Bolt Beranek and Newman Inc. __ abn

!O Report No. 3983

% Improvements to the BCPL Programming System:

Final Report

DDC FILE CcoPY

December 1978

Prepared for:
Defense Advanced Research Projects Agency

el el el e el e e e

4

==

1
I
I
I

ST S S B e L e e - PR

R ——

ea@ .-398‘% ;

/

” ’6”
Nl Al
Improvements to the BCPL Programming Systems {

7 F1na1 Report .'{5 5/— ¢ "5}7 4”' 779{

‘Pecember 1978

by Harry C. /éorsdick, <2;>,1 8 T4 =
rthur{Evans, Jee - / —
KSLF\ ﬁ <<<<< /”F(n.,g;' \w//;ﬁ/

Sponsored by:
De fense Advanced Research Projects Agency (DoD)
ARPA Order No. 3567
/'/-‘
Monitored by Naval E]ec&(_ggg _Systems Command
Under Contract # N@p@A39-78-C-0A313

[vr AKEA GkAe»)-—'f;/

LS

Contract Period: 13 April 1978 to 3@ November 1973

Principal Investigator: Robert H. Thomas

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or lmP]lpd,
of the Defense Advanced Research Projects Agency or the U.
Government.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

v READ INSTRUCTIONS
4 REPORT DOCUMENTATION PAGE , BEFORE COMPLETING FORM .
& T. REPORT NUHG!E 2. GOVT ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
BBN Report No. 3983 :
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Final Technical
4/13/78 - 11/30/78

6, PERFORMING ORG. REPORT NUMBER

Improvements to the BCPL Programming,System

'llTl- MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) S. SECURITY CLASS. (of thie report)
X

o
7. AUTHOR(s) 8. CONTRACT 'O'R GRANT NUMBER(s)
H.C. Forsdick N00039-78-C-0313 ™V
A. Evans, Jr.
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. ::gg!}A:oskxsnsr;.upuzo;aegg, TASK .
Bolt Beranek and Newman Inc. 4
50 Moulton Street i
i 02138 y il - ;
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ' |
December 1978 i
13. NUMBER OF PAGES / a
68]

|
|
|
Unclassified ‘
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE
|

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited. It may be released tc the
Clearinghouse, Department of Commerce for sale to the general public.

=

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) |

¥

{

i

—
8. SUPPLEMENTARY NOTES
'This research was supported by the Defense Advanced Research Projects Agency
under ARPA Order No. 3567.
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
BCPL inline routine call programming language
optimization macro TENEX Operating System
peephole assembler TOPS-20 Operating Systém

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

'fﬁThis report describes BBN efforts to improve the BCPL Programming System by
adding features to the language, changing the compiler and writing new
routines for the run-time library. New features added to the BCPL Language
}include;a facility for defining routines that are expanded directly in place
‘of calls to them;and an assembler for including PDP-10 assembly language
statements in a BCPL module. Changes made to the compiler include a peephole

optimizer that was added to optimize translated code and a shorter normal
C,

FOAM
DD | on"5s 1473 €oiTion oF 1 NOV 65 1B 0BSOLETE acicasitted
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteted)

N

M

BBN Report No. 3983 December 1978

' Improvements to the BCPL Programming System
Contents Page
o T T o e e e O el e R - R Tl
1.1 Changes to the BCPL Language€. . . « « o« « o o o o« o« o« « 3
' 1.2 Changes to the translation of the BCPL Language. 4
1.3 Changes to the Run—-Time BCPL Library. « « o« « « s o« o« o« 5
l Z2¢ BCPL U Languagel Changesie e o el s e e e e e e
2.1 1Inline Routine Definitions and Calls. . . ¢« ¢« « « « « o 17
2.2 PDPl1A/SYSTEM2@ Class Assembly Language Statements. . . . 12
l 2.3 Variables Residing in Registers. . . . « ¢« ¢« &« ¢« &« « « . 18
3. BERPL CompilernChanges s e icici o it el o slile: o o s = e 21
3.1 1Inline Routine Definitions and Calls. . . . « ¢« « « « o 21
l 3.2 PDP14/SYSTEM2# Class Assembly Language Statements. . . . 25
3.3 Shortened Routine Calling SeqUERCe.: & « « s« « o & = s o 26
3.4 Peephole Optimization .+ « « = = » = =« = & » o s = » » » 32

4., BCPL Runtime Library Choange8. « s =« & s « = = « = » » « » 38
4.1 Routines to Support BCPL Initialization. 38
4.2 Routine to Support Command Scanfing. . « « « « » = « « «» 39

Se Performance TeSES « o o o o s v 5 5w om0 w e e w e e &2

6. How to Use the New Compiler. . . . ¢« ¢ ¢ ¢« ¢« ¢« « « &« « « o 43
6.1 New Language FeatureS. « « « « ¢ o o o o o o o o o« o« « o« 43
6«2 New Compiler FeatUres. « « « +« s« « ¢« s o % » » & &« « » « 43
6.3 [The Peephole OpEimiZer. « « &« ¥ » & » 5 s = & » = » « @« 46
6.4 The New Routine Calling Sequence. . .« « ¢« « « « o« « « o 47
6.5 The New 1ibrary. « « ¢« o ¢« o o« s o o s o« « s« s » « « » « 48
6.6 BDDT -- The Debugger. . « « o« « o o o o o o o o« o o« « o« 48
6.7 The Concordance Generator. . « « +« o« « o o o« « o o« « o o« 49

7. Additional BCPL Utility Programs. .« « » o o s« s & » » « & 90
7ol DMBREL: & . % 5 9. % & 6 @ a0 o s @ 5 5 5 8 % w e 8o s o8
7«2 GEINDX % 5 v 55 o 5 o 5 & % & 5.3 % % &% & % . & & & & w I8

8. Additional Documentations: « « ¢« & & 5 % 5 % & & % % & & » 299

Appendix A. The Implementation of the Peephole Optimizer.
B.1 Datys Formats . + « v+ s« ¢« o & o » » & =
A.?2 Details of the Algorithms

-

BBN Report No. 3983 December 1978

1. Summary.

The TENEX/TOPS2# BCPL Programming System is used by many

ARPA contractors to implement software of interest to the

. Department of Defense. BCPL is favored as an implementation
language for several reasons. The BCPL language allows a
programmer to use convenient and powerful control structures
while at the same time permitting close access to the basic
efficient operations of the underlying machine. 1In addition, the
support system surrounding the BCPL Language is complete and thus

g ' greatly simplifies the process of writing, debugging and testing

BCPL application programs. BCPL is currently used as the

implementation language for the System for Distributed Data

(SbD-1), as well as several of the TENEX parts of the National
’ Software Works (NSW): the Works Manager, File Package and Front

End components.

The objective of this contract was to improve the BCPL
. Programming System by adding features to the language, changing
the compiler and writing new routines for the run-time library.

All of these changes are intended to accelerate the execution

| speed and lower the storage costs of BCPL programs. These
changes and additions airect three parts of the BCPL Programming

System:

il

BBN

Report No. 3983 December 1978

Changes to the BCPL Language.

Changes to the BCPL language give the programmer better or
more efficient ways of expressing algorithms. A programmer
must modify existing programs to take advantage of this class

of improvements. We have made the following changes to the

BCPL Language:

1.1.1 1Inline Routine Definitions and Calls.
A call to a routine may now be translated into a direct
expansion of the body of the routine rather than a
sequence of code to transfer to the body. This is
beneficial for short routines where the length of the body

is comparable to the length of the calling sequence.

1.1.2 PDPl@ Class Assembly Language Statements.
A facility has been added to the BCPL Language for
including assembly language statements in a BCPL program.
This capability is intended for those special cases when
the code generated by the compiler is just too inefficient
for the operation being performed. These statements are
necessarily machine dependent and they are clearly
identified as such. In an attempt to stay as close as
possible to the BCPL language, operands of assembly
language statements are normal BCPL variables. Used in
conjunction with inline routine definitions, sequences
of assembly language statements can be packaged to take on

the appearance of a normal BCPL routine call.

S e 4y A SRS ACPT -

AT o . . v RS, e e ———

BBN Report No. 3983 December 1978

1.1.3 Variables Residing in Registers.
One additional change that we anticipated would be useful
turned out on closer examination to be counterproductive.
We originally thought that adding a facility for declaring
a variable to reside in a fast register would result in an
improvement in execution speed. 3Subsequent study showed
that because of the calling sequence convention observed
by BCPL, such register residing variables would have to be
saved and restored on each routine call within their
scope. This would eliminate any benefit gained by
assigning the variable to the register. After many
alternatives for providing this facility were considered,

we reluctantly decided not to add this feature.

1.2 Changes to the translation of the BCPL Language.
These improvements result in more efficient translations of
programs written in the existing BCPL Language (in time or
space or both). Existing BCPL programs do not need to be

modified to take advantage of these improvements.

