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Preface

This report is the result of my investigation of the finite-
element method, with a quadratic interpolation function, for solution
of the one-dimensional transient heat conduction equation. Although
order of accuracy improvements over the linear interpolation formulation
did not materialize, the results achieved were significant in that they
were previously postulated, easily accounted for by elementary
mathematical analysis, and verified the accuracy of solution by
finite-elements. Failure to achieve greater accuracy was a function
of the solution method; solution improvement by quadratic interpolation
requires special treatment of the internal nodes and time domain.

I would like to express my appreciation and gratitude to |
Dr. Bernard Kaplan of the Air Force Institute of Technology for his
guidance in my performance of this thesis, and to Dr. W. Kessler of
the Air Force Materials Laboratory for sponsoring this research project.
Also, I am deeply grateful to Drs. John Jones and David Hardin, also
of the Air Force Institute of Technology, for their technical advice
on many special occasions, and to Sharon Gabriel for her precise
typing achievement.

Finally, I wish to express my gratitude to my wife, Linh, for her
invaluable moral support and insistence to maintain a proper perspective

in the accomplishment of this continuous work.
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Abstract

The one-dimensional transient heat conduction equation, with
Dirichlet boundary conditions, is solved by the method of finite-
elements, employing a quadratic interpolation function. The numerical
solutions are investigated with respect to accuracy and stability,
and compared to like results attained by the method of finite-
differences, and the finite-element method with linear interpolation.
The version of the finite-element method used was based on a
variational principle which is stationary in time; the temporal
behavior of the differential equation is treated with a finite-
difference apprcximation. This method is equivalent to the method
of Galerkin, called the Method of Weighted Residuals. The inherent
discontinuity between the initial condition and boundary conditions
was accounted for by substituting the exact analytical solution at
the first time step and numerically computating from there. An
equivalency relationship between the two finite-element methods is
shown to exist. The finite-difference version of the Crank-Nicolson
method  is found to be more accurate than the finite-element version;
for the fully implicit method, the opposite is found to be true.

In the optimum implicit method, both finite-element solutions are
shown equivalent to the finite-difference solution for a Fourier
modulus of one. For other values of this parameter, the finite-

element solution is more accurate.

vi

v

e~ g w—




— - o -

g

AN INVESTIGATION OF THE METHOD OF FINITE ELEMENTS

S

WITH ACCURACY COMPARISONS TO THE METHOD OF FINITE DIFFERENCES
FOR SOLUTION OF THE TRANSIENT HEAT CONDUCTION EQUATION

USING OPTIMUM IMPLICIT FORMULATIONS

I. Introduction

Background

Most engineering problems reduce to finding solutions of
mathematical problems. Specifically, one translates a physical

phenomenon into a differential equation, the solution of which

{
i
1
|
yields the unknown value. Although analytical solutions are exact F
and desired, factors such as mixed geometry and computer limitations |
often prevent the application of analytical techniques. If one is
willing to accept certain inaccuracies to be explained later,
numerical techniques can be reasonably employed to obtain the ‘
desired solutions. g
An accurate numerical technique is the method of finite-
elements, in which the problem is recast as an integral to be 4 i

minimized. Exactly, the finite-element method converts the original

partial differential equation into a variational integral which

must be minimized. The solution of the original partial differential

equation is employed in this minimization process. A resultant |
set of algebraic equations is then solved by digital computer.
Anyone familiar with the method of finite-differences should already

note certain operational analogies, the main difference in the two
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techniques being that, in finite-differences the solutions are
evaluated at the nodes, while in finite-elements, the solutions
are taken along the nodal intervals as well.

One problem suited to the application of finite-element
procedures is that of transient heat conduction. The irregular
geometry involved in the study of temperature variation and control
in such pieces of hardware as jet engine burner baskets and rocket
nozzles necessitates the use of numerical procedures to attain data
such as required by the Air Force Materials Laboratory.

There exist several schemes to the finite-element solution
of the transient heat conduction problem. These approaches include
the Crank-Nicolson method, the Euler method, and che fully implicit
method. Recently, Martin (Ref 7:52) developed an "optimum implicit
method" which was shown to be the most accurate approach for his
problem. Basically, the Martin method is a finite-element procedure
in analogy to the Crandall method (Ref 3:318-320) of finite-

differences.

Problem

The primary objective of this project was to solve the one-
dimentional transient heat conduction problem, with a known
analytical solution, using modifications of the Martin solution by
the finite-element method. A quadratic interpolation was used and
accuracy and stability comparisons made to Martin's linear interpola-
tion solutions. Comparisons of accuracy and stability to the Crank-

Nicolson finite-difference solution were also made, where instability

N - ——




is defined as the tendency for oscillation errors of the numerical

technique to grow unbounded, thus destroying that solution.

Scope

The problem analysis included a comparison of the Crank-
Nicolson finite-difference and finite-element methods, using a
quadratic interpolation function in the latter; a comparison of
the Crandall optimum implicit finite-element method (Martin, linear)
to the optimum implicit method using a quadratic interpolation
function; and, a comparison of the Crank-Nicolson and optimum
implicit methods where both employed quadratic interploation

functions.

Assumptions

Three assumptions of note are: (1) the physical properties
of the material of interest do not change in time or space; (2) no
heat generation occurs within the material; and (3) the application
of a constant dimensional mesh spacing to the numerical calculation

is satisfactory for heat conduction problems.

Assumption (1) is justified in that unchanging material properties

is a usual design feature. Assumption (2) is valid because there
would be no difficulty should a heat generation factor exist. Such
a term could be added to the given equation as long as it was
constant with respect to time and space. Assumption (3) is the
greatest limitation on applicability because not all problems have
the same geometry and thus the same mesh spacing. For this one-

dimensional problem, the assumption is valid if no inhomogeneities

-




exist in the material.

Approach
Basically, greater accuracy for the finite-element solution
of the transient heat conduction problem was attempted by using a
quadratic interpoclaticn function ané employing the various schemes
noted earlier. The major obstacle was to apply the finite-element
theory to such a function and to derive the basis for the finite-
element numerical formulation. The second major problem was to
derive the optimum implicit theory for its application. Finally,

computer programs were written to perform the comparisons mentioned.
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II. Theory

The Physical Problem

The transient heat conduction equation is a specific form of

the general linear second order partial differential equation

Auxx + Bu + Cu + Du + Euy + Fu = G (1)

where the discriminant, B - 4AC , equals zero. This also
establishes the equation of interest as parabolic (Ref 2:97). The
terms A through G are constants for functions of x and y only.

The transient heat conduction equation states that the overall
change in the internal energy of a system is equal to the heat gain,
plus internally generated heat, minus heat loss. As‘time

derivatives, the equation states

= + -
Ustored Uin gen Uout (2)

.
Ce
.

These terms can be replaced by rate equations. Of interest

here is the conduction rate term

. - o ﬂ
q kAax (3)
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where

and, the heat storage

where

Ustore 7
p =
: v =
c =
t =

st aw “vimse terapeda. o e

T e

rate of heat flow in the x direction
coefficient of thermal conductivity

area normal to the x direction through which

heat flows
temperature

space variable

term
. s a'r |
ustore P ot (4)

rate of heat storage
density

volume

-

specific heat

time
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Figure 1. A Unit of Volume From a Wall with Large
Dimensions in the y and z Directions.
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pehae

7:7) indicates that

[kAaT/ax]x+Ax = [kAaT/Bx]x

Ax

for no internal heat generation. As x goes to zero, the standard

parabolic heat equation is attained as

T
Dclsz

where, if p , k

? T
7= KAy

and c¢ are spatially constant with constant

cross-sectional area, the attained result is

(5)

(6)
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The physical problem of note is completed by applying initial
and boundary conditions. For purposes of this study, Dirichlet
boundary conditions‘are used, where the function itself is specified
at the boundaries. The exact problem considerea is that of a
parallel sided plane wall, infinite in all directicns normal to the
direction of heat flow. The wall is heated until a steady state
temperature of 1000° F is attained throughout the continuum, and
then cooled to a continuous temperature of 0° F. The boundary

conditions for a wall of length x , 0 to L are
T(O,t) = T(L,t) = T ¢« T>0 (8)
The initial condition is
T(x,t) = T s t=0 : (?)

Tg and '1‘i are the specified boundary and initial conditions of

0° F and 1000° F, respectively.

Without loss of generality, the problem can be hormalized to

2

g—‘; - e (10)
ax?
8
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where the corresponding boundary and initial conditions are

(o, )

u(l,o)

]
o
-

6>0 (11)

and

u(x,0) 8 =0 (12)

]
(=
~-

and where x is normalized position, 6 is normalized time, and

u 1is normalized temperature.

u=0 A

Figure 2. A Schematic Diagram
of the Problem.

Figure 2 shows the normalized problem. Of immediate concern
is the obvious discontinuity between the initial condition and the
boundary conditions. Discussion of this dilemma will be postponed

until later.




Because the numerical solutiors will be compared to the exact
analytical solution, this exact solution must be found. Separation

of variables yields

. [2n-1)7] 26

u(x,8) sin [(2n-1)Tx]e

& 4
= b -
m=1(2n 1)m

The complete derivation is in Appendix A. Martin verified this
problem (Ref 7:13) and discussed the truncation error of its computer
solution (Ref 11:660). Figure 3 depicts the exact analytical

solution.

Finite Element Background Theory

Unlike the finite-difference method, which envisions the
solution region as an array of grid points, the finite-element
method envisions the solution region as built up of many small,
interconnected elements. A finitz-element model of a problem gives
a piecewise approximation to the governing equations. The basic
premise of the finite-element method is that a solution region can
be analytically modeled or approximated by replacing it with an
assemkblage of discrete elements. That is, the finite-element
discretization procedures reduce the problem to one of a finite
number of unknowns by dividing the solution region into elements
and by expressing the unknown field variable in terms of assumed
approximating functions within each element (Ref 5:5-6).

The approximating interpolation functions are defined in terms

of the field variable values at the nodal points. The nodal

10
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Figure 3. Analytic Solution of the Problem.
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values of the field variable and the interpolation functions for
the elements completely define the bahavior of the field variable
within the elements.

The finite-element approach can be formulated in several ways, \
three of which are mentioned here. The most elementary approach
is the direct approach. This procedure requires little mathematical 4
manipulation and is used extensively in structural mechanics. Its

main contribution to the heat problem lies in its reliance on matrix

ahe

algebra and the formation of stiffness matrices. These matrices
are employed in this thesis and discussed later. 1
The second appraoch, also employed in this thesis, is the 1
mathematical or variational method. The variational basis dictates iJ
the criteria to be satisfied by the element interpolation functioas.
This method is one of several used to solve continuum problems.
In the classical variational fcrmulation, the problem is to find
the unknown function or functions which extremize or make séationary i
a functional or system of functionals subject to the same given
boundary conditions. This procedure is equivalent to solution of'
a system of differential equations because the functions that satisfy i
the differential equations and boundary conditions also extremize '
the functionals (Ref 5:67). Of course, the problem must be posed
in variational form. Creation of the variational statement will be
discussed in the following section.
The third approach is a particular form of the Method of
Weighted Residuals, called Galerkin's Method. It is a general

method used to formulate the finite-element equations without any

12




reliance on classical variational principles. In fact, this is its
main advantage. Generally, the method requires an assumption about
the general behavior of the‘aependent field variable. This approxima-
tion is substituted into the original differential equation, and

any residual error made to vanish over the average. The resultant
equations are now solved to yield the approximate solution. Martin
(Ref 7:123-1265 showed this method to be equivalent to the method of
variations.

Whatever method or combination of methods is selected, Huebngr
reduces the finite-element procedure to the following steps, defined
in the text (Ref 5:7-9):

(1) Discretize the continuum.
(2) Select interpolation functions.
(3) Find the element properties.

(4) Assemble the element properties to obtain the
system equations. i

(5) Solve the system equations.

(6) Make additional computations if desired.

Finite Element Problem Approach

General Approach. Myers (Ref 8:321-322) notes that, while in

finite-difference theory the main concern is the approximation of
derivatives by differences, the main concern of finite-elements
involves the three concepts of minimization of functions, variational
calculus, and, if necessary, the approximation of integrals.
Minimizatién of functions involves the elementéry process

of taking a derivative and setting the result equal to zero. Also

13
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quite elementary and well-known is the approximation of integrals

by such procedures as the trapezoid rule or Simpson's rule. In the

finite-element method, theiproblem to be solved is cast as an

integral to be minimized. A numerical approximation of the integral

may be used to obtain the solution. The principles of variational

calculus are briefly reviewed in Appendix B, in that this method . i

is of primary use in the solution of the given problem.

