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THE TORSION PROBLEM

The elastic stress analysis of uniformly circular shafts in torsion
is a familiar and straightforward concept to design engineers. As the
bar is twisted, plane sections remain plane, radii remain straight, and
each section rotates about the longitudinal axis. The shear stress at any
point is proportional to the distance from the center, and the stress vector
lies in the plane of the circular section and is perpendicular to the radius
to the point, with the maximum stress tangent to the outer face of the bar.
(Another shearing stress of equal magnitude acts at the same point in the
longitudinal direction.) The torsional stiffness is a function of material
property, angle of twist, and the polar moment of inertia of the circular
cross-section. These relationships are expressed as:

e2}
I

T/J*G, or T = G*0+J

and S

Ter/J, or SS = GeQer

where T = twisting moment or transmitted torque, G = Modulus of Rigidity
of the shaft material, 6 = angle of twist per unit length of the shaft, J =
polar moment of inertia of the (circular) cross-section, SS = shear stress,
and r = radius to any point.

However, if the cross-section of the bar deviates even slightly from
a circle, the situation changes radically and far more complex design
equations are required. Sections of the bar do not remain plane, but
warp into surfaces, and radial lines through the center do not remain
straight. The distribution of shear stress on the section is no longer
linear, and the direction of shear stress is not normal to a radius,

The governing equation of continuity (or compatibility) from
Saint-Venant's theory is

a? d _
5)(724’&;9" -2Go



where ® = Saint-Venant's torsion stress function. The problem then is

to find a @ function which satisfies this equation and also the boundary
conditions that @ = a constant along the boundary. This @ function has
the nature of a potential function, such as voltage, hydrodynamic velocity,
or gravitational height. Its absolute value is, therefore, not important;
only relative values or differences are meaningful.

The solutions to this equation required complicated mathematics.
Even simple, but commonplace, practical cross-sections could not be
easily reduced to manageable mathematical formulae, and numerical ap-
proximations or intuitive methods had to be used.

One of the most effective numerical methods to solve for Saint-
Venant's torsion stress function is that of finite differences. The CLYDE
computer program was applied to a number of shafts to produce the
dimensionless design charts on the following pages. Most of the charts
required approximately 50 computer runs for plot data generation, but
once completed, the design charts for that cross-section are good for
virtually all combinations of dimensions, material, and shaft twist.

The three-dimensional plot of ® over the cross-section is a surface
and, with @ set to zero (a valld constant) along the periphery, the surface
is a domb or ® membrane.! The transmitted torque (T) is proportional to
twice the volume under the membrane and the stress (S ) is proportional
to the slope of the membrane in the direction perpendlcular to the mea-
sured slope. Neglecting the stress concentration of sharp re-entrant
corners, which are relieved with generous fillets, the maximum stress
for bars with solid cross sections is at the point on the periphery nearest
the center (fig. 1).

'The best intuitive method, the membrane analogy, came from Prandtl.
He showed that the compatibility equation for a twisted bar was the
"'same" as the equation for a membrane stretched over a hole in a flat
plate, then inflated. This concept provides a simple way to visualize
the torsional stress characteristics of shafts of any cross-section rela-
tive to those of circular shafts for which an exact analytical solution
is readily obtainable.
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Figure 1. Membrane analogy.



DESIGN CHARTS AND TABLES

Design charts and related data which support the elastic torsional
stress analyses conducted by MISD are shown in figures 2 through 25
and tables 2 through 25, respectively. The item nomenclature used in
the analyses is given in table 1.

These data are based on the stress function solution for various
shapes provided by the CLYDE computer program and on Prandtl's
membrane analogy.

Since the design charts are dimensionless, they can be used for
shafts of any material and any dimensions.



Table 1. Element nomenclature

~N

T+

TRANSMITTED TORQUE, N - m (Ib - in.)
ANGLE OF TWIST PER UNIT LENGTH, rad/mm (rad/in.)

MODULUS OF RIGIDITY OR MODULUS OF
ELASTICITY IN SHEAR, kPa (psi)

OUTER RADIUS OF CROSS-SECTION, mm (in.)

