
1DUT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Bolt Beranek and Newman Inc.

Report No. 3983 iEVLi’~i1 ~~~~~~~~~

~~ Improvements to the BCPL Programming Syst em:
I Final Report
1 O~.

C-)

J UJ

~c ‘c::’ ~

_
~~‘

I c.~
____ ~

•-
~~~~ 

\~.-‘

I December 1978 ‘
~

I Prepared for:
• Defense Advanced Researc h Projects Agency1

ii 79 0 ~
L~~ ~~~~~



____ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ li : ~~~~~~~~~~~~~ ~~~~~ 1 flLU 1P~~ *~~ .

I 
~~~~~~BB~~~~~~~~~~~~ o~~~3983

Q~?-~
-

I Improv ements to the BCPL Programm i ng Sys~ em~ (
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--
‘ Final Re~~~ t J~ —~~.7 4~’.’ 

V/,
I ~ecember l97R~~

2/)
by ~!arry c. 4orsdick , •

J ~~rthur Evans , Jr /
t~~ / ‘t 4 %

I Sponsored by:
Defense  Advanced  Re search  Pr o j e c t s  Agency  ( T) oD)

AR PA Order  No.  35~~7

M o n i t o r e d  by Naval  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Under  C o n t r a c t  ~~~1c ~ø~~3 9 _ 7 8 — C — ø 3 ~~3)

~ ~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
‘/

-
~ Contract Period : 13 kpril 1978 to ~ø November l9~ 8

Principal Investigator: Robert H. Thomas

I
The views and conclusions contained in this document are those of

I the authors and should not he interpreted as necessar ily
representing the official policies , eithe r expressed or impli ed ,
of the Defense Advanced Research Projects Agency or the U.S.
Government.

- ~~~~~~~~~~~

L
~~: _

~~~~~ ~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~



- _ _ _ _ _ _ _ _ _ _ _

-S

Unclassified
SECURI TY CLASSIFICATION OF THIS PAGE (ITheit 0.4. Ento’ed) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

READ INSTRUCTiONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM .
I. REPORT NUMBE R

BBN Report No. 3983 
(2. 

GOVT ACCESSION NO 3. RECIPIENT S CATALOG NUMBER

4. TITLE (wd Subtltl.) 5. TYPE OF REPORT & PERIOO COVERED

Final Technical
4/ 13/78 — 11/30/78Improvements to the BCPL Programmin~,System

6. PERFORMING ORG. REPORT NUMBER• • V
S. CONTRACT OR GRANT NUN8ER(.)7. AUTHQR(i)

-~~~~~H.C. Forsdick N 00 039—78—C— 03 13
A. Evans, Jr.

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . TASK
AREA & WORK UNIT NUMBERS

• - Bolt Beranek and Newman Inc . P
I__ SO Moulton St reet

Cambridge , Massat-huset-ts 071~~R _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

II. CONTROLLIN G OFFICE NAME AND ADDRESS 12. REPORT D A T E

December 1978
I). HUMB E R O F P A G E ~

68
14. MONITORING A GENCY NAME 6 AOORESS(II dllf. r.nt f ro nt Controlling OWe.) IS. SECURITY CLASS. (of till. r.po rl)

Unclassified
5.. OECLASS IFICATI ON /OOWN GRAOING

SCH EDULE

~ I6. DISTRIBUTION STATEMENT (of till . R.port) 
—

~

~Dist ribution of this document is unlimited . It may be released to the
~Clearinghouse , Department of Commerce for sale to the general public.

17. DISIPIBUTION STATEMEN T (of Ut. ab.tr.ct .nt.r. d In Block 20~ SI dIfI .r..,l Iron, R.port)

~~I8. SUPPL EMENTARY NOTES

~This r esearch was supported by the Defense Advanced Research Pro jec t s  Agency
~under ARPA Order No. 3567.

t9. KEY WORDS (Contlnt~ø en rev•r~ e .id. if n.c. ..~~y id Sd.ntSIy by block nuuib.r)

BCPL in line rou t i n e call  p rogramming language
optimization macro TENEX Ope ra t ing  System
peephole assembler  TOPS—2 0 Operat ing Syst m

• - 20. ABSTRACT (Conhlnu. or~ ,.vera. old. 51 n.c...nty ~~d gd.nllfy by block ni ,b.r)

~~ This report describes BBN e f f o r t s  to improve the BCPL Programming System b y
addi ng fe atu res to the language , changing the comp iler and wr i t i ng  new
routines fo r the run—time l ibrary .  New features  added to the BCPL Language
include a faci l i ty  for  de f in ing  routines that are expanded d i rec t l y in p lace
~of calls to them,and an assembler for including PDP—10 assembly language
~statements in a BCPL module. Changes made to the compiler include a peephole
optimizer that was added to optimize translated code and a shorter normal j
~routin~ c,~JJ~j .no ~~~~~~~~~~~~~~~ 1r
DD FORM
- 1 JA N 73 1473 C0ITb0N 0F OV 15~~~~~~*0I~ETC U n c l a s s i f i e d

SECURITY CLASSIFICAT ION OF THIS PAGE (~~,.n D.ta En~.f’d)
N

— - .- ~~~~ L~~~~ . - — .-=‘• ~~~~~~~~~ . -~ —
— 

~~~~—~~-._ --- _-~. ._ . F


~~—

~~~~~.

I
BBN Report No. 3983 Decembe r 1978

I
Improv ements to the BCPL Programm i ng System

Contents Page

I
1. Summary 2
1.1 Changes to the BCPL Lang uage 3
1.2 Changes  to the t r a n s l a t i o n  of the BCPL Languag e 4
1.3 Changes  to the R u n — T i m e  BCPL L i b r a r y  5

2. BCPL Language  Changes 7
2 .1  I n l i n e  Ro u t i n e  D e f i n i t i o n s  and C a l l s  7
2 . 2  p D P l g/ S Y S T E P 4 2 Ø  Class  Assembly  L a n g u a g e S tat e m e n t s . . . . 12
2 . 3  V a r i a b l e s  R e s i d i n g  in R e g i s t e r s  18

3. BCPL C o m p i l e r  Changes  21
3.1 I n l i n e  R o u t i n e  D e f i n i t i o n s  and C a l l s  21
3 .2  P D P 1Ø/ SYSTEM2 Ø Class Assembl y Languag e Statements. .  . 25
3.3 Shortened Ro utine Calling Sequence 26
3.4 Peephole Optimization 32

4. RCPL Runtime Library Changes 38
4.1 Routines to Support BCPL Initialization 38
4.2 Routine to Support Command Scanning 39

5. Performance Tests 42

6. How to Use the New Comp iler 43
6.1 New Languag e Features 43
6.2 New Compiler Features 43
6.3 The Peephole Optimizer 46
6.4 The New Rou tine Calling Sequence 47
6.5 The New library 48
6.6 BDDT —— The Debugger 48
6.7 The Concordance Generator 49

7. Additional BCPL Utili ty Programs 5~
7.1 DMPREL . 
7.2 GLTNDX 52

• 8. Add i tional Documentation 55

. 0  

~ p p en d ix  P. The Impl ementation of the Peephole Optimizer.   58
P.1 Data Fo rmats 58
A .2 Deta ils of the Algorithm s 62

- I -



F, .- 
- -——---—---—---—- - -

BBN Report No. 3983 December 1978

1. Summary.

The TENEX/TOPS2Ø BCPL Programming System is used by many

ARPA contractors to implement software of interest to the

Department of Defense. BCPL is favored as an implementation

language for several reasons . The BCPL language allows a

programmer to use convenient and powerful control structures

while at the same time permitting close access to the basic

— 
efficient operations of the underl ying machine . In addition , the

support system surrounding the BCPL Lang uage is complete and thus

greatly simplifies the process of writing, debugg ing and testing

-
~~ BCPL application programs . BCPL is currently used as the

implementation language for the System for Distributed Data

(SDD—l) , as well as several of the TENEX parts of the Nationa l

• Software Works (NSW): the Works Manager , File Package and Front

End com ponents .

The objective of this contract was to improve the BCPL

Programming System by adding features to the language , chang ing J -

-- the compiler and writing new routines for the run—time library.

All of these changes are intended to accelerate the execution

speed and lower the storage costs of BCPL progr ams. These

changes and additions a~ rect three parts of the BCPL Programming

• System :

~~ 

~~~ -~ .~~~~ ~~~~~. ~~~~~~~~ ~~~


~T 7 - ______

I
BBN Report No. 3983 December 1978

1.1 Changes to the BCPL Language.

Changes to the BCPL language g ive the programmer better or

more efficient ways of expressing algorithms . A programmer

must modify existing programs to take advantage of this class

of improvements . We have made the following changes to the

BCPL Language:

1.1.1 Inline Routine Definitions and Calls.

A call to a routine may now be translated into a direct

expansion of the bod y of the routine rather than a

sequence of code to transfer to the body. This is

beneficial for short routines where the length of the body

is comparable to the length of the calling sequence.

1.1.2 PDP1Ø Class Assembly Language Statements.

A facility has been added to the BCPL Language for

including assembly languag e statements in a BCPL program.

This capability is intended for those special cases when

the code generated by the comp iler is just too inefficient

for the operation being performed . These statements are

necessaril y machine dependent and they are clearl y

identified as such . In an attempt to stay as close as

possible to the BCPL languag e , operands of assembl y

lang uage statements are normal BCPL variables . Used in

conjunction with inline routine definitions , sequences

of assembl y languag e statements can be packaged to take on

the appearance of a normal BCPL routine call.

— 3 —

—

~

-

~

--

~

—— - —~~~— - - — LL _ _


~~~~~
- 

- - .

BBN Report No. 3983 December 1978

1.1.3 Variables Residing in Registers.

One additional change that we anticipated wo uld be useful

turned out on closer examination to be counterproductive.

We orig inally thought that adding a facility for declaring

a variable to reside in a fast reg ister would result in an

improvement in execution speed. Subsequent study showed

that because of the calling sequence convention observed

by BCPL , such register residing variables would have to be

saved and restored on each routine call within their

scope . This would eliminate any benefit gained by

assigning the variable to the reg ister. After many

alternatives for providing this facility were considered ,

we reluctantly decided not to add this feature.

1.2 Changes to the translation of the BCPL Language.

These improvements result in more efficient translations of

programs written in the existing BCPL Languag e (in time or

space or both) . Existing BCPL program s do not need to be

modified to take advantage of these improvements.

1.2.1 Shortened Routine Calling Sequence.

We have implemented a shortened calling sequence for

normal (i.e ., not inline) routine calls. This new calling

sequence maintains all of the functionality of the

previous calling sequence but requires fewe r generated and

I ~

~~~~ -
.

—~~~ _ _ _ _ ___

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:~~~~~~~ _ —-
~~ -

BBN Re por t No. 3983 December 1978

. - executed i n s t r u c t i o n s to a c h i e v e the c a l l . A p p l i c a t i o n

p r o g r a m s run f r o m 3% to 10% f a s t e r due to the s h o r t e n e d

calling sequence.

1 .2 .2 Peephole O p t i m i z e r .

-. An o p t i m i z e r has been added to the BCPL c o m p i l e r . It is

known as a “peephole ” optimizer due to its method of

examining a small numbe r of machine instructions at one

t i m e f o r poss ible i m p r o v e m e n t s . The peephole o p t i m i z e r is

*
table driven and as a result can be modified in the future

to accommodate additional optimizations . With the current

set of optimizations we have observed a 3% to 12% d e c r e a s e

in the size of translated BCPL modules.

1.3 Changes to the Run—Time BCPL Library.

These improvements provide better support for BCPL

a p p l i c a t i o n p r o g r a m s in the f o r m of u t i l i t y r o u t i n e s and BCPL

r un—time languag e support. The most important additions to

the library are several routines to support the new shorter

r o u t i n e c a l l i n g sequence . Some a p p l i c a t i o n s w i l l r e q u i r e

p r o g r a m c h a n g e s to u t i l i z e the new l i b r a r y r o u t i n e s .