Background. The method of approach is based on the variational i
principle as mentioned earlier and as used by Myers (Ref 8). The
finite-element procedure is illustrated by.solving the problem of | 1
concern directly. In review, note that the physical problem was

stated in normalized form as

3%u £ au ;
x2 3 i
q
w(0,8) = w8} = 0 , 0 (11) 4
u(x,8) = 1 , 6=20 (12)

where x = x . The finite-element method begins with a variational

statement of the problem rather than the differential equation.

Therefore, the variational statement corresponding to Equations (10) (
through (12) must first be found.
To find this variational statement, it is noted that the

functional to be minimized is of the form (Ref 7:118-122):

14




~ 1 dia ’ 1
1@ = [ [F(x,8,59] ax (14)
0 b ]

where 11 represents a set of possible functions which satisfy
Equation (14), as explained in Appendix B. For some fixed point
in time

u(x) =  ulx) + nv(x) (15)

Chain rule differentiation of Equation (14) yields : 1

1 ’ u ' ‘
T _ 9F 3l , OF x] 4
m {) [aﬁ an * au an | & (16)

Differentiation of Equation (15) into

ol
. _ — . 2 X b
an ™ v(x), and, n =5 (17)
when substituted into (16) and then integrated by parts yields ol
31 lrap 3 [oF
s g [sa-v(x) - V(x)s; (53;)] dx (18)

At the minimum point, @i =u and n=0 and

I
m "0 (19)

- S
R

e S T AP T, L it Al R R




For this last equation to be valid, the bracketed expression of
Equation (18) must hold for any arbitrary v(x) which satisfies
the boundary conditions. This results in the Euler-Lagrange

equation

F _ 93 f3F \ _
Ju 9x aux

By comparing thisbequation to Equation (10) rewritten as

a_u. - i. a—u = 0
36 ax \9x

it is noted that

a0
3m -~ 36 W
and
e o 2B
ou 9x
x

Integration of both Equations (22) and (23) yields, respectively

3 fu?
F = 56-(?) + f(ux)

16
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(22)

(23)

(24)
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and

(u)?

+ g (u) (25)

The functicns f and g are found by comparing these last two

equations. The functional, F , is
F = l[i (uz) + _322] (26)
219¢€ 9xX

The desired variational statement to the differential equation is then

1

e 2L i 3‘1\2]
I-2£[-'<)—0(U)+<3x} ax (27)

Quadratic Finite Element Application

Finite Element Formulation. With the variational statement

established, the finite-element formulation can be started to obtain
an approximate solution for the temperature as a function of x .
Figure 4 shows the physical problem and displays an appropriate
finite-element arrangement for solution of Equation (10). In the
figure, the interval is divided into E elements (E =6) , with
N nodes (N =7) . The exact solution is best considered as

a continuous line running from the origin to the last node. For

example, see Figure 3.

17
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0 1 A 4 k 6 'NODES
1 2 3 4 S 6 ELEMENTS

Figure 4. Finite Element Arrangement
for Solution of Eq. (10).

The integral of Equation (27) is evaluated by breaking it up

into E subintegrals over each of the E elements. For example,

(2)

E
I = 3 + I + "+ I(e) 4O I(E) = Z I (28)
e=1
where the integral I(e) over a typical finite-element (e) is
given by
i+l
@ _ 1/ %1 (@)? 3u(e) 2]
1 2{ [ae (u ) + {5 ax (29)

Equation (27) may be written, therefore, as

18




1 (E) 2 (E)\2
w - 3] B L (),

For simplicity, Equation (30) may be divided as
1 (E)>2
e du
E, = 2{ (ax ax (31)
0
and
1 2
- Lo B e
I, = 2{)’ = (u ) ax | (32)

An extensive algebraic procedure is performed in Myers (Ref 8:334-339).
The following formulation is developed using the matrix procedures of
that same source. Note that the elements are represented by e ,

e'= 1l to E , and written as superscripts (e) . The nodes are
represented by i , i =1to N , and written as subscripts §

As observed, the integral to be minimized is a function of the

nodal temperatures, that is
3 = I (ul, u, u, . uj, uN) (33)

To find the minimum, I is differentiated with respect to the nodal

temperatures and set equal to zero. If

19
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Al (34)
YN-1
N
then, for minimization
d—Iua) . d_Ii-E) i :"I_fs) s
du du du

The problem is depicted in Figure 5, in which the interval is
divided into E elements, each considered separately, as for example,
the temperature distribution of the element between nodes i and
i+1 . It should also be noted that it is here that the quadratic
interpolation is introduced and depicted by the curve of alternating
dots and dashes. If the node i + 1 is defined as node j ,
then the imaginary node of the quadratic function may be defined

as k and inserted as depicted.

20
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Figure 5. Arrangement of the Elements

Quadratic Interpolation Function. Although linear interpolation

functions are easiest to mathematically formulate, greater accuracy

can be expected by employing higﬁer order element interpolations.

The first higher order element is formulated by placing an interior

node between the exterior nodes and employing a quadratic interpolation

function as shown in Figure 5. Polynomials are most widely used as

the interpolation functions because of their mathematical simplicity.
For examplé, in the one-dimensional problem of this thesis,

a general nth-order polynomial may be written as
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n
P (x) = ] ax (36)

where the number of terms in the polynomial is Tn(l) =n+1

(Ref 5:131). Whereas for the linear case, the polynomial is

written as

P, (X) = a, + ax ‘ (37)

the quadratic polynomial is
P, (x) = @ + a,x + oa.x? (38)

Huebner (Ref 5:79-81) lists requirements for the aﬁplication of
interpolation functions. These requirements, called compatibility
and completeness, stem from the need to ensure that Equation (28)
holds and that the approximate solution convergésrto the correct

solution when an increasing number of smaller elements are used.

Quadratic Matrix Formulation. With the internal node required

of the first higher order quadratic interpolation function,

Equation (34) may be written as
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5
Y2
u,
i
u® - (39)
The derivative of I(e) with respect to u is a column matrix
that is mostly zero because I(e) depends only on the particular
u o '.1k , and uj . If the horizontal pOSltJ‘.Ol’I'Of uk is
assumed midway between u i and uj , then its x 1location is
defined as
X, + x, : .
x = e (40)

Instead of differentiating the elemental integra.ls with respect

to each component of u (E) , a matrix Q(E) is defined by
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0 0 0 ’
( 1 0 0 ith row
P_e) = (41)
0 1 0 kth row
0 (0] 1 jth row
(o} 0 0
and used as follows:
(e)
dIr E dI
1 (e) 1
po R iy i
du e=1 du
}
and
(e) ' b
dI2 - % (e) d.Iz (43)
&) 2 @ < '
du e=1 du :

where I(e) is the portion of I. defined on the eth interval,
(i,k) and (k,j) . Also, it is important to note that for the

quadratic function
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'
u,
” }
' - )ukz | (44)
u,
j

That is, for a particular element, e , the quadratic

temperature distribution equation is given as

= © + e, ® #* ¢ x2 (45)

(e) = ¢ + c x,  + ¢ x, 2 (46)
u, ;

and

(e) (e) (e)x + c x.2 (47) il

By Equation (40), the temperature at the imaginary node location

can be written as

+ x x, +x,\2
(e _ . (e (o) (*i j) (e (*i**y
uy ¢ + e, ( 3 + ey 3 (48)

In the continuing matriy formulation, written in moderate
detail because of its absence from other literature, u(e) may

be written
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where

and

These coefficients, Equation (51), are found by solving Equations (46),

(e) _ 2? (e
2? = |1x x2 ]
cl(e)
E}ez 2 c2(e)
c3(e)

(47), and (48) simultaneously to yield (see Appendix C)

‘cl(e)

(e)

(e)

1

X k

1
x2

[2ui - 4uk + 2uj]

&)~

where, for all intervals assumed equal

. g - 2
(Ax) (xi xj)

- —— t —_——

LRt el e iRy P »

e

pi e Py
B2 [(,xixj+xj )ui 4(xixj)“ + (xixj X, 1ujl

Tz [—(xi+3xj)ui+4(xi+xj)uk - (3xi+xj)q ]

3

(49)

(50)

(51)

(52)

(53)

(54)

(55)

s




The coefficients are eliminated by substituting Equation (45)

into Equation (44). The result is

(e) _ ET 3(e) 2(e) (o)
where
2 " 2
(xixj+xj ) 4(xixj) (xi.xj+xi )
rl®), L e 4(x,+x,) -(3x.+x.) (57)
= =Z iy S i
2 -4 2
Also, it is noted that
{
E(e) & P_(e)-l 88
where
(e)
pler 2 . (59)
E(e) :
% By next taking the following derivative
(e)
du T _(e) (e)
™ 5‘_ By (60)
(
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where

LERES RS, S
i —ax(g) = [01 2x]

(e)

1 , the result is

and substituting it into I

X. 2
1 i
g0 . 5’{ 3 (Px r(® E(e)) e
i

Il is then differentiated with respect to u(e)
- v

ar, (®

du ’
-_— 1 —_—

or

(e) :
a1 b4 T

3 : :

= - [ (pr 5(e)) (PxT r‘® E(e)) A
" |

where the order of the scalar terms (px Efe) g}e)) has been

rearranged. Because
ap® = B

that is, the transpose of the product of two matrices is the

product of the transposes in the reverse order, and because

28

to yield (Ref 7:41)

1 (T _(e) (e)\_a T _(e) (e)
(o) / (px 5 2 ) (e) (px A ) K
X du —

(61)

(62)

(63)

(64)

(65)




i £
5(e) and E.(e) are independent of x and can be removed from

the integral, Equation (64) is equivalent to

ax ‘® :
% — = E(e) [3p T ax r'® , (e
dg.e x; =

|0

It is now necessary to perform the operations indicated by

the last equation. Taking the bracketed product yields

x] xj
0 0 0 0
1 Lo12x | ax = 0 1 2x | ax
?x‘ 0 2x 4x2
X X,
i ' i

Performing the integration over each term and factoring ocut

X = xj - xi = xij yields
'xj A 0 0 0
PRSes
i 0 1 (xj+xi)
0 (x,+x,) 2(x 24x,x 4, 2)
j Ui 33 19 %

(e)T

Next, the pre-multiplication by R is performed to yield
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= =

= 22 - 2

0 Ax (5/3xi 4/3xixj l/3xj )

i a5 2 - 2
! 0 0 ( 4/3xi +8/3xixj 4/3xj )
0 Ax -1/3x.2-4/3x .x .+5/3x .2
(-1/ xl / x1 3 / xJ )

which, by extracting (xi - xj) from all terms of the third column

is simplified to

(0] -1 -1/3(5xi+xj)
A xj
0 0 -4/38x = gloT B, P T ax
1 2 &
L (o} E(xi+5xj) .
Finally, the post-multiplication of this result by E(e) is
performed to yield
7 -8 1
UY e T P 1
e e
R J/. EE.E_ dxR - 8 16 -8
x5
1 -8 7
E
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or 1

7 -8 11 {
(e)
dI
1 1 (e) i
—_— = -8 16 -8 u (72)
dg(e) 3AMx
1 -8 7 ]
By defining the element stiffness matrix (also called element
conduction matrix (Ref 8:352) as
1
3 3 :
7 -8 1
(e) 1 E
e
K A 7y -8 16 -8 (73)
-8
i “d
Equation (42) may be written
}J
dI E
%E) = 7 B(e) E(e) E(e) (74) ‘
du e=1 P
or
d1 E
TR el i (75)
du e=1
31




Strang and Fix (Ref 10:55) verify this result without justification.