1.2.1 Shortened Routine Calling Sequence.
We have implemented a shortened calling sequence for
normal (i.e., not inline) routine calls. This new calling

sequence maintains all of the functionality of the

previous calling sequence but requires fewer generated and

BBN Report No. 3983 December 1978

executed instructions to achieve the call. Application
programs run from 3% to 14% faster due to the shortened

calling sequence.

1.2.2 Peephole Optimizer.

An optimizer has been added to the BCPL compiler. It is
known as a "peephole" optimizer due to its method of
examining a small number of machine instructions at one
time for possible improvements. The peephole optimizer is
table driven and as a result can be modified in the future
to accommodate additional optimizations. With the current
set of optimizations we have observed a 3% to 12% decrease

in the size of translated BCPL modules.

1.3 Changes to the Run-Time BCPL Library.
These improvements provide better support for BCPL
application programs in the form of utility routines and BCPL
i run-time language support. The most important additions to
the library are several routines to support the new shorter

routine calling sequence. Some applications will require

program changes to utilize the new library routines.

BBN Report No. 3983 December 1978

In preliminary tests of small application programs written
in BCPL compiled with the new compiler, we have observed a 5% to
15% overall decrease in execution time and a 5% to 15% decrease
in the amount of space occupied by the machine language
translation of these programs. These improvements were realized
without any changes to the given application programs and as a
result do not take advantage of the two changes to the BCPL
Language (inline routines and machine language assembler).
Further improvements will result when these two new features are

integrated into application programs.

Sections 2 through 8 of this report document the changes to
the BCPL language, compiler and library. 1In addition, Appendix A

contains a detailed description of the implementation of the

peephole optimizer.

o R it ek SN 0 et AW 2 KA | Sl
. e %D ol

BBN Report No. 3983 December 1978

2. BCPL Language Changes.

B oo

2.1 1Inline Routine Definitions and Calls.

T,

The overhead of the BCPL call, return and argument passing
l mechanism dominates the work done by some small routines. For
| such routines, it is preferable to replace the call by the actual
body of the routine, adjusting references to the parameters of

the routine to be references to the actual arguments of the call.

This way, the only instructions generated are those corresponding

to the body of the routine.

It is desirable that the semantics of such an "inline"
routine and a regular routine be identical. This way, only one
set of rules defining the meaning of a routine needs to be

comprehended. To achieve this effect, the simple rule of having

the references to parameters in the body of the routine go
directly to the arguments supplied in the call must be changed.
This is because a routine may store into its formal parameters (a
common technique of providing default values for omitted
arguments). In a regular routine, arguments are passed by value:

the value of an argument is copied and pushed onto a stack so

that the called routine has a private copy of the argument with
which to work. To maintain identical semantics with regular
routines, the precise rule for pushing arguments onto the stack

in an inline invocation must be:

BBN Report No. 3983 December 1978

Push an argument onto the stack if:

* The argument is an expression or the reserved name
" 3 L
R e,

* The corresponding formal parameter is:
* Stored into by an assignment statement (as a simple
name or as the operand of the structure qualification

operator "<<").

* The operand of an "lv" operator.

* The reserved name "nil".

Otherwise, make all references to formal parameters in the
body of the inline routine or function resolve to the
corresponding arguments supplied in the invocation.
The effect of this rule is to push arguments onto the stack only
when necessary to preserve identical semantics with a normal

routine call. It is possible to write inline routines that

generate no calling sequence overhead.

The BCPL inline routine facility is designed so that
changing from an "out-of-1line" to an "inline" routine can be done
by adding one keyword, "inline", after the "let" (or "and") of
the definition:

let inline Routine(Formall, Formal2, ...) be <command>
i let inline Function(Formall, Formal2, ...) := <expression>

Inline routines or functions are invoked the same way as regular

routines or functions:

O e W=

i e, - S

- TR o R

A o S S o . e e e e e e o et e =

BBN Report No. 3983 December 1978

Routine(Argl, Arg2, ...)
X := Function(Argl, Arg2, «..)
tatements sv<h as "return" and "resultis" jump to the statement
after the inline routine or function invocation with the latter
statement causing a value to be returned. The reserved name
"numbargs" returns the number of arguments supplied in the inline
invocation rather than the number of arguments supplied in the

call to the currently executing routine.

In the following example, each time a call to the inline

routines Pick, Append and Length appear, the actual body of the

routine is compiled in place.

e
e o “ oo b L o o e

BBN Report No. 3983 December 1978

structure
{ string
{ N byte
C"511 char
}
}

let inline Pick(CharString, Pos) :=
CharString>>String.C"Pos

and let inline Append(Char, CharString) be
{ let N := Length(CharString) + 1
CharString>>String.N := N

CharString>>String.C"N := Char
}

and let inline Length(CharString) :=
CharString>>String.N

e e

let FormDirName (NemeString, DirNameString) := valof
{ DirNameString>>String.N := @
Append ($<, DirNameString)

for i := 1 to Length(NameString) do
Append (Pick (NameString, i), DirNameString)

Append ($>, DirNameString)

resultis DirNameString

}
Notice that inline routines may be imbedded inside other inline
routines. In addition, inline routines may be defined !

recursively, although the decision on when to terminate the

recursion must be based on an expression (probablv containing the
reserved name "numbargs") that may be computed as a constant at
compile time. The compiler considers inline expansions that are

nested to a depth greater than 20@ to be erroneous infinite

recursive expansions. The improvement gained by using inline

routines in this example is 241 (out of 542) fewer instructions

AL m_——J

BBN Report No. 3983 December 1978

executed per call to FormDirName when NameString 1is 1@ characters
long. Thus the inline version of FormDirName runs 45% faster

than the normal routine call version.

In summary, inline routines have the same semantics as
normal routines with the exception that the decision to perform a
recursive call must be based on a compile-time constant
expression. The primary difference between inline and regular
routines is the cost of execution time and space of calls to such

routines.

BBN Report No. 3983 December 1978

2.2 PDP10/SYSTEM2@ Class Assembly Language Statements.

There are special cases where the advantage of using a high
level language like BCPL is outweighed by the difficulty of
getting the compiler to generate extremely efficient code
sequences or special purpose code sequences. For these special
cases, we have added to BCPL the ability to include assembly
language instructions directly within a BCPL module. As a
result, the need for specially coded routines in assembly
language is eliminated. 1In addition, much of the control logic
in such routines can now be expressed as standard BCPL

statements.

Assembly language statements may be included in a BCPL
module by use of the "assemble" statement. The syntax for this
statement is:

assemble <MachineType>
{ opCode(Argl, Arg2, ...)

OpCode (Argl, Arg2, ...)

where <MachineType> is the name of the machine for which assembly
language instructions are written. The only types of statements
permitted within an assembly block are assembly language
statements. The name "pdpl@" describes the instruction set of

the DEC PDP1@/SYSTEM2# machines. Each individu 1 machine

BBN Report No. 3983 December 1978

language instruction is expressed in the same syntax as a routine
call. The names of the instructions correspond to the names of
instructions found on pages 23-91 DECSYSTEM1@ System Reference
Manual. 1In addition, the names of the TENEX and TOPS20 JSYS
calls (TENEX JSYS Manual and DECSYSTEM2@ Monitor Calls Reference

Manual) are also known by the compiler. As in the MACRQ1@

assembler, names of opcodes may be any combination of upper and
lower case letters. The other fields of an instruction are
expressed as arguments to the routine call. Following the BCPL
convention, and unlike MACRO1#, the default radix for numbers is

decimal. JSYS calls take no arguments.

Arguments are interpreted in the following fashion:
OpCode ()
OpCode (Address)
OpCode (Register, Address)
OpCode (Register, Address, IndexRegister)
OpCode (Register, Address, IndexRegister, IndirectBool)
where:

* Address is any compile-time constant or a simple variable.

* Register (IndexRegister) is any compile-time constant between
@ and #17 (octal). Note that register #16 (octal) should not
normally be referenced since it is the stack pointer.

* IndirectBool is any compile-time constant which is
interpreted as a truth value (true or false).

1f a field is missing then the following defaults are used:

* Address is 0.

BBN Report No. 3983 December 1978

* Register and IndexRegister are 0.

* IndirectBool is false.

When a specified value is out of the range of the intended field,
a warning is reported. The value put into the field is the low
order bits of the specified value that will fit into the field.
An example of the use of the assemble statement follows:
let POINT(Size, Location, RightMostBit) := valof
{ if numbargs 1ls 3 then RightMostBit := -1
assemble pdpl@d
{ SETZM(2)
MOVE (1, Size)
LSHC(1,-56)
MOVEI (1, 35)
SUB(1, RightMostBit)
LSHC(1,-5)

HRR (2, Lecation)
Move(l, 2)

Notice that the names referenced in the address portion of the
assembly language instructions are normal BCPL variables. The
alternation between upper and lower case in the last instruction
is used to illustrate the fact that opcode recognition is case

independent.

