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may be large.

Case III. Strains are from usual elasticity theory on the argument that even in the
yielded region they are substantially contained within a fairly rigid elastic
mass.

The transition is found to be independent of the tip radius. Because of its simplicity and
consequent clarity, Case I is most extensively discussed. However, if the work-hardening rate
of the notch material is very low, Case II must be employed.
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NOTATION |
(In approximate order of occurrence) |

K}, Critical Stress Intensity '
K Stress Intensity
0,S Stress (S, Radially, Sy Perpendicularly to Radius)
k, ki Stress Concentration Coefficient 1
p (5Sp Loading Stress (Acting Perpendicularly to Notch Axis)

] a Notch Depth 1
p Tip Radius of Coordinate u =+/pJa
Poo Notch Tip Radius Corresponding to u = ugq = \/po_oli
r,0 r = Radial Coordinate, 8 = Angular Coordinate (from Crack Axis, Extended)
X,y Rectangular Coordinates
u,v Parabolic Coordinates (u = uyy = Notch Coordinate) i
Y Tensile Yield Strength
S Shear Stress
Ugo Initial Value of u at Notch Tip, an Effective Value of /p/a 1
ug Value of u at Notch Tip when Loading Stress is p (Incremental Theory)
Uy Value of u at Yield Boundary :
Loo Yugo/p
F Fracture Stress
Fy Nil-Ductility Fracture Stress (Occurs at S = Y, Closely)
Fp Fracture Stress at Ductility Limit
Fpc Fracture Stress at Ductility Limit when Y = F|y (Closely)
e Strain {
€p Strain at Ductility Limit } 4
R.A. Reduction of Area
So A Constant in the Arc Sinh Stress-Strain Relationship
Yo.C Constants in the Yield Strength-Temperature Relationship
T Absolute Temperature (°K = Degrees Kelvin, °F = Degrees Fahrenheit) |
Tr Transition Temperature
Fpo¢po Known Corresponding Values of F[ and epy on the Fjy Versus ep, Relationship

3 H Hardness

,4 E Young’s Modulus of Elasticity

: E, E an Secant Modulus (Measured from Y)
hu2 = h,,2 = u2+y2 {
uyv Displacements uf u, v Perpendicular to u and v, Respectively
€y €y Strains in the Directions Perpendicular to u and v Contours, Respectively

- Shear Strain Corresponding to u, v Coordinates
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1
i Stresses Corresponding to ¢, e, ‘ 1
i Stress Corresponding to v,,,
g, Equivalent Tensile Stress
Ok Sum of Principal Stresses {
sij' € Stresses and Strains in General |
D> Notation for Summation
5ij Kronecker Delta
v Poisson’s Ratio j
A A Constant (see Text)
a = 1-Ye,
g = w+Xa/3)/(1 +2xa/3)
€11 €22 Principal Normal Strain in Plane Strain Hooke’s Law 1
011, 033, 033 Principal Normal Stresses in Plane Strain Hooke’s Law
M= (3/2 +N/E 1
Py Loading Stress at Yield Point at Tip of Notch 1
Uy U when p = py
= ug/u (Incremental Theory) i
y = Initial Value of u (Incremental Theory)
ug = Notch Tip u Corresponding to Loading Stress p; ug = ugq Initially
Ugy ug for p = py
T = o, + o, (Incremental Theory)
D = o, - 0, (Incremental Theory)
E i “OI“Oy 1 4
p 2Y/\/3_ { P
E = E/(1 - v?) | '
4 = Change in Direction of Shear Stress Trajectory %
| Fplep gy
L - (Y/p)A/pTa { &
£ &




INTRODUCTION

Design and material selection against complete brittle failure is based on toughness or transition
temperature apart from redundancy of load supporting elements and crack stoppers. Through experi-
mentally determined Kj. values many designers now hope to eliminate failure by the association of
failure loads with flaw sizes. However, metallurgical and mechanical engineers have for many years
eliminated catastrophic failure by using materials whose transition temperature was below the operating
temperature, having observed that with such materials there is no catastrophic fragmentation or abrupt
crack growth even though deep cracks were present. Strong materials of this type are classed as tough.

This paper is written to show how a transition temperature and toughness may be calculated
assuming that a macroscopic fracture theory (the bounding envelope of stress-strain curves), and the
elastic formulae for stresses or for strains near a notch tip with a small radius, are as applicable as they
are for Kj. use.