Further defining K as a global stiffness matrix

N
£ A z 2.(e) 5-(e) 2_(e)T (76)
e=1
and substituting it into Equation (75) yields
dar
—& - ku® (77
du
Equation (43) is now approached in a similar manner. If the
elemental representation of Equation (32) is differentiated by
{ Leibnitz' rule for differentiation of integrals, the result is
x
oy . 148 ¢9%  (8).*
3, s Ty - (78)
X
i
or
X
(e) 14 (9,7 _ () (e)?2
I, 269’{ (e R u't)  dx (79)

The derivative of this last equation is taken as follows to yield

(Ref 8:355)
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Sl e i g 4w pes

(e)

U e R
du(e) ae R L
= 1
or
(e)
dI,, = iR(e)TIJp BT
dE(e) dae — x, xTx

T _(e)

(e) . (e)

[}
Again, it is necessary to perform the operations indicated

by the last equation.

x2

Taking the bracketed product yields

Performing the integration over each term yields

(x.-x.)
X,
3 " S
Tdx = e Bop 2
p_p_ 2(xj xi)
Lex 3ex. Y
% C i i
i
33
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3(xj xi)

x3 dx

(80)

(81)

(82)

(83)




g e

If each term is factored with an (xj~xi) term and this term

further factored from the entire matrix as Ax , the result is Equation (84) |

« gt
v

po -
1 1 2 2
L —(x.+x, —(x.“+x . x +x,
2(x] xl) 3(xJ xel X, )
1 1. 2 2 1.3 B 3
—(X_.+xX. —(x_.c+x.X, . i =={3, TEX +X. X,
Ax 3(xJ xl) 3(x:l xjxl+x1 ) 4(xJ xei xJ x1 X, )
l-(x.2+x.x.+x.2) l-(x.3+x.x.2+x.2x.+x.3) l-(x."+x.3x.+x.2x.2+x.x.3+x.“)
39 o [ T 43 ji b/ R | 573 A SR e | ajia i 2
Next, the pre-multiplication by Eﬁe)T is performed to yield Equation (85)
— =
x.2-2x . x.+x.2  x,3-2x.2x_.+x.x.2  9x %-1lex, 3x_.+4x, 2x_ 2+4x x_ 3-x "
i b 5 i s 0 i S i75 RIS
6 6 60
2x,2-4x%.x . +2x .2 x,3-x,x.2-x,2x +x.3 3x "%-2x 3x.-2x 2x_ 2-2x x 3+3x_"*
1 i & e : W - i T e e e j
- 3 3 15
}
x,.2-2x % .4+x_ 2 x.2x.-2x.x.2+x.3 -x."+4x.3x.+4x.2x.2-16x.x.3+9x.“
1 c. " [ I 1) J 1 i J i J i3 J
. 6 6 60 i

which, when each term is factored with an (xi-xj)2/3 and this factor

removed from the matrix as (Ax)2/3 , the result is that
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=3
' (9%, 242x . x.-x_2) T
1 i e 5 i
2 2 20
e)T T _ Mx X, “H4X . X . +3x .
B / Py P = 3 2 (x.+x.) > = J
— — i 3j 5
X,
i
X, 9x_.2+2x.%x.-x,2)
1 23 J 1) 1
2 2 20 J
Finally, the post-multiplication of this result by Efe) is
performed to yield
r -
2 -
j 1 1
(eyrf 7 T (e) _ bBx
7 T 5t -
3 S 2
or
2 1
(e)
dE(e) de 15
- 1
35
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By defining the element mass matrix as

2 1 -5
(e) Ax
M A 15 1 8 1
- 1 2|

and employing EQuation (88) , Equation (43) may be written

i IEREE % ple) & (e) ()T (®)
® T A R
in analogy to Equation (75). Also, since gfe) and E(e)T
independent of 6
d12 ' % i
—_— = (e) ,(e) (e)T 4 -, (E)
dg(E) e=1 2 4 2 dae Wl

Further, in analogy to Equation (76), a global mass matrix may

be defined as

(e) D(e)T

=
e
~1
1]
1=

which, if substituted into Equation (91), yields
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- PR Y
au (E) — de6

(g(E))

The process of minimization is now employed by setting the

(E)

derivative, dI/du , equal to zero:

dI 1 2
—_— = —_— + —_— — 0
dg(E) d_u_(E) dE(E)
or
(E) 8 ,((®,
kg™ o+ @) = o

This equation, also derived in Strang and Fix (Ref 10:243), may
be written as

(E) (E) -

) = -

I=
|e

&% (w
and represents a system of ordinary differential equat.ions for

the nodal temperatures as functions of time. At time zero, the
initial temperature distribution is given which is substituted into
the right side. The system of equations is then solved directly for
the initial time derivatives necessary to minimiz2 I at that instant.

These derivatives are then used to move ahead in time (Ref 8:404).
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If the number of elements, E , is large, the system may be
solved using finite-differences to approximate the time derivative.
Myers states three schemes, the Euler explicit scheme, the Crank-
Nicolson scheme, and the fully implicit scheme, which may be used
in this finite difference application. Martin applies these methods
directly to the system of equations (96) and notes that there exists
a general scheme to accommodate the methods (Ref 7:47-49). This

scheme is given by

M + kat8) (uE)HK+L = (M - k(1-0)26) (u(E))X (97)
where ‘
A6 = change in time
(E(E))k+1 temperature at time step, k+l
(EFE))k temperature at time step, k
a = method designation parameter; that is: '

a = 0 for Euler, a = .5 for Crank-Nicolson,
a = 1 for fully implicit.

If the matrices A and B are defined by

A = M + KaA® (98)
and
B = M- K(l-a)A® (99)
. ;

SRl S N s -
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Equation (97) may be written ' |

E(E) k+1

a w®) = B @®)E | (100)

The matrices A and B may now be generated as

P = —
2 T -5 F-,’ -8 1
- Ax alAé -
A = 15 1 8 1 + 5% -8 16 8 (101)
-5 1 2 1 -8 7
= e —— el
and
2 1 =% 7 -8 1
< Ax _ (L-a) A6 50 N
B 15 1 8 1 B 8 }6 8 (102)
b
-5 1 2 1 -8 7

which, when the Fourier modulus : : . !

(103)

is defined and applied, become
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e i
2+35ap 1-40ap -3+5ap
Ax
A = Ig 1-40ap 8+80ap 1-40ap (104)
-5+5ap 1-40ap 2+35ap 1
and ‘
1
2-35(1-a)p 1+40(1-a)p -%-5(1-a)p i 1
Ax -4
B = ig 1440(1-a)p 8-80(1l-a)p 1+40(1-a)p (105) &
-%-5(1-a)p 1+40(1-a)p 2-35(1-a)p
- R

The matrices (104) and (105) are similar to each other and
similar to their linear counterparts depicted in Appendix G for
the case where the interval has been divided into three elements
and four external nodes. Note that p is as given by Equation (103),
and not by Equation (50).

Assembling the matrices for the quadratic case, three elements

and four external nodes, yields
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—~ -

20350p 1-400p -NiEp 0 0 ° 0 run L32
1-400p 8i€Op 1-40ap 0 (4] (4] (4] u,
etap  1-401p 4470ap 1-40ap ~%+sap o 0 u,
[ o 1-402p 8+801p 1-40ap O 0 THA'
0 ] =hesap  1-40ap  4+700p  1-403p -%+Sap ug |
o [} o o 1-40ap 4+801p 1-40ap Y
] (1] (1] 0 =%+Sap  1-40ap 2+3%ip u
o7
k. - \
1
4
i
< - J i
)
!
' '
7]
( Kk
2-35p(1-a) 1+40p(1-a) -%-5p(1-a) 0 o 0 0 v
1
1440p(1-) 8-80p(1-a) 1440p(l-a) o o 0 [ u, |
of %5-Sp(1-a)  1440p(1-a) 4-70p(1-@) 1440p(1-a) -%-5p(1-a) 0 0 uy
[} ) 1440p(1-a) B-BOp(1-@) 1+40p(l-a) 0 0 <u‘\‘
; ] (106)
0 0 4-5p(1-a)  1440p(1-a) 4-70p(l-a) 1+40p(l-a) -%-5p(1-a) u,
o 0 0 o . 1440p(1-a) 4-80p(1-@) 1+40p(l-x) ug ‘
o 0 (] 0 -&-Sp(l..q)' 1+40p(1-a) 2-35p(1-) LHJ ’4

where u2 sy B8 4 ' u6 represent the solutions at the internal
nodes. Because of the constant temperature condition on the
boundaries, and since, except for the first instant in time, the

imposed boundary temperature is zero, the matrices become
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‘optimum o parameter representation can be found in analogy to the

- = k+l !
1 0 0 0 0 0 0 u1
0 0 0 0
O % %y % 1
0 0
(0] a32 a33 a34 a35 u3
0 0 ags a44 a45 0 0 '"u4 t
0 0 agy ag, a55 a56 0 u5
0 0 0 0 agg a66 0 u6
0 0 0 0 0 0 1 u i
L o 7
£
1 (o} 0 0 0 0 0 %
(0} b22 b23 0 0 0 0
= 0 b b b b 0 0
32
33 34 35 (107)
0 0 b43 b44 b45 0 0 ‘
0 0 b53 J b54 b55 b56 0 (4
0 0 0 0 b65 b66 0
0 (0} 0 0 0 0 1

where the lower case letters represent the value at the indicated

position in A or B . Matrix assembly theory is given in Appendix D.

Optimum Implicit Copditions. For this system of equations, an

derivation of the linear optimum a equation attained by Martin and
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shown in Appendix G. This quadratic derivation, depicted in Appendix E,
is also determined by finding the truncation error across two
connecting elements using a Taylor series expansion. It should be
nofed that the expansion is now a ten point representation, based on
the five point rows of the matrices A and B , each point being
considered an integral node, and separated b? Ax . TIf o -is

chosen according to the formula so derived, that is
(2 - —=) (108)

then the resulting expression in Equation (107) is fourth order
accurate at the nodes. The truncation error at these locations is
proportional to (Ax)* . The Euler, Crank-Nicolson, and fully
implicit schemes are only second order accurate.

Appendix E also considers a truncation error expansion about the
internal node of an element as based on the three point rows of the
matrices A and B . The resulting expression indicates that for
this quadratic approach, only second order accuracy is attainable

within an element. For second order accuracy, Appendix E states that

(160) 0 (109)
P
or, if a is chosen according to this equation, the resulting'expression
in Equation (107) is no more accurate than the other schemes just

mentioned.

PO
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The dilemma posed by Equation (109), that is, of lesser accuracy
for solution by quadratic interpolation function than by linear
interpolation function, can be eliminated by treating the internal
node problem. One possible course of action would be to reduce
ths system matrices of this time dependent problem to matrices

2,
rep;esenting only external nodes and corresponding temperatures,
in analogy to the method of "static condensation" summarized in
Appendix F.

A more direct method of elimination would be to treat all nodes
as external nodes. The derivétion leading to Equation (108)
indicates that the order of accuracy attained by employing the
quadratic interpolation function is equal to the order of accuracy
attained by using the linear interpolation function. This fact
tends to indicate that, as such, the quadratic approach is equivalent
to the linear approach. Appendix G verifies this hypothesis by
displaying the équivalence of quadratic and linear alphas. Appendix G
also contains the linear optimum alpha equation and the linear
matrices A and B corresponding to Equation (106). The following
sections are based on this equivalance, which states that for this
probiem approach, the quadratic interpolation function solution may
be found as equal to the corresponding linear solution acréss an
interval Ax/2 . That is, the linear solutions of double the
number of nodes are equivalent to the quadratic solutions of the

original mesh spacings.
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Ouadratic Solution Interpolation

The failure of the quadratic approach to achieve greater than

fourth order accuracy was predicted by Martin as due to the nature of

the solution approach. That is, by the Method of Weighted Residuals,
even though the spatial variation has been handled by quadratic
interpolated finite-elements, finite—differenées were employed for
the time variation as indicated in Equation (96) . This factor and
others are discussed in Appendix I. The following paragraphs
discuss a variation of the quadratic derivations leading to greater
accuracy of the equivalent linear solutions without applying‘smaller
mesh spacings.

If the internal nodes were not considered in the derivations

leading to the quadratic optimum alpha, the result would be

1(1_1
327 %

where the Fourier modulus is now defined as

GEHT | U
X (gjz (8x) 2
2

That is, the quadratic modulus, now interpreted as four times the
linear modulus, when substituted into Equation (110), yields optimum
alpha values of one-fourth the value found by the corresponding

. application of Equation (108). This is logical, because at any
node, the particular point of solution can be found to be a function

of ap or ‘(a)(A6) . If alpha is decreased to one-fourth its
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original value, the modulus, or here for fixed position, the time
increment, must be cubed.

