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1, INTRODUCTION

This report provides a preliminary basis for evaluating the
feasibility of relativistic-electron-beam (REB) generated microwaves
(ref 25, 30);* it examines the most important: schemes for converting
electron-beam energy to microwave and near-millimeter radiation. The
current state of electron-beam generators is reviewed with an emphasis
on small repetitively pulsed machines that w>uld be suitable for Army
use. Finally, two sconarios are constructed in whi‘n current and
projected hardware are combined to form REB-driven microwave-radiation
sources.

2. ELECTRON-BEAM MICROWAVE GENERATION

Although most of the currant research effort is directed towards
producing near-millimater and submillimeter radiation, many devices
operate in the 5 and X Land regions where peak powers up to 4 GW have
been observed (ref 42, 5), Figure 1 shows the peak power and frequency
for several differen: schemes for converting electron-beam to microwave
radiation, dillustrating the wide range of opernting regines. The two
high-power points, marked M, represent the results of relativistic
magnetron experimants (ref 42, S5)., The best high power at high
fraquency results have been cbtained with gyrotron~-type configurations,
labelled G (ref 32). Ths next group of devices (laballed R) employ
stimulated Raman scattering (ref 10, 38) to generate microwaves. The
final points, labelled C (ref 53, 5¢), represent a new area of study:
stimulated Cerenkov radiation. All these schemes employ foilless dicde
guometries and would conceivably make rcasonable repeatable microwave
sources, The relativistic magnetron, stimulated Raman scattering, and
gvrotron processes are described in more detail in this report.

“Because this report is a literature survey, literature citations
(yiven in parentheses) are listed in the Selocted Bibliography (p 17),
rather than on the pages where cited.
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Figure 1. Peak power and frequency for several

different electron beams.
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2.1 Relativistic Magnetron

The relativistic magnetron is a high-voltage version of the
simple classical magnetron (ref 13) that has been in use for many
yaars, Figure 2 is schematic of the device used by Bekefi and
Orzechowski (ref€ S). The anode block (inner radius of 2.1 cm) has six
vane~type resonators designed to oscillate at 3.0 GHz. Each rescnator
is 7.2 om long. On. of the resonators is provided with a slot through
which the radiant energy is ooupled intc a microwave horn. The coaxial
cathode is a graphite cylinder 4.8 cm in radius., It is connected via a
steel shank to a Ncreus (ref 43) pulse line. The entire systaenm,
including the transmitting horn, is pumped to pressures less than
10-* torr. The axial magnetic field acting on the diode is generated
by two solenoids mountad in an approximate Helmholtz-pair
configuration.

POLYSTYRENE
WINDOW

——

Figure 2. Magnetron diode.

Typical operating paramoters for this system are~12 kA of
cathode current, an accelerating potential of -~ 360 KkV, and an 3-kG
axial zagnetic field. Linearly polarizad microwaves of 30-ns duration
with a power level of 1.7 G4 are preduced. This represents a
conversion efficiency of electron erergy intov microwave asnergy of about
35 percent. Work is under way at the Naval Research Laboratory (NRL)
to increase this efficiency still further.
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2.2 Stimulated Raman Scattering

During tha last few years investigators have observed
high-powerad millimeter and submillimeter radiation from intense PREB's
undergoing stimulatad Raman scattering (ref 19, 26, 28, 37, 38, 49.) In
this coherent intsraction, a low-frequency electromagnetic pump wave
is backscattered from an REB to yiald radiation whose frequency is much
larger than that of the pump wave (ref 52).

