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PREP P

Magnetostatic Wave Transducers With
Variable Coupling

1. INTRODUCTION

In a previous report, : the characteristics of periodic magnetostatic surface
wave transducers on the surface of yttrium iron garnet were analyzed. Here, we
extend that analysis to include periodic transducers lifted off the surface. The
liftoff provides variable coupling between the electromagnetic driving structure and
magnetostatic waves. This adjustable coupling is needed for effective signal
processing. 2

The analysis presented differs from that used in Reference 1. Here, we em-
ploy the magnetostatic approximation at the outset and introduce a magnetic poten-
tial. This procedure allows the same analysis to be used for investigating magneto-
static forward volume waves (MSFVWs). For this reason, we provide a detailed
analysis for the present magnetostatic surface waves, so that the study may be
adapted in follow-on work to these volume waves. The physical model consists of
a thin periodic transducer separated from a YIG slab by a gap, with the entire

(Received for publication 19 September 1978)

1. Sethares, J.C., Tsai, T., and Koltunov, I.1.. (1978) Periodic Magnetostatic
Surface Wave Transducers, RADC-TR-78-78.

2. Emtage, P.R. (1978) Interaction of magnetostatic waves with a current,

J. Appl. Phys, 49:4475,

-

e




structure sandwiched between two ground planes. Our results reduce to those of
Reference 1 when the gap is set equal to zero. When we use the appropriate
characteristic equation and permeabilities, our results will be applicable to

MSFVWs. 3

2. BASIC THEORY

2.1 Rasic Equations

We first analyze the finite structure with ground planes as shown in Figure 1.
A transducer in the form of a meander or grating is excited with an RF current.
Figure 2 shows how the transducer is connected to the ground plane structure and
to the input/output line, The current establishes RF magnetic fields that generate

a variety of propagating modes within the structure.

GROUND PLANE
777 7 e
' PERIODIC ARRAY OF CONDUCTING STRIPS _ (4
— 4 PERIODIC ARRAY OF SONuETNG S
9 1 (3)
b4 X

d YIG (2)

2 (1
”/J//j////////7///////////////////L

GROUND PLANE

Figure 1. Geometry of the System Composed of YIG Film of
Thickness d, Conducting Strips Spaced a Distance g above
YIG Surface, and Two Ground Planes

3. Miller, N.D.J. (1977) Non-reciprocal propagation of magnetostatic volume
waves, Phys, Stat. 43:593-600.

el




GRATING TRANSDUCER

(A) MEANDER LINE
TRANSDUCER

GROUND PLANE

DIELECTRIC
REGIONS

TRANSDUCER
LEAD-IN CONDUCTOR

GROUND LEAD

ZZZrzzrrzr
DIELECTRIC t

Y
| 2 RFIN
LIFT-OFF SPACER

H—— b
DIELECTRIC !

NS NN NN NN

e

() GROUND AND SHIELD

Figure 2. Delay Line Configuration for Magnetostatic Waves. a. A magnetostatic |
surface wave delay line configuration showing a grating and meander line trans- |
ducer structure. b. Transducer connections to ground plane structures
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The problem is analyzed by satisfying Maxwell's equations and the gyromag-
netic equation simultaneously, along with appropriate electromagnetic boundary
conditions. The equations which are satisfied in each of the four regions (Figure 1)

_‘@ -
V)(H-at ' v-B=0
o (1)
= __ 9B —
v X E Tt 3 v.D=20

are Maxwell's equations; the constitutive relations in each region
e -_— - i’ H B —
B uo(H + M) by H
(2)
= €«

D eoer-E

and the gyromagnetic equation for the YIG region

§_1_\_| - -yM XH (3)

which is approximated by linearizing to first order in small signal RF field vari-
ables. We consider magnetostatic waves propagating in the x direction, The

magnetostatic approximation is used and only TE modes are considered. Thus,

IJZ>EX~Ey:0 (4)

with no variation of any quantity in the z direction. The time dependénce of all

quantities is el‘"t and
weE = 0 (5)

With the foregoing assumptions, the field equations [Eq. (1)] become

S 9H,  OH
vxH=0 or <X S i (6)

(7)
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T gl —

v —

9B B
SR
X - Ay 0 (8)

with the equation v - D = 0 automatically satisfied. In all regions except for the

YIG region, we take the relations
Bx = u
(9a)

By=u

while the linearization assumption reduces Eq. (3) for the YIG region to the form

Bx 3 “o(“ll Hx T iy Hy)

(9b)
By T uolipgg Hy gy Hy)
Expressions for the permeability components are given by Emtage2 for both sur~

face and volume waves.,

2.2 Magnetic Potential

Since Eq. (6) is satisfied in each of the four regions, we can find a potential
function ¢ in each region such that

H-=-w (10a)

All the quantities of interest are now assumed to be functionally constituted in the
form

f(x, y,t) = F(y) e KX glut (10b)
Suppressing the time dependence, we assume the y dependence in each region to
be of the form

a.y o 15 A

wj=(AJ,eJ +Bje 77y o"iKx 8;>0;§=1,234 (11)
where the aj, j=1,2,3,4 are to be determined so that the basic equations, Egs. (6)
to (9), are satisfied while the A, Bj' j=1,2,3,4 will be determined to satisfy the
boundary conditions which will be presented in the following section.