For our calculation the macroscopic theory must not only contain a dependence on temperature
or strain-rate as stress-strain curves do, but must contain a higher fracture stress for ductile than for
brittle, so-called nil-ductility, fracture.

In regard to the assumption of a crack tip radius, some assumption is necessary to our analysis
that permits quantitative comparison of subsurface and notch tip stress. A tip radius does this and
seems to be plausible and the simplest. Work hardening, at least as treated here, does not seem to
be sufficitent in itself. However, in retrospect, it may be noted that in place of the assumption of a
tip radius, there could be substituted the assumption that the stresses at the tip are those of the macro-
scopic tensile stress-strain curve, increasing under load as they would if there were a radius, so that the
tip radius presently contained in a parameter of the theory may or may not be considered to be an
actual radius. The tip radius does not appear in the final expression for transition temperature.

With respect to our assumption of applicability of the elastic stress or strain formulae to our case
of small-scale yielding, we consider notch behavior for two widely different cases which should together
embrace actuality. One is that the strains in the yielded region are essentially the same as the elastic
strains, since they are contained within a relatively vast elastic region. The other is that the stresses
are the same as the elastic stresses. Thus, the strains may be large at the tip of the notch, correspond-
ing to these stresses and the shape of the stress-strain curve.

The first case, confined strain, i.e., strains from elastic theory, has already been utilized! to give
fracture stresses and tip radii from experimental K|, tests (made, as necessary, under K;. conditions).
In this case use is made of a theoretical curve which, as we show here, may be interpreted to be an
expression showing the relationship between ductility or ductile fracture stress, nil-ductility fracture
stress, and yield strength at the transition. This treatment of our problem is contained in Part III of
this paper. It could be used along the lines of this paper (if as is here done, the fracture stress condi-
tion and tip radii were assumed known) to compute toughness as well as transition temperature.

The second approach, stresses from elastic theory, is not only interesting for comparison with
the confined strain case, but because there is indication2? that for certain types of stress-strain curves
the dominant term in the actual, very complicated stress function for cracks is the ordinary Airy stress
function. That is, as approach to the crack tip is considered, the Airy function is quantitatively
dominant. This is evidently the case also for very narrow deep notches and, of course, the elastic
solution always does hold for large distances from the crack tip.

1. BEEUWKES, R. Jr. Characteristics of Crack Failure, Surface and Interfaces, v. II, 1968, p. 277.
2. HUTCHINSON, J. W. Singular Behavior at the End of a Tensile Crack in a Hardening Material, J. Mech, Phys. Solids, v. 16, 1968,

p. 13-31.
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This approach is utilized in Parts I and II. In Part I, boundary movement is assumed to be neg-
ligible (as in usual elasticity treatments) and the formulae and analyses are simple and casy to follow.
Thus, this case has been treated rather fully.

In Part 11, boundary change produced by loading is included in the analysis. It is shown that
this change may substantially modify the results of Part I in the case of rather flat hardening slope
stress-strain curves associated with high yield strength.

Quantitatively the two approaches do not necessarily lead to substantially different results. In
each case in the transition relationship the stress (or strain) at the notch tip is the tensile fracture
stress (or ductility), and the stress at or near the elastic-plastic boundary is the nil-ductility fracture
stress, while for many stress-strain curves the only other variable having an appreciable effect appears
to be the yield strength. If the yield regions and the shear stress trajectories in the yield region are
essentially like the elastic ones, then the nil-ductility fracture stress should also be comparable in the
two cases.

The transition spoken of here corresponds to a change in fracture location as temperature (or
yield strength) is altered. Thus, as testing temperature is lowered, separation of material may change
from occurrence at the crack (considered as a notch) tip to a subsurface separation. The latter may
be expected to be less sensitive to load maintenance or rate of application than the former for it
corresponds to a jumping ahead of the fracture and may thus correspond to an almost immediate
cataclysmic failure.

We emphasize that the transition treated is for small-scale yielding as it occurs in Ky testing.
The equations used do not hold if the material yields extensively, even if through-the-section yielding
does not occur. Thus, they do not hold if the difference in the loading stress perpendicular to and
along the crack axis is close to the yield strength of the material employed.

However, although the appropriate application of our result may be characterized by the condi-
tions of Ky, testing, it is desirable to point out and briefly discuss other transitions than the one
treated here, especially since some (e.g., those associated with the Charpy or keyhole test) have been
used for applications where the failure behavior seems quite different from that associated with the
test (e.g., Charpy or Keyhole) itself. Our small-scale yielding transition, as well as the transition from
temperature-insensitive to temperature-sensitive values of K, may be far less severe for some K. type
specimens than the transition observed with Charpy specimens, i.e., the transition temperature may be
much lower for the Ky, specimens than for the Charpy specimens.

