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for a crack-like notch are calcu lated for
small-scale yielding corresponding to Ki~ test conditions using a macroscopic material failure
representation. This transition is the t about which the failure position changes from the
notch tip to a subsurface position or vice versa. In lieu of an exac t solution for st resses , three
cases are treated to provide reasonable bounds. Case II appears to be quantitatively exact at
sufficient dista nces from the crack tip.

Case I. Stresses are from usual elasticity theory .
Case 11. Stresses are from usual elasticity theory , but strains are from a two-straight-

line stress-strain relationshi p and deformations and boundary movement
may be large .

Case III. Strains are from usual elasticity theory on the argument that even in the
yielded region they are substantially contained within a fairly rigid elastic
mass.

The transition is found to be independent of the tip radius. Because of its simplicity and
consequent clarity, Case I is most extensively discussed. However , if the work-hardening rate
of the notch material is very low, Case II must be employed. 
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INTRODUCTION

Design and material selection against complete brittle failure is based on toughness or transition
temperature apart from redundancy of load supporting elements and crack stoppers. Through experi-
mentally determined K,~ values many designers now hope to eliminate failure by the association of
failure loads with flaw sizes. However , metallurgical and mechanical engineers have for many years
eliminated catastrophic failure by using materials whose transition temperature was below the operating
temperature , havi ng observed that with such materials there is no catastrophic fragmentation or abrupt
crack growth even though deep cracks were present. Strong materials of this type are classed as tough .

This paper is written to show how a transition temperature and toughness may be calculated
assuming that a macroscopic fracture theory (the bounding envelope of stress-strain curves), and the
elastic formulae for stresses or for strains near a notch tip with a small radius , are as applicable as they
are for Ki~ use.

For our calculation the macroscopic theory must not only contain a dependence on temperature
or strain-rate as stress-strain curves do, but must contain a higher fracture stress for ductile than for
brittle , so-called nil-ductility, fracture .

In regard to the assumption of a crack tip radius , some assumption is necessary to our analysis
that permits quantitative comparison of subsurface and notch tip stress. A tip radius does this and
seems to be plausible and the simplest. Work hardening, at least as t reated here, does not seem to
be suffici tent in itself. However , in retrospect , it may be noted that in place of the assum ption of a
tip radius, there could be substituted the assumption that the stresses at the tip are those of the macro-
scopic tensile stress-strain curv e, increasing under load as they would if there were a radius , so that the
tip radius presently contained in a parameter of the theory may or may not be considered to be an
actual radius. The tip radius does not appear in the final expression for transition temperature .

With respect to our assu mption of applicability of the elastic stress or strain formulae to our case
of small-scale yielding, we consider no tch behavior for two widely different cases which should together
embrace actuality. One is that the strains in the yielded region are essentially the same as the elastic
strains , since they are contained within a relatively vast elastic region. The other is that the stresses
are the same as the elastic stresses. Thus, the st rains may be large at the tip of the notch , correspond-
ing to these stresses and the shape of the stress-strain curve.

The fi rst case, confined strain , i.e., strains from elastic theory, has al ready been ut ilized 1 to give
fracture stresses and tip radii from experimental K1~ tests (made , as necessary, under Ki~ conditions).
In this case use is made of a theoretical curve which , as we show here , may be in terpreted to be an
expression showing the relationship between ductility or ductile fracture stress, nil-ductility fracture
stress, and yield strength at the transition. This treatment of our problem is contained in Part III of
this pape r. It could be used along the lines of this paper (if as is here done , the fracture stress condi-
tion and tip radii were assumed known) to compute toughness as well as transition temperature.

The second approach , stresses from elastic theory, is not only interesting for comparison with
the conf ined strain case, but because there is indication 2 that for certain types of stress-strain curves
the dominant term in the actu al , very complicated stress function for cracks is the ordinary Airy stress
fu nction. That is, as app roach to the crack tip is con sidered, the Airy fu nction is qu ant itativ ely
dominant. This is evidently the case also for very narrow deep notches and , of course, the elastic
solution always does hold for large distances from the crack tip.

I. BEEUWKES . R. Jr . Characteristics of Crack Failure. Surface and Interfaces, v. II , 1968, p. 277.
2. HUTCHINSON . 1. W. Singu lar Behapior at the End of a Tensile Crack in a Hardening Material. J. Mach. Phys. Solids, v. 16, 1968,

p. 13-31.
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This approach is utilized in Part s I and II . In Part I, boundary movement is assumed to be neg-
ligible (as in usual elasticit y t reatments )  and the formulae and analyses are simple and easy to follow.
Thus , this case has been treated rather fully.

In Part II , boundary change produced by loading is included in the analysis. It is shown that
this change may substantially modify the results of Part I in the case of rather flat hard ening slope
stress-strain curves associated with high yield strength.

Quantitatively the two approaches do not necessarily lead to substantially diffe rent results. In
each case in the transition relationship the stress (or strain) at the notch tip is the tensile fractur e
stress (or ductility ), and the stress at or near the elastic-plastic boundary is the nil-ductilit y fracture
stress, while for many stress-strain curves the only other variable having an appreciable effect appears
to be the yield strength. If the yield regions and the shear stress trajectories in the yield region are
essentially like the elastic ones , then the nil-ductility fracture stress should also be comparable in the
two cases.

The transition spoken of here corresponds to a change in fracture location as temperature (or
yield strength ) is altered. Thus, as testing temperature is lowered , separation of material may change
from occurrence at the crack (considered as a notch ) tip to a subsurface separation. The latter may
be expected to be less sensitive to load maintenance or rate of application than the former for it
corresponds to a jumping ahead of the fracture and may thus correspond to an almost immediate
cataclysmic failure .

We emphasize that the transition treated is for small-scale yielding as it occurs in K ,~ testing.
The equations used do not hold if the material yields extensively, even if through-the-section yielding
does not occur. Thus, they do not hold if the diffetence in the loading stress perpendicular to and
along the crack axis is close to the yield strength of the material employed.

However , although the appropriate application oC our result may be characterized by the condi-
tions of K j~ testing, it is desirable to point out and briefly discuss other transitions than the one
treated here , especially since some (e.g., those associated with the Charpy or keyhole test) have been
used for applications where the failure behavior seems quite different from that associated with the
test (e.g., Charpy or Keyhole) itself. Our small-scale yielding transition , as well as the transition from
temperature-insensitive to temperature-sensitive values of K , may be far less severe for some K j~ type
specimens than the transition observed with Charpy specimens , i.e., the transition temperature may be
much lower for the K ,~ specimens than for the Charpy specimens.

In particular , we may plausibly define a partial-to -through-yielding transition , for it is evident that
separation with through-section yielding may progress with great energy absorption as in bending a
Charpy specimen into two pieces at sufficiently high temperature , while it is difficult to see how such
energy absorption could occur if yielding were only partial.

It appears * from expe rimental observation (in the useful Charpy test range of conditions) that the
breakdown in Charpy energy absorption occurs in the fully plastic range. That is, much bending with
wide notch openi ng and deepening with a fibrous fracture appearance occurs down to a certain depth
upon which sudden deepeni ng without bending occurs, usually without fibrous fracture appearance , and
the n a reversion takes place to much bending with notch opening until complete separation is reached.
The transition point is the initial occurrence of this deepening without concurrent appreciable additional

‘In studies of Charpy behavio r above and below the transit ion temperature , the writer has sectioned Charpy bars perpendicularly to the •
notch after various amounts of permanent bending and observed the notch behavior in the text. A good reference is “Notched Rat
Im Ct Testing” a discu ssion arranged by the Manchester Association of Engineers, reprinted in the Transactions of the Association,
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bending , It coincides with incipient falling off in energy absorption as temperature is lowered. The
deepening without appreciable bending increases as temperature is lowered. The energy absorption is
relatively small when the section is no longer in the completely yielded state.

