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PREFACE

This report consists of three volumes which present the theory and
application of a valuable data reduction tool, the analysis of covariance.
Volume I introduces the analysis of covariance as a general linear model
(GLM) and then expands the model to incorporate the multivariate case,
unequal sample size, and missing observations on the response variable.

Volume I also covers the analysis of covariance for nonparametric data.
This is Volume I.

Volumes II and III were written by the Department of Statistics,
Oklahoma State University, Stillwater, Oklahoma 74074, under Air Force
Contract F08635-76-C-0154 with the Air Force Armament Laboratory,

Armament Development and Test Center, Eglin Air Force Base, Florida 32542.
The contract dealt with the development and programming of the method-
ology for evaluating multiple variable data with missing observations

on dependent and independent variables by the analysis of covariance
method. The methodology alsc covers case for unequal sample size. This
work was begun in January 1976 and completed in December 1976.

This report has been reviewed by the Information Officer (0OI) and
is releasable to the National Technical Information Service (NTIS). At
NTIS it will be availablc to the general public, including foreign nations.

This technical report has been reviewed and is approved for
publication.

FOR THE COMMANDER

J{ R. MURRAY
Chief, Analysis Divis
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SECTION 1

MODEL, PURPOSL:, AND USES

INTRODUCTION

This section introduces covariance analysis by explaining the model
composition, by giving the purpose of the technique, by telling when it
is applicable, and how it may be used. No details are presented, but
general statements of results given in other parts of the report are
presented.

In Section II the theory for covariance analysis in the univariate
case with a single covariate is developed. Uses, such as adjusting
treatment means, increasing the precision in randomized experiments, and
obtaining insight into the nature of treatment effects, are explained.
An example using the analysis of covariance in a completely randomized
design with balanced data is given.

The theory for applying covariance analysis to a non-parametric
situation is presented in Section III. Only one rank method is presented,
but others are indicated. The data used in the example arc real.

MODEL COMPOSITION

The covariance model consists of classification type variables, as
found in an analysis of variance model, and a continuous type variable,
as is usually found in regression models. Letting y;; denote the jth
numbered observation in the ith class, then in a covariance model, the
response yjj would be the result of a combination of features from the
above conditions. For example, in a one-way classification with one
covariate

yij 7 My + P (zij = 2..) ® Eij i (1)

where pj represents the population mean of the ith

Z

class when zij equals

B is a regression coefficient of y on z

h

25 is the covariate associated with the ij'" observation

Z is the overall mean of the covariates and

eij is the residual.




PURPOSE

Covariance analysis is primarily used in situations where one is
interested in a response (dependent variable) which is influenced by one
or more covariates which cannot be or have not been controlled by a
randomization scheme. There may also be cases where the covariates have
been controlled. The covariates usually reflect some characteristic
which is related to, or influences, the response. This influence may
affect the response directly or indirectly but does not necessarily
have to produce a cause and effect situation. For example, in agronomy
one may use the yield of grain per acre as a response and the number of
plants per acre as the covariate. The covariate is also known as the
independent variable or the concomitant variable.

PRINCIPAL USES

Covariance analysis has a variety of uses and its application will
depend upon the investigator's objective.

(1) To adjust treatment means

Suppose the response contains contributions from the
treatment effects, the covariate, and the error. To correct or adjust
for the covariate, a quantity equal to the product of the estimated slope
times the deviation of the mean of the covariate for a given treatment
from the overall average of the covariate is subtracted from the average
response of the treatment; i.e.,

My & %, B0 - )

(2) To increase precision in randomized experiments

Covariance analysis converts the variance of the responses

o;, to the variance about regression, o; g AE 0; . < o2, then covari-
ance analysis is considered to have increased the precision and is an

improvement over the analysis when covariance is not used. As long as
the covariance model is linear, the covariance technique will result in
2

the variance of a treatment mean, V(?i ), being changed from Ez to
n
= < 2
B e L
g~ 2
B, HREg~ K )
1)

for the univariate case.




(3) To remove the bias in observational studies

A researcher, conducting a survey, may be faced with taking
a limited number of observations in a few locations. Also, these observa-
tions may not be randomized. Snedecor and Cochran (12) point out that
these conditions would constitute an observational study. Suppose a
researcher wished to study the relationship of obesity in workers by
occupation and their physical activity. Since obesity may not be found
in every worker, the researcher would have to take his observations
wherever he can find a subject. Because of this, the researcher cannot
predetermine a sampling scheme. Also, the response obesity would probably
be measured as weight, a ratio scale measurc, but the covariable, physical
activity, would be mecasured on an ordinal scale. This may lcad to prob-
lems of adjusting the means and in making inferences. Therefore, if
another characteristic, such as age, is chosen as a substitute for
physical activity, then a more sensitive comparison of obesity in workers
may be made since age is measured on an interval scale.

(4) To provide additional information on the nature of
treatment effects

Bancroft (1) points out that if treatment differences
disappear after adjusting for the concomitant variable, then this may
suggest that the unadjusted treatment differences are simply a reflection
of the treatment effects on the concomitant variable. For this reason,
treatments should not affect the concomitant variable.

(5) To analyze data when some observations are missing

Covariance analysis may be used as an alternative technique
for analyzing data when some responses in an analysis of variance des.gn
are missing. The computations of the covariance technique are more
involved than other missing data methods, but as Cochran (3) and Steel
and Torrie (8) indicate, the technique yields unbiased sum of squares for
estimating all classification effects. The technique also provides for
exact F-tests to be made on the classification effects.




SECTION 11

COVARTANCE ANALYSIS MODEL

INTRODUCT ION

In this scction, the theory will be developed for handling the
covariance analysis model. The model coefficients, slopes, and means
will be investigated, and a test statistic will be developed for testing
hypotheses about these parameters. The assumptions underlying the model
will be presented. Three of the principal uses (adjusting means,
increasing precision, and obtaining information on treatment effects)
will be discussed.

A method for determining if the analysis of covariance procedure
offers advantages over the analysis when covariance is not used will be
discussed.

MODEL

The model, as introduced in Section I, consists of_t classes or
treatments and nj observations within each treatment. Then i = 1, Z,
tand j =1, 2, --+, nj, where we assume nj 2 2, and for at least one
treatment, nj 2 3. The way the model is subscripted indicates that each
treatment may be estimated by a regression line of y on z. Therefore

Equation (1) may be expressed as

Fig S N B e (1)

until it can be shown that one slope is common to all t regression lines.
We will assume the error term eij to have the following properties:

E (eij) = (0 ey el e

= 2 1 = 1! T = 3
and E (Eij Ei'j’) o’ when i = i' and j = j

[}

0 otherwise.

By letting tj = pyj - Bi z,,, one will obtain an easier model with which
to work:

i e Wik | R (2)




Assumptions for Analysis of Covariance

Cochran (3) lists two assumptions necessary to make covariance
analysis valid:

(1) The design effect (blocks, treatments, ctc.) and regres-
sion effect are additive. If for some reason they are not, one may still
improve the precision, but

(a) The meaning of the adjusted treatment means may
become questionable, and

(b) The true difference of treatment means will not
be obtained.

(2) The residuals ejj are independent and normally distributed
with zero means and equal variance. The normality assumption permits
probability statements to be made about the statistics.

(3) Steel and Torrie (8) include one additional assumption.
The covariate variables are measured without error.

Test for a Common Slope

Upon the completion of an experiment having a completely randomized
design, one may display the test data as shown in Table 1.

TABLE 1. A RAW DATA SHEET FOR A COMPLETELY RANDOMIZED DESIGN EXPERIMENT

Treatments
X 2 o e t
Y1 i Y Zn Y1 Ze1
Y12 212 Y22 Z22 Yeo Z¢2
z
Yin, in, Yan, Z2n, ytnt ztnt

It can be seen that by having nj 2 2, the data from the ith treatment may

be fitted to the model described by Equation (2).

We will now derive a test statistic for testing the following hypoth-
esis:

Ho: all treatment slopes are equal (B, = B, = eee = By = R)

H,: at least one slope is different from the rest.
9




Expressing Lquation (2)

y

Z0-
%

.

(ni X 1) :

(ni x 1) .

(n, x 2t)

3
Vi1

)iz

Y.

in.

0 L O Z
~ ~ ~1
b e S s 0
<~ - ~
0 i 0
4 = e
, B
(t x1)
6

(n x1) )

in matrix notation, let

—

S —



n =
(2t x 1)

~1
We now have:

where

and

The normal equations are:

where n,
0
0
ol = B
(2t x 2t) n oz

y:

€
~ (n' x 1)

~

Tn+e

Ti=TI"y
nz
¥l
0
t 0
2
: 1)

i

) ; -
J'1 is an n; x 1 vector of ones and 0 is a vector of zeros, n; in length.




and
n1;1.