In particular, we may plausibly define a partial-to-through-yielding transition, for it is evident that
separation with through-section yielding may progress with great energy absorption as in bending a
Charpy specimen into two pieces at sufficiently high temperature, while it is difficult to see how such
energy absorption could occur if yielding were only partial.

It appears* from experimental observation (in the useful Charpy test range of conditions) that the
breakdown in Charpy energy absorption occurs in the fully plastic range. That is, much bending with
wide notch opening and deepening with a fibrous fracture appearance occurs down to a certain depth
upon which sudden deepening without bending occurs, usually without fibrous fracture appearance, and
then a reversion takes place to much bending with notch opening until complete separation is reachsd.
The transition point is the initial occurrence of this deepening without concurrent appreciable additional

*In studies of Charpy behavior above and below the transition temperature, the writer has sectioned Charpy bars perpendicularly to the

notch after various amounts of permanent bending and observed the notch behavior in the text. A good reference is “Notched Bar

{;n act Te;;i_rllg';;adiscumon arranged by the Manchester Association of Engineers, reprinted in the Transactions of the Association,
olume 1937-1 N
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bending. It coincides with incipient falling off in energy absorption as temperature is lowered. The
deepening without appreciable bending increases as temperature is lowered. The energy absorption is
relatively small when the section is no longer in the completely yielded state.

Specification of an upper limit to the Charpy transition temperature, depending on yield strength,
has been extensively used to avoid brittle failure in, for example, gun barrels where, without this
specification, failure occurs with so little evidence of ductility that fragments of the barrel may often
be fitted together into the original shape. No regard seems to be paid to the fact that at this limit
there is energy absorption with much bending preceding the fracture, but fracture appearance is noted
and emphasized even to the extent that the first disappearance, as test temperature is lowered, of
complete fibrosity is sometimes taken to be the point of transition. Very frequently, the energy tran-
sition can be seen to occur at the same point. The apparent discrepancy in ductility between the barrel
failure and the Charpy test failure may be more important than real, however, since the transition (with
sudden deepening and concomitant energy drop) referred to above occurs approximately at the center
of the section where the straining is presumably small. Indced, for some materials and applications, the
transition temperature is taken to be the temperature where the energy absorption is some fraction
(usually one half) of that where the energy absorption first falls off (and the sudden deepening begins)

as test temperature is lowered. This, of course, may possibly approximate the result of the present
analysis.

The procedure for treating this Charpy-type transition does not differ basically from that explored
here for Kj test conditions of small-scale yielding. The same stress-strain curve fracture model may
be used but, of course, the stress formulae are more complicated than their limiting near the notch tip
form.

In Parts [, I[, and I, all stresses o must be replaced by o/(k/2) if the stress concentration co-
efficient k # 2 in the elastic formula for stress at the tip of the crack-like (i.e., a/p >>1) notch being

treated:
o=pk+alp.

The notation k is also given by the ratio of analytical expressions for K, i.e.,

k = K for notch being treated
2 K for central notch in a wide plate
The k and K expressions are for loading forces perpendicular to the crack axis, so-called Mode I.
PART I. TRANSITION TEMPERATURE AND ASSOCIATED PROPERTIES
SIMPLY BASED ON NOTCH ELASTIC STRESS
Normal and Shearing Stresses along Crack Axis

We assume the stresses are the same as those usually computed from elasticity theory for crack-
like notches, see Appendix A.

Let r/a = x/a= u?/2 be the coordinate along the crack axis, positive away from the crack opening,
into the material. The “a” is an important reference dimension, usually a crack depth or half crack
length, as in the case of a central crack in a wide plate, which we shall assume in what follows. The
tip is located at x/a = (p,/a)/2 where p = pg is the tip radius. Besides being a measure of distance,

u is also the parameter of parabolic coordinates, one of which may be assumed to be coincident with
the notch, and u =/p/a, where p is the tip radius of any of these parabolae. See Appendix A for
details.
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The loading stress p(=S;) acts perpendicularly to the crack axis. Since this notch is assumed to
be very narrow and deep relatively to the tip radius, i.e., to be “crack-like,”” and since we suppose the
difference between p and the loading stress (if any) along the crack axis to be much less than the
yield strength of the material, the latter loading stress does not appear in the expression for stresses
near the notch tip.