VARIABLES FROM CHARTS (OR TABLES)
RELATED TO VOLUME UNDER ""SOAP FILM
MEMBRANE"” AND SLOPE OF "MEMBRANE"

= SHEAR STRESS, kPa (psi)
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Table 2. Split shaft, volume factor V)

Y/Ri Ri/Ro

.1 02 03 04 05 05
0.1 .3589 .2802 .2068 L1422 . 0891 . 0491
0.2 .3557 .2762 .2030 .1391 .0870 .0478
0.3 .3525 L2722 .1991 .1360 .0848 . 0464
0.4 . 3492 .2680 .1952 .1328 .0825 .0450
0.5 .3457 .2637 L1911 .1294 .0801 .0436
0.6 .3423 .2593 .1869 .1260 .0777 .0421
0.7 .3387 .2548 .1824 .1223 .0750 . 0405
0.8 .3350 .2499 1776 .1183 .0722 .0387
0.9 .3312 .2447 .1725 .1139 .0689 .0367
1.0 .3269 .2389 .1665 .1087 . 0649 .0340
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Table 3.

Split shaft, slope factor (d®/ds)

Y/Ri Ri/Ro

01 02 03 o4 05 06
0.1 1.8987 1.2663 . 9520 .7384 .5773 . 4405
0.2 1.8953 1.2656 . 9519 .7384 .5773 . 4405
0.3 1.8916 1.2648 .9518 .7384 .5773 . 4405
0.4 1.8875 1.2639 . 9517 .7384 .5773 L4405
0.5 1.8829 1.2629 .9515 .7384 .5773 L4405
0.6 1.8778 1.2617 . 9512 .7383 .5773 . 4405
0.7 1.8722 1.2603 . 9509 .7383 .5773 .4405
0.8 1.8661 1.2585 .9505 .7382 .5773 L4405
0.9 1.8585 1.2561 . 9499 .7381 .5773 .4405
1.0 1.8484 1.2526 . 9488 .7378 . 5773 .4405



TORSIONAL STIFFNESS

TRANSMITTED TORQUE,
T=2G'¢(V)R4
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Figure 4. Single keyway shaft, torque.
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Table 4. Single keyway shaft, volume factor (V)

A/B B/R

0.1 0.2 0.3 0.4 0.5
0.2 .6994 .6472 .5864
0.3 .7379 .6900 .6316 . 5648
0.4 . 7341 .6816 .6173 . 5459
0.5 .7682 .7290 .6725 .6043 .5294
0.6 .7676 .7262 .6663 . 5941 .5152
0.7 .7668 ‘ .7224 .6592 .5848 .5032
0.8 .7658 .7190 .6533 .5762 L4931
0.9 . 7647 ,.7162 . 6480 .5686 . 4849
1.0 .7633 .7125 .6424 .5619 .4783
1.2 .7621 .7079 .6347 . 5531 L4697
1.5 .7592 .7012 .6260 .5449 . 4649
2.0 .7560 . 6945 .6200 . 5424

11
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Table 5. Single keyway shaft, slope factor (d®/ds)

A/B B/R
1 02 03 o4 05

0.2 1.7316 1.6911 1.5473
0.3 1.6037 1.5729 1.4896 1.3753
0.4 1.5274 1.4565 1.3673 1.2750
0.5 1.4050 1.4158 1.3605 1.2888 1.2118
0.6 1.3890 1.3840 1.3213 1.2470 1.1702
0.7 1.3690 1.3383 1.2748 1.2128 1.1420
0.8 1.3438 1.2992 1.2465 1.1864 1.1226
0.9 1.3116 1.2783 1.2238 1.1669 1.1093
1.0 1.2698 1.2469 1.2022 1.1524 1.1002
1.2 1.2530 1.2215 1.1803 1.1374 1.0902
1.5 1.2057 1.1893 1.1605 1.1259 1.0858
2.0 1.1726 1.1680 1.1508 1.1234

13



TORSIONAL STIFFNESS

TRANSMITTED TORQUE,
T=2G'6(V)R4
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Figure 6. Two keyway shaft, torque.
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Table 6. Two keyway shaft, volume factor (V)

