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SECT I ON 1

MODEL , PURJ’OSE , AND USES

INTRODUCI’ ION

This section introduces covariance analysis by explaining the model
composition, by giving the purpose of the technique, by telling when it
is applicable , and how it may be used. No details are presented, but

• general statements of results given in other parts of the report are
presented.

In Section II the theory for covariance analysis in the univariate
case with a single covariate is developed . Uses, such as adjusting
treatment means , increasing the precision in randomized experiments , and
obtaining insight into the nature of treatment effects , are explained.
An example using the analysis of covariance in a completely randomized
design with balanced data is given.

The theory for applying covariance analysis to a non-parametric
situation is presented in Section III. Only one rank method is presented ,
hut others are indicated . The data used in the example are real.

MODEL COMPOSITION

The covariance model consists of classification type variables , as
found in an analysis of variance model , and a cont inuous type variable ,
as is usually found in regression models. Letting Yij  denote the j th
numbered observation in the ~th class, then in a covariance model , the
response ~~~~~~ would be the result of a combination of features from the
above condilions. For example, in a one-way classification with one
covariate

= h-° + r (z~~ - 1) + 

~~~

.. . (1)

where ji~ represents the population mean of the ~th class when z 1 . equalsz.. 3

~ is a regression coefficicnt of y on z

is the covariate associated with the jjth observation

j is the overall mean of the covariates and

c ..• is the residual.

1
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PURPOSE

Covariance analysis is primarily used in situations where one is
interested in a response (dependent variable) which is influenced by one
or more covariates which cannot be or have not been controlled by a
randomization scheme. There may also be cases where the covariates have
been controlled. The covariates usually reflect some characteristic
which is related to, or influences, the response. This influence may
affect the response directly or indirectly but does not necessarily
have to produce a cause and effect situation. For example , in agronomy
one may use the yield of grain per acre as a response and the number of
plants per acre as the covariate. The covariate is also known as the
i ndependent variable or the concomitant variable.

PR NC I PAL USES

Covariance analysis has a variety of uses and its application will
depend upon the investigator ’s objective.

(1) To adjust treatment means

Suppose the response contains contributions from th€
treatment effects , the covariate, and the error. To correct or adjust
for the covariate, a quantity equal to the product of the estimated slope
t imes the deviation of the mean of the covariate for a given treatment
from the overall average of the covariate is subtracted from the average
response of the treatment; i.e.,

adj 
~i 

= = 
~~~~~~~ 

- 
~~ 

(
~ i. 

-

(2) To increase precision in randomized experiments

Covariance analysis converts the variance of the responses4, to the variance about regression, 4 If 4 ~ a~,, then covari-
ance analysis is considered to have increased the precision and is an
improvement over the analysis when covariance is not used. As long as
the covariance model is linear, the covariance technique will result in
the variance of a tr::tment mean , VG~j  ) ,  being changed from ~~ to

n E ( z 1~ - ~~~~~~~

for the univariate case.

2
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(3) To remove the bias in observational studies

A researcher , conducting a survey , may be faced with taking
a l imited number of observations in a few locations . Also , these observa-
t ions may not be randomized . Snedecor and Cochran (12) point out that
these conditions would constitute an observational study. Suppose a
researcher wished to study the relationship of obesity in workers by

• occupation and their physical activity. Since obesity may not be found
in every worker, the researcher would have to take his observations
wherever he can find a subject. Because of this, the researcher cannot
predetermine a sampling scheme. Also , the response obesity would probably
be measured as weight , a ratio scale measure , but the covariable , physical
activity , would be measured on an ordinal scale. This may lead to prob-
lems of adjusting the means and in making inferences. Therefore, if
another characteristic, such as age, is chosen as a substitute for
physical activity , then a more sensitive comparison of obesity in workers
may be made since age is measured on an interval scale.

(4) To provide additional information on the nature of
treatment effects —

Bancroft (1) points out that if treatment differences
disappear after adjusting for the concomitant variable, then this may
suggest that the unadjusted treatment differences are simply a reflection
of the treatment effects on the concomitant variable . For this reason ,
treatments should not affec t the concomitant variable.

(5) To analyze data when some observations are missing

Covariance analysis may be used as an alternative technique
for analyzing data when some responses in an analysis of variance des .~gn
are missing . The computations of the covariance techn ique are more
invo lved than other missing data methods , but as Cochran (3) and Steel
and Torrie (8) indicate , the technique yields unbiased sum of squares for
estimating all classification effects . The technique also provides for
exact F-tests to be made on the classification effects.

3 
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SECT I ON II

COVAR I ANCE ANALYSIS MODEL

I NTRODI x.:r iON

I n t h i s  sect i on , the theory w i l l  be developed b r  handling the
covariance analysis model. The mode l coe fficients , slopes , and means
w i l ]  be investi gated , and a test statistic will be developed f or testing
hypotheses about these parameters. The assumptions underlying the model
will be presented. Three of the principal uses (adjusting means,
increasing precision, and obtaining information on treatment effects)
will be discussed.

A method for determining if the analysis of covariance procedure
offers advantages over the analysis when covariance is not used will be
discussed.

MODEL

The model, as introduced in Section I, consists oL.t classes or
treatments and nj observations within each treatment. Then i = 1, 2, ...

,

t and j = 1, 2, ~~~~~~~~ nj, where we assume flj ? 2 , and for at least one
treatment, nj ? 3. The way the model is subscripted indicates that each
treatment may be estimated by a regression line of y on z. Therefore
Equation (1) may be expressed as

y . . = p. + 
~~~. (z .  - 

~~~ 
) + 

~~ (1)
13 1 1 13 .. 13

until it can be shown that one slope is common to all t regression lines.
We will assume the error term to have the following properties :

E (cu) 
= 0 for all j, j ,

and E ~~ ~~~~ 
= ~~

2 when i i ’ and j =

= 0 otherwise.

By letting T~ = pj. - 

~ , one will obtain an easier model with which
to work :

= 1  + F z . . + L .‘ij I i ij ij 
(2)4



Assunptions for Analysis of Covariance

Cochran (3) lists two assumptions necessary to make covariance
analysis valid :

(1)  The des ign effect (blocks , t reatments , e tc . )  and regI-es-
sion effect are additive . If ~or some reason they are not , one may st i l l
improve the precision , but

(a) The meaning of the adj usted treatment means may
become questionable , and

(b) The true difference of treatment means will not
be obtained.

(2) The residuals E ij  are independent and normall y dist ributed
with zero means and equal variance . The normality assumption permits
probability statements to be made about the statistics.

(3) Steel and Torrie (8) include one n ddit iona l assumption .
The covariate variables are measured without error.

Test for a Conunon Slope

Upon the completion of an experiment having a completely randomized
design , one may display the test data as shown in Table 1.

TABLE 1. A RAW DATA SHEF~ FOR A CC*4PLETELY RANDCI4IZED DESIGN ECPERIMfl~T

Theatment s
1 2 t

F ~~11 ~ ll ~al z
2 1 

~ t1 ~tl

1t2 
• 

Z
t2

Z 1fl 12ri 2 ~2n 2 ytnt 
ztn~

It can be seen that by having ni ~ 2 , the data from the ~th treatment may
be fitted to the model described by Equation (2).

We will now derive a test statistic for testing the following hypoth-
esis :

H0: all treatment slopes are equal (~ 
= = = =

H1 : at least one slope is different from the rest.
5
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Ex~)re ss ing Equat ion (2 )  in m a t r i x  not a t ion , let

[ ~~~i2 y

F (n 1 x 1) 
= 

(n x 1) 
=

yini

~ 1) 
= 

‘ 

~~ l

m i in1

Jn l Q ...~~ z
— 1 —

r = 0 j~ 2 ~ 0 a
(n x 2t) ; :

1
. 

-2

~ 

•
,~~t 

~

I =

(t x l )  : (t x l)

I
t F

t

L . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~—--

~ 
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— — 2

Ti = , •

(2t x l )  (n x l )

J~i is an n~ x 1 vector of ones and 0 is a vector of zeros , n~ in length.

We now have :

y = F f l + E

where

and E (c ~‘) = ~
2I

The norma l equat ions are :

r ’ r i ~ = r ’ y

where n 1 0 • . .  0 n~~ 0 ~~• •  0 
—

1 1~~

0 n 0 0 n z  0
2 2 2 .

1) 0 1) 1) 
~~~~~~~~~~~~~

r ’ r =

(2t x 2t) n ~ 0 ... 0 ~ z~~ •
~~~~

• U
3

0 n z  0 0 ~~z 2 . 0
2 2 • 23

•
0 0 • . .  

~~~~~~~~~~ 

0 0 • . .  i z~~
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1~and

n 2y2

= 

nt~t .
(2t x 1) -~ i~ Y i~3

~ Z 2~ Y2~3 .

~ztj ytj
3

The normal equations for the ~th treatment can be expressed as

ni ~i 
+ 

~
h i ~i. ~ 

= 1

~~~~ ~~~~~ 
(3)

‘
~~~~ ~i. ~i. 

+ ~ z1~ ~~ 
= E ~~ ~~ 

(4)

Multiplying Equation (3) by z~ and subtracting Equation (4) from it yields

(~ z~~ - r1~ ~~~~2) 
~~ 

= ~ ~~ y~~ - fl j • •

Notice that (i z~3
? - 

~~ 
is the corrected sum of squares for the

covariate in the 1th treatment and that E z..y . - n.y. 
~~ 

is the

corrected cross product sum of the response and covariate in the i
treatment. So can be expressed as

E (z~~ - •i~•
) (y~~

13 — 
(5)

1 E (z .  . - z. ) 2
13 1.

3
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and from Equat ion (3), i .  is found to be
1 

~~~~ 

= - 

~~~~
Now calculating the sum of squares associated with the model containing
each treatment mean and slope, one has

R(T , ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•. . ,~~~ ) = n ’ r ’ y

1 t 1 t

~~~~~~~~~~ ~~~~~~~~~~~~~~

= 
~ 

+ 

~ 
[i (z~~ - 

~~~~~~ 
-

1 1 3

[~ 
( z . .  - 

~~~~ 

) (y 1.. - 5~ ) 1~
~~ 

~~~~~~~~~ 2 

~~~~~ [ 
E (z~~~- ~~~~) 2

For descriptive purposes , R (T 1,  • • • , -r
~
, 

~~~~~, 
••

~~ ~~~~~~ 
will be referred

to in this subsection, as the reduction due to the fu ll model. Subtracting
the sum of squares of the reduction due to the full model from the tota.
sum of squares in the model , one obtains the residual sum of squares for
the model, or Residua l (full) :

Residual (full) = y ’y - n ’I”y

[~ 
(z~~ - 