NoYo .

oy o) By
"2t x 1) §leY1j
1Z7:Y2s
e
e
]

.
The normal equations for the ith treatment can be expressed as

A

LT T LB e T
Ho g =B ) B T 0y Vi, (3)

St A 2 ~ )
A By = el (4)

Multiplying Equation (3) by Ei and subtracting Equation (4) from it yields

e Gl 7. 2 = = z
(E 258 W 8 Sh i = & & Fys LYy B
J J

Notice that (g zig - ny Ei 2) is the corrected sum of squares for the
covariate in the ith treatment and that 2 e¥ys ni?i Ei is the

corrected cross product sum of the response and covariate in the ith
treatment. So B; can be expressed as

LR g s By Mgy = W
Bi . = %9 (5)
§ REgy ™ 40




and from Equation (3), {i is found to be

. ®¥. - B.Z.
e T

Now calculating the sum of squares associated with the model containing
each treatment mean and slope, one has

R (Tl’ ™ Tt’ 81’ gy Bt) > YJ' LA

~

i

=0 L 2 z Bi z zij ij
' J

For descriptive purposes, R (1, **-, Tes Bys o Bt) will be referred

to in this subsection, as the reduction due to the full model. Subtracting
the sum of squares of the reduction due to the full model from the total
sum of squares in the model, one obtains the residual sum of squares for
the model, or Residual (full):

Residual (full) X'Z = a'P'Z

[Z (Zij " _Z_i.)(y.lj i -);i_)]z

L lyy; - ¥y Z 4

L. e
1) i JZ (235 ~ %

Express the residual sums of squares and cross products as

(i)
Eyy L0

33, .= .=
Ezy = T (2., Z-.)(yij Y; )




|
: \
| ;
|
——

(i) . i 2
Ezz =L (zlJ Z1.)
J
in order to simplify writing. The Residual (full) may now be written as
i (E (i))Z
Residual (full) = & |E (1) . Pl SRR
i (i)
E
27
and this sum of squares has associated with it(n_ - 2t ) degrees of

freedom since the rank of I''I' is 2t.

The model describing the data may be simplified if a slope common
in all treatments may be assumed. Consider now a reduced model incorpor-
ating a common slope and each treatment mean:

yij * Ty + 8 Zij :- €ij . (6)

In matrix notation, let Yi» ¥» €55 Tr X5, and € be defined as before.

I' and n for this model become:

i
Jnx 0 s O 2 T
=3 & = =1
0 I 0 z
r N e 3 i
(n- Xt+1) . . . . :
0 0 oo Jlt 2,
B .
.
15
Te+1x1)
B

In the reduced equation, y = I' n + ¢, one still assumes that E (¢) = 0
and E (e €') = 0?I. The normal equations are

10




PrR=I'y
where e
]11 0 ee e 0
0 n, 0
' = . . L]
Flts1xt+1) : 52
0 0 n,
L nl-z-l - nz-Z-Z. oo nt-ft'

and
e el =l
my:,
1 nz-}-’-z,
1 .
i A »
T+l x1l) .
] : Bere.
F
A
- e
L a

In solving for B, onc may multiply the:

15% row by z,, and subtract from the last row

nd v
27 row by z,, and subtract from the last row

th

t

row by Et and subtract from the last row.

11




——

This leaves all but the last term in the last row with zeros. The
equation associated with the last row then becomes

2 _ = s -
(ifzij iy £, IR Tl T T S a

>

-7 2 = -z e
or § [§ (235 - 2;.°]1 8 ? [? (255 zi_)(yij ¥ M

Using the same notation as before, we get

() S . (1)
BLE Bi= 15 B
i 2z iy
By defining
i

WV WV i
(+)
then g . EZ
Q
E‘zz

The numerator is the pooled (summed) sum of cross products in each treat-
ment, and the denominator is the pooled sum of squares of the zi.'s in
each treatment. Solving for Ty, One obtains

A

TN, R
where g is an estimate of the common slope.

We now need to find the sum of squares accounted for by the reduced
model. It will become a component in the test statistic for a common
slope.

Rty o s X BF =N ' ¥
(E ('))2
= PNy
i 1" 1. 2 (+)
2z
i

|
|
|




The Residual (reduced) becomes:

Residual (reduced) = y'z - ﬂ'r'y
(E (.))2
zy
= 2 2 - e
1Jle 1 e &4 Ezzi'j

(E ('))2
(+) ped

= Eyy e

E (')

Z2

The Residual (reduced) has associated with it n_ - (t + 1) degrees of
freedom (d.f.) since the rank of I''T is (t + 1).

One can derive the likelihood ratio test, but an equivalent test
statistic is given by U,,

0, = Residual (Reduced) - Residual (Full)
$ Residual (Full)

d.f. Residual (full)

X Td.T Residual (reduced) - d.f. Residual (Full)]

and if we assume ¢ ~ N (0, ozln), then U, has an F-distribution under
the null hypothesis. Therefore, U,, becomes

(+) : g 1)y
e 0 S ) L sl W o R
. ; yy :
7y E (') 1 E (l)
2z 2z n. = 2t
U, = SR A
a (1))2
T 1 z
€ w0
22

and U, ~ F(t - 1, n_ - 2t) when H, is true. U, ~ F(t - 1, n_ - 2t, A)

13




when Hy is not true, where )\ = i z ni(pi - Bi Ei N2 .
I -

Test for a Common Mean

After one has tested for a common slope, one may then wish to test
for a common treatment mean, that is

H: = eee = = . T
0 T Th

i I,: At least one treatment mean is different from the other treatment
means.

In testing for a common mean, one must consider the test in terms of
what has already transpired; i.e., the results of the previous "Test for
a Common Slope,'" must be considered. Therefore, two situations should be
considered:

(a) Case 1, where H, was rejected in the test for a common
slope. The model to be considered under the hypothesis for a common
mean is:

el
[}

TR o e
& Bl £

ij ij ij

VETrsus

TR T S T T

The test for a common mean (intercept) will depend upon the covariate ]
location. This situation will not be pursued.

(b) Case 2, where Hy was not rejected in the test for a common

slope. The model to be considered under the hypothesis for a common mean
is:

i

le T & B ZlJ * ElJ (7) 1

versus 1

- Bl Tt | Sell < B (8) !

It may be noted that Equation (8) is the same as the reduced model under
the hypothesis of a common slope. It now becomes the full model for test- !
ing a common intercept and therefore the Residual (full) is

14




()
(5, "))?

()
Eyy ﬁ')_

zz

We now need to develop the Residual (reduced) for Equation (7).
First, defining the components of the matrix model describing the
reduced model, Yir Y Zis E4» and € remain as before. The other

~

components are defined as:

B =
J?l Z
~%
L . 't
r (n. x 2) - ; » and 1 2x1) "
B
n
F1t s
The matrix model is
y=r"T n+e
where E (¢) = 0 and E (ee') = o2I.
The normal equations are
EURERr =iy
where
n n 2 . i
k : Y. .
' = ' =
- P E 515713
n.z, b z2.
g - A
. e

The normal equations may be expressed as

not+n 2, Be=n ¥y,
and

15




So B and 1 are estimated by

H li (21_] ¥ E--)(ylj = y,)
B =

Az
ij

s 2
5 7 2.

andt=y, -8 7.

The sum of squares associated with 1 and é may now be found to be:

|
(e S5 S
—=
\<.

R(T’ B) -

g TS Y
ij

and the residual sum of squares for the reduced model becomes

Residual (reduced) = y'y - n' ' y
*Eyl-1a ¥ =gt
¥t Tn y 8 20 Foo
ij 1 e % s ij 1 'ij

Ly, =7 Y-80% 2, -F Mo -7 30
ij 1 i ij i T “le

Let the following notation stand for the respective sum of squares
and cross products:

Tyt L Gp T 0 7))
=1 @G -7 )

YA 1] s .o

T, 0 ~F.)

Yy 5 i o

16




Now consider the following identity:

(

Yij 4 )7) (yl 3 y) * (Yij 2 yl)

Squaring and summing over all observations, one obtains

Ely..-F P2L B ~¥F Y+ L ez -7 )?
ij ij s ij il e ij ij 1,

This result is shown in Appendix A. Using the notation previously
given, the identity may be expressed as

. (. -7 )2=T_ +E (9
et AR yy © Cyy

Likewise, it can be shown that the following identities hold:

E (2..~2 P2 i (& ~2 Y+ L fz..,-2.)
ij ij o ij i. A i ij e
& ()
& Tzz k Ezz
and that
P G2 I -¥ D83 05 -8 My, ~7.)
ij ij Sty ij i. Sk dis
+§[z (ZIJ -zl.)(le -yl.)]
J
2 (+)
sz + Ezy

Thus,

o k=)
(sz + Ezy }*

: % 1)
Residual (reduced) (Tyy + Eyy )

(+)
(Tyz * Bpp )
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with (n. - 2) degrees of freedom since the rank of the I''T matrix %
is 2. The test statistic for a common mean, say U,, is given by

. ()52 (¢)y2
(T. +E ) (E )
2 (*) ¥ zy zy & (+) & Z
Ty * Eyy D @ +E 0 Eyy ?Xr‘r—
i, =R - E+1 ZZ 22 7 22 .
2 t =1 (E ('))2
' PR e
| ¥ (+)
E
2z

When normality is assumed, U, “F (t - 1, n. - t + 1) when Hy is true.
Up, ~F (t -1, n. - t+ 1, A\) when Hy is not true with

P >

I &= 2
rn; (- B2z )

20, 7 1

N

The results of an analysis of covariance for a completely randorized
design are shown in Table 2, where D,;SS and n. - 2t are the terms used in
computing the numerator of U,, and D,SS and n. - t + 1 are the terms
used in computing the numerator of U,. (Twy + Eyy) represents the sum
of products for the treatment and error terms for the indicated sub- ‘
scripts. Draper and Smith (4) point out that sy?, is an estimate of the

variance about the regression line in each treatment when a common .
slope is assumed. An estimate of the error mean square will be syfz.