A/B . B/R

0.1 02 03 0.4 0.5
0.2 .6187 .5226 .4195
0.3 .6927 .6008 .4944 .3831
0.4 .6853 .5848 .4688 .3517
0.5 .7524 . 6753 .5678 . 4457 .3246
0.6 .7511 . 6698 .5562 L4277 .3014
0.7 .7496 . 6625 .5429 .4112 .2818
0.8 .7477 . 6558 .5319 .3962 .2655
0.9 .7454 . 6505 .5221 .3829 .2522
1.0 .7426 . 6433 .5117 .3713 .2416
1.2 L7404 . 6344 L4974 .3559 .2276
1.5 .7346 .6215 .4813 .3416 .2197
2.0 .7283 .6086 .4703 .3373

15
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Table 7. Two keyway shaft, slope factor (d®/ds)

A/B B/R
0.1 0.2 03 0.4 0.5

0.2 1.6802 1.5861 1.3645
0.3 1.5834 1.5203 1.3842 1.1911
0.4 1.5064 1.4028 1.2598 1.0872
0.5 1.4002 1.3939 1.3052 1.1785 1.0199
0.6 | 1.3840 1.3616 1.2645 1.1340 .9742
0.7 1.3639 1.3151 1.2163 1.0971 L9424
0.8 1.3385 1.2754 1.1865 1.0683 .9199
0.9 1.3061 1.2538 1.1624 1.0462 . 9041
1.0 1.2641 1.2216 1.1392 1.0297 .8930
102 1.2470 1.1951 1.1151 1.0119 .8805
1.5 1.1991 1.1612 1.0927 .9978 .8749
2.0 1.1654 1.1382 1.0813 .9945

17
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Table 8. Four keyway shaft, volume factor (V)

- A/B B/R

0.1 0.2 0.3 o4 0.5
0.2 . 4806 .3361 2114
0.3 .6088 L4511 .2965 .1705
0.4 .5952 .4253 .2624 .1384
0.5 .7214 .5769 .3983 .2333 1140
0.6 .7190 .5672 .3805 .2119 . 0962
0.7 .7161 . 5541 .3605 .1935 . 0842
0.8 L7124 . 5422 .3444 .1783
0.9 .7080 .5330 .3304 .1662
1.0 .7024 .5203 .3160 .1572
1.2 . 6982 .5051 .2974 . 1482
1.5 .6870 . 4832 .2787
2.0 .6748 L4622 .2692

19
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Table 9. Four keyway shaft, slope factor (dd/ds)

A/B B/R

.1 02 03 04 05
0.2 1.5127 1.2969 . 9683
0.3 1.5096 1.3517 1.1047 .8172
0.4 1.4303 1.2333 .9849 .7300
0.5 1.3814 1.3158 1.1338 .9060 .6783
0.6 1.3648 1.2814 1.0903 .8624 .6486
0.7 1.3441 1.2326 1.0395 .8275 .6333
0.8 1.3181 1.1908 1.0072 .8016
0.9 1.2848 1.1672 .9810 .7834
1.0 1.2418 1.1325 .9557 .7715
1.2 1.2239 1.1027 . 9290 .7627
1.5 1.1739 1.0638 . 9054
2.0 1.1376 1.0356 .8959

21



-— TRANSMITTED TORQUE,
T=2G'9(V)R4

75 -

SHEAR STRESS ——
. 9.42)
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—1 0

-1 1.20

Figure 10. Single square keyway with inner fillets.
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Table 10. Single square keyway with inner fillets

Slope factor (d®/ds)

Volume At keyway At inner
B/R factor (V) center (1) fillet (2)
0.1 .7703 1.5180 1.2024
0.2 .7206 1.3308 1.4091
0.3 . 6504 1.2397 1.4072
0.4 .5690 1.1716 1.3249
0.5 . 4840 1.1103 1.1854

23
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Figure 11. Single spline shaft, torque.
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Table 11. Single spline shaft, volume factor (V)

A/B B/R
0.1 0.2 03 04 05

0.2 .7853 .7865 .7878
0.3 .7853 .7870 .7906 .7944
0.4 .7864 .7903 .7968 .8048
0.5 . 7845 .7874 .7933 .8035 .8189
0.6 .7852 .7899 .7993 .8143 .8362
0.7 .7857 .7918 .8059 .8270 .8580
0.8 .7862 .7950 .8113 .8390 v.8832
0.9 .7866 .7976 .8202 .8560 .9110
1.0 .7869 .7996 .8253 .8712 .9433
1.2 .7890 .8071 .8456 .9117 1.0158
1.5 .7907 .8174 .8754 .9800 1.1561
2.0 .7953 . 8407 . 9420 1.1404

