. Unlike both transform and trans—

action analyses , Jackson’s method of structured design is

based on the analysis of data structure rather than data

16

A



- -  ~—,-—-- -• .-—----- ----——--.--—-— - •---— - - -- -~-,--——--——-- - — --~~--— --—-~ -,~~ —-•,———•-——

flow . The structures of the data to be processed are

defined . A program structure based on these data structures

• is then formed . In essence this approach develops a

hierarchy of modules that is a minor image of the hierarchy

of the data associated with the problem. When this one—to—

one mapping cannot be made between the structure of the

program and the structure of the data , a “structure clash”

exists. If this occurs, multiple hierarchies of modules,

known as program inversion , must be established to handle

the clash. Additional programs are created to work around

the structure clash (Ref 4 and 9:223—227).

Parnas’ Method. Parnas ’ method of structured design

- • is often referred to as the “information hiding” technique .

Parnas ’ principle is that each module is to haire as little

information as possible to define its interface. Details

are hidden to the lowest levels of decomposition of the

model. This improves maintainability and modifiability

since details that are likely to change are “hidden” at

the lowest levels of the design model. This eliminates

the need to filter changes through the entire hierarchy.

Modifications are made at the low levels of detail. Such

design decisions which are good candidates for Parnas ’

method include: formatting , linking, storing, and modifying

data structures; formatting control blocks ; and the

sequencing of item processing (Ref 4 and 9:228—230).

17 



Summary
4,

This chapter has presented a short description of the

formal analysis and design tools used in creating the

SEL 86/LSI—11 interface. In addition , the chapter has

introduced the basic concepts and goals in developing a

“good” software system. The following chapter will

describe the overall design of the interface monitor along

with a discussion of various design decisions that were

made in developing the final design structure .

18



F 
~~~~~~~~~ 

-,-—---- •—--.-‘ •.-
~
.-.-,.---i____

- ------ ~~~~~~~~~~~~~
——-

~~~ ------- -~ -- —--— - -—~~----

4 ’

IV. The Interface Design

Introduction

In analyzing the requirements of the SEt 86/LSI—11

interface , the design phase has determined a need for a

multicomputer interface monitor . This chapter describes

the structure of the interface monitor , how it is used ,

and decisions made in designing it.

Design Structure

The purpose of the SEL 86/LSI—11 interface is to pro-

vide the LSI—1l user with some powerful , yet simple tools

to improve utilization of the LSI—11 as part of a network

of computers designed for collecting and analyzing test

data. The interface enables the user to: load data stored

in absolute binary format on a SEL 86 file into LSI—l1

memory ; transmit data from LSI—11. memory onto SEL 86 files;

and use interactive functions available on the SEL 86.

The interface design is constrained by LSI—l.1 memory size.

It must be general purpose and must require no additional

equipment.

The resulting design uses: the modems and 300—baud

communication lines between the SEL 86 and the LSI—1i. and

the SEL 86’s software for terminal support , TSS. The

capabilities are realized by either keyboard entries at

19

• ~~~~~~~~- .-- -- - - • —~~~~~--- -- -
~~~~~~~~~~~~~~~~~~~

- •- -
~~~~~~~ —- — _-



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the LSI—ll or FORTRAN CALL statements in the user ’s LSI— 1i.

program . Software support for the interface design consists

of two programs: one residing on the LSI—11., the other

residing on the SEt 86.

The LSI—11 support software is the LSI—11 Interface

Monitor (LSI—11 IM). This program must interpret a user ’s

keyboard command and dispatch it to the appropriate routine

for processing . In executing the user ’s input command ,

the LSI—11 controls all interaction between the LSI—11 and

the SEt. The SEL program is executed and terminated through

LSI— 11 control.

The SEL 86 resident interface monitor software , LSI

NTR, is initialized for those LSI—11 commands that call for

a transfer of data between the LSI—11 and the SEL 86. This

program must access SEL 86 files for both transmitting

data to the LSI—11. and receiving data from the LSI—11.

Five LSI-11 keyboard commands have been designed for

providing the user with control of the desired capabilities.

These commands are also callable by LSI—11 FORTRAN conven-

tions. A detailed description of their use is provided in

the User ’s Manual , Appendix A. In summary the commands

are:

LOAD — load data in absolute binary format from a

SEL file into LSI—11 memory ;

FILE — used in conjunction with the SEND command .

Specifies SEL 86 files for storing data from

20

-- - -- ~~~~~~~~~~~~~ - - • ----— - •- - — -~~~~~~~~~~~ •- - -. - - - • - ~~~~~~~~~~~~~ -•~~~~~ • - •  •~~•



— • •~~~~~~~~~~~ —~~ 
• • -

~~~~-- ~~~
• -

~~~~
•-

~~
--• •• •—- —~

•-—-- —.-

~~~

LSI— 1l memory . Data is stored in binary or

absolute binary format. (See Appendix A of

the User ’s Manual.)

SEND — used in conjunction with the FILE command .

Transmits a block of LSI—11 data to a SEt 86

f ile;
• TRANS — put LSI—11 in a transparency mode such that

the SEL 86 views it as a terminal; and

RUN — execute a program stored in LSI-11 memory.

In addition two FORTRAN callable routines have been

designed:

IMCHAR — transmit a string of ASCii characters; and

IMEXIT — return control to LSI—li IM.

Two design models , one each for the LSI—il and the

SEL 86 software , have been created using the design tech-

niques described in the previous chapter. Their detailed

design structures are specified in Appendix C. Also

included are the appropriate bubble charts used in

generating the “first cut” of the designs. These can be

found in Appendix B.

~~~jg~ Decisions

No design can be successful ly accomplished without

making many trade—offs in attempting to produce the “best”

design. A dominating factor influencing the interface

design is the need to keep the use of the interface simple

while still providing the user with some powerful tools.

21. 

-- - ---~~~~~~~
- - •

~~~~•.~~~~~~~~~~~ - -- - • —— -~~~~~~ - -~~-- - - - - - • - • - • -- - -~~~~~~~ • • - •~~~~~~ •---


____________ - • r ~--— - -_____

1-
In keeping with this goal , the design decisions fall into

two broad areas: data transmission and receipt and error

processing .

Data Transmission/Receipt. In addition to the need

for simplicity, LSI—11 memory constraints force the

selection of simpler , less sophisticated , and normally

slower, approaches in dealing with data handling decisions .

Use of TSS at 300—baud rate. The SEL 86 Terminal

Support Subsystem (TSS) has been selected to use as the

terminal system driving the SEt 86/LSI—11 interface. Since

it is available and easily accessible , this choice greatly

simplifies the interface communication. The slow baud rate

is forced upon the design because the 9600 baud rate is

unavailalbe for LSI—11 use.

Encode/decode procedure. TSS limits all data

transmission to ASCii characters. This does not in itself

cause problems since the bits of data to be sent across TSS

can be released in groups of eight bits and thus be inter—

pretted as ASCii characters. A problem arises when a group

of bits is interpretted by TSS as a carriage return or a

line feed. These two characters serve as control characters

and are not considered part of the transmission itself ,

thus data bits would be lost using this approach. An encode/

decode procedure appears to be the simplest solution. All

data is encoded into ASCii alphanumeric characters prior

to transmission and then decoded before it is stored at

22

U - ---•—.~~~~~~--•- --- - - — - - - - •
~
—--— - • • -~~~~~~- ---- -—--•- — • --- •~~~~~-- - - - • -

- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~ 
• ~~~~~~

- - - - - •

I
the receiving end of the transmission. This occurs for

both data being sent to the SEL 86 from an LSI—11 and

data being received by an LSI—i1 from the SEL 86. Since

the tSI—11 has i6 bits per word and 8 bits per byte, a

simple 4—bit encode/decode procedure can be used. All

ASCii transmissions will consist of one of sixteen possible

characters. This procedure has the advantage of enabling

the user to “tap” the data transfer line to verify that

the transmission appears to be working successfully.

Use of data buffer on LSI—11. No data buffer

is used to store encoded data on the LSI—1i before the data

is transmitted to the SEL 86. Using a buffer to hold

encoded data before the communication line is available

can be of significant value when transmitting data to the

SEL as it is being collected on the LSI—il; however,

drawbacks of a single buffer outweigh its advantages. Data

is expected to be collected much faster than it is released .

Unless the data is collected in bursts , once the buffer is

full it will remain full until there is no new data to

buffer. Double—buffering can alleviate this problem , but

• its memory overhead is too costly to implement . Another

problem of a single buffer is that there is no fixed

addressable location in LSI—li memory to use as a buffer

area. Absolute binary programs are not loaded in sequential

• addresses of LSI—11 memory. It will require overhead to

keep track of available memory and this can only be done
41~

23

~

•- - - •

—• -
~~~~~~~~~~ -~~

----- --- - -- - - ,  •
~~~~~~

— •
~
-•---

~
‘—- - •—•.

~~

-- - - --------- -

program has been loaded through the LSI—li IM. If the

program has been loaded from paper tape , no automated

record is kept of available memory space . Overhead for

both types of bookkeeping could be kept at the SEt end of

the interface , but the problem of buffer size still exists.

No fixed buffer size can be used since the LSI—lls do not

have a standatd memory size. Thus, buffer size must

become an input parameter or an algorithm must be used to

automatically set its size. The problem becomes more and

more complex. This buffer , would be a significant factor

if it affected all data transmission ; however, it only

poses a problem when data is being released as it is

collected . In actuality, the slow 300—baud rate makes

release of data as it is collected most unlikely. Though

the capability exists , it will rarely be used with the

present slow transmission lines. The design structure

of the LSI—ii IM , though, makes it easy to modify if a

buffer is later desired .

Data transmission format. All data transmitted

by the LSI— i1 or received by the LSI—11 is in an absolute

load format. (See Appendix A of the User ’s Manual.) This

requires an additional overhead in data processing for

both sending and receiving data; however , it is a powerful

tool. By using this format for storing data on SEL 86

files , the user can store an image copy (i.e. a dump) of

LSI— ii memory and , more importantly, the user can store

24

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • -



-~~~~—--- --- ~- -----— --- ----~~~~
-- •--—-~~~~- • - - -•-

F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•

• an LSI—li program on a SEL 86 file for later reloading
t

into LSI—ii memory .

Error !~~~~s!!~~~ 
Error processing has been kept as

simple as possible to minimize overhead while still pro-

viding the user with control of processing after errors

occur.

Format errors. Input LSI—1l keyboard commands

are validated by the LSI—il IM. A simple error message is

printed for any input error. The user if required to re-

enter the command correctly.

Checksum errors. The trailer of a block of data

in absolute load format (See Appendix A of the User ’s

Manual) is the checksum for that block. Both the LS!—11 and

the SEt 86 programs use the checksum to validate the data

transmission. For data being loaded into the LSI—ii in

several blocks, the user has the option to continue or

terminate the load once a checksum has been detected.

Time out warnings. As a check to ensure that

data is being transmitted across the communication line ,

both the SEt 86 and the LSI—11 have a time—out warning

message printed out to the user’s console at the LSI—11.

The time out message specifies that no data has been sent

across the communications line in a specified period of

time . At this point , the user may want to terminate the

transmission.

4 .

4 .

25 

~~•--••-• —-—~~~~~~~~~~~~~~~ - • - • • — --- -~~~~-•-



-~~~~ 
_

~~~~~~~~~~~~~~~
-

-

~~~~

_

~~~~~~

-“- - - _ --__-_ _-— - - • - -

SEL messages. Whenever the SEL 86 LSINTR program

is in a mode to receive data from an LSI—11 , any messages

generated by the SEL 86 operating system , such as file

error messages , will be printed at the user ’s LSI—11

console.