While instructions are expressed syntactically as routine
calls, the semantics of such routine calls are somewhat
different. As in a routine call, when an argument to an assembly

language instruction is a constant, manifest or truth value, then

BBN Report No. 3983 December 1978

its value is put into the appropriate field. When an argument in
the Address position is a simple variable (local, static, global
or external) then the address of the argument (lv) is put into
the appropriate field. For static, global or external variables,
this is a relocatable address. For local variables, the offset
of the variable on the stack is placed in the address portion and
register #16 (octal) is put into the index register portion of
the instruction. Attempts to reference a local variable in the
Address field of an instruction that contains an explicitly
specified index register are considered by the compiler as
errors. These rules of field interpretation preserve the
conventions present in the MACRO-10 assembler, but depart from

normal BCPL argument evaluation rules.

The "address versus value" rule makes it difficult to
manipulate literal constants because the Address argument is
always viewed as the position of data rather than the value of
data. To facilitate manipulation of literal data by assembly
language instructions, a new operator "literal" has been added to
the language. This operator may be used only within an assemble
block as a unary operator on the Address field. Thus to generate
a reference to the value 3,,4 (i.e., #3000004) rather than the
address 3,,4 (which is the constant #30000084 or, truncated to 18

bits, 4), the following statement could be written:

T e A 9. Sl AR el

i o s e

——

R TS e ——

BBN Report No. 3983 December 1978

MOVE (1, literal 3,,4)

Space would be allocated to hold the value 3,,4 so that when the

instruction is executed that value is loaded into register 1.

Finally, labels may be used in the same way they are used in
normal BCPL code, with identical scoping rules. It is possible
to jump out of an assemble block into BCPL code, but because of
the normal scoping rules for labels, it is impossible to jump
into an assemble block from BCPL code. To achieve the same
effect, an assemble block can be split into two assemble blocks

the label affixed to the second block.

Transferring to a label from within BCPL code is done by the
"goto" command. Transferring from within an assemble block
requires knowledge of how BCPL lapels are implemented. With one
exception, a label on a statement results in the declaration of a
manifest value which is the relocatable address of the start of
the statement. The exception is for a label which is also
declared to be a global or external. For such labels, the
address of the associated statement is stored in a cell in static
storage and the value of the label is the address of this cell.

The impact of this on assembly code is that transfers to regular

labels from within an assemble block can be done by direct
transfers to the label name while transfers to global or external
labels must be done by indirect transfers. A safe procedure is

to exit the assemble block and use the BCPL "goto" statement.

BBN Report No. 3983 December 1978

The BCPL assembly language facility allows a programmer
access to features of the underlying machine and operating system
that the compiler does not know about or cannot utilize
efficiently. Assembly language statements have been added in the
spirit of the rest of the BCPL language; normal BCPL variables
are used as the values of the fields of instructions. Because of
the obvious machine dependency, assembly language statements
should be used only as a last resort, when all other
possibilities have been exhausted. When possible, assembly
language sequences should be packaged as abstract operations by
use of inline routines. This way, the complex semantics
associated with raw machine language instructions can be hidden

from casual BCPL programmers.

T ——

e
S _
—— : S ————

BBN Report No. 3983 December 1978

2.3 Variables Residing in Registers.

A change that we anticipated would be useful turned out on
closer examination to be counterproductive. We originally
thought that adding a facility for declaring a variable to reside
in a fast register would result in an improvement in execution
speed. Several alternatives for expressing and implementing this
mechanism were considered. The most promising one is outlined as

follows:

A variable may be declared to reside in a fast register.
There are three ways to declare a register variable:

1. let register <variableName> := <Expression>

for example,
let register x := 45

2. register
{ <variableName> }

for example,
register

{ &)}

3. for register <VariableName> := <Expression> to
<Expression> by <ConstantExpression>

for example,
for register x := 1 to N do ...<use of x>...

The first declaration is intended for situations where the
register variable is to be both declared and initialized and
where its scope is limited to a small area of a BCPL module.
The second declaration is intended for cases where the
register variable is to be used throughout the entire module
(or a set of modules) and is initialized once and referenced
from many places. The third statement is both a declaration
and a command and has the same meaning as a normal "for" loop
command, except that the loop variable is kept in a register.
The scope of a "register { <VariableName> }" statement is the
same as the scope of a "static { <vVariableName> := <Value> }"

——r T

b

BBN Report No. 3983 December 1978

statement. The scope of a "let register <VariableName> :=
<Value>" statement is the same as a normal "let
<VariableName> := <Value>" statement. The scope of the loop
variable in a "for register" statement is the statement of
the for 1loop.

The compiler will assign registers to be used to hold

variables and will refrain from using these registers for
code generation purposes during the scope of the declaration.

There are two immediately problems with this proposal and

all of the other proposals we considered concerning the

allocation of registers:

Ts

If as stated, the compiler makes register assignments, then
separately compiled modules run the chance of conflicting over
the dedication of a register to hold a variable. Various
schemes for helping the compiler manage the register
assignment task were considered. The only solution that does
not put too great a burden on programmers seems to be to have

the compiler save registers across routine or function calls.

There are two ways to save registers across function calls:
either on the caller's side or on the callee's side. Saving
registers on the caller's side would probably negate the
effect of storing a variable in a register in the first place.
Saving on the callee's side only if the callee used variables
in registers is an attractive solution at first. However, on

further consideration this solution lengthens the routine

calling sequence and thus, for those routines which use

BBN Report No. 3983 Decamber 1978

register variables, negates the effect of the shortened

calling sequence.

The language C(l) does offer such a capability for storing
variables in registers. Unlike BCPL, C already saves registers
across routine calls and thus saving registers used to store

variables offers no additional load on the calling sequence.

After many alternatives for providing this facility were

considered we reluctantly decided not to add this feature.

(1) Ritchie, D. M., et. al., "The C Programing Language," The
Bell System Technical Journal, Vol. 57, No. 6, July-August 1978, 5
pp. 1991-2019. |

- IE -

- S
. o han . e = -

December 1978

BBN Report No. 3983

3. BCPL Compiler Changes.

The following descriptions of changes to the compiler are

intended for readers interested in how the new language features

were implemented. In addition, there are sections on the

implementation of the new calling sequence intended for

programmers of applications that contain features which imbed

knowledge of the calling sequence. (This is a practice which in

general we discourage.) Finally, the implementation of the

peephole optimizer is described for compiler implementers and

other interested parties.

Most BCPL programmers will not need to use any of the

information contained in this section.

3.1 Inline Routine Definitions and Calls.

Inline routines are implemented by replacing the call to the

inline routine by a copy of the body of the routine and then

compiling the body. There are three main tasks to be performed:

storing the body of the routine, copying the body of the routine

to replace the call and examining the argument/parameter pairs of

the call and the definition to see how to pass arguments.

All routines (inline or regular) are defined in a context of
static, global, manifest, structure and external names. This

environment must be carried along with the copies of the routine

—

B e o

BBN Report No. 3983 December 1978

so that when a copy is compiled in place of a call, a free
reference to a name will resolve to the proper instance of the
name. A free reference to a name in a routine should go to the
instance defined at the point of routine definition, not at the
point of the call. For example, in the following program
fragment, the free reference to the name "String" in the inline
routine Append refers to the structure name "String" rather than
the local name "String" defined just before the call to "Append".
structure
{ string
{ N byte
€511

}
}

let inline Append(Char, CharString) be
{ let N := Length(CharString) + 1
CharString>>String.N := N
CharString>>String.C”N := Char
}

S oo

let String := vec 511
Co v

Append ($<, String)

<.‘.>

To do this, inline routines must be scanned at the point of their
definition and all references to free variables must be bound to
the definitions in effect at inline routine definition time.
These bindings are stored in the parse tree of the body of the
routine. For inline routines, the value associated with the name

of the routine is a pointer to the root of this parse tree. |

- 39 -

e - - e i R —_— . A e e
IPRBABA G SR

B e e
3

1

BBN Report No. 3983 December 1978

The replacement of the call by the body of the routine is
done in terms of the parse tree. The parse tree of the inline
routine serves as a template for the expansion. The part of the
tree represented by the call is replaced by a copy of the

template.

In regular routine calls, all arguments are pushed onto a
stack and the called routine references its corresponding formal
parameters from these locations. For inline routines, argument
passing is done according to the rule stated in section 2.1,

which is restated below:

Push an argument onto the stack if:

* The argument is an expression or the rescrved name
"] "
nil"™ .

* The corresponding formal parameter is:
* Stored into by an assignment statement (as a simple
name or as the operand of the structure qualification
operator "<<").

* The operand of an "1lv" operator.

* The reserved name "nil".

Otherwise, make all references to formal parameters in the
body of the inline routine or function resolve to the
corresponding arguments supplied in the invocation.

Thus, the decision whether to push an argument onto the stack is

a function of both the nature of the argument and the way the

formal parameter is used within the body of the routine.