25
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Table 12. Single spline shaft, slope factor (d®/ds)

A/B B/R
0.1 0.2 03 0.4 0.5

0.2 .9753 .9757 .9759
0.3 .9753 .9758 . 9767 .9774
0.4 . 9757 .9767 .9782 . 9797
0.5 . 9751 . 9759 .9773 .9796 .9827
0.6 . 9753 .9767 .9789 .9823 .9864
0.7 . 9754 L9771 .9807 .9853 L9912
0.8 .9756 .9780 .9820 .9879 . 9966
0.9 . 9757 . 9787 .9843 .9921 1.0028
1.0 .9758 . 9792 .9854 .9954 1.0100
1.2 . 9765 .9813 . 9908 1.0055 1.0272
.45 .9769 . 9841 .9984 1.0228 1.0646
2.0 .9782 . 9906 1.0169 1.0714

27



1.50

1.40

1.30

1.20

1.10

1.00

A/B =20
TORSIONAL STIFFNESS f

TRANSMITTED TORQUE,
T=2G6(V)R?

1.2

1.0

MNwe o

B/R

Figure 13. Two spline shaft, torque.

28



Table 13.

Two spline shaft, volume factor (V)

A/B B/R
.1 02 03 04 05

0.2 .7865 .7889 L7914
0.3 .7864 .7899 .7970 .8047
0.4 .7886 :7965 .8095 .8255
0.5 .7850 .7906. .8026 .8229 .8538
0.6 .7863 .7958 .8145 . 8446 .8886
0.7 .7874 . . 7994 .8278 .8701 .9326
0.8 .7883 .8059 .8386 .8945 .9837
0.9 .7891 L8111 .8565 .9288 1.0400
1.0 .7897 .8152 .8668 .9595 1.1058
1.2 .7940 .8302 .9078 1.0418 1.2547
1.5 .7973 .8509 .9682 1.1818 1.5471
2.0 .8066 .8980 1.1045 1.5172

29
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Table 14. Two spline shaft, slope factor (d®/ds)

A/B B/R
.1 02 03 04 05

0.2 . 9757 .9763 . 9769
0.3 . 9757 . 9766 .9784 . 9799
0.4 . 9763 . 9784 .9815 . 9845
0.5 . 9753 . 9768 . 9799 .9844 . 9906
0.6 . 9757 . 9783 .9830 . 9896 .9980
0.7 . 9760 .9793 . 9864 . 9956 1.0076
0.8 . 9763 . 9811 .9890 1.0011 1.0187
0.9 . 9765 . 9825 . 9937 1.0094 1.0312
1.0 . 9767 .9836 . 9959 1.0164 1.0462
1.2 . 9780 .9877 1.0068 1.0367 1.0812
1.5 . 9789 . 9933 1.0222 1.0722 1.1595
2.0 .9817 1.0066 1.0601 1.1739
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Figure 15. Four spline shaft, torque.
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Table 15. Four spline shaft, volume factor (V)

A/B B/R

0.1 02 03 o4 o5
0.2 .7888 .7937 .7989
0.3 .7887 .7957 .8101 .8254
0.4 .7932 .8090 .8352 .8674
0.5 .7859 L7971 .8213 .8623 .9250
0.6 .7885 .8076 .8452 .9063 .9962
0.7 .7906 .8149 .8723 . 9588 1.0877
0.8 .7924 .8280 .8944 1.0090 1.1950
0.9 L7940 .8386 .9310 1.0808 1.3158
1.0 .7954 .8467 . 9519 1.1455 1.4601
1.2 . 8040 .8773 1.0378 1.3239 1.8021
1.5 .8106 .9196 1.1663 1.6438
2.0 . 8292 1.0180 1.4739
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Table 16. Four spline shaft, slope factor (d®/ds)

A/B B/R

1 02 03 04 05
0.2 1.0027 1.0052 1.0073
0.3 1.0027 1.0063 1.0135 1.0196
0.4 1.0052 1.0134 1.0260 1.0385
0.5 1.0010 1.0072 1.0193 1.0381 1.0646
0.6 1.0026 1.0132 1.0321 1.0601 1.0978
0.7 1.0039 1.0170 1.0469 1.0873 1.1436
0.8 1.0050 1.0246 1.0578 1.1131 1.2019
0.9 1.0059 1.0304 1.0788 1.1552 1.2743
1.0 1.0066 1.0346 1.0890 1.1911 1.3766
1.2 1.0118 1.0525 1.1432 1.3210 1.7211
1.5 1.0156 1.0778 1.2313 1.6632
2.0 1.0270 1.1463 1.5858
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Table 17. Square keyways and external splines, volume factor (V)

