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SIGNIFICANCE AND EXPLANATION

In this paper it is shown that the solution; of initial-value problems for
a class of quasilinear parabolic equations of broad interest in applications are
uniquely identified by rather mild conditions. It is desirable to know very weak
conditions which imply unigueness of solutions of problems of this sort for a
variety of reasons. One such reason is that if an approximation process is given
to approximate the solution, one need only check that these weak conditions are
satisfied by limits of the approximations in order to establish convergence of

the process to the correct solution.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.




UNIQUENESS OF SOLUTIONS OF THE INITIAL-VALUE PROBLEM ﬂ
FOR ut - A¢(u) =0 |

Haim Brezis and Michael G. Crandall
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Introduction:
'i i This paper is concerned with the uniqueness of solutions of the initial value problem
i\ N
(i) ut-A\o(u)-O, Q. <t €T, x € R A
(1)
(ii) ul0,x) = u (x), e o
where
(2) ¢ : R » R is nondecreasing, continuous and ¢(0) = 0 .

Equations of this sort arise in many applications. These include heat flow in materials with

i a temperature dependent conductivity, flow in a porous medium, the Stefan problem, biological

models, etc.
The main result is formulated below. We have set Q = (0,T) X RN and the expression
"in D'(Q)" means in the sense of distributions on Q.

Theorem 1. Let (2) hold and u, u satisfy

3 u, BE L Q)
(4) u, - de(a) = ﬁt - Ap(Q) in D'(Q) ,
|
8 1 |
(5) u=-uelL(Q , |
{
and |
|
(6) essential limit | N,u(t:,x) - a(t,x)|ax =0 . |
t ¥ R

Then u=1u a.e. on Q.

Theorem 1 implies that bounded solutions u of (1) (i) in the sense of distributions which

further satisfy w(t,x) = u(t,x) - uo(x) € Ll(Q) and w(t,*) - 0 in LI(R“) as t +0 are

Sponsored by the United States Army under Contract No. DAAG29~75-C~-0024.
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unique. Among the earlier uniqueness results we mention the works of Sabinina {11) and Vol ‘'pert
and Hudjaev [14]. Sabinina announces a theorem which can be proved by the method exposed in
[10] while Vol'pert and Hudjaev consider a broad class of equations (including first order ones)
and use the relatively deep theory of BV spaces both in the formulation of their results and
the proofs. In any case, as applied to (1), these results assume significantly more regularity
of ¢ than mere continuity as well as conditions on grad ¢(u) which we do not impose. Here
"grad" denotes the gradient with respect to (xl,....xu) . On the other hand, given (3), our
conditions (5) and (6) are somewhat more stringent than those of [11]. This will be rectified
in the remarks ending Section 1. Other works concerning the uniqueness question for (1) and
variants of it are, for the most part, concerned with one space variable. See, for example,
Gilding and Peletier [6], Kaladnikov [7], Kamin [8], and Kershner [9].

In some circumstances of interest we can weaken (3) (which corresponds to u, € LQ(RN) in
(1)). 1In particular, we have:
Theorem 2. Let o > max((N-2)/N,0) and ¥(r) = |r|°aign r. Then for each u_ € LI(RN) there

0

is exactly one function u satisfying

1,_N ® N
(7) uecC(lO®:L(R)) nL ([a,») x R) for every a >0 ,
(® u, - AP(w) = 0 in D'((0,®) X o T
and
(9) u(0,*) = uo(') .

Theorem 1 is proved in Section 1 and Theorem 2 is proved in Section 2. Both sections in-

clude remarks concerning variations of these results.

v




Section 1. The Proof of Theorem 1.

Let u, U be as in Theorem 1. Then the functions z = u - U, h = ¢(u) - ¢(u) satisfy
the conditions of the following lemma, which therefore implies Theorem 1.