Summary

This chapter has described the overall structure of

the SEL 86/LSI—ii interface monitor . It h-as also presented

a discussion of the various design decisions that needed to

be made in developing the current design. The next chapter

will present conclusions and recommendations from the

investigation of an interface. It will also discuss several

implementation requirements for the interface monitor

design.

4 ,

26

-- --~~~~~~— — •

F- .~
— ______

V. Conclusions and Recommendations

Introduction

This chapter presents final conclusions and recommen-

dations for the SEL 86/LSI—1i interface system . It also

discusses various steps that must be taken to successfully

implement the interface design .

Conclusions

In examining the design product , conclusions can be

made regarding the use of the analysis tools , the use of

the design tools , and the usability of the current design .

Usability of the Analysis Tools. In using a structured

approach for the analysis phase of the interface develop-

ment , both SADT and Structured Analysis were applied .

Though several SADT models were attempted , none seemed to

satisfactorily state the exact problem and define actual

requirements. SADT could not successfully handle a top—

level transaction—centered process. Bubble charts were

then generated . These were more helpful , but only at the

highest levels in separating input , output , and transform

modules. Again , a top—leve l transaction limited the

success of this technique. The best tool , though not

formally regarded as a structured analysis technique , was

the development of the user ’s manual. In defining specific

27

~~~~~~~~~- • - •



- —•-
~~
--

~~
—- --

commands and parameters, precise capabilities were clearly

documented . In its final form , the user ’s manual covers

all aspects of the interface ’s capabilities.

Usability of the Design Tools. Once the top level

modules of both the LSI—11 IM and the SEL 86 LSINTR were

modeled using a transaction—centered design approach ,

transform analysis was extremely useful in designing the

processing of each transaction. All first cut designs were

based upon the bubble charts for the transactions . In

developing the final designs , the heuristics of structured

design , along with both Jackson ’s and Parna s’ methods, were

applied and successfully accomplished . Jackson’s method

of data structure was useful in processing the data blocks

transmitted across the communication lines. In all models

Parnas ’ method of “information hiding” was applied in an

attempt to keep all changeable detail at the lowest level,

wherever possible. Parnas ’ theory seemed to “fall Out” in

applying good structured design principles. In short , each

of these design tools was extremely useful in building

the final design models.

Usability of the Design. The design satisfies all

the requirements defined during the analys is phase. In

addition to implementing the desired capabilities into an

interface , the design has remained general purpose so that

the interface can be used on any of the eleven AFML ’s

j LSI—lls. Use of the keyboard commands and FORTRAN callable



- ~~~~~~~
—

~

- —,
~
.-- • —-- - - -

~~
-----,-- - -——-------• — •— - - -  — - •• -

~~~~~~~- - -
~-—-•—- -— • •- ,

~~~~ - ,- • •- - - - -,--~----.. - 
-— - ---- —.----- -- --r--.------ - .— —‘I’

H routines is straightforward and simple while still providing

the user with useful and powerful tools. Since the prin-

ciples of structured design have been applied in creating

the interface design , the system , once operational , can be

maintained and modified with relative ease. Additions ,

deletions , and modifications to the LSI—1l IM and the

SEL 86 LSINTR software can be accomplished with minimal

effort .

Implementation

Before the interface is permanently added to the

SEt 86 and the LSI—il systems and actively used by AFML

personnel, several steps need to be taken: code , debug, and

test the interface design ; modify the user ’s programs where

desired ; modify the LSI—ii linker utility and FORTRAN

library on the development LSI—ii; and store the user ’s

absolute binary programs on SEL 86 files.

Code, Debug, and Test. Prior to full implementation

of the interface , it must be coded , debugged , and fully

tested . The SEt 86 routine can be written in standard

SEL 86 FORTRAN. Dynamic allocation of new files in the

SEL 86 program must be written in assembly language.

Most of the LSI—ii IM can also be developed in FORTRAN.

Several command routines which allow a variable number of

parameters must be written in assembly language. Once the

system is found to work satisfactorily, it may be desirable

to recode the LSI—11 IM in assembly language in an effort

— 28

_ _  -~~~--- ——•- -~~~~~~~~~ -



F -
~~~~~~~ 

- - -- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ --—-~~~~~~ - ----~~--—-— --- --
~t ‘—--- — — —

•

to decrease memory requirements. Use of FORTRAN is highly

preferred at the AFML , since most programmers , particularl y

contractor personnel , do most of their work in that higher

order language . The use of FORTRAN will greatly increase

understandability of the documentation , particularly for

the SEt 86 program . For the LSI-il program , the PDP—li

assembler has some useful tools for documenting LSI—i1

assembly language programs .

Modify Users’ Programs. All LSI—11 programs as

currently written will execute using the SEL 86/LSI—1i

interface. For programs that require the release of data

during program execution , a call to the SEND routine will

be required . If the user wants control returned to the

LSI—i1 IN upon completion of the program , it will be

necessary to call the IMEXIT routine .

Modify LSI Linker Utility and FORTRAN Library. In

linking the various routines during the generation of an

absolute binary load program , the development LSI—li linker

utility must be able to recognize any call statements

designed by this interface . The linker utility must recog-

nize that either the call to the routine is an external in

the FORTRAN library or that the linker is to access a table

that specifies the address of the particular memory loca—

tion in the LSI—1i that stores the called routine . In

either case , the RT—11 operating system must be modified .

29

A



__
_ • _ • _ • .;•-_---_ 

~~~~~
‘ — - - - - . —-~ - —

Store Users’ Absolute Binary Programs. ~efore any

loads of binary programs into LSI—1i memory can be attempted ,

it will be necessary to store some absolute binary programs

on SEt 86 f i les . This can be easily accomplished on the

development LSI— 1i system by accessing the LSI—11 IM and

using the FILE and SEND commands .

Recommendations

The following recommendations are presented as possible

improvements that can greatly enhance the capabilit ies

available using the SEL/tSI—1i interface .

1. Add a PDP—1i cross—compiler on the SEt 86. By

adding a PDP—1 1 cross—compiler on the SEL 86 sys—

tern , a user is not restricted to use onl y the one

development tSI—1 1 for the coding and debugging

of LSI—11 programs . Any AFML LSI-11 that has the

SEt 86/LSI— 1. 1 interface can access this compiler

through use of the interface ’ s transparency mode .

2. Increase the baud rate . Even though the interface

design has not been implemented , it is fairly

easy to foresee problems in transmitting data over

a 300 baud line when data is being sent as it is

collected . Increasing the baud rate would greatly

facilitate the data transfer. This improvement

would also make it feasible to add a buffer area

for encoded data since the option of sending data

as it is collected would be more regularly used .

30

_ _ _ _ _ _ _ _ _ _ -~— —-~~~~~- - - —~~~-~~~~~ - --- - - — — ------— ~~------“ -

_____ - -~~~~~~ —
_ _ _ _ _

Final Summary

The SEt 86/LSI—1i interface has been designed using

the pr inc iples of software engineering . After carefully

analyzing the current LSI—ii system and establishing

baseline requirements , structured design techniques were

easily employed in developing a good structured interface

monitor design. The resulting design is a good , modular,

structured design. The coding and testing phases of

the development of the interface will be relatively straight-

forward since carefully executed analysis and design phases

have been accomplished . Once the SEL 86/LSI—il interface

is integrated into the SEL 86 and LSI—11 systems , it will

be a useful tool in more efficiently collecting experimental

data at AFML.

31

Bibliography

1. “An Introduc tion to SADT Structured Anal ysis and Design
Technique ,” 9022—78R . Waltham , Mass: SofTech , Inc .,
November 1976.

2. Boehm , B. W . “Software Engineering ,” TRW—55—76—08.
Redondo Beach , California: TRW Defense and Space
Group , October 1976.

3. D~~ital Microcomputer Handbook (1977—78 , Second Edition)
Maynard , Mass . : Digi ta l Equipment Corporat ion , 1976.

4. Miller , Peter E. Lecture Materials distributed in
EE6.93 Software Engineering . School of Engineering ,
Air Force Institute of Technology , Wr ight—Patterson
Air Force Base , Ohio , Summer 1978.

5. Reference Manual SYSTEMS 86 Computer. Ft. Lauderdale:
SYSTEMS Engineering Laboratories , February 1976.

6. SEL Terminal Support Subsystem Reference Manual. Ft.
Lauderdale: SYSTEMS Engineering Laboratories ,
August 1977.

7. “Structured Analysis Reader Guide ,” 9022—73.2.
Waltham , Mas s,: SofTech , Inc., May 1975.