Adjustment of Treatment Means e

The formula for adjusting treatment means was presented in Section I
as being ;= ?&
was obtained for all treatments. Steel and Torrie (8) state, '"Adjusted
treatment means are estimates of what the treatment means would be if all

- B (Ei -z ). It is assumed that a common slope

?i 's were at z ." The idea is presented graphically in Figure 1.

Suppose the results of two treatments are plotted. Let one treatment
response be represented by +'s with response and concomitant means given

by (y1., z1.), respectively, and the other treatment represented by o's
having response and concomitant means (y, , z,.), respectively. Let z__

be the overall concomitant variable mean, 21 be the adjusted mean for

18
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Figure 1. Adjustment of Treatment Means by Covariance Analysis

Treatment 1, and Ez, be the adjusted mean for Treatment 2. Then éi is
the estimate of what the treatment would be if all Ei 's were at z .

When considering an estimate of the difference between two
adjusted treatment means, one would have

(21. - 21:.) =¥y, - %) - 3(51. -) -

Increase of Precision for Randomized Experiments

Dot notation will no longer be used for sum of products associated
with the common slope model. It can be shown, by applying the results
in Table 2 that the estimated variance of the responses without covariance
is given by

|

M = o—¢ By

and becomes




when covariance analysis is employed. The variance of a treatment mean

1 3 i
is changed from Oy/n to oyl [—+ (Z; - z..)z/fj (zy5 = 2, )?]. The

variance of the adjusted treatment means is developed in Appendix B.

The estimated variance of the difference of two estimated adjusted
means is

By o .

Vi -4 ) =VIE - -8 (%, -5 )]
-5, )2V (8)
- 2 cov [(;1. = ;'k.)’ (;i. - ;k.) g] .

It has been shown in Appendix B that cov (?-1 . é) = 0. Likewise,
cov (7k , B) =0. V (B is also developed in Appendix B.

The above expression then reduces to

/\

~ ~ - - 2 2 = 2
Vg, - &) = sytafng + mluim v (B - m ) sy /T (2gy - % )
£ 2 1 i = L 2

where Sy?z estimates oyfz. A disadvantage of the above form is that

\' (t’,i - Oy ) is different for every pair of treatments being compared.
One may then like to have an average value for the variance.
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Since the average would be over t treatments taken two at a time,
the average value for the difference between two adjusted means is

2
1 e {2”’~\>~\) Py : ( RS
e~ ) 5T My 5 t (t - 1) A\ ny

i#k i#k

s 2
o ‘E‘T%}%?ﬁfj‘ [(t -1z L (t-1) 2
i

One may now apply the identity expressing the sum of squares of devia-
tions about the mean in terms of the sum of squares of all differences;
that is,

nh~Ms

a % = ol 2
(z, -2)2°2=— L (z,-2)2==— I(z, -2) .
N 7 k 2n jk k
i#k

i

This identity is proved in Appendix C. We now have

1 /\ = 2

A A t
~ I .
Tt -1) izk vig, -5 Py R
;A i=1l n
B

(9)




where z is the unweighted mean of the treatment means,

z =—1—§ z
2 i.
v =

The harmonic mean, N is defined as

8 o Sl
tit=1) izk ¥ (Ci. € Ck.)

i#k

& =

t ]
2 1 13 o - 2
= T z . - .
2 Sy-z ny 2 (t - 15 E (zl. z..) J

If the design is balanced, then n, =r for each treatment. This implies
that Ny = r. Recall that

TZZ ao F (;i. - ;..)2 =r % (;i. - Z..)Z .
id i

So employing these conditions we have

s 25 2
L i y Z2Z
E TRE =8 )= el O .
te-1) Xk . RS r (t -1) E,,
i#k

as a final result for the case when n, =r.

Efficiengz

Snedecor and Cochran (12) state that a method for determining
whether analysis of covariance is more beneficial than the analysis

24




without covariance is to calculate the efficiency. The efficiency is

defined to be

g 2

Yy
Efficiency =
T
2 zZ
._ sy-z [l+ it—l; Ezz]

The denominator is defined by Snedecor and Cochran as being "'the effective
error mean square per observation when computing the error variance for
any comparison among the treatment means.'" The larger the value of the
ratio, the more efficient is analysis of covariance.

EXAMPLE OF A COMPLETELY RANDOMIZED DESIGN

A tool manufacturer markets three kit sizes, each consisting of
seven bits. The amount of alloy added for hardness varies in each bit
because of bit design and of kit size: small, medium, and large. The
manufacturer is interested in finding if the life expectancy of the kits
as a whole are the same. Each bit was mounted and subjected to material
of like density for equivalent lengths of time. It was decided that
the quantity of alloy (z) added for hardness would influence the amount
of wear (y). The test results are presented in Table 3.

In testing for a common slope, one would want to determine if
the model

Yij = T4 * BiZi5 * €45

Therefore the hypothesis will be
Hyg: By = B2 =83 =8
Hy: £, # Sj for at least one i and j.

Calculations for the residual sum of products will be shown for the
small kit only.
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TABLE 3. DATA TABLE FOR EXAMPLE 1

Kit Size
Small Medium Large :
' Alloy Wear Alloy VWear AMloy Wear 1.
z Y Z g 2 y
Milligrams Millimeters Milligrams Millimeters Milligrams Millimeters
15 33 28 2k Lo 16
16 31 31 22 L3 1k
19 31 3k 23 48 13
22 30 38 19 50 i
2k 29 Lo 20 53 11
25 27 43 1 52 9
4
32 26 L6 18 58 9
TOTALS
153 207 260 143 347 83
GRAND
TOTAL T60 L33
CROSS
PRODUCT
TOTAL 4443 5217 Lo16
SUM OF
SQUARES
3551 6157 9910 2963 17451 1025
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(1)

2z

E

< 1

zy

Now solving

= i (zij = Ei.)z

= § z§J - (Zzij)zlni

= 3551 - (153)%/7
= 206.8571L3

- \2
§ (rjy - 7;.)
= ol - Brg)s

= 6157 - (207)%/7

= 35.714286

= § (ziJ - Ei.)(yid 2 ii.)

=La. .y . .=-(2z NEy Jn
J 55733 g 1875 T

= L4k3 - (207)(153)/7
= -81.428571

for an estimate B,;, the slope for the small kit,

g ()
o
T

EZZ

-81.428571/206.857143

= -39
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and for the adjusted sum of squares

. kX2
(1) (EZ‘ )
ADJ 5.6, = E -
Yy - (1)
e
= 35.71k4236 - (—81.&28573)2/206.85'“!;3

The residual sum of products are presented in Table 4. The test
statistic shows a value of 0.0421. Comparing this to a tabulated F
value, we have

B2, 156, o= J0) =270 .

One would not reject Ho at this level. Therefore, accept the model that
estimates the three sets of data by a common regression slope but possibly
having a different intercept.

The adjusted and unadjusted means are presented in Table 5. Com-
paring the unadjusted means for the kits, one may conclude that the
average amount of wear between the large and small kit is significant,
but looking at the adjusted means for the same kit sizes, the difference
in the amount of wear has been greatly reduced. The adjusted means are
estimates of what the average kit wear would be if compared on the basis
of each kit having the same amount of alloy.

The interest now is to determine if the average life expectancy of
the three kits is the same. The hypothesis is

Hyp: T1=T2=T3=T

H: 7 # T for at least one i and j.

In calculating the sum of products, only the cross products
will be shown.
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TABLE 5. MEAN - VARIANCE TABLE

Table of Unadjusted/Adjusted Means

Small Medium Large
Unadjusted 9 ¢ 20.% =m 138 e
Adjusted 24.0 mm 20.8 mm 17.0 mm

Unadjusted Mean

i}
e

E =y, -B(z, -z )

i. 1. : ate

~

ESTIMATED VARIANCES FOR THE ADJUSTED TREATMENT MEAN WITH COMMON B

Small Medium Large

0.3243 mm? 0.1168 mm? 0.2976 mm?
47 o 2 1 = - 2 - 2
NG e a P Gy —k PR, <8 F)
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zy

= 13676 - 7%—{760) (433)

= -1994.47619 .
sz =iz -z )y ¥ )
= D)) - (T oz ) y)
i b AR Bl Y R

Lt 1
= —— (97652) - 57 (760)(433)

= -1720.19048 .

The results are tabulated in the analysis of covariance table, Table 6.
The test statistic gives a value 25.848 and the tabulated F value for two
and 17 degrees of freedom (d.f.) for o = .10 is 2.64. The null hypothesis
is rejected, and the manufacturer concludes that the expected life for at
least one kit is different from the rest.

An increase in the precision of the responses can be seen by comparing
the estimated variance without covariance, 6.75, to the estimate of the
variance about regression, 0.7199 (see page 2). The estimated variance asso-
ciated with each adjusted treatment mean is presented in Table 3.

If one wished to consider the difference between two adjusted
means, such as ¢, and g3, then the difference is estimated by:

(i - 2s) = 38.10 - 31.19 = 6.91,

while an estimate of the average variance would be
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25 ?

2V (B - Zs) = e

22

- 2 £.7199) i@ 2697.80953
: 7 (2)(709.428576)

0.5968

One may now like to see how efficient covariance analysis was:

g8 ! o
B P e

z

L[}
(92}
=
v

Analysis ‘of covariance with 10 replicates per treatment will give estimates

of treatment difference which are just as precise as 32 replicates per treat-
ment without covariance analysis.