B/R One keyway Two keyways Four keyways
0.1 .7633 ) .7426 .7024
0.2 .7125 .6433 .5203
0.3 . 6424 .5117 .3160
0.4 .5619 .3713 .1572
0.5 .4783 .2416

B/R One spline Two _splines Four splines
0.1 .7869 .7897 . 7954
0.2 .7996 .8152 .8467
0.3 .8253 ' .8668 .9519
0.4 .8712 .9595 1.1455
0.5 . 9433 1.1058 1.4601
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Figure 18.

Square keyways and external splines, stress.
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0.4

0.5

0.3

0.4

0.5

Table 18. Square keyways and external splines,
slope factor (d®/ds)

One kexwax

1.2698
1.2469
1.2022
1.1524

1.1002

One SEline

.9758
. 9792
. 9854
. 9954

1.0100

Two keyways

1.2641
1.2216
1.1392
1.0297

.8930

Two splines

. 9767
. 9836
.9959
1.0164

1.0462
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Four keyways

1.2418
1.1325
. 9557

L7715

Four splines

1.0066

1.0346

1.0890

1.1911

1.3766
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Table 19.

One flat
.7813
.7617

.7018

.6291
.5510
L4717
.3951
.3228
.2568
.1980

.1460

Milled shaft, volume factor (V)

Two flats

.7811

.7149

.5998

.4667

.3349

.2168

J1i225

. 0559

.0173
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Four flats
.7811
.6520

. 450l
L2777



"ssaJl)s ‘yeys pa|lIN ‘0¢ 34nbiy

H/H
0L 8 9 g v £ z L
ST T I 1 T I L ] T
sp _5
Eﬁﬂ_uwm.m. s
M T ' X 1V 'S1v14 40 H3ILN3ID LY WNWIXYIN

SS3HLS HV3IHS

L'l

[4°

42



Table 20.

One flat

1

1

.0

.1870

.2078

.1975

L1710

.1333

. 0876

. 0352

.9773

.9148

. 8457

Milled shaft, slope factor (d®/ds)

Two flats

1

1

.0

.1788

L1773

L1279

.0423

. 9227

L7717

.5940

.3996

43

Four flats
1.0
1.1465

1.0718
.9507
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Figure 21. Rectangular shaft.
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Table 21. Rectangular shaft

Volume Slope
B/A factor (V) factor (d®/ds)
0.3 . 05635 .5942
0.4 .1248 . 7731
0.5 .2250 .9280
0.6 . 3559 1.0563
0.7 .5146 1.1589
0.8 . 6971 1.2391
0.9. .8991 1.3008
1.0 1.1167 1.3475
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3-TRANSMITTED TORQUE,
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Figure 22. Pinned shaft, torque.
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0.3

0.4

0.5

Table 22.

One groove

.7700
.7316
.6760
.6087

.5349

Pinned shaft, volume factor (V)

Two grooves

.7558

.6803

.5738

L4521

.3300
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Four grooves

.7280

.5855

.4062

.2374

L1118
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Figure 23. Pinned shaft, stress.
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0.3

0.4

0.5

Table 23.

One

roove

.8164

.7698

. 6852

. 5831

.4878

Two grooves

1.3111

1.7452

1.6229

1.4603

1.2753
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Pinned shaft, slope factor (d®/ds)

Four grooves

1.7907

1.6558

1.4249

1.1441

0.8728
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Table 24. Cross shaft, volume factor (V)

Shape P
.0071

.05219
.1642
.3538
.5947
.8302
1.0058

1.0981
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Shage M

.09907
.2120
.3767
.5714
.7639
.9247
1.0368

1.0981
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Table 25. Cross shaft, slope factor (d®/ds)