~~~~~~~~~~~~~~~~~~ 

-

= 

~~~~ 

(y
1~ 

- y1•
)2 

~ (z~ -

Express the residual sums of squares and cross products as

E ~‘ = Z N  ..~~~~~~ ) 2
‘13 ‘i.

EZY
(’

~ 
= E (z~~ 

- -

9
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~~~~

E (1) 
= I: ( z .  • - ) 2

zz ij 1.

in order to simplify writing . The Residual ( ful l )  may now be written as

r (E (1))2
Residual (full) = 

~~ 

(1) 
- 

zy

~ Ezz

and t h i s  sum of squa res has associated with i t ( n  - 2t ) degrees of
Freedom since the rank of r ’ r is 2t

The model describing the data may be simplified if a slope common
in all treatments may be assumed. Consider now a reduced model incorpor-
ating a common slope and each treatment mean :

- T~ + 
~~ ~~~~~~~ 

+ • (6)

In matrix notation , let y1, y ,  Cj~ t , x1, and E be defined as before .

r and r~ for this model become :

,~
J

i

1
t ~

0 0 z
F — — 2  — 2

(~n • x t + 1) 
• . . .

0 ~~~~

T

~!(t + l x l )  
=

In the reduced equation , y = F + 
~~~, one still assumes that E (

~) 
= 0

and E (c c ’) = 0
21. The normal equations are

10
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r’r ~ = r” y

where -

0 • • .  0 n 1z 1

o n 2 0 n- :2

r’r Ct + 1 X t + 1) 
= 

. :
o 0 n~z~

n1z1 n2z2 • • •  n~z1
13

and

n 1y 1

F ’Y =

(t + l x l )

n~y~

z ~~~~~

In solving for 3, one may multiply the:

row by ~~ and subtract from the last row

row by 
~~~~2 and subtract from the last row

row by 
~~~~~ • 

and subtract from the last row.

11 
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This leaves all but the last term in the last row with zeros. The
equation associated with the last row then becomes

( E z
~~

2 - n. z~~
2) ~ = E Z j~ ~~~~~~ 

- 

~ ~~~~ 
>~~.

13 1 13 1

or ~ [E ( z . .  - ~. )2J ~ = 
~ [~ 

(z . .  - 

~~~~~~~ 
- 

~~~) J  .

1 3  1 3

Using the same notation as before, we get

E E  (i)
~~~~~ E E  (j )

zz 
~ 

zy

By defining

E = E E (i)
WV - WV

then ,. E~ ~~~~~

E~~~~

The numerator is the pooled (summed) sun of cross products in each treat-
ment, and the denominator is ~he pooled sum of squares of the z -  - ‘s in
each treatment. Solving for T 1, one obtains 13

= 

~i. - 

~~ 

i_
i.

where ~ is an estimate of the common slope .

We now need to find the sum of squares accounted for by the reduced
model. It will become a component in the test statistic for a commoti
slope.

R (-r 1, “ , Tt ,  ~ ~~~
‘ F’ y

(E ( )
) 2

= E n .y . 2 + .

i ~ 1.  

~~~~~

12
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The Residual (reduced) becomes:

Res idual (reduced) = y ’y - r~’r’y

= 

~~~~ 
- 

~ 
n~ ~~~~~~ 

- 

:

~~~~~~~~~

2

(E (~~~) ) 2

( . 1  zy
= E  —

Bzz

The Residual (reduced) has associated with it n~ - (t + 1) degrees of
freedom (d. f.) since the rank of F’F is Ct + 1).

One can derive the likelihood ratio test, but an equivalent test
statistic is given by U~,

U = 
Residual (Reduced) - Residual (Full)

I Residual (Ful l)

d.f. Residual (full)x 
~d.T. Residuaf’[ieduced) - dJ. Residual (full)]

and if we assume c — N (0, o21) , then U 1 has an F-distribution under
the null hypothesis. Therefore, U1, becomes

E - 

(E~~~~~
•)
)2 

- E - 
(Ezy

(1))2

~~~~~ i 
~~~~~zz zz n. - 2tU1 = t - l

‘F
E (i) 

- ~~zy
>7

and U 1 — F(t - 1, n• 
- 2t) when 1-b is t rue . U 1 - F(t - 1, n - 2t, A)
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- 1 —when I~I 0 is not true , where A 
20

2 n~~(p~ - 

~ 
z 1 )~ .

y.z i

Test for a Common Mean

After one has tested for a common slope , one may then wish to test 
•

for a common treatment mean , that is

H 0 : T j  = = Tn = I

IJ ~ : At least one treatment mean is different from the other treatment
means .

In testing for a common mean , one must consider the test in terms of
what has already transpired; i.e., the results of the previous “Test for
a Cori~non Slope ,” must he considered . Therefore , two situations should be
considered:

(a) Case 1, where H 0 was rejected in the test for a common
slope. The model to be considered under the hypothesis for a common
mean is:

y .. = T + ~~~ . Z . . + E . .
13 1 13 13

versus
y - - = I -  + 

~~~. Z. - + 
~~~

. -
13 1 1 13 13

The test for a common mean (intercept) will depend upon the covariate
location . This situat ion will not be pursued .

(b) Case 2 , where H 0 was not rej ected in the test for a common
slope. The model to be considered under the hypothesis for a common mean

y. - = T + ~ ~~~. . + 
~~~

. - (7)
13 13 13

versus

= -r - + a z - .  + E . .
13 1 13 13 (8)

It may be noted that Equation (8) is the same as the reduced model under
the hypothesis of a common slope . It now becomes the ful l model for test-
ing a common intercept and therefore the Residual (full) is

14
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We now need to develop the Residual (reduced) for Equation (7).
First, defining the components of the matrix model describing the
reduced model , y1, y, Zj, ci! and c remain as before . The other
components are defined as:

z

F (n. x 2) = , and !~ (2 x 1) = [;]
J

I
~t

The matrix model is

where B (c) = 0 and E (Ec ’) = a
21.

The normal equations are

F’ F Ti = r’ y

where

n n -

~~ —n y

- . 
F F  (2 x 2) , and r’y (2 xl ) 

=

— 
I• 13Y13

~~~~ z z~ . 13

3

The normal equations may be expressed as

fl T + ~~~ 8 = “. Y..
and

n ~
i. r + Z zjj 8 = 2: 

~~ 
y~ .

13 13

15
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So 8 and -r are estimated by

E ( z . .  - i) (~~.~ -

8 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Z ( z . .  ~~~~~~~ ) 2

13

and T = ~~~~ - 8  .z
..

The sum of squares associated with r and 3 may now be found to be:

R (i, 8) = n ’F’y

I J

and the residual sum of squares for the reduced model becomes

Residual (reduced) = y ’y - 
~~

‘ “ y

= 
~~ • ~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~. ~~~~~~~~~~~£ 1  13

= Y (y - ~~~~~~~~) 2  - 8 1 (z
~ 

- 

~ • •
)~ y~~13 13

Let the following notation stand for the respective sum of squares
and cross products:

Tzy = 

~~
. ~~ 

- 

~~~~~ 
-

13

= Z 
~~ 

-

13

= E (
~, 

- y ) 2

13
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Now consider the following identity : II’

(y~ -
~~~~~~~~~~~ ~~~~~~~ . ~~~~ + (y . . 

~~~~~~~~~~~~~

Squaring and summing over all observations , one obtains

13 13 13

This result is shown in Appendix A. Using the notation previously
given , the identity may be expressed as

~ ~~~ - ~ ) 2  T~~ + ~~~~~

Likewise, it can be shown that the following identities hold:

Z (z . .  - ~~~ ) 2  
~~ ~~ 

- ~~~ ) 2  + E (z.  . - ~~~. ) 213 .. ij 1. .. i~ 
13 1.

~~T + Ezz zz

and that

Z (z~~ - 
~~~~~~~ 

- 5~•~
) E (

~~. 
- 

~~~~~ 
-

+ ~ [E (z~~ - 

~1 )(y 1~ 
-

~ T + Ezy zy

Thus,

(T +~~~~ 
( )

) 2

Residual (reduced) = (T
>7 

+ E
>7~~~) - 

Z)T zy

(T -~- E  ( ) )zz zz

17
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with (n. - 2) degrees of freedom since the ran k of the F’ F  matrix
is 2. The test statistic for a comon mean, say U2, is given by

[ (T + E ( - )
)2 1  r (EI (T + E  ( s ) ) - 

zy zy 
~~ lB  (.) 

-

________  

[ >7 >7 (T + B (•)) 

~
j  L>7 E

= 
n. - t ÷ 1 

[B - 

(E ( )
) 2 }  

zz

[>7 E~~~~ j
When normality is assumed , U 2 - F (t - 1, n. - t + 1) when H 0 is true .
U 2 — F (t - 1, n. - t + 1 , A) when H 0 is not true with

A = 
2o
~~ 1 

11~ - 8

The results of an analysis of covariance for a completely randoirized
design are shown in Table 2, where D1SS and n. - 2t are the terms used in
computing the numerator of U 1, and D 2SS and n. - t + 1 are the terms
used in computing the numerator of U 2 . (TWV + EWV) represents the sum
of products for the treatment and error terms for the indicated sub -
scripts. Draper and Smith (4) point out that 5y~z 

is an estimate of the
variance about the regression line in each treatment when a common
slope is assumed. An estimate of the error mean square will be

Adjustment of Treatment Means

The formula for adjusting treatment means was presented in Section 1
as being 

~i 
= - 8 ~~ 

- 

~ ) .  It is assumed that a common slope
was obtained for all treatments. Steel and Torrie (8) state , “Adjusted
treatment means are estimates of what the treatment means would be if all

‘s were at ~ • “ The idea i s presented graphicall y in Figure 1.

