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ABSTRACT

Equations of the form u~ - E~~(u) 0 arise in mathematical models of many

physical situations. The uniqueness of solutions of the associated initial-value

N .  . . . .problem in R is considered in this paper. It is shown that bounded weak

solutions (i.e., solutions in the sense of distributions) which further satisfy

an integrabi].ity condition are unique . ACCESSfCI N t~
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SIGNIFICANCE AND EXPLANATION

In this paper it is shown that the solutions of initial-value problems for

a class of quasilinear parabolic equations of broad interest in applications are

uniquely identified by rather mild conditions. It is desirable to know very weak

conditions which imply uniqueness of solutions of Droblems of this sort for a

variety of reasons. One such reason is that if an approximation process is given

to approximate the solution, one need only check that these weak conditions are

satisfied by limits of the approximations in order to establish convergence of

the process to the correct solution.

I

The responsibility for the wording and views expressed in this descriptive suimnary
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UWIQUENESS OF SOLUTIONS OF THE INITIAL-VALUE PROBLEM
It FOR

Haim Brezis and Michael G. Crandall

Introduction:

This paper is concerned with the uniqueness of solutions of the initial value problem

Ci) u~ — A p (u )  — 0, 0 < t < T, x € RN

(1)
(ii) u (0,x) = u

0
(x) , x € RN

where

(2) : P ÷ P is nondecreasing , continuous and p (0) = 0

Equations of this sort arise in many applications . These include heat flow in materials with

a tes~erature dependent conductivity , flow in a porous medium, the Stefan problem, biological

models, etc.

The main result is formulated below. We have set Q (0,T) x RN and the expression

“in D’ (Q) ” means in the sense of distributions on Q.

Theorem 1. Let (2) hold and u, u satisfy

(3) u,~~~€L (Q )

(4) u
~ 

— ~ p(u) = — ~~~~ in D’ (Q)

1(5) u — u € L  (0)

and

(6) essential limit f 
N lu

~
t,x) — ~i(t,x)fdx = 0

t40 P

Then u — a.e. on Q.

Theorem 1 ii~ lies that bounded solutions u of (1) Ci) in the sense of distributions which

further satisfy w(t,x) — u(t,x) — u
0
(x) € L1(Q) and w(t,•) -

~ 0 in L
]1RN) as t 4 0 are

Sponsored by the United States Army under Contract No. DMG29-75-C-0024. 
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unique . Among the earlie r uniqueness results we mention the work s of Sabinina 111) and Vol ’pert

and Hudjaev ( 14) . Sabinina announces a theorem which can be proved by the method exposed in

(101 while Vol’pert and Hudjaev consider a broad class of equations (including first order ones)

and use the relatively deep theory of BV spac~es both in the formulation of their results and

the proofs. In any case , as applied to (1) , these results assume significantly more regularity

of ~ than mere continuity as well as conditions on grad ~(u) which we do not impose. Here

“grad ” denotes the gradient with respect to (x 1,. ...x.~) .  On the other hand , given (3) , our

conditions (5) and (6) are somewhat more stringent than those of (11) .  This will be rectified

in the remarks ending Section 1. Other works concerning the uniqueness auestion for (1) and

variants of it are, for the most part , concerned with one space var iable. See , for example,

Gilding and Peletier (6) , Ka la~nikov (7] , Kami n (01 , and Kersh ner (9 1 .

In same circ~~ stances of interes t we can weaken (3 )  (which corresp onds to u0 s L ( RN ) in

( 1 ) ) .  In particular , we have :

Theorem Z. Let a > m ax (( N— 2 )/N , 0) and ~(r ) — r i  sign r. Then for each u0 € Ll (RN ) there

is exactl y one function u satisfying

1 N N
(7) u € C((0, ):L (P ) )  it L ((a,—) x ~ ) for ever ’ a > 0

(8) u~ 
— t~p(u) — 0 in D’((0,—) x

and

(9) u (0,~ ) —

Theo r em 1 is proved in Section 1 and Theorem 2 is proved in Section 2. Both sections in-

clod, remarks concerning variations of these resul ts.