Presently, there are two methods of providing an esdequate pump
wave: (1) by generating an electromarnetic wave to serve as the pump
(ref 28) and (2) by propagating the electron beam *'rough a spatially
rippled magnetic field (ref 19, 38). Two zero frequsiicy pumped (method
two) Raman scatteriry experiments cre considered: (1) an experiment
employing a l.4-cm period rippled magnetic field (ref 19) and (2) one
using a 6-mm pitched helical undulator (ref 38). For the l.4-cm period
experiment (shown in fig. 3), the Adrift tube is a coaxial waveguide
with alternating brass and iron rings internally loaded in the center
conduictor. The electron-beam parameters are 750 kV and 10 kA, and
power lavels of 1 o0 5 MW are measured at 7-mm wavelengths. In the
helical contiguration, the beam propagates in a smooth iron tube with a
deep-grooved helical screw of 6-mm pitch maintained in the ocuter wall.
In this case, the beam parameters ara 860 kV and 12 kA. Power levels
of 6 to B8 MW are measurad at 2 mm and 0.1 ¢to 1.0 MW at 1 sm. In both
casas, the power levels dapend on the magnetic f{ield which is varied
from 6 to 12 kG.

Figure 3. Typical Raman scattering experiment.

i, gy




!

2.3 Gyrotron

Figqure 4 shows the most popular configuration of the gyrotron
(ref 17, 22, 57) (or electron cyclotron maser), namely, the
axisymmetric gyrotron. The symmetry originates with the solenoid
creating the macnetic field. Becaute of this symmetry, a cathode with
a large emitting surface can produce an intense flow of electrons with
rather small velocity dispersion. The flow undergoes compression by
the magnetic field which increases in the direction from the cathode to
the interaction space. The compression section represents a reversed
magnetic mirror (shown in fig. 4) where the initial cathode orbital
velocity of electrons (ref 38) grows according to the adiabatic
invariance of magnetic moment. Here the orbital energy is drawn from
that of the longitudinal motion and from the acceleriating electrostatic
field. In the interaction space, the electrons are guided by
quasi-uniforin magnetic fields. Escaping it, they enter the region of
decreaaing field (decompression section) and then settle on the surface
of the collector.

CATHOE ] cAVY couycron
W,

X Qg;—-z
== =

Ho

JXIAATTITI]

N\

N

z

Figure 4. Common gyrotron arrangement.

In the interaction region, whara the slectron velccity is
almost entirely tranaverse to the magnetic field, -“ase bunching can
occur bacaus® of ths relativistic mass changs of :ne wlectrons (ref
23). Electrons absorbing radiation beccme massive and slip beck in
phass while clectrions emitting radiation bLecoms less massive and
advance in phase. This phasse bunching of gyrating electrons causes
the ooherencs of the measured radiation. The ultimate phase
distribution favors ammission over absorption, thus enhancing the
intensity of the wave. Soms experimental results are fiven in table I.

. -
R SR 2 T R - P S SR

e - .




TABLE |. PEAK POWER LEVELS FROM CYCLOTRON MASERS (GYROTRCNS) DRIVEN BY

INTENSE PREB.
Peak microwave Accelerating
Wavelength (cm) power (MW) voltage (MV) Diode current (ki)
b 900 3.3 80
350 2.6 4o
0.8 8 0.6 15
0.4 2 0.6 15

2.4 Other Schsmes

The genaration of coherent Cerenkov radiation has been
observed by several researchers (ref 9, 34), including ones at
partmouth College and Columbia University (ref 54, 53), In their
experiments, they used a modest 0.5-MeV, 10-kA electron beam with a
foilless diode to generate 1 MW of microwave power at frequencies from
35 to 75 GHz (4 to 10 mm).

Intense microwave aemission has also been observed during
reflex triode operation at the Harry Diamond Laboratories (ref 7)
and at NRL (ref 36) where 10 and 90 M{ were measured in K, and
X microwave frequency bands.

Athough there are many more schemes that have not bsen
discussed (ref 4, 8, 14, 15, 27, 29, 33, 35, 44, 50, 51, 56) it s'wuld
be clear that intense REB's can be used to produce large amounts of
microwave power at a very wide range of frequencies.