Specification of an upper limit to the Charpy transition temperature , depending on yield strength ,
has been extensively used to avoid brittle failure in , for example , gun barrels where , without this
specification , failure occurs with so lit t le evidence of ductility that fragments of the barre l may often
be fitted together into the original shape. No regard seems to be paid to the fact that at this limit
there is energy absorption with much bending preceding the fracture , but fracture appearance is noted
and emphasized even to the extent that the firs t disappearance , as test temperature is lowered , of
complete fibrosity is sometimes taken to be the point of transition. Very frequently, the energy tran-
sition can be seen to occur at the same point. The apparent discrepancy in ductility between the barrel
failure and the Charpy test failure may be more important than real , however , since the transition (with
sudden deepening and concomitant energy drop) referred to above occurs approximately at the center
of the section where the straining is presumably small. Indeed , for some materials and applications , the
transition temperature is taken to be the temperature where the energy absorption is some fraction
(usually one half) of that where the energy absorption first falls off (and the sudden deepening beg ins)
as test temperature is lowered. This, of course , may possibly approximate the result of the present
analysis.

The procedure for treating this Charpy-type transition does not diffe r basically fro m that explored
here for K i~ test conditions of small-scale yielding. The same stress-strain curve fracture model may
be used but, of course, the stress formulae are more complicated than their limiting near the notch tip
form.

In Parts I , II , and UI , all stresses o must be replaced by o/ (k 12) if the stress concentration co-
efficient k ~ 2 in the elastic formula for stress at the tip of the crack-lik e (i.e., a/p >>l) notch being
treated :

a = p k ~~~
The notation k is also given by the ratio of analytical expressions for K , i.e.,

k = K for notch being treated
2 K for central notch in a wide plate

The k and K expressions are for loading forces perpendicular to the crack axis , so-called Mode I.

PART I . TRANSITION TEMPERATURE AND ASSOCIATED PROPERTIES
SIMPLY BASED ON NOTCH ELASTIC STRESS

Normal and Shearing Stresses along Crack Axis
We assume the stresses are the same as those usually computed fro m elasticity theory for crack-

like notches , see Appendix A.

Let n a  = x/a u 2 12 be the coordinate along the crack axis , positive away from the crack opening,
into the material. The “a” is an important reference dimension , usually a crack depth or half crack
length , as in the case of a central crack in a wide plate , which we shall assume in what follows. The
tip is located at x/a = (p~ /a)/2 where p = p0 is the tip radius. Besides being a measure of distance ,
u is also the parameter ol parabolic coordina tes, one of which may be assumed to be coincident with
the notch , and u = ~~~ where p is the tip radius of any of these parabolae. See Appendix A for
details.

— 
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The loading stress p(=S1 ) acts perpendicularly to the crack axis. Since this notch is assumed to
be very narrow and deep relatively to the tip radius , i.e., to be “crack-like , ” and since we suppose the
difference between p and the loading stress (if any) along the crack axis to be much less than the
yield strength of the material , the latter loading stress does not appear in the expression for stresses
near the notch tip.

We assume plane strain such that the difference of principal normal stresses is 2Yk,/T where Y is
the usual tensile yield strength of the material.

The maximum shearing stress , one half of the difference of the principal normal stresses, along the
crack axis is

— _____

S u3

where u00 is the effective value of ,,/‘~7 ’ at the notch tip.

Thus, yielding occurs from u00 to u where

u3 =~~!Q~~

i.e., to the yield limit

fu 00
2 \ l/3

u 1  P 1 ~~u
\YA/~ /

The normal stress acting perpendicularly to the crack axis (principal stress) is
r, ~2 1

s= I(-~~- 1 ÷iI..!~.L \ U 1 j u

Thus, S at the yield limit is

or 

s =
~~ E ÷ ( ~

I
~r i

~r (vT\2/31
S i~~I l + ( ~ I IV~~L \“OO / J

with

= 
Y up0 = _____  = ~~~~~~

~0O 
~
, K

where K = p~/~
’ is a fracture mechanics parameter of toughness.

S at the notch tip, u = u00 is simply

4 
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1(u oo\ 2  1 pS =  l l 1  + I I—
L\ ~’O0/  ~

= a L
u00

= 2p~ i~~~p00

2K

Fracture and Transition Temperatures

1. Fracture in General

Fractu re
I Limit

I s— -- --
F~ i~)- —

Ductility Limi t
S = F D = f(e D )

Isothermal
~ Stress-Strain Cu rves to a
“ Straight-Line Scale

e* = arc sinh 4~
We shall assume fracture or failure occurs in accordance with the accompanying stress-strain

fracture diagra m ,* as discussed below. The stress strain curves are those for constant temperature and
strain rate, the lower the temperature and the higher the strain rate, the higher the curve. The curves
are what may be expected for steel.

We presume failure may occur either at the notch tip, or below the notch tip at the yield border ,
depending on the temperature and strain rate.

For subsurface failure at the yield boundary we have what we call “nil-ductility ” fracture corre-
sponding to attainment of the nil-ductility fracture stress F~~, indicated on the diagra m as the starting
point of the fracture limit curve. This fracture curve has a shape like that of the stress-strain curves
below it , but fracture occurs at the beginning of it for there we first reach a stress su fficient to cause
fracture (intermediate points on the curve may be reached , e.g., by prestraining at a higher tempera-
ture than corresponds to the fracture curve before loading at the fracture curv e temperature).

‘This diagram is a particular case of a representation of stress-straIn-fracture material behavior that has been much used by what is now
known as AMMRC and has been the sebj ect of much investigation by it and under service contracts to it , by Syracuse University . The
most extensive report , though It does not cover all woilt , is Deformation Characteristics of Face Centered Cubic and Hexagonal Metals
and Hexagonal Metals and Alloys, Project No. AI-~s R—6-04-AW-P3, Contr act No. DA-31-i 24-kRO-l)’l 12 put together cooperatively by J
AMMRC and Syracuse University and isased by Syracuse University Office of Sponsored Programs, Dept. of Chem. Engr. and Ma ria.
Sd ., Syracuse University , N.Y. 132 10.
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F~ may also be reached by adding a hydrostat ic tension ~o a lower curie. This may occur sub-
surface of the notch. (In  the tension test the hydrostatic tension is caused by neckin g. It may also
he caused by an artificial neck or a notch. )

h owever , in contrast , the material at the notch ti p is strained in the same way as a flat tension
specinlen with no possibility of attaining F~ except by lowering temperature or increasing strain rate.
In fact, for some materials the temperature cannot be lowered sufficiently to reach F~~.

Thu s, failure at the notch tip will be on the ductility limit unless the temperature is so low that
the notch material is on the fracture stress-strain curie.

Depending on the shape of the stress-strain curves and the position of the ductility limit , one
may anticipate that high temperature failure is at the notch tip and low temperature failure is subsurface.

Thus, we have:

S = F.~, constant , the nil-ductility fracture stress , for subsurface fracture

S = FD variable , the ductile fracture stress which varies with the ductility strain and henre
with temperature and strain rate .

F0 FDC = FD Critical , when F~ = 2YAJ3 on the stress-strain curve , though at initial yielding
subsurface F~ may be reached when , because of hydrostatic tension , F~ > 2Ykf l.

If R.A. is the reduction of area in a plane strain tension test , the ductility strain eD is given by

e 1n (  1
0 

~l-R .A.

provided there is no necking which leads to premature failure through addition of a hydrostatic tension.

A stress-strain curve whose limit is the fracture curve when Y = F~ is

S = Y + S
~ 

arc sinh 48e

or for plain strain

S =4 ~[Y + S o arc sinh 48e]
(For most steels S0 ~ 15 ksi , hut for some may be 20 or even 30.)