8. SYSTEMS 85186 Real—Time Monitor Reference Manual. Ft.
Lauderdale: SYSTEMS Engineering Laboratories ,
October 1974.

9. Yourdon , Edward and Larry L. Constantine . Structured
Design (Second edition). New York: Yourdon Press , 1978.

4

4 ,

32

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~

‘

~~~TT TT -- ~~~~~~~~~~~~~~~ ~
-.

Appendix A

SEL 86/LSI— i1

Interface Monitor User ’s Manual

33

_ _ _ _ _ _ _ _ LA

~

-

~~~~~~~: 

- _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Contents

Page

I. Overview . . . . . .  . .
Purpose . . . . .  .

Capabilities . . . . . .
Commands .          .

Routines .         .

Outline . . . . . . .   .
II. Command Specifications . . .

Introduction     .       . . . .
The Commands . . . .
The Additionai Routines      . . . .
S1.Inllnary .       . . . .

III. Operating Procedures . . . . . . . . . . . .

Introduction . .
Procedure for Using SEL 86/LS1—1l Interface.
Considerations in Using the Interface . .

Bibliography . . . . . . .  . . . .
Appendix A . . . . . . . . . .

4
4 ,

34 

-— -~~~~— -~~~~~ • -~~~~-~~~~~ ~~~~ •- -~~ - -— ~~~~~~~~~—•- --



— - - - - - -‘~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

-

I

SEL 86/LSI— 11

Interface Monitor User ’s Manual

I. Overview

Pur pose

The purpose of this manual is to provide user guide-

lines for a SEL 86/LSI—11 interface. This document

specifies the LSI—11 commands that are available to the

user , the constraints in using these commands , and the

procedure for using these conimands in the interface .

capabilities

The SEL 86/tSI—11 interface software consists of two

program packages: Interface Monitor (IM) resides on the

LSI— 11 system ; and LSINTR resides on the SEL file of the

same name for use by the SEL system. The interface

package provides options to implement each of the following

capabilities:

1. the LSI—11. can be treated as a terminal by the

SEt 86, thus enabling the LSI—11 user to access

interactive functions on the SEL 86;

2. an LSI— 11 program stored on a SEL 86 file in an

absolute binary format (see Appendix A of this

manual for the format) can be transmitted and

35

LA



---~—
_
~ 

• - — -- -
~~ 

-- - - 
- - -

loaded into LSI—11 memory ; (NOTE: Data can also

be loaded into LSI—11 memory as long as it has

been stored on the SEL 86 file in the absolute

load format specified in Appendix A.) and

3. data can be transmitted from LSI—11 memory to a

SEL 86 file in one of two ways:

a. send data as it is acquired during execution

of a data—generating program on the LSI—11; or

b. send a block of data stored in LSI—11 memory.

Data is stored on the SEL 86 file in either

I 

an absolute load format or a binary format ,

I 
i.e. exact binary duplication of LSI—11

I memory without header or trailer information.

I Storing the data in an absolute load format

I allows the user to store any data in LSI—11

I memory onto a SEL 86 file for later re—loading

I into LSI—11 memory. This format also enables

I the user to perform a selective dump by

I storing a block of LSI—11 memory on a SEL 86

I file and later routine that file to a SEL 86

I peripheral printer. Binary format is speci—

I fically designed for use in storing the data

I collected during execution of an LSI—t1 data—

generating program.

36



rr —.--
~

. - ~~~~~~~~~~~~~~~~~~~~~ ~~~-~—— - — ,- —~---- ---.---- ~---,--- -

Commands

There are five keyboard commands available to the user

in implementing the capabilities defined above :

1. FILE — open or close the SEL 86 file(s) to be used

in storing data transmitted from the LSI—1 1;

(NOTE: This command is used in conjunction

with the SEND command.)

2. LOAD — perform an absolute load from a SEt 86

file into LSI—11 memory ;

3. RUN — executive a program in LSI—11 memory ;

4. SEND — transmit a block of data stored in LSI—11

memory to SEL 86 file(s); (NOTE; This

command is used in conjunction with the

FILE command.) and

5. TRANS — allow the LSI—11 to function as a terminal

for the SEL 86.

Routines 4

Also available to the user are the following FORTRAN

callable routines that may be used in LSI—11 programs :

1. three of the five above commands : FILE, LOAD, and

SEND ;

2. IMCHAR — transmit a string of ASCii characters

to the SEL 86; and

3. IMEXIT — return control to IM on the LSI—1.1 upon

exiting a user ’s program .
“p

37



—~ v.,r-~
_
~,__. _____________________

~ ::: ~
:— 

~~
- - 

~~_— — — —.- a’,- y—--~ - ,—-- -. —

Outline

Chapter II specifies command formats for both the

keyboard input and the FORTRAN call statement where applic-

able. It also explains constraints in using the command .

The additional FORTRAN callable routines, IMCHAR and IMEXIT

are also clearly defined. Chapter III covers specific

operating procedures in using the SEL 86/LSI—l1. interface , :~
i.e. initializing and terminating the interface . It also

lists several points to be remembered in using the inter—

face.

38



- - -_ _~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

I

II .  Command Specifications

Introduction

This chapter explains in detail the use of the five

commands and two FORTRAN callable routines in providing the

user with the capabilities as defined in Chapter I. In-

cluded for each command/routine is: keyboard format ,

FORTRAN format, expected output , termination procedures ,

expected error messages, and additional comments when

necessary.

The Commands

(NOTE: Enterpretting command format specifications :

1. Imbedded blanks are permitted .

2. <CR> denotes a carriage return.

3. A set of parentheses denotes optional parameter(s).

The parentheses are NOT part of the command format. If

the parameter is being omitted , all format specifications

within the parentheses are omitted.)

FILE. This command initializes or terminates SEL 86

interaction in storing data on SEL 86 file(s). The command

is used to specify the SEL 86 file(s) where LSI—1l data is

to be stored and the format in which the data is to be

stored , i.e. absolute load or binary format. It is used

in conjunction with the SEND command . 

~~~~~~~~~
_ _ _

.

~~
_ _ _

~~~~~~~~~~-



—p.-- —‘ - -.-
~‘ ~~~~~~~~~~ ~~- ,--~~~~~~ — _ _ _ _ _

~~
_
~~~~~

_ .— - _~~~~~~~~~~~
:-

~~~~~~: 
- --.- --------—-- - -

Keyboard format.

F ILE( ,~~, f i l e 1, f i l e 2 ,  ... , f i l en ) <CR>

L or B — optional parameter. Specifies forma t in

which data is to be stored : L for absolute

load format , B for binary format.

file~ — optional parameter. 0 > n > 8.

Name of SEL 86 file(s) where data is to be

stored . A file command specifying at least

one SEL 86 file must be input in order to

initialize SEt 86 actions in storing LSI—11

data on SEL 86 file(s). An existing file

will automatically be allocated . If the

file does not exist, a new file will be

dynamically created and allocated . In this

case , standard SEL conventions must be used

in naming the file. A maximum of eight files

may be designated . This command must be

used without designating any files in order

to terminate SEL 86 actions . It can be used

in this form as a keyboard input to override

a FILE call in the user’s program and thus

disable any automatic data transmission from

the program . In this form , the command can

be input anytime during program execution

to terminate data transmission . Entry of the

40

— -  - --- --- - - - - - - - ..
.
“ -rn .—--- - - -

~
- -- .- - —-  - - - -  £4



..— --“-—~~-----,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- --- —-

4
) FILE keyboard command with different file

specifications will NOT override those

designated in a FILE call from the user ’s

program.

FORTRAN format.

CALL IMFILE (~~, f i l e1, file2 ,  . . . ,  fileN )

The parameters are the same as the keyboard format.

Output. none.

Termination. FILE command/call must be used to

terminate SEt 86 actions.

Error messages. none.

Additional comments. For examples of the use of

the FILE command, see SEND command specifications .

LOAD. This command loads data stored in absolute

load format on a SEt 86 file into LSI—11. memory. The

command is designed to serve as a loader of absolute

binary programs ; however, any type of data can be trans-

mitted and stored in LSI—11 memory as long as the data is

in absolute load format .

Keyboard format.

LOAD, file (, offset) <CR>

file — name of file on SEt 86 where data to be

transmitted is stored . The file must be an

existing SEL 86 file.

offset — optional parameter. Signed/unsigned positive

41 

— —~~~~~~~~~ --— --~~~~~~ —---- ---~~~~~~~~~~~~ --~~~~-—— 
-

~~~~ -- -


rPr - —-----———-.-————— --,-,—,—- --- .- ,,-

~

.—-—--—-—.--—.-— — - - -———--
~~~~

—,-
~~~~

-——-— -—-,— -

~
—.--

~
— —..---- -

-,-
.———-- -- ,—- —- — -—-——-—.--- - -——- —-—

~
--

~

--—-—- -

or signed negative octal integer. This value

is added to the load address passed in the

data transmission . This sum becomes the

absolute load address. When this parameter

is omitted , its default value is zero.

FORTRAN format.

CALL IMLOAD (file , offset)

Parameters are the same as the keyboard format.

Output.

1. Start address is printed at the user ’s

console. If the load address was not completed , the start

address value is invalid. (See Error messages below.)

2. Error messages are printed at the user ’s

console.

Terminator.

1. If no errors occur during the load , termi-

nation is automatic.

2. When load error occurs , user decides if

load is to continue or be terminated. (See Error messages

below.)

Error
~~~~~~~~ 

When an error is detected in

loading a block of data into LSI—11 memory , a message is

printed specifying which block has an error. The block

of data in error has been loaded into LSI—11 memory ;

however, the user has an option to continue with the load

or abort it by answering the following message printed

at the user ’s console: CONT INUE LOAD? ENTER Y OR N.