Proposition 1. Let 2z ¢ LI(Q) n L“(Q) and h € LQ(Q). Let

(1.1) zt - Ah =0 in D'(Q) ,
(1.2) zh >0 a.e. in @Q ,
(1.3) meas{ (t,x) € Q:|h(t,x)| > £} < » for each £ >0 ,

where meas A is the Lebesgue measure of A, and

(1.4) essential limit [ glzttx|ax =0 .
t {40 R

Then z =0 a.e. on Q.

It is obvious that z = u -0 and h = ¢(u) - ¢(i) satisfy the conditions of Lemma 1,

. except perhaps for (1.3). 1In order to verify (1.3) observe that since u, 1 € Lw(Q) and ¢
is con\:inuous, for each £ > 0 there is a & > 0 such that |¢(u(t,x)) - v(?a(t.x))] > £ im-
plies |u(t,x) - G(t,x)| > 6. But u - 1 ¢ LI(Q) implies meas{(t,x):|u(t,x) - G(t,x)| > 8§} < =

and so (1.3) holds.

Proof of Proposition 1. It is well-known (e.g. [3], [12]) that for each ¢ > 0 and

[ —————————— EE

g€ LP(RN), 1l < p <=, the problem

(1.5) ev, - bv_ =g in D' (RY)

has a unique solution Ve € LP(RN) . Defining Bc by Bcg = v_ one also has the estimate
.6 B <
(1.6) elle sl < llall,

where || will denote either the norm of LP(R") or the norm of LP(Q) depending on the

I,
context. Because of (1.6), B, defines mappings Be:Lp(Q) +1P(Q for 1 <p <> and (1.6)

holds equally for g € Lp( R“) and g € P (Q) . Under the assumptions of Proposition 1 we have

¥
)] | | gtz¢, + ndIaxdt = 0 for ¥ € D(Q)
(I

where D(Q) 1is the space of C functions with compact support in Q. Fixing Yy € D(Q) we

-3-
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wish to set y = ch in (1.7). Clearly ch € C”(Q) (since Be commutes with differentia-
tions) and (ch)(t,x) =0 for t near 0 or T. Moreover, since 2z, h ¢ LO(Q), (1.7) clear-
ly continues to hold for ¢ € Cm(Q) n Ll(Q) with y(t,x) =0 for t near 0 and T pro-
vided that \bt, Ay and |grad \H € Ll(Q) - ch has these properties. Moreover,

ABey = chy - Yy and (BeY)t = Be(Yt)' Thus

T
(1.8 [ [ (2B (y) + h(eBy - y))dxdt =
0 R
T
jo IRN((BCz)(yt) + (Bh - hiyldxdt = 0 for ye D(Q

where the first equality is due to the obvious symmetry of Be and the absolute convergence

of all integrals involved. Thus

(1.9) (Bez)t = chh - h in D'(Q) .

For notational convenience we denote z(t,*) by z(t) and ;N p(x)a(x)dx by (p, q)
R

when pq € LI(R") - Since z, Bz ¢ Ll(Q) n LQ(Q)
gc(t) = (Bcz(t). z(t))

is defined for almost all t ¢ [0,T]. Assume we can demonstrate that

(1.10) lim gé(t) = lim(Bez(t), z(t)) = 0 a.e. te [0,T] .
€40 €40

It will follow that 2(t) = O a.e.. 1Indeed, if we LZ(RN) then eBcw - ABEw = w and so
(Bw, w) = (Bw eBw-ABw)=ennw|l2+"|grad8w\ “2 .
€ (it - € €12 € 2

Thus (Bw, w) + 0 as ¢+ 0 implies ¢Bw> 0 in t>(RY)  and 8B_w = div(grad B.w) > 0
in D‘(RN) (since grad Bw-> 0 in LZ(RN)N) . Therefore €B w - BB w =w >0 in DY(RY
and w= 0 a.e. In this way Proposition 1 will follow if we can verify (1.11). This will in-
volve two main steps. From (1.9) and the various properties of h and 2z we will deduce

that gc is absolutely continuous (upon correction on a set of measure zero) and

(1.11) q;(t) = 2(eBch(t) - h(t), z(t)) a.e. t € [0,T]

afe

-

e __k_l" . e . ha e o v




where h(t) abbreviates h(t,*). We assume these facts for the moment and show how to com-

plete the proof of (1.11). From =z ¢ L"(Q). (1.4) and (1.6) it follows that

(1.12) qt(o+) = essential limit(aez(t), z(t)) =0 |
tV

This equality together with (1.2), (1.12) and the symmetrv of BE imply
t t 3
(1.13) g _(t) < 2 | (eB h(s), z(s))ds = 2 [ (h(s), eB z(s))ds . i
€ A € 0 € i