Y = Y 0 + C/ T
using the equation of the envelope of the straight line segments of the actual Y versus I curve. Y0,
especially, depends on tempering temperature (author ’s formula).

Hence ,

FD = 

~o arc sin h 48eD]

and we assume that in the region of interest that the ductility limit is given by

FDeD = FDO eDO = constan t

where FDO and eDO are any known corresponding values obtained experimentally.

6
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2. Notch Formulae

At the notch tip

2K
S-~~~~~~

or
S’/~~~K =  2

which at the ductility limit S = FD ~
~~~~~~~~~~~~

2

Subsurface at incipient yielding

,....X_ 11+ 1 K 12/3
v’~~~ ~~~~~~or

3/2
K = (Y/~f lJ - 1~

3. Transition Yield Strength and Temperature

Fracture occurs at the notch tip if S = FD and subsurface if S = S~, = F~ . Although the stress
at the notch tip is greater than the subsurface stress and thus Snotch ti > Sy always, FD > Fy 50
that fracture may not occur first at the tip. If tests at different tempe&tures are considered, starting
at a suitably high temperature , transition will occur from failure at the notch tip to failure subsurface
at the transition temperature . Since K = p~/~ represents the load; whether we consider the stress at
one place or the other , the transition is given through

K =  
FD~/~~~ ‘I’

~
’ 

~ 
F~ i l3~2

2 ~T [ Y A J~ J
i.e., independent of p00

FD = 1 F~ ]3/2
2Y/~5J~ L~/’/~~

1J
or

_ ....L.J F~ 12/ 3kFy~~~~j . 
~‘~~L2YV~ i I

Here , since

FD = Jr + S0 arc sinh 
48 FDge~p],

Y = 4 FD — S0 arc sinh 
48 FDg eDp

- 

— 

— 

~~~~~~~~~
-

~~~~~~~~~~~~~~~ siL~~



i’hus . w i t h  F 1)0 e1)0 kn owit  in

=

and (‘ and Y0 known in

y - y0
we may find the mu tua l  transi tion connection of F~ , F0, Y , and 1.

thus, assuming F0, we compute Y from

Y ~~~-F 0 $
~ 

arc sint ~ 
48 FDO C DO

then , using this Y , F~ from

___  
r F0 1 2/ 3j

= 
~~~~~~~~ ~l 

~L 2 Y / ~~ J
and then T from

T = ~~~
C

Y - y o 
*

From tables or curves showing these variables , we may select one of interest, for example, T T 1,
the transition temperature correspond ing to a known F~~.

Note that raising Y0 or C raises T1 independently of the other variables. (Y0 decreases as temper-
ing temperature increases.)

We now consider a few examples of the use of these formulae and the results to be expected ,
see Tables I to 3.

Toughness

It would seem from the foregoing that the toughness K could be computed from

K =
F0~~~ P- 

.

above the transition temperature and from

K = (Y/~/~K~/~00) [Fy /(Y/v’~~
) - l~ /’2

below the transition temperature and from either formula at the transition temperature. 4
h owever, the values obtained from these formulae are suspect in terms of our estimates for steel.

Consider the transition value. Then if

v1
~oo ~ l / 30

F0 420 to 600 ksi

8
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Table 2. TRANSITION YIELD STRENGTH AND TEMPERATURE
VERSUS FRACTURE STRENGTHS FOR ZERO AND HIGH WORK

Table 1. TRANSITION YIELD STRENGTH AND TEMPERATURE HARDENING (TEMPERING TEMPERATURE ‘V’- 1/Va)
VERSUS FRACTURE STREN~~THS FOR NOMINAL WORK

HARDENING AND HIGH~DUCTILITY (TEMPERING -0; C - ~Ø4 05( 1st.
TEMP ER ATU R E  ~A~l/Y 0). F0 V Fy T(’K) TI°F)

Work Hard: S~ — 15 kni; Ductility Limit: E QO e DO (1601(3/4) • 120 ksi ; V0(ks,) F0 lv 372)F D FD l0’/t(,/37~
)F D_Y oi 1.8(1°K)- 459.4

Activation: C — ~~ °K ks.; Hard Level: H ~ 2Y 0. 200 260 225.17 260 397.35 255.84
____________ — 270 233.83 270 295.62 72.72
V 0 IksiI F0 V F~ T (°K) T 1°F) 280 242.49 280 235.37 -35.74

290 251.15 290 195.51 -107.47200 320 223.36 . 277.86 427 .94 310.89
330 232.48 288.25 307 .84 94.71 Note: For S0 — 0 . and T°K — 273, T°F — 3 2 . 10~l273 + V0 - 36.63 + V0 * V
340 241.59 298.63 240.43 26.62 and 

~D = (2/v’3)V.
350 250.69 309.00 197.29 104.27 Hence if Y0 25O.V—286. 63; if Y0 — 200.V—2 3 6,6 3 ; j f y0 = 1 5 0 y - 1 9 6 83

Note the linear and almost equal variation of V and Fy corresponding Perhaps it is most interesting to say that V- 36.63. 
-to the linear variation of F0 as well as the large variation in T.

150 270 177.52 225.65 363.41 194.74 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
280 186.72 236.12 272.31 30.76 200 380 226.71 298.70 374.44 214.58
290 195.91 246.59 2)7 .83 -67.31 390 236.14 309.41 276.67 38.60
300 205.08 257 .03 181.57 132.58 400 245.56 320.10 219.48 -.64.34

410 254.96 330.77 181.94 -131.90250 380 277.90 340.03 358.45 185.80
390 286.94 350.35 270.66 27.78 150 330 179.18 244.67 342.69 157.43
400 295.99 360.67 217.46 -67.98 340 188.74 255.55 258.16 5.29

- 350 198.26 266.37 207.19 -86.45Note: °F - (1.81 (°K) - 
360 207.77 173.11 -147.81FD and Fy may be found by linear interpolation of the above

for any T (e.g.. T - 32°Fl with V from V — V 0 + CIT. 250 430 273.71 352.06 421.81 299.86
440 283.06 362.67 302.52 85.14
450 292.39 373.26 235.92 -34.75

* 
460 301.71 383.84 193.40 -111.27

Table 4. TABLE OF u0/u00 y~~?~~~~AT THE TRANSITION

u0 — u00 esp .~ expI
~c~~~ 

-

wt,ere v~~2L-.

Table 3. TRANSITION YIELD STRENGTH AND TEf IPERATURE
VERSUS FRACTURE STRENGTHS FOR NOMINAL WORK 

- ~~ exp CM!
HARDENING AND LOW DUCTILITY (TEMPERING Jp00 u00 L 2TEMPERATURE ~~~~ 1/Ye) ______________________________________________________

S0 15 k~ ; E00 00 60 ku; C - 1040K ku F~ /V “ 50 ku 100 150 200 250 300
V0 )k5~) FD V Fy I )~ K) T 1°F) 1.5 1.133 1.284 1 .455 1.649 1.~~8J 2.117

2 1.284 ._j~!.._J uiii 2.718 3.490 4.48 Es., — 150 kg)200 310 224.59 275.72 406,63 272.53 2.6 1.485 I 2.117 3.080 4.482 8.521 9.488 M — 10-2320 233.73 286.11 296.50 74.31 3 1.649 I 2.718 4.482 7,389 12.182 20,086330 242.85 296.49 233.40 -39.28
340 251.95 306.86 192.49 -112,91 1.6 1.064 1.133 1.206 1.284 1.387 1.455

2 1.133 1.284 1.455 1 .649 1.868 rTIlT E~.5 — 300 kgi
ISO 260 178.67 223.51 348.85 188.52 2.5 1.206 1.456 1.755 r TY, ~~SM ’ 3.080 M — l/2xI0-~270 187.89 233.99 263.92 16.66 3 1.284 1.649 F~ 2117 2,718 3.490 4.48)

280 197.00 244.44 212.35 -77.18

~oo 206.26 284 80 177.89 .139.86 1.5 1.043 1.087 1.133 1,18) 1.232 1.284
2 1.087 1.181 1.284 1,396 1.517 1.049 E~.5— 450ksI

260 370 279.19 337.89 342.58 167.25 2.5 1.133 1.284 1.455 1,649 
r4~~~~~

f2 T T T  N — 1/3x10-2
380 288.25 348.21 261.48 11.23 3 1.181 1.396 1.649 1.948
300 297,29 358.52 211.45 -78.80 1.5 1.032 1.064 1.008 1.133 1.189 1.206400 306.33 368.83 177.53 -139,85 2 1.084 1 )33 1.206 1.284 1.307 1.456 E,~5 800 ku.