- ~~~~~~~~~~~~~~~~~ ~~~~ -~~~~~~~~~~~~ - . ~~~~~~~~~~~~~~~~
E_______

—
~~~~

-— —
~~~

- --- --.- ..— ,

~~~~~~~~~~~~

-- ——-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .  -

BBN Report No. 3983 December 1978

In preliminary tests of small application programs written

in BCPL compiled with the new compiler , we have observed a 5% to

15% overall decrease in execution time and a 5% to 15% decrease

in the amount of space occupied by the machine language

t r a n s l a t i o n of these p r o g r a m s . These i m p r o v e m e n t s were r e a l i z e d

without any changes to the given application programs and as a

result do not take advantag e of the two changes to the BCPL

La n g u a g e (i n l i n e r o u t i n e s and machine languag e assembler) .

Further improvements will resul t when these two new features are

integrated into application programs.

Sec t ions 2 t h r o ug h 8 of this report document the changes to

the BCPL languag e , compiler and library. In addi tion , Appendix A

contains a detailed description of the implementation of the

peephole o p t i m i z e r .

— 6 —

__ —4

- _ _ _ _____ _ - -— ---~~-.-- -. —-.. ~~

~ ~~~~l’—--~~~~~~~~-. --.’r~..-. .
-

- - • -.---
~~~~~~~~~~

-.
~
- - —- -.- ---

~~~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ii

T BBN Report No. 3983 December 1978

- •  
2. BCPL Lang u ag e Changes .

2.1 Inline Routine Definitions and Calls.

The ove rhead  of the BCPL call , return and argument passing

m e c h a n i s m  d o m i n a t e s  the work done by some small routines. For

such routines , it is preferable to replace the call by the actual

body of the routine , adjusting references to the parameters of

the r o u t i n e  to be references to the actual arguments of the call.

This way, the only instructions generated are those corresponding

to the body of the routine.

It is desirable that the semantics of such an “inline ”

r o u t i n e  and a r e g u l a r  r o u t i n e  be i d e n t i c a l .  Th i s  w a y ,  on ly  one

set of rules defining the meaning of a routine needs to be

comprehended. To achieve this effect , the simple rule of having

the r e f e r e n c e s  to p a r a m e t e r s  in the  body of the r o u t i n e  go

- .  directly to the arguments supplied in the call must be changed.

This is because a routine may store into its formal parameters (a

common technique of providing default values for omitted

arguments) . In a regular routine , arguments are passed by value:

the value of an argument is copied and pushed onto a stack so

- 
that the called routine has a private copy of the argument with

which  to w o r k .  To m a i n t a i n  i d e n t i c a l  s e m a n t i c s  with regular

r o u t i n e s , the  p r e c i s e  r u l e  for pushing arguments onto the stack

in an inline invocation must be:

I

— 7 —  

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~- -2  
q..

_ _ _ _ _ _ _ _

- ~~.

___ - - ~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~

T

BBN Report No. 3983 December 1978

Push an argument onto the stack if:

* The argument is an expression or the reserved name
“ nil” .

* The corresponding formal parameter is:

* Stored into by an assignment statement (as a simple
name or as the operand of the structure qualification
operator “ < < “)

* The operand of an “lv ” operator.

* The reserved name “nil” .

Otherwise , make all references to formal parameters in the
body of the inline routine or function resolve to the
corresponding arguments supplied in the invocation.

The effect of this rule is to push arguments onto the stack only

when necessary to preserve ide’~tical semantics with a normal

r o u t i n e c a l l . It is poss ib le to w r i t e i n l i n e r o u t i n e s t h a t

generate no calling sequence overhead.

The BCPL inline routine facility is desi gned so that

chang ing from an “out— of—line ” to an “inline ” routine can be done

by add i ng one keyword , “inline ” , after the “let” (or “ and”) of

the definition:

let inline Routine(Formall , Formal2 , ...) be <command>
or

let inline Function (Formall , Formal2 , ...) := <expression>

Inline routines or functions are invoked the same way as regular

routines or functions :

~~~ ~-r~~~~T 
T .  

T . -~~~



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

t
BBN Report No. 3983 December 1978

Routine(Argl , Arg2 , . . .)
x : Function(Argl , Arg2 , . . .)

Statements si”~h as “ return ” and “ resultis ” jump to the statement

after the inline routine or function invocation with the latter

statement causing a value to be returned. The reserved name

“numbargs ” returns the number of arguments supplied in the inline

i n v o c a t i o n r a t h e r t han the numbe r of a r g u m e n t s supp l i ed in the

call to the currentl y executing routine.

In the f o l l o w i n g example , each t i m e a ca l l to the i n l i n e

routines Pick , Append and Leng th appear , the actual body of the

routine is compiled in place.

I

— 9 —

~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
_ i_

~ ~~~~~~TIL~i ~~~~~~~~~ ~~~~~~~~~~~~~~~ 

-- 

-~~~~



- _ _ _ _ _

-I

BBN Report No. 3983 December 1978

structure
{ String

{ N b y t e
C”511 char

}
}

let inline Pick(CharString , Pos) :
CharString>>String.C Pos

and let inline Append (Char, CharStririg) he
{ let N := Leng th (CharString ) + 1

CharString>> String.N : =  N
CharString )>String.C ’N Char

and let inline Leng th (CharString ) :
CharString>>String.N

let FormDirName(N ameString , DirNameString) : valof
DirNameString >>String.N := 0
Append ($<, DirNameString)

for i := 1 to Length(NameString ) do
Append (Pick(NameString , 1), DirNameString ) —

Append(S ), DirNameString )

resultis DirNameString

Notice that inline routines may be imbedded inside other inline

• routines . In addition , inline routines may he defined

recursively, althoug h the decision on when to terminate the

recurs ion must be based on an expression (probabi” containing the

reserved name “numbargs ”) that may be computed as a constant at

compile time . The compiler considers inline expansions that are

nested to a depth greater than 20~ to be erroneous infinite

recursive expansions . The improvement gained by using inl ine

routines in this exampl e is 241 (out of 542) fewe r instructions

— 10 —

_~
___ 

~~~~~~~~~~~~~~~~~~~~ —-- - - - - - —  - -  -- _l.-.u~._ __ 
— .0 ~~~~~~~~~~~~~ •

- - - --r ~ i — —-- -
~
- --


~~~~~ TiH ~~~~i 1II~~~T~ ~~~~~~~~~~~

I
BBN Report No. 3983 December 1978

executed per call to FormDirName when NameString is l t ~ characters

long . Thus the inline version of Fo rmDi rName runs 45% faster

than the normal rou tine call version .

In su m m a r y ,  inline routines have the same semantics as

normal routines with the exception that the decision to perform a

recursive call must be based on a compile—time constan t

expression. The primary difference between inline and regular

routines i~ the cost of execution time and space of calls to such

routines .

— 11 —

~~~~~ 
~~~~~~~~~~~~~~~~~~~ II - - ------— ---- 

14



~~~
, -;-

~a.

BBN Report No. 3983 December 1978

2.2 PDP1O/SYSTEM2O Class Assembly Language Statements .

There are special cases where the advantage of using a high

level language like BCPL is outweighed by the difficulty of

getting the compiler to generate extremely efficient code

sequences or special purpose code sequences . For these special

cases , we have added to BCPL the ability to inc lude assembly

language instructions directly within a BCPL module. As a

result , the need for specially coded routines in assembly

language is eliminated. In addition , much of the control log ic

in such routines can now be expressed as standard BCPL

statements .

Assembly languag e statements may be included in a BCPL

module by use of the “assemble ” statement . The syntax for this

statement is:

assemble <MachineType>
f OpCode(Argl , Arg2 , . . .)

OpCode(Argl , Arg2 , . . .)

where <MachineType> is the name of the machine for which assembl y

languag e instructions are written. The onl y types of statements

permitted within an assembly block are assembly language

statements . The nam e “pdplO” describes the instruction set of

the DEC PDP1O/SYSTEM2O machines . Each individu I machine

— 12 —

- --• . - -. -.5—,—- - -.. __5 —---- - ____ _______

I
..

BBN Report No. 3983 December 1978

language instruction is expressed in the same syntax as a routine

call. The names of the instructions correspond to the names of

instructions found on pages 23— 91 DECSYSTEM1O System Reference

Manual. In addition , the names of the TENEX and TOPS2O JSYS

calls (TENEX JSYS Manual and DECSYSTEM2Ø Monitor Calls Reference

Manual) are also known by the compiler. As in the MACROLO

assembler , names of opcodes may be any combination of upper and

lowe r case letters. The other fields of an instruction are

expressed as arguments to the routine call. Following the BCPL

convention , and unlike MACRO1Ø , the default radix for numbers is

decimal . JSYS calls take no arg uments.

Arguments are interpreted in the following fashion:

OpCode()
OpCode(Address)
OpCode(Reg ister , Address)
OpCode (Register , Address , IndexRegister)
OpCode(Register , Address , IndexRegister , IndirectBool)

where:

* Address is any comp ile—time constant or a simpl e variable .

* Register (IndexRegister) is any comp ile—time constant between
0 and Jtl7 (octal) . Note that register #16 (octal) should not
normally be referenced since it is the stack pointer.

* IndirectBool is any comp ile—time constant which is
interpreted as a truth value (true or false) .

If a field is missing then the fo 1 lowing defaults are used:

* Address is 0.

— 13 —

- ___n_.
~~~~~~~. w a~~~~~s —S4~ ..a - ~. tj. - a. - - - .-.~~~ -.. - .,~ .,- -, - - S

_:~— : t-~~~. ~~. .  ~~~~ .
0~~~~ ~~~~~ 

—-



- _ _____________

BBN Report No. 3983 December 1978

* Register and IndexRegister are 0.

* IndirectBool is false.

When a specified value is out of the range of the intended field ,

a warning is reported. The value put into the field is the low

order bits of the specified value that will fit into the field.

An example of the use of the assemble statement follows :

let POINT(Size , Location , RightMostBit) := valof
( if numbarg s is 3 then RightMostBit : — 1

assemble pdplO
{ SETZM (2)

M O V E ( 1 , S i z e)
LSHC(1,—6)
MOVEI(l , 35)
SUB(l , RightMostBit)
LSHC (l ,—6)
HRR (2, Location)
Move(l , 2)

I
}

F Notice that the names referenced in the address portion of the

assembly languag e instructions are normal BCPL variables . The

alternation between upper and lowe r case in the last instruction

is used to illustrate the fact that opcode recognition is case

independent.