From Eq. (10a) we find, for each of the four regions

v a.y -a.y
H =-iKe‘K"(Aje3 +Bje 7y

i=123,4 (12)
; a.y -a.y
= ~iKx | J
Hyj ae (AJ. e Bj e )
Thus Eq. (6) is automatically satisfied.

Now, in regions 1, 3, and 4 we have from Eq. (9a)

e -iKx 8y e
ij—-luoKe (Aje +Bje )
Ji=1,3,4 (13)
y a.y -a.y
- -iKx 3 J
B, = W Eeaiad? LTS
7 He aJ e ( j 5 e )
while in region 2 we have from Eq. (9b)
3 o =iKx agy i -
sz- -poulllKe (Aze +Bze )““0“12329
a,y -a,y
2 2
(A2 e - B2 e ) (14)
3 -iKx agy g -iKx
Byz'“o“xzxe (Ay e +Bye )+u°u22a2e
agy e

(Aze -Bye )

We now attempt to satisfy Eq. (8) for each of the four regions. In regions 1, 3, 4
we have, from Eq. (13)




T e —

B
X, a.y ~a.y
X 2 ~iKx
Tx_l"“oKe (Ajej+BjeJ) |
i=13,4 (15)
aBy a.y a.y
o 2 _-iKx j %
-ry—i-yoaje (AJe +Bje J)
so that Eq. (8) is satisfied if
8 = |k i=1,3,4 (16)
In region 2 we have, from Eq. (14)
9B
x ixes a,y -a,y
2 0 2 _-iKx 2 2 -iKx
e 70 BB L LR e T
a5y a5y
2 2
(Ay e -Bye )
(17
B
Y2 -iKx &a¥ "8y 2 _-iKx
3y " HoHiz®pKe T (Aze” -Bye " )tu ugaage
asy -a,y
(A2 e 3 B2 e 2 )
so that Eq. (8) is satisfied is
2
ugp 83 = uyy K (18) »
Defining
K11 b
B= — (19) {
H22 {
* .
we require ]
a, = BiK| (20) ied

for Eq. (8) to be satisfied in region 2.
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By integrating both Eqs. (7) in each region and utilizing Eqs. (13) and (14),

we have in regions 1, 3, 4

1 a -a.y
E =-iw[-1y -ﬁe‘Kx(A el -B. e J)]
z, o a,
J J
j=1,3,4 (21)
a, a -a
5 -iKx R J
EZJ lw[luo-ﬁle (A e B, e )]
which are equal if Eq. (16) is satisfied; and in region 2
) e a5y “Bo¥
Ezz—-lwe [-lgpoull(Aze -B2e )‘Ipoulz
a,y ~a,y
2 2
(A2 e B2 e ]
(22)
3 - ) a3 TR .
E22 iwe 1yoy12(A2e +B2e Y+ iu Moo K

a5y ~ayy
(Aye 2" -B,e 2)]

which are equal if Eqs. (19) and (20) are satisfied.
We have thus determined the constants a,, j = 1, 2, 3, 4 for each of the four
regions, in order that, Eqs. (6) to (9), the basic equations, are satisfied.

2.3 Boundary Conditions
The physical quantities which are specified due to cont lnuiity and boundary
conditions (Figure 1) are:

B, - 0 at y= -t +d) (23)
H., By are continuous at y=-d (24)
H_, B_ are continuous at y=0 (25)
x' "y )
By is continuous at y-=g (26) g
: 3
By =0 at y-t, +¢g ‘ 27 i
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The physical quantities Hx' H v B = By are actually to be found in each region
by employing the wj of Eq. (11) and integrating in K. For the purpose of determin-
ing the constants AJ., Bj' we shall write these quantities temporarily without the K
integrations.

We now have from Eqs. (12) and (13) using Eqs. (16) and (20)

Hy = -iKe ™ (A elKly, B, eIl
J i=13,4 (28)

moo- ik e KX a oBlKly, g o-BlKly)
X 2 2

2
and
2 -iKx Ikly _ g o-IKly &
13-yj u,lKl e (A e Bj e ) j=1,3,4
(29)
o uouppKe X (a, HlKly B, e PlKly 4o gy BIK| 7K

a, BIKly _ g o-BIKly)

The prime ind cates that the quantity has been written without the K integration.
By writing

: X
@ * 4“11"22“‘12 K] Hag Bt sup, :

(30)
. AT
R CYTRY Tal "0? " u
we simplify Eq. (29) as
B s K] "%, lKly g e-IKly §=1,34
YJ o J J
(31)