2.5 1 .098 1.206 1.325 1.455 1.598 1.755 N — l/4x10~~3 1.133 1.284 1.466 1.649 1.868 fl2TTT

9
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we have

K = 420/60 to 600/60 ksi ~/Tii
to 10

where we might expect K — 70 ksii~,/T~ (We are not questioning the use of the above formulae for
transition calculatio ns by the above consideration , because the exact formulae hav e a mutual
dependency which may make them insensitive to alterations in form as the notch is loaded.)

Thus, we consider the use of a formula for stress, which is based on incremental considerations.
That is, the stress is the sum of stress increments based on the instantaneous notch geometry corre-
sponding to the load as it is built up. At the notch tip it is approximately, assuming yielding at the
tip has occurred ,

S ~ ~~~~ln((u 0/u 00) + 2Y/y’~

4E~ (3/2Xp/E t) - u00 [(.v’~Y)/(2E)~ — 1]
~ —~— ln u00 

+ 2YAfl

(3/ 2) [p I(E
~ 

u00)] — (.
~/~~Y)/(2E~) + 1 + 2YJ~/r

where u0 is the value of u at the notch tip when the loading is p, as shown by the second and third
formulae. Then u0 = u00 when p = 0. Et is the modulus of the stress-strain curve beyond the yield
point; we assume here that it is suitably represented by the secant modulus drawn from the yield
point. Thus since

S = 

)~

. (Y + S0 arc sinh 48e]

and we are concerned with the modulus to FD, e0,
FD - 2 Y/ J ~ 2 S0

E~ ~ eD 
= , 7~ ~~ arc sinh 48eD

or 
48 (F0 - 2Y/vJ~3/ sinh [(FD - 2Y/y’r)/(2S0/v’~)).

Now let us -examine our formula for S, where S FD
4E

FD T In ~(3/2) [p/(E~uoo )] — (~J ~ Y)/(2E~) + I + 2Y/~J~
If p is small so that the {} term is ~~l ,

4E
FD ”~~~~ 1(3/2) [p/(E~uoo)) — (+/~~Y)/(2Et )~ + 2Y/ rvfl 2p/u00

our usual formula for stress at the base of the notch, and our former expression from which we found
K, since u00 = v’PooIaT and K = p y’~i.

Substituting K = our formula for FD becomes

4E~ 3 K 2Y
D 3 ~~ 2 E te5J~~~~~~~2 Et

10
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so that

K 
- 

y 2E~ FD ~~V’
~oo 

— + exp 
4E~/3 — 1 .

We may also express this formula for K/~Th00 in terms of S0, FD, and Y alone or S0, eD, and
Y alone by insertion of our secant formulae for E~, i.e.,

K FD — 2Y/,/~ sinh [(FD - 2Y/v’~)/(2S0/E~)]+ (32) — exp - — l
‘~v’P0O ‘fi .~ilj

FD - 2YW3 ~ 
- 64

k 2 S ~w~~~ /
and

K y 4 SO/eD 
3eD

v’~oo 
= + 

~j  ,
~~~~~~ arc sinh 48e0 exp —

In the last expression, note the heavy dependence of K on Y and S0.

Thus, if

Y = 200 ksi

FD — 2Y/y’~~= 100 ksi
S0 1 5 k 5j
K

= 36 1.026
by the first of these two formulae, so that if = 1/30, K = 12.034.

Suppose,

eD = ln 2O~~~3
Y =- 200 ksi
S0 = l 5 ksi .

Then, - :
K -

= 300.475

by the second of these two expressions so that if .~J~~~ = 1/30, K = 10.016. If e = 4,
552.606 and ~~~~~~ = 1/30 , K = 18.420~?csi~iii. If S0 were 45, Kk/~~~ = 1426.878 and

with ~J~ o again equal to 1/30 , K = 47.563. In this K = 142.688.
Note on Tip Radius

In the above treatment u0 was closely expressed by

—~~~~—= ~~~~- ~~

u00 2 E ~uoo 2 Et

11
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where = ~~~~~~~~ u00 = ~~~~~~ Since K = ~~~ this may be written

‘
/

~~~~ 
= _± 1_~~~~ 

- --~~i~1+ i

~~~~~~~~~~~ 2E~ L~J~ ~‘~iwhich on substituting our expression for E~ becomes

_ _ _  = _ _ _  

eD/soi l  K .... 1]+l
~ sinh 48eDj Lv’~~ v’~ J

Ex amples:

Let eD = 
~~ , ~o = 15 ksi , Y = 200 ksi.

Then

____ = 0.045878 [ K 
— 115.471 + 1.

L~~~~
If K =  10 and V’ ç~= 1/30,

= 0.3 155.
If K = 50 and~/~~ = 1/30,

,,/~~j =  2. 1507.

If K = 10 and~/~~ = 1/ 10,
case is impossible; notch has not yielded.

If K =  50 and .J~~
= 1/ 10 ,

= 1.8642.

These figu res indicate that the tip becomes quite blunt as failure is approached. If the blunted
region is very small , this may not be -observed by crack opening displacement measurements. In partic-
ular , if we artificially flatten the tip of a narrow parabolic notch under load , the opening of the sides
near the tip would give no indication of the real tip configuration , although the measurements of such
opening might very well be used to compute a radius which may be effective for some analyses. Such,
for example , may be the determination of the significant portion, for strength considerations, of the
slip line structure .

In the absence of explicit experimental proof of the existence of radii such as we have computed ,
one may choose to believe that the tip radius discussed here will be found to be connected to an actual
radius to be computed without making the simplification that the stresses are the same as those of linear - *

elasticity theory . In any case , the radius drops out in the determination of transition yield strength
and temperature .

PART II. TRANSITION PROPERTIES CONFORMING TO A TWO-SEGMENT STRESS-STRAiN
CURVE AND ASSOCIATED FINITE BOUNDARY DISPLACEMENTS

We assume the stresses are from usual elasticity theory for crack-like notches, but that the strains
are from a two-straight-line stress-strain relationship and that boundary movements and other deforma-
tions may be large. -

12 g



Strains in Parabolic Coordinates

x/a = (u2- v 2)/2 and y/a = u v

where u and v are the parabolic coordinates.
ô(x/a) 8(y/a)

au
a(x/a) a(y/a)

=-v  = uav ôv

h~- = h ~~ = (u 2 + v 2) m h 2 .
It is well to remember that on the v = 0 (crack) axis , that u = ~~2~xJá is not only a measure of

distance to a parabola tip, but u = ~~~ also, where p is the tip radius of the parabola. In particular ,
u0 = where p0 is the tip radius of the bounding parabola.

Let U and V be the displacements in the u and v directions.
Then,

i /au V~~h
e — l — - - + — —u h\au h a y  -

1 / aU vV
— l—  + —
h \au h2

i lav uah \
e~~~ —~~-~-- + —

h \ au h2

~ Iau  aV ’~ 1 1 ah 8h\
~~~~~~~~~~~~~~ + V ) .