3. ELECTRON-BEAM GENERATORS

Capabilities for producing intense REB's (ref 21) have increased
dramatically over the last several years. Although most of the
industry's attention has been devoted ¢to the super-high-power
generators like the AURORA (10 MaV, 2 MA) (ref 6) and the PROTO II (1.5
MeV, 4.5 MA) (ref 39) facilities, a great deal of work has Leen done on
improving the reliability, reproducibility, and repatition rate of the
smaller (0.25 to 2 MeV, S to 30 kA) machines. A sampling of some of
these electron-beam machines is listed in tables II and III. Two of
these machines are discussed in more detail.

10




TABLE 11. SAMPLING OF SOVIET REPET!TIVELY PULSED REB MACHINES

Machine Year v"“" |'““ :’ulse d P‘“‘J P"‘" Reference
(xv) (A) ength A (XW) )
(us) (Hz)
EL1TA-500 1971 500 1.5 5 300 1 0.7 )
ELITA-1 1971 1000 15 4 300 ] 10
ELITA-1.3 1971 1500 100 0.05-3 100 2 150
ELITA-3 1971 3000 40 10 300 20 100
ELT 1971 1300 0.07 6000 50 15 0.09 } !
ELT2 1971 1800 0.12 6000 50 25 0.215
PAY 1971 1200 0.08 5000 50 10 0.295
TEUS-15 1971 1200 0.125 ? ? 150 7
RIUS-S 197i 5000 30000 0.04 0.005 (0.03) 150000 J
ELT 1.5 1967 1500 20 ? 50 ? 30000
ELT 2.5 1967 2500 ? ? 50 ? ?
ELIT ) 1967 1000 100 0.06 50 3 100 2
ELIT 3 1967 3000 ? ? 100 ? )
--€ 1976 1400 50 0.03-1 100 5 (70)
- 1976 1200 150 0.2 50 0.4 180 3
- 1976 250 4060 0.015 ? ? ? PORTAGLE
1976 2300 ? 1000 7 ?

‘Pullo repetition frequency

!
bnumu in parentheses are inferred

€-- = machines not named
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3.1 Nereus Relativistic Electron-Beam Generator

Nereus machines (ref 43) are used as the electron-bsam source
in several of the microwave-generating schemes discussed in the
preceding sections. Although they can easily be modified (and some
have been) to produce higher wltages with less current, the basic
machine delivers a single 80-kA pulse 250 to 400 keV with a pulse
length of 30 ns.

The Nereus generator is an example of "classic" electron-beam
machine design. An oil-insulated Marx Generator is used to charge a
water-dielectric transmission, line. This transmission 1line is then
discharged by a polyethylene switch, past a prepulse resistor,
through a vacuum diode. The entire facility could - easily be placed on
the back of a small flatbed truck.

3.2 High-Repetition-Rate Trace Machine

The original TRACE electron-beam generator (ref 45) is a
simple compact machine in which a transformer is used to charge a
Nereus pulse-forming 1line (PFL). This system is approximately
1.5 m long, 0.6 m wide, and 1.2 m high and includes all system
components mounted on a roll-around platform excert for the control
panel and vacuum roughing pump. The system is designed to operate with
up to 500 keV on the PFL and to generate a 100-kA, 30-ns electron beaxn.

Using this pulser as a starting point, a program to develop a
series of repetiiively pulsed generators has been undertaken at Sandia
Laboratories (ref 47) beginning with a pulser designed to deliver
350-keV, 300-J, 100-ns- - pulses at a continuous rate of 100 per second.
From these specifications, the output current is 8.6 kA and the
generator impedance is 41 ohms. The machine that was actuzlly built
(ref 46) has a shorter pulse length (30 ns) and a oomspondinqu high
current (30 kA).