B'yz - NO|K| o (ay A, eB|K|y -ay B, e'ﬁlKl Y)
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The eight constants A, B, j = 1,2, 3, 4 will be found in terms of one remaining
constant by using Egs. (28) and (31) in satisfying the seven boundary conditions in
Egs. (23) to (27). The last constant will then be found by satisfying the additional
boundary condition

Hx4 - Hx3 = J(x) at y=g (32)

where J(x) is a prescribed current distribution function.
Proceeding with boundary conditions [Eqs. (23) to (27)] systematically from
region 1 to region 4 and employing Eqs. (28) and (31), we have

A, o-|Kl(+a) B, o KlU+d) o
(33)
A elxld B, lKld A, o-BlKla B, BlKld
s o-BlKld _ oy AlKld A, o-lKld _ B, ol Kld (34)
b el b ik
(35)
By« By ~ayhg ~ oyl
A, Kle . B, o-1Klg . A, olKle . B, -Kle
(36)
[kt +e) - k|t +g)
4 e - B4 e =0
Solving Eq. (33), we obtain
; oKl (1+d) 4, e-BlKla B, BlKlg
1 2 cosh |K|l
37
erlxlura eBlKld, g oBlKlq)
B, =
1 2 cosh |K|l
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Solving Eq. (36) we obtain

-IK] ¢, +g)
e | 8 (A&eIKIg-B3 e"Klg)

2 sinh |K| t,

(38)

|kt +g)
e 1 (Aq elKlg--B3 e'IKlg)

2 sinh |K| ¢t
Solving Eq. (35), we obtain

N y
A = 3 [Az(l +al) +B2(1 02)]

(39)
ok
y =8 (AZ(I - al) + B2(1 + 02)]

By writing

ay + tanh |K]|2
T : ——mm—m— (40)
a - tanh (K[l

we write Eq. (34) as, employing Eq. (37),

(41)

The remaining constants are then obtained in terms of BZ’ From Eq. (37) we |
obtain

B,(1 +T) |
Ay » 2 LB+ K|d |

(1 +e-2|K|l)

(42)
Bz(l +T)

SB-DIK|d
2|K|l)

B, =
(1+e
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By writing
U - (1 -ay) e BIKIa L (4o 1 BlKld
(43)
Ve arapeflKld 7 BlKld
'
we have from Eq. (39)
<& glx|a
A3 =3 B2 Ue
(44)
s | Blk|d
By =3B, Ve
and from Eq. (36) !
glx|a
B, e
Ay = —2 v e2lKle g
2|k|t,
2(e -1
(45)
glx|a
B, e
B, = —2 w - u e2lKlg
-2|K|t1
] 2(1 - e )

We now have Al' B,, Az. A3, B3, A4, and B4 defined in terms of the remaining
constant 132 which is to be determined by satisfying the remaining boundary condi- \

tion (Eq. (32)] where the H , j = 3,4 is taken as, using Eq. (28).
3

[~ ] ! &
H, = -i f K [Aj(K) elKly B,(K) e"K‘y] dK j=3,4 (46) \
i o0

The Aa, B3, A4, B4 appeai-lng in Eq. (46) are now written as functions of K. The
boundary condition [Eq. (32)]) thus implies i
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e

o0
-1 f K o 1Kx [A4(K) e‘Kig+B4(K) o lkle
)

- Ay(K) elK'g - B3(K) e"K"] dK = J(x) 47

The integration in Eq. (47) can be accomplished by multiplying both sides of
1
the expression by elK * and integrating with respect to x from -« to « and noting

that

l(K'-KIX 4y . 2m5(k' - K) (48)

8§ s

where §(K) is the Dirac delta function, The expression then becomes

w -
f K [A4(K) elKle s 50 e 1Kle - 5 a0 e KlE L5 0 eI g]
=00

8(K' - K) dK = —2‘7f I(x) KX ax (49)
-0

Defining, as the Fourier transform

iK'x

Tk = J(x) e dx (50)

and then replacing K' by K, one notes that expression (49) becomes

K[A4(K) elKle, B,(K) eIkl _ 5 ) ol Kle - 5 i) 7Kl 5] - H® (5
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Utilizing Eqs. (43) to (45), we note that the preceding expression becomes 1
B -
TzK eBlKld [coth lKltl (Ve |K|g -U elKIg) -(U e|K|g+VE |K|g)]
- i (52)
27 1
or
L
B

—2~KeB|K|d [V e"K‘g(coth |K|t1 -1) -0 e'K'g(coth |K|t1 + 1)]

- K (53)
27 i
Defining
Blk|a ¥
F(K) - & [v e Kl coth ||t - 1) - U el Kl (coth |kt + 1)] (54) |
P
we have
4
Y (0
By " mKFB (55)