While instructions are expressed syntacticall y as routine

calls , the semantics of such routine calls are somewhat

different. As in a routine call , when an argument to an assembly

language instruction is a constant , manifest or truth value , then

— 14 —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
-
~~ -

-

. - - - -

. iTTTT1I1~~~~~~~

— —.5— —-- — —.5.5-- -- .— —- -.
. . .. -

BBN Report No. 3983 December 1978

its value is put into the appropriate field. When an argument in

the Address position is a simple variable (local , static , global

or external) then the address of the argument (lv) is put into

the appropriate field. For static , global or external variables ,

this is a relocatable address . For loca l variables , the offset

of the variable on the stack is placed in the address portion and

reg ister #16 (octal) is put into the index reg ister portion of

the i n s t r u c t i o n . A t t e m p t s to r e f e r e n c e a local variable in the

Address field of an instruction that contains an explicitly

specified index reg ister are considered by the compiler as

errors . These r u l e s of field interpretation preserve the

conventions present in the MACRO—lO assembler , but depart from

normal BCPL argument evaluation rules .

The “ address ve r sus v a l u e ” r u l e m a k e s i t d i f f i c u l t to

manipulate literal constants because the Address arg ument is

always viewed as the position of data rather than the value of

data . To facilitate manipulation of literal data by assembly

languag e instructions , a new operator “literal” has been added to

the language. This operator may be used only within an assemble

block as a unary operator on the Address field. Thus to generate

a reference to the value 3 , , 4 (i.e., # 3 0 0 0 0 0 4) rather than the

address 3 , , 4 (which is the constant *3000004 or , truncated to 18

bits , 4), the following statement could be written:

— 15 —

- -~~~ - ..
-
~~~~~ 

-
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ J



BBN Report No. 3983 December 1978

M O V E ( l , l i t e r a l  3 , , 4 )

Space would be allocated to hold the value 3 ,, 4 so that when the

instruction is executed that value is loaded into reg ister 1.

F ina l l y , labels may be used in the same way they are used in

normal BCPL code , with identical scoping rules . It is possible

to jum p out of an assemble block into BCPL code , but because of

the normal scop ing rules for labels , it is impossible to jump

into an assemble block from BCPL code . To achieve the same

effect , an assemble block can be sp l i t  in to  two assemble blocks

the label affixed to the second block. —

Transferring to a labe l from within BCPL code is done by the

“goto” command . Transferring from within an assemble block .~
requires knowledge of how BCPL lapels are implemented. With one

exception , a labe l on a statement results in the declarat ion of a

m a n i f e s t  v a l u e  w h i c h  is the relocatable address of the start of

the statement. The exception is for a label which is also

declared to be a globa l or external. For such labels , the

address of the associated statement is stored in a cell in static

storage and the value of the labe l is the address of this cell.

The impact of this on assembl y code is that transfers to regular

labels from within an assemble block can be done by direct

transfers to the label name while transfers to global or external

labels must be done by indirect transfers . A safe procedure is

to exit the assemble block and use the BCPL “ goto ” statement .

— 16 —

--  
-
~~~~~ 

- -

- - -— -- — - _

BBN Report No. 3983 December 1978

The BCPL assembly language facility allows a programm er

access to features of the underl ying machine and operating system

that the comp iler does not know about or cannot utilize

efficiently. Assembl y languag e statements have been added in the

spirit of the rest of the BCPL language; normal BCPL variables

are used as the values of the fields of instructions . Because of

the obvious machine dependency, assembly languag e statements

should be used only as a last resort , when all other

possibilities have been exhausted. When possible , assembly

language sequences should be packaged as abstract operations by

use of inline routines . This way, the complex semantics

associated with raw machine language instructions can be hidden

from casua l BCPL programmers .

— 17 —

L •~~~~ —— - - ‘ -.5————— • ~~~ _~~~~~~
__

- — - - - - —
- ----—i ----- - - - -

r5
~~~~~~~~~~~ • - • - - - - ——-—~~~~~-— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

BBN Report No. 3983 December 1978

2.3 Variables Residing in Registers.

A chang e that we anticipated would be useful turned out on

closer examination to be counterproductive. We originally

thought that add ing a facility for declaring a variable to reside

in a fast reg ister would result in an improvement in execution

speed . Several alternatives for expressing and implementing this

mechanism were considered. The most promising one is outlined as

follows :

A variable may be declared to reside in a fast register.
There are three ways to declare a reg ister variable:

1. let register <VariableName> := <Expression>

for example ,
let register x :~ 45

2. register
1 <VariableName> I
for example ,

register
( x }

3. for register <VariableName> := <Expression> to
<Expression> by <ConstantExpression>

for example ,
for reg ister x := 1 to N do ...<use of x>...

The f i r s t  d e c l a r a t i o n  is intended for situations where the
r e g i s t e r  v a r i a b l e  is to be both d e c l a r e d  and i n i t i a l i z e d  and
where its scope is limited to a small area of a BCPL module.
The second declaration is intended for cases where the
reg i s t e r  v a r i a b l e  is to be used thro u g h o u t  the entire module
( o r  a set of m o d u l e s )  and is i n i t i a l i z e d  once and r e f e r e n c e d
from many places . The third statement is both a declarat ion
and a command and has the same meaning as a normal “for ” loop
command , except that the loop variable is kept in a register.
The scope of a “reg ister <VariableName> }“ statement is the
same as the scope of a “ s t a t i c  { <VariableName> := <Value> 1”

— 18 —

~~~~~~~~
‘ : —

~ -~~~T ~~~~~~~~~~~~~~~~~~~~ - - — -—---——-•,—-————--••-—•-.— -
- - - . _.• ... , - .. •,. .~~ - -

-~~ —-
-

- -

—
—~~--..- .- ~~~~~~~~ — - —~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- . - ~~~~----
- .5

BBN Report No. 3983 December 1978

statement . The scope of a “let reg ister <VariableName> :
< V a l u e> ” s t a t e m e n t is the same as a normal “let
<VariableName> := <Value> ” statement . The scope of the loop
variable in a “for register ” statement is the statement of
the for loop.

The compiler will assign registers to be used to hold
variables and will refrain from using these reg isters for
code generation purposes during the scope of the declaration.

There are two immediately problems with this proposal and

a l l of the o the r p roposa l s we c o n s i d e r e d c o n c e r n i n g the

allocation of reg isters:

1. If as stated , the compiler makes reg ister assignments , then

separately compiled modules run the chance of conflicting over

the dedication of a reg ister to hold a variable. Various

schemes for helping the compiler manage the reg ister

a s s i g n m e n t task were c o n s i d e r e d . The on ly s o l u t i o n t h a t does

not put too great a burden on programmers seems to be to have

the com piler save registers across routine or function calls .

2. There are two ways to save registers across function calls:

either on the caller ’s side or on the callee ’s side. Saving

registers on the caller ’s side would probably negate the

effect of storing a variable in a reg ister in the first place.

Saving on the callee ’s side only if the callee used variables

in registers is an attractive solution at first. However , on

further consideration this solution lengthens the routine

calling sequence and thus , for those routines which use

— 1 9 —

-_ i .~:~i=: -
-- — — - ——

BBN Report No. 3983 Dec3mber 1978

reg ister variables , negates the effect of the shortened

calling sequence .

The language C(l) does offer such a capability for storing

variables in registers . Unlike BCPL, C alread y saves reg isters

across routine calls and thus saving registers used to store

variables offers no additional load on the calling sequence .

After many alternatives for providing this facility were

considered we reluctantly decided not to add this feature .

(1) Ritchie , D. M., et. al ., “The C Program ing Languag e ,” Th e
Bell System Technical Journal , Vol. 57, No. 6, July—August 1978,
pp. 1991—2019.

— 20 —

L ~~~~~~~~~~~~~~~~
. _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ 

~~~~~~~~~~~~~~~~~


- .5-- , --,~~ —• .5”,—
~~~~—--4”- -- -~~~--..,—- --- - _ _ _ _ _ _ _ _ _ _ _ _ _ _

BBN Re port  No.  3983 December 1978

3. BCPL Compiler Changes .

The following descriptions of changes to the compiler are

intended for readers interested in how the new lang uage features

were implemented. In addition , there are sections on the

implementation of the new calling sequence intended for

programmers of applications that contain features which imbed

knowled ge of the c a l l i n g  sequence . (This  is a p r a c t i c e  w h i c h  in

general we discourage.) Finally, the impl ementation of the

peephole optimizer is described for compiler implementers and

other interested parties.

Most BCPL programmers will not need to use any of the

information contained in this section .

3.1 Inline Routine Definitions and Calls.

• Inline routines are implemented by replacing the call to the

inline routine by a copy of the body of the routine and then

c o m p i l i n g  the body.  There  a re  t h r e e  m a i n  t a sks  to be p e r f o r m e d :

storing the body of the routine , copy ing the body of the routine

to replace the call and examining the argument/paramet er pairs of

the call and the definition to see how to pass arguments.

All routines (inline or regular) are defined in a contex t of

static , g lobal , manifest , structure and external names. This

environment must be carried along with the copies of the routine

~~~~ 
Ii .. -i --

-
~~~~~~~~~~~~~~~~ 

_ _



yw ~~~~~~~~~~~~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j—— —
~~~I~~~

-—-
~

--.- -— - 

~~~~~~

BBN Report No. 3983 December 1978

so that when a copy is compiled in place of a call , a free

reference to a nam e will resolve to the proper instance of the

name . A free reference to a name in a routine should go to the

instance defined at the point of routine definition , not at the

point of the call. For example , in the following program

fragment , the free reference to the name “String ” in the inline

routine Append refers to the structure name “String ” rather than

the local name “ S t r i n g ” d e f i n e d j u s t b e f o r e the ca l l to “ A p p e n d ” .

str ucture
{ String

{ N byte
C~5ll

}
}

let inline Append (Char , CharString) be
(let N := Length(CharString) + 1

CharString>>String.N := N
CharString>>String .C~N := Char

<. .. > t

let String := vec 511

< . . .>

Append($< , String)

< 0 0 ~~~~ >

To do this , inline routines must be scanned at the point of their

definition and all references to free variables must be bo und to

the definitions in effect at inline routine definition time.