Suppose the results of two treatments are plotted . Let one treatment
response be represented by + ‘s with response and concomitant means given
by (

~~ , ~~
) ,  respectively, and the other t reatment represented by 0 ’s

having response and concomitant means (~~~2 . , Z 2 . ) ,  respectively . Let ~
be the overall concomitant variable mean , 

~l 
he the adjusted mean for

18
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Figure 1. Adjustment of Treatment Means by Covariance Analysis

Treatment 1, and ~2 . be the adjusted mean for Treatment 2. Then is
the estimate of what the treatment would be if all ii ’s were at I

When considering an estimate of the difference between two
adjusted treatment means, one would have

(
~~. — 

~k) 
— 
~
‘i. — 

~
‘k) — 8

~~i. 
— zk)

Increase of Precision for Randcsnized Experiments

Dot notation will no longer be used for sum of products associated
with the common slope model. It can be shown, by applying the results
in Table 2 that the estimated variance of the responses without covariance
is given by

~~~~~~~~~~ ~~~
E>~>~

;
and becomes

21
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EMS =~~ 
~
t
~~~l L E

>7 ~~

when covariance analysis is employed. The variance of a treatment mean . -

is changed from c4/ri to 
~~~~ 

[—~— + (
~~~• 

— ~~~ — ~ •
)
~ ] •  The

variance of the adjusted treatment means is developed in Appendix B.

The estimated variance of the difference of two estimated adjusted
means is

~ ~ i. — 

~~~ 
= V — 

~k. 
— B — Z

k
))

= v [~~. - + (~~. - Z~~) v (6 )

— 2  coy — 

~k)’ 
(Zj• 

— Zk ~~

It has been shown in Appendix B that coy (~ , 8) = 0. Likewise,

coy 
~
5
~k ’  

8 ) = 0. V (B) is also developed in Appendix B.

The above expression then reduces to

v ( Cj~ — Ck~
) = s1~7~/n1 

+ S~~Z /rik + ~~~ 
— Zk) ~~~~~ (z i~ — Zj

~~~ 1 - +  l~~~~~(~ —~~~~~ )Z/E J
)‘.Z  fl1 

1. k. zz

where s ~ estimates ~ 2 
• A disadvantage of the above form is that

y~z y.z

V (t~ 
- 

~k ~ is different for every pair of treatments being compared.
Oi u.’ may then l i k e  to have an average value for the variance .

• 22 
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Since the average would be over t treatments taken two at a time ,
the average value for the difference between two adjusted means is

_ _ _ _ _ _ _  

s 2
z 

_ _ _

t (t - 1) 
1k  

(c
i. 

- cx. ) t - 1) 
~~ ~l 

+

i�k i~k

+ 

(
~ i.~~~~

k)2  )]
= t (t - i) 

- i) 

~ 
+ (t - i) 

~

1 2
+ E 

• B (z . — z  )
zz 1k 1. k.

i~k

One may now apply the identity expressing the sum of squares of devia-
tions about the mean in terms of the sum of squares of all differences;
that is,

E (z . — ~~~
)

2 E E — ~ -— B (z . — ) 2  B (z . — z
i 2n 

~. k 
1 k 2n ik 1 k

i~k

This identity is proved in Appendix C. We now have

2~ 
2

t C t —  1) 1k  ~ - 

~k) = Y Z  
z

I ~k

+ (t
i

) E 
(
~~• - )2  (9)
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whe re is the unweighted mean of the treatment means,

- i t —z = - ~~~ E z11=1

The harmonic mean, 
~H’ 

is defined as

t 
.H t

B —

1=1

Using this , Equation (9) reduces to

t (t- i) 
B V (~~~• 

- 

~k)
i~k

1 1
= 2 

L~H + Ct — 1) ~~ 1=1 
(
~~~• 

— 
~~~. . )2j

If the design is balanced, then n~ = r for each treatment . This impUes
that n.H = r. Recall that

= B — = r B —ij  I

So employing these conditions we have

t C t -  1T I
E
k 

V 
i. Ck.

) = 

2s~
2 

[ 
+ ~~~ 

E~~~1i�k

as a final result for the case when n. = r.

Efficiency

Snedecor and Cochran (12) state that a method for determining
whethe r ana lysis of covariance is mo re be nef icial tha n t he anal y s i s

_ _ _  —

_ _ _ _ _ _  ~~- • - --~~~• - -~~~~~~~~~~~ ••~~~~~~~~~~~ -- ••- •- -



without covariance is to calculate the efficiency . The efficiency is
defined to be 2

Eff iciency —

1
~~~~ L1 + (t — 1 )  Ezzj

The denominator is defined by Snedecor and Cochran as being “the effective
error mean square per observation when computing the error variance for
any comparison among the treatment means .” The larger the value of the
ratio, the more effi cient is analysis of covariance.

EXAMPLE OF A COMPLETELY RANDOMIZED DESIGN

A tool manufacturer markets three kit sizes , each consisting of
seven bits. The amount of alloy added for hardness varies in each bit
because of bit design and of kit size : small , medium , and large . The
manufacturer is interested in finding if the life expectancy of the kits
as a whole are the same. Each bit was mounted and subjected to material
of like density for equivalent lengths of time. It was decided that
the quantity of alloy (z) added for hardness would influence the amount
of wear (y) . The test results are presented in Table 3.

In testing for a common slope, one would want to determine if
the model

y.  . = -t . + 8z . . + e-
13 1 13 13

can predict the same results as

y- . = -r. + ~- z .  . + e.
13 1 ~~~ 13 13

There fore the hypothesis will be

= 82 = 83 = 8

U 1 : ~ ~ 
8. for at least one i and j .

(:alculat ions for the residual sum of products will be shown for the
small kit  only .

25

L. _ _ _ _ _ _  - _ _  
_ _ _ _



P’ - - 

_ T ~~~~~~~~:--~

TABLE 3. DATA TABLE FOR EXAMPLE 1

Kit Size

Small Medium Large

Alloy Wear Alloy Wear Alloy Wear
z y z y z y

Milligrams Millimeters Milligrams Millimeters Milligrams Mi1liu~eters

15 33 28 214

16 31 31 22 143 114

19 31 314 23 148 13

22 30 38 19 50 11

214 29 140 20 53 11

25 27 143 17 55 9

32 26 146 18 ~8 9

TOTALS
153 207 260 1143 314 7 83

GRAND
TOTAL i6o 433

CROSS
PRODUCT
¶rOTAL 14 14 14 3 5217 14oi6

SUM OF
SQUARES

3551 6157 9910 2963 171451 1025 

-~~~~ -~ ~~~~~~~~~~~~~ - -—-- - ---~~ ~~ — - -- --- ~~~ --~~~~~~ —-~~~
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= Z (z j j  —

= ~ Z~ j  — (Ez 1~
)2 fn 1

= 3551 — (153)2 /7

= 206.8571143

= E Y~j - (Eijj)2n1

= 6157 — (207)2/7 •

= 35.7114286

E
ZY
(’) = z (zj~ — zj • ) (Y j j  — ~;~•

)

= E z1~y~~ - (E z.~~) ( Z  ~1~ )/n1

= 1414143 - (2o7)(l53)/7

= —81.1428571

Now solving for an estimate 8~, the slope for the small kit ,

(1
E

- 
zy

— 

Ezz

= —81.1428571/206.8571143

= — .39
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w~d I L I U  tht .~ 4 J J  U~ t L J  Urn of ~ lu:t r c~

(E ( i ) ) 2
ADJ . ~~ = ~~ (1) 

—

YY

= 35.71~236 - ( _81. 55~~ )2/ 2o~ .B5~( l 143

3.660222

The residual sum of products are presented in Table 4. The test
statistic shows a value of 0.0421. Comparing this to a tabulated F
value, we have

F(2, 15 , ~ = .10) = 2.70

One would not reject H 0 at this level. Therefore , accept the model that
estimates the three sets of data by a common regression slope but possibly
having a different intercept.

The adjusted and unadjusted means are presented in Table ~~~. Corn-
paring the unadjusted means for the kits , one may conclude that the
average amount of wear between the large and small kit is signif icant , —

but looking at the adjusted means for the same kit sizes , the di f fe rence
in the aiiount of wear has been great ly reduced . The adjusted means are
estimates of what the average kit wear would be if compared on the basis
of each kit having the sante amount of alloy .

The interest now is to determine if the average l i fe  expectancy of
the three kits is the same . The hypothesis is

H 0 :

H : - t .  for at least one i and j .

In calculating the sum of products , onl y the cross p roducts
will  be shown .

28
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‘I’ABLE S. MEAN - VARIANCE TABLE

Table of Unadjusted/Adjusted Means

Small Medium Large
Unadjusted 29.. o mm 20 . i~ mm 11.9 mm
Adjusted 214.0 ~~ 20.8 mm 17.0 rum

Unadjusted Mean =

C . =
~~~ — 8 ( ~ — E  )

1. 1. 1.

ESTIMATED VARIMICES FOR THE ADJUSTED TREATMENT MEAN WITH COMMON 8

Small Medium Large

0.3243 rnni 2 0.1168 mm2 0. 2976 rum 2

Sy~~ [~~~~+ (~ - ~~~
)2 /Z (z~~ - ~~~ )2]
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Szy = 

~~~~ 

(z~~ - 

~~~~~~~~ 
-

= 

~~ 

1i j  “ij  
- — -  (~~. z~~)U ~~~~~

= 13676 - .4~...(760) (433)

= -1994.47619

~~ 
= 

~~ 
(ii. 

- 

~~~~~~~ 
- 

~.) 
-

= —~~ -_ I (z~~
)(y

~~
) - —k-. 

(~ z
~~
)O. y~~)

= (9~~s~) - _

~~~~~ 

(760) (433)

= -1720.19048

The results are tabulated in the analysis of covariance table, Table 6.
The test statistic gives a value 25.848 and the tabulated F value for two
and 17 degrees of freedom (d.f.) for a = .10 is 2.64. The null hypothesis
is rejected, and the manufacturer concludes that the expected life for at
least one kit is different from the rest.

An increase in the precision of the responses can be seen by comparing
the estimated variance without covariance, 6.75, to the estimate of the
variance about regression, 0.7199 (see page 2). The estimated variance asso-
ciated with each adjusted treatment mean is presented in Table 3.

If one wished to ~onsider the difference between two adjustedmeans, such as 
~~ 

and 
~~~, then the difference is estimated by:

(~~~ 
- 

~~~) 
= 38.10 - 31.19 = 6.91,

while an estimate of the average variance would be

31
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y.: 

~~~~~~~~~~~t (t - 1) i k  
~~~ ‘~~ r (t - 1) Ii

i~k L

— 2 (.7199) 1~ + 
2697.80953

— 
- 7 [ (2) (709.428576)

= 0.5968

One may now like to see how efficient covariance analysis was:

E = 

~~~~ 
[1 

+ (t - 1 )  E ]

6. 57
2 .09

= 3.15

Analysis -of covariance with 10 replicates per treatment will give estimates
of treatment difference which are just as precise as 32 replicates per treat-
ment without covariance analysis.
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MULTIVARIAT E LOVA~ 1ANC 1i ANALYSIS MUDITh

INTRODUCTI ON

In this section , the analys is  of covariance k i l l  he extended from
the univariate case to the n iu l t iva r ia te  cas~ . The mul t ivar ia te  case to . -~
be considered is one where there is a single response and more than one
concomitant variable . Comp lete development of the theory w i l l  not be
presented ; only enough will be presented to tie in with what ~~~~~~~

in  Section I I .  An example d i sp lay ing the multiple covariance techni que
in a random iz ed block desi gn with unequal samp le si:cs w i l l  be presented ,
and a test statistic for the hypothesis of no inter-action w i l l  be derived .