—2—

_____________________________-- ___



~~~

_ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—- _

~~~

-“—

~~~~~~~~~~~~~~

-i

Section 1. The Proo f of Theorem 1.

Let u, Là be as in Theorem 1. The n the functions z — u — Li, h = W(u) — ~(Li) satisfy

the conditions of the following lesina , which therefore implies Theorem 1.

Proposition 1. Let z e L1(Q) n L (O) and h e  L (Q) . Let

(1.1) — Mt = 0 in D ’( Q)

( 1.2) zh > 0 a.e. in Q

(1.3) meas{(t,x) € Q:~ h(t,x)~ > ~) < for each ~ > 0

where meas A is the Lebesgue measure of A, and

(1.4) essential limit f u I 5(t ,~ i~ t — 0
t40 P

Then z = 0 a.e. on Q.

It is obvious that z — u - Là and h — p(u) - ~(Li) satisfy the conditions of Lemea 1,

except perhaps for (1.3). In order to verify (1.3) observe that since u, Li € L (Q) and ~p

is con~tinuous, for each ~ > 0 there is a ~ ~ 0 such that i~~(u(t,x)) — 
~(Là(t,x))i > ~ im-

plies u (t,x) — ü(t ,x ) I  > t5. But u — Li € L~iQ) implies meas{(t,x):Iu(t,x) — L i ( t ,x ) i  > 6)  <

and so (1.3) holds.

Proof of proposition 1. It is well—known (e.g. (3), [12)) that for each e > 0 and

g € LP(RN), 1 < p < — , the problem

(1.5) ev — Av — g in D , (P N )

has a unique solution v
~ 

e L1) (R N ) . Defining B by B~g — v~ one also has the estimate

(1.6) c I I B ~~~I i ~ < I i~ i I ~
where ~J ii will denote either the norm of LP (PN ) or the norm of L~ (Q) depending on the

context. Because of (1.6) , B~ defines mappings B~ :IP(Q) + L~(Q) for 1 < p < ~ and (1.6)

holds equally for g € LP (PN ) and g e L~(Q). Under the assumptions of Proposition lw e  have

T
( 1.7) f ‘ N~~~ t + M*) dxdt — 0 for * € D (Q)

O P

where D ( Q )  is the space of C~ functions with compact support in Q. Fixing y € D(Q) we

—3—
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wish to set • — B y  in (1.7). Clearly B y  € C (Q) (since B
~ 

commutes with differentia-

tions) and (B y) (t ,x) = 0 for t near 0 or T. Moreover, since z , h € L (Q) , (1. 7) clear-

ly continues to hold for 4’ € C”(Q) ii L1(Q) with 4’(t,x) — 0 for t near 0 and T pro-

vided that 4i .~, ~.4i and ~grad *1 € L1(Q). B
€
y has these Droperties. Moreover,

~By  = cBy — y and (B y)
~ 

B~~(y ~ ) .  Thus

(1.8) 
~~ ~~N Bc~~ t

) + h CcB~ y — y) ) dxd t  —

Tf I N~~~€~~~~t~ 
+ (cB h — h)y) dxdt = 0 for y € D ( Q )

O P

where the first equality is due to the obvious symmetry of B and the absolute convergence

of all integrals involved. Thus

(1.9) (B z)t 
= eBh — h in D ’( Q )

For notational convenience we denote z(t,~) by z(t) and 1 N p (x) q(x ) dx by (p ,  q)

when pg € Ll(RN) . Since 2, B~z e L1(Q) n L (Q)

g~ (t) — (B z(t ) , z(t))

is defined for almost all t e (0,TJ . Assume we can demonstrate that

(1.10) lim g~ (t) = lim(B~z(t), aCt)) — 0 a.e. t € (0,TJ

It will follow that z(t) — 0 s.c.. Indeed, if w € L2 (P N ) then cBw - t,B w — w and so

(B w, w) — ( B y , cB w — ~B w )  — Cli B W H ~~ + ~ ~grad B
~wl fl~

Thus (B w, w) 0 as ~ .# 0 implies tB w + 0 in L
2(PN) and t~B w = div (grad B w) -

~ 0
£ £ C C

in p ’II?) (since grad B w . 4  0 in L2 (PN ) N ) . Therefore £B~w - ~
B
~
w — w 4 0 in D t ( P N )

and w — 0 a.e. In this way Proposition 1 will follow if we can verify (1.11) . This will in-

volve two main steps . From (1.9) and the various properties of h and z we will deduce

that g is absolutely continuous (upon correction on a set of measure zero) and

(1.11) g ’( t) — 2 (cB h(t )  — h( t) , z(t ) ) a.e. t € (0 ,T] •

—4—
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where h(t) abbreviates h(t,). We assume these facts for the moment and show how to com-

plete the proof of (1.11) . Fran a € L~ (0) , ( 1.4) and (1.6) it follows that

(1.12) g (0+) = essential limitCB z(t), z(t)) = 0
— C t40 C

This eauality together with (1.2) , (1.12) and the symmetry of B imply

t t
(1.13) g (t) 2 f (CB h(s), z(s))ds = 2 f (h ( s) , CS z ( s ) ) d s  .

C C o C

Now I ( C B h(s) . z ( s ) ) J  .~~ 
IicB

~
hII .)Iz(s)

~
I 1 < IIhH I~z(s)II~ by (1.6). Since

a Hz(s) Il~ € L1(0,T), (1.10) will follow from the dominated convergence theorem and (1.13) if

h i s  (h(s), cB Z(s)) = 0 s.c. s € 10,T3
• c40

In view of our various assumptions, this last ecuality follows from:

Leema 1. Let p € L ( P N ) and meas{x € ~~~: !p(x) I > < for E > 0. Let

q € Ll(PN) n 17(~~N) . Then him (p, CB a) — 0.

€40

Proof of Lemma 1. We have

(1.14) if CpB adx~ ~~. ~f CPB qdx~ + ~ I iE~ a ldx
(x:Ip(x) I > 

C C

< meas(x:Ip(x)I > ~)iI p ii .jIcB~qiL, + ~II C8~glI 1

< sieas{x:ip(x) I > 
~}iipiijI cB~ajI , + 

~IIa iI i

To proceed , we verify that

(1.15) lint !!~s 
~~~~ 