BBN Report No. 3983 December 1978

Before the body of the inline routine is compiled in place

of the call, each of the parameters is declared as a local
variable. The nature of the location which stores the value of
that variable depends on whether the argument is pushed onto the
stack. If it is, then the location associated with the 1local
parameter variable is the stack location. If not, then the
location is an indirect pointer back to the actual argument.
When the inline routine body is actually compiled, references to
the formal parameters will either resolve to the locations on the
stack that resulted from argument pushes or the locations
associated with the arguments themselves. Once the routine
template has been copied and the arguments have been processed,

the copy is then compiled as if it had been the call.

BBN Report No. 3983 December 1978

3.2 PDP19/SYSTEM2# Class Assembly Language Statements.

The BCPL assembler facility is implemented by using reserved
routine names which correspond to the opcodes of the

instructions. Since assembly language statements are only legal

within an assemble block, these names are only reserved in the
context of such a block. 1In fact, the reserved names of the

opcodes may be used freely outside of an assemble block. By |
adopting the same syntax for an assemble statement as for a

routine call, changes to the BCPL parser were minimized.

Within an assemble block, each time a routine call is
encountered, the arguments are examined and built up into the
fields of an instruction. If the unary operator "literal"
appears before an Address field, then the value contained in that
field is stored in static literal storage. The address

containing the value is put into the Address field. Erroneous

values for fields are detected and reported. The translation of
each routine call is a single machine instruction. Within an
assemble block, statement types other than routine calls are

noted as errors in the program.

The assembler is written so that it would be easy to
implement an assembler for any language similar to the

PDP12/SYSTEM28 class assembly language.

B o i ER BN S SR i S SR
g e e alion

BPREPAS

BBN Report No. 3983 December 1978

3.3 Shortened Routine Calling Sequence.

In the past, the BCPL calling routine calling sequence
performed ten different tasks split between the caller's side and

the callee's side. For a function, this results in 14+N

instructions being executed, where N is the number of arguments
to the function. For a routine call, this number is 12+N.
Specifically, the steps for a function call are:

E 1. Load arguments to the function onto the stack, including the
number of arguments to the function and whether or not the

function was called from the left side of an assignment
statement. (at least 2 + number of arguments, caller)

2. Transfer to the called function. (1 instruction, caller)

3. Adjust the stack frame pointer to point to a new frame above
the caller's frame on the stack. (1 instruction, callee)

4, Save the return address to the caller. (1 instruction,
callee)

5. Perform the stack cover computation. (3 instructions,
callee)

6. Perform the stack overflow check. (3 instructions, 2 always
executed, callee)

7. After the body has executed, load the return value into the
return register. (1 instruction, callee)

8. Return to the called routine. (1 instruction, callee)

9. Adjust the stack frame pointer to point to the caller's
frame. (1 instruction, caller)

13. Store the value of the function. (1 instruction, caller)

Specifically, the instructions generated for the following

function call and definition are:

R i st i R Al s 0 A B ot i 22T A AN S L

BBN Report No. 3983 December 1978

Z := Function(X, Y)

MOVE @,N(16) ; Current size of frame (1).
PUSH 9,[0,,2] ; [leftside, ,numbargs] (1).
PUSH g,X(16) ; Arg 1 (1).

PUSH @,Y(16) ; Arg 2 (1).

JSP 1,@Function ; Transfer to function (2).
SUBI 16,N-1(16) ; Get old frame (9).

MOVEM 1,Z2(16) ; Store value of function (10).

let Function(A, B) := valof { ... }

Here + 1.

Make new frame (3).

Save return address (4).
Save old cover (5).

Load new cover S (5).

Wrap around stack check (6).
Beyond end stack check (6).
Overflow handler (6).

Function: .+1

ADDI 16,@0 (1)
MOVEM 1,0(16)
MOVEM 17,1(16)
MOVEI 17,S(16)
CAMG 17,16
CAMLE 17,GL8057
JSP 1,@GL8@58

Se Ne Ne e NS¢ Ne w0 N

<Body of function>

MOVE 1,Resultis ; Load resultis value (7).
MOVE 17,1(156) ; Restore o0ld stack cover (5).
JRST @@ (16) ; Return (8).

Five of the 12+N instructions executed are due to the stack cover

and stack overflow computations.

In the new compiler, the stack cover and stack overflow
computations that were done on every routine or function call
have been replaced by mechanisms that require no instructions to
be executed in the calling sequence. The corresponding
instructions in the calling sequence above (the six instructions
of steps 5 and 45) have been eliminated. The overall improvement
in the execution speed of an application program due to

shortening the calling sequence depends on the number of routine

1. - 27 =

BBN Report No. 3983 December 1978

calls that occur, but typically 5 to 8% improvements in execution

speed have been observed.

3.3.1 Stack Cover Computation.

In the previous compiler, the stack cover was maintained to
be the exact length of the stack frame of the routine or function
currently executing. This value is used to determine where to
put a new stack frame when a PSI (an interrupt) occurs. The new
frame is used by a routine which has been set up to field the
interrupt. In the new compiler, the stack cover is defined to be
the maximum stack excursion of any BCPL routine in the set of
BCPL routines in an application program (i.e., the set of BCPL
routines in a single .EXE or .SAV file). In the new scheme,
forming a new frame by adding the stack cover to the current
stack frame pointer will always yield a safe frame, if not the
lowest unused frame on the stack. In addition, we have provided
routines to adjust the stack cover should a particular

application need to do so.

The new compiler keeps track of the maximum stack frame
length (MSFL) for all of the routines in a single module. The
stack cover is then, just the maximum of the MSFLs for all of the
BCPL modules loaded together into an application program. To

compute this value, it is necessary to examine the MSFLs either

at the time the BCPL modules are linked together or sometime

i b 3 om0 i N A L ki s 3 30 M 5 il S . S
oot e perE A - R s v e i~ ——— - — e por 1) whoS "
- PUNEPLE.

BBN Report No. 3983 December 1978

during the running of the application program. The program LINK
on DECSYSTEM2@ does not support such a capability at link time.

u It does have a feature which allows BCPL modules to be chained

together at link time, so that the chain can be traced at
runtime. At the end of each BCPL module, the following sequence
(expressed in assembly language) is emitted:
Linkl: BLOCK 1

<Maximum Stack Frame Length>

.LINK 1,Linkl
The last line directs LINK to add the label "Linkl" to the
developing chain number "1". When LINK encounters the item type
generated by this statement, it stores the current value of the
head of chain number "1" into the location labeled "Linkl" and
sets the current value of the head to be the address "“Linkl". 1In
one routine in the BCPL support library, there is the following
sequence:

GL814¢: BLOCK 1

.LINK -1,GL8149
When LINK encounters the item type generated by the last
statement, it remembers after all of the modules have been loaded
to store the last value of the chain head in the location labeled
"GL814@". Thus, at runtime, the location labeled "GL8140"
contains a pointer to the start of a chain of pointers. The word
after each of these pointers is the MSFL for each BCPL module in
the set of modules linked together. The last pointer in the

chain has the value @.

L G e P K5 5 e T — - o =

o s 5 R0

BBN Report No. 3983 December 1978

The function GetMaxStackFrameSize() will traverse the
chain and return the maximum value encountered. The routine
SetStackCover (MaxStackFrameSize) will set the stack cover to
MaxStackFrameSize. These two routines are called in sequence

during the initialization of every BCPL application program.

3.3.2 Stack oOverflow Check.

In the new compiler, instead of checking on every routine
call to see if the stack would overflow if the called routine
were to execute, a trap is set to detect attempts to reference
beyond the end of the stack. This is done by dedicating a page
of memory (or set of pages) above the top of the stack to be read
only. These pages may be used by the application program to
store read only data. Attempts to extend the stack into this
area will result in a read only protection violation which will
halt the program. It is possible to write a routine which would
enable a PSI to field the read only violation and determine if

the trap was due to a stack overflow or to some other reason.

The routine SetStackEnd(StackEnd, NumberReadOnlyPages)
will make the page(s) above the value of StackEnd to be read
only. Currently, the default value of the stack is #776777
(octal). SetStackEnd 1is called as part of the BCPL

initialization.

BBN Report No. 3983 December 1978

Most BCPL programs will not require any changes due to these
two changes in the implementation of the routine calling

sequence.

——— v

BBN Report No. 3983 December 1978

3.4 Peephole Optimization

This section describes the modifications made to the BCPL
compiler to examine the compiled code and make improvements to
it: The Peephole Optimizer. The method used is modeled after

that used in the Bliss-11 compiler.(l)

3.4.1 Overview.

As the code is compiled, it is emitted as a threaded list of
nodes, the format being described in detail below. Three such
chains are produced, one for each segment of the object program:
the code segment, which contains all code that is to be executed;
the impures segment, which contains static data items declared by
the BCPL static declaration; and the literals segment, which
contains only character string literals that appear in the source

code.

The term "peephole optimization" as used in this report
refers to eight specific optimizations that are performed by
passing over the compiled code. This is repeated until no more
improvements result. Rarely are more than three passes made.

The eight optimizations are as follows:

(1) Wulf, W., et. al., "The Design of an Optimizing Compiler,"
Elsevier, New York, 1975.