SECTION II1

MULTIVARIATE COVARIANCE ANALYSIS MODEL

INTRODUCTION

In this section, the analysis of covariance will be extended from
the univariate case to the multivariate case. The multivariate case to
be considered is one where therc is a single response and more than one
concomitant variable. Complete development of the theory will not be
presented; only enough will be presented to tie in with what was presented
in Section II. An example displaying the multiple covariance technique
in a randomized block design with unequal sample sizes will be presented,
and a test statistic for the hypothesis of no interaction will be derived.

The case of many responses and many concomitant variables will not
be considered. Morrison (8) gives a brief account of this case. Hazel
(6) presents an analysis of covariance for multivariate data with unequal
subclass sizes. The data is presented in a regression type of analysis
of variance table with no indication of adjustments for the concomicant
variables. The Statistical Analysis System (SAS) general linear model
routine will present the data in the same format. The regression routine
is used instead of the analysis of variance routine because of the com-
putational procedures required to deal with unequal sample sizes.

THEORY

It was shown in Section IT that the analysis of covariance model
can be written in matrix form as

where y is a nxl vector of responses, ' is an nxp matrix containing the
classification pattern and values of the covariates,and N is a pxl vecter
of unknown constants. When dealing with multivariate data, it may be
helpful to partition T and n, thereby separating design and covariate
information: e

¥ [X ¢ Z] T +




Searle's (11) approach is more compatible with the example to be presented
and, therefore, will be followed.

Normal Equations. In solving the normal equations for the best .
estimates of t and g, a and b will serve as trial estimators for 1 and g,
respectively,

PG X'Z

Z'X ZYZ

T
(o]
~

In the situation with more than one observation under each set of condi-
tions, i.e., the design conditions, X'X will not be of full rank but more
than likely Z'Z will be of full rank. Let (X'X) be a generalized inverse
of X'X. Using the first equation of the normal equations, a solution for
a in terms of b may be obtained.

[V
]

(X')7 X'y - X'z b]

[}

(X'X)" X'y - (X'X) - X'Z b

Now using the second equation of the normal equations in solving for b
after substituting for a: s

2% [0 X'y - 3% %92 b} +2'Z2b = 2y

b= {2'(f - X X" X"172}° 2' [ -%X (X% X1y

~

Let H
b

~

I-X(X'X) X', then
(Z'HzZ)™ Z'Hy

Even though (X'X) is not unique, it appears in b only in the form

X' (X'X) X which is unique for any generalized inverse of X'X. Searle
(11) states that H is both symmetric and idempotent. This ensures Z'HZ
and HZ to have the same rank, and based on the properties of X and Z
given in the partitioned equation, will guarantee that HZ has full column
rank and hence Z'HZ is non-singular. Therefore, b is a unique solution

and is the b.l.u.e. of 8. Following standard notation, let R represent
b; 8= (2'Hz)"' Z'Hy.

T® >
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Solving for the Covariate Coefficients. Working with g in the
following matrix form

é = {z" JI - X"QUX) K] 21 12 01 - XMETK) X') v

may lead to difficult calculations, so a better computational method will
now be sought. Considering the following part of the above relation,

I-=-Xr0E X)X,
it can be seen that the identity matrix can be identified with a total
amount of variation and the term

Xty Xt

can be identified with some other amount of variation. The two parts
together form a difference or residual which is idempotent. Looking at.
the pre- and post-multipliers of the residual, one is able to see that
consists of the inverse sum of squares of the covariate values and

the sum of products of the covariate and response. Let R be the matrix
of residuals for the covariate terms, then

Q2
K

=

B o R)” R y

[f one, so to speak, takes a step backward and expresses the relationship
as

R'RE=R"y,

then the ¢, values may be easily found. The above matrix may now be

expressed in equations as

e & L) s TR G ANCE USSR S = B
[...1._1 El Z]LQ 82 Zl"—‘ BK 1Y

5 + E i -: + eee + L__' R = I
FL.?Z] P ZyZ, i u?zK BK Ezzy
E, ., B;+1 B+ s+ +E, . £ =E

Z Zl ; ZVZ? . ny"y K ZK)’ ’

where
36




EZ 7 are error or residual entries in a covariate analysis table. The
1“3

o
solution vector of the normal equations in a covariate model then becomes

w

X' X'y - (X'X)7 X'z

2T >

(z'HZ) " ZHy

Analysis of Covariance Table. The format for the analysis of
covariance table 1s basically the same as presented in Section II.
Modifications will be necessary due to the hypothesis to be tested,
having unequal sample sizes, and additional independent variables.

In covariance analysis, interest usually centers on making
inferences about aspects of the classification part of the model.
For the case under consideration, interest is on whether interaction
is important in the model. Considering a randomized block design
with two blocks, four treatments, and two covariates, a test will
be made to see if the full model

Yy =op 1yt (em)y5 ¢ Bz ¢ By *oeg,

where E(g) = 0,
V(e) = o2,

can be predicted by the model
YRRt Tt Byt Byt ey
The hypothesis to be tested is
Ho: (pT)ij =0 for all ij
H;: (pr)ij # 0 for at least one ij combination.

The analysis of covariance table is summarized in Table 7. Table 8
presents the equations necessary for obtaining Table 7. The equations
are expressed in terms of the dummy variables w and v. Byy represents
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TABLE 8. EQUATIONS FOR TABLE 7

I

] : e i

Let wi.jk represent any variable where i =1, "°°, r 1!‘
|

{

j=1’ ..o,t

k=1, » Iy
S . (w.n)* - CF
WW ijk ijk ‘
CF = n...W.2.
H, = I [W;.]? - CF ‘
e |

1 2
P W . 1FerauE -CF
jn. . .J. ill

¢; 95 (obtained from Doolittle table)

wwe S~ P

m
[}

Let V. 3k be a variable different from wijk’

S = I w,

% Wiae = GBF §
LAAE T ijk "ijk ~

CCF = Nn... Weur V...

&% W, V.. =~ CCF i
HWV ;:j ij. '1j.

P =3w v. +I¢:0q
wv 3 ¥ "« j 1
-z ;93 (obtained from Doolittle table)
i
=5 ¢. q.
r ¢ 9

P 4

" B

s”’s‘: S o
0wl

ISP




the row sum of squares after adjusting for colum effects, and Tww
represents the column sum of squares after adjusting for row effects.
Lither By, or Ty, is obtained by the Doolittle method (13). ‘lable 9
presents the required format for employing the Doolittle method

for determining Byy and Byy. Table 12 presents the results of employ -
ing the Doolittle method to an example. By, is calculated by

wa E ; ¢iqi
a1

where ¢. and q. are obtained from Table 12. Tww can be obtained from
the foliowing }elationship:

Iw .2+ =l w 2
§ = B Wive * T
g M (10)

and Tyy can be obtained from the following relationship:
;@ MVt Rt W vt Ty (1)

where BWV =.§' ;a5
ii

EXAMPLE QOF A RANDOMIZED BLOCK DESIGN WITH UNEQUAL SAMPLE SIZES

A researcher, working for a well-known organization, wanted to
determine some penetration properties of projectiles with various nose
shapes against armor plating. He decided on four nose shapes and two
types of armor plating. After securing the four types of projectiles,
it was noticed that the weight of the projectiles varied by shape. His
original idea was to eliminate the influence of projectile weight by
having all shapes contain the same mass. Further, he knew that equal
amounts of propellant will not necessarily give the same velocity to
like projectiles. Not wanting the influence of the two variables,
weight (Z,) and velocity (Z,), in his results, the data was reduced
using the analysis of covariance method.

The data is presented in Table 10. Totals for the raw data are
presented in Table 11. The experimental unit is the projectile mass
and is subjected to four shapes (treatments). The response variable
is the weight of the projectile after penetrating the armor plating.
By using the equations given in Table 8 and the values given in
Table 11, one is then able to construct the analysis of covariance
table (Table 13). The Doolittle values, By, are obtained from Table 1:
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TABLE 10.

RAW DATA TABLE FOR EXAMPLE 2

OBS Metal Shape 4
g 1 A C 113.8
; 2 A C 113.2
r 3 A C 114.0
' 4 A ¢ 114.1
| 5 A C 112.9
{ 6 A C 113.7
| 7 A C 113.2
8 A G 112.8
9 A c 112.8
10 A C 113.5
11 A C 113.9
12 A € 114.1
r 13 A C 114.1
14 A C 113.6
15 A S 117.5
16 A S 116.8
17 A S 118.5
18 A S 117.4
19 A S 116.7
20 A S 117.7
21 A S 118.3
22 A S 118.0
23 A S 117.7
24 A S 117.2
25 A S 118.0
26 A S 118.4
27 A T 111.2
28 A T 111.0
29 A T 110.7
30 A T 109.7
31 A T 109.2
32 A T 112.7
33 A 0 114.9
34 A T 112.9
35 A C 111.1
36 A C 111.1
37 A < LE1:5
38 A C 111.3
39 A C 110.9
40 A C 110.8
41 A c 110.4
42 A C 110.9
43 A C 110.5
44 A C 111.9
: 45 A C 110.5
42

.

677
589
556
880
331
319
236
458
405
589
570
557
529
Si:2
965
993
959
853
786
704
626
604
564
431
371
316
372
365
278
414
499
565
924
857
514
110
368
356
306
845
903
905
872
731
700

113.
113.
114.
113,
152,
s
115
112,
112,
140 e
113,
114.
114.
113.
116.
116
118.
L7
116
117,
118,
I3 718
117.
117,
LTL7.,
118,
110.
1118
110.
109.
109,
112.
114.
112,
S0
TiL.
201
111.
110,
110.
110.
109,
108.
131
110.
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TABLE 10.