The case of many responses and many concomitant variables ~~11 not
be considered. Morrison (8) gives a brief accoun t of tL i s  case. Hazel
(6) presents an analysi s of covariance for mu1t i \ar ia ~e data wi th  u~-:’qual
subclass sizes . The data is presented in a regression type of ana ly si s
of variance table with no indication of adj ustments for the concorni Lant
variables . The Statistical Analysis System (SAS) general linear model
routine will present the data in the same format . The regression routine
is used instead of the analysis of variance routine because of the com-
putational procedures required to deal with unequal sample si:es.

THEORY -

It was shown in Section II that the analysis of covariance model
can be written in matrix form as

= F r-  +

where ~ is a nxl vector of responses , I is an nx p matrix containing the
classification pattern arid values of the covariates ,and fl is a pxl vector
of unknown constants. When dealing with mult ivariate  data , it may he
helpfu l to partition F and 

~~, thereby separating desi gn and covariatc
information :

v {X : Z} t ÷ r

~ + 



- ~~~~~~~~~~~~~~~~~~ 
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Searle’s (11) approach is more compatible with the example to be presented
and, therefore, will be followed.

Normal Equations. In solving the normal equations for the b~stestimates of [ and ~~, a and b will serve as trial estimators for i and ~~,respectively.

1x’x x P Z 1 
~1 1xv

~1LZ ’X z ’zj  b ]  [z ’~j

In the situation with more than one observation under each set of condi-
tions, i.e., the design conditions, X’X will not be of full rank but more
than likely Z ’Z will be of full rank. Let (X’X) be a generalized inverse
of X’X. Using the first equation of the normal equations, a solution for
a in terms of b may be bbtained.

a = (X ’X~~ [X’ y - X’Z b]

= (X’X ) X ’ y - (X’X) - X ’Z b

Now using the second equation of the normal equations in solving for b
after substituting for a:

Z’X [(X’XY X’y - (X’X) X’Z b] + Z’Z b = Z’y

b = { Z’[I  - X (X’X) X’J Z }  Z ’  [I - X (X’X) X’J y

Let H = I - X (X’X) 
- 

X’, then

b = (Z’HZ) Z ’Hy

Even though (X’X) is not unique, it appears in b only in the form
X’ (X’X) X which is unique for any generalized inverse of X’X . Searle
(11) states that H is both symmetric and idempotent. This ensures Z’HZ
and HZ to have the same rank, and based on the properties of X and Z
given in the partitioned equation, will guarantee that HZ has full column
rank and hence Z’HZ is non-singular. Therefore, b is a unique solution
and is the b.l.u.e. of ~. Following standard notation, let ~ represent
b; $ = (Z’HZ~~

’ Z’I-(y.
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Solvi~~ for the Covariate  Coefficients . Working with ~~ in the
following matr ix form

= {Z’ [I - X ’(X ’X) X l zr ‘ [I - X’(X’X) X’] y

may lead to difficult calculations , so a better computational method w i l l
now be sought . Conside ring t h e  following part of the above relat ion ,

I - X ’(X’ X) X ’ ,
it can be seen that the identity matrix can be identified with a total
amount of variation and the term

X’(X’X~~X’

can be identified with some other amount of variat i on . The two parts
together form a difference or residual which is i dempotent . Lool-Jng at ,.
the pre- and post-multipliers of the residual , one is able to see tha t
consists of the inverse sum of squares of the covariate values and
the sun of products of the covariate and response . Let R be the mat r ix
of residuals for the covariate terms , then

= (R ’ R) 1 
R ’ y .

I f  one , so to spc-ah , takes a ste p backward and expresses the relat i onshi p

R’ R ~ R ’ y,

t he ’~ the V va l a t - - - ~ay 5~- Ca: ily I oun~~. The above m at r ix  may now be
e xio e ss e d  in C-qu :t~ ion s as

li-.~~ ~~1~~~~~’~~~~7 ~~ + ...+E
— 1 - - i  — l - ~~2 1

K

I ~- + 1 -  L - +  . . . + F  ~2 22 1 :2:2 2 K K ~z2y

E~~~ ~~~~~~~ f ~1 + - . . + L  Z L. 1 t- -~~~~ L L .
V

where
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Liz are error or residual entries in a covariate analysis table. The

solution vector of the normal equations in a covariate model then becomes

a (X’X) X ’y - (X’X) X ’Z $
=

(z’Hz ) ZH

Ana~ysis of Covariance Table. The format for the analysis of
covariance table is basically the same as presented in Section II.
Modifications will be necessary due to the hypothesis to be tested,
having unequal sample sizes, and additional independent variables.

In covariance analysis, interest usually centers on making
inferences about aspects of the classification part of the model.
For the case under consideration, interest is on whether interaction
is important in the model. Considering a randomized block designwith two blocks , four treatments , arid two covariates, a test will
be made to see if the full model

y = + + (PT).. + B~z~ + 
~k Zk + Ci,

where E(t) = 0 ,
V(C) = cr2,

can be predicted by the model

y = + T~ + + 
~~
Zk 

+ c1.

The hypothesis to be tested is

H0: (PT) 1J 
= 0 for all ij

H 2 : (PT)~~ ~ 0 for at least one ij combination.

The analysis of covariance table is summarized in Table 7. Table 8
presents the equations necessary for obtaining Table 7. The equations
are expressed in terms of the dummy variables w and v. B~w represents
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TABLE 8. EQUATICZ4S FOR TABLE 7

Let W j jk represent any variable where i 1 , ~
. r

j = l , ..., t

k = 1 .•
~~~, ~~

S = E (w..)2 -CF
“a” ijk 13k

CF = n.. ~~~~~~

H =
WW

~
‘ww = ~w + Z q1~~ - CF

B~~ = Z 

~~ 
q~ (obtained from Doolittle table) 

-

:

i
T Z~~.q.ww

D = H  -Pww WW WW

E = S  - Hww ww ww

Let V.. be a variable different from w.. ,ijk ijk

S a E w . . v.. - CCF
WV ijk ijk ijk

CcF • n . . . ~~. . . ~~. .
a = Z w . . v.. - Ccp
WV 13. 13.

B E ~~q1 (obtained from Doolittle table)Wv 1
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the row sum of squares after adjusting for cohmui effects, and T~~represents the column sum of squares after adjusting for row effects.
Either B~~ or T~~ is obtain ed by t he Doolittle method ( 1 3 ) .  labl e 9
presents the required format for employing the Doolittle method
for determining B~~ and Ew-v . Table 12 presents the results of employ-
ing the Doolittle method to an example. B~~ is calculated by

=

where 
~~~

. and q. are obtained from Table 12. T~~ can be obtained from
the foliowing ~elationship:

E w 2 + I ~ ~~~~~~ 
2 4~~~~~

• 1” ww

(10)

and TWV can be obtained from the following relationship:

E w~~~v~ + B~~ = ~ w~ v~ 
+ T~~ , (11)

where BWV 
~~~

EXM4PLE OF A RANDOMIZED BLOCK DESIGN WITH UNEQUAL SJ~MPLE SIZES

A researcher , working for a well-known organization, wanted to
determine some penetration properties of projectiles with various nose
shapes against armor plating. He decided on four nose shapes and two
types of armor plating. After securing t.he four types of projectiles,
it was noticed that the weight of the proj ectiles varied by shape . His
original idea was to eliminate the influence of projectile weight by
having all shapes contain the same mass. Further, he knew that equal
amounts of propellant will not necessarily give the same velocity to
like proj ectiles . Not wanting the influence of the two variables ,
weight (Z1) and velocity (Z2), in his results , the data was reduced
using the analysis of covariarice method.

The data is presented in Table 10. Totals for the raw data are
presented in Table 11. The experimental unit is the projectile mass
and is subjected to four shapes (treatments). The response variable
is the weight of the projectile after penetrating the armor plating .
By using the equations given in Table 8 and the values given in
Table 11, one is then able to construct the analysis of covariance
table (Table 13). The Doolittle values, Bww, are obtained from Table L ,

4 ( j
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TABLE 10. RAV DATA TABl E FOR EXAMPLE 2

ORS ~.k ’t a1 Shape Z 1 Z 2 y

1 A C 113.8 677 113.7
2 A C 113.2 589 113.0
3 A C 114.0 556 114.0
4 A C 114.1 880 113.4
S A C 112.9 331 112.9
6 A C 113.7 319 113.7
7 A C 113.2 236 113.2
8 A C 112.8 458 112.3
9 A C 112.8 405 112.7

10 A C 113.5 589 113.5
11 A C 113. 9 570 113.9
12 A C 114.1 557 114.1
13 A C 114.1 529 114.0
14 A C 113.6 512 113.2
15 A S 117.5 965 116.8
16 A S 116.8 993 116.1
17 A S 118 .5 959 118.0
18 A S 117.4 853 117 .4
19 A S 116.7 786 116.5
20 A S 117.7 704 117.4
21 A S 118.3 626 118 .2
22 A S 118.0 604 117.9
23 A S 117.7 564 117.7
24 A S 117.2 431 117.1
25 A S 118.0 371 117.9
26 A S 118.4 316 118.3
27 A T 111.2 372 110.5
28 A T 1I L O  365 110.9
29 A T 110.7 278 110.7
30 A T 109 .7 4 14 109.7
31 A T 109 .2 499 109.1
32 A T 112.7 565 112 .7
33 A T 114.9 924 114.8
34 A T 112.9 857 112.6
35 A C 111.1 514 111. 1
36 A C 111.1 tO 111.1
37 A C 111.5 368 l1l.~i
38 A C 111.3 356 111.3
39 A C 110.9 306 110.9
40 A C 110.8 845 110.9
41 A C 110.4 903 110.1
42 A C 110.9 905 109.6
43 A C 110.S 872 lO S.6
44 A C 111.9 111.9
45 A C 110.5 700 110.3