The other constants are now found [Eq. (41) to (45)] as

28/K|d j A

A - LT+ T) LB+ |K[d |
;e
27 K F(K)(1 + e-ZIKII)

(57

& lT(K)(l + T‘LG(B-I)hdd

2x K FKN1 + 2/ K1)

18




_iJK U eB|K|d
3 1r
(58)
- o« LK v eAlKld
3 % Tdr K FR)
A . LIV 2IKle _y AlKld
‘ 2| K|t
47 K F(K)(e -1
(59)
B . L3NV - v e2lKlg BlKld
g " -

-2[K|t,
4r K F(K)X(1 - e )

2.4 Field Equations

With the determination of all the constants, we have the time dependence
suppressed expressions for Hy and By,. j=1, 2, 3, 4 in terms of integration in
K, from Egs. (28) and (31) usir'}g Egs. 155) to (59), as

Lo -~ i
H e W eBIKId(T+ 1) J(K) cosh [|K|(t +d +y)) oKX g
Xy 4 Jw F(K) cosh | K|t
F (60)
ST el
et i f - eBlKId (T + 1) Jay #10h (K|t +d+y) oKX g
Y1 Lo /% "F(K) cosh |K|i
1 BlKld g BIK|(a+y) , _-BlK|(@+y| _-ikx
Hx2=-2;f —T(K-)i‘—)-'re Vie N oIKx i
-0
(61)

i 00
_lug s oBIKld 3k Bl K| (d+y) -8l K| (a+y) | _-ikx
Byz- - R @, Te -aye |kl (a+y e dK




00
glK|d % [ .
! e J(K) lKIy_ -|K|y -iKx
Hx3—ﬁf~—2ﬁk-3—— Ue +Ve e dK
=00
(62)
L GPPILILY (% [0 lKly g erlKly] e ax
Yy = 27 2F(K) i *
8 -00
BlKld >
e J(K) cosh[|K| (g + t, - i
B L il oo IKley oot
s R 2F(K) sinh K]t
(63)
i“o * s eBlKld.T(K) sinh [IKI(g +t - bl
B =
T 2 2F(K) sinh K|t
(U e|K|g -V e'|K|g) e 1Kx gk
where s = K/|K| and writing
Fp(K) - e-2B1K[d £y (64)

we have from Egs. (54) and (43)

-26|K|d

Fp(K) = ;— (coth |1<Iz1 - 1) [(1 tay) e +(1 = al)T]

e-1®le _ (com |k]t, + D[ - ayp e28lKld al)T] e|K|8§
; (65)

The integrals in Eqs. (60) to (63) are evaluated by contour integration. The
integrals are assumed to vanish on the infinite upper and lower semicircles due to
the behavior of J(K). There are residues at the two real simple zeros of FT(K)
which we denote by

Fp(K) = 0 I W (66)

20
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The residue is then the remaining portion of the integrand evaluated at Ks multi-
plied by the reciprocal of [(3/3K) FT(K)] K-K which we write as
8 ]
(1) 9
Fp'(K) = | 5 Fp(K)| (67)
K=K
s
]
The value of each integral is then 27i multiplied by the residues at KS, 8 =-1,1,
Defining J
. -Blxld
J(K,) e
G = (68)
S (1)
Fr (Ky) i
a, + tanh IK lt
T, - 2 ——— 2 (69) {
a, - tanh |K_|? 1
we can rewrite Eqs. (60) to (64), using one pole at a time, as )
Luy o} G, (T, + 1) cosh [|K | (¢ +d +y) e-u«:sx ;
e | cosh IKsll
s =~-1,1 (70)
g . Mo s G (T, + 1) sinh [|Ks|(1 +d+y) e-u(sx :
Yy
1 cosh lelt : A
BIK, l@+y)  -BlK_|(a+y) -iK x |
Hfc8)='lG(Te . +e . yu !
“ R 1
2 1
s=-1,1 (71) 8
K, | (d+y) -BlK_|(d+y) -iK x
) 8l gl 1Oy s s
Byz- uoaG(alT‘e -ag e )e

21
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w 18, Ik |y -|Ks|y -iK x
Hx3 % g (Use + Vse ) e
s=-1,1 (72)
-su_ G Ik, |y -k |y -iK x
B‘yS)=—§—° Simae T =W et
3
-i G cosh[lKl( +t, =9l |K]g -Kl -iK_x
TC S g8 ' (U e ¢ -Vselsg)e s 4
X4 2 sinh |Ks|tl 8
s=-1,1 (73)
-u_s G_sinh [|K_|(g+t, -y |k _|g -k -iK_x
gi®) , o Ts T o R Slg)e s
Y4 2 sinh |K |t 8 . 1

where, from Eq. (43)

-BlK,|d BlK,|d
(1-ay)e +(1+a)T_ e

5 ]

(74)

(=]
"

-8lK,|d Bl |d
VS + (1 -al)Tse

u

(1 +¢12)e

/ There remains to find /3K [F,,(K)] which is FU(K) where F.(K) is given by
Eq. (65). When differentiating, we can consider ay and ay to be independent of K.
Then from Eq. (40) we find 4

s tla) + ay) sech? [k| 2
(75)

3T |
K " (a, - tanh |K|D)?