42 

- - - - ~~~~~~~~~~~~ -~~~
.
-,- --- --—--~~~~-—-- - -  ~~~~~~~~ --- -~~—~~~~-——--



—~ - 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-.
~

~~~ ~~~~~
-
~~

--.-
~~

If the load is to continue , Y is entered via the keyboard .

If the load is to be terminated , N is entered.

RUN. This command causes the execution of a program

stored in LSI-11 memory .

Keyboard format. -

RUN (, start address) <CR>

start address — optional parameter . Signed/unsigned

positive integer. This parameter

specifies the memory address where

execution is to begin . When this

parameter is omitted , the start

address defaults to the start address

obtained from the most recent LOAD

command.

FORTRAN format. not applicable.

Output. none.

Termination, automatic. Control will NOT be

returned to the IN unless the executed program ends with a

call to IMEXIT. (See IMEXIT below.)

Error messages. none.

SEND. This command sends a block of data stored in

the LSI—11 to the SEL 86 and stores the data on SEL 86

f Lie(s). This command , in conjunction with the FILE

command , is designed to transmit and store data on SEL 86

file(s) in one of two ways: as a single datum is being

collected during execution of an LSI— 11 program or as a
•1

43 

-- - — — - -  ---



block of da ta .  (For spec i f ic  details , see Additional èom—

ments below.)  A FILE command i n i t i a l i z i n g  SEL actions must

precede a SEND command and a FILE command terminating SEL 86

actions must follow that SEND command .

Keyboard format.

SEND , data address , data length ( ,  file number) <CR’~

data address — unsigned/signed positive octal integer.

address of first byte of data.

data length — unsigned/signed positive octal in teger .

number of bytes of data.

file number — optional parameter . Unsigned/signed

positive octal integer ranging from 1

to 108. This number specifies on

which SEL 86 file the data is to be

stored . The number corresponds to

that file parameter of the FILE command ,

i.e. a file number of 3 in the SEND

command corresponds to file 3 of the

FILE command . When the file number is

omitted , the value defaults to 1 and

all data is stored on file1 as desig-

nated by the FILE command .

FORTRAN format.

CALL IMSEND (data name , data length , f ile number )

data name — name of the data item being transmitted.

The data name must follow SEL 86

44

t I ~j -w - - - - -  -- --- _ —- - -- ---- ---- - . - -- ---- -- - -  -~~-------  -_ LA



-~~~~~~~r —

FORTRAN conventions .

All other parameters are the same as the command

fo rmat .

Output.

1. Data is stored on SEL file(s) in format

H specified by the FILE command .

2. Error message s are printed at the user ’ s

console.

Termination.

1. A FILE command may be used to abort data

transmission .

2. A FILE command must be used to terminate

SEL 86 actions in storing LSI— 11 data on SEL 86 f i l e( s ) .

Error messages. SEL 86 messages (i.e. file full ,

etc.) are output to the user ’s console.

Additional comments.

1. Examples on how to use this command

a. As a keyboard input :

Enter : FILE ,B,BILL

Enter: SEND,723 ,100

This stores 1008 bytes of LSI—11 data , beginning at memory

location 7238, on the SEL 86 file , BILL, in binary format.

b. As part of a FORTRAN program:

CALL IMFILE (B ,BILL ,JAN)

45

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .  
--

- ‘ ‘
~~~~~~~~~~~~~~~~~~ ‘~~~~~~

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —_ -~~--~~~

I

f CALL IMSEND (BUF (1) , 2 ,1)

CALL IMSEND (BU F (3) , 4 , 2)

This program stores two bytes of data on the SEL 86 f i l e ,

BILL and stores four bytes of data on the SEL 86 f i le , JAN .

c. As a combination of keyboard input and

a FORTRAN program:

Program: :
CALL IMSEND (BUF (1) , 6 ,1)

Enter: FILE,L,BILL,JAN,PETE

This program stores six bytes of data on the SEL f i l e , BILL .

The program will not transmit the data as specified on the

IMSEND call unless the keyboard FILE command has been

entered prior to the execution of the program .

2. The SEND command does not store data in

LSI— 11 memory . In order to ensure that no data is lost

if transmission fails , the user ’s program should store the

data in LSI—11 memory prior to any call to SEND in the

user ’s program .

3. It should be noted that since a 300—baud

rate line is being used, this FILE/SEND routine is slow

when transmitting data as it is being collected .

4. Sending data as it is acquired requires

that the user ’s program make a call to SEND each time a

piece of data is collected.

4

____________ -- - - _ - ~~
— -

-
-

~~~~~~~



—w -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—~~----
_-

--~ —,- - - - - -—---“---_- -

I

5. In order to transmi t a block of data a f te r
~

execution of an LSI—11 data—generating program , that LSI—11

program must print the data address and data length of

that data block to the user ’s console.

TRANS. This command allows the user to access SEt 86

interactive functions by making the LSI—11 appear to be an

interactive terminal to the SEL 86.

Keyboard format.

TRANS <CR>

FORTRAN format. not applicable.

Output. Keyboard input and SEL 86 responses are

printed at the user ’s console.

Termination. User keyboard entry: Control/D <CR>

Error messages. none.

The Additional Routines

IMCHAR. This routine transmits an ASCii character

string to the SEL 86. The characters to be transmitted

must be stored in an array.

FORTRAN format.

CALL IMCHAR (name of character array, size of array )

Name of character array — name of first word of the

array storing the characters.

Size of array — number of words in the array .

Output. none.

Termination.
4

1. automatic.

47

__________ -

.
- - - - - —- - - - --- --_-~~~~~~~



- _ _ _ _ _ _ _  

-

2. User has option to abort transmission if

time—out has occurred . (See Error messages below.)

Error messages. If waiting for clear line to

release data exceeds 3 minutes , warning message requiring

user ’s response is printed at the user ’s console:

TIME-OUT WAITING TO SEND . CONTINUE ? ENTER Y OR N

If user wishes to continue waiting for the clear line, Y

is entered. If not , N is entered and the routine is ter-

minated.

IMEXIT. This routine is used to return control to the

IM residing on the LSI—11.

FORTRAN format.

CALL IMEXIT

~~
- Output. Prompting message “—— “ is printed when

control is returned to the IN.

Termination, not applicable.

Error message. none .

Additional comments. This routine is most

commonly used at the end of a user ’s LSI—11. program :

I
CALL IMEXIT
STOP
END

Summa ry

This chapter has detailed the use of the five commands

and two routines available using the SEL 86/LSI—11 interface.

48



III. Operating Procedures

Introduction

The SEL 86/LSI— 1.1 interface is designed to require

minimum effor t  on the part of the user. The user interacts

directly wi th the LSI—l 1. With the exception of login

requirements , all interface activitives between the SEL 86

and the LSI—11 are automaticall y monitored by the LSI—1 1

IM software . This allows a user unfamiliar with SEt

interactive procedures to successfully use the SEt 86/LSI— 11

interface.

This chapter specifies the procedures for accessing

the SEt 86/LSI— 11 interface . It consists of activating

the LSI—11, getting into a transparency mode with the

SEL 86, and logging in. At this point the user is free to

use any of the functions available to the interface.

Procedure for 
~~~~~ 

SEL 86/LSI—1i Interface

1. Ensure that all needed equipment is available :

LSI—11

Keyboard

Printer or CRT

Modem

Telephone

Operational SEL

49

— - . - - - — —-- ------ --- —---- - --_ --~~ —~~-- --- -~~ _— _- - --

~
~~~~~~ --~~~~~~~~~ ~~~r -n’ -r~~—-

2. Turn on the LSI—i1. The LSI—11 automatically

jumps to the IM.

Response (from LSI—11): — —

3. Get into transparency mode in order to log in on

the SEL 86:

Enter: TRANS <CR’

4. Dial the appropriate number to access a 300—baud

rate line on the SEL 86.

Res ponse (fr om SEL 86) : - SEL TERM INAL SUPPORT

SYSTEM , TERMINAL xx-

ENTER USER NAME :

5. Enter an approved , val ida ted name for the SEL 86

interactive mode.

Resp onse ( from SEL 86) : ENTER USER KEY :

6.  Enter: <CR>

Respons e ( from SEL 86): ENTER FUNCTION CODE , 7,

OR OR TO TERNINATER

7. At this point , log in is complete on the SEL 86.

The LSI—i1 is still in a transparency mode. The user may

continue in this mode or exit the transparency mode . To

exit ,

Enter: Control/fl <CR>

Response (from LSI— 11): — —

The user may now use any of the ava ilabl e commands of the

SEL 86/LSI—11 interface .

50

_ _ _ _ _ _  £4



-- --

Considerations in Using the Interface

Whenever the LSI—11 IM is awaiting keyboard input , it

notifies the user with the prompting message :

The SEt 86 will automatically log out the LSI— 11 if

the user or the LSI—11 IM does not interact with the SEL 86

for 30 minutes.

No specific keyboard input is required to terminate

the LSI— 11 IM. The LSI—11 IN is automatically terminated

when the LSI—11 is turned off.

Summary

This chapter has specified the required steps in

initializing the SEL 86/LSI—11 interface. The procedure is

simply the standard procedure for logging onto the SEL 86

from a terminal once the LSI—11 has been placed into a

transparency mode . This chapter does not go into any

detail in accessing and using the SEL 86 interactive

functions and procedures. The SEL Terminal Support Sub—

system Reference Manual should be referenced for further

detail in operating under the SEL 86 interactive mode .

‘U

51

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 



— -~ — ---~ -~~~~~~~~ —--

Bibliography

1. Digital Microcomputer Handbook. 1977—78 Second edition.
Maynard,~Mass.: Digital Equipment Corporation, 1976.

2. SEt Terminal Support Subsystem Reference Manual. Ft.
t~tiderdale: Systems 

Engineering Laboratories , August
1977.

a-

4 .

4 .

52



Appendix A

Absolute Load Format

A block cons ists of:

byte value

1 001 start byte
2 000 null byte
3 XXX byte count (low 8 bits)
4 XXX byte count (high 8 bits)
5 YYY load address (low 8 bits)
6 YYY load address (high 8 bits)

n ZZZ block checksum

Notes:

1. The byte count is the total number of bytes in the

block, excluding the checksum.

2. A byte count of six has specific implications:

a. data transfer is complete; and

b. the load address specifies the transfer address.

53

~~L--- —----.-- ------ .-—---~ 
-

~~~
‘
~~~~~~

---— - _

£4



- - - - -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~
_“ 

~~~~~~~~~~~ 
-

~
- ‘ ‘

~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

V

Append ix B

Bubble Charts for SEL 86/LSI—11

Interface Monitor

Five bubble charts are included in this appendix. They

are: LSI-11 IM, LOAD, SEND, TRANS , and SEL 86 LSINTR. The

bubble charts for FILE, RUN, IMCHAR , and IMEXIT have been

excluded since these charts are trivial by the nature of

what the modules must do. It should be noted before reading

these charts that each chart represents data flow of a

particular function. Control flow is intentionally omitted .