The implementation of these factors into the linear interpolation
approach, that is, the employment of Equation (111) and the
equivalent alphas of Equation (110), yields more accurate results

for the selected original cases of p= .5 and p = 2.0 . For 4

the case p = 1.0 , for which the alphas are, in fact, equal, the
results are of equal accuracy. The results section and Appendix H

|
1
{
display these findings. o 1

1

1

Error Analysis {
Background. One basic objective of this project was to compare 'l

the finite-element solutions using a quadratic interpolation |
function versus the solutions attained by using a linear interpolation
function. To make this comparison and the other comparisons
mentioned in the introduction, the quadratic function solutions must
be attained and compared to the previously attained linear function J
solutions, and exact analytical solutions. Relative error magnitudes
between these methods, and within a method for differing alpha
parameters, were used to complete the accuracy study of this thesis. §
The stability study is discussed in a later section.
General. In the finite-element method, there are two ways to
improve the accuracy of the approximate solution. The first way is
to decrease the nodal interval, Ax , analogous to the ordinary
finite-difference approach. The second way (this thesis study) is

to apply a higher order polynamial approximating function. By its
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nature, any error in the finite-element method must be measured
over the entire interval and not just at the nodes.

Three error norms were chosen, as for the finite-difference
linear approximation study (Ref 7:54-59), by which to complete the
accuracy portion of this project.

Finite Element Error Analysis. The first measure of error is

the pointwise or discretization error. It is defined as the
difference betﬁeén the exact analytical solution and discrete
approximate solution at the node points. Alien to the concept of
finite-elements, which attempts to minimize the error everywhere

in an element, this error can‘be estimated in the pointwise sense
by treating the individual equations in the sfstem (107) as if they
were simple difference equations.

Also, it is noted that the pointwise error is composed of a
round-off error and truncation error. Within the limits of stability,
the latter is the much larger of the two and the pointwise error
is considered to be the truncation error. This truncation error,
defined as that which results from elimin&tion of the higher order
derivative when Taylor's series is used to approximate a differential
equation, is derived in Appendix E for the ith equation in the system.

It applies to all nodes of a Dirichlet problem and is found to be

2
(10p-15ap- -3) (bx) 2 3—‘21 + 0(Ax)"
ax  |x=iAx
8=kAO

et (iAx,kA8)
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The second error measure is the discrete Tchebycheff norm, or
the maximum error between the exact solution and the finite-element
solution at any node. It is estimated by Equation (107).

The generalized mean error [also estimated by Equation (107)]
is the last error measure employed. It indicates whether or not a
higher or lower order of convergence would bé noted for the first
interior node, compared to the convergence at all of the nodes.

The generalized mean error consists of the sum of the absolute
values of the discretization errors at each non-zero node. It
compares the pointwise error at the first interior node, x = .1 ,
to the_error at all the nodes.

Equation (112) can be used to ascertain the order of accuracy
of the Crank-Nicolson, optimum implicit (Crandall), fully implicit,

and explicit finite-element schemes. For the quadratic Crank-

Nicolson equivalent, ¢ = .6666 , and
2
e  (ibx ka®) = (—%)(M)Z au + 0(Bx)" + ..o
3x?2 [x=ibx !

6=kA®

or second order accurate. For the optimum implicit scheme,

a = (2-1/4p)/3 , and

e, (ifx,ka8) = 0 (Ax)% + «..

or fourth order accurate. For the explicit scheme, a =0 , and
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2

e (iAx,kA6) = <%Op - %%) (8x) 2 A + 0(Ax)" + ... (115)
t x? |x=iAx
=kAO

or second order accurate. Finally, for the pure implicit formulation,

a=1 , and

2
o Uhixsg) = =50~ 22 Noamz o2 + 0(AX)" + ... (116)
t 12 2 s
ox x=iAx
0=KkAO

or, also second order accurate. Only the optimum implicit scheme

is fourth order accurate with respect to truncation error.

Stability Analysis

General. The stability analysis is derived from a consideration
of the round-off =rror, that error inherent in computer operations
due to the finite number of significant figures it can manage. The
error in the solution is the thing of interest. If.the magnituce of
the difference between the exact numerical solution and the truncated
numerical solution grows exponentially as the calculation proceeds,
then the numerical scheme is termed unstable.

The basic approach is to write Equation (107) in terms of error
vectors (Ref 7:62-65) where the vector L represents the round-off
error, and ‘e, represnets the new error after solution of the set

of equations. With this,
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Q-i ., of C , then

i

and, after k computations

A T B & (117)
& = c N (118)
- = expanding € in terms of the eigenvecotrs,
n
8 = 6L o (%
i=1
where ci is a constant and ii is the ith eigenvector of Gk
By the definition of an eigenvalue, Equation (117) is written
n
e = 'Z RN (120)
i=1
where. A is the ith eigenvalue of the matrix C . Likewise,
v 2
SR L i
i=1
(s x
.e.k o Z cixiii (122)
~i=1
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This demonstrates that the eigenvalues of the iteration matrix,
C , determine the growth or decay of round-off errors. This

procedure is summarized in the following Table I.

TABLE I

Oscillation and Instability Limits
By Eigenvalue Definition

Eigenvalue Condition of Eigenfunction
A>1 Steady, unbounded growth, of same sign.
0>A>1 Steady decay, of same sign.

-1 <Xx<0 Steady decay, alternating signs (stable

oscillations).

A< -1 : Steady growth, alternating signs
(unstable oscillations).

Finite-Element Analysis. Employing the given boundary conditions,

Equation (107) is written

+1
au™ - "

(123)

where the first and last equations have been dropped and the number
of unknowns reduced by two. Because of the requirements of the
equivalency argument, A and B are taken as in Equation (G-3),

tridiagonal in form, and as shown in Equation (124).

51




0 0
0 b a
0 a b a (124)

The eigenvalues of such a matrix are given by

n
An = b + 2a cos (NTTT1> i n=1,2,+--N (125)

where N is the matrix order (Ref 9:65). Also, the eigenvalues of

the iteration matrix, C = I_\_lg , in Equation (123) are given by

- n
holy * B ) (126)

If Equation (125) is substituted into Equation (126) for the '

limiting case of N + @ , for which

Nm | _ ;
lim cos(m) = =1 (127)

n=N-»®

the result, called the critical or minimum eigenvalue, is found to be
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1+12ap
1-12(1-a)p

(Ac)

This is the equation derived by Martin in his study of
finite-element solutions by linear interpolation. Therefore, the
same oscillation and stability limits of that approach.apply here
and are shown in Table II and Figure 6. For quick reference,
Table III and Figure 7 show these limits for the finite-difference
formulatioﬂ.

It would be interesting to note the stability and oscillation
limits if the direct quadratic approéch could be used. Ignoring
the error of that approach, the quadratic system matrices were
written in a modified condensed form, analogous to théﬁ of Appendix F.
This modified condensation was ﬁothing more than qondénsing both sides
of Equation (106), holding the system constant in time. Assuming
such a time constant system could represent this transient problem
at successive isolated moments, the critical eigenvalue was found

to be

o) = 2-15(1-a)p
© 2+15ap

The stability and oscillation limits are presented in Table 1IV.
In general, these data show that solutions attainad by this quadratic
approach would be more restrictive in the oscillation limit for the

optimum implicit scheme.
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TABLE II

Oscillation and Instability Limits for

the Fourier Modulus in the
Finite-Element Method.

Crank- Optimum Pure

Limits Euler Nicolson Implicit Implicit
Oscillation
Limit, p < x Never
for 56 .08333 .16667 .33333

. Oscillates
oscillation
Stability
WANAR: P < X Always Always Always
for a .16667 :
stable Stable Stable - Stable
scheme
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TABLE III

Oscillation and Instability Limits for

the Fourier Modulus in

the FinitefDifference Formulation.

_ Crank- Pure-
Limits Explicit Crandall Nicolson Implicit
Oscillation Limit, No
P <X 0.25 .3333 «5
for no oscillation UECL tataaas
SERIELINY Bamit, Always Always Always
P <X 0.5 :
for stable schane Stable Stable Stable
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TABLE 1v
Oscillation and Instability Limits for

the Fourier Modulus in the

Finite-Element Method

and Quadratic System

Crank- Optimum Pure
Limits Euler Nicolson Implicit Implicit
Oscillation

e : Never

Mamit, p< X1 san .39999 .31999
for no Oscillates
oscillation
Stability
Limit, p < x

Always Always Always
for a .26666
stable Stable Stable Stable
scheme
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III. Procedure

General Approach

Initial Phase. Phase one of this thesis project began with a

thorough study of finite-element theory, especially the calculus of
variations. Also studied were the theory of heat conduction and the
applicability of the finite-element procedure to this problem. Finite-
difference.theory was reviewed. A literature search was initiated

and discussions conducted with several faculty memebers to ascertain
the best approach for attacking this relatively unfamiliar problem.
Meyers (Ref 8) was the primary text employed during the study, and
although of an introductory level, proved the best source for procedural
comparison. Huebner's text (Ref 5) was valuable in later portions

of the project.

Second Phase. Phase two wasAstarted by examining the thesis
proposal and determining how best to complete the proposal objectives.
It was noted that this project was basically one of comparison; that is,
to compare the finite-element results attained here using a quadratic
interpolation function, to those attained previously (by Martin) using
a linear interpolation function. The primary problem then was twofold;
a quadratic analysis procedure had to be derived, something not visible
in detail in the available literature, and this analysis applied to
.the same heat conduction problem in a manner that accurate comparisons
could be made. The comparisons had to be as analogous as possible
éince errors in the results were assumed to be functions of truncation

and round-off.
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The greatest results, at least in theory, to allow an analogous
approach, were the derivations of the system matrices, A and B

’

and the truncation error e, . Because of this truncation error
analysis, the finite-element equations could be treated as difference
equations to yield order of accuracy and optimum o values. Just as
for the linear case, accuracy of O(Ax)* could be attained, and a
theoretical expression for o , dependent only on thg Fourier modulus,
P , was achieved.

Also initiated during this phase was the reprogramming of
Martin's finite-element method to handle any variations created by
the quadratic interpolation functions.

Third Phase. The third phase was the actual study of the error
and stability in the quadratic finite-element formulation. Theory
and procedures for this study are noted in the appropriate locations
of Section II and Section IV.

One factor that hindered a good error analysis, most
obvious by noting Figure 3, was the discontinuity between the initial
condition and boundary conditions. Several methods of handling this
problem are referred to by Martin (Ref 7:72). Because the elimination
of this discontinuity was not the primary goal of this thesis, the
problem was by-passed by substituting the exact analytical solution
at the first time step, a procedure similar to that suggested by
Smith (Ref 9:48-49). 1In effect, this transformed the original problem
into a new problem in which no discontinuity existed between the initial

condition and the boundary conditions.
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Of course, the dominant factor in viewing the error and
stability analysis was the noted equivalance of the chosen quadratic
approach to the linear approach. This factor affected all the

procedural phases.

Fourth Phase. Phase four was the actual comparison of results
as mentioned previously. Bdsically, greater accuracy was originally
expected by using a quadratic interpolation function. Results using
this function and the linear function were compared. for selected
values of the Fourier modulus, p , since both the linear énd quadratic i
optimum o values were functions of this parameter only. The same
appropriate mesh spacings were also used. . i

Error and stability definitions are those mentioned in
Section II. Also employed for graphical depiction and comparison of
error was the discretization error ratio (DER), defined as the rafio of
the discretization error incurred when one subdivision of the space
domain is used, to the error at the same point when the number of
nodes has been doubled (Ref 7:84;85). Discretization error is _ i
basically composed of truncation error and round-off error, the latter
factor approaching dominance as Ax is made smaller.

Discretization error ratio can best be understood in tﬁe

following sense. If the error for some norm is given by

e = E(Ax)? : (130)

then the result of decreasing the interval size by a factor of 1/2 will be
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e . S

e E. (Ax) 2
1 1 ~
P = 4 (131)

Similarly, the effect of halving the interval size when the error

is given by
e = E(Mx)" (132)
is

e £, (Ax)" ,

1 1 ~

— = Z 16 (133)
n

% E‘s‘-—A; ) 5 :

Thus, a discretization error ratio of 4 indicates O(Ax)2 accuracy;
a DER of 16 indicates O0(Ax)" accuracy.

Selected for comparison were the error and stability results
attained in the computations leading to the presentations of DER vefsus
TIME for Fourier modulus values of .5 , .1.0 b énd 2.0 , and
a values of the Crank-Nicolson, optimum implicit, and fully implicit

schemes.