I Fr
— Thus, on the crack axis where v = V = 0,

e

Near Tip Elastic Stresses in Parabolic Coordinates

h4 Ou /P = — U~~U +

- 

- h4o~/p  = — u~ u + u(u 2 + 2v2)

h4o~~/p = — u~ v + v u2

where

h2 u 2 + v 2 .

13
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I

Thus, on the crack axis, v = 0,

~~~~~~~~

f /u~\~1 pav = 1’~~~k-~~J iii

auv = 0

and
2p

+ 
~‘u = 

U

/ ~2
o — o  = 2 ( -~~~ -p - .

v u u ,  u

Strain for Plane Strain with a Piecewise Linear Stress Strain Relation

(Ref: J. W. Hutchinson , Eq. 35, J. Mech. Phys. Solids, v. 16 , 1968)

E

~

E and Etan are the moduli of the
/E straight-line segments of the

stress-strain curve.

C

= equivalent tensile stress, o~ = 3/2 S~j S~

S11 = o~ — (1/3) °kk 6ij

X (3/2) (E /E tan — l ) i f a0 / Y>  I

X 0if o8/Y~~ l

a ( 1_ Y / a 8).

The stress-strain curve is (Hutchinson)

Ee11 = ( I  + v) o~ — V 
~~~~ 

+ X (1 — Y/ o e ) S1~

t
14
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th us for plane st rain
I a~ + 0 22 + O 33~~ 

*

Ee 1 I 
= (I+v)o 1 I — 

“ ~°l l  + °22 + 033 ) + xa 
~°l 1 — 

3

1 0 + 0 2 + 0 33Ee22 = ( 1 + v) o 22 — v (° j i  + + 033 ) + xa 
~o22 — _____________

0 = Ee33 = ( 1 + v)o33 - v (°i I + 022 + 033 ) + xa (033 — °l l  + °22 + 033)

From the expression for e33 we have ,

v + Xa/3
033 1 + 2Xa/3 ~°l I + 022 )

13(cr11 ~°22~
where

Note: I f ~ = 1/2 , ~ = 1/2 .

Thus introducing * this ex pression for 033 into the expressions for e 1 and e22 , we have ,

Ee 11 ( I ...~~2 )(l + 2Xa/3) [o i i  r5022j

Fe22 = ( I  ~- ~2 )( I + 2Xa/3) [022 - 
~

—

~5 

u fl].

*For example. -

Fe , 1  = 0
~~ 

— p(o22 +~~33 ) + _ ~~2~~1 1  ~~~~~~~~~~~~
= O i l  fl + 2Xa/3) - (p ÷ Xa ) 

~°22 + 033 )

= a
~ 

( I  + 2Xa/3) -~ (l + 2 Xa/3) [u 22 +(o 11 ~~°22 )/
~J

= ( I + 2 X a / 3 ) [a 11 (l~~~32 ) _ p ( l +~3)o 2 2 J
( I _~~2~ (I  + 2Xa/3)[a i t  ...fl...._ a~~}.

15
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Also, for plane strain ,~
= - + p 2~~,22 0 11 )2 + ( 1 — 4j3 + 4132 ) 022 0 11 +

Thus, for plane strain , if v = 1/2

= v = 1/2

Ge
2 = (3/4) 

~°22 _ 0 lI )2 + 30 2
2

[and 0e = ~y’~/2) 
~°22 011 ) where 012 = 01

e 11
3 = (°n - 022)(l + 2Xa/3)

4Ee22 = 
~~
°22 - O I l ) ( l  + 2Xa/3)

where

a = l ~~ Y/oe.

If v = 0.28 and X = 100, which we assume to be reasonable values,

= 
0.28 + 100 a/3

~~ 1+2 00 a13
so that if a = I — Y/a

~ 
= 1 — 1/2 = 1/2 ,

13 ~ 0.494

and if a = 1 — 0.9 = 0.1,

13~~~0.471.

Thus, for X * 0, it is especially interesting to make the simplification 13 = 1/2 which makes
v 1 3 1 / 2 .

Strain and Axial Displacement U in Parabolic Coordinates on v = 0 Axis, for p = j3 = 1/2 for a
Piecewise Linear Stress-Strain Relation

Setting e11 = e~, and 011 = 0u’ 022 = 0v’

= 
~~~~ ~~~~~~~~~~~~~~ 

+ 2Xa/3

*For example ,
= (3/2) S~j ; ~~ is also given for plane strain by

20e2 = 
~~ll  — 022 )2 + 

~°lI  — 033)2 + (022 — 033)2 + 60122

~°I l  022 )2 + 10 I 1  ~(°1I + 0 22 )12 + [022 13(011 + 0 22 ) 12 + 0 12 2

= ( 2 — 2 1 3  + 2132) (011 2 + d 122) 413 (1 — 13)011 022 — 2ó11o22 + 6012 2
= 2( 1 _ 1 3 + 1 32 )(g l I

1 _ 0
22 )2 +4( 1 _ p + ( 3 2 ) 011 022 — 413(1 _ P)0l1022 _ 2 0 1I 022 +60 12 2

2 3 ( l _ a + $ 2 )(o l I _ o
22 ) 2 ÷ ( l ... 4p+4 132) oI1 Q22 +6g 22 2~

* 

16
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with a I — V / G e
Y— I — 

(‘J~7T) (0v —

Thus,
a -a

U 2 ,./~E ~~ Defined

with M~~ (3/2 + X)/E .
We recall that

- °u = 2(k) a.
Thus, since (with p constant)

i au
eu u a u

(1 iu o~~ xy 1
U f euudu

J L—~~ 
M P + ~~~~.uj du

u02 xv u2
= + — Mp + 

,~ T 
+ Const .

Hence, if X = 0

2 u E~
At the yield point at u = u0, p = Py

2Y 2py
- 0u = 7~

- = 

~-ti;— ’ I 

I

Hence U at u u0, p = Py iS

UY =~~ UQ .~~ =qUO2~~~.

I f X * O
u02 xv u2

U = — Mp + 
~~~~ 

+ Const 
Yu 0

where the constant is determined by equating this expression at U = U0, P = Py —
~~~~~

—
, to U at yield

at u = u0 of the X = 0 case, i.e., V ~‘

~ 2 y /Yu 0\ xv u0
2

—i- U0 
.
~~~ 
= U0 M~

_
~~) ~~~~~~ 

-i-- + Const .

17
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k

Therefore , if X = 0,

U~~~~~~ M p + 2,~~
’
E (u 2 _ 3 u O

2 ) P~~~Py.

However , dete rmination of the constant was unnecessary to the case where we are concerned only
with a change in U caused by a change in p.

In fact , this expression is not the same as an expression for U that takes account of the change
in u as loading proceeds.

I N C R E M E N T A L THEORY

Relation between Instantane ous and Initial Values of u for v = 0
Let x u0/u and U refer to the previously derived equation for U based on stationary u.
Then,

U at p + dp 
— U at pdu

= x 2M dp
since h = u for v = 0 and M (3/2 + A)/E.

Thus, 
-

du0 = M dp

and

dx = d(u 0/u) = (u dU 0 — u0du)/ u 2

= ~~ (du 0 — x du)

~r x ( l _ x 3 ) M ~E~.

— 3 du0— x  ) —
~~———

i.e.,

d u x 2M d p

du0 M d p

dx = Ix( I — x3 )M dpi/u 0. ,~~dx versus dp/u 0
By elimination of dp fiom du and du 0 it is readily seen tha t

u3 — u03 = Const.