The chart represents a series of data transformations from

one form to another form as viewed by the data. This means

that iterative loops and initialization procedures are not

included in the charts.

The charts included here are only high level bubble

charts. Each process , i.e. “bubble”, could be decomposed

into a lower level bubble chart to include more detail.

The intent of these charts is simply to provide the reader

with an overall concept of what is being done in each module

before examining how the module is being implemented in the

structure charts.

4 .

54

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -- -- - - 
-

_______ -

~~~
- . -

~~~~~
-

~~~~~~
-
~~~~~~~~~~~~~~~

- -
~~~~~

-

Keyboard—character

Printed—
character

Read
characte

*

Character—
Prompti — image
messa~

Build
arame te

arameter

Build
input
list

Input— li

Format
command

*

Parameter
list Command

alidate
ommand Valid—command and
nd u s  Valid—par ameter—

list _

I See appropriate
Error— Process ~~Jbubble charts,messa~ command i.e. LOAD , SEND,

Land TRANS

4 -

Figure 1. LSI—1l Interface Monitor Bubble Chart

55 

- - - --— -- -~



—‘-.~~~~~~~ 
-

~~~
--

~~~~~~~ - - ---‘-----•---~w ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —~~~~~~~~~~~~~ -~~— - -  ~ -‘~-,- ~~-~--—--~--— —,--—

~

-

Characters

Get
encode
load
data

ncoded—load—data

Decode
load
data

I *

oad—parameters

Load—data

Print
Store Checksum start
data addres

*

Start —
Computed— address—

Stored—data1 
hecksum message

*

LSI—li. Compare
hecksurn “Block”—message

Error—message

Figure 2. LOAD Bubble Chart

56

--
- --—.-. —-- - -~~~ ---- -~~~~~-- - - - - --- - - - - - - -- -~~~ ~~~--- - —

~~~~~~~~ ~~
-- --

r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -—--—-
~~~

—--.——— -—----— --
- - -~~~- -—--

4*

P ax’ arne t e r s

* Get
data

Data

LSI—11

Encode
data

Encoded—data

Transmit
data

Transmitted—
ata

SEL 86—
files

Figure 3. SEL.D Bubble Chart

4 -

57

- - --
- - - ~~~~~~~~~~~ ~

LSI—l1—keyboard—characters
-

Verify
keyboar
aracte s

Verified—keyboard—characters

Printed—
characters

Print
c aracter

ransmi Response—
eyboard characters

c aracte

Keyboard—characters
SEL 86

Figure 4. TRANS Bubble Chart

4 -

‘4

58

-

~~~~~~ 
-—— — - .- -—- — — - - - — 

~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~

- - —-- .- - - -  —-— -- - 

~~~~~~

- -

~~~~~~~~

—

~

- —— --  -



V ~~

‘-- - 

~~~~ 
— —

..

‘ SI—il—characters

Get
comman

ornman d

ispatch Receive—data—parameterscommand

Read
W

* encode

SEL 8 Send—data— data

file parameters
* Encoded—data

Get
data

Decode
data

Data
LSI—ll Decoded—

data

Encode Transmitted—
data data Store

data

Encoded—data

ransmi Stored—data
encoded
data

SEL 86—files

Figure 5. SEt 86 LSINTR Bubble Chart

59

F - -
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

‘- ‘- 
- - 

~~~~~
-

~~~—
-- -- —---fl- —‘--

~
‘-

~~ - -

Appendix C

Struc ture Charts for SEL 86/LSI— 1l

Interface Monitor

A series of eight structure charts represent the design

of the SEt 86/LSI—11 Interface Monitor: LSI—IM Interface

Monitor , LOAD, FILE/SEND, RUN , TRANS, IMCHAR , IMEXIT, and

SEL 86 LSINTR. Each structure chart is followed by a table

which specifies data and control flow parameters to (INPUT)

and from (OUTPUT) the subroutines activated by the calling

routine. Data and control flow are differentiated by

underlining control flow parameters . Following this table

is a description of all the modules specified in the

structure chart. —

60 



“F’! — — 
-
~
— — 

~~~~~~ _______________________________________________
_ _ _ -- —

~~~~~~ ~~
--— —-  —

I

LSI—1i.
Interface
Monitor

Get
formatted Dispatch
valid command

command 
_____  _____

See page 62. See p ge 65.

Figure 6. LSI—li. Interface Monitor Structure Chart

61



—- - - - - -~~~- -  ~~~~~ —~~ “-~~~~~~~~~~~ ~~ — ~~~~~~~~~~~~~~~~ ~~~~~~~~~ -- -~~~- -~ ~~~~~~~ - - -~~~~~~~~-~~~~~~~~~~~ -- ---- ~~~~- - ‘-—— -

V

I 
Get

formatted
valid

command

F formatted Validate

command LC0
~~~~~~~~

fld

See oage 63. See ~~~e 64.

Figure 6. (cont’d)

4.,

62

-.-- —- - - --- -
.

—--~~~~~~~~ - — - . -- - - - - -- - —~~~--- - - --
.
~~~~~

— -- - - -



_______  

- - - -— -- -‘-

~

----‘ - -- —-------

~

- 

~

—

~

-‘-- - ---

i(t

H
~Z4 Q  ~ - O r 4

I ~~ 4.)
I 0

______  
0

)

a) / ~~~ 4J 4.)

_ _ _  

—I 
4 _J~~~~

I ~~~~ í a )  a,

( 9. ~~~~~~~~
•~~~ S
O E E

~ 4 O  
_ _ _ _ _  • 

c.000
‘4

c u ~
_ _ _ _ _  

.1.4

4

~~

4., 

_ _  

~~~~

/

q
4~~~~~~~ O) 4 .) a)

—

C.5~~~ r4 (.5 _ _ _ _ _- —
.,4

a. 4) /
4.) I

_ _ _ _ _ _ _ _
4JQ / 4.)4.)

0
_ _ _ _

‘-4 c.5~~ -;;-\ t~
•g ~~

l \

0
~~~

c 4 ~ 
(~1.4 0. 0)

0-0 a)
~4Ea.

63 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - p ~~~- - -~~~~ _ —

~~~~~

- - - --

~~~~~~~

- - -_ _ _

-
;~~~~~~~~~

__ __
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~:‘~

:--- 
- -

~~

E~~ I

C.,

L 

__ 

I

H

64

— ~~
- 

~~~~
— ------- - - -

1

— .

0
- 1-4

Cl) a,-
z

4 .4:
~~

- A ~~

I Cg4

U
_

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1.4

•

:~~~~~~~~‘7~~~~~~~

.

N
a,
$4

.4: bO
0 .r4

a)
_ _ _ _

a)
U)

65
-- --. - --- -.

- ~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ __- ,.~~~~

Table I

LSI—11 Interface Monitor
Data and Control Flow

INPUT OUTPUT

1 — command , parameter list

2 command , parameter list —

3 — command , parameter list

4 commnad , parameter list command type

5 — input list

6 input list command , parameter list

7 — —

8 — parameter

9 parameter input list

10 — character

11 character parameter

12 character —

13 input list parameter type

14 parameter type parameter list

15 parameter parameter type

16 numeric parameter integer parameter

17 parameter parameter list

18—23 command , parameter list command type

24—29 — —
30—34 parameter list —

66

__


~~~wi~~~ ~~____ ~~—-

Description of LSI—11 Interface Monitor

LSI— 11 IM — controls procedure of getting a valid

command and then dispatching the command for processing .

Get formatted valid command — gets a command and a

parameter list (FORTRAN format) and then validates them .

When deciding on validity of command and list , determines

command type (i.e. FILE command , LOAD command , etc). If

command is not valid , gets another command .

Dispatch command — transfers the parameter list to

the appropriate routine to process the command .

Get formatted command — gets a command and its param-

eters and builds a parameter list in FORTRAN format .

Validate command — reads first ASCii character of the

command parameter to dispatch the command and parameter

list to determine their validity . If character is not one

of five valid characters. Prints error message and returns

invalid command type .

Get input list — prints a prompting message to the

user and builds an input list from keyboard input. Key—

board entry is complete when no parameter is found.

Format command — converts input list to command and

parameter list.

Print prompting message — prints “—— “ at the user ’s

terminal.

Get parameter — reads ASCii characters from keyboard

input and builds parameters. A parameter is built when the

ASCii character read is a comma or carriage return .

67

——-— _— _ -~~~~- — _ _ _~~~.. _. . _ ---- -—---—----- --- -.- ----- ——— . --—----- --—--- -- - .44



- 

~~~~~~~
‘ “.‘

~~~~~~~~~~~~~~~~~
‘
~~~~

“_ — - - -__---.__- ,—, -- - - -.~~~~~
-‘.

~
._ _______

Build input list — adds parameter to the input list.

Get character — reads ASCii character from keyboard

input and prints the character to the LSI—i1 user ’s console.

Build parameter — builds an ASCii character string

of the parameter. Blanks input as ASCii characters are

deleted from the ASCii parameter string.

Print character — echo print user ’s keyboard character

entry at the user’s LSI—ll console.

Get parameter — reads the next parameter in the input

list. Determines parameter type by reading first ASCiI

character of the parameter and noting if it is an alpha-

numeric or a numeric.

Dispatch parameter — converts numeric parameter to

binary integer if necessary. Adds parameter to FORTRAN

formatted parameter list.

Analyze first character — determine if first character

of the parameter is an alphanumeric or a numeric.

Convert octal to binary integer — converts input octal

integer parameter to binary integer parameter.

Build parameter list — adds parameter to FORTRAN for-

matted parameter list.

F,L,R,S,T — validates the command and parameter list as

either FILE, LOAD, RUN, SEND, or TRANS command . Determines

command type. If an error in command or parameters , prints

an error message and returns invalid command type .

- I- - —-.--- - —--- ---—---—--

Pring error message — prints error message to user’s

LSI—1 1 console that error in input command .

LOAD , FILE/SEND , RUN , TRANS- see individual structure

charts.

Start address—only contents of this module is the

start address. LOAD , FILE/SEND, RUN, and TRANS all have

access to this common data element .

69

_ _ _ _ _ _ _
-
. . - .