Metal

VO NNNNNOLNLNNNOLNNnONOLNnnNnNNnnNnNnOuNnHOnnnununn > >

Shape

oo OHA-Aa-0n0n0nunnnnnhnnnoononnonoonononnonononnn

110.3
109.3
107.8
113.7
114.0
114.0
113.5
113.8
113.3
1122
112.3
112.3
112.2
112.3
112.4
112.6
112.1
117.8
116.7
117.4
116.9
117.0
117.0
117.5
117.1
117.7
118.3
7S
113.5
113.3
113.0
114.2
114.4
113.8
113.9
114.1
111.3
111.2
110.9
111.0
112.3
114.8
110.4

43

703
593
582
780
822
845
881
177
870
895

938
962
1016
1030
1091
1104
871
925
926
957
980
1002
870
871
833
802
783
943
888
896
859
955
862
956
871
854
880
916
944
991
825
849

RAW DATA TABLE FOR EXAMPLE 2 (CONTINUED)
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TABLE 10.

Metal

nnnunmoninn

Shape

OO0 N,

2

114.
10
132,
112,
1135,
134,
103.

44

1

COWNO W~

Z,

926
934
1047
1127
1143
1137
982

b

106.
105.
107.
108.
104.
120,

96.

RAW DATA TABLE FOR EXAMPLE 2 (CONCLUDED)
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(< - T O < B < Hr 3= X [ B = T <= T <

B> 1A X

TABLE 11. TABLE OF DATA TOTALS
SHAPE
C S T 0
A 1k 12 8 | 1k lue
TABLE FOR n
S 1% 11 L |18 [HT
1
28 23 112 |3¥ 195
SHAPE
¢ S T 0
A 1589.7 1412.2 | 892.3 | 1548.3 | s5khk2.5
TABLE FOR Z,
S 1580.7 | 1291.1 Lsl 2022.6 | 53L8.L
3170.5 | 2703.3 L346.3 [3570.9 [10790.9
SHAPE
¢ S T 0
A 7208 8172 L27h 8788 28L4L2
TABLE FOR Z,
S 12929 9820 3586 |1717TL 43509
20137 17992 7860 | 25962 71951
SHAPE
> S T 0
A 1587.6 | 1409.3 | 891 154k.5 | s432.L4
TABLE FOR y
S 1280.3 973.4 | 316.6 [ 1645 4215.3
2867.9 2382.7 |1207.6 | 3189.5 | 96LT.T
Lz, 2z, =8,178,973.4
ijk
£z, y =1,095,882.6
iJk
L2,y =7,160,083.4
ijk
45
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anc Tww and Tyy values are obtained by employing equations (10) and (11).

It is much easier to show how Byy is calculated than to try to explain.
Refer to Table 12 and the Z, and Z, columns.

b R L T

(.2774706236) (320.0904241)

+ (-.5432734036) (-7612.005434)
4,224.21579

[}

After obtaining the sum of the products, one may now solve for the
concomitant coefficients by:
E By * E
1

p:
2,2 212, 21y

168.050818, + 1022.731288, = -13.97642
and

~ ~

= E
EZIZZ Br* Elzzz B2 22y

1022.73128¢, + 2,300,006.53102R, = 32,758.98067

thus obtaining

»~

B, = -.17031 and g, = .01432

The comparison of the test statistic U to a tabulated F (2, 85) at the
95 percent level indicates that the Null Hypothesis is not rejected. The
interaction term need not be considered in the building of a predictive

model. Table 14 contains the means for any comparisons that one may
want to make.

If one wished to pursue the problem further, 2 test for treatments
and blocks may be made and corresponding adjusted means may be calculated.

Table 14 contains the unadjusted and adjusted means for the response
variable.




TSR T
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TABLE 14. TABLE OF MEANS
UNADJUSTED ¥
c S T 0
A 113.k 117.L417 | 111.375 110.321k 113.175
S 91.45 88.4909 79.15 91.3889 89.6872
102.425 | 103.5957 | 100.6333 | 99.6719 101.55L47
ADJUSTED Y
c S . 0
A 116.8661 | 119.2327 11L4.2206 | 111.6679 115.5007
s  88.9553 | 87.197h4 T7.1429 | 88.3639 87.3121
102.9107 | 103.9115 101.861kL 98.559L 101.5547




SECTION IV

COVARIANCE ANALYSIS AS A TECHNIQUE FOR ANALYZING
INCOMPLETE DATA

INTRODUCTION

In Section I, it was stated that one of the principal uses of
covariance analysis was to analyze data when some responses are missing.
The covariance analysis technique is an alternative method of predicting
missing values to that described by Snedecor and Cochran (12) under
missing data. Both techniques apply to data containing missing responses
that are to be analyzed by the analysis of variance method. The covari-
ance missing data technique presented here does not apply to predicting
missing values for analysis of covariance data, responses or covariates.

M. S. Bartlett introduced the concept of using covariance analysis
on missing data. The reason why an alternative method was sought was
because no general algorithm exists for dealing with missing values.
Special formulae exist for each randomization scheme, and adjusting for
the bias becomes tedious.

This section is based on an article by Coons (4) in which the
author presents a general method to the problem of missing data and also
demonstrates the case with which exact tests of significance may be
obtained. The tests are exact when the errors are assumed to be inde-
pendent and normally distributed.

PROPERTIES FOR JUSTIFYING THE COMPUTATIONAL PROCEDURES
The following properties are quoted from Coons' article and are

attributed to various individuals. The article indicated that Property 1
is attributed to Fisher, Property 2 is implicitly assumed by several

authors, Property 3 to Bartlett, and Properties 4, 5, and 6 to Kempthorne.

1. If an analysis of variance is made with symbols
B1, Bz, ***fq in the place of missing observations,
then the best linear unbiased estimates of the missing
observations are the quantities £,, g,, «--, fq which
minimize the error sum of squares.

2. Given that, with full data (y,, Y2, ***, yn), the
best linear unbiased estimate of some linear function
of the parameters is v,y, + vay, + +*+ + vpyp, then
the best estimate of that function with missing data
is obtained by replacing the missing y's with the
missing value estimates.




3. Let the data be observed data where obtained
and zero where missing. Introduce a concomi-
tant variable Xp(m = 1 .-+ q) corresponding to
the mth missing observation; let Xy take the
value -v for the mth missing observation and
zero for all others, missing or not. If the
error partial regression coefficients obtained
from an analysis of covariance are denoted by
By, B2, +++, Bq, then vB,, VB,, «+«, vy are
the best linear unbiased estimates of the
missing observations.

4. Estimates of functions of data with missing
observations, and variances and covariances of
these estimates may be obtained by the routine
application of formulae for adjusted means in
the analysis of covariance; i.e., by regarding
the zero yields supplied in the analysis of
covariance procedure as having variances of

o?. The above statement applies to functions of
the augmented data; the variance of a missing
observation per se is given by statement 5
following.

5. Denote the error sum of squares of Xj by

Ejj and the error sum of products of Xj and X;

by Eij. Then the variance of the ith missing
value estimate is (v?ujj - 1)o?, and the covariance
of the ith and jth missing value estimates is
v?ujjo?, when

rEu Eyg ¢ ¢ Exq ﬁlu Uga *lisi e qu r 1
Ea, Uz, 0
. 3 O
E E
a1 aal |Ya Yaa| L o
- - ol

6. The sum of squares for treatments obtained
by analyzing the data augmented by the missing
value estimate is always greater than or equal
to the exact sum of squares for treatment.

COVARIANCE TECHNIQUE APPLIED TO ONE MISSING OBSERVATION

The covariance technique will be discussed as the following problem

is being worked.

ol




Due to the world hunger problem, it has become important to try
to recover farm land in countries where herbicides were used during
recent military actions. Neutralizers were added to the soil samples
collected from various regions. Grain crops were then planted in the
treated soils to determine how much of the toxin in herbicides would
be passed on to humans and animals. It was decided to randomize the
experiment in a 4x4 Latin square and take two observations per condi-
tion. The results of treating one herbicide is given in Table 15.

e

The experimental unit is a pot containing a plant. Applying the
covariance technique, the covariate, z, would take the value zero for
all responses, y, not missing and -n with the missing response. There
are 32 observations including the missing value, so n = 32. Other
authors have suggested that any convenient value may be assigned as the
covariate to the missing response because z and y are unrelated. Using
-n simplifies calculations for any line entry in the analysis of covari-
ance table for the covariate sum of squares is simply n x (degrees of
freedom). The missing response takes the value zero, as stated in
property 3, and the non-missing responses retain their values. Table 16
shows how the technique is applied.

With a single degree of freedom, the line entry for each of the
cross product sum of squares is

X]"Xz

where X; is the total of Y observations for the effect level which does
not contain the missing observation, and X, is the total of Y observations
for the effect level which contains the missing observation. For line
entries containing more than one degree of freedom,

zy E (xil Xiz).
(See Table 16.) The calculations of Iy? are as usual and will not be
shown. P is estimated by B. An estimate of the missing value is given
! by Property 3 to be n 8. It is not necessary to estimate the missing
value since a complete analysis of the data may be performed with the
value remaining unknown. The covariance technique enables one to make
exact tests readily with only minor supplementary computations.