Thus, if

u 1 — initial value of u
and

18
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u00 = initial value of

we see tha t

u 3 — u~
3 = u0

3 — u00
3 u versus u1

independent of the value of A.

u0 versus p:

Since

du 0 = M dp,

u0 = Mp + Const.

I f A  = 0
u0 — u00 = (3/2) (p/E)

since u00 is the ini tial value of u0 and M is (3/2)/F when A = 0.

At yield

U0y — u00 (3/2) (py /E)

If A =  0
u0 = Mp + Const.

M Pv + Const.

i.e.,

u0 - u 0~~ - M(p — py ).

Stresses

In our previous nonincremental theory, we replace p by dp and the stresses by differential stresses
so that we have only an incremental stress, corresponding to an incremental pressure, when the co-
ordinates have the instantaneous values u , including u = u0, or x , i.e.,

do~ = x (1 — x2) (dp/u 0)

da~ = x (I + x2 ) (dp/u 0)

auv O 
-

d S d (a~ + o~) = 2x (dp/u 0)

d~W~~ d (a~ — o~) 2x3 (dp/u 0 ).

We recall that ,

du x2 M d p

du0 M d p

and

- - - - 
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x(l ~~~~ 
= M (dp/u 0)

and note that there is a one to one relationship between p and u at any specified location , in particular
between p and u0, the coordinate of the notch tip.

For D we have , fro m

du = x2 M dp

and

dD = 2x3 (dp/ u0) = 2x 2 (dp/u),

dD = (2/M) (du/u)

D =  (2/M) ln U + Const .

Thus, f o r A = 0 , since D 0 whenu u~
D = (4E/3) In (u/u 1)

where u3 = U0
3 + u1

3 — uflQ 3 in terms of the initial coordinate of the place where 15 is desired and the
notch tip coordinate u0 which represents the load , i.e.,

u0 — u00 = (3/2) (p/E).

At the yield point , at the base of the notch , whether or not A = 0, we have u = u0 = u0y so that

s/~~ 
3

i.e.,

Uoy Uoo eXP
~~~T~~ )

and,

..?~~=~~~ Q [exp(�f~!~~ ) _ l ] .

If A * 0

— 2  u 2Y
D g1n~~~~~+~~~~

in ~13 + U
0

3 — ~oo3 
+ 2Y

3M 
U0y 3

and

P = Py + ( 1/M) (u0 — U0y) .

20
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We note that if u u0 and A * 0

— — 2 U0 2Y
D = S = In U 0y ~/3

For S we have,

dS 2 x -~~U0

2x dx
M x ( Y~~~ )
2 dx

- M 1 - x 3

Thus

— 2~~ l l — x 3 I 2 x + l
S ~ ~~~ln (l -x ) 3 +— ~~tan~ ~~~ + Const.

2 1 U 3 U0
3 I 2u0/u + 1

~— l n 
~i— u0

3) +~~~~ tan ’1 
,
~~~~~~ 

—~~+ Const.

For A = 0,~~ is zero when u0 = u00, u = u 1. Hence ,

— 4E i (u 3 — u0
3) (u 1 - u00)

3 
+ ~ ~ 

2u0/u + 1 1 
~ ~ 

2u00/u1 + I
— 

3 1~ (u - u0)3 (u 13 - u00
3) 

~~~ 
an an

= 4E I 1
u~ - u00 + i ~~~ 

2up/u + I 
—~~— tan~ 

2u00/ u1 + 1
3~~~2 u - u ~~~~~~ 

*

since , again U 3 — U0
3 = U 1

3 — u00
3 .

Since

~~~~~~~~~~~~~~~~~ u 2 + u u 0 + u 0
2

u - U0 u3 - u0 u~
2 + u

~
uoo + u002

S may also be written

— AE I U 2 + U U~ + U~
2 

~ 2u~ /u+ 1 1 
~ 

2u~~/u~ + 1S —  — I n — ‘
~ + — tan “ — — t a n  £

3 -2 u12 + u. u00 + u~0 V’~ ~.J T ~~f3

which expression has the advantage that it may be more readily interpreted as U1 — u00, u _ U0.
11u 1 u00, u u 0

= = (4E/3){ln (u 0/u 00 )J
UI = UOO

in agreement with our former result for ~~

¼ 
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For A * 0, we note that S may also be written as follows.

~~~ = .~ j iln (’~ 
- u0

3

~~~~~~:j ~~ 
+ ~~~ 

tan~ 
2 L f  I~ Const.

~ (u 2 + u u0 + u02) — ~~ln (u 3 — u03) 
+* tan~

1 2u0/ u +  
l}+ Const.

-~j~~!ln (u 2 + u  uo ÷ u 02 ) _ J ~.ln (u 1
3 _ u oo 3) + ç,3~

.tan 1 2u~
,
~~+ l~ + Const.

WhCfl U = U0 = U0y,  S = 2Y/~’~ Therefore

2Ykf~ = (2/M){( I /2 ) In (3u 0~
2 ) — (1/3) In (u~

3 — u00
3) + ( l/V’~ ) tan ~~ }.+ Const.

from which we have the expression f or the constant.
Thus,

~~~= ~~ 
+ u0

2 
tan~

1 2u0/ u +  I _ .,~ 
tan ’ v’~j +~~ .

We note tha t if u = u0 this expression becomes
S (2/M) In (u0/u0y ) + 2YAJr

as obtained in the analysis for ~~~~. It also satisfies the differential equation from which it was derived
if account is taken that d(u 3 — u03) = 0.
Since

2u0/ u + l  2 + 1- ~~~~~~~ — tan~’ tan 1 tan [tan-i uo/u tan 1

2u0/u +1 
— 

-

= tan~ 
~ + ( u0fu +
_ _

— 

tan~1~~~ i - ~0 L
~

S may also be written (A * 0)

In ~2 + uc,2 
+ j tan~ ~

,
~~ u~~_ u )  

~~~~~~~~~~~

Since

~

_
= a v + 0 U 

*‘15~ = —
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---- -—- 
- -

we have

= (S + D)/2
= ( S — D ) / 2 . 

-

Thus, for A 0 -

~ 
4E I U 2 + UU 0 + U0

2 
+ _.!.~ tan1 

2u 0/u + 
— I tan’1 2U Q0 /U~ + 

+ 4E In U
- 

~‘ 3 2 u 1
2 + u 1 u00 + U 00

2 V’
~ ~~~ .vfl T ~j

i.e.,

— 2E I 1 ~ 
U2 (u 2 + UU 0 + U 0

2) 
1 1 Itan~ 

2u0/u + ‘-tan~ 
2u oo /u~ + I

— 

3 2 
hu

[u j2 (u 1
2 + u1 u00 + u00

2~J V’~ L v’r

2E I I U~
2 (u 2 + uu 0 + u02)1 1 1 ..

~~ 
2u 0/u + ..

~ 
2u pp /u. + i

a _ ln i  1+ —Itan —tan
U 3 2 Lu 2(u i2 + u~u00 + u00

2 )j  V’~ ~

x *-0

2 - 2 1 I 
u 2 + uu 0 + u0

2 
+ I -l (u 0 - u) 

~~ 2Y + 2 1 1 U 2 
+ 21

M 2 “ 3 U0y
2 tan 

~~~ (u 0 + u~ 7~ M 2 ~‘ 
~~~2 ‘fi

= I I I [u 2 (u 2 + uu 0 + uo
2)1 + I -l (u 0 — u) 

+ 2Y0y K~ 
n 

L 3u0~4 
~~ 

an 
~~~~~~~ (u0 + u) ~;77

1u2 + uu + U 2] (U — u)

~ L 3u2 ~ 
an 

~/~ (u0 +u) 
-

Transition 
-

By transition we mean a change in failure location from notch tip surface to a position below the
surface. It is presumed that the subsurface failure is more brittle and cataclysmic. -

In t his analysis we use a maximum stress failure criterion where the stress necessary for failure
depends on the amount of plastic straining. The fracture stress at the surface is FD, occurring with
ductili ty (subscript D) since the material at the tip is under simple (plane strain) tension , while the
subsurface fract ure stress is Fy occurring with very little ductility (subscript Y signifying proximity to
initial yieldi ng) since it takes place at or close to the elastic-plastic boundary under a combined-stress
condition involving considerable hydrostatic tension. Although the yield strength Y is on the same
stress-strain curve as FD, F~ is greater than Y at the transition so that the hydrostatic tension is
necessary to reach it. And while the stress distribution below the notch tip is such that the maximum
stress at any location t here is always less tha n t ha t at the t ip, F,,, is less than FD so that both FDand Fy may be reached simultaneously. This is the condition for the transition. It is a relationship
between FD, Fy and Y. The temperature dependence of the transition is dependent on that of FD
and Y, especially the latter.