TABLE 10. RAW DATA TABLE FOR EXAMPLE 2 (CONTINUED)

OBS Metal Shape Z1 Z2 y

46 A C 110.3 703 110.3
47 A C 109.3 593 109.3
48 A C 107.8 582 107.7
49 S C 113.7 780 82.9
50 S C 114.0 822 83.7
51 S C 114.0 845 85.5
S2 S C 113.5 881 87.0
53 S C 113.8 777 72.5
54 S C 113.3 870 97.2
55 S C 112.2 895 96.1
56 S C 112.3 918 97.9
57 S C 112.3 938 96.0
58 S C 112.2 962 98.1
59 S C 112.3 1016 96.9
60 S C 112.4 1030 99.0
61 S C 112.6 1091 94.0
62 S C 112.1 1104 93.5
63 S S 117.8 871 85.6
64 S S 116.7 925 111.9
65 S S 117.4 926 91.3
66 S S 116.9 957 94.5
67 S S 117.0 980 94.9
68 S S 117.0 1002 93.4
69 S S 117.5 870 82.6
70 S S 117.1 871 84.9
71 S S 117.7 833 83.1
72 S S 118.3 802 78.2
73 S S 117.7 783 73.0
74 S T 113.5 943 92.5
75 S T 113.3 888 78.3
76 5 T 113.0 896 77.1
77 S T 114.2 859 68.7
78 S C 114.4 955 90.4
79 S C 113.8 862 86.9
80 S C 113.9 956 92.3
81 S C 114.1 871 84.6
82 S C 111.3 854 66.1
83 S C 111.2 880 70.9
84 S C 110.9 916 80.0
85 S C 111.0 944 84.9
86 S C 112.3 991 94.4
87 5 C 114.8 825 64.3
88 5 C 110.4 849 92.0
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TABLE 10. RAW DATA TABLE FOR EXAMPLE 2 (CONCLUDED)

OBS Metal Shape Z 1 2 2 Y

89 S C 114.7 926 106.3 . -

90 S C 113.7 934 105.7
91 5 C 112.7 1047 107.7
92 S C 112.3 1127 108.1
93 S C 113.0 1143 104.1
94 S C 114.3 1112 110.0
9S S C 103.8 982 96.3

44

L — _ 
- _ 

_ _ _ _ _ _



TABLE 11. TABLE OF DATA TOTALS

SHAPE
M C S T 0
B A 114 12 8 114 148

_____________________________ TABLE FOR n
T s lb u 14 18 [147
A 

_ _ _ _ _ _ _ _ _ _

L 
28 23 12 32 T~~5

SHAPE
C S T 0

M A 1589.7 11412.2 ~92,.3 15148.3 514142.5
B _________________ ______________________ TABLE FOR Z 1
T S 1580.7 1291.1 14514 2022.6 53 148. 14

A 3170.14 2703.3 .3146.3 3570.9 10790.9
L

SHAPE
C - S T 0

E A 7208 8172 I 142714 8788 1 2814142
________ _______________ ______ ________ 

TABLE FOR Z 2T S 12929 9820 J 3586 171714
A 

20137 17992 7860 25962 t 71951

SHAPE
C S T 0M A 1587.6 11409.3 891 151414.5 ] 5432.14

E 
________ ________ ______ 

_______J ________ TABLE FOR y
T S 1280.3 973.14 316.6 16145 J 

14215.3

A 2867.9 2382.7 1207.6 3189.5 9647.7
L

E z 1 z2 = 8,178,973.4
i j

E z 1 y = 1,095 ,882.6
Ij k

E Z 2 y- = 7,160,083.4
iJk
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an~ T~~ and ~~~ values are obtained by employing equations (10) and (11).
It is much easier to show how B~~ is calculated than to try to explain .
Refer to Table 12 and the ~ and Z2 columns .

B 2 = 
~~~~~~~~~~~ 

q~ ,

= (.2774706236) (320.0904241)

+ (- 5432734~J36) (-7612.005434)

= 4,224.21579

After obtaining the sum of the products, one may iio~: solve for thc-
concomitant coefficients by:

E ~1 + E
Z 1Z 1 Z 122

168.OS08 1~~ + 1O22.73128~2 = - 13.97642

and
4’ A

E ~1 + E  ~2 — E
Z iZ~ Z2 Z 2 Z 2Y

lO22.73l28~~ + 2 , 300 ,006 .53102B2 = 32 , 758.98067

thus obtaining

= - .17031 and 
~~2 

= .01432

The comparison of the test statistic U to a tabulated i~ (2, 85) at the95 percent level indicates that the Null Hypothesis is not rejected. The
interaction term need not be considered in the building of a predictive
model. Table 14 contains the means for any comparisons that one may
want to make.

If one wished to pursue the problem further , a test for treatments
and blocks may be made and corresponding adjusted means may be calculated .

Table 14 contains the unadjusted and adjusted means for the response
variable .
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TABLE 14. TABLE OF MEANS

UNADJu STED Y

C S T 0
A 113.14 ii~.1414i~ 111.375 110.32].14 113.175

S 91.145 88.14909 79.15 91.3889 89.6872

102.1425 103.5957 100.6333 99.6719 101.55147

ADJUSTED Y

C S T 0

A 116.8661 119.2327 1114.2206 111.6679 
— 

115.5007

S 88.9553 87.19714 77.11429 88.3639 87.3121

102.9107 103.9115 ioi.86i14 96.55914 101.55147

-
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SECTION IV

CCVARI ASNCE AN ALYSIS AS A TECHNIQUE FOR ANALYZING
IN~:(~IPLETE DATA

II-.TRODUCTION

In Section I , it was stated that one of the principal uses of
covariance analysis was to analyze data when some responses are missing .
The covariance analysis technique is an alternative method of predicting
missing values to that described by Snedecor and Cochran (12) under
missing data. Both techniques apply to data containing mi ssing response-s
that are to be analyzed by the analysis of variance method. The covari-
ance missing data technique presented here does not app ly to predicting
missing values for analysis of covariarice data , responses or covariates .

N. S. Bartlett introduced the concept of us ing covariance analysis
on missing data. The reason why an alternative method was sought was
because no general algorithm exists for dealing with missing values.
Special formulae exist for each randomization scheme, and adjusting for
the bias becomes tedious.

This section is based on an article by Coons (4) in which the
author presents a general method to the problem of missing data and also
demonstrates the case with which exact tests of signif icance may be
obtained. The tests are exact when the errors are assumed to be inde-
pendent and normally distributed.

PROPERTIES FOR JUSTIFY ING TIlE COMPUTATIONAL PROCEDURE S

The following properties are quoted from Coons ’ article and are
attributed to various individuals. The article indicated that Property 1
is attributed to Fisher, Property 2 is implicitly assumed by several
authors , Property 3 to Bartlett, and Properties 4 , 5 , and 6 to Kempthorne .

1. If an analysis of variance is made v:ith symbols
~I, ~2, •~q in the place of missing observat ions ,
then the best linear unbiased estimates of the- missing
observations are the quantities 

~~~, ~~~ •. , E4~~~ — -~hminimize the error sum of squares. -

2. Given that, with full data (y1, y2, ..., ~~~~~~~~~ 
the

best linear unbiased estimate of some li:’4cur f-inct ion
of the parameters is v ~y + v 2y2 + ... 4 v~y 1-~, then
the best estimate of that function witL rr~issir~ data
is obtained by replacing the missing y ’s ~- ith the
missing value estimates .
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3. Let the data be observed data where obtained
and zero where missing. Introduce a concomi-
tant variable Xm(m = 1 ..~ q) corresponding to
the mth missing observation, let Xm take the
value -v for the mth missing observation and
zero for all others, missing or not. If the
error partial regression coefficients obtained
from an analysis of covariance are denoted by

~ ~2, 
• .• , ~~ then v~1, v~2, “., V~q are

the best linear unbiased estimates of the
missing observations .

4. Estimates of functions of data with missing
observations, and variances and covariaj-ices of
these estimates may be obtained by the routine
application of formulae for adjusted means in
the analysis of covariance; i.e., by regarding
the zero yields supplied in the analysis of
covariance procedure as having variances of
~2 . The above statement applies to functions of
the augmented data; the variance of a missing
observation per se is given by statement 5
following.

5. Denote the error sum of squares of Xj by
~~ and the error sum of products of Xj and
by Ei3. Then the variance of the ~th missing
value estimate is (v2uj~ - 1)a

2, and the covariance
of the ~th and jth missing value estimates is

— 
- v2Uijcl2, when

E 11 F 12 • • . E 1 u 11 U 12 . . • u 1

~~ 

[~~

,

E
q1 Eqq U

q1 Uqq

6. The sum of squares for treatments obtained
by analyzing the data augmented by the missing
value estimate is always greater than or equal
to the exact sum of squares for treatment.

COVARIANCE TECHNI~ JE APPLIED TO O~~ MI SSING OBSERVATION

The covariance technique will be discussed as the following problem
is being worked.
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Due to the world hunger problem, it has become important to try
to recover farm land in countries where herbicides were used during
recent military actions. Neutralizers were added to the soil samples
collected from various regions. Grain crops were then planted in the
treated soils to determine how much of the toxin in herbicides would
be passed on to humans and animals. It was decided to randomize the
experiment in a 4x4 Latin square and take two observations per condi-
tion. The results of treating one herbicide is given in Table 15.

The experimental unit is a pot containing a plant . Appl y ing the
covariance technique, the covariate, z, would take the value zero for
all responses, y,  not missing and -n with the missing response. There
are 32 observations including the missing value, so n 32. Other
authors have suggested that any convenient value may be assigned as the
covariate to the missing response because z and y are unrelated. Using
-n simplifies calculations for any line entry in the analysis of covari-
ance table for the covariate sum of squares is simp ly n x (degrees of
freedom). The missing response takes the value zero, as stated in
property 3, and the non-missing responses retain their values . Table 1~shows how the technique is applied.

With a single degree of freedom, the line entry for each of the
cross product sum of squares is

x 1 - x 2

where X 1 is the total of Y observations for the effect level which does
not contain the missing observation, and X 2 is the total of Y observations
for the effect level which contains the missing observation. For line
entries containing more than one degree of freedom,

Ezy = 
~~ 

(x~ - X i ) .