Computer Application

Computer. The computer system used for this project was designed
by Control Data Corporation, CDC. It consists of input and output
devices, peripheral processors, and two central processors which

operate in parallel, the CDC 6613 and CDC CYBER 74. Each has
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131,000 60-bit words of central memory. Magnetic disc and drum

storage were used as temporary storage devices.

Computer Programs. The major computer program employed was a

modification of Martin's pfogram for solution by finite-elements.
Actually, two major modifications were required. The first was to
allow solution of the linear interpolation problem by a general library
subroutine matrix solver. This problem, which involved symmetric
tridiagonal system matrices, was originally solved by the Thomas
method. Since the quadratic interpolation problem was not tridiagonal,
this modification was required to maintain continuity in the error and
stability analyses. The library subroutine, LEQT1B, factors the system
matrices (A) into the L-U decomposition of a rowwise permutation

of A , and then solves the system.

The second modification was to rewrite the program to
formulate the system matrices representative of the quadratic
interpolation function. A new subroutine was generated to create
these pentagonal matrices. The same matrix solver mentioned above
was also used here.

Because the point of interest of this investigation was the
behavior and accuracy of the finite-element solution as a function of
the parameter a , no effort was made to compare costs and run times
for the two interpclation approaches or the various schemes within
each. Figure 8 is a flow chart of the finite-element approach used.
Based on previous knowledge and as implied above, only option (OPT) one
was used. Several other programs were also used for plotting purposes

and to assist in the stability analysis.
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64




IV. Results

Stability Analysis

The results of the stability analysis are shown in Tables II
and III and Figures 6 and 7. These are the same results found by
Martin, since the failure of direct quadratic applicatién to yield at
least fourth order acéuracy required the use of a linear interpolation
based on equivalence of alpha values. Basically, it should be noted
that the stability curves of the finite-difference and finite-element
optimum implicit schemes coincide; and, that while for finite-differences
the optimum implicit scheme is less stable than the Crank-Nicolson
scheme, in finite-elements this situation is reversed. As before,
the finite-element method is more restrictive with respect to stability

in the general sense.

Error Analysis

The theory leading to this error analysis is presented in that
chapter. Basically, this analysis is just a comparison of accuracy as
specified in the thesis objectives. Plots verifying theée results,
here presented in Tables V through VII, as well as plots displaying
the accuracy found by direct application of the quadratic formulation,
are found in Appendix H. It should be noted that the tabular values
specified as optimum quadratic and identified by a "Q" are those
found by applying the equivalent linear optimum alpha values of quadratic
interpolation as found with Equation (110). It should also be noted
that Table V is based on a 20 interval space domain, while Tables VI

and VII are based on 40 interval space domains. |
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For all tables, the following abbreviations apply:

CN = Crank-Nicolson Method |
OI = Optimum Implicit Method
FI = Fully Implicit Method
FD = Finite Differences
FE = Finite Elements
L = Linear

Q = Quadratic

TABLE V

Error Comparisons for the Various
Methods for 6 = .08 and p = 1.0

Method Pointwise Error Maximum Error Generalized
X = ;] at Any Node Mean Error
CN-FD -3.0351 x 10 * 8.5043 x 10~ % 5.6708 x 103
CN-FE-L 3.2920 x 10~% 8.8078 x 107% 5.9831 x 103
CN-FE-Q 3.2920 x 10°% 8.8078 x 10" 5.9831 x 10~ 3
OI-FD 1.4103 x 1075 2.1640 x 105 1.5280 x 1074 \
OI-FE-L 1.4103 x 1079 2.1640 x 105 1.5280 x 10~%
OI-FE-Q 1.4103 x 1075 2.1640 x 1075 1.5280 x 1074
FI-FD -2.2702 x 10~3 5.8835 x 10-3 4.0493 x 1072 \
Fi-FE-L -1.6021 x 10-3 4.2338 x 10-3 2.8906 x 10°2 i B
FI-FE-Q -1.6021 x 10~3 4.2338 x 103 2.8906 x 102 |
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TABLE VI

Error Comparisons for the Various

Methods for 6 = .04 and p = .5

Method
CN-FE-L
CN-FE-Q

OI-FE-L
OI-FE-Q

FI-FE-L
FI-FE-Q

Pointwise Error

X = .1

2.1667 x 1073
2.1667 x 10~3

1.89648 x 10~5
1.89605 x 10~°

-4.3141 x 10~%
-4.3141 x 1074

Maximum Error
at Any Node

2.9165 x 10~%
2.9165 x 10~ %

2.32381 x 10°6
2.32323 x 1076

5.8037 x 10~%
5.8037 x 104

Generalized
Mean Error

1.5362 x 1073
1.5362 x 10™3

1.39456 x 10-5
1.39429 x 1075

3.0579 x 10~3
3.0579 x 1073

TABLE VII

Error Comparisons for the Various

Methods for 6 = .16 and p = 2.0

Method
CN-FE-L
CN-FE-Q

OI-FE-L
OI-FE-Q

FI-FE-L
FI-FE-Q

Pointwise Error
x = .1

6.6945 x 10~“
6.6945 x 10~%

1.59502 x 10”5
1.58979 x 10~5

-7.1636 x 10-3
-7.1636 x 10-3

Maximum Error

at Any Node

2.1656 x 10~%
2.1656 x 10~%

5.14685 x 10-°
5.12994 x 10-6

2.3172 x 10-3
2.3172 x 1073

Generalized
Mean Error

1.3675 x 10-3
1.3675 x 10~3

3.25294 x 10-3
3.24226 x 10-°

1.4632 x 10~2

1.4632 x 10~2
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Table V shows that for the optimum implicit scheme the error
values are identical. The fact that the linear finite-element errors
equal the quadratic finite-element errors is understandable since
both approaches involved the same alpha values for the Fourier modulus
of one. Tables VI and VII indicate a small increase in the accuracy
of the optimum implicit schemes when the equivalent alpha to the
quadratic approach is employed, as previously discussed. The Crank-
Nicolson and fully implicit schemes show no changes when this technique
is used. The overall result is as predicted by Equation (112); that is,
that fourth order accuracy is only possible for this quadratic approach.

With the slightly greater accuracy just mentioned, the results
may be stated in the following manner. The optimum implicit methods
for both finite-differences and finite-elements, for p = 1;0 , yield
the same accuracy as found by Martin. Assuming this argument to be
true for all values of the Fourier modulus in the linear domain, then
the quadratic finite-element solution employing the equivalent linear
alpha value (OI-FE-Q) is more accurate than the finite-difference
solution for values of p other than 1.0 , or, father, for solutions
for which the quadratic optimum alpha does not equal the linear
optimum alpha. The finite-difference Crank-Nicolson scheme is more
accurate than its finite-element version, but for the fully implicit
scheme, the opposite is true. The optimum implicit finite-element
scheme is always more accurate than the Crank-Nicolson finite-element

scheme.
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Plots

General. The plots are presented in Appendix H in the order of
sections discussed here, and display the discretization error ratio
as a function of time. The first section presents those figures
(H-1 through H-12) associated with the finite-difference method
solution of the problem. Section two contains thé figures (H-13
through H-24) associated with the linear finite-element solution. -It
will be noted that, if the quadratic solution is cohsideréd to be‘
that of double the number of nodes, then each even numbered figure of
this section can be considered to be the more accurate solution
representation to its linear counterpart as given by the odd numbered
figures.

Section three presents those figures (H-25 through H-36) which
represent the finite-element solutions attained when Ax/2 i§
incorporated into the quadratic formulation after the system matrices
are formulated. It will be remembered that this process was
accamplished so that a quadratically determined equivalent alpha
could be applied to the system without considering thg internal node.
The accuracy of these plots, entitled "Quadli," is noted to be
slightly greater for appropriate values of the Fourier modulus.

For these first three sections, the figures for p = .5 are
not shown for the sake of brevity and to avoid redundancy. However,
actual DER values are displayed in Table VIII for selected times and

serve to verify the theoty leading to Tables V through VII and

: Figures (H-13) through (H-36).
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TABLE VIII'

Discretization Error Ratio Comparison

For the Optimum Implicit Scheme

Method

FE-L
FE-Q
FE-L
FE-Q

FE-L
FE-Q
FE-L
FE-Q

FE-L
FE-Q
FE-L
FE-Q

Modulus/Time

.5/.02
.5/.02
.5/.04
.5/.04

DER )
Maximum Error
at Any Node

15.1029
15.1029
15.4987
15.4987

14.5045
14.5061
15.4714
15.4743

15.0418
15.0662
15.6262
15.6648

DER
Generalized
Mean Error

15.2466
15.2466
15.6123
15.6123

15.2072
15.2088
15.6005
15.6028

15.1991
15.2327
15.6250
15.6636

The fourth section presents those figures (H-37 through H-48)

which dispiay the less than second order accuracy attained for direct

quadratic solution when Equation (109) is not accounted for, and the

second order accuracy attained when it is taken into consideration.

A Fourier modulus of one was chosen for this display.
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Section I Results. This section gives the results of the problem

as solved by the finite-difference method. Figures (H-1l) through
(H-12) , as annotated for the cases of p =1.0 and p = 2.0 , show
that for each error norm, the fully implicit and the Crank-Nicolson
methods approach second order accuracy, while for the optimum implicit
method, with the valpe.of alpha as determined by Crandall (Ref 3:319),
fourth order accuracy is approached. For p =1.0 , a = .41667 ;

opt

for p=2.0 , aopt = ,45833 .

Section II Results. This section gives the results of the problem

as solved by the finite-element method, lingar interpolation. Figures
(H-13) through (H-24), annotated as above, show that. for each error
norm, the fully implicit and the Crank-Nicolson methods approach
second order accuracy, while for the optimum implicit method, with

the value of alpha as determined by Martin [Equation (G-5)], fourth
order accuracy is approached. For p =1.0 , o = .58333 ;

opt

for p= 2.0 , aopt = ,54167 .

Section III Results. This section gives the results of the problem

as solved by the finite-element method, with optimum alphas determined
by quadratic interpolation, Equation (110). Equivalent linear optimum
alphas were used and applied to the theory leading to the Section II
results to produce Figures (H-25) through (H-36), again annotated as
above. Results are similar to those of Section II, but, except for

P =1.0 , a noted increase in accuracy is observed, especially if viewed
in relation to Table VIII. By Equation (111), for p=1.0 , a

opt

is annotated .58333, Similarly for p = 2.0 -, a°p£ is annotated

.6250.
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Section IV Results. The results of this section are divided into

two parts and are presented to verify the information presented by

Equations (108) and (109). Figures (H-37) through (H-42) show a

low order orf accuracy for direct application of the quadratic formulation

without considering the requirements of Equation (109). For this case

of p=1.Cc , aopt = ,58333 as derived by Equation (108). It

should be noted as well that the solutions by the linear Crank-Nicolson

alpha value and fully implicit alpha value yield approximately the
same accuracy. The fact that the accuracy observed for o = .58333
is not the greatest of the three schemes is insignificant since no
optimum scheme is really being applied.
Figures (H-43) through (H-48) show the second order

accuracy attained if Equation (109) is accounted for by inserting
a = ,66666 at the internal nodes. The accuracy for the optimum
scheme of aopt = ,58333 1is noted to be greater than the other
schemes, but again, only seccnd order accurate.

Summafx. In all the plots, and data from which they were
constructed, it should be remembered that the exact analytical
solution was used at the first time step to eliminate the problem of

discontinuity between the initial and boundary conditions. This was

determined by Martin to be the best procedure for handling this

situation. Also, in all the plots, except Figures (H-37) through (H-42),

the greatest accuracy was observed for the derived optimum alpha
values. The results of Figures (H-43) through (H-48), supplemented
by the findings of Appendix I, indicate that the internal nodes must

be specially handled if fourth order accuracy is to be achieved.
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This point should be emphasized in light of the fact that,
even though fourth order accuracy is noteworthy, it is no better
than that attained with the direct linear interpolation approach,
which was also fourth order accurate. It would be logical and less
expensive, therefore, to apply the linear finite-element solution
technique.

Briefly, it was found in theory (Appendix E), and as computa-
tionally displayed by the above Section IV referenced figures, that
despite the more rigorous solution development inherent in the
quadratic interpolation approach, problems introduced by the existence
of the internal nodes prevented direct abplication of the system
matrices. Indeed, Equation (109) indicated an accuracy less than
fourth order at the internal nodes, a consideration of which allowed
for general second order accuracy.