23 
*

- ~~~~~~~~~~~~~ -_-



We consider the case in which A * 0 because we are interested in the maximum stress 0v at the
elastic-plastic boundary.

Since
— 2 u 2YD=ii-ln— +— .

~~~
‘-

,t i  L10y ~~
we have

U — l f  ~~ _ 2 Yor

the elastic-plastic bounda ry.

= I i 
1
~~~[U

2 (u 2 
~1- uu0 + u02)1 I ~~~ 

(u0 — u)
v M 2 3u~~

4 j ~~ v~ (u~ + u) 
~~~

Thus at u/U 0y = I ,
2( l + _ ~Q_ +( U

0 \
0

V .JlLln U
0y \U 0y/  

+ ~~ tan~’ 
\U 0y I + 2Y

u/U 0y = 1 M 
+ 

~) ~~~~~~~

whereas at the base of the notch, u = u0,
Ov = _j i1~L.~~\ + 0

base of notch M 2 \U0y/

— 2 i u0~~~~y
~~~~~~~~~f l-  ~~~~~~~~~.

Thus, the transition takes place when c
~ 

at Ufu 0y = I IS Fy and u~, at the base of the notch is
FD, i.e.,

—1 In 1 + R+ R2 tan~’ ~~~~~~~~~~~~~~~~

FD~~~~1 n R + ~~~ 
-

where R U0/U0y .

Since

R exp[~~ (FD_
~~ r)],ME 312

F~ ’

Fy for transition is readily found from known F D and Y by solving for R and substituting this value
into the expression for Fy .
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Note that the crack tip radius does not appear in this expression for transition. The introduction
of fracture stress FD absorbs the radius. To some extent one may regard the tip radius as a mathe- .
matical parameter computed from F0, loading stress , and crack dep t h , rather than an act ual or ef fec-
tive or average tip radius.
Transition: Approximation

Here we compare the above formula with the simple formula for transition which does not take
into accoun t the change in boundar y associated with loading. We do this by showing that each reduces
to the same approximate form. -

We consider the above formula under the assumption that the exponent of the expression for R
is small , i.e.,

R I~~~ M I F - 2Y-

(This might not be true for a very flat stress-strain curv e, i.e., if A = (3/2) (E/Etan — I )  is very large .)

Exactly, 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
R l ~~~+2~

~ M 2 3 ~~ (2 + R - I )~ ~~/3
which , if R — I is small , becomes

F~ ~~~~~~~In ’( I  + R -  I ) +*t a n
~ 

RT1L21

~ Jj R - 1  ~~~~~~~~~~M~ 2 6 ,,/~ -

3M ~/3 -

~~~~~~~~~~~~~~~~~~~~

i.e.,

F ~ ‘F 2Y \ ÷ 2Y

i.e., Fy is equal to the yield strength in plane strain plus one third of the difference between FD and
• this yield strength.

Our simple theory , which did not include changes in the boundary under load , led to the formula
3/2

We make our approximation to this by considering the case in which

(F y 2Y/ ~J) ~ < < I
ywT
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That is, exactly,

F ~~ 1(Fy _ 2Y/V~N ) + 2Y / ~/5i l13/2
J

=2111 + Fy 2’k’/~1~1
v’~ L YWT J

becomes, on the above approximation ,

FD~~~~~~ 1I +1 Fy _ 2 Y A / ~2 Y/~/~
i.e.,

F ~~LIF _ 2 Y\ + I Lv 3~~~D 
~~~ ~~~~~~~

-

as before.

Loading Stress and Toughness at the Transition

We recollect that (p 19)

P P y +~~.(U 0 u0y )

i.e.,

P = Py + -~~~~~~~ (R - I)

where

R U
0/U Qy 

= exp
[* 

(FD — 2Y/v’T)]

= u0ç~ exp (.~~
’ 

~~~~~ )

Py i~(u~y - U00) 
2Eu00 [exp 

~~7 

— 1]

u00 ~fp00/a.

Hence, the loading stress is .

p = UOO (ç~~/ 

1 
+ 

p~~~~ 
~~~xp~~(F0 - 2YW~~ 

- 

l]}
and the toughness K = pv’i is

_ _ _ _
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K 

~~~~~~~~ 

I 
+ ~~~~ ~ex P E ~~~

(F D - 2Y/~~~~]~ i~~

at the transit ion.

Approximately ,

K 
= ____ s ~ + 

~ 
(F D - 2 Y/~~ )] — I

~~ ~~~~~~ ~~~~~t3 M

or , if the second portion of the stress-strain curv e is not too flat (i.e., M too large),

~~~~~= =~~~~~ii~~~~/~~~~~~~~

2 a

at the transition.

We appe n d Table 4 of~J~7~00 at the transition to convey an idea of how much p may differ from
P00 and of the value of the exponential term in the above formula. Although we believe that Etan =

300 ksi is probably most representati ve for steel , it may be less and if this is the case, it may be seen
(according to this model ) that the tip radius p under load at the transition may be far greater than its
no-load value. Likewise , in this case , according to the above formula , K will be significantly increased
over the value it would have if the second portion of the stress-strain curve were steeper.

PART I l l .  TRANSITION PROPERTIES BASED ON NOTION OF
ELASTICALLY LIMITED STRAIN AND A SLIP LINE THEORY

We assume that the strains are from usual elasticity theory for crack-like notches on the argument
that even in the yielded region they are substantially contained within a fairl y rigid elastic mass.

Contained Strain Theory and Comparison with the Contained Stress Theories

In a paper called “Characteristics of Crack Failure ” Beeuwkes presented a curve which he used
to determi ne subsurface fracture stress and crack tip radius from experimental curves of or K j~versus yield strength V which , in tur n , is a func tion of test temperature or tempering temp~rature .
The curve may also be considered to be the transition relationship between F~~, F~~, and Y, for a
change in fracture location from notch tip surface to subsurface , or vice versa, as V is changed , as
will be explained below . We take V= 2V/~’r, the plane strain yield strength.

- 

The basis of the curve is the determination of the subsurface stress F~ through the hydrostatic
addition of stress associated with the change in direction of the shear stress trajectory having the
greatest change in crossing the yielded region. The flow strength in the vicinit y of this trajectory was
found to be very near the yield strength Y A parabolically shaped tip was assumed so that the stress
increased with load , i.e ., yielding; with no tip radius all trajectories are the same and consequently
there is no increase in stress with yielding. The subsurface hydrostatic stress at the yield boundary is
solely due to the change in direction of a trajectory and the yield strength , not with work hardening.