We now obtain, by differentiating Eq. (65) and utilizing Eq. (43)

2 %R' Frp(K) = e'BlKld (U elKlg -V e-|K|g) sty csch? |K|tl !

- l(coth [K[ t, + D U elKle 4 (cotn [Klt, - v o~ |Klg) ¢ go-plKld ,-
+ [(coth K| ty + 1) e|K|‘(1 -ay) - (coth IKlt1 - 1) e'|K|‘(1 + ap)) "
2Bsde'2B|K|d g

o

o o e s DS A 1t




+ [(coth |K|t; - 1) o-IKle (1 - @) - (coth [K[t, +1)

st(ay + az) sech? | k|2
(76)

(@, - tanh | K| 2)

enabling the computation of F'(I‘l)(Ks) in Eq. (68).

2.5 Magnetostatic Wave Power

The magnetostatic wave power for each Ks value and for a width ll is given
by
t,+g 4
(s) 1 (8) L(s)
P = E, Hy dy (77
-(£+d)

where H(s (s)

denotes the complex conjugate of Hy :
From Eq. (7) we obtain, for all regions,

B, » -8B, - e B j=1,2,3,4 (78)

B. =u H =1,3,4 79
y. ~ Mo Hy. i=L3, (19
i i
-
By2 “ugliug, sz * o Hyz)
(80)
a 850 :
s —— (B cfgeaB 2
Y2 "22( yz/“° 12 "2)

23
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Equation (77) is then separated by regions as

-d
£
pe) . L g(8) 5(8) dy*f ) 56 4y . ‘/‘E(s)Tﬂ
%2 %3
-d o

z y Y b
p R T 2 3
t
f E(S)H(b)dy (81)
4
g

We evaluate each of the integrals in Eq. (81) using Eqs. (78) to (80).
In region 1, we have from Eqs. (78) and (79)

) | (s)l2

(82)
Zy ¥4 k| 7
S
Thus, utilizing Eqs. (70) and (79), we obtain
W, -suug G5 (T, + 1)? ey
E, HY dy = 3 sinh® (| K (¢ +d + y)] dy
_(+d) - |K4| cosh (K | e
(83)
! Since
Gt 1
8inh™ U = 5 (cosh 2U - 1) (84)
we have
: -swu_G2(T_+1)? [sinh2|K_ |t
(s) (s) .. _ Foitg g s I}
E Hy dy = 3 -7 (85)
il |K,| cosh® |K, |2 4K |
"
In region 4, we also have from Eqgs. (78) and (79)
-SWw u 2
E(S) (55 [5) IH(B)I (86)

Z4 "4 |K8| Y4
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and from Eqs. (74) and (79)

2
tytg 2 Ik, g -1k, e .
f E(S).H_(de et Gs Use -Vse y
g “4 Y4 4|Ks|sinr?lxsltl
t1+g
f sinh? ”KS](g ity =y dy (87)
g

and utilizing Eq. (84) we have

2
tyte ( IK,le -|K.|g)
)! % 2 s s
f E(S)——H(s) s swu, Go \U e =Vg@
z y Ty 2
" 4 4 4|Ks| sinh IKslt1

sinh Z]Ksltl by :
4}1{ I =p (88)
S

In region 3, we again have from Eqs. (78) and (79)

g8 4 Tk kil

(s)(2 i
%3 "3 1K, 'Hysl : L

L
and from Eqgs. (72) and (79)

2
(8) (8 .. _ ~Fuu, Gy 2 2le|y 2 -2,Ks|y
fEZSH dy s ———— U’ e +Vse -2USV_‘J dy

b s
L 3 4|Ks| 4
(90) \
Thus .
g v A 2 2 2 &
fE(s)H(s)d = Sup, G, [Us (eleslg_” _vs o 2|K|g_l)
Z3 ¥y 4|Ksl 58 i
-2U, V, IK.|g] (91)




In region 2, we have from Eqs. (78) and (80)

[ e 7 ke ( (s) T(8) (s) 2)
gt gi®) . 8 b Y e i (92)
22 Y2 k] 12 "x5 "y 22 7Y,

Now, from Egs. (71) and (80)