—

BBN Report No. 3983 December 1978

Initial. An initial pass is made over the code to
perform three tasks. First, certain instructions are
changed to equivalent forms. This is not really an
optimization because it has no effect on the execution of
the program. However, the PDP-10 hardware has an
extremely rich collection of opcodes providing, in many
cases, multiple ways to accomplish the same task.
Replacing equivalent instructions by a single form makes
later parts of the optimizer simpler. Second, RETURN
instructions are collected. BCPL compiles the command
JRST @@ (16) to return from a function or a procedure.
The first instance of this instruction is noted and all
subsequent instances are replaced by a JRST to that one.
The Cross Jump optimization (see below) will further
modify this replacement. Third, any instruction which is

a no-operation is deleted.

Alteration. Replace certain specific code sequences by
better ones. (It is this specific optimization that is

often called "peephole optimization" in the literature.)

Cross Jump. If the instruction before a JRST is

identical to the instruction that precedes the label to
which the JRST leads, replace the former by a JRST to the

latter. Similarly optimize two identical sequences

ending in a JRST to the same label. 1In both of these

BBN Report No. 3983 December 1978

All of

situations, the two threads are merged as far back as

possible.

Unreachable. After a JRST which is not preceded by a
skip, delete all code up to the next following label,

since such code can never be reached.

Jump Chain. If a conditional jump or a JRST leads to a
JRST, then the address of the first is changed to that of

the second.

Unused Label. Any label not referred to anywhere is

deleted.

Label Merge. Adjacent labels with no intervening code

are merged into a single label.

Literals. Delete un-referenced strings.

these optimizations except the last one operate on only

the code segment; the last one affects only the literal segment.

The remainder of this section briefly outlines the

implementation strategy for the peephole optimizer. Readers with

no interest in implementation should skip to the next section.

On completion of the TRN phase, CGAssemble is called to

complete the generation of the .REL file. It calls ’

S 1 SLIAU S R S e TR S—-

BBN Report No. 3983 December 1978

PeepHoleOptimize, which first does the peephole optimization
itself and then calls PeepFinal to pass over each of the threads
to assign final PC values and perform other bookkeeping tasks.
(If a listing file has been requested, it is emitted after
optimization and before Final.) Finally, CGAssemble does the

work of emitting the .REL file.

The work of optimization is performed by routines in the new
module 1@PPPG. The routine PeepHoleWork, called from
PeepHoleOptimize, is the driver. It first calls PeepInit to make
an initial pass over the code segment. It then makes repeated
passes over the code segment, where each pass consists of calling
each of three specific optimization routines. Passes continue
until no further improvement is made in a pass. Finally, a
single pass is made over the literals segment to delete strings

not used in the program.

There are two ways in which optimization is suppressed in
certain cases. If an instruction is marked SIC (by supplying an
optional extra argument to the routine CGCode that compiles
instructions), then that instruction is not changed in
optimization. Further, marking an instruction with the CJChain
bit means it is not altered in Cross Jump (see below) unless the

preceding instruction is also altered.

BBN Report No. 3983 December 1978

As mentioned earlier, a compiled instruction may be marked
in either of two ways to suppress optimization. Marking it SIC
suppresses its possible alteration or deletion in PeeplInit, keeps
it from being part of an alteration sequence in Alteration, and
keeps it from being changed in Cross Jump. SIC is used for two
reasons: The debugger BDDT expects the first instruction in each
module to be a JFCL (which is a no-operation) whose address is
the beginning of the module's static area. This instruction is
marked SIC since otherwise it would be deleted as a no-operation
in P-epInit. Secondly, assembler instructions included by the
user in his program, using the new "assemble" feature described
earlier in this report, are marked SIC. Here the decision is

that we do not want to attempt to second-guess the programmer.

The CJChain attribute is used in only one case. The BCPL
subroutine calling sequence requires that the instruction
immediately after the JSP to the subroutine be a SUBI to adjust
the stack pointer. Therefore the SUBI must not be altered in
Cross Jump unless the JSP is also, and so the SUBI is marked

CJChained.

The peephole optimizer first calls PeepInit to perform the
initial pass. Then it makes repeated passes over the compiled

code performing all but the last of these optimizations in turn

on each pass, continuing until no further improvement is made in

a pass. DoAlter performs Alteration, DoCrossJump performs

LR o Bl N 3850 A Atk A Bl 3. B B

BBN Report No. 3983 December 1978

Cross Jump, and DoJump performs Unreachable, Jump Chain, Unused
Label, and Label Merge. Finally, DolLiterals makes a single

pass over the literals segment deleting unused strings.

The optimizations interact with one another in various ways.
For example, note that Unused Label and Label Merge make no
change in the compiled code. However, performing these in one
pass often makes Alteration possible in the next pass in a place
where it was not earlier permitted. Note also that Crossjump and
Jump Chain create unreachable instructions, which are later found
in Unreachable. Label Merge permits Cross Jump to be more
effective since there are more chains leading to the same point.
Similarly, collecting all RETURNs to a single place (in PeepInit)
increases Cross Jump's ability to find common sequences. After
this is done, Jump Chain changes the instructions back to the

usual RETURN.

Appendix A contains more details about the implementation of

the peephole optimizer.

L e i e e A S s S i S S

SHPSPTSRIVEISERSE- W RS grep g J— S it Sl
il ik i Sl Cosisaiaidoaily i i it LA 2. ineymebii S R B P g H,.,__ e~y e g = A

BBN Report No. 3983 December 1978

4., BCPL Runtime Library Changes.

Four new routines have been added to the BCPL Library as a
result of the improvements to the compiler. Three of the
routines are part of the BCPL initialization action while the

forth implements the subcommand scanner documented in section 6.

4.1 Routines to Support BCPL Initialization.

The following two routines are used to support the new

method of computing the stack cover:

Integer := GetMaxStackFrameSize ()

Returns the maximum length of a stack frame for all
routines in a group of modules linked together as an
application program.

SetStackCover (Size)

Sets the value used as the stack cover to be Size. The
stack cover is a value that will be used to increment the
stack frame pointer yielding a new (unused) address on the
stack. This address will serve as the base of a frame for
a routine that is to process a PSI (interrupt).

The following routine is used to support the stack overflow

checking mechanism.

BBN Report No. 3983 December 1978

SetStackEnd (StackEnd[, NumberReadOnlyPages])

Define the end of the stack to be the last address on the
page containing the address StackEnd. The read only
protection mechanism is used to implement this check. A
page is created above the page holding StackEnd and the
access is set to be read only. 1If a routine call results
in extending the stack into this page (or set of pages), a
read only violation will occur. The second argument, if
present, will be used to create a set of read only pages
NumberReadOnlyPages 1long. The default for this value is
1:

4.2 Routine to Support Command Scanning.

The following routine is used as a command scanner in the
compiler. It is a general purpose routine that can be used in
many applications that require user specified commands.

(CmdCode, ,TermChar) :=
GetWord(StreamIn, StreamOut, Commands, Separators(,
PrefixString[, PromptString[, SuffixString[,
CmdString[, SkipInitialSeparators(,
HorizontalHelp]ll1]])

A routine to get a command from a keyboard device. GetWord
is intended to implement many of the common desired
functions of a command scanner including such features as
command recognition and completion and limited help in
determining the menu of permissible words to type.
Characters typed will not be examined by GetWord until a
separator is typed. When a separator is typed, the
characters typed so far are examined to see if they
uniquely identify one of the command strings in Commands.
If they do, then GetWord returns the value
(CommandCode,,TermChar), where CommandCode 1is the value
that corresponds to the item typed and TermChar 1is the
separator typed to end the command.

The character "?" may be typed at any point and the set of
possible commands that begin with the characters already
typed will be printed on the output stream. The partially
typed word will be redisplayed along with any prefixes or
prompts. Command recognition is case independent. The

BBN Report No. 3983 December 1978

characters ""A", Backspace and, on TOPS2@¢ "DEL" will all
delete one character from what is already typed. The
characters ""W" will delete and ""R" will retype what has
been typed so far. The characters "DEL" on TENEX and ""U"
on TOPS2@ will type " XXX " on the output stream and cause
GetWord to return (-1,,0).

The arguments to GetWord are:

StreamIn -- The stream from which to take characters.
StreamOut -- The stream on which to echo characters.
Commands -- A vector of CommandCodes and CommandStrings,

one pair per word of the vector in the format
(CommandCode, ,CommandString) . CommandCode is normally
an integer code less than #2600 (octal) which
corresponds to CommandString, a BCPL character string
which is the command.