In this limit of second order accuracy (Taﬁle G-I), a direct
relationship was found between the quadratic and linear optimum alpha
values yielding for a particular selection of the parameter p ,

a value of alpha which gave the same degree of implicitness for

the quadratic approach as for the linear approach. The application
of this fact to the quadratic formulation, therefore, allowed for
the same or slightly greater accuracy over the linear interpolation
formulation at the external nodes, or at every other node, as

displayed by the Section III referenced figures.
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V. Conclusions and Recommendations

Conclusions

Stability Analysis. The equivalent orders of accuracy for the

linear and quadratic finite-element formulations, coupled with the
necessity to handle the quadratic interpolation with an equivalent
linear system to achieve suqh accuracy, indicates that the quadratic
system may be handled as a linear system of twice the number of nodes.
As such, the general stability results are as before. The finite-

difference method is more stable than the finite-element method.

Error hnalysis. This error analysis is based on results

achieved when the discontinuity between the initial and boundary
conditions has been eliminated by substitution of the exact analytical
solution at the first time step. The overall result of this solution
procedure is that for the optimum implicit formulation, fourth order
accuracy is attainable, while for the other schemes studied, only

second order accuracy is possible. For the case where the discontinuity
has not been accounted for, the results are as stated by Martin

(Ref 7:92-95).

Specifically, for the optimum implicit scheme, the linear
finite-element errors equal the finite-difference errors for all
values of the Fourier modulus. The quadratic finite-element errors
equal these values for p = 1.0 , but for the other values of the
modulus, an increase in accuracy is noted. The fact that the linear

finite-element errors equal the quadratic finite-element errors for
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P = 1.0 is understandable since, for this case, both approaches
involved the same optimum alpha value. The errors for solution by
the Crank-Nicolson scheme, linear finite-elements, equal the errors
for such solution with quadratic finite-elements. The same is true 1
for the fully implicit scheme.

Also, for the fully implicit scheme and available data,
solution by the finite-element method is more accurate than solution
by the finite-difference method. However, for the Crank-Nicolson
scheme, the opposite is found to be true. The optimum iﬁplicit
finite-element scheme is always more accurate than the Crank-Nicolson
finite-element scheme.

In considering the accuracy comparison just presented, it
should be kept in mind that the overall order of accuracy for both
linear and quadratic finite-element interpolation procedures was
found to be equal. This indicated a possible equivalence of both
methods, or a limitation on the achievement of greater accuracy when
employing this general solution approach. Indeed, the truncation
error analysis predicted the minimum acceptable fourth Brder accuracy
only if the internal nodes were accounted for without direct application
as such in the quadratic system. This treatment of the internal nodes
established the basis for the equivalence of the linear and quadratié
systems .

One possible method of better handling the internal nodes
W »liminating the three point rows of the system matrices A and
L w4 e to use the method of splines where every node, or in

W Swews . weet, would be connected to another knot by an

2t en
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appropriate function, usually as a minimum, a bi-cubic spline, and
no distinction made between internal and external points. Such a
procedure would establish new system matrices, less sparse, and
containing rows of‘an equal number of elements.

However, in general, a truncation error analysis using
the elements of these new matrices might not show order of accuracy l
improvement, because even though spline theory was used to eliminate
the difficulties in the space dimension introduced by employment
of the quadratic interpolation function, it still stands that the
time derivatives are approximated by a finite-difference expression
for which no parallel increase in accuracy can be attained by going 1
to higher order polynomial approximating temperature distributions. I
This fact, along with the beliefs of Strang and Fix (Ref 10:244-245)
that the handling of time by methods other than the éalerkin or
variational approach may couple all time levels and destroy the
property of propagation forward in time, tends to indicate that 4
greater accuracy may not be attainable for this problem approach.
Certainly the equivalency of the linear and quadratic finite-element
optimum alpha formulations, in light of Martin's observation that %
for this scheme, the linear finite-element method and the finite-
difference method are, in fact, the same (Ref 7:92), adds verifi-
cation to these statements.

Two approaches worth considering as feasible alternatives
for handling of the temporal response would be to use spline theory
in the time domain, and the use of a continuous time model. In the

first approach, the theoretical procedures leading to the expression
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of the unknown solution are the samne. For space and time, Strang
and Fix (Ref 10:243) give this expression as

u(x,t) Q.(t)¢j(x) (134)

J

]
=01 2

which should be compared with Equation (I-1). If Qj(t) were now
represented by a bi-cubic spline, and ¢j(x) represented by either
such a spline or finite-elements, the formulation, although somewhat
unconventional, is free of the difficulties before mentioned, and
promises to yield accuracy of a higher order.

The second approach is the continuous time model. 1In

this model, Equation (96) is written as
) = =-M Ku (135)

and solved directly. The space dimension is still discretized and is
represented by the elements of the column matrix, g}E) . M and K
are as before. It should be immediately obvioué that any problems
with the discontinuity between the initial and boﬁndary conditions
are no longer present. The initial or normalized initial condition
need only be placed in the right side of Equation (135) and the
calculation allowed to proceed. In fact, a hand calculation for the
minimum case of the interval kept as one element with two external

nodes, yields at the centered internal node and a time .0l seconds

later, a temperature value of .9991112 . Comparing this value to
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the exact analytical solution for the case of 10 elements, the error

is found to be 7.48‘x 10—5 , which is more accurate by an order

of magnitude than the maximum error at any node, any time, any scheme.
In summary, the results achieved and presented in graphical

and tabular form are consistent with the theory derived and the

overall structure of finite-elements.

‘Recommendations

The limitation on accuracy presented in this thesis was postulated
as inherent in the problem approach, or more specifically, in the
handling of the time domain by‘finite—differences after establishment
of the recurrence relation. Any notable increase in accuracy
requires elimination of the difficulty. The use of a continuous
time model, independent of the requirements to eﬁployt£he alpha
parameter, appears to be the easiest immediate solutidﬁ. Spline
theory could be used to eliminate the problems assoqiated with working
with internal nodes. Of course, splines could also be used in time
as previously mentioned, an approach which would be mére lengthy
and difficult since new and less sparse matrices would be created,
but nonetheless, an approach that promises to yield high order of
accuracy without having to eliminate the concept of time steps
inherent in finite-element theory.

The employment of a quadratic finite-element interpolation
function, with its additional internal nodal variables and
correspondingly more complex system matrices, yields accuracy

equal to that of the less exhaustive linear finite-element formulation
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for this general solution approach to the transient heat conduction
equation. Its use, therefore, is not recommended. Also, with

such suggestions considered, the use of finite-element interpolation
functions of an order greater than linear is not recommended without

first appropriately treating the time response.
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APPENDIX A

The Analytical Solution of the Primary Problem

The given physical problem in normalized form and appropriate

conditions is

du 32u
90~ ox2 B-D
u(x,0) = 1, 6 =0 (A-2)
u(0,6) = u(l,8) = 0, 6 >0 (A-3)
where x = x .
By separation of variables (Ref 1:34), it is assumed that
! u(x,0) = xX(x) (:) (6) . Taking the appropriate partial derivatives
and substituting into the equations above yields
i O
T = — = Y ; ) (A—4)
®
and
x(0) @ (0 = 0, 6>0 (a-5)
and
(
| x(1) @ @ = o0, 850 (A=6)

- ————
-

- —_—




where Y 1is a separation constant.

For any 6 >0 ,
X(0) - x(1) = o (a-7)
is the boundary condition and the Sturm-Liouville problem becomes
X" - yXx = 0 (A-8)

Only for the case y < 0 does a solution exist. If y is assumed

equal to -a2 where a # 0 , the solution of (A-8) is
X(x) = A cos(ax) + B Sin(gx) (A-9)
Application of (A-7) at O yields
A = 0 o (aA-10)

Application of (A-7) at 1 yields

]
o

sin(a)

(a-11)

That is, for a non-trivial solution, B cannot equal zero.
Equation (A-1l) is satisfied by an infinity of a values; however,

by the previous restrictions
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a = nr , n = 1,2,3,:.. - (aA-12)

Therefore, for (A-8), the eigenvalues are
7n = -(an)2 =-tmm2 , n = 1,2,3,... ' (a-13)

and the solutions are

Xn(x) = Bn sin(nmx) , n = 1,2,3,... ' (a-14) 1
The remaining problem 4
@' -Y® = o (a-15)
is solved by integration to yield 1

® (6 = c_exp [-(nm)2e) (A-16)

By superposition of Equations (A-14) and (A-16), the general

solution is

u(x,0) = ] (B ‘C) sin(nmx) exp [-(nm)20) (a-17)
n=1
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The initial condition is now applied in an infinite Fourier

series of Equation (A-14) to yield

Here, theta equals zero and the constants are combined.

(A-18) is a Fourier sine series where it can be shown that (Ref 7:103)

For n=2m - 1

u(x,0)

u(x,0) = Z An sin(nmrx) -« 1 = 1
n=1

i

m=1

A =
n

. T
(2m-1) 7

2

n
= 1L = &1 1

, the solution, (A-17), becomes

sin [(2m-1)mx] exp {-[(2m-1)w]20}
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APPENDIX B

Elementary Variational Calculus Review

A simple problem of variational calculus is to find a function

u(x) that minimizes the integral

L
I = [ F(x,u(x),u’(x))dx
x=0

with the boundary conditions

u(0)

]
s

and

u(L)

*

(B-1)

(B-2)

(B-3)

and where u” denotes differentiation with respect to x (Ref 8:322-325).

u(x) is found by considering every possible continuous function
that satisfies the boundary conditions and selecting the one that
minimizes I. If en(x) is called the variation (see Figure B-1),
being zero for the case when I is minimum, then the set of possible

functions is represented by ;(x,e) where

a(x,e) = u(x) + en(x
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The function n(x) is restricted to be exact at the boundaries;

that is,

n(o) = qL) = 0 (B-5)

This restriction insures that

u(o,e) = u(o) and u(L,e) = u(L) (B-6)
l
;
| u
| ‘}
Up————— e ——— —
u(x.€) |
|
‘ |
cn(x) l
i 5
}
I
|
u(x) I
|
u, L > X ¥
0 L
3
Figure B-1. Desired Variational Solution u(x)
| and Trial Function u(x,e).
|
by o .

— -
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As mentioned, the function sought is attained from the function
set (Equation (B-4)) for the case of zero variation; or, that is,

€ = 0 . The desired value of u(x) is such that
u(x,0) = u(x) (B-7)
Also, the corresponding derivative term of Equation (B-1) is noted as
u’(x,e) = u’(x) + en’(x) (B-8)

Next, Equations (B-4) and (B-8) are substituted into Equation
(B-1) to yield
L

I(e) = I F(xlﬁ(xle) IG’(xle)) dx (B-9)
x=0

where I is a function of € because it is still a parameter
after the x integration. By Equation (B-7), Equation (B-9)
reduces to Equation (B-1) when ¢ equals zero. That is, I(e)
is a minimum when ¢ equals zero.

The process of minimization is pursued by employing Leibnitz'
rule and the chain rule in differentiating I(e) with respect

to € to yield

dI(e)

L > ~
= / sa;:-F(x,u(x,e),u'(x,e)) ax (B-10)

x=0
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and

L ~ -
dr(e) _ 9F du 9F 3u” _
' de / [aﬁ % " ae] ax Gl
x=0
By Equations (B-4) and (B-8), it is noted that
du _ T an(x)
5% ™ n(x) and 3% 0 (x) = 2% (B-12)
which, when substituted into Equation (B-11), yields
dI (g) f
= - 3F 3F dn(x) g
e x=0 [aﬁ L ] o AB=23)

Integration by parts of the second term yields

L L
ar(e) _ oF oF a [er]
de w J sg'n(x)dx + [aﬁ,n(xﬂL - [ a2 = [?ﬁ:ldx (B-14)
x=0 o x=0
X=

The integrated term vanishes by Equation (B-5). Thus, upon

recombining the two integrals, Equation (B-14) becomes

L
aree) w _ (o
de I=0 n(x) [313 dx (3\1')] o=

Setting the derivative to zero for

(B-15)

€ = 0 yields

e
"
e

(B-16)
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and therefore
ar B T R e
de | _ du dx \du”

Because n(x) is arbitrary, the term in brackets must be zero
to ensure that the integral is zero. Therefore, for I to be a

minimum

aF a for\ _ ;

The solution u(x) to this Euler-Lagrange differential equation

is the function that minimizes the original integral.
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APPENDIX C

Derivation of Quadratic Constants

The first step in the matrix formulation of fhe finite-element
procedure is to find the constants, Equations (52), (53), and (54).
The process is tedious and complicated. Several steps of the process
are here presented to assist in understanding the mathematical
sequence employed.