X/S Shape P Shape M
At x At b At x . At a

0.1 .3986 .1036 .8060 .1280
0.2 .7615 .2514 1.0051 .3589
0,3 1.1577 L4247 1.1917 .6139
0.4 1.4997 . 6450 1.3535 .8503
0.5 1.6925 .8901 1.4071 1.0416
0.6 1.6795 1.1007 1.4011 1.1755
0.7 1.4573 1.2335 - 1.2563 1.253‘9
0.8 1.0460 1.2896 1.0460 1.2896
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ACCURACY OF THE COMPUTERIZED SOLUTION

To compare the CLYDE (computer) analysis of the torsion of a
solid circular shaft with the exact, classical textbook solution, one
quadrant of a unit-radius shaft was run with two finite-difference grid
spacings and the results of the equations were compared, as follows:

Equation Comparison

Torque

Shear stress (max)

Torque

Shear stress

Area*

(h=0.125)
(h=0.0625)

(h=0.125)
(h=0.0625)

(h=0.125)
(h=0.0625)

CLYDE
2GO (V)R -—
2 (V)R >
2(V)R? -~
2V ——y
()R —s
ds
(92 ——
ds
CLYDE Exact
1.5546 1.5708
1.5669 1.5708
0.9379 1.0
0.9688 1.0
3.13316 3.14159
3.13984 3.14159

*Used for internal program checking.

Exact

GeJ

J
(n/2)R*
(m/2)

G6eR

Deviation (%)

6.21
3.125

0.268
0.056

The mathematical model used in the CLYDE computer program is
described in appendix A. A planned extension of the mathematical
model is contained in appendix B.
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PARALLEL SHAFT CONCEPT

The torsional rigidity of a uniform circular shaft, i.e., the torque
required to produce unit (one radian) displacement, is:

C=T/6 =GJ

In the terminology of the membrane analogy, the torsional rigidity
of non-circular shafts is defined as:

C =T/6 = 2G-6 (V)f(R)/0

The overall torsional rigidity of a system consisting of a number
of shafts in parallel (fig. 26) is simply the sum of the torsional
rigidities of the individual component shafts.

N

2z C.=C1+C2+C3+°"+C
. i N
i=1

N N

I OT8 SO T =0T +T, +Ty+w+T)
i=1 i=1

The torsional rigidity of hollow shafts can be determined by re-
garding the configuration as a parallel shaft arrangement. The over-
all torsional rigidity can be obtained by subtracting the torsional
rigidity of a shaft having the dimensions of the bore (or inner contour)
from that of a shaft having the dimensions of the outer contour. The
advantages of being able to apply the principles of superposition
(fig. 27-31) to combinations of concentric (inner and outer) shaft con-
tours are obvious. If, for example, design charts have been prepared
for 20 different shaft shapes, then 400 different solutions to all possible
combinations of inner and outer shaft contours (20 inner x 20 outer)
are available.
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APPENDIX A

MATHEMATICAL MODEL USED IN THE CLYDE COMPUTER PROGRAM

As the term implies, boundary value problems are those for which
conditions are known at the boundaries. These conditions may be the
value of the problem variable itself (temperature, for example}, the
normal gradient or variable slope, or higher derivatives of the problem
variable. For some problems, mixed boundary conditions may have to be
specified: different conditions at different parts of the boundary. CLYDE
solves those problems for which the problem variable itself is known at
the boundary.

Given sets of equally spaced arguments and corresponding tables
of function values, the finite difference analyst can employ forward,
central, and backward difference operators. CLYDE is based upon central
difference operators which approximate each differential operator in the
equation.

The problem domain is overlaid with an appropriately selected grid.
There are many shapes (and sizes) of overlaying Cartesian and polar
coordinate grids:

rectangular

square
equilateral-triangular
equilangular-hexagonal
oblique

Throughout the area of the problem, CLYDE uses a constant-size
square grid for which the percentage errors are of the order of the grid
size squared (h%*). This grid (or net) consists of parallel vertical lines
spaced h units apart, and parallel horizontal lines, also spaced h units
apart, which blanket the problem area from left-to-right and bottom-to-
top.