-—
-
~~---- - .-------- -- - -~ - - -——---—. -——— -~_- -~~~~~~~--- - - .- --—-~~~~ --— ---------- - - - —

_ _

lb
_ _

h

/

‘

1~~~~~

I c~~~i c ø ~~I (‘~i\I ...4 $4 c-.

0 (
c~
j a.

-~ a)
0

_ _ _ _ _ _
Cl)

.PCl)
0’~~

O H
bC
.1-I

$4

~1.I

70

- — -•.—~~~~~~~~
- - - — -

~~~~~
-—

~~~~
- - -

I

~~~~~~~~~~~~~~~~~~

o c~4~~~O
U)I-4

a) a)

H 0O (~O$4 0) ‘.4
.4.)

I 5 0
0

54I ~~~a)I $4 4.’/ C’) ~~~ C~~~0/ C’J

I f  Q4 .)  
_ _ _ _ _II 0 CO a) .~ • 0

$4 /1 ~~~i-4 a )~~~ ~~o ‘-I 0
a, (s— c.a bO

a)
0)4 .’  I Cl) 4.) Uflz) a,
c~~ I >~~0)U) .4: 54
(~~~~ 

I a)~~) _ _ _ _ _ _ _ _ _ _ _ _ _  N

0 bO
_ _ _ _  C’J ~‘i 4)

C~J H
_~ _~~_J% \ 

_ _ _I ~ _ _ _ _  a) ‘.4
Cl)

4-) ’C~~~ (~ a,4 ) O c ~~4.’ ~

\ 
_ _  _ _

71

-- -- -- - - -—- - . —  .-~~~-- -—~~~~~~ -~~~~~~~~~~~~~~~~~~ --~~~~~-S 



- -~~~~~~~~~~~~—~~~~ -~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~
- - -

~~~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ----

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Get
decoded
load
data

[~~ 
Get Decodeencoded loadload datad ta

— 

15/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~

Data Time out 1/ 1 Get 1available message I I charactercheck

~~~~~~~~~~~~
i

~~~~~~~~~~~~~~~~~~~Th
Read

I Stopkeyboard Continue
I loadcharacter
[

Figure 7. (cont’d)

72

_ _ _

—

~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~r ’ ,- - .-~~~W~~~ ~

-,-- -- - .—--- -
~~

- , —‘-‘ - --—--.-

Table II

LOAD Data and

Control Flow Table

INPUT OUTPUT

1 parameter list load offset

2 load of set —

3 start address —

4 SEt 86 mode , file name —

5 - checksum , block number
stop flag

6 checksum checksum
~~~~ 

stop flag

7 — —

8 block number stop flag

9 - load address , number of
bytes , stop flag

10 — decoded data , stop flag

11 load address, number of updated load address ,
bytes, decoded data updated number of bytes

12 — decoded load parameter,
stop flag

13 — encoded load data, stop

14 encoded load data decoded load data

15 -. —

16 — stop flag

17 — encoded character

18 — keyboard ASCIi character

19 — —

73

~~~~— - -~~~-- -—~~~~~~~~~~ - —— - - - - -  ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~- ~~~~ —-—---~~~~ ~~~~~~~~~~ - - -~~~~~~~~~-


-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -

~~~~~~~~~~~~~~

- -

~~~~

---

~~~~~~

Table II (continued).4,.
INPUT OUTPUT

20 — stop flag

21 — load checksum , stop flag

22 character string , number —

of characters

23 — keyboard ASCii character

24 - -
25 — stop flag

26 start address —

27 — —
28 character string, number —

of characters -

74

— - -- --- - --~~~--- - - L•t~~~ ~~~~~~~ -~~~~~~~~ _ - - -

-
~~~~~ - -

Description of LOAD

LOAD — controls load of data from SEL 86 file to LSI—11

memory .

Initialize load — determines parameters for notifying

SEL 86. Determines load offset. If not specified , defaults

to zero.

Notify SEt 86 — control initialization of SEt 86 LSINTR

and specification of SEL 86 parameters , i.e. mode and file

name .

Initialize SEt 86 LSINTR — initialize SEL 86 LSINTR by

putting SEL 86 in Program Monitor and executing LSINTR.

Notifies SEL 86 that it is in sending mode.

IMCHAR — see IMCHAR structure chart .

Transfer data — controls receipt of load data from

SEt 86 and transfer of the data into LSI—i1 memory . Monitors

two control f l ags: stop flag and checksum flag. If stop

flag is set , load is terminated . If checksum flag is set ,

block error message must be printed.

Load block of data — controls receipt of load data from

SEL 86 and transfer of the data into LSI—11 memory . Keeps

track of block number of the load. Keeps running tally of

checksum. Monitors stop flag. If set , terminates load.

Get load parameters — determines load address and

number of bytes as specified in load parameters of the block

being transmitted .

Get decoded load data — controls receipt of decoded load

data. Monitors stop flag.

75

- - -—-- - —-— - -

~

-- - - -- -- ---- - -- -

~

— ----

~

---

~

- - —— _ _ _ _



— : -——~ _~~~~~~~~~ nw- ~~~~~__ —-——~~~~~— ,— —— — ——— — —. —— -— -~~~~~~~~— — — -  —
~~~~

Get encoded load data — controls receipt of encoded

load data from the SEL 86. Monitors stop flag.

Decode load data — decodes ASCii characters (encoded

load data) into binary data .

Data available check — loop of executing statements

to count length of time waiting for data from SEt 86.

Time—out message — prints message specifying allotted

time for waiting for data from SEL 86 has run out. Controls

option to continue waiting for data cr to terminate load .

Get character — reads ASCii character from SEL 86.

Read keyboard character — reads LSI—ii keyboard input

character specif ying continue waiting or terminate load .

Continue — continue waiting .

Stop load — sets stop flag.

Load data — controls load address to store data into

LSI—11 memory . Decrements byte count. Loads data into

LSI—11 memory .

Compare checksums — gets checksum as transmitted in

load block and compares it to the calculated checksum.

If a discrepancy , checksum flag is set.

Send “next block” message to SEt 86 — sends notifica-

tion to SEt 86 to start transmission of next block of data.

Block error message — prints block error message (i.e.

checksum error). Gives user option to continue or terminate

load as in “Time—out message”.

Print address information — prints start address as

spec if ied by the load .

76

__
~~~~~~~~~~~~~~~~~~~~~~~:.~~~~~~~~~ -“ - -  ~~~~~ - -~~~ -- . - -~~~~~-~~~~--~- - -- —-. - -- - - -



- 
- _____ - -  

-•-~~~~~~~~~~~~~~~~~~~~~~~~

Terminate SEL 86 — terminates data receipt from SEL 86

by stopping execution of SEL 86 LSINTR. Terminates Program

Monitor mode on SEL 86.

IMCHAR — see IMCHAR structure chart .

1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ .



I
’

0 
_ _

~~

~~~~~~~~~

Z U)

78

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Table III

FILE/SEND Data and
Control Flow Table

IN OUT

1 SEL 86 mode, file name(s) —

2 — —

3 SEL 86 mode —

4 file name(s) —

5—7 character string , number —

of characters

8 parameter list data addres s, number of
bytes , checksum , stop
lag

9 data address , number of checksum , stop flag
bytes, checksum

10 checksum stop flag

11 load parame ters encoded load parameters

12 encoded load parameters , stop flag
number of characters

13 data encoded data

14 encoded data , number of stop flag
characters

15 checksum encoded , checksum

i6 encoded checksum , stop flag
number of characters

79 



~~~~~~~~~ T .  ___________ ~~

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

Description of FILE/SEND

FILE — controls notification of SEL 86 to initialize

its program , LSINTR , or to terminate it. If parameter list

has zero entries, SEL 86 LSINTR is terminated , otherwise ,

the SEL 86 program is initialized . Also specifies that

SEL 86 will be receiving data. Controls sending of file

names to SEt 86. SEL 86 traffic to LSI—11 can interrupt

routine. SEL 86 messages will be printed - to LSI—li user ’s

console.

Notif y SEL 86 — see LOAD structure chart and descrip—

t ion.

Terminate SEL 86 LSINTR — terminates data transmission

by stopping execution of SEL 86 LSINTR . Terminates Program

Monitor mode on SEL 86.

IMCHAR — see IMCHAR structure chart

Process SEL 86 — see TRANS structure chart and

description.

SEND — controls transmission of data in absolute load

block format. Monitors number of files initialized on

SEL 86. If this number is zero, transmission of data is

zero. SEL 86 traffic to LSI—11 can interrupt routine. SEL

86 messages will be printed to LSI—11 user ’s console.

Send encoded load parameters — controls transmission

of load parameters, i.e. file number , start address , and

byte count. File number is sent using the state byte

(high 8 bits) and null byte (low 8 bits) to specify file on

80

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ‘.~ ‘

i~
.

-

I

the SEL 86. Specifies number of ASCii characters to be

transmitted for each parameter. Keeps running tally of

checksum count for encoded daca transmitted to the SEL 86.

Monitors stop flag (terminate transmission). If stop flag

is set , number of initialized files is changed to zero.

Send data — controls transmission of the data. Speci—

fies number of ASCii characters to be transmitted for each

data byte transmission . Keeps running tall y of the checksum

Monitors stop flag as does “Send encoded load parameters”.

Send checksum — controls transmission of checksum.

Specifies number of ASCii characters to be transmitted .

Monitors stop flag as does “Send encoded load parameters”,

Encode — encodes each four bits of data into an ASCii

numeric character.

IMCHAR — see IMCHAR structure chart.

4,.