If CommandCode is greater than or equal to #200
(octal) it is assumed to be the address of a routine
that should be called to determine if a unique command
that it recognizes has been typed. For this case, the
CommandString should describe the type of item the
Routine will recognize. This way, "?" will show a
generic description as one of the possible commands.
The call to the routine is:

Routine (OpCode, CharVec[, CmdString, StreamOut])

OpCode is either gwComplete (manifest equal to 1) or
gwCouldBePrefix (manifest equal to 2). 1If OpCode is
gwComplete then the optional arguments will be present
and Routine should type on StreamOut the completion of
the unique command typed so far The characters typed so
far are contained in CharVec, with CharVec|@ indicating
the number of characters in CharVec, one character per
entry. In addition, the entire command should be
copied into CmdString. If OpCode is gwCouldBePrefix,
then Routine should return a Boolean value indicating
whether or not what has been typed could be the start
of a command that Routine recognizes.

Commands|@, if non-zero, is the count of entries in the
vector. Commands|i, 1<=i<=(Commands|@) 1is the ith
(CommandCode, ,CommandString) pair. If Commandsl|@ is
zero, then the end of the Commands vector is marked by
a zero entry.

BBN Report No, 3983 December 1978

Separators -- A vector of characters that are to act as
command separators and command completion characters.
Typing one of these characters will cause GetWord to
attempt to match what has been typed so far with the
list of Commands. In addition to this set, the
character Escape will always cause GetWord to look at
what has been typed.

Separators|@ is the count of entries in the vector. 1If
Separators|@ is zero, then a zero entry terminates the
list of characters.

PrefixString -- A string which will be typed first if the
typed line needs to be retyped (either by "R or by ?).
Default is the empty string.

PromptString -- A string which will be typed on StreamOut
to prompt the user before any characters are accepted
from StreamIn. If the typed line needs to be retyped,
PrefixString and PromptString will be typed, in that
order, before the typed commands. Default is the empty
string.

SsuffixString -- A string which will be typed after command
completion occurs. Default is the empty string.

CmdString -- The entire completed command will be copied
into CmdString after a command has successfully been
recognized. Default is not to copy the completed
string.

SkipInitialSeparators -~ A boolean value which, if true,
indicates that initial instances of the separators,
before any non-separators characters have been typed,
should be discarded. Default is false.

HorizontalHelp -- A boolean value which, if true, indicates
that when "?" is typed to request a menu of possible
commands, these commands should be typed in a
horizontal format rather than one command per line.
Default is false.

BBN Report No. 3983 December 1978

5. Performance Tests. |

We are currently in the process of conducting performance

tests of the new BCPL compiler on both the BCPL compiler itself

and the NSW Works Manager and File Package components.

Initial tests with small programs that make no use of the
new language features indicate that execution speed improvements
will be in the range of 5% to 15% due to both the peephole
optimization and the shorter calling sequence. Since the density
of calls in different application programs varies widely,
improvements due to the shorter calling sequence will also vary

widely.

When performance tests on the NSW components are completed,

we will issue a technical report documenting our results.

e

BBN Report No. 3983 December 1978

6. How to Use the New Compiler.

The new compiler is called "BCPL 4.1.X", where X is a small
integer indicating versions of the "4.1" compiler. Subsequent

modifications to correct bugs will result in successive versions.

Any questions, comments or bug reports should be sent to:
BCPLE@BBN

or
Harry Forsdick
Bolt Beranek and Newman, Inc.
50 Moulton St.
Cambridge, Ma. #2138

telephone:
(617) 491-1859

6.1 New Language Features.

New features to the BCPL language described in section 2 may

be used by including them in programs.

6.2 New Compiler Features.

A new user interface had been added to the BCPL compiler.
In the old user interface, options to the compiler were specified
by single character flags of the form "/x" where "x" was
associated with some option. In the beginning these flags
corresponded to the first word of a sentence describing the

option, as in "/o" standing for "old calling sequence". As the

Gl s R At i e M 1. S) . S

BBN Report No. 3983 December 1978

number of flags increased, the correspondence was more and more
strained. The new user interface permits options to be specified
as longer character strings which are more descriptive of the
options being specified. Since there are still some programs
that require single letter flags to drive the compiler, use of
this new user interface is completely optional. All options to

the compiler can still be expressed as single letter flags.

The compiler is invoked by issuing the command "bcpl":

@bcpl

BCPL 4.1.2 12/04/78 ©9:11:50

<Short message>

Type "?" for help.

=>
The response identifies the compiler and prompts the user for a
command line terminated by a carriage return. The syntax for a
command line is:

<SourceFile> [<Switches>][,]

or

<RelFile>=<SourceFile> [<Switches>] [,]
or

<ListFile>,<RelFile>=<SourceFile> [<Switches>][,]
Items is square brackets are optional.

Like the BCPL compiler on TENEX, and unlike previous BCPL
compilers on TOPS2@, it is possible to type the entire command

line on the same line as the "bcpl" command. Thus,

@bcpl test

BBN Report No. 3983 December 1978

will compile the program test. If a listing file is specified in
the command line, the output will go to a file whose extension is

.MAC rather than .LST as was true with the old compiler.

If the command line to BCPL is terminated by a comma, then
the subcommand scanner is entered to examine and specify options
to the compiler. This command scanner is implemented by the
GetWord routine in the BCPL library. In subcommand mode, the
compiler will prompt the user for commands with the symbol "==>".
A menu of valid commands may seen by typing "?". Character
delete and line delete work as expected. "“W" deletes and ""R"
retypes what has been typed. The commands are long enough so
that they are self describing. Command recognition is case
independent. Only that portion of a command needed to
disambiguate it from all other commands needs to be typed. Any
character from the set {Space, Escape, Carriage Return, Line
Feed} will terminate the command. The command "go" will cause
the compiler to compile the indicated file with specified

options.

As an example, here is a typescript of the compilation of a

file Test.BCP:

BBN Report No. 3983 December 1978

@BCPL
BCPL 4.1.2 12/04/78 ©#9:11:50

Test compiler - assembler, inlines, new calling sequence,

new user interface, peephole optimizer.

=> TEST,

s= 2

Show chosen compiler options
Messages to .LOG file

Save parse output

Symbol table produced

Long symbol table

Peephole optimization

Cross jump peephole optimization
0ld calling sequence

Stack overflow check

Stack cover maintained

Upper case input file

Code generation

Debugging enabled

List parse tree

List lexemes as scanned

Compiler debugging

Set default switches to current setting
No

Go
==> MEssages to .LOG file
==> GO

[BCPL: TEST.BCP]
Q

The parts of the commands actually typed are in uppercase.

6.3 The Peephole Optimizer.

The peephole optimizer is controlled by the "/g" switch to
the compiler and by the "Peephole optimization" command to the
subcommand scanner. The default is for the peephole optimizer to

run. The cross jump optimizations that may be performed by the

peephole optimizer are controlled by the "/h" switch and by the

BBN Report No. 3983 December 1978

"Cross Jump" command to the subcommand scanner. The default is
for cross jump optimizations not to be performed because they

interfere with the correct operation of BDDT. Programs that are

compiled for production versions should use the cross jump

optimizations.

Because of the new method of storing the instructions
translated by the compiler, the maximum size of a BCPL module
that can be compiled has been reduced. Nevertheless, modules
containing 1000 lines of BCPL code have been compiled

successfully with the new compiler. l

6.4 The New Routine Calling Sequence.

The calling sequence has changed from the previous compiler.
With one exception, the new calling sequence is upward compatible

with the o0ld calling sequence. The one exception is that old

BCPL modules will not contain the LINK item type that is used in
constructing the chain of BCPL .REL files. Thus, if an
application does not use PSIs, then old modules can be loaded in
with modules compiled with the new BCPL compiler, as long as the
first module loaded is one compiled by the new compiler.
Normally this will mean that the module containing the routine

Start be the first routine specified to LINK.

BBN Report No. 3983 December 1978

The new compiler will generate the old calling sequence if
the "/o" switch or the "0ld calling sequence" subcommand is

specified.

Cautious users of BCPL will recompile all modules with the

new compiler to avoid any confusion.

6.5 The New library.

The entire BCPL library has been recompiled with the new
compiler or made compatible with the new calling sequence for
those routines written in languages other than BCPL. The new
library is called "BCPLB3.REL". Each module compiled by the new
compiler will generate a LINK item "Request" for
"SYS:BCPLB3.REL". Modules compiled with the "/o" switch or "01d
calling sequence" subcommand will contain requests for

"SYS:BCPLB2.REL"

6.6 BDDT -- The Debugger.

Except for cross jump optimizations (discussed above), BDDT
works correctly on code produced by the new compiler. The
"print" statement will print the text of an inline expansion

rather than the inline routine call.

BBN Report No. 3983 December 1978

E 6.7 The Concordance Generator.

The utility program, CONCORDANCE, has been updated to accept

and examine the new BCPL language features.

- 49 =

WO DR i 3 " . i o S . — A S s S

BBN Report No. 3983 December 1978

7. Additional BCPL Utility Programs.

7.1 DMPREL

A new utility program has been written to produce a readable
symbolic listing of a standard REL file. The program DMPREL is
cognizant of the standard DEC format for REL files under TENEX
and TOPS-2@. It reads such a file and produces its content into
an output text file. The program knows about LINK types @ to 37
and lists each one in an appropriate format. The program proved
useful to us in debugging changes made to the compiler and will

be made available to all BCPL installations. Figure 1 shows a

fragment of the output of DMPREL for a REL file.