— o
£40 £

In fact , scaling arguments show that

(1.16) (CB~q)(x) — ~N/2 fkC1~(x—y))a(y)dy

where k is the kernel associated with

(1.17) 81q (x)  — fk(x—y)q(y)dv

—5—
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The properties of this kernel we use below can be obtained from (121 . Simple estimations now

yield

IcB~q( x) I ~ C( r) u g h 1 + ~~~~~~~~ fk (~~~(x-y)) dy
{“~ix—y i < r)

for r > 0,  where Ct r)  = sup(k(x) : lx i  > r i .  Since C(r) < ~ for r > 0, this last esti-

mate shows that

him sup iI c8~qlI , < liqiL. ~1 
k (y ) dy

£40 {iyi.~.
r)

for r > 0. But k € L11( x: lx i  < 1)) and the right hand side above therefore tends to zero as

r + 0, establishing (1.15). Returning to (1.14), we f ind now that

h i s  sup I f  £p8~qdx~ < ~~ c~ii 1 for ~ > 0

and Lemma 1 follows on letting ~ tend to 0. I

It remains to verify the absolute continuity of and (1.11). For notational simplicity

we set e — 1 and write B, g instead of B1
, 
~~ 

Let

x) — 
~~ 

* )(t, x) = J p
6
(t—s)z(s, x)ds

where z - a on Q, z — 0 outside Q and is a standard fam ily of molhifiers in t with

°6 supported in (— 6 , 61. It is clear that Z
6

,BZ
6 

and CBz6(t), 
z6
(t)) are smooth in t

and we have

(1.18) 

~~ 

(Bz 6, z6
) — 2 (-~~ ~~6’ 26) — 2(Bz 6, -

~~~~ a6 ) on P

-1
Next we claim that almost everywhere on (6 , T-6) x

-

~ 

- - (1.19) -
~~~~ 