An approximate test of significance may be obtained by computing
the biased sum of squares which is equivalent to an analysis of Y - £Z.
Property 6 states that the approximate sum of squares is greater than,

or equal to, the exact sum of squares. Therefore, any approximate mean
L square which is not significant may be eliminated from consideration and
thereby shorten the calculations. The approximate sum of squares may be
computed as

Ty* - 28 tzy » B 2%,

5%




TABLE 15. DATA TABLE FOR EXAMPLE 3

SOIL PLANTS

P1 P2 P3 P4
_Jﬂ ___QJ _£J ‘_Jﬂ

91 105 52 12

S1 M 100 61 9
C B D A

73 2 112 93

S2 65 7 110 91
D A B C

102 89 3 54

S3 111 91 7 59
B C A D

10 52 92 103

S4 8 77 90 108

SOIL - S1 - Sand
- S2 - Sand + Herbicide
- 83 - Clay
- S84 - Clay + Herbicide

PLANT - P1 - Wheat NEUTRALIZERS - A
- P2 - Rice - B
- P3 - Grass =~ C
- P4 - Barley - D - Nothing

The response is the average amount of herbicide toxin found in
the grains of each plant, measured in count per million.

53




i
TABLE 16. COMPUTATIONAL TABLE FOR EXAMPLE 3 ;
1
1
Soils Plants zSi j
P1 P2 P3 P4

y z y z ¥-F 2 y = ]
Al D c| B| |
/ 91 | o z 105 |0 52 | 0 12 | o 1

s1 0 |-32 100 |0 61 | 0 9 |0 | 430
| c] o) | o] | A }

73 0 2 L 112 | 0 93 |0

S2 65 0 7 0 110 0 91 |0 553 i
_Qj _AJ i.l _(J |
102 0 89 |0 300 54 |0 |
S3 111 0 91 {0 7 %8 59 | 0 | 516 |
| 8] | ¢ | Al |
10 0 s2 |o 92 | 0 103 | 0 1

8 0 77 |0 9 | 0 108 | 0 | s40
P, 460 523 527 529 2039 !
TA = 637 1 ‘
$C = 493 ;
EB = 96 ID = 851 |

2
Each 7z 1line entry = n X (degrees of freedom)

Total 1z? = (32) (31) = 992

Izy line entry = Z (Yi - Y?)
i 3

Soil rzy = (553 - 430) + (516 - 430) + (540 - 430) = 319

B = Ezy/Ezz = 2030/704 = 2.88

Missing Value Estimated = ng = 92




So for soil,

Soil Approx SS = 1148.0937 + (2.88)2% (96) - 2 (2.88) (319)

106.9161

n

The approximate mean squares are obtained by dividing the approxi-
mate sum of squares by the appropriate degrees of freedom. All of the
above calculations are summarized in the analysis of covariance table
(Table 17). The adjusted sum of squares is obtained in the usual way.
Exact test of significance may now be made on the variations of interest.
Estimates of treatment means must be adjusted to the value zero of the
covariate variable instead of to the covariate average; i.e.,

AY=Y-87Z

where 7 is the average of the number of responses making up Y. Since
Treatment A contained the missing value,

ADJ YA = 79.65 - (2.88) (-4) = 91.15.

The variance is given by
V (AN Y,) = o*/n + (D) 20*/E,

where o? is estimated by S;-x' Therefore,

V (ADJ YA)

32.79 [1/8 + (-4)2/704]

4.84.

COVARIANCE TECHNIQUE APPLIED TO MORE THAN ONE MISSING OBSERVATION

The application of the technique will be discussed as the following
problem is being worked.

A research laboratory received four new growth chambers. Before
putting them into use, it was decided to conduct a trial experiment to
determine the variations within and among each chamber. Since all
chambers were large, it was decided to divide each into three horizontal
positions and two vertical positions to determine if location had any
effect on plant growth. Six pots containing similar seed, soil, and
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nutrients were randomly placed within each chamber. The experiment was
replicated twice for two months at a time. The response, plant height

in centimeters, was to be analyzed using a split unit analysis in strips.

Table 18 contains the raw data, augmented covariates, and the
totals necessary for computations. As before, the number of y observa-
tions, including those missing, is equal to n. The value zero is
assigned to each missing y observation and to each covariate where the
y observation is not missing. For covariate values associated with
missing observations, the value of -n is assigned. When more than one
observation is missing, a multiple covariance analysis is needed. There
will be one covariate for each missing value.

The computations for Iz} and 1z} are the same as before. The one
colum entry ZZ; will suffice for 1z} and Iz}. Two situations may occur
in computing $z,z,:

1. When Z, and Z, occur in the same level, the results are
the same as for Zz;

Iz,z2, = n x (degrees of freedom).

2. When z5 and zj occur in different levels,

(i) for no interaction levels,

) = -nr,

Zi s
1]

where r depends upon the hierarchy classification.
With no hierarchy, r = 1.

(ii) for levels in which there is interaction, the main
effects and lower order interactions must be subtracted from

Zzi Zj = =n¥r.

The author was unable to obtain Coons' results when following his
computational methods, so the usual method for obtaining sum of squares
was employed. Table 19 contains an example of the computations for the
cross products needed in building the analysis of covariance table
(Table 20). The line entries for z y cross product sum of squares is
obtained as before,

).

Lzy = ? (xil - X,

57




TABLE 18. TABLE OF TOTALS FOR EXAMPLE 4
REP 1
Chamber 1 Chamber 2 Chamber 3 Chamber 4 Totals
Levels Vl V2 Zl 22 Vl Vz Z1 Z V1 V2 Z1 Z2 Vl V2 Zl Zz H Zl Z2
H, 23|21 0| O 2000 18 | © 21 {19{ 0 204251 0.f 0 167 0 0
Ha 19(17¢( of @ 161141 0 2 1153 0] 0 211191 0) O 138 0 0
Ha 81 61 01 O 50 31 0 614 0} 0 10} 81 0} 0 50 0 0
Totals 50|44)] 0] O 411 35¢ O 44 1381 0} 0 511521 af @ 355 0 0
REP 2
Chamber 1 Chamber 2 Chamber 3 Chamber 4 Totals
Levels Vl Vz Zl Z2 Vl Vz Zx 74 V1 Vz Zl Z2 V‘ V2 Z1 Zz H Zl Z2
Hy 24121f 0} O 21119 ) © 211172 0| 0 25423 | 0 0| 171 0 0
H 18116 0] 0 15/14 ) 0 16 |[M [-48 | © 19116 | 0 0| 114 |-48 0
Hs 10 771 0] 0 8l 7] © 61 2| 0§ 0 M [13]| 0] -48]| 53 0 |-48
Totals 52)144) 0] O 44140 | O 43 119148 0 44152} 0| -48) 338 |-48 |-48
REP X CHAMBER
aM1 z, z, |aM2 g, M3 2z, 2z, |aM4 1z, 1, Totals
B
REP 1 94 0 0 76 0 82 0 0 103 Q g 1355 0 0
REP 2 96 0 0 84 0 62 -48 0 96 0 -48 |338 -48 -48
TOTALS 190 0 0 160 0 144 -48 0 199 0 -48 693 -48 -48
FACTOR s Z, Zs % 7, Zz TOTALS
k)
H, 175 0 0 163 0 0 338 0 0
H, 141 0 0 111  -48 0 252 © -48 0
H‘ 53 0 -48 S0 0 0 103 0 -48
TQTALS 369 0 -48 324  -48 0 693 -48  -48
58

4




MAIN A UNIT X CHAMBER X REP

TABLE 18.

TABLE OF TOTALS FOR EXAMPLE 4 (CONCIUDED)

REP

MAINUNIT | @M1 2z, 2, |GM2 2, 2, |GM3 2z, 2z, |aM4 2z, 1,
Hy = 4 0 0 3 0 0 0 0 o0 5 0 0
1 Ha % 0 0 0 0 0 7 0 o 0. e B
Hs 4 0 o0 g 0 @ 0 0 o0 18 0 o
Hy s 06 0 0 0 0 8 0 0 B .8 6
2 Ha TR B 0 o 16 -48 0 B 0 0
Hy 17 0 o e & 8- i3 9 a8
19 o0 0 | 160 o0 o0 | 144 -48 0 | 199 o -48

MAIN B UNIT X CHAMBER X REP
REP |MAINUNIT | GM1 2, 2. |[GM2 21 2. |GM3 2, 2. |GM4 1z, 1z
3]

vy 6 0 0 P “ 9 0 e e
1 Va 4 0o 0 3 0 o 8 0 0 2 o0 ¢
v, 2 0 o 4 0 o0 &t 4 0 -48

¢ V2 4 0 0 0 0 0 19 -48 0 52 0 0

59




TABLE 19. COMPUTATIONAL TABLE FOR EXAMPLE 4

The Z,Z; cross product sum of squares is obtained by using the appropriate
cross product table. Using the main A unit X chamber X rep table, the main
A unit analysis is obtained:

121 22 = 3 L()(0) + =os 4 (48)(0) + +++ + (0)(-48)] - oo (-48) (-48)

f = -48.
The z,y cross product sum of squares for main B unit is

Z =05 e = X,
£z1y s ( i, 12)

(50 - 19) + (44 - 19) + «++ + (52 - 19) - Reps - Chambers
=, 255,

Estimates of the missing values are as follows:

1
Missing Main A Unit Main B Unit Subunit AB
Z, 13.44 21.12 7.2
Z, 4.8 12 18.24
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For the y? sum of squares, one follows the same procedures as in an
analysis of variance table. Note that, for the split unit in strips with
two main units, an adjustment is made in calculating the main unit sum of
squares. Looking at the main A unit X chamber X reps table and the main

B unit X chamber X reps table, the entries' chambers and reps are included
in both main unit calculations. Since accounting for them once, they must
be removed from the interaction unit. In this example, chamber and reps
sum of squares were subtracted out in the z,z, colum.