The intersection of the grid lines with the boundaries of the domain
are called boundary nodes. The intersections of the grid lines with each
other within the problem domain are called inner domain nodes. It is at
these inner domain nodes that the finite difference approximations are
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applied. The approximation of the partial differential equation with the
proper finite difference operators replaces the PDE with a set of subsi-
diary linear algebraic equations, one at each inner domain node. In
practical applications, the method must be capable of solving problems
whose boundaries may be curved. In such cases, boundary nodes are

not all exactly h units away from an inner node, as is the case between
adjacent inner nodes. The finite difference approximation of the harmonic
operator at each inner node involves not only the variable value at that
node and at the four surrounding nodes (above, below, left, and right),
but also the distance between these four surrounding nodes and the inner
node. At the boundaries, these distances vary unpredictably. Compensa-
tion for the variation must be included in the finite difference solution.
CLYDE represents the problem variable by a second-degree polynomial

in two variables, and employs a generalized irregular "star" in all direc-
tions for each inner node. In practice, one should avoid a grid so coarse
that more than two arms of the star are irregular (or less than h units in
length) . The generalized star permits, and automatically compensates for,
a variation in length of any of the four arms radiating from a node. For no
variation in any arm, the algorithm reduces exactly to the standard har-
monic "computation stencil . "

At each inner domain node, a finite difference approximation to the
governing partial differential equation (PDE) is generated by CLYDE.
The resulting set of linear algebraic equations is solved simultaneously
by the program for the unknown problem variable (temperature, voltage,
stress function, etc.) at each node in the overlaying finite difference
grid. A graphics version of the program also generates, and displays
on the CRT screen, iso-value contour maps for any desired values of the
variable. This way, a more meaningful picture of the solution in the
form of temperature distributions, constant voltage lines, stress concen-
tration graphs, or even contour lines of different values of deformation
and bending moment in structural problems, is made available to the
engineer.

The user may also specify a finer grid spacing to increase resolu-
tion in critical regions of the problem, modify the scale of the display,
change the boundary of the problem or redraw it completely, and change
boundary conditions and coefficients--all at the face of the screen. Itis
also possible to request CLYDE to pass a plane through the two dimen-
slonal picture displayed on the screen. This plane is perpendicular to
the screen and appears as a straight line. CLYDE will generate a new
display showing a cross section (or elevation) view from the edge or
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Figure A-1. Finite difference grid.
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side. In this manner the variation or plot of the solved variable along
that line is displayed on the screen. If the problem geometry is symme-
trical, the designer does not have to display and work with the entire
picture of the problem, he need only work with the "repeating section."
In essence, the graphics user may examine the problem solution at will
and redesign the problem (contour, boundary conditions, equation co-
efficients, etc.) at the screen resolving the "new design" problem.

Consider the general expression:

2 2
V2 o°f o°f 9_ af=
WV E AB_I‘IT+BB_§2-+}»5—7\. D Eq (1)

in the n, &, A coordinate system, where A, B, C, D are arbitrary
constants.

When C = 0, v 2f reduces to a two-coordinate system, in Xand v,
for example:

22f a2 f
2¢ -
Vif= Ay +B57=D Eq (2)

Using central differences, the finite difference approximations to
the partial differential operators of function f at representative node O
are:

of _ 1 of _ 1 _

dx 2h (f, f3)'ay‘zh (f2 = fy)
X Y

%f 1
X

aif _ 1

Z;,'z'—gr-(f:z-2f0+f4) Eq (3)
Y

for a square grid, h>< = hy = h and the harmonic operator V2f becomes:

h?y 2fo = [A (f, +f3) + B (f, + f,) ~ (A+B) 2f,] = h?D Eq (4)

see figure A-4.
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Figure A-3. Inner domain nodes.
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hy =h —'——*] COMPUTATION STENCIL
AT NODE O

Figure A-4. Harmonic operator for square star in X-Y grid.
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This finite difference equation at node zero involves the unknown
variable at node zero (f;) plus the unknown value of the variable at the
four surrounding nodes (f;, f;, f3, f;), plus the grid spacing (h). The
five nodes involved form a four-arm star with node zero at the center .
This algebraic (or difference) equation could be conveniently visualized
as a four-arm computation stencil made up of five "balloons" connected in a
four-arm star pattern and overlayed on the grid nodes. The value within
each balloon is the coefficient by which the variable (f) at that node is
multiplied to make up the algebraic approximation equation.