— The abscissae of the curve are the angular changes in direction corresponding to the different
degrees of yielding. In these Fy is conn ected by the relationship Y + Y 4 = Fy,  i.e., < Fy/Y - I
assuming the fracture prolongs the crack. *
Fracture alonj a line perpendicular to the crack axis may occur under the itress Y <li the fracture stress across this direction Is *

~~mcisntIy low.
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The ordinates are values of

L E x ~Jr

which may be written

L~~[pv’i~/fl
= 3J1= V/~e0/2 K/(~~/~ )

where E is the Young’s modulus for plane strain ,

E~~ E/( I — v 2 ) -

K = p,J~ 
= toughness

2p~/á7~ = virtual stress at the notch tip, i.e., stress by elastic formula

(2py’~Th)/ E = e0 = actual strain at the notch tip assuming contained strain.

Although this strain is computed elastically, it is valid beyond the yield point on the assumption
that the case is one of small-scale yielding largely surrounded by a fairly rigid though elastic region.
Thus eD = F0/E5 is the ductility strain if fracture separation occurs at the tip. Here, ~ is the secant
modulus corresponding to a line drawn on the tensile stress-strain diagram of the material used , from
the origin to the f racture point where the actual stress is a = FD.

Thus, also

L =  2Y 
-

(~ /~5)F0
- Hence, letting f stand for “functio n of:’ the cu rve may be written

L = f ( 4 )

i.e.,

Lor X/r or~Y2E or
2
~~~

E
f (-~X.

_ 
l~K/ (b,ip) eD/2 FD/V Y /

since 
~~ 

= FD/eD by definition and ~~ = E,/E.
Thus, we have expressed the curve L versus 4 in terms of variables associated with our model of

transition which is that this point occurs at a yield strength with which ductile fracture at the tip
occurs simultaneously with essentially brittle subsurface fracture. That this L versus 4 curve is the
transition relationship follows from the assumption that the relationship of these variables is for prac-
ticable purposes unique. Simultaneous fracture means that at some yield strength the load p required
to reach FD or e D is the same as that required to reach Fy. Thus, p and the cross-axis stress q~ at
thelield boundary (on the crack axis) are uniquely related to each other for fixed Y, as are p/Y and
o,,/ Y. Likewise, p and the strain e at the notch tip are uniquely related to each other for a given
material with its stress-strain curve, as are p/V and e/ey where ey = V/E, the yield strain. Hence,
whatever the stress-strain curve , the condition that e/ey is reached at the same load as o,,,/ V, is found
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by elimination of plY from the p/V = f ( o ,,/?) and p/V’ = l’(C/ e y )  relations. The e is the eD corre-
sponding to 0,,, = F0 for the stress-strain curv e with its specific value of’ Y. If Y is the only para m-
eter specifying a set of stress-strain curves (i.e., one to each value of Y) , e0 and FD may be fou nd
for each ‘V and the group of these form the transiti on relationship for the specific type of stress-strain
cu rve under consideration.

We now make the assumption f’or this application , that for practical purposes sufficiently
characterizes the usual engineering stress-strain curves , for we have seen that Fy is prac tically only
deter mined by Y from the standpoint of effect of materials properties , in ou r derivation of the L
versus 4 curve , and by hypo thesis the notch tip reaches CD , F0. Both F0 and Fy are postulatedfrom prior knowledge of the material and are therefore reached at the transition. It appears, therefore ,
that the effect of shape of the stress-strain curve would only be to affect the place where Fy occurs
and with this the amount of angular change of direction of the shear stress. trajectories. This is unlikely
to be very significant since , again , they undergo their change in direction in a region where the flow
stress is practically equal to the yield strength Y.

In analyses of the K ic versus Y curves of steel versus test temperature or tempering temper ature
F

I + 4 = ‘ç ~ = 2 to 2.50. In this range the L versus < curve may be approximated by

L 0.95 [I — 0.56 <J

= 0.95 11 — 0.56 (Fy/Y— 1)1 
-

= 0.532 12.768 — Fy/V J.

From this, if Fy/V = 2, L = 0.418, and if Fy/Y 2.5 , L = 0.152.

Such analyses also indicate that (at the load corresponding to K Ic measurement)

~~/~~

-
“

~ 
l /30~/~~

From the above, in general , in the range 2 ~ I + <~~~~~ 2.5 ,

_______ 

Y/ ~ 2 E5/ E, r F 1I or K/ (P..~’~) or ‘ ‘ ~j-cr F0/V 0.532 L2
~
786 — ~~~~rj .

We note especially that toughness

K = (
~~cD~

/
~)/2 

-

so long as the fail u re is not subsurface, i.e., so long as we are “above” the transition.
Let us suppose that valid K Ic measurements really do correspond to the transition , and see how

well, if at all , values for L and K derived with the aid of the above expressions coincide with our
expectations from experience .
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Case A Case B

Let Fy/Y 2, hence L = 0.418 Fy/V 2.5, hence L = 0. 152
Assume 

~~ 
= 1 /30 Assume ~~~~ 1 /30

Reasonable expectations: Reasonable expectations:
V = 280 ksi Y = 200 ksi
E 28,000 ksi E = 28 ,000 ksi

eD = 0.20 eD = 0.40
K 25 ksi~/iii K SO ksi 1J11i

L 1L~~~ 0.l0 L=0.035
e0/ 2

K ( ~~eD~ /~
’)/2 93 K 186

A comparison between the calculated and postulated values of L and K shows that had the
com puta t ions been made with values of eD one quarter as great as the expected tension test values
used, the values of L and K would have closely agreed with those postulated. However , agreement
would also be reached with retention of the values of e , by using a notch stress concentration
factor four times as large as the one employed , i.e., 8 a p instead of 2~/~7~ on the speculative basis
that the actual irregular notch front is four times as severe a stress concentrator as the smooth tip
assumed. By this argument the 2’s on the left side of the transition formulae above are replaced
by 8’s.

I
I
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APPENDIX A. Near Tip Stresses along a Crack-Like Notch Axis in Terms of Polar , Rectangular , and
Parabolic Coordinates for a Loading Stress Acting Perpendicularly to the Notch Axis.

The expression for the stresses in terms of polar coordinates (r , 0) is the same as that in rectan-
gular coordinates taking the crack axis to be 0 = 0.

The equivalent loading stress acting far fro m the notch and perpendicularly to it is S1. The
loading stress along the axis S1 ~ 

does not appear in the expressions for near tip stresses for crack-like
notches (alp >> I). k 1 is the stress concen tration coef ficient , i.e., S = k 1 S1~/~7’,ä’ at the notch tip
for such notches; k1 = 2 for the elliptical crack in the center of a wide plate which- is loaded perpen-
dicularly to the crack axis.

In the following expressions , the tip of the notch is at a distance p/2 from the origin of coordi-
nates , which is within the notch.

Polar and Rectangular Coordinates
2 S 0 p/a + I

k 1 S1 (2r/a)312 (2r/a) 112

2 (Sq 
— 

Sr) = 2p/ak 1 S~ (2r / a) 3I 2

Here p is the radius of the notch tip.

Parabolic Coordinates

In parabolic coordinates (u ,v) where v = 0 when 0 = 0 and r/a (=Wa) = u2/2 and the tip radius is
given by u = ~~~ for any of the coordinate parabolae with their differing values of p, including that
of the notch itself

2 S~~~p/a~~l
k 1 S1 ~3 u

2 (5,, — 
= 2p/a

k1 51

where 5,~ acts perpendicularly to the crack axis and S~ along the crack axis. In these expressions p
is the radius of the notch tip itself.

In the body of the report a notation for tip radius is taken over from the writer’s analyses ‘

taking account of load-induced change in tip radius. Thus, the radius of the tip of the crack in the
unloaded condition is P00 with u00 = ~/p00/a and in the loaded condition P0 with u0 = ~~~~~
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