81

_ _ - - - -
~~~~~~ -~~~~~~-~~~~ - 

--- -
~~~~~~~~~~~

---~~~~~~~~~~~~~~ —-—-—~~—

Rth-]

~~~~~di~~~~~~jumo to
1start addre~~

_ _ _ _ _ _ _

Fic~ure 9. RUN Structure Chart

4

Table IV

RUN Data and
Control Flow Table

INPUT OUTPUT

1 start address —

Description of RUN

RUN — reads parameter list for start address. If none

specified uses the start address data element common to all

commands. Unconditionally jumps to that address.

4,.
4-i

82

-— --—— 
~~~~~~~~~~~~~~~~~~~~~~~ 

.—_- . . -— --------- ~~~~~---- -- -- - - - - -~~~-

r -- --U--- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -

~~~~

-

~~

- —

~~

—---

~

-- ---—--— —--- ----—--- — --- —--- -- - - -

TRANS

Process
1 Processkeyboard SEt 86

L input

_ __ _

~~~~~~~~~~~l5

Analyze Getfirst Dispatch character
~~~~

aracter

5 6 7 8

I
(

Control/D

—
/

Terminate ProcessTRANS inputmode

1
iT

13

I Read 1
keyboard cha~a~ter

IMCHAR
character

See Figure 11.

Figure 10. TRANS Structure Chart

83

-~~~ _— ~~ —~---—~~~~~ ~~~~~~~I-,.- .~~~•’ ~~~~~~~~ -~~

Table V

TRANS Data and
Control Flow Table

INPUT OUTPUT

:

-

=

3 — character

4 character —

5 — character

6 charac ter —

7 — —
8 — —
9 — —I

10 - -
11 — character

12 character —

13 character string , —

number of characters

14 — character

15 character —

4 .

84

—— - -
~~~~~~~

— —-
~~~~~~ ~~~~~~ —


- -_—~~~~—-~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description of TRANS

TRANS — controls processing of keyboard input or SEL 86

response . Determination is interrupt—driven .

Process keyboard input — monitors keyboard input to

determine whether to remain in transparency mode or terminate

transparency . Echo prints all, keyboard input.

Process SEL 86 — echo prints SEL 86 ASCii character

response.

Analyze first character — reads and prints first LSI—11

keyboard character .

Dispatch — determines if valid transparency keyboard

input and processes it or if termination of transparency

mode request and processes request.

Control/D — if first keyboard character is control/D,

verifies if transparency keyboard input or termination of

transparency mode request verification is made by second

ASCii character , i.e. <CR> .

Terminate TRANS mode — return control to LSI—11 IM.

Process input — controls processing of keyboard input ,

i.e. echo prints and transmits to SEt 86. Terminates on

<CR> .

Read keyboard character — reads character from LSI—11

keyboard .

Print character — echo print ASCii character read .

IMCHAR — see IMCHAR structure chart .

Get character — read ASCii character sent from SEL 86.

85

z

~

__ --- -
~~~~
___

~~
___

~ —- ~~~~~~~~~



AD A06’ 396 AIR FORCE INST OF TECH WRIGHT—PATT ERSON AFB 0+110 SCH—ETC FIG 912
DESIGN OF A SEt. S6/LSI—11 INTERFACE MONITOR. (U)
DEC 78 J E BARALLI

UNCLASSIFIED AFITIGCSIEEI78 9 NL
2or 2
Aoe4~9e

U

I



I .C ~~ ii~:~ ~ 2 5

HIII~a
L =

I. I IIllI~0

I~IJ=~=
I 

~~~~~~~~ IIU~ ~
M~~~~t~* i)~~ i i II ‘.1 I


~~~~~~~~~~~~~~~~ 
~
‘
~
‘
~
!‘ 

__________

4p

IMCHAR 
]

/~~~~~
Check for Transmit ]c~~ear c

~~~~~j

Line 1 rstandar ci to
available Time out

F-lboth LOAD
check messa~~~

J
La~ IMCHAR

See Figure 7.

Figure 11 • IMCHAR Structure Chart

86

-_- ~~~~~~~~~~~~~~

Table VI

IMCHAR Data and
Control Flow Table

INPUT OUTPUT

1 — stop flag

2 character —

3 — —
4 — stop flag

Description of IMCHAR

IMCHAR — controls transmission of ASCii characters

from LSI—11 to SEL 86. Monitors for clear channel . Termi-

nates transmission if stop flag is set. Keeps track of

number of characters being transmitted .

Check for clear channel — monitors for a clear channel

to transmit ASCii characters to the SEL 86.

Time—out message — see LOAD “Time—out message”.

Transmit — releases ASCii character across communica-

tions line.

87

-~~~~~~~~ —,---~~~~~ - ~~~~~ — -~~,~~~~~~~~~~~~~~~~~ . --- ~~~~ —-

[IMEXIT

d~~~onf~

Figure 12. IMEXIT Structure Chart

Tabl e VI I

IMEXIT Data and
Control Flow Table Li

INPUT OUTPUT

— —

Description of IMEXIT

IMEXI T — unconditionally jumps to the LSI—11 IN

4’

88

—--- ---
~ T___ —— T~T ~~~~~~~~~~~~

C’;C.,
1-4

~~~c~~E ,-4 ~
~~4 . a O I  b~

j
~~~~ 

_
_

_ __ _ _ _ _
_ _ _ _

I ~~~ 4.3
U,

CI #-.~~~~I ~~~EC E Z
c~~O Hz I vt ~l E o Cl)

Cz1U) 4..)
~ z.I

4.3 H
E
0 0

Cl)
I
I

—~~~
I
I ~~~~~~)
I ~~~C C ~O~~)~~ bC

...~ c~ c-a E~~~~_ _ _ _ _ r~.

~ A •~~
)

I! ~4 5 ~Il
~~ ~ I4J
(

~~~
)

—I-...
’.

., “ 4

89



_____  - -- -~ -~~~~

1~~~~
] rSpecified bya a --4 LSI— 11 LOAD( File LS 11 Lcommand

Array )
_ _  _ _  

7 8

Standard to
both “Send
data to Transmi t
LSI—1l” and Process block of
“Receive e~s , data
data from
LSL41” 

— 9 10 See page 91.

Data

~ Buffer
Allocatefile 

~~~~~
., ,

name(s) ~~~~~

%~ dynamically creates newLft1e(s~ as necessary

Figure 13. (cont’d)

90

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ——----- —— - -~ -- -— -- ---—- - - - -— . — --— — S -~~~~ — - — - -



--

£4 -

4.3 ’.

•~~~~~~~~.0 a,
4.)
4.,

Lfl

o~~
C’J

4 ’ E  C’J

E U )

U, 0
C)

~4 0
W~~~ 4.)
C u c ~ 0

4)

r-4 E~~ a,
0) 4.3

C.,
‘-4

£4

4)
— 0 4.’

1_I
U)

4-, £4

~~ NE V4- ’  _ _ _ _ _

C O  
_ _ _ _ _

£4

01



-— r-~~~~~~~~ - - —-
-

E a4 ) E ( k
f £4~~ V\. U ) O~~~O .~ t a c ~ I ~ ~~~~~~~ Il~~14 ) Q  0..~ I ~~~~~~ 4) E-’Cfl 4) ~~ E o  ~) 4 ) Q )  4.) H

~~~~~~~~~~

4) O (~~~I ~~~~~~~
£ 4 - 4-’ - - L_. 0 . 0 O~~~ 4~O .~~

(
~~~F 4).,-4 4 C ~3 ~~~~~~~4.’ O~~~~~I N  £4 4.’~~6 C’) Cl)~ C ~

Cl) O IC%J 0~~~~4-) C.1 r-~ 4) O C U
.0 U ) O .~~ 4)

4 ) C~ 4)
4) ~a a S  G)H~ O ( ~~ 4) 4 ) 0 4 - ’  ~ V

‘-4 £4~~~~: > U) I 4-’OE (
~~ O4 i  C6

C~ - 4 - ~~~ C l)v -4 (U — 4) _a C.
4) 4 - ’ O I  C V ~ - 4 W  1 £4 a,

c C I o E I  c~ C’J
C U 4 ) H 4 ) O  0. 4)

_ _ _  

_ _ _ _ _  

___ U,

£ 4 (~ bO
0 1-) (~4.) 

~~~~~~~~
_ _ _ _ Cl)

~~4) /~~~~~~
S 4) 0

U) ’.

lb
sa l

92

a,
~~~~~~ _ S -~- --~ ~~-~~~-~~- -~~~~~~~ - — - - --_____



r -

~~~~
- -~--

~~~~~~~~~~~~~~~~~~~~~~~~~ h~~~
_

*~~

Get

~~~~~~~~~~~~~~~~~~

encoded Decode
data data

Data Time out
~ I Read

available ~message to encoded
check L LSI—13. J data

‘S

formatted WRITE’ ~~ ormatted READ

Figure 13. (cont’d)

93

T~~.

up— —S -
~~~~~~~~~~~~~~~ 

—--,
~
- --—--- - 

- 
—,-~~- —~~ — _ S_ -

~ --S-~ .5- - 
S5-SSS5S~

Store
data

Buffer

I Data Data[ buffer file 
t~~~~

UFFER OUT

Figure 13. (cont’d)

4 .

94

- —  -_ - -  -~~-- -—~~- —5- ---—- — - 5 - — - -- —



- 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