We assume plane strain such that the difference of principal normal stresses is 2YA/3 where Y is
the usual tensile yield strength of the material.

The maximum shearing stress, one half of the difference of the principal normal stresses, along the
crack axis is

2
u
S =-29. p

S u3
where Ugq is the effective value of \/p/a at the notch tip.

Thus, yielding occurs from u,, to u where

c Ugo?

YA3

i.e., to the yield limit

2 \1/3
u= (uoo p) = Uy.
YA/3

The normal stress acting perpendicularly to the crack axis (principal stress) is

- [(ﬂ)z : 1]_3.

Thus, S at the yield limit is

-3l ()]

u

P

T A D)
with

Lo EYUOQ=Y‘p =Y~p00
0 p a K

where K = py/a is a fracture mechanics parameter of toughness.

S at the notch tip, u = ug is simply

. e_-‘sﬂﬁw*‘
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. —




4
~

2
u00) ] p
S:
[(“00 e Yoo
2p,
Yoo

2p\ A
Poo
2K

Voo

Fracture and Transition Temperatures

1. Fracture in General

Frapture
Limit

Ductility Limit
o pfleg)

=H{T)

Isothermal
Stress-Strain Curves to a
Straight-Line Scale

e* = arc sinh 48e

We shall assume fracture or failure occurs in accordance with the accompanying stress-strain
fracture diagram,* as discussed below. The stress strain curves are those for constant temperature and
strain rate, the lower the temperature and the higher the strain rate, the higher the curve. The curves
are what may be expected for steel.

We presume failure may occur either at the notch tip, or below the notch tip at the yield border,
depending on the temperature and strain rate.

For subsurface failure at the yield boundary we have what we call “nil-ductility” fracture corre-
sponding to attainment of the nil-ductility fracture stress Fy, indicated on the diagram as the starting
point of the fracture limit curve. This fracture curve has a shape like that of the stress-strain curves
below it, but fracture occurs at the beginning of it for there we first reach a stress sufficient to cause
fracture (intermediate points on the curve may be reached, e.g., by prestraining at a higher tempera-
ture than corresponds to the fracture curve before loading at the fracture curve temperature).

*This diagram is a particular case of a representation of stress-strain-fracture material behavior that has been much used by what is now
known as AMMRC and has been the subject of much investigation by it and under service contracts to it, by Syracuse University. The
most extensive report, though it does not cover all work, is Deformation Characteristics of Face Centered Cubic and Hexagonal Metals
and Hexagonal Metals and Alloys, Project No. Al-7-R—6-04-AW-P3, Contract No. DA-31-124-AR0-D-112 put together cooperatively by
AMMRC and Syracuse University and issued by Syracuse University Office of Sponsored Programs, Dept. of Chem. Engr. and Matls.
Sci., Syracuse University, N.Y. 13210.
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Fy may also be reached by adding a hydrostatic tension (o a lower curve. This may occur sub-
surface of the notch. (In the tension test the hydrostatic tension is caused by necking. It may also
be caused by an artificial neck or a notch.)

However, in contrast, the material at the notch tip is strained in the same way as a flat tension
specimen with no possibility of attaining Fy except by lowering temperature or increasing strain rate.
In fact, for some materials the temperature cannot be lowered sufficiently to reach Fy,.

Thus, failure at the notch tip will be on the ductility limit unless the temperature is so low that
the notch material is on the fracture stress-strain curve.

Depending on the shape of the stress-strain curves and the position of the ductility limit, one
may anticipate that high temperature failure is at the notch tip and low temperature failure is subsurface.

Thus, we have:
S = Fy = constant, the nil-ductility fracture stress, for subsurface fracture

S= FD = variable, the ductile fracture stress which varies with the ductility strain and hence
with temperature and strain rate.

Fn=F = Fp Critical, when Fy = 2Y/\/§_ on the stress-strain curve, though at initial yielding
D DC D Y A /
subsurface Fy may be reached when, because of hydrostatic tension, Fy > 2Y/\/§.

If R.A. is the reduction of area in a plane strain tension test, the ductility strain ey, is given by
ep = In (T-TIIX)
provided there is no necking which leads to premature failure through addition of a hydrostatic tension.
A stress-strain curve whose limit is the fracture curve when Y = Fy is
S =Y + 8§ arc sinh 48¢

or for plain strain

2
S= VT[Y + SO arc sinh 48e]

(For most steels SO = |5 ksi, but for some may be 20 or even 30.)