R ( BIK, | @+y) -tﬁlKS\(dw))
Ry [-:»GS a; T, e -oy e

[3|Ksl(d+y) -[3|Ksl(d+y) -iK x
= K12 Gs Ts € e €

(93)
which simplifies to
G. BIK_ | (d+y) -BIK_|(d+y) ] -iK_x
(s) _ S [ s s s
H = T e -a,8) te (U, + a,8)| e
Yo Moo 12 1 12 2
(94)
Now from Eq. (30)
Myg = @18 =pyp =8 gy B 8uyy) = -8 uy B
(95)
Mg+ ags “uyp*t 8 gy Byl = Buyy b
and
(s) BlK |(d+y)  -BlK_|(@+y)) -iK_x
Hy, '“BGS(‘TS" . S T iy (96)
" Since from Eq. (92)
o e . o] o
g 3 73 I, s 308 a 1




we have first, from Eq. (96)

o o 2
2 BIK |@+y)  -BlK_|(a+y)
“22 |H§,S)| dy . “22 82 Gg f (‘T e ? e 2 dy
“d %
(98)
or
2 2B|K_|d
3 |H(S)|2d 2 2.9 Ty 2B|Ks|d 1y~ de | Sl =
Hoo f y Y= Hoo B GS (e = -——
da 2 28/x_| 28|
-2 TS d (99)

We next have, from Eqgs. (96) and (71)

o] [o]
— BIK_|@+y)  -BlK_|(@+y)
bty H;S)H;s)dy=-pl'2G§st (Tse s ba o ®
di- T2 Y2 Sy
BIK @y -BlK | (a+y)
= TS e + e dy (100)
‘ or
o iy )
-28| K, | (d+y) 28|K_| (a+y)
inyp f HeY H;S) dy = -u;p G2 s B (e " -t2e dy
P S '
(101)
which becomes
o - 2
“Uyo G -28|K_|d 28|K_|d
Luy f (S)H(s) =——12 8 [(l-e = -Tg e B e
4 2| K, |
(102)




Thus the integral in Eq. (97) becomes, using Eqgs. (99) and (102)

o P Tain 2 | |d
(8) 1, (s) _ ~8uwu, Gy 2  2RIK,
f E, Hy dy—-——r Ts(e -1)(Bu22+u125)
a 3 %2 2|K,|
-28|K |d 2
+ (e '1)('3“22+“12 S)'4B ‘-‘22 |Ks|Tsd
(103)
Utilizing Eq. (30), we have
o 2
(s) (s) ~Swu, Gg [ 2 2B|Ks|d '23|Ks|d
E""H 'dy = a, T (e =1) ~a, (e - 1)
._/; Zg Yg Z'KS’E s 2
2
-48%u,, IK I T, d] (104)
Finally, placing Eqgs. (85), (88), (91) and (104) into Eq. (81), we obtain
2 . ;
-swu_ 1 (T +1) sinh 2|K_|2
ple) . ——o 142 < —— - |k |2
2|Ks| 2 cosh |Ks|l .
2
Ikl g -1k, | g :
U, e -V, e sinh 2|K_|t,
g 2 2 o 'Kshl
4 sinh® |K_]t,
2 2
v 2|k |g v 2|k lg ]
l]_s s s s
+2[2 (e ~1) - (e -0 -2U, v, |K |g
o 28K |d -28|K |4
+[a1’r3 € D -ayle P -1-4puy |k T, d
(105)
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Defining

2
2 . ( I le -|K5|g)
(s) (T, + 1) (smh 2|k |t s lxslt) ; U, e -V, e

A'8)
cosh? |K_|1 4 2 4 sinh? |K_|t,

(sinh ale fe, Il )

4 2
l[Ug 2|k, | g vg -2|K_|g |
*—4-—2'(6 -l)-—-2-—(e '1)-2USVS ng
a 28| K_|d a, -28|K_|d
P S 2 £} 2
+[7Ts(e -1 -5 (e -1 -28 u22|KS|TSd]
(106)
we can write
2
-swu £, G
(s) _ o 12 s Als) (107)
2| K|
for the magnetostatic surface wave power due to each Ks' s.= -1,1, By writing
(%Y - 1 2 oi8) @ 1 2 (s)
PV =5 [MKINRS =5(TK)I® 1) R _ (108)
where
(s) _ (s)
g Ay
we obtain, using Eqs. (68) and (107)
-28| K |d
) e (s)
1 (109)

T e n?
Ik, | 1Fp (k)
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It is to be noted that all the results obtained here reduce to the results obtained in
Reference 1 when the gap region, region 3, is removed and g is set to 0. We will
consider Eq. (109), the radiation resistance, again in more detail in Section 4.

P 3. FREE SPACE CASE: NO GROUND PLANES

In this section we determine the results for the case of infinite free space
where the £ in region 1 and the ty in region 4 are permitted to become infinitely

large.

We first find that boundary conditions [Egs. (23) and (27)] need to be modified
to

B._=0 y - % (110)

B_=0 y - =0 (111)

This causes Eqs. (33) and (36) to change to

Bl =0
(112)
A, - a,t-PIKla, g L1+A | K]d
2
And
A4 =0
2! I (113)
& 3 Klg
By By rhge }
Now redefining
ay + 1 2
T ="1_'r (114) |
r We again have, from Eqs. (34), (35), (39) and (43), as in (41) and (44) !