These b i n d i n g s a re s to red in the pa r se t r ee of the body of the

routine. For inline routines , the value associated with the name

of the routine is a pointer to the root of this parse tree.

~~~~~- ~~~~~~~~~~~~~~~~~~~~



BBN Report No. 3983 December 1978

The replacement of the call by the body of the routine is

done in  t e rms  of the pa r se  t r e e .  The parse  t r ee  of the i n l i n e

routine serves as a template for the expansion. The part of the

tree represented by the call is replaced by a copy of the

template .

In regular routine calls , all arguments are pushed onto a

stack and the called routine references its corresponding formal

parameters from these locations . For inline routines , argument

passing is done according to the rule stated in section 2.1 ,

which is restated below:

Push an argument onto the stack if:

* The argum ent is an expression or the rescrved name
“ nil” .

* The corresponding formal parameter is:

* Stored into by an assignment statement (as a simple
name or as the operand of the structure qualification
operator “< <“ )

* The operand of an “lv ” operator ..

* The reserved name “ nil” .

Otherwise , make all references to formal parameters in the
body of the inline routine or function resolve to the
corresponding arguments supplied in the invocation.

Thus , the decision whether to push an argument onto the stack is

a function of both the nature of the argument and the way the

formal parameter is used within the body of the routine .

— 23 —



jiII~1 ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
‘ 1 T ~~~~~~~~-.~

I
BBN Report No. 3983 December 1978

‘I

Before the body of the inline routine is compiled in place

of the call , each of the parameters is declared as a local

variable. The nature of the location which stores the value of

that variable depends on whether the argument is pushed onto the

stack. If it is , then the location associated with the local

p a r a m e t e r  v a r i a b l e  is the s tack  l o c a t i o n .  If not , then the

l o c a t i o n  is an i n d i r e c t  p o i n t e r  back to the a c t u a l  arg ument .

When the inline routine body is actually compiled , references to

the formal parameters will either resolve to the locations on the

stack that resulted from argument pushes or the locations

associated with the arguments themselves . Once the routine

template has been copied and the arguments have been processed ,

the copy is then compiled as if it had been the call.

— 24 —

_ _ _



p.

BBN Report No. 3983 December 1978

3.2 PDP1O/SYSTEM2O Class Assembly Languag e Statements .

The BCPL assembler facility is implemented by using reserved

r o u t i n e  names which  correspond to the opcodes of the

instructions . Since assembl y languag e statements are only legal

within an assemble block , these names are only reserved in the

context of such a block. In fact , the reserved names of the

opcodes may be used freel y outside of an assemble block. By

adopt ing the same syntax for an assemble statement as for a

routine call , changes to the BCPL parser were minimized .

Within an assemble block , each time a routine call is

encountered , the arguments are examined and built up into the

fields of an instruction. If the unary operator “literal”

ap pears  be fo re  an Address f i e l d , then the v a l u e  con ta ined  in t h a t

f i e l d  is sto red in s t a t i c  l i t e r a l  s t o r age .  The address

co n t a i n i n g  the v a l u e  is put in to  the Address  f i e l d .  E r r o n e o u s

va lues  fo r  f i e l d s  are  de tec ted  and repor ted . The t r a n s l a t i o n  of

each routine call is a single machine instruction. Within an

assemble block , s t a t emen t  types o t h e r  than  r o u t i n e  ca l l s  a re

noted as errors in the program .

The assembler is written so that it would be easy to

implement an assembler for any language similar to the

PDP 1O/ SYSTEM2 O cla ss assembly l a n g u a g e .

— 25 —

_ _  —~~~~~~~~~~~~ f~~
- 

~~~~=— ~~~~~- —---~~~~~~~~-~~~~~ —- - -.


L~~~:~~~
‘
~~~~ 

- 
--~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ — -L—~~~~~~~~~~~~~~~~~~~

BBN Report No. 3983 December 1978

- 3.3 Shortened Routine Calling Sequence .

In the past , the BCPL calling routine calling sequence

performed ten different tasks split between the caller ’s side and

the callee ’s side. For a function , this results in l4+N

-
instructions being executed , where N is the numbe r of arg uments

- to the function. For a routine call , this number is 12+N .

Specifically, the steps for a function call are:

- 1. Load arg uments to the function onto the stack , including the
numbe r of arg uments to the function and whether or not the
function was called from the left side of an assignment
statement . (at least 2 + number of arg uments , caller)

-
2. Transfer to the called function. (1 instruction , caller)

3. Adjust the stack frame pointer to point to a new frame above
the caller ’s frame on the stack. (1 instruction , callee)

4. Save the return address to the caller. (1 instruction ,
callee)

-
5. P e r f o r m the s tack cover c o m p u t a t i o n . (3 instructions ,

- callee)

- 6. Perform the stack overflow check. (3 instructions , 2 always
- executed , callee)

- 7. After the bod y has ex ec u ted , load the return value into the
return register. (1 instruction , callee)

- 8. Return to the called routine. (1 instruction , cal le e)

9. Adjust the stack frame pointer to point to the caller ’s
- frame. (1 instruction , caller)

10. Store the va lue of the f u n c t i o n . (1 i n s t r u c t i o n , ca l l e r)

Specifically, the instructions generated for the following

function call and definition are:

— 26 —

- 1 ~~~~~~~~~~~~~~~~~~~
-— -- .

~~
-- --

~~~~~~~ 
.5— — - - . 5  -.5- .-.-~~--- —.5 

-.—



—-.5”-- .5- .- —.5 -.5- -.5 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —r - , --

~~~~~~~~~~

- ------- —
-

- . --
- -. ___.5_.5_~~~~_•_~~~___•_~~

__ - — —

BBN Report No. 3983 December 1978

Z := Function(X , Y)

MOVE 0,N(16) ; Current size of frame (1).
PUSH 0,[0, , 2] ; [leftside ,, numbargs] (1).
PUSH 0,X(16) ; Arg 1 (1).
PUSH 0,Y(l6) ; Arg 2 (1).
JSP l ,@Function ; Transfer to function (2).
SUBI 16,N—l(l6) ; Get old frame (9).
MOVEM l, Z (l 6) ; Store va lue of f u n c t i o n (1 0) .

let F u n c t i o n (A , B) := v a l o f ...
F u n c t i o n : .+ l ; Here + 1.

ADDI l6 ,@0(l) ; Make new fram e (3).
MOVEM 1,0(16) ; Save return address (4).
MOVEM 17 , 1 (16) ; Save old cover (5)
MOVEI 17 , S (16) ; Load new cover S (5) .
CAMG 17,16 ; Wrap around stack check (6)
CAMLE l7 , GL8057 ; Beyo nd end s tack check (6) .
JSP l ,@GL8058 ; Overflow handler (6).

<Body of function>

MOVE l, R e s ult i s ; Load r e s u l t i s v a l u e (7)
MOVE 17,1(16) ; Restore old s tack cover (5) .
JRST @0 (16) ; Retur i (8)

Five of the 12+N instructions executed are due to the stack cover

and stack overflow computations .

In the new comp iler , the stack cover and stack overflow

computations that were done on every routine or function call

have been replaced by mechan isms that require no instructions to

be executed in the calling sequence. The corresponding

instructions in the calling sequence above (the six instructions

of steps 5 and 6) have been e l i m i n a t e d . The o v e r a l l i m p r o v e m e n t

in the ex ec u t i o n speed of a n application program due to

shortening the calling sequence depend s on the numbe r of routine

— 27 —

rT ,
.

~~~~

‘ 

~~~~~~~~~~~~~~~~~~ 
,-—-- ---- -- -.5--- ~~~~~~

- -
~~~~~~~~~~~~

BBN Report No. 3983 December 1978

calls that occur , but typically 5 to 8% improvements in execution

speed have been observed .

3.3.1 Stack Cover C o m p u t a t i o n .

In the previous compiler , the stack cove r was m ai n t a i n ed to

be the exact length of the stack frame of the routine or function

c u r r e n t l y  e x e c u t i n g . Th i s  va lue  is used to d e t e r m i n e  where  to

put a new stack f r a m e  when a PSI (an interrupt) occurs . The new

f r am e is u sed by a r o u t i n e  wh ich  h as bee n se t u p to f i e l d  the

interrupt . In the new comp iler , the stack cover is defined to be

the maximum stack excursion of any BCPL routine in the set of

BCPL routines in an application program (i.e., the set of BCPL

routines in a sing le .EXE or .SAV file) . In the new scheme ,

form ing a new frame by adding the stack cover to the current

stack frame pointer will always yield a safe frame , if not the
a

lowest unu~ed frame on the stack . In addition , we have provided

routines to adjust the stack cover should a particular

application need to do so.

The new compiler keeps track of the maximum stack frame

length (MSFL) for all of the routines in a single module. The

stack cover is then , just the maximum of the MSFL5 for all of the

BCPL modules loaded together into an application program . To

compute t h i s  v a l u e , i t  is necessary to examine the MSFLs either

at the time the BCPL modules are linked together or sometime

— 28 —

- ~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - -  ~~~~~~ . -



-- -- 
-r.5 —_•~~ - - -  ~~~~~~~~~~~~~~~~~ .- ----- -.5

~~~,—”-- -.5--- -- - . 5- 

~~~~~~~~~~~~~~~~~~~~ 
‘—- 

~~~~
‘

BBN Report No. 3983 December 1978

during the running of the application program . The program LINK

on DECSYSTEM20 does not support such a capability at link time.

It does have a f e a t ure w h i c h a l lows BCPL mod u les to be c h a i n e d

together at link time , so that the chain can be traced at

runtime . At the end of each BCPL module , the following sequence

(expressed in assembly language) is emitted:

L i n k i : BLOCK 1
< M a x i m u m S tack Frame Length>
.LINK l,Linkl

The last line directs LINK to add the label “Linki ” to the

developing chain number “1” . When LINK e n c o u n t e r s the i t em type

generated by this statement , it stores the current value of the

head of chain number “1” into the location labeled “ Link l” and

set s the c u r r e n t va lue of the head to be the address “Li n k i ” . In

one routine in the BCPL support library, there is the following

sequence:

GL8140: BLOCK 1
.LINK — l ,GL814O

Whe n LINK e n c o u n t e r s the i t em type g e n e r a t e d by the las t

statement , it remembers after all of the modules have been loaded

to store the last value of the chain head in the location labeled

“GL8140” . Thus , at runtime , the location labeled “GL8140”

contains a pointer to the start of a chain of pointers. The word

a f t e r each of these pointers is the MSFL for each BCPL module in

the set of modules linked together. The last pointer in the

chain has the value 0.

— 29 —

—.5- ——-

-

— ___ ~~~~~_

.5. ~~~~~;

-.5

~~~~~~~ —.5-—- .



- . 5 ,  
~~~~~~~~~ ~~~~‘ — ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -- — _____

I
BBN Report No. 3983 December 1978

The function GetMaxStackFrameSize () will traverse the

c h a i n and r e t u r n the maximum value encountered . The routine

Se t St a c k C o v e r (M a x St a c k F r a m e S i z e) w i l l set the s tack cover to

MaxStackFrameSize . These two routines are called in sequence

during the initialization of every BCPL application program .

3.3.2 Stack Overflow Check.

In the new compiler , instead of checking on every routine

call to see if the stack would overflow if the called routine

were to execute , a trap is set to detect attempts to reference

beyond the end of the stack. This is done by dedicating a page

of memory (or set of pages) above the top of the stack to be read

only. These pages may be used by the application program to

store read only data . Attempts to extend the stack into this

area will result in a read only protection violation which will

halt the program. It is possible to write a routine which would

enable a PSI to f i e l d the read on ly v i o l a t i o n and d e t e r m i n e if

the trap was due to a stack overflow or to some other reason.

The routine SetStackEnd(StackEnd , NumberReadOn lyPages)

will make the page(s) above the value of StackEnd to be read

only. Currently, the default value of the stack is #776777

(o c t a l) . SetStackEnd is called as part of the BCPL

initialization.

~~~~~~~~~~~~~~~ -~~~~
-- -

~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~



r~~
9 -

- 

BBN Report No. 3983 December 1978

Most BCPL programs will not require any changes due to these
- 

two changes in the implementation of the routine calling

sequence .