Y=Ye+C/T }
using the equation of the envelope of the straight line segments of the actual Y versus T curve. Yo, _
especially, depends on tempering temperature (author’s formula). !

Hence, .’

FD = :/23.— Y + So arc sinh 48cD]

and we assume that in the region of interest that the ductility limit is given by
FDeD = FDOCDO = constant

where Fpyy and e are any known corresponding values obtained experimentally.

—




2. Notch Formulae

At the notch tip

e
b VPoo
" or

_S+vego
i 2

which at the ductility limit S = Fp is

Fp vPoo
2

Subsurface at incipient yielding

ek {1 [}

or

Sy 3/2
K= (Y vV e — |
( /\/3. We 00 [Y/\/g ]
3. Transition Yield Strength and Temperature

Fracture occurs at the notch tip if S = Fp and subsurface if S = Sy, = Fy,. Although the stress
at the notch tip is greater than the subsurface stress and thus S, > Sy always, Fp > Fy so
that fracture may not occur first at the tip. If tests at different tempelpatures are considered, starting
at a suitably high temperature, transition will occur from failure at the notch tip to failure subsurface
at the transition temperature. Since K = py/a represents the load; whether we consider the stress at
one place or the other, the transition is given through

K:M:I@[ e 1]3/2
2 V3 | YA3

ie., independent of pgo

) 2Y/\/' [Y/\/%' '] &

or

Y 11 +[_FD_] 2/3)

RV i E77v ) I

Here, since




Thus, with Fpygep known in
Foep = Fpotpo
and Cand Yy known in
’ EA v
0
we may find the mutual transition connection of Fy, FD, Y, and T.

Thus, assuming Fp, we compute Y from
3 48 Fpoepo
= L o arc < o e S R S
Y - Fp __50 arc sinh T
s D
then, using this Y, Fy from

YO JF U T Laeeiing |
and then T from
C

T= .
¥,

From tables or curves showing these variables, we may select one of interest, for example, T=Tr,
the transition temperature corresponding to a known Fy.

Note that raising Y or C raises Ty independently of the other variables. (Y, decreases as temper-
ing temperature increases.)

We now consider a few examples of the use of these formulae and the results to be expected,
see Tables 1 to 3.
Toughness

It would seem from the foregoing that the toughness K could be computed from

_ FpvPoo. : *"
2 i

o i

i above the transition temperature and from
K = (YA/3)0/Pg0) [FY/(Y/\/?)- IP/2
below the transition temperature and from either formula at the transition temperature.

However, the values obtained from these formulae are suspect in terms of our estimates for steel.
Consider the transition value. Then if

VPoo ~1/30
Fpy ~ 420 to 600 ksi

A o2 PR W
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Table 1. TRANSITION YIELD STRENGTH AND TEMPERATURE
VERSUS FRACTURE STRENGTHS FOR NOMINAL WORK
HARDENING AND HIGHDUCTILITY (TEMPERING
TEMPERATURE “1/Y).

Work Hard: Sg = 15 ksi; Ductility Limit: Epqenq = (160)(3/4) = 120 ksi;

Activation: C = 10* °K ksi; Hard Level: H 2Y,.

Yo (ksi)  Fp Y Fy T (°K) T (°F)

200 320 223.36 . 277.86 427.94 310.89
232.48 288.25 307.84 94.71
340 24159 - - 298.63 240.43 -26.62
350 250.69 309.00 197.29 -104.27

Note the linear and almost equal variation of Y and F, correspondmg
to the linear variation of FD as well as the large variation in T.

150 270 177.52 225.65 363.41 194.74
186.72 236.12 272.31 30.76
195.91 246.59 217.83 -67.31
205.08 257.03 181.57 -132.58

277.90 340.03 368.45 185.80
286.94 350.35 270.66 27.78
295.99 360.67 217.46 -67.98

g

250

5 888 888

Note: °F = (1.8) (°K) - 459.4
FD and F may be found by linear interpolation of the above
forany T (eg T = 320F) with Y fromY = Vo +C/T.