Ay s 28lKld 4 B, (115)




U _B|K|d
A3 = 7 e B2
(116)
v Blk|d
. By =3¢ By
and from Eqgs. (112) and (113)
A = By(1+T) LmlKld (117)
B
B, = b BlKld (v _y o2lKlg (118)

Now utilizing boundary condition (32) in a similar manner as was done earlier, we

obtain
| B, kuelKlE BlKld . L3y (119)
2 27
The complete set of constants, with
} F) - -u el Klg GBlKla (120)
are given as

} b (1+{3)|K|d(

A - K e 1+7T)
| 1 77 K FIK) i
| : (121)
| B, = 0 -
| ¥ 28|K|4a

_IJK) T e

| Ay - R .
! (122)
. __iJ(K
1 BZ S 2n
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3w LKl g
& I 4r K F(K)

(123)
_iJK) eB|Kld v
3 47 K F(K
s =0
(124)
c~ o 8|K|d
B, - i J(K) e w - o 2lElg
which lead to the modified field equations in regions 1 and 4
o Kld > :
o 1+ PKIFR) K|y -ikx
HX, g f F(K) e e dK
S =00
(125)
. 00 b
L s Il d 3k JKl @y -ikx
v, F(K)
=00
& K|d .
o s ey (K) eB| | (U eIKIg-Ve"KIg)eIKI(g'y) e KX gk
Xy 2r 2F(K)
i =00
(126)
i > K|d i .
B nemd f S—'”%%ﬂzrl—w JKlE |y 1Kl IKl(@-y) -iKx g
Ya s
=00
while for the other regions the expressions remain as in Eqs. (61) and (62).
Defining as before and using Eq. (120), we have
Fp(K) = 28Il gy - . oBlKld [Kley (127)

We perform the contour integrations as before.
We denote the two real simple zeros of FT(K) by Ks' s = =1, 1 so that here

Uy, (128)




e

where U _is as earlier defined in Eq. (74) and, by Eq. (114)
]

T, T (129)

S

Again denoting

(1), i)
Fon (K)) = [ > F .(K)] (130)
T S oK "1 KKS

and defining

~

J(Ks) e
(131)

(1),

T (K

-8lk_|a
S
G

= F

we have, as the result of the contour integrations, for regions 1 and 4

A |K_|(d+y) -iK_ x
5. g T iDe ® P
Xl S S
PR R (132)
K_|(d+y) -iK_x
(8) _ . | S s
Byl 5 SuOGS(TS+l)e e

and

-iG Ik le
B s e Yy

Ik le Ik @-y) -iK x
X4 2 s s ) :

e e

e
s=-1, 1 (133)

=su_G |k -k K_|(g-y) =iK_x

B's Ko 8 (U e slg_Ve SG)els S

Y4 2 s s

with the expressions for the other regions being the same as Eqgs. (71) and (72).
Writing out FT(K) as

P - -elKle [(1 - ay) ¢~2BIKld +al)T] (134)
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and noting from (114) that here

= 0 (135)

3

we obtain for the derivative

2 FL(K) - - sg elKle [(1 - ay) e~28IKld |, al)T]

+2psaelkleg - ap) o-28IKld (136)
Setting K = Ks in Eq. (136) and noting Eq. (128), we obtain

Ik, |g -28|K_|d
Ffr”(xs) - 2sfde ° (1-aye s (137)

The magnetostatic surface wave power for each Ks value and width l1 is now given

by
o =S
s s by (8) ((8)
=— f E, Hy'dy (138)
=00

which when broken down by regions, becomes

-d o
1
ple) _ 1L E® g (s) dy (s) (s) dy + E(s) (8) dy
2 z, ’y 24 y3
=00

o0
+f o B gy (139)
%4 Y4

We employ the relations [Eqs. (78) to (80)] for E, and -Hy , J=1,2,3,4 which
enter into Eq. (139), J j
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In region 1, we have the analogous relation to Eq. (83) by utilizing Eq. (125)
-d -d
AR -swu 2|K, | (@+y) O
[l g . alpr +1)* | ¢ ° dy (140)
2, Yy lK l s S
=00 S -00
Thus 1
-d , 2 2
(8) Ta) o . B0, T, ¥ b j
E H dy = =g (141)
o o ey 2|k|

Similarly, in region 4 we have analogous to Eq. (87), utilizing Eq. (126)

2

- A SR - |k_| -1k lg)” P 2k |-y

fE(s)H(s)dy:__“o__g U e sg_v & s fe s dy
Z4 Y4 4|Ks| 8 % . {

(142)
which becomes, employing Eq. (128) ]
; -2|K | g
o) e -sup Givie
f Ez H dy = - 3 (143)
4 Ya 8Pk _|
In region 3, Eq. (91) obtained earlier holds subject to Eq. (128). Thus
. E
-2|K,|g ‘
£ (0 sup, Gy Vale " -1 4
f B, B, dy = @ 3 (144)
W 8K,

while in region 2, Eq. (104) holds exactly as before.
The insertion of Eqs. (141), (143), (144) and (104) into Eq. (139) gives, after !
cancellation -
(o) Swny Uy .3