Now |(eB h(s), z(s))| < ller ull_liz(s) 11} < lnll_llz(s) Il by (1.6). since

s » |lz(s) ||1 € L]'(O,T), (1.10) will follow from the dominated convergence theorem and (1.13) if

lim (h(s), eaez(s)) =0 a.e. s ¢ [0,T)

€40
A
* In view of our various assumptions, this last eaquality follows from:
Lemma 1. Let p ¢ LQ(RN) and meas{x ¢ R Ip(x)] > £} <= for £ > 0. Let
aetX®) 0 t°(®Y) . Then 1im (o, eB @) = 0. ]
€+0

Proof of Lemma 1. We have

(1.14) |/ epB_aax|

1A

€oB qdx| + £ [|eB alax
{x:|p(x)| > g} ¢ =

< meas(x: o0 | > &}lsll llen all, + €llenqll |

< meas{x:|p(x) | > €}lpll_lleB all, + &llall,

To proceed, we verify that

(1.15) lim llem zll =0

In fact, scaling arguments show that

(1.16) (tlcq) (x) = V2 fk(/z(x-y))q(y)dy

where k is the kernel associated with B,; s
.

(1.17) Bialx) = [kix-y)qly)ay .

«f=

-




The properties of this kernel we use below can be obtained from [12]. Simple estimations now
yield

|eacq(x)| < cN/z c(r) ||q||1 + eN/ZIIq“w fk(v’;:-(x-y))dy
{/€|x-y| < r}

for r > 0, where C(r) = sup{k(x) : |x| > r}. sSince C(r) <= for r > 0, this last esti-

mate shows that

lim sup |leB_all, < llall, [ xty)ay
€40 {|y|<x}

for r > 0. But k e L ({x:|x| < 1)) and the right hand side above therefore tends to zero as

r 40, establishing (1.15). Returning to (1.14), we find now that

lim sup |[ epnchxl <Ellall, for £>0
€40
g

and Lemma 1 follows on letting f tend to O. | ]

It remains to verify the absolute continuity of 9, and (1.11). For notational simplicity
: we set € =1 and write B, g instead of B,, g,. Let

L

(e, x) = (o5 * D (L, X) = I.QDG(t-s)_z_(s. x)ds

where z =z on Q, z =0 outside Q and s is a standard family of mollifiers in t with

Ps supported in [-§, §]. It is clear that '6'826 and (BzG(t), zc(t)) are smooth in ¢t

and we have

At

d 3 3
(1.18) ac (“6' zs) = 2(3t st, 26) = 2(326, 3% zG) on R .
Next we claim that almost everywhere on (6§, T-§) x R“

) - -
(1.19) ® st = péﬁ(Bh = h)

- - v
where h=h on Q and h =0 outside Q. 1Indeed if v e D((§, T=6) x R“) and DS(S) =

p.(-s) we find
§ A

-6~
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d = 3,V
/ <.— Bz)ydxdt = | « (-BZ) -2 (p *Y)dxdt
= 'LN 8 L B ot 6

= [ ®n-m@enaxat = [ [ (o (BF - B)vaxat
Q R R
by (1.9) and the fact XB'Y € D(Q). Using (1.18) and (1.19) we see that for ¢ ¢ D(0,T) and
sufficiently small 3§,
T T R
'{)(st(s). z,(s))g' (s)ds = 2 fo (pg*(Bh - h) (s), z (s))tls)ds .