(See Table 16.) The calculations of Ey2 are as usual and will not be
shown. ~ is estirnated,~by ~ . An estimate of the missing value is given
by Property 3 to be n ~~. It is not necessary to estimate the missing
value since a complete analysis of the data may be performed with the
value remaining unknown. The covariance technique enables one to make
exact tests readily with only minor supplementary computations .

An approximate test of significance may be obtained by computin~
the biased sum of squares which is equivalent to an analysis of Y - E Z .
Property 6 states that the approximate sum of squares is greater than,
or equal to, the exact sum of squares. Therefore, any approximate mean
square which is not significant may be eliminated from consideration and
thereby shorten the calculations. The approximate sum of squares may be
computed as

- 20 ~ ‘y + 0
2 Ez 2

L 
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TABLE 15. DATA TABLE FOR EXAIvII’LE 3

SOIL 
_ _ _ _ _  

PLANTS 
_ _ _ _ _

P1 P2 P3 P4
___pj  

-~~~91 105 52 12
Sl M 100 61 9

BJ~~~~~~~~j
73 2 112 93

S2 65 7 110 91

A]~~~~~~J~~~~~~j
102 89 3 54

S3 111 91 7 59

-
~~ Cj~~~~~~:j~~~~~ PJ

10 52 92 103
S4 8 77 90 108

SOIL - Si - Sand

- S2 - Sand + Herbicide

-S3 - Clay

- S4 - Clay + Herbicide

PLANT - P1 - Wheat NEUTRALIZERS - A

- P 2 - R i c e  - B

- P 3 - Grass - C

- P4 - Barley - D - Nothing

The response is the average amount of herbicide toxin found in
the grains of each plant, measured in count per million.
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TABLE 16. CO~PUTAT1ON.A1 TABLE FOR EXArVIPLE 3

Soils Plants ES1

P1 P2 P3 p4

_ _ _ _ _ _  _ _ _  

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

_ _ _

460 523 527 529 2039
E A =  637 E C =  493E B =  58 E D =  851

2
Each Ez line entry = n X (degrees of freedom)

Total Ez 2 = (32) (31) = 992

Ezy line entry = z (Y1 
- Y )

Soil Ezy = (553 - 430) + (516 - 430) .
~ (540 - 430) = 319

8 = Ezy /E zz = 2030/704 2.88

~issing Value Estimated = n8 = 92
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So for soil ,

Soil Approx SS = 1148.0937 + (2.88)2 (96) - 2 (2.88) (319)

= 106.9161

The approximate mean squares are obtained by dividing the approxi-
mate sum of squares by the appropriate degrees of freedom. All of the
above calculat ions are summarized in the analysis of covariance table
(Table 17) . The adjusted sun of squares is obtained in the usual way .
Exact test of significance may now be made on the variations of interest.
Estimates of treatment means must be adjusted to the value zero of the
covariate variable instead of to the covariate average; i.e.,

A E U Y = 7 -  8 !

where ! is the average of the number of responses making up V. Since
Treatment A contained the missing value ,

~~~~~~~ 

‘
~A = 79.63 - (2.88) (-4) = 91.15.

The variance is given by

V ~A~J 7)  = 02/n + (Y~
2 cT2/E ...A

where a2 is estimated by s
~~~

. Therefore,

V (ADJ 7A~ 
= 32.79 [1/8 + (_4)2/704]

= 4.84.

COVARIANCE TECHNIQUE APPLIED TO MDRE THAN ONE MISSING OBSERVATION

The application of the technique will be discussed as the following
problem is being worked .

A research laboratory received four new growth chambers . Before
putting them into use , it was decided to conduct a trial experiment to
determine the variations within and among each chamber . Since all
chambers were large , it was decided to divide each into three horizontal
positions and two vertical positions to determine if location had any
effect on plant growth. Six pots containing similar seed , soil , and
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nutrients were randomly placed within each chamber. The experiment was
replicated twice for two months at a time. The response, plant height
in centimeters , was to be analyzed using a split unit analysis in strips.

Table 18 contains the raw data , augmented covariates, and the
totals necessary for computations. As before, the number of y observa—
tions, including those missing, is equal to n. The value zero is
assigned to each missing y observation and to each covariate where the
y observation is not missing. For covariate values associated with
missing observat ions , the value of -n is assigned . When more than one
observation is missing, a multiple covariance analysis is needed . There
will be one covariate for each missing value .

The computations for Ez~ and zz~ are the same as before. The one
column ent ry Ez~ will suffice for Ez~ and Ez~. Two situations may occur
in computing Ez 1z 2 :

1. When Z 1 and Z2 occur in the same level , the results are
the same as for Ez~

- Ez 1z2 = n x (degrees of freedom) .

2. When z~ and z~ occur in different levels ,

(i) for no interaction levels,

Ez 1z~ = -nr ,

where r depends upon the hierarchy classification .
With no hierarchy, r = 1.

(ii) for levels in which there is interaction, the main
effects and lower order interactions must be subtracted from

Ez
~
z
~ 

= -nr .

The author was unable to obtain Coons’ results when following his
computational methods, so the usual method for obtaining sum of squares
was employed. Table 19 contains an example of the computations for the
cross products needed in building the analysis of covariance table
(Table 20) . The line entries for z y cross product sun of squares is
obtained as before ,

Ezy = Z (x1 - x~ )
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TABLE 18. TABLE OF TOTALS FOR EXAMPLE 4

REP 1

Chamber 1 Chamber 2 chamber 3 Chamber 4 Total s
Levels V V Z 2 V V Z 2 V V Z Z V V i Z  H Z 21 2 1 2 1 2 1 2 I 2 1 2 1 2 I 2 1 2

H 1 23 21 0 0 20 18 0 0 21 19 0 0 20 25 0 0 167 0 0

19 17 0 0 16 14 0 0 17 15 0 0 21 19 0 0 138 0 0

8 6 0 0  5 3 0 0  6 4 0 0  1 0 8 0 0  50 0 0

Totals 50 44 0 0 41 35 0 0 44 38 
- 0 0 51 52 0 0 355 0 0

PEP 2

Chamber 1 chamber 2 Chamber 3 Chamber 4 Totals

Levels V V Z 2 V V Z 2 V V Z Z V V i Z H Z 21 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 )

H1 24 21 0 0 21 19 0 0 21 17 0 0 25 23 0 0 171 0 0
H2 18 16 0 0 15 14 0 0 16 M -48 0 19 16 0 0 114 -48 0
H, 1 0 7 0 0  8 7 0 0  6 2 0 0  M 13 0 -48 53 0 -48

Totals 52 44 0 0 44 40 0 0 43 19 -48 0 44 52 0 -48 338 -48 -48

REP X CHAMBER

QIM 1 Z1 Z2 aIM 2 Z1 Z2 CHM 3 Z 1 Z2 CHM 4 Z 1 Z2 Totals
_ _ _  -~~~ _ _ _  _ _ _

RET’ l 94 0 0 76 0 0 82 0 0 103 0 0 355 0 0

REP 2 96 0 0 84 0 0 62 -48 0 96 0 -48 338 -48 -48

TOTALS 190 0 0 160 0 0 144 -48 0 199 0 -48 693 -48 -48

FACTOR V Z1 Z2 V Z1 Z2 TOTALS

175 0 0 163 0 0 338 0 0

H2 141 0 0 111 -48 0 252 -48 0

H, 53 0 -48 50 0 0 103 0 -48

TOTALS 369 0 -48 324 -48 0 693 -48 -48

_  
-~~~~~~~~

- - - -
~~~

- - - - - -
~~~~~ 
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TABLE 18. TABLE OF TOTALS FOR EXAMPLE 4 (CONCLUDED)

MAIN A UNIT X CHAMBER X REP

REP MAIN UNIT GIM 1 Z~ 22 0*4 2 Z1 Z2 0-IM 3 Z1 Z2 0*4 4 Z 1 Z2

-iiIi i 44 0 0 38 0 0 ’  40 0 0 45 0 0

1 H2 36 0 0 30 0 0 32 0 0 40 0 0

_______ 

H, 14 0 0 8 0 0 10 0 0 18 0 0

H1 45 0 0 40 0 0 38 0 0 48 0 0

2 H2 34 0 0 29 0 0 16 -48 0 35 0 0

1-13 17 0 0 15 0 0 8 0 0 13 0 -48

190 0 0 160 0 0 144 -48 0 199 0 -48

MAIN B UNIT X CHAMBER X REP

REP MAIN UNIT GIN 1 21 Z2 GIM 2 ZI Z, Qt’4 3 21 Z2 0*4 4 ii Z2

V 1 50 0 0 41 0 0 44 0 0 51 0 0
1 

V2 44 0 0 35 0 0 38 0 0 52 0 0

V 1 52 0 0 44 0 0 43 0 0 44 0 -48
2 

V2 44 0 0 40 0 0
__- 

19 -48 0 52 0 0
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TABLE 19. COMPUTATIONAL TABLE FOR EXAMP LE 4

The Z 1Z2 cross product sum of squares is obtained by using the appropriate
cross product table. Using the main A u-u t X chamber X rep table , the math
A unit analysis is obtained:

Z 2 = [(0) (0) + .. .  + (-48) (
~~) 

+ . . .  + (~~ ) (- --
~~~

)]  - -
~

--
~~ (- 13) (-18)

= -4 8.

The z 1y cross product sum of squares for main B unit is

Ez 1y = 
~~ (x~ - x . )

= (50 - 19) + (44 - 19) + • . .  + (52 - 19) - Reps - Chambers

= 255.

Estimates of the missing values are as follows:

Missing Main A Unit Main B Unit Subunit AB

13.44 21.12 7.2

z2 4.8 12 18.24
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For the y 2 sun of squares , one follows the same procedures as in an
analysis of variance table . Note that, for the split unit in strips with
two main units, an adj ustment is made in calculating the main unit sum of
squares. Looking at the main A unit X chamber X reps table and the main
B unit X chamber X reps table, the entries’ chambers and reps are included
in both main unit calculations. Since accounting for them once, they must
be removed from the interaction unit . In this example , ch amber and reps
sum of squares were subtracted out in the z1z2 column .

Values for ~ are obtained by solving the appropriate set of equationsas explained in Section III. ~--Iissing values are estimated by

= nB E = n x (~~~ 
associated with the

missing observation for
the particular level) .

Obtaining the approximate sun of squares may again help reduce
computations . For multivariate data , the approximate sum of squares
is computed by

[ Y  - z~~] ’ [ Y  - z~ j

Y - Y -  z~~- ~‘z’Y + ~~~z’z ,

arid for this example ,

- ~~ EZ 1Y - 2~ 2 Ez~y + 
~~~ Ez~ + ~~~

The adjusted sun of squares for the error terms is obtained by ,

- 
~ i EZ 1y - 

~~2 
EZ 2y -

where the ~~. and ~z. correspond to the appropriate level. When testing
line entrie~, follo~~the normal covariarice analysis procedure and use theappropriate error term .
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SECTION V

COVARIANCE ANALYSIS FOR NON-PARA~~TRIC DATA

INTRODUCTION

Bross (2) put forth a non-parametric procedure for handling data
by means of covariance analysis . The procedure , the Covariable Adjusted
Sign Test (COVAST), is designed for detecting differences between two
treatments having binary responses with a single covariate. The assump-
tions are :

(a) The covariable and response have a monotone relationship.