— 31 — 

.5 .~~~~~~~~~~~~~~~~ -‘

hIL . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.5-— -— .5-— ~~1~~~~~.5 - -

~~~~~~~
--.--

~~~~~~~ -.5 .5



-~~- -- ..- i~~~~~~~~~~~~~~~~~~
-
~~~~~~~~~~~~~ -

‘
- i ~~~~~~~

BBN Report No. 3983 December 1978

3.4 Peephole Optimization

This sec t i o n descr ibes the m o d i f i c a t i o n s made to the BCPL

compiler to examine the compiled code and make improvements to

i t : The Pee phole O p t i m i z e r . The method used is modeled a f t e r

that used in the Bliss—ll compiler.(l)

3.4.1 Overview.

As the code is compiled , it is emitted as a threaded list of

nodes , the format being described in detail below. Three such

chains are produced , one for each segment of the object program :

the code segment , which contains all code that is to be executed;

the impure s segment , which contains static data items declared by

the BCPL static declaration ; and the literals segment , which

contains only character string literals that appear in the source

code.

The term “peephole optimization ” as used in this report

r e f e r s to ei gh t s p e c i f i c o p t i m iz a t i o n s t ha t are p e r f o r m e d by

passing over the compiled code. This is repeated until no more

improvements result. Rarely are more than t h r ee passes m a d e .

The eight optimizations are as follows:

(1) Wulf , W., et. al., “The Design of an Optimizing Comp iler ,”
Elsev ier , New York , 1975.

— 32 —

_ _ _ _ _ _ _ _ _ _
-~~ ~~~~~~

_
~~~

_
~~~~~~

_j__

_

_
_
:__

.5- . - -~~~~~~~ - . 5—
-

.5 —-—--.5.5 -

BBN Report No. 3983 December 1978

Initial. An initial pass is made over the code to

perform three tasks. First , certain instructions are

changed to equivalent forms . This is not really an

optimization because it has no effect on the execution of

the program . However , the PDP—lO hardware has an

extremel y rich collection of opcodes providing , i n many

cases , multiple ways to accomplish the same task.

Replacing equivalent instructions by a single form makes

l a te r pa r ts of the optimizer simpler. Second , RETURN

i n s t r u c t i o n s are collected. BCPL compiles the command

JRST @0(16) to return from a function or a procedure.

The f i r s t in sta n ce of t h i s in st r uc t io n is noted and all

subsequent ins tances are replaced by a JRST to tha t one .

The Cross Jump optimization (see below) will further

modify this replacement. Third , any instruction which is

a no—operation is deleted .

Alteration. Replace certain specific code sequences by

better ones. (It is this specific optimization that is

often called “peephole optimization ” in the literature.)

Cross Jump. If the instruction before a JRST is

identical to the instruction that precedes the labe l to

which the JRST leads , replace the former by a JRST to the

latter. Similarly optimize two identical sequences

end ing in a JRST to the same l abe l . In both of these

t .

~~~ Li ‘ 
-

. 
~~~~~~

— — ~~~~~~~~~~~~~
~~~- - ~~

‘ - —i- ~
-
~~~~~~

- ~~~~~~~~~ —

- 4:1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - .
~~~~~~~~ ~~~~~~~~~~~ - 

- -

V

BBN Report No. 3983 December 1978

situations , the two thread s are merged as far back as

possible.

Unreachable . After a JRST which is not preceded by a

skip, delete all code up to the nex t following labe l ,

since such code can never be reached.

Jump Chain. If a conditiona l jump or a JRST leads to a

JRST , then the address of the first is changed to that of

the second .

Unused Label. Any labe l not referred to anywhere is

deleted.

Label Merge .  A d j a c e n t  l abe l s  w i th  no i n t e r v e n i n g  code

are merged into a single label.

. Literals. Delete un—referenced strings.

All of these optimizations except the last one operate on only

the code segment ; the last one affects onl y the literal segment.

The remainder of this section briefly outlines the

imp lementation strategy for the peephole optimizer. Readers with

no interest in implementation should skip to the next section.

On completion of the TRN phase , CGAssemble is called to

complete the generation of the .REL file. It calls

— 34 —

_ _  ‘
-
- -. 5  

_

_ [~~~_ ~~~~ .‘
~~~~~~~

-
.5-

~~~~~~~~~~-~~~~ “-



‘

~~~ 

~~~~~~~~~~~~~~ w~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~

BBN Report No. 3983 December 1978

PeepHoleOptimize , which first does the peephole optimization

itself and then calls PeepFinal to pass over each of the threads

to assign final PC values and perform other bookkeeping tasks.

(If a listing file has been requested , it is emitted after

optimization and before Final.) Finally, CGAssemble does the

work of emitting the .REL file.

The work of optimization is performed by routines in the new

module 1OPPPG . The routine PeepHoleWork , called from

PeepHoleOptimize , is the driver. It first calls Peeplnit to make

an initial pass over the code segment. It then makes repeated

passes over the code segment , where each pass consists of calling

each of th ree s p e c i f i c  o p t i m i z a t i o n  routines. Passes continue

unt i l  no further improv ement is made in a pass. Finally, a

single pass is made over the literals segment to delete strings

not used in the program .

The r e are two ways in which optimization is suppressed in

certain cases. If an instruction is marked SIC (by supply ing an

optional extra argument to the routine CGCode that compiles

instructions) , then that instruction is not changed in

optimization. Further , marking an instruction with the CJChain

bi t means  i t  is not a l t e r e d  in Cross Jum p (see below ) unless  the

p r e c e d i n g  i n s t r u c t i o n  is also a l t e r e d .

— 35 —

— -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ — -— - T ’ T ’


.5 -.5-- ‘.5”- —— .5.5—
,,. - - ____________

BBN Report No. 3983 December 1978

As mentioned earlier , a compiled instruction may be marked

in either of two ways to suppress optimization . Mar king it SIC

suppresses its possible alteration or deletion in Peeplnit , keeps

it from being part of an alteration sequence in Alteration , and

keeps it from being changed in Cross Jump . SIC is used for two

reasons: The debugger BDDT expects the first instruction in each

module to be a JFC L (which is a no—operation) whose address is

the beg inning of the module ’s static area. This instruction is

marked SIC since otherwise it would be deleted as a no—operation

in P eplnit. Secondly, assembler instructions included by the

user in his program , using the new “ assemble” f e a t u r e d e s c r i b e d

earlier in this report , are marked SIC. Here the decision is

that we do not want to attempt to second—guess the programmer.

The C J C ha i n a t t r i b u t e is used in o n l y one case. The BCPL

subroutine calling sequence requires that the instruction

immediately after the JSP to the subroutine be a SUBI to adjust

the stack pointer. Therefore the SUB I must not be altered in

C ross Jump unless the JSP is also , a nd so the SUB I i s m a r k e d

C J C h a i n e d .

The peephole optimizer first calls Peeplnit to perform the

initial pass. Then it makes repeated passes over the compiled

code performing all but the last of these optimizations in turn

on each pass , c o n t i n u i n g u n t i l no f u r t h e r i m p r o v e m en t is made in

a pass. DoAlter performs Al teration , DoCrossJump performs

— 36 —

.‘“- ~~~~~~~~~~~~~~~~~~~~~ —-
‘-

—--


~~~~~“—~~~~ ‘~~‘~~‘- ‘ “ ‘~~~ ‘ - ‘ “~‘“~~ “- ~~~~
.5’ - -

BBN Report No. 3983 December 1978

Cross Jump, and DoJump performs Unreachable , Jump Chain , Unused

Label , and Label Merge. Finall y, DoLiterals makes a sing1~

pass over the literals segment deleting unused strings.

The optimizations interact with one another in various ways.

For example , note that Unused Label and Label Merge make no

chang e in the compiled code. However , performing these in one

pass often makes Alteration possible in the next pass in a place

where it was not earlier permitted. Note also that Crossjump and

Jump Chain create unreachable instructions , which are later found

in Unreachable . Label Merge permits Cross Jump to be more

effective since there are more chains leading to the same point.

Similarly, collecting all RETURN s to a sing le place (in Peeplnit)

increases Cross Jum p’s ability to find common sequences. After

this is done , Jump Chain changes the instructions back to the

usua l RETURN .

Appendix A contains more details about the implementation of

the peephole optimizer.

— 37 —

____ — . - - i—’- ... . - 
, _‘

~~~~~~~~~~~~~~~
‘
~~~~~~~~~~~

“— -i-— —i--- - -- ,~~~~~. 2.~~~.



BBN Report No. 3983 December 1978

4. BCPL Runtime Library Changes .

Four new routines have been added to the BCPL Library as a

result of the improv ements to the compiler . Three of the

routines are part of the BCPL initializati on action while the

forth implements the subcommand scanner documented in section 6.

4.1 Routines to Support BCPL Initialization.

The following two routines are used to support the new

method of computing the stack cover:

Integer := GetMaxStackFrameSize()

Returns the maximum length of a stack frame for all
routines in a group of modules linked together as an
application program .

SetStackCove r ( S i z e )

Sets the value used as the stack cover to be Size. The
stack cover is a value that will be used to increment the
stack frame pointer yielding a new (unused) address on the
stack. This address will serve as the base of a frame for
a routine that is to process a PSI (interrupt)

The following routine is used to support the stack overflow

checking mechanism .

— 38 —



BBN Report No. 3983 December 1978

SetStackEnd(StackEnd(, NumberReadOnl yPages])

Define the end of the stack to be the last address on the
page containing the address StackEnd. The read onl y
protection mechanism is used to implement this check. A
page is created above the page holding StackEnd and the
access is set to be read only. If a routine call results
in extend ing the stack into this page (or set of pages), a
read onl y violation will occur . The second argument , if
present , will be used to create a set of read only pages - ‘

NumberReadOnlyPages long . The default for this value is
1.

4.2 Routine to Support Command Scanning .

The following routine is used as a command scanner in the

compiler. It is a general purpose routine that can be used in

many applications that require user specified commands.

(CmdCode , , TermChar) :=
GetWord(Stream ln , StreamOut , Commands , Separators(, ,

PrefixString[, PromptString[, SuffixString[,
CmdString [, SkiplnitialSeparators[,
HorizontalHelp]]]]]])

A routine to get a command from a keyboard device. GetWord
is intended to implement many of the common desired
functions of a command scanner including such features as
command recognition and completion and limited hel p in
determining the menu of permissible words to type.
Characters typed will not be exam ined by GetWord until a
separator is typed. When a separator is typed , the
characters typed so far are examined to see if they
uniquely identify one of the command strings in Commands.
If they do , then GetWord returns the value
(CommandCode ,, TermChar) , where CommandCode is the value
that correspond s to the item typed and TermChar is the
separator typed to end the command .

The character “?“  may be typed at any point and the set of
possible commands that begin with the characters alread y
typed will be printed on the output stream . The partially
typed word will be redisplayed along with any prefixes or
prompts . Command recognition is case independent. The

— 39 —

-
“
-- --i .5



-- .5- —-‘.5 .5.5.5

1~
- -—-- I t ~~L•J ~~~~~~~~~~ 

.- -
~~~~~~~

--.
~

-,-,—-—- ———-
~~~~~~

——“—— _.5_~~~~
____ ’_ _____.5—_~ -s—

--.- •
~‘~

BBN Report No. 3983 December 1978

characters “~ A” , Backspace and , on TOPS2Ø “DEL” will all
delete one character from what is alread y typed. The
characters “~ W” will delete and “~~R” will retype what has
been typed so far. The characters “DEL” on TENEX and “~ U”
on TOPS2O will type “ XXX “ on the output stream and cause
GetWord to return (—l , , 0).

The arg uments to GetWord are:

Streamln —— The stream from which to take characters.

StreamOut —— The stream on which to echo characters.

Commands — —  A vector of CommandCodes and CommandStrings ,
one pair per word of the vector in the format
(CommandCode , , CommandString) . CommandCode is normall y
an integer code less than #200 (octal) which
corresponds to ComrnandString , a BCPL character string
which is the command .

If CommandCode is greater than or equal to #200
(octal) it is assumed to be the address of a routine
that should be called to determine if a uni que command
that it recognizes has been typed. For this case , the
CommandString should describe the type of item the
Routine will recognize . This way, “?“  will show a
generic description as one of the possible commands.
The call to the routine is:

Routine(OpCode , CharVec[, CmdString , StreamOut ] )

OpCode is either gwComplete (manifest equal to 1) or
gwCouldBePrefix (manifest equal to 2). If OpCode is
gwComplete then the optional arguments will be present
and Routine should type on StreamOut the completion of
the uni que command typed so far The characters typed so
far are contained in CharVe c , with CharVec lO indicating
the number of characters in CharVec , one character per
entry. In addition , the entire command should be
copied into CmdString . If OpCode is gwCouldBePrefix ,
then Routine should return a Boolean value indicating
whether or not what has been typed could be the start
of a command that Routine recognizes.