Since z, + z in t}(Q) ana llzgll, < llzll, it follows easily that

ks T
-[ gts)z'(s)as = 2 [ ((Bh - h) (s), z(s))g(s)ds .
0 0

The last result shows that g is absolutely continuous and g'(t) = 2(Bh(t) - h(t), z(t)) a.e.

The proof of Proposition 1, and hence Theorem 1, is complete. | |

Remarks on variations:

(1.20) The inhomogeneous equation: The way we have formulated Theorem 1 it is directly appli-

cable to the generalization u, - Ap(u) = £(t, x) of (1)(i).

(1.21) Discontinuous ¢: The continuity or even the single-valuedness of ¢ was used only to
establish that h = ¢(u) - ¢(u) satisfied (1.3). This can be arrived at in other ways. For
example, if u, u e Lp(Q) for some p, 1 <p <o, and ¢ is continuous at 0 we have (1.3)

satisfied.

(1.22) Assumption of the initial-value: We have assumed that the initial condition is satis-
fied in the strong form (1) (ii) which corresponds to (1.4). This was to simplify the presenta-~
tion and is justified by the existence theory which we have in mind (see Section 2) which pro-
vides solutions satisfying (1) (ii). However, it is quite interesting to weaken (1.4) to the
requirement ;

7

(1.23) [ [ gtzv, + nawaxat = o wv € cp(to,m x B,
0 ®

-T=




-

T ——

where C;(IO.T) x RN) means the C~ functions vanishing for t near T and large |x|,
especially in view of the existing literature. In fact, the entire proof remains intact under
this change of hypotheses except for the verification of (1.12). We briefly describe how to
verify (1.12) under the assumption (1.23).

First, if ¥ e Co[0,M) x B) , 0-a<b<T and

1 if b<t

g(t) = b_La(t:-a) if a<tc<b

(¢} if & < a

we can approximate g(t) by smooth functions and establish that

T

T
¥ N(Z(9'V + g¥.) + hgAy))dxdt = 0 = e n(2¥, + hAv)axdt .
9 X (O

As a, b > 0, this implies that

b
1 =
(1.24) 1im ;'_"‘ja )‘mNz(t,xw(t,xmxat o

’
b>a

for ¢ € C’(IO,T):RN) . Taking ¢ independent of t (as we may clearly do) and recalling
0

z € L’(Q) , we deduce that

£ yp(x)dxdt = 0 v € L (R
(1.25) e == [ y2(tx0¥(x)ax
1 b,a*0+ a R
b>a
From (1.9) it follows that
t
Bcz(t,x) o Bcz(s,x) = [ (eBeh(t,x) = h(t,x))dr
s

Ve C;“‘N’ y

for almost all (t, s, x) € (0,7 x (0,T) x R' . Multiplying this result by

integrating over x ¢ R“ and then averaging over s, a < s < b, produces




b
1
. J Bozlt,x)px)ax - =— [ [ z(s,x)B y(x)dx ds
ny € b-a A RN €

b t
| 1
| | =g [ ] (eBnx,x) - hir,xpety(x)dxds .
| a R s

Using (1.25) we can pass to the limit above as b, a » 0+ to obtain

t
: | (B 2) (t,x)¥(x)dx = [ [ _(eB_h(1,x) - h(T,x))¥(x)dxdT .
] RN % 0 FF ¥

This relation holds for all V¢ € LI(RN) for almost all t. Hence
t

B z(t,x) = f (eB_h(t,x) - h(t,x))dx !
€ Relaks

for almost all (t,x) ¢ [0,T) x R' and “Bcz(t) I, <t 2ln|l_. Finally, |(Bcz(t) , z(t) |

< Ztuh”m“z(t)ul, so ||z(t)”1 € 11(0,7) and the existence of g (0¥ imply (1.12).