Bz ó 
p *(Bh -

- : where h — h on Q and h - 0 outside Q. Indeed if y € D ( ( 6 , T-6) x ~N) and p 6 (s) —

we find

—6—
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sz

6)
Ydxdt — 

~~~ ~~~~~ 
-~~~ . (~ 6~ y)dxdt

f (Bh - h) (~~6~ Y)dxd t = 
~ 1~~N (p 6*(B~ — h))ydxdt

by (1.9) and the fact ~~*y ~ D ( Q ) . Using (1.18) and (1.19) we see that for ~ € D ( O ,T) and

sufficiently small d ,

T T
— f (Bz

6
(s) , z

6
Cs) )

~~
’ (s)ds = 2 f (p *(B~ — Ii) (s) , a (s))~~Cs)ds0 0 6

Since a
6 

-
~ a in L1(Q) and il z6 Ii ,. ~~. iIziL. it follows easily that

T T
— f  g( s)~~’( s)ds — 2 f  ((B 1 — h) (s) , z ( s ) ) C ( s ) d s
0 0

The last result shows that g is absolutely continuous and g’(t) = 2(Bh(t) — h(t), z(t)) a.e.

The proof of Proposition 1, and hence Theorem 1, is complete. I

Remarks on variations:

( 1.20) The inhomoqeneous equation: The way we have formulated Theorem 1 it is directly appli-

cable to the generalization u~ — tt~ (u) — f (t , x) of (1) Ci) .

(1.21) Discontinuous ‘p The continuity or even the single-valuedneas of ~ was used only to

establish that h = p(u) - p(u) satisfied (1.3) . This can be arrived at in other ways. For

example, if u, u € I Y( Q)  for some p, 1 < p c =, and ~ is continuous at 0 we have (1.3)

satisfied.

( 1.22) Assumption of the initial—value : We have assumed that the initial condition is satis—

fled in the strong form (1) (ii) which corresponds to (1.4) . This was to simplify the presenta-

tion and is justified by the existence theory which we have in mind (see Section 2) which pro-

vides solutions satisfying (1) (ii). However, it is quite interesting to weaken (1.4) to the

requirement

(1.23) 1 ~~ N~~ 4’t + hd4’)dxdt — 0 ~~ € C ((O,T) ~L ,

— -7—
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where C ( ( O . T) X ~~~ means the C~ functions vanishing for t near T and large x t ,

especially in view of the existing literature. In fact, the entire proof remains intact under

this change of hypotheses except for the verification of (1.12). We briefly describe how to 
S

verif y (1.12) under the assumption (1.23) .

First, if ‘4’ € C ([ O, T) X ~
N

> , 0 a < b . c  T and

1 if b < t

g(t) = ~~~
— (t — a) if a C t < b

0 if t < a

we can approximate g(t) by smooth functions and establish that

T T
I I ~~z~~’4 ’ + ~4’~) 4. hg~4 ’) ) dxdt — o = f I N~~ 4’ + hltiji)dxdt
O R  O R

As a, b~~ 0, this implies that

(1.24) h i s  ~ 5

b 

~ N 
t,x> t,x)dxdt 0

b, a-~0+ a P
b>a

for $ € C ( ( O , T) :PN ) . Taking 4, independent of t (as we may clearly do) and recalling

Z € L (Q) , we deduce that

(1.25) him 1 ç 
~ N

2(t,
~~* 

cl,cdt = 0 y* € L
l(PN)

b,a’O+ a P
b>a

From (1.9) it follows that

B~
z( t, x) — B z(s, X) = 1

8
cB €h t , x — hCt,x))dT

~~~~~~~~~ for almost all Ct ,  a, x) € (O,T) x (0,T) X . Multiplying this result by 4’ € C~~(R N )

integrating over x € and then averaging over s, a < s < b, produces

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
—S

______ 
_
~~_.__..__•._1.~ _. __ _ J

._ _ ,J ~~~~~~~~~~~~~~~~~~~~~~~~ 
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f J N
z ( s , x )B 4 ’ ( x ) d x  ds

= 
b—a 1 çN ~~~~~~~~~~~ — h ( r ,x ) )d r ~~( x) dx ds .

Using (1.25) we can pass to the limit above as b, a 0+ to obtain

= f : I N(cB ch(t,x) — h(T ,x))~~(x)dxdT

This relation holds for all 4’ € L
l

( R
N

) for almost all t. Hence

B z(t,x) = J (cB h (t,x) — h (T ,x))dx

for almost all (t ,x) c [O ,T) x ~~N and IlB~z(t) II < t 2 11 h 1 J . Finally,  I (B z(t) , aCt)

< 2t~ h~ ilz(t) i~
, so jlz(t) fl~ 

I)i0,T) and the existence of g (0+) imply (1.12) .

(1.26) Other integrability conditions. We note that Proposition 1 remains valid if

z € L1(Q) ~ L~ (Q) and (1.3) are replaced by z, h € L 2 (Q) and ( 1.4) is replaced by (1.23) .