Comrnands lO , if non—zero , is the count of entries in the
vector. Commands li , l<~ i<=(Commands I0 ) is the ith
(CommandCode , , CommandString) pair. If Cornmands lO is
zero , then the end of the Commands vector is marked by
a zero entry.

40

~~~~~~~_j  ~~~~~~~ ill’ 
-

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ‘ ‘


_ _ _ _ ~ —~~~~~~~ ‘

~T i ,~Z.: ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

BBN Report No . 3983 December 1978

Separators —— A vector of characters that are to act as
command separators and command completion characters.
Typing one of these characters will cause GetWord to
attempt to match what has been typed so far with the
list of Commands. In addition to this set , the
character Escape will always cause Ge tWord to look at
what has been typed .

SeparatorslO is the count of entries in the vector. If
Separators lO is zero , then a zero entry terminates the
list of characters.

PrefixString —— A string which will be typed first if the
typed line needs to be retyped (either by ~R or by ?) .
Default is the empty string .

PromptString —— A string which will be typed on StreamOut
to prompt the user before any characters are accepted
from Streamln. If the typed line needs to be retyped ,
PrefixString and PromptString will be typed , in that
order , before the typed commands. Default is the empty
string .

SuffixString —— A string which will be typed after command
completion occurs. Default is the empty string .

CmdString —— The entire completed command will be copied
into CmdString after a command has successfull y been
recognized . Default is not to copy the completed
string.

SkiplnitialSeparators —— A boolean value which , if true ,
indicates that init ial instances of the separators ,
before any non—separators characters have been typed ,
should be discarded. Default is false.

HorizontalHelp — — A boolean value which , if true , indicates
that when “?“ is typed to request a menu of possible
commands , these commands should be typed in a
horizontal format rather than one command per line .
Default is false .

— 41 —

(. 5

L~1 ~~~~~~~~~~~~~~

-—-
-

~~~~~~
--

~~~~~~~~~
-
~~~~~~~~

- ____ - _ _ _



~~~ I_Th~~
i
~~

n , “ — ‘ .5-,’-’ .5— - ~~~~~~~~~~~~~~~~
- - - - - — - —

I
.5

-
BBN Report No. 3983 December 1978

5. Perfo rmance Tests .

We are currently in the process of conducting performance

tests of the new BCPL compiler on both the BCPL compiler itself

and the NSW Works Manager and File Package components .

Initial tests with small programs that make no use of the

new languag e features indicate that execution speed improvements

will be in the rang e of 5% to 15% due to both the peephole

optimization and the shorter calling sequence . Since the density

of calls in different application programs varies widely,

improvements due to the shorter callin g sequence will also vary

widely.

Whe~. t)~- r t) r ’ ~i n - .~e tests on the NSW components are completed ,

~~
- • ..i~~ 1ss~~- technical report documenting our results .

:2

L ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

~.5L.5.5.5.5 ~~~~~~~~~~~~~~~~~~~ ,~ . -
- .5 -

BBN Report No. 3983 December 1978

6. How to Use the New Compiler .

The new comp iler is called “BCPL 4.l.X ” , where X is a small

integer indicating versions of the “4.1” comp iler. Subsequent

modifications to correct bug s will result in successive versions .

Any questions , comments or bug reports should be sent to:

BCPL@BBN
or

Harry Forsdick
Bolt Beranek and Newman , Inc .
50 Moulton St.
Cambridge , Ma. 02138

telephone:
(617) 491—1850

6.1 New Language Features .

New features to the BCPL language described in section 2 may

be used by includ ing them in programs.

6.2 New Compiler Features.

A new user interface had been added to the BCPL comp iler.

In the old user interface , options to the compiler were specified

by sing le character flags of the form “/x ” where “x” was

associated with some option. In the beg inning these flags

corresponded to the first word of a sentence describing the

option , as in “/o” standing for “old calling sequence ” . As the

— 43 —

~~~~~~~~~~
- 

~~~ ~~~~~~~
~ ‘

- ___________________
I

BBN Report No. 3983 December 1978

number of flag s increased , the correspondence was more and more

strained . The new user interface permits options to be specified

as longer character strings which are more descriptive of the

options being specified . Since there are still some programs

that require single letter flag s to drive the comp iler , use of

this new user interface is completely optional. All options to

the compiler can still be expressed as single letter flags.

The compiler is invoked by issuing the command “bcpl ” :

@bcpl
BCPL 4.1.2 12/04/78 09:11:50
<Short message>
Type “?“ for help.
=>

The response identifies the compiler and prompts the user for a

command line terminated by a carriag e return. The syntax for a

command line is:

<SourceFile> [<Switches> J [,]
or

<RelFile>=<SourceFi le>[<Switches>][,]
or

<ListFile> ,<RelFile>~ <SourceFi le> (<Switches>] [,]

Items is square brackets are optional.

Like the BCPL compiler on TENEX , and unlike previous BCPL

compilers on TOPS2O , it is possible to type the entire command

line on the same line as the “bcpl” command. Thus ,

@bcpl test

— 44 —

~~~~~~~~~~ ~~~~~~
- :~~~~

-
~ TT T  ~~~~~~~~~~~~~~~~~ ~~~~~~ 

~~~~~~~~~~~~~~~~~~~ ~~~:i
i’.i:: ::

”

—.5.— .~~~- ——
—.5— .5.. —~~ _.5 ‘ - ‘ ~~~~~~~~~~~~

I

BBN Report No. 3983 December 1978

will compile the program test. If a listing file is specified in

the command line , the output will go to a file whose extension is

.MAC rather than .LST as was true with the old compiler.

If the command line to BCPL is terminated by a comma , then

the subcommand scanner is entered to examine and specify options

to the compiler. This command scanner is implemented by the

GetWord routine in the BCPL library. In subcommand mode , the

compiler will prompt the user for commands with the symbol “= = > “ .

A menu of valid commands may seen by typing “ ? “ . Character

delete and line delete work as expected. “~ W” deletes and “ R ”

retypes what has been typed. The commands are long eno ugh so

that they are self describing . Command recognition is case

independent. Only that portion of a command needed to

disambiguate it from all other commands needs to be typed. Any

character from the set {Space , Escape , Carriage Return , Line

Feed} will terminate the command . The command “go” will cause

the compiler to comp ile the indicated file with specified

options.

As an example , here is a typescript of the compilation of a

file Test.BCP:

I

. 5 -
. :“ - - ,~~~~~~~

“
~~~~~~- ~~~~~~ ~



—

r ~

BBN Report No. 3983 December 1978

@BCPL
BCPL 4.1.2 12/04/78 09:11:50
Test compiler — assembler , inlines , new calling sequence ,

new user interface , peephole optimizer.
> TEST,

==> ?
Show chosen compiler options
Messages to .LOG file
Save parse output
Symbo l table produced
Long symbol table
Peephole optimization
Cross jump peephole optimization

- - Old calling sequence
.5 Stack overflow check

‘. Stack cover maintained
Upper case input file
Code generation
Debugg ing enabled
List parse tree
List lexemes as scanned
Compiler debugg ing
Set default switches to current setting
No
Go

==> MEssages to .LOG file
=> GO
[BCPL: TEST.BCP]

The parts of the commands actually typed are in uppercase.

6.3 The Peephole Optimizer.

The peephole optimizer is controlled by the “/g” switch to

the compiler and by the “Peephole optimization ” command to the

subcommand scanner. The default is for the peephole optimizer to

run . The cross jump optimizations that may be performed by the

peephole optimizer are controlled by the “/h” switch and by the

— 46 —

‘4~ 
—.5  

- -‘-—-—.5—- —- - —‘.5 —.5—_a-- _.— ..-a —~~t*t*,— - -‘S—



.5— — “ :~
-
~~j=- -=--~~

-— -.5 ---- —-‘-~~~~~~~~----~~~—-~~~ 
— . 5  — -.5 .5—-.- ~~~~~-.-..- —.5 - -— —~~ -‘-—‘-.5— —.5---’ - — -p..- - - -

BBN Report No. 398~ December 1978

“Cross Jump ” command to the subcoi-nmand scanner. The default is 
—

for cross jump optimizations not to be performed because they

interfere with the correct operation of BDDT. Programs that are

compiled for production versions should use the cross jum p

optimizations .

Because of the new method of storing the instructions

translated by the compiler , the maximum size of a BCPL module

that can be compiled has been reduced. Nevertheless , modules

containing 1000 lines of BCPL code have been compiled

successfull y with the new compiler.

6. -I The New Routine Calling Sequence.

The calling sequence has changed from the previous comp iler.

With one exception , the new calling sequence is upward compatible

with the old calling sequence. The one exception is that old

BCPL modules will not contain the LINK item type that is used in

constructing the chain of BCPL .REL files. Thus , i f an

application does not use PSI5 , then old modules can be 1oad~d in

with modules compiled with the new BCPL compiler , as long as the

first module loaded is one compiled by the new comp iler.

Normally this will mean that the module containing the routine

Start be the first routine specified to LINK.

— 47 —

~~~L --~~~~
.- .- -

— —- ‘—-- -
~~~~~~

- - - - - 

- -
~~~~~~~~

-
~~~~ 

-



-,,

BBN Report No. 3983 December 1978

The new compiler will generate the old calling sequence if

the “/o” switch or the “Old calling sequence” subcommand is

specified.

Cautious users of BCPL will recompile all modules with the

new compiler to avoid any confusion.

6.5 The New library.

The entire BCPL library has been recomp iled with the new

compiler or made compatible with the new calling sequence for

those routines written in languages other than BCPL. The new

library is called “BCPLB3.REL” . Each module compiled by the new

compiler will generate a LINK i tem “Request ” for

“SYS :BCPLB3.REL” . Modules compiled with the “/0 ” switch or “Old

calling sequence ” subcommand will contain requests for

“SYS : BCPLB2. REL”

6.6 BDDT —- The Debugger.

Except for cross jump optimizations (discussed above) , BDDT

works correctl y on code produced by the new compiler. The

“print ” statement will print the text of an inline expansion

rather than the inline routine call.

— 48 —



- 

BBN Report No. 3983 December 1978

6.7 The Concordance Generator.

- 

The utility program , CONCORDANCE , has been updated to accept

and examine the new BCPL languag e features.

— 49 —

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - I:T.5~::i1TTTTTT~; :1.-


— — . 5— -_- -‘,—-- —— - -.5—-
— .5— --- - _.5___._~~~~

_

.5.5_ -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ~~~~~~~~~~~~~ -~~~~~~~~~ - —=- . 5  -

BBN Report No. 3983 December 1978

7. Additional BCPL Utility Programs.

7.1 DMPREL

A new utility program has been written to produce a readable

symbolic listing of a standard REL file. The program DMPREL is

cognizant of the standard DEC format for REL files under TENEX

and TOPS—20. It reads such a file and produces its content into

an output text file. The program knows about LINK types 0 to 37

and lists each one in an appropriate format. The program proved

useful to us in debugg ing changes made to the compiler and will

be made available to all BCPL installations . Figure 1 shows a

fragment of the output of DMPREL for a REL file .