(1.26) Other integrability conditions. We note that Proposition 1 remains valid if

z € Ll(Q) n LD(Q) and (1.3) are replaced by 2z, h ¢ LZ(Q) and (1.4) is replaced by (1.23). é
. The proof of this assertion consists of mild adaptations of the above arguments (several

points being easier). Recalling the relationships of Proposition 1, Theorem 1 and (1), this F

proves uniqueness of weak solutions of (1) which satisfy u ¢ Lm(Q) and u - ug € LZ(Q) if

¢ is locally Lipschitzian. Indeed, if u, u are two such solutions and h = ¢(u) - ¢(u),

then |n| <c ju-u| € L2(Q) for some constant C. This result strongly generalizes the unique-

ness assertion of ([11}.

e A SR A A LA 230 0
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Section 2. The proof of Theorem 2.
The abstract theory of evolution equations governed by accretive operators (see, e.g.,
{1}, [5]) in conjunction with [3) provides a great deal of information concerning the solution

of (1). The basic idea is that for each g ¢ Ll(RN) the problem

(2.1 v-40v) =g in D'(®YH

has a solution v ¢ I..]‘(RN) which is unique within a suitable class (see [3]). To reduce
(2.1) to the problem studied in [3], put u = @(v), B = ¢ = and rewrite (2.1) as

g(u) - Au > g. The mapping A defined by A:v+ g - Vv when g € Ll(RN) and v is the
unique solution of (2.1) is m-accretive in LI(RN) and D(A) = Ll(RN) . Thus (1) has a

solution in the sense of the abstract theory if u_ ¢ LI(RN) (see [1]), [5]). Let

0
u(t,*) = s(t)uo denote this solution; in particular u e C([0,®); Ll(RN)) . Under the
assumptions of Theorem 1 it is easy to see that if also u, € LQ(RN) then u ¢ Lm(lo,w) x RN)
and u, - A¢(u) = 0 in D' ((0,») x RN) . Thus the existence theory complements the unigqueness
theory. With some further restrictions on ¢ (see [2],[13] for precise conditions) which are
satisfied in the special case of Theorem 2, we have u € L”([a,w) x :RN) for a > 0 if only
u, € LI(R") . Thus the existence claim of Theorem 2 is clear. We now prove the uniqueness.
Assume u is any solution of (7), (8), (9). Then for h > 0 the functions u(t + h,*) and
S(t)u(h) are two solutions of (1) (i) with the same initial value u(h,*). It follows from
.'rhoore- 1 that s(t)u(h) = u(t + h,*) for t > 0. As h > 0 we see that S(t)u, = u(t,-)

and the uniqueness is proved. [ ]

To illustrate the use of the existence theory in extending uniqueness results in a
slightly more complex way (but by no means the most complex), we indicate the proof of one more
result.

Theorem 3. Let T > 0, (2) hold and p:R + R be Lipschitz continuous with p(0) = 0. Let

u, € LI(R") n L.(ll“) .  Then there is exactly one function u satisfying

(2.2) u e co,71:Lr(®Y) o (10,71 : R,

(2.3) u(0,*) = “0(') ’

-10-




and

(2.4) u, - A¢(u) + p(u) = 0 in D'(Q) .

Proof of Theorem 3. Assume u and u satisfy (2.2) - (2.4). Let f£(t,x) = p(u(t,x)), so

f e LI(Q) n LQ(Q) (by the restrictions on p). The theory mentioned above guarantees the

existence of a Vv ¢ L’(Q) n C((O,T]:Ll(lﬁ)) such that Ve (= Ap(v) + £=0 in D'(Q) and

v(0,x) = uo(x). Theorem 1 implies (see Remark (1.20)) that v Z u. Similarly we can construct

V from 4 and Vv = 4. But the existence theory which provided v and v also implies that

if w(t) = v(t,*) - v(t,*) = u(t,*) - a(t,*) then

t
lweer [l < llweor [l + [ I€x, ) - E(r,-)llldr
0

t t
o+ k[ flutr, - b, lyar =k [l [l a0
0 0 b

where K is a Lipschitz constant for p. Thus w = 0 and uniqueness is proved.

follows from the considerations mentioned above. [ ]

Remark. A result comparable to Theorem 3 in bounded domains has been obtained in

tion 5.2).

)]s

Existence

(4] (Proposi-

kit
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