The proof of this assertion consists of mild adaptations of the above arguments (several

points being easier). Recalling the relationships of Proposition 1, Theorem 1 and (1), this

proves uniqueness of weak solutions of (1) which satisfy u € L (Q) and u — u0 € L 2 (Q) if

~ is local ly Lipschitzian. Indeed, if u, u are two such solutions and h = ~(u) -

then Ih i < C lu—u i € L
2
(Q) for some constant C. This result strongly generalizes the unique-

ness assertion of [11).

-9—
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Section 2. The proof of Theorem 2.

The abstract theory of evolution equations governed by accretive operators (see, e.g.,

(11 • (5)) in conjunction with (3) provides a great deal of information concerning the solution

of (1). The basic idea is that for each g € LI (PN) the problem

(2.1) v — ti~p( v) = g in D,(PN )

has a solution v € L’(I?) which is unique within a suitable class (see (31). To reduce

(2.1) to the problem studied in (3), put u = ~(v), B = and rewrite (2.1) as

0(u) - t~u ~ g. The mapping A defined by A:v -
~ g - v when g € Ll(PN) and v is the

unique solution of (2.1) is m-accretive in Ll(RN) and D(A) = Ll(RN) . Thus (1) has a

solution in the sense of the abstract theory if U
0 

€ Ll(PN ) (see (1), [5]). Let

u(t,~) — S(t)u
0 

denote this solution; in particular u € C( (0,); Ll(PN)) . Under the

assumptions of Theorem 1 it is easy to see that if also u0 
€ L(RN) then u € L ( [ O , ) x ~ N )

and u~ - Ap( u ) — 0 in D ’ ((0,—) x RN ) .  Thus the existence theory complements the uniqueness

theory. With some further restrictions on ~ (see (2),(l3) for precise conditions) which are

satisfied in the special case of Theorem 2, we have u € L ((a,°’) x ~ N ) for a > 0 if only

u0 
t Ll(RN) . Thus the existence claim of Theorem 2 is clear. We now prove the uniqueness.

Assume u is any solution of (7), (8), (9). Then for h > 0 the functions u(t + h,) and

S(t)u(h) are two solutions of (l)(i) with the same initial value u(h,). It follows from

Theorem 1 that S( t )u (h)  — u( t  + h,~) for t > 0. As h 4 0 we see that S(t)u0 — u(t,~)

and th. uniqueness is proved. I

To illustrate the use of the existence theory in extending uniqueness results in a

slightly more complex way (but by no means the most complex) , we indicate the proof of one more

result

Theorem 3. Let T > 0, (2) hold and p:P 4 P be Lipschitz continuous with p (O) — 0. Let

U
0 

€ L1(PN) n L(P
N). Then there is exactly one function u satisfying

(2.2) u € C((O,T1:L
I1PN)) fl L ([O,T):*’~)

(2.3) u(O,~) = u0
()

—10—
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and

(2.4 )  u~ — ~~~~ + p(u )  — 0 in D’(Q) .

Proof of Theorem 3. Assume u and ~ satisfy (2.2) — (2.4) . Let f(t,x) — p (u(t,x)), so

f € L1(Q) ~ L (Q) (by the restrictions on p). The theory mentioned above guarantees the

existence of a v € L (Q) n C((0,T):Ll(RN)) such that v~ — ~~(v) + f 0 in D (Q) and

v(O,x) = u0(x). Theorem 1 implies (see Remark (1.20)) that V u. Similarly we can construct

~‘ from ~ and ~‘ ü. But the existence theory which provided v and ~ also implies that

if w(t) = v(t,’) — ~(t,•) = u(t,•) - £ i (t ,.) then

t
iiw (t) ii~ ~~. iiw(0) hI + 1 hlf(T • )  — f ( r , . ) i i  dr

0

t t
< 0 + K f hiu (T , )  — ~ (t , . ) i I 1dT K f iiw (t)Ii~ dt0 0 -

where K is a Lipschitz constant for p. Thus w — 0 and uniqueness is proved. Existence

follows from the considerations mentioned above. U

Remark. A result comparable to Theorem 3 in bounded domains has been obtained in (4) (Proposi-

tion 5.2) .

- __
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