B b e i it koA M L MRS Lty ST o B

BBN Report No. 3983

E @ Entry(4) 4 GL3203
6 Name(h) 2. CEUTIL

12 Code(l) 22 deepae
255082

. 273 121
202056

201016

2 261000
261016

265060

P 275700
202856
326040
201100
202116
550116
3p2le@
254000
201016
2610880

36 Code(l) 22 (eeeee
261016
261016
2650682
275708
254000
201016
261000
261016
265060
2757080
202056
201016
261000
261016
261816
200116
270116

62 Code(l) 22 g@oecce
275100
261000
265060
2757080
2008056
254036
271721
202056
201016
261000
261800
261000

GL3282 4GL320)
derel3 pueee

peaged*

GealeTe [}
epoacen 1
eoreee 2
080206 3
g00168* 4
eeooe3 5
2000080 6
eee0es 7
2PP0B8S 10
epeela* 11
8e0001 X2
eegpes 13
epcope2 14
geeee2 15
2C0026* 16
ecoee? 17
#02161* 20
geac21*

agcees 21
eeeeed 22
220000 23
eeaeoe 24
eo0@33* 25
eap0e? 26
@pel60* 27
eceoes 30
eoea23* 31
aaeaae 32
000006 33
200010 34
000162* 35
epceee3 36
epoees6 37
ceeeos 40
erpoas 41
eaec42+

eaoeel 42
geace2 43
eoecoo 44
coeee? 45
8ee0e6 46
¢oereoe 47
frapcee 58
coeoee Sk
eppee3 52
eoA163* 53
¢ee163* 54
0pe163* 55

Figure 1

5l =

“FORSDICK>CLUTIL.KEL.11,30-Nov-78 fB:41:46

GL3200

JFCL
ADDI
MOVEM
MOVEI
PUSH
PUSH
JSP
SUBI
MOVEM
JUMPN
MOVEI
MOVEM
HRRZ
CAIE
JRST
MOVEI
PUSH

PUSH
PUSH
JSP
SUBI
JRST
MOVEI
PUSH
PUSH
JSP
SuBl
MOVEM
MOVEI
PUSH
FJUSH
PUSH
MOVE
ADD

SuUB1
PUSH
JSP
SUBI
MOVE
JRST
ADDI
MOVEM
MOVEI
PUSH
PUSH
PUSH

December 1978

147+
16,€0 (1)
1,0(16)
6(16)
l160*
3(16)

5(16)
1,823*
16,6
1,6(16)
10 (16)
162+
3(16)
61(16)
2,6(16)
2,5(16)

2,1

2

i,ee
16,7
1,6(16)
€8 (16)
16,€8 (1)
1,8(16)
3(16)
163*
163*
163*

Sample Output of DMPREL

£ G ARAAT A S I ABNOAN 0 TS s s N

BBN Report No. 3983 December 1978

7.2 GLINDX

The program "GLINDX" produces several listings of names
declared to be global. This is useful in managing global numbers
in large application programs. The listings are sorted in
several different ways, including sorted on global numbers, on

the names of globals, and on class of use of the name.

GLINDX prompts for an input file and an output file. The
input file is a text file with one entry per glotal name. An

entry for a global name must obey the following s -tax:

<GlobalNumber>: <GlobalName> <DefModule> <LecModule: <Class> <CR>
<PrototypeCall>; <Description>

where

<GlobalNumber> is a global number of the form GL45256.

<GlobalName> is a legal BCPL name corresponding to the global

number.

<DefModule> is the name of the source file that defines the

name.

<DecModule> is the name of the head file that declares the

correspondence between the name and the global number.

<Class> is the general grouping under which the name belongs.

Examples of classes might be "Strings" and "Files".

S e A I o A e e e e " ~ vt e o _— - - o A s . bt e

BBN Report No. 3983 December 1978

<CR> is Carriage Return.

<PrototypeCall> is a general representation of how to call the
routine. For example,
"NumberSkips := JSYS(jsNumber([, ACsIn(, ACsOut]])" is a
prototype call of the JSyYS function, with "[]" used to

indicate optional arguments.

<Description> is a short description of the purpose of the

function.

The output file from GLINDX can be printed on the line printer by
the COPY command. Figure 2 shows a fragment off the output of

GLINDX for sorting the list by name.

ot i

BBN Report No. 3983 December 1978

Global Names, Declaring Module, Description and Prototype Call Page 42

Global Name DecMod Description
Prototype Call

PEOUT Head wWrite byte to OUTPUT (not same as
PEOUT JSYSL)
PBOUT (Byte)

PMAP ForkHead Map a page into address space
PMAP (Source, Destination|, Access]))

POINT Head Return a byte pointer
BytePtr := POINT(Size, Location[, RightMostBit))

PrintF Head Print on line printer
PrintF(FormatString, Argl, Arg2, ..., ArgN)

PrintStream UtilHead Stream to TTY:
BOUT (PrintStream, Char)

PSIChDis PSIHead Disable given PSI channels
PSIChDis(Chanl{, Chan2{, ... ChanN}]...])

PSIChEnb PSIHead Enable given PSI channels
PSIChEnb(Chanl, Chan2{, ... ChanN]...))

PSIChInit PSIHead Cause an interrupt on given channels
PSIChInit(Chanl[, Chan2[, ... ChanN]...]})

PSIClear PSIHead Clear all outstanding interrupts
PS1Clear ()

PSIOff PSIHead Turn PS1 system off
PST1Off ()
PSIONn PSIHead Turn PSI system on
PSION()
PSISetCh PSIHead Assign PSI channel to routine

PSISetCh(Level, Channel, Routine)

PSIStackOverflow NotDeclared Routine to transfer to when stack
overflows on PSI
JSP 1,PSIStackOverflow

Figure 2
Sample Output of GLINDX

BBN Report No. 3983 December 1978

8., Additional Documentation.

All of the on-line documentation about changes to the BCPL
language and changes to the BCPL library have been collected and
merged into two separate message files known as:

<BCPL>BCPL-Changes.TXT

and
<BCPL>BCPLIB~-Changes.TXT

These will be maintained in the future to contain any incremental
additions to the BCPL Programming System. All other files of

on-line documentation about BCPL are now obsolete.

This leaves the documentation of the BCPL Programming System
far from complete. Future documentation on the BCPL Programming

System should include the following manuals:

* BCPL Language Reference Manual.
This manual would document all features of the language in a
precise manner. The first seven chapters of the current BCPL
Manual could serve as a model for the information contained

in this document.

* BCPL Primer and User's Guide.
New users of BCPL have difficulty comprehending the model of

the programming environment provided by BCPL. The first part

of this manual should serve as an introduction to writing

BBN Report No. 3983 December 1978

programs in BCPL. The second part should act as a general
guide for writing programs in BCPL and should suggest some
programming standards as well as illustrate some complete

examples of an application program built out of BCPL modules.

* BCPL Runtime Library User's Guide.
Every routine in the BCPL Library should be documented to
tell its purpose, its arguments and its return values. 1In
addition, an example of a call to each routine should be
given. Finally, a cross reference list of routines showing
which head files declare them and which routines they in turn

reference should be produced.

* BDDT User's Guide.
The section of the current BCPL manual on BDDT, the debugger,
should be rewritten to reflect the current state of commands
to BDDT. 1In addition, a new section on debugging techniques
should be included. Finally, a comprehensive example

debugging session should be presented and annotated.

* BCPL Utility Programs User's Guide.
All of the programs that are in current use to aid the
process of building and maintaining BCPL programs should be

documented in a similar format.

—

a BBN Report No. 3983 December 1978

Improving the documentation of BCPL is the most important advance

that is currently needed in the BCPL Programming System.

BBN Report No. 3983 December 1978

Appendix A: The Implementation of the Peephole Optimizer.

This appendix gives additional details about the
implementation of the peephole optimizer. It is intended for
readers interested in specific details about the implementation
of the BCPL peephole optimizer as well as those interested in

general techniques for implementing a peephole optimizer.
A.l Data Formats

There are three data formats to be described: the threaded
compiled code, the table PeepTable, and the table of optimization

sequences used by Alteration.

A.l1.1 Threaded Code

Code as it is compiled is emitted in a threaded list form.
Each node in the thread holds all data about a single instruction
or label or data item. (1f a listing file has been requested,
additional nodes provide relevant data.) Each node holds
pointers to both the previous node and the following one, so that
it is easy to delete a node or insert one during optimization. A
label appearing in the output is threaded into place just before
the instruction it labels. The label node has fields pointing to
the first and last node in a Reference Chain, a threaded list
with a RefNode for each instruction that references the label.

The address part of each such instruction points to a RefNode in

- 58 =

B | | ‘

BBN Report No. 3983 December 1978

that chain, which in turn holds a pointer back to the code node
that references it and a pointer to the label node. The effect
is that all references to a label can be readily found, as is
clearly needed in Crossjump. A label not referred to has an

empty Reference Chain.