Values for g are obtained by solving the appropriate set of equations
as explained in Section IIT. Missing values are estimated by

~

Yp =~ M8 = n x (B associated with the
missing observation for
the particular level).

Obtaining the approximate sum of squares may again help reduce
Computations. For multivariate data, the approximate sum of squares
is computed by

and for this example,
e 231 E2,y - 2B, Lzpy + B} 12} + g% zz3 .

The adjusted sum of squares for the error terms is obtained by,
Iy? - By Izyy - B2 Izyy
where the . and Iz. correspond to the appropriate level. When testing

line entrie%, follo® the normal covariance analysis procedure and use the
appropriate error term.
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SECTION V
COVARIANCE ANALYSIS FOR NON-PARAMETRIC DATA

INTRODUCT ION

Bross (2) put forth a non-parametric procedure for handling data
by means of covariance analysis. The procedure, the Covariable Adjusted
Sign Test (COVAST), is designed for detecting differences between two
treatments having binary responses with a single covariate. The assump-
tions are:

(a) The covariable and response have a monotone relationship.
(b) The observations are independint.
(c) The measurement scale of the covariate is at least ordinal.

In practice, subjects are divided into two subsets such that the indi-
viduals in each set possess covariate values which are representative

of the covariate range. Treatments are applied to subjects in each subset,
and it is expected that the portion of subjects responding to a treatment
is 0.5. Ury (9) recognized that the expected portion in each subset

may not be 0.5 and expanded the work of Bross to include these cases.

Quade (6) develops a procedure called 'Rank Analysis of Covariance"
designed for handling treatment differences in responses measured on
at least an ordinal scale and having one or more covariates. The procedure
compares to a completely randomized analysis of covariance. He also dis-
cusses other methods developed along this line. Puri and Sen (5)
develop a theoretical approach to the completely randomized case.

The procedures of Bross and Ury will be presented in this section
along with an example using real data. The other procedures will not
be included in this report.

THE COVAST TEST

Rationale

Suppose one is faced with a situation where the result of an event is
a binomial response. Let this event be associated with a variable, meas-
ured on an ordinal scale or better, which will have a changing influence
on the response of the event. Consider the following illustration:
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Covariate Scale

Binomial Response — I

1

Always "'0" Mixed Always '"'1"

At point a and below on the covariate measurement scale, the response is
always the same. At point b and above, the response is always the same

but different from the response at a. For the interval (a,b), the responses
are mixed. For example, babies of a certain weight (covariate) may live or
die (event) when afflicted with a certain disease. Another example may be
combustion or non-combustion (event) at a given temperature (covariate).

One may then be interested in determining if there is a statisti-
cally significant difference between two treatments under the situation
being considered. A treatment may be a drug cure to the disease or an
ignitor for stimulating combustion. To see how the covariate is taken
into account for comparison tests, one needs to assume the following:

1. That one treatment is better than the other.

2. That the chance for an improvement increases either as the
covariate increases or as it decreases.

The words 'better'" and "an improvement' may be understood in terms of
ordering the observed values of the covariate from values less that a

to greater than b where the response at the a end of the scale repre-
sents an unfavorable response. Suppose two ignitors, H and M, are being
compared to determine whether M is significantly better than H for
starting fires. If the outcomes are the same for both treatments regard-
less of temperature, no evidence is provided for a clear-cut superiority.
If one treatment started fires at high temperatures and the other did
not start a fire at low temperatures, the results might be attributed

to the initial conditions rather than to the treatments.

However, if one treatment starts fires at low temperatures and
the other treatment does not start fires at high temperatures, then this
would be evidence (but not conclusive) for an advantage to the treatment
which does start fires. One can compare the performance of the two
treatments by making pairwise comparisons. The comparisons would be
made on the basis of the following:

1. One of the ignitors starts a fire, and
2. The fire was started at a lower temperature.

In order to show a definite advantage for M, it must be shown that M's
ability to start fires is greater than that expected from sampling
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variation alone. This is accomplished by counting the number of instances
where M starts fires at a lower temperature and H does not start fires at
higher temperatures. Let these situations be designated 'non-inversions"
(NI). The opposite situation would be to count the number of instances
where H started fires at lower temperatures, and M does not start fires

at higher temperatures. Let these situations be designated ''inversions'

i (I). NI and I may now be compared, and if the value of NI is found to

4 be greater than its expectation, then one would have direct evidence

of an advantage for M.

E Hypothesis

Let i = 0 if H is used; j = 0 if no fire

=1 if M is used; =1 if fire

and let Nj;j be the number of observations in the ith series having the
jth response. Let Ixg be the number of inversions where fires started
in the kN series are compared to no-fires in the gth series:

AR

k=0 if H is used; g = 0 if H is used

‘ 1 if M is used; =1 if M is used.

The covariate complicates the hypothesis statement because of the !
fact that it determines the ordering which affects the inversions. As
a result of this complication, we must test a compound hypothesis. |
First, consider the hypothesis by parts and then as combined !

Ho, : the two treatments are equally effective
H,o : the covariable is irrelevant

" Hgp : neither the treatments nor the covariate are relevant
to the event.

The respective alternative hypothesis may be stated as follows:
Hl : the two treatments are not equally effective |
ﬁ H,, : the covariable is relevant

H,, : the treatment or the covariate is relevant.

The above compound hypotheses, Hgo and H,;, would be used for a two- ,
tailed test. The following compound hypotheses are used for a one-tailed i
test. 1
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Hoo : Treatment 1 is equivalent to treatment 2, and the
covariable is not important.

Hy, : Treatment 1 is less (greater) than treatment 2, or the
covariable is important or both.

Less (greater) may be interpreted as being better or an improvement. The
. way the test statistic is taken will determine if the hypothesis is for
| an upper or lower tailed test.

Test Statistic

Under Hy. and Hgo, with the statement of no treatment difference,

3 one would expect the portion of events occurring for the kth and gth
series to be the same. Let r be the proportion of events favoring the

1 kth series and (1-r) be the proportion of events favoring the gth series.
Therefore, their expected proportions would be

it

E(r) =E (1-t) = 0.5

which implies that we expect I, = I;,. The alternative hypothesis, H,,,

is supported when I,o # Io;, and the alternative hypothesis, H},, is supported
when I,4 > Iy; or I, < Iq; depending upon the upper or lower one-tailed

test.

Bross states that Mann and Whitney (1947) proved that, given the
observed values Ngg, Noy, Nyo, and Ny, along with Heo, I,,, and I, have
the following expected values (E) and variances (V):

E (I,0) = Ny Noo/2
V (I,6) = Nyg Nog (Ny; + Ngo + 1)/12
E (I91) = Nyo Noi/2

V (Ig3) = Nyo Noy (Njg + No;y + 1)/12

h h }

where Njj is the number of observations in the it series having the jt

response’ |
I10 and Io: involve two distinct sets of data and are therefore condi- !
égonally independent provided the original observations were independent. ‘1
’ ,
E (I,0 - Io1) = (N1y Noo - Nyo Noa)/2 '!

V (I1o = Iga) = [N1y Noo (Nyj1 * Noo +1)
+ Nyo Nou (Nyo + Noy + 1)]/12.
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A relationship between COVAST and the chi-square test for independence is
suggested because the expected value of I,y - Io, is one-half the numer-
ator of the short cut form of the chi-square test.

Each Nj; is, in reality, a random variable having a binomial
distribution”with mean Nj m and variance Nj 7 (1 - ) where = is the
probability of a fire, and the marginal totals Ny, = N,;; + N,,, and

No. = Ngo + Ng, are fixed. Thus, the expected value and variance of
Nij under Hoo is

B* (Nij) =N if a success occurs
= (1-m) Ni. if a failure occurs
v (Nij) = E* (Nij - nNi')2 =N, w - x).
Substituting these into the above expectation:
E* [E (I,0 - Io1)] = [E* (N11) E* (Noo) - E* (Nyo) E* (Noy)]/2
= [r Ny (1-m) No. - (1-m) Nyi. 7 No.)/2
=0
r 12E* [V (I,0 - Io1)] = E* (Noo) E* (N;y)2 + E* (Ny;) E* (Noo)?
+ E* (N;;) E* (Noo) + E* (Noy) E* (Nyo)?
+ E* (N;9) E* (Noy)% + E* (Nyo) E* (Noy)

(1 - m) No. E* (N1;)%+ mN,. E* (Noo)?

+ ™Mo, E* (N;o)2 + (1 - m N, E* (No;)?
+ 2" (1 i ") Nl- NO.

Based on this value of E* [V (I, - I,,)], Bross argues that V (I,, - I,,)
may be estimated by

(Tio+ Io) )N, + 4)
12

|
!
|
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Hence, the statistic
12 (I,0 - Io1)?