P wm—— Y
21k, ¢ 2 : ’

- ag (e

-28|K,|d

-1 - 4By, IK, I T, d

(145)




By making use of Eqs. (74) and (114), one obtains after considerable algebra

| R - +2p|K,_|d -2p|K | d v?
¢ (TS+1) +—4—+alTs (e -l)-az (e '1) "T (146)
which vanishes by virtue of Eq. (128), Thus we have
(]
fa)  BWMs "y 2o
R Gg B ugp Tg d (147)
Ikl
S
-2|K g

By noting Eqgs. (131) and (137), we observe that e is a factor in

Eq. (147), as expected.

Defining
(s) _ 2
AP = 2%y, |KS|TS d ' (148)
we write
2
-swu_ 2., G
p(s) L o 17s A(S) (149)
2lK312
Writing ¥
(s) _ 1 .~ 2 ,(s)
P = 7[J(Ks)l Ro (150)
we have
2 -2B|Ks|d
~Swu e
a o 1 A'® : (151)

1k, |2 1r P& )

which agrees with our previous result, Eq. (109).

The free space case is useful because lel can be written as a function of w
and solved directly. It provides insights and serves as a check on the more
general case,
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4. RADIATION RESISTANCE

In this section, expressions are given for radiation resistance along with

computer results for several cases of interest,

4.1 Isolated Independent Conductors

Consider a transducer made up of N thin conducting strips each carrying a
spatially uniform current 1(}. When the strips are connected in series, the total
current I,r flowing into the transducer is l,r IO. For strips connected in parallel,

forming a grating, [T NI . Following a previous analysi.—;l’ 3 one obtains

: , 2
pay 2R‘1") £ aK, 2 i e'Ks”N
RS — sinc =/ (152)

2 2m iK_p
-+ (1 -n)+(1+n)N l'n(‘.‘l st

(s)

where R 15 is given by Eq. (109). It is independent of transducer geometry.
Equation (152) gives the radiation resistance for a meander or grating array which
is made up of N independent conducting strips.

Figure 3 shows plots obtained from Eq. (152) of the radiation resistance per
unit width for grating transducers of 1, 2, 3, and 4 independent conducting strips.
It gives the radiation resistance for a wave propagating in the Hxn direction,
where n is normal to the surface. The local maxima near 3650 MHz corresponds
to the longest wavelength which matches the grating periodicity.

The effects of liftoff are shown in Figure 4 where radiation resistance for a
four element grating transducer is plotted for three values of g. The decay is
nearly exponential when the ground planes are many wavelengths away. When they
are close, the decay is a complicated function of transducer geometry and ground
plane spacing,

Figure 5 shows radiation resistance for a meander line. Note the change in
vertical scale. There are eight conducting strips connected in series. This
produces higher values of resistance than when they are connected in parallel.
Radiation resistance for both positive and negative going waves are shown with the
nonreciprocity evident, The successive peaks correspond to MSSW wavelengths:
A =npwithn-=1, 3, 5and 7,

Figure 5 was obtained from Eq. (152). In the next section a normal mode
approach is employed to obtain radiation resistance for the same transducer for
the n = 1, 3 normal modes.

4. Sethares, J.C. (1978) Magnetostatic Surface Wave Transducers, 78 IEEE MTT
MTT-S, Cat. No. 78 CH1355-17, 444,
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4.2 Truncated Infinite Array

Again, following the anélysis of Reference 1 we have

(s) 2 o'm
R ?, N°(1 + ncos £'m 2 . (K, -—)Np
Rf:) 1 ! 3 [sinc (-!2-'5'-)] sincz [-8—2”‘9—— (153)
(1 =n)+(1+nN p d

for the radiation resistance of the normal modes of a truncated infinite array., For
frequencies near each space harmonic, Eqgs, (152) and (153) provide nearly identi-

cal curves as seen in Figures 5 and 6. Those familiar with surface acoustic wave

transducer theory will note a basic difference here between SAW and MSSWs. For

SAWs, subsequent peaks in radiation resistance over practical frequency ranges

occuratw - n w whereas for MSSWs, they occur at K = n Ko where n is an integer.

This means that a fixed MSSW transducer structure can provide spatial filtering at
almost any frequency. This is not possible with SAWs.
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5. CONCLUSION

Periodic magnetostatic surface wave transducer theory has been extended to
include variable coupling between MSSW and EM waves, Variable coupling was
achieved by introducing a gap between the YIG surface and transducer. The
analysis is given in sufficient detail to allow one to follow the approach used and
assumptions made, providing a basis for further extensions of the theory. The

technology has application in signal processing directly at microwave frequencies,
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