The numerical treatment of an irregular star (h;# hy# hy# h,) re-
presents the function f near the representative node O by a second-degree

polynomial in X and Y:

f(X,Y) =fy +a;X +a,Y +a;X? +a,Y? + a, XY Eq (5)

Evaluating this polynomial at the neighboring nodes (1, 2, 3, #4)
produces the following set of equations:

fy =fy +a,h, +azh,?
fy =fy +ashy, +agh,?
f3 =fy —a,hy + azh,?
fy =fy —ash, +agh,? Eq (6)

which are then solved for a; and a, which are necessary to satisfy the
harmonic operator v2f, since:

2
of _ o f _
a_y— dy + 2a4Y +a5X, a—y-f - 2a4 Eq (7)
and
vif=A (2a;) + B (2a,) Eq (8)
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Performing the necessary algebraic operations, substituting results,
collecting terms, and using the following ratios:

h h
b1 = EL b2 : 'ﬁz'
- hy = hy
bs =4 be = Eq (9)
The harmonic operator becomes:
-

2 ol = | 2A 2B f
my ;_bl (b +bs) h +bz (by+by) 2 ¥
+ 23 fa + B f, +

by (b;+b3) * by (byt+b,) 4
_(2A , 2B - 2

o * iy ) = 0 i

3

See figure A-5.

When C#0, V2f can be applied to an axisymmetric cylindrical co-
ordinate system, in R and Z, for example:

dif o%f C of
2f= — —
v Aaz“BaR’*RaR B £ [

For a regular star, the harmonic operator becomes (in a similar
manner to equation 4):

r
h*vif, = | A(fy +f3) +B(f, +f,) +%£- (f; - f,)
L 0
T
- (A+B)2 foJ = h’D Eq (12)

See figure A-6.
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NEIGHBORING NODES (1,2,3,4,)
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24
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COMPUTATION STENCIL
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Figure A-5. Harmonic operator for irregular star in X-Y grid.
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3 0 |
-2(A+B)
Ro \ 4 h“ = h
5-Ch }
4 2R,
#

Figure A-6. Harmonic operator for square star for R-Z grid.
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For an irregular star (h, # hy # hy # hs), the harmonic operator
becomes (in a manner similar to equation 10):

w gty =|—2A ., 28

b, (b,+b3) ' ¥ b, (by+bg) 2

2A 2B
+ fqg +
by (by+by) * " by (by+by)

fq +

( )
LCh /by b \

(  popp— I m:
R, lbz(b2+b4) 2 by (by+by) 4]

( 1
_ ) 2A 28 Ch (by-by ) ‘,

1B1by " Byby T Ry byby

= h?D ; Eq (13)
See figure A-7.

Equations 10 and 13 are employed in the programmed solutions for
Cartesian and cylindrical coordinates, respectively.
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2B
bs (b2 +bs)
Ch -EE
o Dy(btb,)

Figure A-7. Harmonic operator for irreguiar star in R-Z grid.
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APPENDIX B

EXTENSION OF MODEL TO HOLLOW SHAFTS

This would appear to be a simple matter of solving the governing
PDE over a multiply-connected boundary, were it not for the uncertainty
concerning boundary conditions. The actual value of the problem variable
at the boundary was not important in the torsion application, only the dif-
ference in the problem variable at various points mattered. The problem
variable at the boundary could be assumed to have any value, as long as
there was only one boundary. With two or more boundaries the solution
calls for a different approach.

The stress function is obtained as the superposition! of two solu-
tions, one of which is adjusted by a factor (k). This is the planned pro-
grammed solution to shafts with a hole. The hole may be of any shape,
size, and location. The two solutions, to be combined, are shown in
figure B-1: equations and boundary conditions. This capability already
exists in CLYDE. The solution for k will be added, and then the final
superposition of results. Once the contour integrals are taken around
the inner boundary of area A, the only unknown, k, may be readily
obtained. The contour integral, which need not be evaluated around the
actual boundary, may be taken around any contour that encloses that
boundary, and includes none other (for example, see shaded area AB)
in figure B-1.

'F. S. Shaw, The Torsion of Solid and Hollow Prisms in the Elastic
and Plastic Range by Relaxation Methods, Australian Council for
Aeronautics, Report ACA-11, November 1944, pp 8, 11, 23,
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Ve, =2 vy, =0

v =llfo +kll[1

—2Ag =(j)g# ds + k(g)%ﬁ ds
v

Figure B-1. Mathematical approach to hollow shaft problem.
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