— 50 —

.5

—. .5 -.5 --.5 ~~~~~~~ 
- -

- ~—c L~~~~~~!-~~ ~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘ 1
BBN Report No. 3983 December 1978

~ F O R ~, D 1 C V C L U T 1 L E L . 1 1 , 1 2- ~J O v - 7 8 0 8 : 4 1 : 4 6

0 E r : S r y (4) 4 GL3211 3 ‘L 3 2 22 L32 0) GL32 00

6 ‘;3r~~)6) 2 CLUT IL . -22 3 1 ;’220

12 ‘ode (1) 22

~~~.220 022;47 ’ 0 JFCL 147 ’
27 1721 003000 1 ADDI 16 ,00 (1)
202056 022000 2 M OV EM 1 , 0)16)
201016 000006 3 HOVE l 6 (16)
2610 00 000160’ 4 PUSH 160’
261016 000003 5 PUSH 3 (16)
265060 002000 6 JSP 1,00
275700 020005 7 SUBI 16 ,5
202056 000005 10 MOVEM 1.5 (16)
32604 0 00001 4 11 JUMP N 1, 14’
2 01500 000001 12 HOVEl 2, 1
2 02116  00 0 0 0 5  13 M OVEM 2 , 5(16 )
55 0 11 6 020 002  14 H R R Z  2 ,2 ( 1 6 )
3 02 100 22202 2 15 CAI E 2, 2
25 4000 0 2 2 2 2 6 ’  16 JRST 26’
2 0 1 0 16 02200? 17 M OV E I 7)16)
26~~0 20 0 2 3 1 5 1 k  20 PUSH 161’

36 Code (1) 2’ 000020 002221 ’
26101 5 022035 21 PUSH 5)16)
7~~~ 2 ! 6  0 2 4  22 PUSH 4 ( 1 6 )
2~ 5060 020000 23 J S P  1 .00
2757 02 022006 24 SUB I 16 .6
254000 020033* 25 JRST 33*
20 10 16 0230 07 26 MOVE I 7 (16 )
261 000 0 2 0 1 60 ’  27 PUSH 160k
2 61016 202-0 05 30 PUSH 5( 16 )
265 060 000023* 31 JSP 1,@23~
2’5700 020006 32 SUBS 16 ,6
202056 000006 33 MOVEM 1 , 6(16 )
201016 032010 34 M OVE I 10(16 )
25 1 000 000:62’ 35 PU SH 162 k
2 6 1 0 16  0 0 0 0 0 3  36 1~JSH 3 ( 1 6 )
2610 1 6 003006 3? PUSH 6(1 6)
2 0 011 6 000006 40 MOVE 2 ,6 (16)
27011 6 020005 41 ADD 2,~~(16)

62 Code )) ) 22 220200 ~,0042 ’
275100 0230 01 42 SUB I 2 , 1
2 6 1 0 0 0  0 0 0 3 0 2  43 PUSH 2
265060 020000 44 iSP 1,00
2 7 5 7 0 0  0 00 00 7 4 5  SU B I  16 , 7
200056 020206 46 MOVE 1 , 6(16 )
254036 000000 47 JRST 00 (16 )
271721 000000 50 ADD I 16 ,00)1)
202056 200000 51 MOVE M 1 , 0(1 6 )
20 10 1 6 003003 52 HOVE l 3 (16 )
261000 ‘20163’ 53 PUSH 163’
2 6 1 0 2 0  0 0 0 16 3 ’  54 PUSH 163’
2 61000 0001 63k 55 PUSH 163’

Figure 1
Sample Output of DMPREL

— 51 —

.5 ~~~~~~ - -~ . - - - ~~~~~~~~~~~~~~~~~~~~~~~ -~~*•.5.5 .5 .5 - . 
—

L. .~~ . ~—
_ .5 

~~~
• .

1~~~~~
—

- — -
~~~~~~~~~~~ 

—.5-- --- .5 --



- r ’ -~~~~~~~~iII~~

1
BBN Report No. 3983 December 1978

7.2 GLINDX

The program “GLINDX” produces several listings of names

declared to be global. This is useful in manag ing globa l numbers

in large application programs. The listings are sorted in

several different ways , including sorted on globa l numbers , on

the names of globals , and on class of use of the name.

GLINDX prompts for an input file and an output file. The

input file is a text file with one entry per glo [-al name. An

en t ry  for  a globa l name must  obe y the fo lowing  s i - t ax :

<GlobalNumber> : <GlobalName> <DefModule> <EecModu1e~ <Class> <CR>
<PrototypeCall>; <Description>

where

<GlobalNumber> is a global number of the form GL4526.

<GlobalName> is a legal BCPL name corresponding to the globa l

num ber.

<DefModule> is the name of the source file that defines the

name.

<DecModule) is the name of the head file that declares the

correspondence between the name and the globa l number.

<Class> is the general group i ng under which the name belongs.

Examples of classes mi ght be “String s” and “Files ” .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E~~~~~~~~~~:~~~~~~
-

- - -

- .5-- .5- .-

‘ ‘~~~~-z= — .- -- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -  
____

BBN Report No. 3983 December 1978

<CR> is Carriage Return.

<PrototypeCall> is a general representation of how to call the

routine . For example ,

“NumberSkips := JSYS(jsNumber [, AC5In [, ACsOut]])” is a

prototype call of the JSYS function , with “ [ ] “  used to

indicate optional arguments.

<Description ) is a short description of the purpose of the

function.

The output file from GLINDX can be printed on the line printer by

the COPY command. Figure 2 shows a fragment off the output of

GLINDX for sorting the list by nam e.

— 53 —



BBN Report No. 3983 December 1978

G l o b a l  N ames , De c l a r i n g  Mo d u l e , Des~~r l p t 1 o n  and Pro t o t y ( e  C a l l  P~~~e 42

3 l o L a l  t la ine  t~e C M o d D e s c r i p t i o n
P r o t o t y p e  Call

PhOUT Head W r i t e  by te to  OUTPUT ( r ~~ t ca n t -  a s
PdOJT J S Y S 1 )

PHOUT )Byte (

PM A P F o r kH ead Map a page into address space
P MA P (S o u r c e , De s t i n a t i o n ) ,  Access ) )

POINT Head Re turn a byte pointer
ByteP tr :— POIN T)S Ize , Loca tion ) . Ri g ht fl ostBit ) (

P r in t F  Head P r i n t  on li n e  p r i n t e r
P r i n t p ( F o r m a t S t r i n g ,  A r g i , A r 9 2  A rg N)

P r i n t S t r e a m  U t i l H e a d  Stre am to TT~~:
B O U T ( P r i n t S t r e a m , Char)

PSIChOI s PSIH ead D i s a b l e  g i v e n  PSI  c h a n n e l s
PSIChOis (Cha nh(, Chan2 (, .. . ChanN ] ...~~)

PS IChE nb PSI Head Enable g i v e n  PSI c h a n n e l s
P S I Ch E n b )C h a n l [ ,  Chan2[, . .  Cha nN) .1)

PS ICh Init PS IHea d Cause an i n t e r r upt on g i ven c h a n n e l s
PS l C h l n i t (C h a n h f ,  Chan2 I, .. Chan N). .))

PS ICl ea r PSiHead Clear al l ou t s t a n d i n g  i n t e r r u p t s
PS iC lear ( )

P S I O f f  PSI Hea d T im PSI system of
P S I O f f ( )

PSIOn PSXH ead T.jmn PSI sys tem on
PSIOn ))

PSrSetCh PSlHead Assi gn PSI c hannel to ro u t i n e
PSISe tCh )Lev el , Channel , Rou tine)

PS l S r a c k O v e r f i o w  N o t O e c l a r e d  R o u t i n e  to t r a n s f e r  to when sta ck
ov e r f l o w s  on p~~j

JSP 1, Ps lS ta ckoverfl ow

Figure 2
Sample Output of GLINDX

- - 1

— —

~~ ~~~~~~~~~~~~~~



~~L ~JJL L J J~joJir1 1i1rar.. 

I
BBN Report No. 3983 December 1978

8. Additional Documentation.

All of the on—line documentation about changes to the BCPL

language and changes to the BCPL library have been collected and

merged into two separate message files known as:

< BCPL >BCP L—Ch anges .TXT
and

<BCPL>BCPLIB—Changes .TXT

These will be maintained in the future to contain any incremental

additions to the BCPL Programming System. All other files of

on—line doc umentation about BCPL are now obsolete.

This leaves the documentation of the BCPL Programming System

far from complete . Future doc umentation on the BCPL Programming

System should includ e the following manuals:

* BCPL Language Reference Manual.

This manual would document all features of the language in a

precise manner. The first seven chapters of the current BCPL

Manual could serve as a model for the information contained

in this doc ument.

* BCPL Primer and User ’s Guide.

New users of BCPL have difficulty comprehending the model of

the programming environment provided by BCPL. The first part

of this manual should serve as an introduction to writing

- 
I

— 5 5 —

‘~ 
~~~~~~ ~~iTTTT~~~~


BBN Report No. 3983 December 1978

programs in BCPL. The second part should act as a general

.5
guide for writing programs in BCPL and should suggest some

programming standards as well as illustrate some complete

examples of an application program built out of BCPL modules.

* BCPL Runtime Library User ’s Guide .

Ev e r y r o u t i n e in the BCPL L i b r a r y should be documented to

tell its purpose , its arguments and its return values . In

addition , an example of a call to each routine should be

given . Finally, a cross reference list of routines showing

which head files declare them and which routines they in turn

reference should be produced .

* BDDT User ’s Guide.

The section of the current BCPL manual on BDDT, the debugger ,

should be rewritten to reflect the current state of commands

to BDDT. In addition , a new section on debug g ing techni ques

should be included. Finall y, a ~omprehensive example

debugging session should be presented and annotated.

* BCPL Utility Programs User ’s Guide .

All of the programs that are in current use to aid the

process of building and maintaining BCPL programs should be

documented in a similar format.

t-

~

— 5 6 —

TIlT — .5 ~~~_jj~_ _ - — --u- J “~~ - - ~~~~~~~~~~~~~~ .5 ~~~~~ - - - U. .U.S~~ ‘~~~ I-.., ~~~~~~~~~ -

~~~~~~.. a.L_.__ 
~~~~~~. .~. —


— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Z
- ________ -

~~J-
-

~

I

t
BBN Report No. 3983 December 1978

Improving the doc umentation of BCPL is the most important advance

that is currentl y needed in the BCPL Programming System.

1~~.

— 57 —[1
~~~~ ~~~~~~~ II I~~1 ~~~~~~~ ~~~~~~ ~~~- 

‘~~~~~~~~~ iF1 .i ~~~~ 

-



~~~~~~~~~~~~~~~~~~~~

I
BBN Report No . 3983 December 1973

Appendix A: The I m p l e m e n t a t i o n of the Peephole O p t i m i z e r .

This appendix gives additional details about the

implementation of the peephole optimizer . It is intended for

readers interested in specific details about the impl ementation

of the BCPL peephole optimizer as well as those interested in

general techniques for impl ementing a peephole optimizer.

A .l Data Formats

There are three data formats to be described : the threaded

compiled code , the table PeepTable , and the table of optimization

sequences used by Al teration .

A.1. l Threaded Code

Code as it is compiled is emitted in a thread ed list form.