(b) The observations are independcnt .

(c) The measurement scale of the covariate is at least ordinal .

In practice , subjects are divided into two subsets such that the indi-
viduals in each set possess covariate values which are representative
of the covariate range. Treatments are applied to subjects in each subset,
and it is expected that the portion of subjects responding to a treatment
is 0.5. Ury (9) recognized that the expected portion in each subset
may not be 0.5 and expanded the work of Bross to include these cases.

Quade (6) develops a procedure called “Rank Analysis of Covariance”
designed for handling treatment differences in responses measured on
at least an ordinal scale and having one or more covariates. The procedure
compares to a completely randomized analysis of covariance. He also dis-
cusses other methods developed along this line . Pun and Sen (5)
develop a theoretical approach to the completely randomized case .

The procedures of Bross and Ury will be presented in this section
along with an example using real data . The other procedures will not
be included in this report .

THE COVAST TEST

Rationale

Suppose one is faced with a situation where the result of an event is
a binQnial response. Let this event be associated with a variable , meas-
ured on an ordinal scale or better , which will have a changing influence
on the response of the event . Consider the following illustration:
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a b
Covariate Scale

Binomial Response -i  -m

Alway s “0” Mixed Always “1”

At point a and below on the covariate measurement scale , the response is
always the same. At point b and above , the response is always the same
hut different from the response at a. For the interva l (a,h), the responses
are mixed. For example, babies of a certain weight (covariate) max’ live or
die (event) when affl icted with a certain disease. Anothe r example may he
combustion or non-combustion (event) at a given temperature (covariate).

One may then be interested in determining if there is a statisti-
cally significant difference between two treatments under the situation
being considered. A treatment may be a drug cure to the disease or an
ignitor for stimulating combustion . To see how the covariate is taken
into account for comparison tests , one needs to assume the following :

1. That one treatment is better than the other.

2. That the chance for an improvement increases either as the
covaniate increases or as it decreases.

The words “better” and “an improvement” may be understood in terms of
ordering the observed values of the covaniate from values less that a
to greater than b where the response at the a end of the scale repre-
sents an unfavor~~le response. Suppose two ignitors, H and M , are being
compared to determine whether M is significantly better than II for
starting fires . If the outcomes are the same for both treatments regard-
less of temperature , no evidence is provided for a clear -cut superiority .
If one treatment started fires at high temperatures and the other did
not start a fire at low temperatures, the results might be attributed
to the initial conditions rather than to the treatments.

However , if one treatment starts fires at low temperatures and
the other treatment does not start fires at high temperatures, then this
would be evidence (but not conclusive) for an advantage to the treatment
which does start fires . One can compare the perf ormance of the two
treatments by making pairwise comparisons . The comparisons would be
made on the basis of the following:

1. One of the ignitors starts a fire , and

2. The fire was started at a lower temperature .

In order to show a definite advantage for M, it must be shown that M’s
ability to start fires is greater than that expected from sampling

_



variation alone. This is accomplished by counting the number of instances
where M starts fires at a lower temperature and H does not start fires at
higher temperatures. Let these situations be designated “non-inversions’s
(NI). The opposite situation would be to count the number of instances
where H started fires at lower temperatures , and M does not start fires
at higher temperatures. Let these situations be designated “inversions”
(I) . NI and I may now be compared , and if the value of NI is found to
be greater than its expectation , then one would have direct evidence
of an advantage for M.

Hypothesis

Let i = 0 if H is used ; j = 0 if no fire

= 1 if M is used; = 1 if fire

and let ~~ be the number of observations in the ~th series having the
Jth response . Let Ikg be the number of inversions where fires started
in the kth series are compared to no-fires in the gth series:

k = O i f H is used; g = O  if H is used

1 if M is used ; = 1 if N is used .

The covariate complicates the hypothesis statement because of the
fact that it determines the ordering which affects the inversions. As
a result of this complication, we must test a compound hypothesis .
First, consider the hypothesis by parts and then as combined

H 0~ : the two treatments are equally effective

H .0 : the covariable is irrelevant

H00  : neither the treatments nor the covariate are relevant
to the event .

The respective alternative hypothesis may be stated as follows :

H : the two treatments are not equally effective

H~ 1 : the covariable is relevant

H 11 : the treatment or the covariate is relevant .

The above compound hypotheses , H0 0 and H 11, would be used for a two-
tailed test . The following compound hypotheses are used for a one-tailed
test .
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H 0 0  : Treatment 1 is equivalent to treatment 2 , and the
covariable is not important .

Treatment 1 is less (greater) than treatmen t 2 , or the
covariable is important or both.

Less (greater) may be interpreted as being better or an improvement. The
way the test statistic is taken will determine if the hypothesis is for
an upper or lower tailed test .

Test Statistic

Under 11 o . and 1100, with the statement of no treatment difference ,
one would expect the portion of events occurring for the kth and gth
series to be the same . Let r be the proportion of events favoring the
kth series and (l-r)  be the proportion of events favoring the gth se~ries.
Therefore, their expected proportions would be

E Cr) E (l-r) 0.5

which implies that we expect I~ o Ioi . The alternative hypothesis, F!11 ,
is supported when ~~ ~ 101, and the alternative hypothesis , F11~ , is supported
when 110 > I~~ or 1~ o < I~~ depending upon the upper or lower one-tailed
test.

Bross states that Mann and Whitney (1947) proved that , given the
observed values N 0 0 ,  N 01 ,  N 10, and N 11 along with H~~ , ~~~ and 1~~ havethe following expected values (E) and variances CV) :

E (I
~~) 

= N 11 N00/2

V (I 1~ ) = N 11 N 0~ (N 11 + N~~ + 1)/ 12

L (1~~ ) = N 10 N 01 / 2

V (I o~ ) = N 10 N 01 (N 10 + N 01 + 1)/ 12

where N ij is the number of observations in the ~~~ series having the J
th

response.

h o  and I o i  involve two distinct sets of data and are therefore condi-
tionally independent provided the original observations were independent.
So,

E (I to  h o t )  = 
~~11 N 0 0  - N 10 N 0 1 ) / 2

V (1 10 - 1~~ ) = [N 11 N 00 (N 11 + N 00  +1)

+ N 10 N 01 (N10 + N 0 1 + l ) }/ 12.

--
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A relationship between COVA~~ and the chi-square test for independence is
suggested because the expected value of ~~ - 10 1  is one-half the n~.mer-
ator of the short cut form of the chi-square test .

Each N±~ is, in reality, a random variable having a binomial
distribution with mean N~.rr and variance Njir (1 - it) where ~ is theprobability of a fire, and the marginal totals Nl. = N 11 + N10, and
N0. = N 00 + N01 are fixed. Thus, the expected value and variance of

under H 00  is

E* (N~~) = ii N1 if a success occurs

= (1-it) N1 if a failure occurs

V~ (N
e

) = E* (!4 - rrN~ 
)2 = N~ ii (1 - it) .

Substituting these into the above expectation:

E* (E (I 10 - 101)] = [E* (N 11) E* (N 0 0 )  
- E* (N 10) E* (N 0 1 ) ) / 2

= [it N 0 . (1-it) N 0. - Cl-it) N 0 . it N0j/2

= 0

12E* [V (1 10 - 101)] = E* (N00) E* (~4 ) 2  + E* (N 11) E* (N 00 ) 2

+ E* (N10) E* (N00) + E* (N
~~~~~ ) 

E* (N~~)a

+ E* (N10) E* (N01)2 + E* (N10) E* (N01)

= (1 - ii) N0. E* (N11) + ioN1. E* (N 00)2

+ N0 E* (N10)2 + (1 - it) N 1. E* (N01)2

+ 2,r (1 - it) N 1. N 0~

Based on this value of 17* [V (I~~ - I
~~)], Bross argues that V (I~~ - I

~~)may be estimated by

(1 10 + I 01) (N + 4)
12
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Hence, the statistic

12 (I to  - I o~ ) 2
COVAST = ____________________

(1 10 + I 0 1 ) ( N ~ + 4)

= 
12 UST

N + 4

has approximately a chi-square distribution with one degree of freedom.
COVAST is then a variation of the Uncorrected Sign Test (UST ) and in
this form becomes a test statistic for a two-tailed test for non-parametric
covariance analysis .

Ury (9) proposes a method of testing a one-sided hypothesis for
Bross ’s COVAST. Ury defines an r valu.. as being “the proportion of com-
parisons potentially favoring the treatment” considered to be an
improvement; i.e.,

r =

where T~, is the total of the entries of column 4 in a table such as
Table 21. After ranking the treatments, a count is made to see how
many times the new treatment ranks below the standard treatment. This
count is made for each subject given the new treatment. The expectations
of h i~ and I o i  under H oo , when r is considered, becomes :

E (I~~) = rN 11 N 00

E (101 ) = (l r) N 10 N 0 1

For a given r, r 0, the following conditional expectations hold:

E* E (110 I r 0 ) = iT (1 — it) r N1 N0

E* E (i~~ I r 0 ) = or Ci — or) (~~~ 
— r 0 ) r~1 N 0

E* E (i + I r ) = ii (i — or) N N10 01  0 1~~ 0~~

E* E (i~~ — 101  I r 0 ) = or (1 — or) (~~-~ — 1) N 1 N 0
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TABLE 21. TABULATI~ ’4 DATA FOR EXANPLE 5

(1) (2) (3) (4) (5) (6) (7) (8)

TEMP IGNITOR RE~ JLTS r

20.2 M N 11

21.4 H H 9 3

22.0 M N 10

22.0 H F 8 3

23.0 H N

25.0 H F 8 2

26.0 M N 7
26.0 M F 7 2 7
26.0 N F 7 2 7
26.8 M N 7
27.2 H F 6 2
28.0 N F 6 2 6

28.8 N N 6
29.0 M N 6
30.4 H F 4 2
32.0 N F S 2 4
32.6 N N S
33.0 M N 5
33.5 M N S
34.0 M F S 2 1
34.0 H N
35.0 M N 4
35.0 H F 0 1
37.0 N F 3 1 0
37.0 H N
37 .0  H F 0 0
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TABLE 21. TABULATION DATA FOP EXAIvIPLII 5 (CONCLUDED)

(1) (2) (3) (4) (5) (6) (7) (8)

TEMP IGNITOR RESULTS r

37.0 H F 0 0

40.0 N F 0 0

47.0 M F 0 0

TOTAL 99 11 35 25 13

N . .  TABLE
13

NO FIRE FIRE

H T  3 8 11 N 0.
M 10 8 18 

- 
N 1.

13 16 29

N 0 N .1 N~~

r = 
Col (~~~~) / = 99 / - 

99
/ N 1 ~~~~. / (u)(18) 198 

— .50
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When r 0 = 0.5, E~ 17 (lao - I~~) = 0 which agrees with Bross . Uiy
suggests using the square root of COVAST for the one-sided test ,

1½
I ~~ ~~10

— I 01 l 
I

c = 

[ ~~ + ~)(i~~ + I~~) j
r 12 1½

= (I~~ — I~~) I I
[ ( N  + +

Decision Rule

As with the two-tailed Sign Test , the COVAST test statistic for the
two-tailed alternative would be compared with the tabulated chi-square
with one degree of freedom. Since most chi-square tables are based on a
two-tailed distribution , COVAST may be compared directly at the appro-
priate o. level .

Two conditions must be considered for a one-tailed test. If the
alternate hypothesis is:

H 11: The new treatment mean is less than the standard treatment
mean or the covariable is important or both ,

then one would expect T5 , the total of column S from Table 21, to be less
than T 6, the total of column 6; i.e., expect (I~~ - I o~) < 0. If it IS
and if C < -z , then reject H where z is from the standard normal

Ct 00
distribution. If T 5 is greater than T 6, then do not rej ect H 00 .

If the alternate hypothesis is:

H 11: The new treatment mean is greater than the standard treat-
ment mean or the covariable is important or both ,

then one would expect T5 > T~; i.e., expect (110 - I 01) > 0. If it is
and if C > then reject H 00 . If T 5 < T 6, do not rej ect H 00 .
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EXAMPLE

An Air Force offi cer developed a new incendiary materia l for a
standard round and claimed that his was better than those presently in
stock. An independent Air Force test group was given the task
of conducting a comparison test. Due to a time limitation, it was
decided to test the new incendiary against one which was readily
available. The test plan called for shooting both incendiary rounds
against fuel cells instrumented to give inside temperature readings
in degrees centigrade. The fuel cells contained a conni~on fuel andthe decision as to a fire or no fire was determined by the proj ect
officer. Questionable situations were resolved by using a time
history plot of the temperature. Ties in the data occurring while
ranking the observations were eliminated by using the time of day
a shot occurred. Table 21 presents the data ordered by temperature.
The ignitors are represented by an H for the standard and an N for the
new material. The results of each shot was a fire (F) or a no fire
(N) . Columns 5 through 8, respectively, represent the number of
times a fire was started by material N at low temperature and material
H started no fire at higher temperatures ; the number of times material
H started a fire at low temperatures and material N started no fire
at higher temperatures; the number of times material M started a fire
at low temperatures arid material N started no fire at hi gher tempera-
tures; and the number of times material H started a fire at low
temperatures and material H started no fire at higher temperatures.

The column total for ~~
. is 1 10, and the column total for is ‘0 1~

In testing the one-sided hypothesis with HI1: H is a better
incendiary than N or that temperature has no affect upon the results
or both , one would use Ury ’s C. First check to see if column 6 >
column 5. It is; therefore, C is calculated and found to be

- r 12 (ii - 35)2 7 
½

— L~
29 + ~~(ii + 35~ j

= 2.1338

Comparing this to the standard normal distribut ion , the observed
significance level, &, is found to be 0.017. This was determined to
be both statistically and practically significant , so H was
rejected at the 98.3 percent confidence level. 00
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APPENDIX A

IDENTITY : DEVIATI(~ OF OBSERVATIONS FROM THE MEAN

The identity for deviation of observations from the mean and

the identity cross product deviation from the means will be developed

in this appendix. They are used in the development of the test

statistic U 2 .

Deviation of observations from the mean :

(y . - ~ ) (~~. - ~ ) + 
~~~~ 

— 5’ . )

lj  .. 1. .. iJ :1-.

Squaring both sides and summing over i and j, one obtains

E (
~ — ~~ )Z E (~~. — ~~ )2 + E (

~~. 
—~~~~ )2

ii ii .. jj 1. .. i j  1~, 1.

+ 2 (~~~ 
— 

~~~~~~~ 
—

Working only with the cross product term, we have

2 E (~~~~~ 
- 5~ 

) (y  - ~ 
) = 2 Z (

~~ 
- ~ )~ z (y - 

~~~

ii . .. ii i. i 1. j  ii i.

= 0 .
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Therefore, the cross product term sans to zero and the identity may

be expressed as

- 
~~ ~~~~ - ~~~~~~)2 + ~ E~ (y 11 - ~~~~~~ )2]

~~T + J ~~
’ ’yy ~~

Cross product deviation of observations from the mean

(z _ j  - ~~~)( i~i 
- [(z.. - + (~~ 

- 
~~

+ 
~~~~~~. 

- 
~~~. .

(z . .  — z~~ ) (~ 1~ — ) + (z .~ — 

~~~ 

) (
~~~~ 

— 
~~ )

+ (~~~. 
- 

~ 
) ( y . .  — S~~.1. . . 13 1.

+ 
~~ . ~~~~~~~~~~

First sum over j then over i.

E (z.  - 
~ 

) (y .  - 
~ ) Z [

~~ 
(z  - 

~~ 
) (~r~ - 

~~ )

iJ ij . . ij .. . ij  i .  lj  1.

+ 
~~~ . 

— ~~ (z .~ —

3

+ (~~. —
~~~~ 

) E (y . . —
~~~~~.

/ 
1.  .. 13 1.

÷ E ( ~ . —
~~~~ 

) (
~~~ . — S  ) ]

j 1. .. 1. . .
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E E ( ~ ..
~~~~ 

) (
~~~ 

—
~~~~ )

ii i. .. 1.
+ E  (z~~ - -

E ( z . - i ) ( y  —~~~ 
)~~~T + E ~~~~ii .. ii .. zy zy
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APPENDIX B

VARIANCE OF THE ADJUSTED TREATME~~ ~‘E4N

The variance of the estimated adjusted treatment mean is developed

in this appendix. It is used in the discussion in Section V , ~‘flecision

Rui c- .

v (~~~) = v - 
~ 

-

= v (~?. ) -  (~~. -~~~~~ )2 V (~~) 2 cov~~~ , ~ (~~. -~~ )]
1. 1. .. 1 .  1.

Consider the above equation term by term:

coy , ~~ 
(~ 

— 
~~ 

)] = (E — ~ ) coy (i’. ,
1. 1. .. 1. . .  1.

But

= ~~~~~ - ~1•
) ( ~~~ - ~~~~~~~~~~ -

Let

K = 
~~~~ 

— E (z~~ — 
~~~~~~~ (Zjj 

—

ii ii

So we have

coy , ~ 
(~ 

— ~ 
)] = K coy [~~. , (y .  -- y~ )]

1. 1. .. 1. ij 1.

= K [coy (~~. , y ) — coy , ~~. 
)]

1. ii 1. 1.

= K [coy (~~~~ E 
~~. ~~~. 

) — V 
~~ 

) ]
fl ij  ii 1 .
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- A _ - 1 1coy 1y1,  8 (z 1 — z ) ]  = K — ~~~~~~~

= ~0

Now con sider the term :

V (~~) = V [S (z . - i )(i - 
~~ . )/E (z - ~~ )2]

i j  xj  i. ii 1. 

~j  jj  i.

= [i/S (z . — ~~. )2]~ [vIE (z — 
~~ . 

)(~r • )}
ii ij  1. i j  ii 1. ii

— v~z (z~~ — 

~~
. ) 

~~~. }]

~ is constant with respect to j ,  and S (z . — 
~ ) = 01. ij i.

therefore viz (z — 
~~ . 

) 
~~~. 1 = 0I.~j j  i j  1. 1.J

This then leaves

V (~~) = [i/s (z~~ - ~~~~~~ )2]2 [~ (z.~ - ~~~~~~)]2 ~~~~~~~~

The term [S (z — ~ )]2 in the numerator will divide out with one ofi j ii 1. 
hthe terms in the denominator if they are corrected to the proper

treatment. Continuing, we have

a 2
V (~~) = ~~•~~/ 5 (z

1~ —

ii

a 2 ISy .z za

77 

--—--- - - - .-~~~~~~~~~--rn~~~~~~ ~~~~~~~~~~~~~
- --~~-- --  - -~~~~~~~~~~~~~



--—- - -  -

-

-

=

----~

The variance of the adjusted treatment means now becomes

V 
~~~~ 

= o), 1n1 + 
~~~~~~ 

- ~ )2 
~~2/E

= [ 
~~~~~~

+ 

~~~ 
- ~~~)2/ E~~] .

where °y.z  ~S estimated by . 
.
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APPENDIX C

IDEt’rrITY: SUM OF SQUARES OF ALL DIFFERENCES

The identity, the sum of squares of all differences which is

identical to 2n times the sum of squares about the mean , will be

developed in this appendix.

S (z — z ) 2 5 5 ( z  — z ) 2
ik i k 1k  i k
i~k

= S S (z~ — 2z . z ÷ z 2 )
1k  1 1 k k

= S S z~ — 2E z. S + S S
1 k  1 

~ 
1

k i k  
k

= ~~n z~ — 2n ~ n ~~+ E n  z
2

1 k k

= 2n (S z~ — n
i i

= 2n S (z 1 —

I
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