(Ino + TN, + 4)

COVAST

- 12 USE
N + 4

has approximately a chi-square distribution with one degree of freedom.
COVAST is then a variation of the Uncorrected Sign Test (UST) and in

this form becomes a test statistic for a two-tailed test for non-parametric

covariance analysis.

Ury (9) proposes a method of testing a one-sided hypothesis for
Bross's COVAST. Ury defines an r valuz as being ''the proportion of com-
parisons potentially favoring the treatment' considered to be an
improvement; i.e.,

Ty

S T i

where T, is the total of the entries of colum 4 in a table such as
Table 21. After ranking the treatments, a count is made to see how
many times the new treatment ranks below the standard treatment. This

count is made for each subject given the new treatment. The expectations
of Iyo and Ioy under Hoo, when r is considered, becomes:

E (I,0) = 1Ny, Ngo

E (Ip,) = (A-1) Ny Ng,

For a given r, r,, the following conditional expectations hold:

BPE (L, | 2)=% {1 -n) r, & %

E*E (I, [z)=7(-m (0 - NS

| r,)

01 0

]

E* E (Ilo + I T (=) N1 N

0.

*
E* E (Ilo - I

i

o1 | T) =7 (l-m) (2r ~1) W, N
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TABLE 21.

TABULATION DATA FOR EXAMPLE 5

(1)
TEMP

(2)
IGNITOR

(3)
RESULTS

4)

Tr

=z

(5)
M
H

(6)

H
M

(7

M
M

(8

o> oo

20.2

21.4
22.0
22.0
23.0
25.0
26.0
26.0
26.0
26.8
7.2
28.0
28.8
29.0
30.4
32.0
32.6
33.0
33.5
34.0
34.0
35.0
35.0
37.0
37.0
37.0

m=zm =

fa ]

o]

I Em 2ET XX ==

WM 2 o 2 Z 2 Z2Z2"HmZ ZmmZ MM Zm2Z2mZ TN =

11

10

(o)) NN NN

o O

[T B 7 S 7 S 72 B %o
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TABLE 21. TABULATION DATA FOR EXAMPLE 5 (CONCLUDED)

1) (2) (3) (4) (5) (6) (7) (8)
TEMP  IGNITOR  RESULTS r % % S % g
37.0 H F 0 0
40.0 M F
47.0 M F
TOTAL 99 11 35 25 13
.. TABLE
ij
NO FIRE FIRE
H 3 11 No,
: M 10 18 N:,
13 16 29
N-O N-l .6
! Col (k) / 99 / 99
N, Ny (11)(28) ~ 18 Eay
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When 1o = 0.5, E* E (1,0 - Io,;) = O which agrees with Bross. Ury
suggests using the square root of COVAST for the one-sided test,

12 (Ilo e, on)z A

'(N,, * BT, + 15, )

12 %
(N, + W)(1y, + I,)

= (I - Ip,)

Decision Rule

As with the two-tailed Sign Test,'the COVAST test statistic for the
two-tailed alternative would be compared with the tabulated chi-square
with one degree of freedom. Since most chi-square tables are based on a
two-tailed distribution, COVAST may be compared directly at the appro-
priate a level.

Two conditions must be considered for a one-tailed test. If the
alternate hypothesis is:

H,,: The new treatment mean is less than the standard treatment
mean or the covariable is important or both,

then one would expect Ts, the total of colum 5 from Table 21, to be less
than Te, the total of colum 6; i.e., expect (I, - Io;) < 0. If it is

and if C < -z, then reject Hoo where 2 is from the standard normal
distribution. If T is greater than Ty, then do not reject Hy,.

If the alternate hypothesis is:

Hy,,: The new treatment mean is greater than the standard treat-
ment mean or the covariable is important or both,

then one would expect Ts > Tg; i.e., expect (I;o - Io;) > 0. If it is
and if C > Z, then reject Hqq. If Ts < Tg, do not reject Hqq.
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4 EXAMPLE

An Air Force officer developed a new incendiary material for a
standard round and claimed that his was better than those presently in
stock. An independent Air Force test group was given the task
of conducting a comparison test. Due to a time limitation, it was
decided to test the new incendiary against one which was readily
available. The test plan called for shooting both incendiary rounds
against fuel cells instrumented to give inside temperature readings
in degrees centigrade. The fuel cells contained a common fuel and
the decision as to a fire or no fire was determined by the project
officer. Questionable situations were resolved by using a time
history plot of the temperature. Ties in the data occurring while
ranking the observations were eliminated by using the time of day
a shot occurred. Table 21 presents the data ordered by temperature.
The ignitors are represented by an H for the standard and an M for the
new material. The results of each shot was a fire (F) or a no fire
(N). Colums 5 through 8, respectively, represent the number of
times a fire was started by material M at low temperature and material 1
H started no fire at higher temperatures; the number of times material
H started a fire at low temperatures and material M started no fire
at higher temperatures; the number of times material M started a fire
at low temperatures and material M started no fire at higher tempera-
tures; and the mumber of times material H started a fire at low
temperatures and material H started no fire at higher temperatures.

The colum total for %-is I,0, and the colum total for %~is Iog-

In testing the one-sided hypothesis with Hii: H is a better
incendiary than M or that temperature has no affect upon the results
or both, one would use Ury's C. First check to see if colum 6 >
colum 5. It is; therefore, C is calculated and found to be

v o 12 (31 - 35)2 :
‘n : (29 + 1)(11 + 35)

l

1,

2.1338

I

Comparing this to the standard normal distribution, the observed
significance level, &, is found to be 0.017. This was determined to
be both statlstlcally and practically significant, so H was
rejected at the 98.3 percent confidence level. i
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APPENDIX A

IDENTITY: DEVIATION OF OBSERVATIONS FROM THE MEAN

The identity for deviation of observations from the mean and
the identity cross product deviation from the means will be developed
in this appendix. They are used in the development of the test
statistic U,.

Deviation of observations from the mean:

Squaring both sides and summing over i and j, one obtains

Ely,,-F V2@, -% V+ily -F )
ij lj e iJ 1. o iJ J.J 1.

+2L(y, -y My;q -v3)
1] i. .5 i e

Working only with the cross product term, we have

21 (5, -¥ My, -7, )

2Ely -3y NEly =% 1}
7 R e Wi "

i T

]
o

.
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Therefore, the cross product term sums to zero and the identity may

be expressed as

n

™

=
<

_5: )2+E[z (yij"ii )2]
ij e i . ¢l i . .

J

(1]
=
+
i

_ Cross product deviation of observations from the mean

oy <% My =3 V=M, -2 deE, -3 VI, -7, )
+(F, -7 )]
= 15 zZ; )(y13 - ii.) + (zij -2, M7, -F )
a * 42 - F )(yij =¥, 1
r + (Ei. ~ & g, -7 )
* First sum over j then over i.
L (255 - 5_.)(yij R A i [§ (zij - Ei.)(yiJ 3

ij
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APPENDIX B

VARIANCE OF THE ADJUSTED TREATMENT MEAN

The variance of the estimated adjusted treatment mean is developed

in this appendix. It is used in the discussion in Section V,
Rule."
v =iy, -6l -z H
1. 1. 1. .
=v(F, )-(, -2z )2v(B)-2cov[y ,B(2 -2 )]
1. 1. .. 1. 1. .o

Consider the above equation term by term:

cov iy ,B(z. -2 )l=1(2 -2 )cov(y ,B)
T 3 h Sl s i
But
A- -7 -7 X = 2
B = fz(zij Zi.)(yij ji.)/gg(zij zi.)
Let
K= (Ei = -z.' ) z (zij e 21.)/2 (le = Ei.)z s
v i3 ij
So we have
cov EY,., B (zi. ot )] = K cov [yi_, (yij - yi.)]

L
n

¥ [cov (

=

K [cov (¥, » ¥,
1. 1

i) i

-

) - cov (§ s Vg )]
J 1ie s

Y, . yiJ) -V (yi.)]

"Decision




Now consider the term:

v B =v e o R e - LR
= [1/iztJ (zid -z, )%)? [V{iZJ (zij - 'z'i.)(yij)}
. v{izj =Rl b
yi. is constant with respect to j, and & (zi - Ei‘) =0 ;

J

therefore ViZ (z, - Z ) ¥, }= @ .
.J iJ 1. Lo

This then leaves

A g 5
v (B) = [lez (z,, - 2 )*1° Eﬂ (25 -2; )% 0 2, .

The term [I (z
13 3

the terms in the denominator if they are corrected to the proper i
treatment. Continuing, we have

o 2
' (g) o y.z/z (Zi -

2, )
i.
i ;

2
iy c,y.z / Ezz T
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The variance of the adjusted treatment means now becomes

2 = 2 77 e 2 2
v (Ci.) 0y.z/ni B (Zi. z..) Oy.z/Ezz
=02, [+ @ -7 )%,
y.z ' ng i, o 77

2

2 . -
where °y.z is estimated by Sy.z




APPENDIX C
IDENTITY: SUM OF SQUARES OF ALL DIFFERENCES

The identity, the sum of squares of all differences which is
identical to 2n times the sum of squares about the mean, will be

developed in this appendix.

T (2 -2)2=23(z -2)2
ik 1 k ik k
i#k
= 2 _ 2
§ i (z1 Ezi z, + zk)
=3Zal-28z £ L 22
T e S T S Tl

=Znz?-2nznz+3%n 22
4 i k

i k
= 2n (E 3% -« n 2°)
; 1

=2n I (zi - E)*
i
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