Each node in the thread holds all data about a single instruction

or label or data item . (If a listing file has been requested ,

additional nodes provide relevant data.) Each node holds

pointers to both the previous node and the following one , so that

it is easy to delete a nod e or insert one during optimization. A

label appearing in the output is threaded into pl ace just before -

the instruction it labels. The label node has fields pointing to

the first and last node in a Reference Chain , a threaded list

with a RefNode for each instruction that references the label.

The address part of each such instruction points to a Re fNode in

— 5 8 --

ii


~~~~~
‘—- - -

~~~~~ - - - - -—~~~~~ -.

BBN Report No. 398~ December l9~~

that chain , which in turn holds a pointer back to the code node

t h a t r e f e r e n c e s i t and a po in t e r to the labe l node. The e f f e c t

is that all references to a label can be readily found , as is

clearl y need ed in Crossjump . A]abel not referred to has an

empty R e f e r e n c e C h a i n .

The effect of all of these pointers is suggested by Figure

3. This shows a section of the code segment includ ing a l abel

and three .IRSTs whose address is that label .

A .l.2 PeepTabie

This table contains a one—word entry for each PDP—1ø opcode ,

from # i c ~ø to #‘577. An additional entry #77 is used in DoAlter as

if LABEL were an opcocle. The format of PeepTable is described by

the structure Peeps in 1~ PPHD. The left half of each word is

used onl y by Pee p ln i t and the r e l e v a n t f i e l d s a re d e s c r i b e d as

pa r t of the d e s c r i p t i o n of t h a t r o u t i n e . The r e m a i n i n g f i e l d s

are as follows :

MaySkip bitb
The opcode may (when it is executed) cause the nex t
instruction to be skipped .

MayJump bitb
The opcode may cause a jump .

Cla ss b i t ~T h i s f i e l d d e f i nes the c lass the opcode f a l l s i n t o , as
used inn DoAlter.

— 59 —

- .

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



BBN Report No. 3983 December 1978

..

~

Of;- r
•- 0

- - 
-- 

CGD~+

Figure 3
- Threaded Code Format

— 6 0—

.5 ~~~ ~~~ ~~~~~~~~~~~~~~ 
T~~~~~~~~~~~~~~~ -;--_~~~~- .5 

~~~~~~


~~ e - ~ ~~ --

BBN Report No. 3983 December 1978

AlterTable bit ~
This specifies the beginning of a table of alteration
sequences whose last member has the opcode of this entry.
The entry is the offset in the table Al terTable
(appearing at the end of 1OPPST) whose entries contain
the address of the alteration tables themselves. This
added indirection requires onl y six bits in PeepTable
rather than an 18—bit address.

A .l.3 The Alteration Tables

The Al teration optimization consists of repl acing certain

.5 sequences of instructions by better ones . The routine is

• table—driven in the sense tha t the sequences to be replaced and

the changes to be made in them are stored in tables . It is these

tables tha t are described in this section.

The tables themselves are found in the modul e IOPPST (PDP—l0

EeeEhole statics) , in the latter part of that file. Consider the

opt imi zat ion

MOVEM R ,X + M OVE P ,X ==> M OVE M R,X

which is #2 in the listing . It indicates that if a MOVEM is

followed by a MOVE with the same register and address fields , the

latter may be deleted . This sequence is represented in memory by

five words. The first is a header word , with the Head bit set.

The number 2 in the left half indicates that it is optimiz ation

#2 , and the 2 in the right half indicates that the match is on

two instructions . (Inclusion of the optimization number was

extremely useful in debugging.) The nex t two wo rds describe the

— c i —

- ~~~~~-
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BBN Re port No . 3983 December 1978

instructions to be matched , and nex t two describe the changes to

be mad e in them if the match succeeds. In the present case , all

that is required of the first word is that its opcode be MOVEM .

The second must have opcode MOVE , and its register and address

fields must match those of the first word . The next two words

indicate that the first instruction is to be unaltered and the

second is to be deleted .

An experienced programmer should have little difficul ty

deducing the significance of the remaining possible fields. The

manifests used to create these tables are declared in 1OPPST

imm ediately following PeepTable. These manifests should be

com pared with the structure declaration of Al ters in IØPPHD and

with the code in the routines DoAl ter , CheckMatch , and AlterNode.

A .2 Details of the Al gorithm s

This sect ion pr esen t s a b r i e f ove r v i e w of som e of t he

algorithms used . There are two purposes to this discussion:

First , a reader knowledgeable about comp ilers and somewhat

familiar with BCPL will be able to understand what we have done

so as to modify other compilers similarly. Second , an

experienced BCPL programmer familiar with the internal s of the

compiler will find this information useful in maintaining or

mod i fying the code. For the first purpo se, onl y this overview

should be necessary. Programmers interested in the second

— c2 —

- . 5-- .5 ~~
:~~
“i

~~~~ 

— . 5-



_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

—~~~~~

BBN Report No. 3983 December 1978

purpose will readily obtain additional details throug h stud y of

the listings. They are extensivel y commented .

A.2.1 Creating the Listing File

In the compiler as it was before the present modification ,

each routine that compiled code tested a switch and , if required ,

outputed data to the listing file. Wi th the addition of

optimization , it is necessary to delay production of the listing

file until after all optimization has been performed .

Maintaining the integrity of the listing file (in the sense that

it correspond exactl y with the .REL file) was felt to be

necessary for two reasons: programmers requesting the listing

have a ri ght to coun t on its matching the .REL file , and the

.5 listing file was an important tool in debugg ing the opt imization

routines.

Since the listing file is created after optimization , it is

necessary that all data needed to create it be in the three

threads. (There a few exceptions.) Therefore additional node

types provide the necessary data. Nodes of these types are

created only if a listing file is requested by the user in

i nvoking the compiler. The listing is printed in

PeepHoleOptimize after performing all optimizing and before

calling PeepFinal .

—

- ~~~~~ ~~



.5—-- ----.5.5 -,-- -— -

BBN Report No. 3983 December l~~78

A .2.2 The Optimization Routines

Five routines perfo rm the optimizations themselves. They
.5 

are all called from PeepHoleWork and are all found in 1ØPPPG .

They are described in the following five subsections.

.5 
A . 2 . 2 . l  Pe e pl ni t  —— I n i t i a l  Pass

This  r o u t i n e  pe r fo rm s the i n i t i a l  over the cod e, making the

three changes already described : collecting all RETURN

instructions , altering certain instructions to equivalent forms ,

and deleting instructions ‘.‘hich are effectively no—operations.

The last two optimizations are under the control of bits in

PeepTable. The structure declaration Peeps in file 1OPPH D

(PDP—lø peephole head ) describes this table. The fields rel evant

.5 to Peeplnit are now described , where for each switch (item

.5 declared bitb ) the comment describes the action taken in

Peeplnit if the switch is true .

. Del bitb
Delete the instruction.

DelACZero bitb .5

Delete the instruction providing that the AC field is
zero .

. Alt bitb
Al ter this instruction by replacing its opcode by the one
in the NewOp field (below)

. Al tACZero bitb
Al ter the instruction onl y if the AC field is zero , the
al teration being as above.

—

.5- - - - -- - - - - - - .5 - - .5 —.5”—. -~~~~~~~~- -—-



BBN Re port No. 3983 December 1978

NewACZero bitb
Set the AC field to be zero.

. NewAdr zero bitb
Set the address field to be zero.

NewO p h i t  9
If Alt or AltACZero is set , this is the new opcode for
the instruction.

The above fields are ex amined onl y in Peeplnit.

A.2.2.2 Alteration

The most complicated of the optimization routines is

DoAl ter , wh ich  scans the code c h a i n  l o o k i n g  for code sequences

which it can replace by better ones. As it scans , it maintains a

window of the last (up to) seven i n s t r u c t i o n s  scanned .  A f t e r

eac1~ new instruction is entered into the wi ndow , the window is

m a t c h e d  a g a i n s t  a t ab l e  of o p t i m i z a t i o n  sequences , w i t h  a

replacement being mad e if a match is found . To keep the matching

process from being too time consum ing , it is performed in two

steps . First , the opcodes of the instructions in the window are

matched against the opcodes of the optimization sequences. Only

if this cheap test is passed is the more time consum ing test

perform ed for exact match . The test for exact match is performed

for one instruction by the routine CheckMatch. Once a match has

been found , the routine AlterNo d e makes the actual changes .

— 65 —



BBN Report No. 3983 December l97~

The optimization sequences are arranged by the last opcod e

in the sequence. Thus , for ex ampl e, all sequences end ing in the

opcode MOVE are in a single table. Each entry in PeepTabl e

includes a field which points to the table of optimization

sequences end ing on that opcode , the field being zero if there

are no such sequences. The field is nam ed Peeps.Al -terTable and

contains an offset in an auxiliary tabl e AlterTable which appears

on the last pag e of 1OPPST. Each entry in the latter is the

address  of  a table of alteration sequences .

I
A. . 2 .2 .3 DoCrossJump

This routine per fo rms the Cross Jump o p t i m i z a t i o n .  It scans

thro ug h the code segment looking at only label nodes . When it

find s one , it iterates throug h all nodes of the label ’s RefCha -i n ,

doing two actions for each one . CrossJumpWork is called to

com pare the tail before the label against the tail before the

JRST to it. Nex t CrossJumpWork is called to compare the tail of

this JR ST with the tails of every other JRST to the label .

CrossJumpWork has an optional third arg ument which indicates

which of these two cases is in effect , since it must do slightly

different initi alization. It is CrossJumpWork which is cognizant

of the CJChain bit.

—

.5 - --- .5 --
~~~~~~ 

.5 —
~~~~~~~~~~~~ -



11 ~~~~~~~~~~~~ -- 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

BBN Report No. 3983 December 1978

A .2.2.4 Do J um p

This routine performs four optimizations . It makes a single

scan over the code segment doing Unreachabl e , Jump Chain , Unused

.5 Label , and Label Merge. The cod e is strai ghtforward and easy to

follow.

A. 2.2.5 DoLitera ls

This routine makes a pass over the literals segment , which

contains only string litera].s mentioned in the source prog r am ,

deleting any such literal not referenced . There are two ways for

a literal to appear here but not be referenced. The cod e

referencing it may have been deleted by Unreachable , or the

literal may appear in a manifest declaration of a name which is

V not used.

Fi nd i ng such l i t e ra l s  is q u i t e  easy.  Labels  a r e  scanned

for , and any label with an empt y reference chain is deleted along

with all further nodes up to the nex t label .

A.2.3 PeepFinal —— Bookkeeping Pass

Before the final code can be emitted into the .REL file ,

each instruction must he assigned its final PC value . An extra

complication is tha t PC value s must be known as the code is

generated (long before optimization) so that entries can be made

..1 
— 67 —

.5 - - ~~~~~~~~~ -—- —-- - - —~~~~



BBN Report No. 3983 December l97~

in the symbol table . It is these data which permit BDDT to he

able to print the source statement corresponding to any location

in a r unning prog r am . Since these PC values get changed as

instructions are deleted , the symbol table must be adjusted . In

I passing over the code segment , PeepFinal generates a table

I 
(LocVec) of adjustments to be made. On completion of the pass ,

.5 the routine SyintabAdjustiLCA in MS?MB is called to make the

I actual changes . A comment at the beg inning of SymtabAdjustlLCA

describes the format of the table. PeepFinal also assigns values

to labels.

I

.5.

— (8  —

_ _ _ _  _ _ _ _ _  —.5 - , —- - .5 - - .5 - .  . 5 . 5  ~~~~~~~~~~~~~~~~~~ .5 -  _ _~i — —_~~