After establishing Equations (46), (47), and (48) as

representing the ncdal temperatures of an element, they are solved
(e) (e) (e) (e)

simultaneously to find c1 ' c2 , and 4 o c3 is
... first found by writing Equation (48) as
X x.+x, \2
(e) e) (*i o)) Ve (e) (Ti 73 &
b P 2 R 2 =
and adding Equations (46) and (47) to yield
u,+u, X, +X, (x,2+x,2)
he e, EMORRRE. L0 BVRENRL 8 B e ) SO L R S (c-2)
2 1 2 2 3 2

X, +x.
Substituting Equation (C-2) into (C-1) for cl(e) + cz(e)(TEE_l)

and expanding yields

{e)

u,+u,-2u c (x, 2+2x % +x_2)
i3 ), S 3 2 B i T G | o
2 3 [}xi +xj ) 3 (c-3)
which is condensed and solved for c3(e) as Equation (54).
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Next, cz(e) is found by subtracting Equation (46) minus ]

Equation (47) to yield

» kK (e) 2 (e) 2., 2 *
u, uj <, (xi xj) + c, (xi xj ) (c-4)

(e)

Substituting Equation (54) into (C-4) for c, gives
(u,~2u +u.)
(e) k 282
- = - + - -
b c, (x; xj) 2 (xi—xj)z (=, X ) (c-5)

(e)

which, when expanded and solved for ¢ , yields Equation (53).

2
Finally, with cz(e) and c3(e) known, cl(e) is found by ‘
writing Equation (46) for cl(e) as
() _ R . SRR ) CeE L
N g -c, X, = Cy X, (c-6)

}
(e) e (e)

and substituting Equations (53) and (54) for c, 3 ’

respectively, to yield Equation (52).

-
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APPENDIX D '

Assembly Theory for Matrices

Equation (106) was assembled as representative of the problem
for the case of three elements and seven total nodes, four external.
Certain specific theory applies to the assembly of these matrices
A and B , presented here in summary and treated exactly by Huebner

(Ref 5:43-50). Figure D-1 depicts the situation of this case, with

7 NODES x ¥

@ @ ; @ Elements ..

Figure D-1. Example of One Dimensional Problem of
Three Elements and Four External Nodes. |

elements @, @, and @, and external nodes 1, 3, 5, and 7. It
should be noted that the following procedures, although based on this

simple case, are in principle the general procedures that apply to all
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finite-element systems.
The first step is to specify a numbering scheme for the system
shown in the figure. This scheme which relates the 1ocal position of

the nodes to the system or clobal position is illustrated in Table D-I.

TABLE D-I

System Numbering - The Correspondence Between
Local and Global Numbering Schemes

Scheme
Element Local Global
1 1 1
2 2
3 3
2 1 3
2 4
3 5
3 1 5
2 6
3 7

The next step is to place the element submatrix for element one
into its assembled position. For this element, the local and global
numbering schemes are, by coincidence, the same. That is, for

element one (matrix A )
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- -T .
(1) (1) (1)
n H34 %13 A v ]
(1) (1) (1)
[AJ(I) ol ay a,, a,, o ©0 0 0 |
(1) (1) (1)
a31 a32 ; a33 0 0 0 0
(0] (] 0 (0} 0 0 0
0 0 0 0O o 0 o ’ (D-1) 4
0 0 0 0 0 (0] 0
0 0 (0} 0 0 0 0

where the superscripts indicate the element number. The second step
is then continued for elements two and three by relating the local and :
global elements as depicted in Table D-II and writing the respective

matrices, Equations (D-2) and (D-3) as

0 o 0 0 0 0 o !
f"
¢ o 0
m? - 7 0(
— (2) (2) 2)
0 0 a33 a34 a35 0 0
(2) (2) (2) (D-2) B 4
0 0 a43 a44 a45 0 0 |
(2) (2) (2) '
0 0 a53 a54 a55 0 0
0 o 0 0 0 0o o
¢ % 0 0 0 0 o
S— e
| |
| |
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v e g—— —

F om0 0 0 o |
6 ¢ 6 0 0 0 0 ]
[51(3) = 6.0 o O 0 0 0 !
6 ¢ ® o D 0 0
0 0 0 0 a55(3) a56(3) a57(3) (D-3) ‘
6.6 o 8 a65(3) a66(3) e
Dl b 375(3) a75(3) a77(3) _J 1

TABLE D-II

Relationship Between Local and
Global Elements of Matrix A

‘ Local Position Global Position
Element Two Element Three
11 333 %55 :
’J
e 234 36’
%3 435 | 857
a1 343 s '?1
“22 844 %66
323 %5 367
= 353 %75 |
232 354 %76
833 355 g i
" |
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Finally, A is obtained (as for Equation (106)) by adding
Equations (D-1) through (D-3), representing contributions from each

element. The mathematical statement of this is

(2) (3)

o + [A] Fio e

v (e)
a1 = ] (Al = [al

+ [A]
e=l o

where M is the total number of elements. The assembled [A] is then

-au a, a3 0 0 0 (o] E
a5 a22 a23 0 0 0 0
Bl =1 8 %5 ) % &5 AT
0 (0] a21 a5, a23 0 0
Ak Sar 84y age) 2 %y
0 0 0 0 a21 a22 a23
& @ 0 0 a, a3, a33

The ma#rix [B] is similarly attained.

It should be noted that the internal nodes are not added in
the assembly process. This is inherent in the procedure since the
relationship between external nodes is approximated. Only the

external nodes need be added to create the assembled matrix.

(D-4)

(D-5)
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APPENDIX E ) |

Derivation of the Truncation Error )
for the Finite Element Formulation

To derive the error, the system of equations (107), written
for the minimum case of two elements, is treated as a set of
difference equations (Ref 7:109-117). The general five point

expression is given by

ok PN et TS R N 3 A{{’i+1,k+1+“i,k+1 :
11,561 ¥ B2 2 M,k T AX 2

* AW kel ) |

o FEPOE [+ ¥ e 70 SIS RS T e
1%i-1,k * B2 2 T Sl 2

A

Sl e T (E-1)

where, from Equation (106)

Al = ~J5+5Sap
A2 = 1-400p
A3 =  4+70ap

L -%-5(1-a)p
B = 1+40(1-a)p

and

T

B = 4-70(1l-a)p
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The subscripts i and k are used to position the nodal
variables at the ten points represented by the terms in Equation (E-1).
The procedure of this appendix is to write the equations of these

nodal variables in a Taylor series centered about u,

ik and then
’

to find the truncation error as the difference between the exact
partial differential equation and the difference equation (E-1).

This procedure, outlined by Crandall (Ref 3:319), may be stated

as
u +u
ST i-1,k+1 i, k+1
s {k [Alui-l,k+1 % By ( 2 ) * BW ki *
4
1
u, +u. ¢
+ R i+l,k+1 "i,k+1l . ]
Ay 2 gt T8
u +u.
1 i-1,k i,k
X [31“1-1,1( * By ( 2 ) TR
u +u g !
ivl,x %,k ,
+ Bz ——-——-—2 + Blui+l'kJ )
1 [3u 32u } 1
X (ae axi) (E-2) ;
|
where
" k2 k3 Py <
b WY b P Rt Tt Be S e kiRt (&=3) ‘




- = * +
i+l,k i,k X 2 2x

and

1 3 1
= + + h? + o,
Bis1 kbl Be . = e v B bl Ll  bellpigd u

2 2
P2 ., P, 1 st LB o &
*h(z s 't et i6) Bt -

The subscripts here indicate differentiation with respect to the
specified independent variable for the indicated number of times at
the point (iAx,kA8) . The terms k and h represent A6 and
Ax , respectively. It is also noted that the last term of Equation
(E-2) equals zero and can be dropped.

By substituting Equations (E-3) through (E-5) into Equation (E-2)

and employing the relations

k = p(h)?2 or A6 = p(ax)?2
Y " Vay
Ye T Yeax = Yax
and
Yzp T Yae2x Yoax -~ “ex

(E-4)

(E-5)

(E-6)

(E-7)

(E-8)

(E-9)




each power of h may be collected together in the truncation error.
The coefficients of all the odd powers of h cancel to zero. The
coefficients of the even powers of h cancel to zero up to and
including order two. The resulting expression is

- i * _1s 4 &
et h¢ (10p - 15a0p 12) u + 0(h*) (E-10)

4x

or, the truncation error is of order h2 unless

(10p - 15ap - lé) = 0 (E-11) |
12 |
or
1 1
o - i (2 - 4p) (E-12) .

This last expression is the quadratic analog to Martin's
optimum alpha equation. It also indicates fourth order accuracy.
The system of equations (107) also possesses three point rows
based on single elements. The effect of these terms on the system
; accuracy can be determined by performing a truncation error analysis
| across the elements, centered on the internal node. The procedure

is the same, but now
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{
Al = 1-40 p» -
A2 = 8+80 p
1
Bl =  1440(l-a)p
and J
32 = 8-80(l-q)p

After substitution, the result is

2l

= = 2 -
e, h ( - ) u,. + O0(h%) (E-13) i

or, the truncation error is of order h unless

(lﬁ) % : (E-14)

This last expression states that only second order accuracy can b
be attained within an element if p is made large. Appendix G
correlates this with the linear optimum alpha equation. It should
be noted here that if p is made large, Equation (E-12) approaches f

a limiting alpha value as does the linear optimum alpha equation.

iR e
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APPENDIX F

Treatment of In;ernal Nodes For Static Problems |

Higher order polynomiai interpolation functions with their
associated internal nodes can be used to improve the overall field
variable representation within an element. Once employed to attain
the equations or matrices for application ofithe finite-element
method, it is noted that these internal nodes do not connect with the
nodes of other elements during the assembly process. Consequently,
the degrees of freedom (here, for example, normalizéd temperature)
associated with internal nodes do not affect interelement continuity
(Ref 5:155-156). {

Because of this, these internal nodal degrees of freedom may be
eliminated at the element level before assembly to reduce the overall
size of the assembled system matrices. The decision to do this depends
on the nature of the problem and especially on the shape of the element.

This elimination process, called "Static condensation," (Ref 4:220-221) e
is presented here to emphasize the fact that internal nodes need not
be retained after information they supply is ascertained. .8

For one quadratic element

d 1 r 1 4
a.l 32 a3 ul le
g R T ﬂ“z L =< Ry it
87 aa ag u3 R3
- - L J L J
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where u2 is the internal nodal degree of freedom and the R's

represent the corresponding resultant actions. A can be rearranged

and partitioned to segregate this internal value as

[a},] :[alzl {xl} {Rl}
e eip i e CR (R— (F-2)
[ayy) (3] [ %) [R,]
where {xl} is a column vector of the external nodal values, and
{Rl} is the corresponding vector of resultant nodal actionms.
Equation (FP-2) may be expanded into
[an] {xl} + la) Ix,]1 = {Rl} (F-3)
and
[a21] {xl} + [a221 [x2] - [Rzl (F-4)
If Equation (F-4) is solved for [R2] and this result substituted
into Equation (F-3), the result is
(a,.] - fa.] (a1 (a, 0] (.} = (R} - (a ] (a0 [R] (F-5)
&k 12 22 21 1l 1 12 22 2
which is the condensed system
(a) {x1} - (F-6)
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APPENDIX G

Comparison of Linear and Quadratic Factors and Equivalence
of Linear and Quadratic Interpolation Function Analysis

To insure accurate and consistent error comparisons between
the linear and quadratic finite-element formualtions, where possible,
procedures and derivations of the latter were performed analogous
to those of the former. The following paragraphs list several of
these factors, culminating in a direct relationship and equivalance
between the linecar and quadratic interpolation function alpha values
and solutions.