~~~~~~~~~~~~~~ ~~

-—--

~~~~~~~~~ - 
~~~~~~~~~~ — — — —--~-—- ---—— ---—- -

Tabl e VIII

SEL 86 LSINTR Data
and Control Flow

INPUT OUTPUT

1 — —
2 — —
3 - command type

4 command type -

5 — —
6 — —
7 — —
8 — —
9 — file name

10 file name —

11 data from file —

12 — number of bytes

13 — —
14 - —
15 — stop flag

16 — block length

17 Load parameter encoded load parameter

18 encoded load parame ter —

19 data encoded data

20 encoded data —

21 checksum encoded checksum

22 encoded checksum —

95

~~~~~~ - - - - -~~~~~- -5-- --- 5 ——- - - -~~~~~~~~— —~~~~---— _ _ _ _ _ _


5- - —5 .- 5 -- —-5 ---5 .5-5-- j—. —— —--S~~---~~~ - - -- -—- -- -5--~~~~~ —5~~~~~~~~ -—~~---- 5-— -—- --5—— -~- -—------~5- 5~~~~~~

~1

Table V I I I (continued) .

INPUT OUTPUT

23 — —

24 - -

25 — —
26 — file name , number of bytes ,

computed checksum

27 file name , number of bytes —

compu ted check sum , block
— number

28 checksum , file name —

29 — decoded load parameter

30 decoded load parameter , —

file name

31 — decoded data

32 decoded data , f ile name —

33 computed checksum, block —

number

34 checksum , file name —

35 — encoded data

36 encoded data decoded data

37 — —
38 — —
39 — encoded data

40 decoded data -

41 file name —

42 — checksum

43 block number -

96

--
-~ - - - - - —- - - - 5 - - .~~~---- - - —- - - —.------- --~~- ---- - -- -_ - -

- - -
—- ~~

—- - - —— — - -
~-- -5-- —-5-- —

Description of SEL 86 LSINT R

SEL 86 LSINTR — c..itrols all SEL 86 functions rf the

SEL 86ILSI—11 Interface Monitor . Controls initialization

of needed work area and all interface operations with the

LSI— 11.

Initialize parameters — sets up two arrays as part of

working area.

Data Buffer — only contents of this moduel is a buffer

area to store data before it is processed .

File Array — only contents of this modeul is a work

area array for storing names of SEL 86 files to be accessed.

Interface with LSI—11 — controls interface with LSI—11.

Determines SEL 86 mode , i.e. send or receive data , and

performs its functions accordingly.

Get mode — gets SEL 86 type , i.e. send or receive data

from LSI—11 using formatted READ.

Dispatch on mode type — dispatches the mode type for

processing as either send or receive data.

Send data to LSI—11 — controls transmission of data

from a SEL 86 file.

Process file(s) — controls allocating and blocking

SEL 86 files that are to be accessed. Dynamical ly creates

new files as necessary.

Get file name(s) — gets SEL 86 file name(s) from LSI—11

using formatted READ.

Allocate file(s) — allocates and blocks SEL 86 file(s)

being accessed. Dynamically creates new files as necessary .

97

I ~~-~~~~~~~~~~~~~~~~~
—--

-

~ 55-5 -~~~ 5-5- — - -“ --5- r . , — nr ~,. — ___5-w — -

Transmit block of data — controls transmission of all

data on the file , a block at a time. Controls filling of

storage buffer with data from file. Monitors stop flag to

control transmission of each block of data.

Road file into buffer — read data from file into data

buffer using BUFFER IN.

Transmit load parameters — controls release of encoded

load parameters. Determines number of bytes to be trans—

mitted .

Transmit data — controls transmission of encoded data.

Transmit checksum — controls transmission of encoded

checksum.

Next block — determines if next block of data is to be

transmitted by reading notification from LSI—11 in formatted

READ.

Read block length — determines number of bytes to be

transmitted by reading the number of bytes parameter

specified in the load block.

Encod e data — encod es each four bits of data into

an ASCii numeric character.

Release data — send encoded data to LSI—11 using for-

matted WRITE.

Receive data from LSI—11 — controls receipt of data

from an LSI—11.
- - Get storage forma t — determine s how data is to be s tored ,

i.e. binary format or absolute binary load forma t, using a
4).

formatted READ.

98

____ -- - — — - —5 ——— - —--5- -— --~~~—

-
—‘---~~~~ ~~~— —

~~
— —

-~~~~~ -c-

-

_ _

Store data flag — only con tents of this modul e is a

f lag spe cif ying how the data is to be stored.

Proce ss f iles — se e “Process files” above.

Store block of data — controls storage of data block.

Notifies LSI—i1 of checksum errors specifying block number.

Store load parame ters — controls de termining va lues of

load parameters and their storage on SEL 86 file if appro-

priate. Keeps running tally of the checksum.

Store data por tion of data block — con trols s torage of

ac tual data bloc k 9 no load parame ters or checksum) on

SEL 86 file. Keeps a running tally of the checksum. Moni-

tors checksum errors.

Store che cksum — controls storage of checksum on SEL 86

file if appropriate.

Get decoded data — controls receiving and decoding data

from LSI—11.

Decode data — decodes ASCiI. characters (encoded data)

into binary data.

Data available check — loop of executing statements to

count length of time waiting for data from LSI—11. —

Time—out message — prints warning message at LSI—11

user ’s console (us ing a forma tted WRITE) that no data has

been received at the SEL 86 in a specified time .

Read data — receives encoded data using formatted READ.

Store data — controls s torage of data into buf fer and

then onto SEL 86 file.

99

~~~~~~~~~~~ 
—

~~~~~~

-- -

— - - ~~ ~~~~~~~~~~~~~~ ~~~ -.-~~- 5- ~~~~ - --
-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Data into buffer — reads decoded data into Data Buffer.
, a

Data to f ile — writes decoded data onto SEL 86 f ile

using BUFFER OUT.

Compare checksums — tests for checksum error.

Checksum err or message — pr ints checksum error message

(spec ifying block number) at LSI—11 user ’s console us ing a

formatted WRITE.

100

- -
al.~.. -~~~~

- 5 - 5 -
.~~~

——- -
~~~~~~

5- ‘~~~~ 5-5-5-5-”
’

Vita

Capt Janet E. Baralli was born on 4 January 1950 in

Hammond , Indiana. She graduated from high school in

Lansing , Illinois in 1968. In 1972 she graduated magna

cum laude f rom Sain t Mary ’s College in Notre Dame , Ind iana

where she rece ived a Bache lor of Sc ienc e degree in

Chemistry . Upon graduation she entered Officer Training

School at Lackland AFB and was commissioned a 2nd Lieutenant

in the U. S. Air Force on 28 August 1972. Before entering

AFIT , her Air Force career was spent in ADCOM as a

space systems analyst. She worked in the NORAD Cheyenne

Mountain Complex in addition to spending a year remote at

a radar site in Turkey . Seh entered the School of Engi—

neer ing, A ir Force Institute of Technology , in June 1977.

Permanent address: 3604 Adams Street
Lans ing, IL 60438

101 



___ _ __ 5 -5--.- - ~~~~~~~~ 5-5 5- —~ ----.~
_ --- -.-,~~~~~ -- —5-5——----- —5---— 5 ——-5--r - - - - -

U~~~%J L.I t.J . J L A  .~.La 1d

StCu~~ItY CLASSI FICAT ION OF lUll PAG E (1P7~.n Da~~~Snt.r~ d) 
_________________________________

D~~DAOT 
~~~~~~~~

Ek
~
?AT’ñU DAf ~~

READ £NSTRUCT!ONS
~ ~~~~u wwi,, ~‘i u ..u u’Jul .

~~~ BEFORE COMPLETING FORM
I~ ~E~ O~ T NU$St~ ,

.-“ ~2. GOVT ACC ESSION NO. 3- ~ ECIPIENT % CATALOG NUMUE~

AFIT/GCS/EE/78—9 _________________________
4. T~rLI (.i d SvSUII•)  - 5- TYPE OF ~ EPO~~T 4 PE~ I0D COVE*ED

DESIGN OF A SEL 86/Tsr—Il. INTE~?~~EMONITOR MS Thes is
S. PIRFO~ MlNG ORG. UEPO~~T NUMS~~~

7. AUTNOP(.) S CONtPA Ct O~ O~~A N1~ NUMSE~ (.)

Janet E. Baralli
CR):rt

S. PI~~PO~ MING ORGAN IZATI ON NAME AND AOO~ ESS 10 PI~OG~~AN ELEMENT, PROJECT . TAS IC
Air Force Inst i tute  of Tecimology (AFIT—EN A~~E A 4 W O ~~K UNIT NUMIE~~S

Wright-Patterson AFB , OH 45A33

II . CONT~ OLLlNG OFFICE NAM E ANO A OO~ ES1 12. REPORT DATE

Computer Activities Office (AFML/DOC ) December 1978 V
Is . NUMS ERO F PAGES

_________________________________________ 1.03
14. MONITONIP4 G AGENCY NAME $ *OD~~ESS(If di U.p .n i (roan Controllin4 OWc .) IS. SECUPITY CLASS. (at thu ,.port)

5~ , DECLASSIFICATION OOW NGRAO,wG
SCHEDULE

IS. DISl~~ISUlION STATEMENT (of ffiu* R.poi e)

Approved for public release; distribution unlimited

~7 DIST~~IUUTl ON STATEM ENT (of th• .bitract ..,t.rod I, , hock 20. if dItI.r,mI (roan R.porl)

SUPPL EMENTA~~Y NOTES Approved for public release; lAW AFR 190—17

JOSEPH ~ 3~r ~~~3or, USAF
Director of Info tion 1 .2? 7~IS. KEY WOPOS (C.&ianz. on ,•v.rl. ild. if n.c...oa 7 ~d fd,n (ffr by block nu.,b~r)

Software Engineering LSI— li
Structured Design Minicomputer Network
Interface Monitor
s~~~86

20. A.
’
~Iç~*I~AC? (Coaithtui on ?•Vlfll .id. II I•C•IIMT ond Id ntSty by block num b..)

The Air Force Materials Laboratory (AFML) uses LSI—1l. micro—
computers as one of several computer systems available for
collecting test data. For conducting these tests, LSI—11 programs
must be loaded into and data collected from the LSI—1l. using
paper tapes. Data is later stored on a larger computer system at
AFML, the SEL 86.—’~--~-~ ‘

~~~~~~~

DD
~~~~~~~~~~ ~473 £OITION OF I NOV S$ I$ OISOLEIE 

— Unclassified
5tCU~~ItY CI. A $SIFICA T IOP4 OF THIS PAGE (W~.,e D.t. £nf.r.d



- -5---. —-5--- - - -  __
~~~

__-“II ~~~~
-5-5-

~~~~~~ 
— ----5 —

I ThTr1AccTV T ~~T~
SECU RITY CLASSIFICATIO N OF TNIS PAOI(Wh on DM. Sat.r.d)

\

The purpose of this investigation has been to design a
SEL 86/LSI—11. interface that will automate manual procedures.
The interface design enhances the current LSI—11 system by
prov iding the follow ing capab ilities : load binar y programs
and data residing on a SEL 86 file into LSI—11 memory ; transmi t
data stored in LSI—11 memory to one or more SEt 86 files , and
place the LSI—11. memory into a transparency mode such that it is
a per ipheral as viewed by the SEL 86.

The pr inc iples of sof tware engineer ing have been app lied in
both the analysis and design phases. Formal tools have been used
in defining the requirements and developing the structured design.
The resulting design is an interface monitor with software residing
on both the LSI—11 and the SEL 86. The added capabilities are
provided using either a series of commands entered at the LSI—11
console or as call statements in LSI—il FORTRAN compiled programs.

7

Si

UNCLASSIFIED