The working system (shown in fig. 5) consists of a low-voltage
modulator section, a voltage step—-up transformer, a PFL, a high-voltage
switch, and a load resistor or diode. The modulator converts d4c power
at 10 kV to primary pulsed power at 20 kV by resonant charging a 1.5-uf
capacitor from a 14.5-F capacitor. When the 1.5-uF capacitor is
subsequently discharged through the primary of the voltage stap-up
transformer, the PFL is charged to 700 kV. Near the peak of the charge
cycle, the output switch closes and energises the load. At full
voltage and 100 pulses per second, the average power output of the
system is 30 kW,

13
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Figure 5. Pulse:r assembly including (1) 12C-kV power supply,
(2) primary storage capacitor (14 pF), (3) charging inductor
(300 uH), (4) slow transfer i.aterstage switch, (5) secondary
storage capacitor (1.5 uF), (G) high current switch, (7)
transformer high-voltage shield (oil filled), (8) transformer,
windings, and central high-voltage bus shown schematically,
(9) helical pulse forming line, (10) high-voltage output switch,
and (11) cylindrical salt water load resistor.

The complete pulser system has undergone tests up to 100
pulses per second at 15-kW average power and 30 pulses per secord at
full voltage. A total of 2 x 10° shots was fired during the
preliminary trials with individual runs of up to 1.5 x 10° shots.
During these test runs, there were no major component failures or heat
buildup problems. '

3.2 Hypothetical Relativistic Electron-Beam Microwave Gensrating
System

The relativistic magnetron described by Bekefi and Orsechowski
(ref 5) was driven by an electron beam that delivered about 12 kA at
360 keV. Linearly polarised sicrowaves at powers of 1.7 GWN were
measured at 3 GHs; the efficlency of converting electron energy into
microwave radiation was 35 percent. If this experiment were driven by
the repetitive generator described in the previous section (with its
30-kA output), the peak microwave ocutput should increase by a factor
of 2 to 3 to yield about 5 GM per shot at a conservative repetition
rate of 30 pulses per second. This would only correspond to about 5 kW
of average radiated power, but this represents an impressive "first
step” towards using and developing these techniques. '

14
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It should be noted that much work would need to be done if
this hypothetical system were to constructed. The most
important problem would be to determine whether REB could be operated
repetitively.

The major effects 0 be analyzed and measured in determining
the feasibility of interfacing a rspetitive-pulse power supply and a
super-high-power REB microwave sourca are (1)} the thermal loading
produced by electrons and icns hitting the anode and cathode of the
microvave device, (2) the magnitude of plasma abrasion upon the anodae
and cathode, and (3) the effect of plasma formation on insulator
flashover recovery time. Even at very low repetition rates (cne shot
every few minutes) whe:e physics and engineering problems begin o
disappear, the large bursts of generated energy must still be coupled
into some sort of antenna.

Thus far, the evaluation of REB microwave-generation schemes
hacs been conservative. Since ro determination of physical limitations
has been made, the potential of the merger of these two technologies
should also be considered with cautious optimism. A program is under
way at NRL and at the Massachusetts Institute of Technology to double
the efficiency of the REB magnetron to about 70 percert, it is hoped.
Also, the goal for the next gepneration of repetitively pulsed
electron-beam machines at Sandia Laboratories is to exceed the first
generation by a factor of ten. If this can be translated directly into
microwave power at 70-percent efficiency, then the ontpmt would rise to
nearly 109 GW per shot at 100 shots per second for an average power
radiated of 100 kWw. If these improvements do not require any gross
increases in component size, the entire system would remain easily
transportable. Of course, the above system represents a large amount
of extrapolation, but repetitively pulsed electrun-beam technology is
in its infancy and it is impossible to predict how far and how fast the
field will develop. '

4. CONCLUSIONS

Many different ways of converting RE3 eneirgy into radiated
microwaves have been demonstrated in lahoratories around the world.
The frequency of the generated radiation varies from 1 to 100 GHz with
power levels up to several gigawatts.

Although the super-high-power REB generators like AURORA and PROTO
are unreliable and inconsistent--as were their predecessors--a new
gsneration of REB machines has begun to fill in the gaps behind them.
These "new"” generators (like the Nereus and TRACE machines) are
characterized by high efficiency, compact size, reliable operation,
reproducible output, and widely varying output ranges. Microwave
engineers who are interasted in an ability to produce exceptionally
high peoak powers and increasingly higher av-rage powers should not
overlook the attractive poasibilities of REB microwave generation.
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