The quadratic element stiffness matrix and element mass matrix
are given respectively by Equations (73) and (89). The corresponding

linear matrices are

1 -1
'Y - KI; (G-1)
i3 -1 1
and
2 1
u® 4 X (G-2)
” 1 2

The assembled system matrices, A and B , for the quadratic
case of three elements and four exteinal nodes, are given by

Equation (106). The corresponding linear system is
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3 »
r 2+6ap 1-6ap 0 0 ! vy e
1-6ap 4+12ap 1-6ap 0 u,
Lf 0 1-6ap 4+12ap 1-6ap 9 uy ?
0 0 1-6ap 2+6ap u4
. -
il &
2-6(1-a)p 1+6(l-a)p 0 0 u %
4 1+6(1-a)p 4~12(l-a)p 1+6(l-a)p 0 u, (G-3)
0 1+6(1~-a)p 4-12(1-a)p 1+6(1-a)p ﬁuB ?
0 0 1+6(1-a)p 2-6(1-o)p uy
il

For the quadratic case, a truncation error analysis across two

adjoining elements employs the coefficients of Equation (106) and yields
1 1 :
a 3 (2 - 49) (G-4)

for fourth order accuracy. The analogous linear truncation error

analysis employs the coefficients of Equation (G-3) and yields
1 1
a = 3 (1 + 35-) (G-5)

for fourth order accuracy.
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Without analogy, the quadratic formulation establishes that

within an element or at the internal node

for second order accuracy.

For both formulations as the value of the Fourier modulus, p ,
is increased, the accuracy of the finite-element solution decreases.
This is true by definition, since for a selected value of Ax ,

P is increased by increasing At , or enlarging the element. In
the linear case, as p becomes large, the optimum alpha value
approaches .5 which is the second order accuracy Crank-Nicolson
value. In the quadratic case, .as p becomes large, the optimum alpha
value approaches .6666 which is shown in the results section and
Appendix H to also yield only second order accuracy. This is in
agreement with Equation (G-6) which states that second order accuracy
is attainable if p is made large. Appendix H also shows that, if

a quadratic solution employing an optimum alpha of ﬁqﬁation (G-4),

or an alpha of a different scheme, is attempted without considering
the requirements of Equation (G-6) for internal nodes, the result is
less than second order accurate.

Fourth order accuracy can only be expected if the internal nodes
are accounted for without direct application in the solution process.
Appendix F considers one procedure called "static condensation." For
this transient heat conduction problem, the internal nodes can be

treated in a similar manner as external nodes. The following
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paragraphs show that an equivalency relationship exists between the
quadratic alphas of Equation (G-4) and the linear alphas of Equation
(G-5). This equivalency indicates that solution by quadratic
interpolation is equal to solution by linear interpolation across an
interval of Ax/2 , and that solution by quadratic interpolation
can be interpreted as more accurate than the corresponding linear
solution across an interval Ax only by virtue of smaller mesh
spacing. That is, at the external nodes, the quadratic solution is
equivalent to the linear solution of twice the number of nodes.

The equivalency between quadratic and linear solutions is
easily found by considering the relationship between the respective

optimum alphas as p is made large. For the quadratic case

. *lisrge “opt,Q =  .6666 (G-7)
Similarly, for the linear case

. *li:rge aopt,L &5 (G-8)
Then

& *If:rge aopt,Q - aopt,L = .1666 (G-9)

If n is introduced as the parameter defining the p step

increments as the limit is approached, then
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aopt,Q e opt,L = (6-10)

where v may be called the variation and is that value required
to satisfy Equation (G-10) as n is increased. As is noted
v = :-1—6-4616- = .04167 ' (G-11)
The quadratic limit is approached from below in the same
steps as the linear limit is approached from above. Table G~I
displays this and shows that for each quadratic alpha of Equation
(G-4) , the corresponding linear alpha is as derived by Equation (G-5).
For example, for stepone, n=1 , and nv = .04167 . The

gquadratic case then yields

.6666 - (1) (.04167) = .625 (G-12)
while, for the linear case

.5000 + (1)(.04167) = .54167 (G-13)
The result of Equation (G-12) is equal to the value derived from

Equation (G-4) for p = 2.0 . The result of Equation (G-13) is

equal to the value derived from Equation (G-5) for p = 2.0 .
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TABLE G-I

Equivalency of Optimum Alpha Values
For Quadratic and Linear Interpolation Functions

Quadratic (.6666) Linear (.5000)
%opt,Q %opt,L P
.6250 .54167 2
.5833 .5833 1
.54167 .625 . 6666
.5000 .6666 .5
|

It is noted that for the Fourier modulus of one, the optimum alpha

values are, in fact, equal.

The result of Table G-I is that for each attained quadratic

optimum alpha at each node, there is an equivalent linear optimum

alpha which agrees with the value derived by linear interpolation.

Therefore, whether the solution approach be quadratic or linear,

the degree of implicitness or explicitness as defined by alpha is

the same,
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APPENDIX H

Computer-Generated Plots of Results

This appendix contains the graphical results of this project,
presented as plots of Discretization Error Ratio versus Time, for
selected alpha values of the Crank-Nicolson, optimum implicit, and
fully implicit schemes. Each of the three error norms, before
mentioned, are so displayed.

As in Martin's study, the pointwise error is measured at x = 0.1 .
The generalized mean is the sum of the absolute values of the pointwise
errors at nine evenly spaced nodes. It shows the effect of the parameter
a on the pointwise error over the whole interval. The maximum error
at any node, or discrete Tchebycheff norm, shows the effect of this
same parameter on the maximum deviation at any nodg Setween the time
solution and the numerical solution. ‘

Discretization error ratio was previously defined. For its

calculation, solutions were attained and compared for space domain

A6

intervals of 10 and 20, and, 20 and 40, On each plot, p =p = TZETT

is the Fourier modulus and DX represents the space interval Ax .
Of course, alpna is the parameter of note, sometimes referred to as the
"degree of implicitness," because it is the measure of the weight placed
on the temperatures in the new time step of the numerical scheme.

Each section of graphs is introduced with a short descriptive note.
In all graphs, the exact analytical solution has been substituted at
the first time step to eliminate the discontinuity between the initial

and boundary conditions. Graphs annotated CDF and CDH are for the
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finite-difference cases of p = 1.0 and p = 2.0 , respectively. ) ]
Graphs annotated CET and CEY are for the finite-element cases

of p=1.0 and p = 2.0 , respectively.
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Section I

Results for the Problem Using Finite Differences

This section shows the graphical results for the solution of

the problem by finite-differences. Run identifiers are CDF and

CDH .
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The exact solution has been substituted for the numerical
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The exact solution has been substituted for the numerical
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The exact solution has been substituted for the numerical
- solution at the first time step.
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Section II

Results for the Problem Using Finite Elements

and a Linear Interploation Function

This section shows the graphical results for the solution of
the problem by finite-elements, linear interpolation. Run identifiers

are CET and CEY .
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The exact solution has been substituted for the numerical
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The exact solution has been substituted for the numerical
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The exact solution has been substituted for the numerical
solution at the first time step.
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Section III

Results for the Problem Using Finite Elements

and a Quadratic Interpolation Function

This section shows the graphical results for the solution of
the problem by finite-elements, quadratié interpolation, with

equivalent linear alpha values. Run identifiers are CET and CEY
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The exact solution has been substituted for the numerical
.. ~solution at the first time step.
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The exact solution has been substituted for the numerical
solution at the first time step.
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~ The exact sclution has been substituted for the numerical
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Fig. H-28. Discretization Error Ratio Versus Time for Selected Alphas.
_ The exact solution has been substituted for the numerical
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The exact solution has been substituted for the numerical
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. The exact solution has been substituted for the numerical
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Fig. H-31. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical
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The exact solution has been
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. The exact solution has been substituted for the numerical
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Fig. H-35. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical

' solution at the first time step.
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Section IV

Results for the Problem Using Finite Elements

and a Quadratic Interpolation Function

This section shows the graphical results for the solution of
the problem by finite-elements, quadratic interplation, direct

application. Run identifier is CET .
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Fig. H-37. Discretization Error Ratio Versus Time for Selected Alphas.
The exact solution has been substituted for the numerical
solution at the first time step.
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? . The exact solution has been substituted for the numerical
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. The exact solution has been substituted for the numerical

solution at the first time step.
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Fig. H-41.

The exact solution has been substituted for the numerical
solution at the first time step.
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The exact solution has been substituted for the numerical
' solution at the first time step.
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The exact solution has been substituted for the numerical
solution at the first time step.
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Fig. H-46. Discretization Error Ratio Versus Time for Selected Alphas.
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APPENDIX I

Alternative Formulation of the Time Response

The discussion leading to Equation (110) is concerned with the
fact that the recurrence relation, Equation (97), of the finite-
element formulation is based on finite-differencing the time variable,
Equation (96). According to Zienkiewicz (Ref 13:334—336), a more
stable if not more accurate finite-element solution could be obtained
if the problem were discretized into finite-elements of time as well
as space. This appendix constructs the recurrence relation pased on
this concept, and develops a solution equation. It is tben shown that
both recurrence relations are equal. | |

As before, the problem is an initial value problem with the initial
normalized temperature defined as u, at time, 6 =0 . The time
interval goes from. 0 to en ' wh;:; en = A0 . In analogy to
Equation (36), an assumed interpolated form of u defined by its

values at several time intervals may be written as

B |
u = izo N (8)uy ; (1-1)

where Ni(e) are appropriate shape functions or coefficients.
If a linear interpolation is employed, then only n = 0 and
n =1 need be considered. Therefore, in matrix form and following

the procedures of Equation (49) and after
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{u} = [NgN] ,{3}0‘
{u},
where
No = (A6 - 0) /A8
and
N, = 6/A0

lTaking the time derivative yields

N G {5}0} 3 {u},
6 ~ |38 ' 30 ) IR [}

I1f Equation (96) is multiplied by N

1 and integrated over time,

the result is
A0 {u} N an ]| f(w)
6 =0 0 1 it
{ ae |k} NgoN,) {{5_1_}1} * . [ae ' 36 | {(g}l} gL

which, if Equations (I-2) and (I-5) are appropriately substituted,

becomes
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N g —

[x] (% {g}o + % {g}l) + % [(M] (— {g}o + {g}l) (1-7) '

The solution, {2}1 is then found to be

-]
= [ 2 1 _ >
(w}, = (3 (k] + M) / Ae) (3 (Kl - M] / Ae) tul, (1-8) ‘

Equation (I-7) is the recurrence relation found by treating the

time variable by finite-elements. It may be rewritten as ' 3

win

£y (E) & o (E) 4
[Ae g 5] L) [Ae 2" 5 5]50 B i

where the matrix brackets have been dropped for simplicity. This

equation is similar to Equation (97) and may be written

¥ ah™ . et (1-10) v
in analogy to Equation (100), where ¥
A° = M+ K (.6666) 40 (1-11)
and '
C B = M -K (.3333) 46 - (1-12) |

|
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Therefore, Equation (I-10) may be written

(E), k

gy M - x (.3333)80) (u®)) (1-13)

(M + K (.6666) A6)

It is noted that Equation (I-13) equals Equation (97) if
a = .6666 . In both the general linear and quadratic formulations,
this value of alpha yields at most only second order accuracy. The
one point of variation is for the Fourier modulus equal to .5 ;
in this case, the linear alpha of .6666 , equivalent to the
quadratic alpha of .5 , yields fourth order accuracy.

The important resulté of the derivations'leading to Equation (I-13)
are as follows: |

(1) The determination of the optimum alph# vélue is
independent of the treatment of time.

(2) The recurrence relation by quadratic interpolation
equals the recurrence relation by linear interpolation} and both are
inherently second order accurate in the general scheme of alpha values.

These findings were verified by Kohler and Pittr (Ref 6:625-630),
who showed that even if a quadratic, parabolic, time interpolation
was used, that is,

{u} = [N,(6),N (6) N, (6)] {u},

\ {u}

{u}1 (I-14)
2

no inprovemgnt over a linear time element was attained.
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These results are significant if considering the idea of
employing a high order Padé rational approximation to describe the
temporal behavior of the solution. Varga (Ref 12:262-268) points‘out
that the érank-Nicolson method, as well as the forward difference and
backward difference methods, are in fact, such approximations. The
derivation proceeding from Equation (I-5), however, states that as long
as the time domain is handled as in this variational approach, the
previously achieved accuracy order will not be exceeded, which is
logical, since the Padé approximation is merely a rational analog to
its Taylor polynomial. This, however, does not preclude the more

rapid achievement of that accuracy, inherent in operations by Padé

approximation; that is, convergence will occur more quickly.
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