The effect of all of these pointers is suggested by Figure
3. This shows a section of the code segment including a label

and three JRSTs whose address is that label.

A.1.2 PeepTable

This table contains a one-word entry for each PDP-10 opcode,
from #1290 to #677. An additional entry #77 is used in DoAlter as
if LABEL were an opcode. The format of PeepTable is described by
the structure Peeps in 1@PPHD. The left half of each word is
used only by PeepInit and the relevant fields are described as
part of the description of that routine. The remaining fields
are as follows:

. MaySkip bitb

The opcode may (when it is executed) cause the next

instruction to be skipped.

. MayJump bitb
The opcode may cause a jump.

. Class bit 6
This field defines the class the opcode falls into, as
used inn DoAlter.

BBN Report No. 3983 December 1978

T

d L b~ 4o L
JRST]‘ e |T®ST

fee P& 4

I
1
{
°

1

CGDigt

i‘ ||L13!

Figure 3
Threaded Code Format

- 60 - g

BBN Report No. 3983 December 1978

. AlterTable bit 6
This specifies the beginning of a table of alteration
sequences whose last member has the opcode of this entry.
The entry is the offset in the table AlterTable
(appearing at the end of 10PPST) whose entries contain
the address of the alteration tables themselves. This
added indirection requires only six bits in PeepTable
rather than an 18-bit address.

A.1.3 The Alteration Tables

The Alteration optimization consists of replacing certain
sequences of instructions by better ones. The routine is
table-driven in the sense that the sequences to be replaced and
the changes to be made in them are stored in tables. It is these

tables that are described in this section.

The tables themselves are found in the module 1@PPST (PDP-1@
peephole statics), in the latter part of that file. Consider the
optimization

MOVEM R,X + MOVE R,X ==> MOVEM R,X

which is #2 in the listing. It indicates that if a MOVEM is
followed by a MOVE with the same register and address fields, the
latter may be deleted. This sequence is represented in memory by
five words. The first is a header word, with the Head bit set.
The number 2 in the left half indicates that it is optimization
#2, and the 2 in the right half indicates that the match is on
two instructions. (Inclusion of the optimization number was

extremely useful in debugging.) The next two words describe the

- Bl -

BBN Report No. 3983 December 1978

instructions to be matched, and next two describe the changes to
be made in them if the match succeeds. 1In the present case, all
that is required of the first word is that its opcode be MOVEM,
The second must have opcode MOVE, and its register and address
fields must match those of the first word. The next two words
indicate that the first instruction is to be unaltered and the

second is to be deleted.

An experienced programmer should have little difficulty
deducing the significance of the remaining possible fields. The
manifests used to create these tables are declared in 1@0PPST
immediately following PeepTable. These manifests should be
compared with the structure declaration of Alters in 1@PPHD and

with the code in the routines DoAlter, CheckMatch, and AlterNode.

A.2 Details of the Algorithms

This section presents a brief overview of some of the
algorithms used. There are two purposes to this discussion:
First, a reader knowledgeable about compilers and somewhat
familiar with BCPL will be able to understand what we have done
so as to modify other compilers similarly. Second, an
experienced BCPL programmer familiar with the internals of the
compiler will find this information useful in maintaining or

modifying the code. For the first purpose, only this overview

should be necessary. Programmers interested in the second

o " " " o

R SR 1 4 AN 280 e R T e T DA T ST . g s TN
- e S . o 4 e ‘

= - i e

s L T S

BBN Report No. 3983 December 1978

purpose will readily obtain additional details through study of

the listings. They are extensively commented.

A.2.1 Creating the Listing File

In the compiler as it was before the present modification,
each routine that compiled code tested a switch and, if required,
outputed data to the listing file. With the addition of
optimization, it is necessary to delay production of the listing
file until after all optimization has been performed.

Maintaining the integrity of the listing file (in the sense that

it correspond exactly with the .REL file) was felt to be

necessary for two reasons: programmers requesting the listing
have a right to count on its matching the .REL file, and the
listing file was an important tool in debugging the optimization

routines.

Since the 1listing file is created after optimization, it is
necessary that all data needed to create it be in the three
threads. (There a few exceptions.) Therefore additional node

types provide the necessary data. Nodes of these types are

created only if a listing file is requested by the user in
invoking the compiler. The listing is printed in 1
PeepHoleOptimize after performing all optimizing and before

calling PeepFinal.

ULt o o e

BBN Report No. 3983 December 1978

A.2.2 The Optimization Routines

Five routines perform the optimizations themselves. They
are all called from PeepHoleWork and are all found in 1@0PPPG.

They are described in the following five subsections.

A.2.2.1 PeepInit -- Initial Pass

This routine performs the initial over the code, making the
three changes already described: collecting all RETURN
instructions, altering certain instructions to equivalent forms,
and deleting instructions which are effectively no-operations.
The last two optimizations are under the control of bits in
PeepTable. The structure declaration Peeps in file 1@PPHD
(PDP-108 peephole head) describes this table. The fields relevant
to PeepInit are now described, where for each switch (item

declared bitb) the comment describes the action taken in

PeepInit if the switch is true.

. Del bitb
Delete the instruction.

. DelACZero bitb

Delete the instruction providing that the AC field is
zero.

. Alt bitb

Alter this instruction by replacing its opcode by the one
in the NewOp field (below).

. AltACZero bitb

Alter the instruction only if the AC field is zero, the
alteration being as above.

BBN Report No. 3983 December 1978

. NewACZero bitb
Set the AC field to be zero.

. NewAdrZero bitb
Set the address field to be zero.

. NewOp bit 9

If Alt or AltACZero is set, this is the new opcode for
the instruction.

The above fields are examined only in PeeplInit.

A.2.2.2 Alteration

The most complicated of the optimization routines is
DoAlter, which scans the code chain looking for code sequences
which it can replace by better ones. As it scans, it maintains a
window of the last (up to) seven instructions scanned. After
eacl: new instruction is entered into the window, the window is
matched against a table of optimization sequences, with a
replacement being made if a match is found. To keep the matching
process from being too time consuming, it is performed in two
steps. First, the opcodes of the instructions in the window are
matched against the opcodes of the optimization sequences. Only
if this cheap test is passed is the more time consuming test
per formed for exact match. The test for exact match is performed
for one instruction by the routine CheckMatch. Once a match has

been found, the routine AlterNode makes the actual changes.

oy -
A L

BBN Report No. 3983 December 1978

The optimization sequences are arranged by the last opcode
in the sequence. Thus, for example, all sequences ending in the
opcode MOVE are in a single table. Each entry in PeepTable
includes a field which points to the table of optimization
sequences ending on that opcode, the field being zero if there
are no such sequences. The field is named Peeps.AlterTable and
contains an offset in an auxiliary table AlterTable which appears
on the last page of 1@PPST. Each entry in the latter is the

address of a table of alteration sequences.

A.2.2.3 DoCrossJump

This routine performs the Cross Jump optimization. It scans
through the code segment looking at only label nodes. When it
finds one, it iterates through all nodes of the label's RefChain,
doing two actions for each one. CrossJumpWork is called to
compare the tail before the label against the tail before the
JRST to it. Next CrossJumpWork is called to compare the tail of
this JRST with the tails of every other JRST to the label.
CrossJumpWork has an optional third argument which indicates
which of these two cases is in effect, since it must do slightly
different initialization. It is CrossJumpWork which is cognizant

of the CJChain bit.

= BE =

i

i il VS dnis b o A S i

BBN Report No. 3983 December 1978

A.2.2.4 DoJump

This routine performs four optimizations. It makes a single
scan over the code segment doing Unreachable, Jump Chain, Unused
Label, and Label Merge. The code is straightforward and easy to

follow.

A.2.2.5 Doliterals

This routine makes a pass over the literals segment, which
contains only string literals mentioned in the source program,
deleting any such literal not referenced. There are two ways for
a literal to appear here but not be referenced. The code
referencing it may have been deleted by Unreachable, or the
literal may appear in a manifest declaration of a name which is

not used.

Finding such literals is quite easy. Labels are scanned

for, and any label with an empty reference chain is deleted along

with all further nodes up to the next label.

A.2.3 PeepFinal -- Bookkeeping Pass

Before the final code can be emitted into the .REL file,
each instruction must be assigned its final PC value. An extra
complication is that PC values must be known as the code is

generated (long before optimization) so that entries can be made

e

BBN Report No. 3983 December 1978

in the symbol table. It is these data which permit BDDT to be
able to print the source statement corresponding to any location
in a running program. Since these PC values get changed as
instructions are deleted, the symbol table must be adjusted. 1In
passing over the code segment, PeepFinal generates a table
(LocVec) of adjustments to be made. On completion of the pass,
the routine SymtabAdjustILCA in MSYMB is called to make the
actual changes. A comment at the beginning of SymtabAdjustILCA

describes the format of the table. PeepFinal also assigns values

to labels.

ot R T

e B i