Table 3. TRANSITION YIELD STRENGTH AND TENMPERATURE
VERSUS FRACTURE STRENGTHS FOR NOMINAL WORK
HARDENING AND LOW DUCTILITY (TEMPERING
TEMPERATURE v 1/Y,)

So = 15 ksi; Epoepo = 60 ksi; C = 1040K ksi

Yo (ksi) Fo Y Fy T (°K) T (°F)

200 310 224.59 275.72 406.63 272.53
320 233.73 286.11 296.50 74.31
330 24285 296.49 233.40 -39.28
340 261.95 306.86 192.49 -112.91
150 260 178.67 22351 348.85 168.52
270 187.89 233.99 263.92 15.66
280 197.09 244.44 212.35 -77.18
290 206.28 254.89 177.69 -138.55
250 370 279.19 337.89 342.58 167.26
380 288.25 348.21 261.46 11.23
300 207.29 358.62 211.46 -78.80
400 306.33 368.83 177.63 -139.85

Table 2. TRANSITION YIELD STRENGTH AND TEMPERATURE
VERSUS FRACTURE STRENGTHS FOR ZERO AND HIGH WORK
HARDENING (TEMPERING TEMPERATURE v\ 1/Y,)

Sg = 0; C = 10* °K ksi

Fo Y Fy TK) T(°F)
Yoks) Fp W3R,  Fp  10%/(6/372Fp-Y,] 1.8(T°K)- 450.4
20 260 22517 260 397.35 256.84
270 23383 270 295.62 7272
280 24249 280 235.37 -35.74
200 25115 290 195.51 -107.47

Note: For S; = 0, and T°K = 273, T°F = 32, 104/273 + Yp=3663+Y,=Y
and Fp, = (2A/3)Y.
Hence if Vo = 250 Y= ms:i if Yo 200, Y = 236.63; if Yo =150, Y = 186.63.

T200 380 22671 298.70 37444 214.58
390 236.14 309.41 276.67 38.60
400 24556 320.10 21948 -64.34
410 254.96 330.77 181.94 -131.90
150 330 179.18 244.67 342.69 157.43
340 188.74  255.55 258.16 5.29
350 198.26 266.37 207.19 -86.45
360 207.77 173.11 -147.81
250 430 273.71 352.06 421.81 299.86
440 283.06 362.67 302.52 85.14
450 29239 373.26 235.92 -34.7%
460 301.71 38384 193.40 -111.27

Table 4. TABLE OF ug/ugg =v/p/pgg AT THE TRANSITION
v [F
- 3Y MY ((D
vo = vgg er0 7 ¥ °"°[—z (v 3 ‘)]
where V = 2Y_
ie.,

s s MY (F -']
Poo I,%"‘p[ﬂf(_€ 1)
v-

Fo/Y ~ 50ksi 100 150 200 260 300

15 1.133 1.284 145656 1649 _ 1.868] 2.117
2 1284 1649 [2117 2718 3490 448 Epo = 150 ksi
25 1455 [2.117 3080 4482 6521 9488 M =102
3 1649 | 2718 4482 7389 12182 20.088
15 1084 1133 1206 1.284 1367 1455
2 1133 1284 1455 1649 1868 [ ZTI7~ E,,,= 300 ksi
25 1.206 1456  1.755 ; 2 3.080 M = 1/2x10°2
3 1284 1849 - 2718 3490 4.481
1.5 1.043 1087 1133 1181 1232 1.284
2 1087 1.181 1.284 1396 1517 _1.649 E“,, = 450 ksi
25 1133 1.284 1455 1649 1.868 [ 2117 = 1/3x102
3 1181 1306 1649 1948 : 2.718
16 1032 1064 1098 1133 1.169 1.206
2 1064 1133 1206 1284 1367 1.466 " = 600 ksi
25 1098 1206 1325 1455 1608  1.766 =1/4x10-2
3 1133 1.284 1455 1649 1.868 [ ZI117
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we have

K = 420/60 to 600/60 ksiy/1in.
=7t 10

where we might expect K ~ 70 ksiy/in. (We are not questioning the use of the above formulae for
transition calculations by the above consideration, because the exact formulae have a mutual
dependency which may make them insensitive to alterations in form as the notch is loaded.)

Thus, we consider the use of a formula for stress, which is based on incremental considerations.
That is, the stress is the sum of stress increments based on the instantaneous notch geometry corre-
sponding to the load as it is built up. At the notch tip it is approximately, assuming yielding at the
tip has occurred,

4E A
§ = —LIn((ug/ugg) + 2YA3

4E (3/2Xp/Ey) - u «/3Y)/(2E)) - 1]
= —“In : 0300[ : +2YA3

4E ;
=—L1n § (3/2) [P/(E, ugg)] — &/3 Y)(2E) + 1} + 2YA/3

where ug, is the value of u at the notch tip when the loading is p, as shown by the second and third
formulae. Then uy = uy when p = 0. E, is the modulus of the stress-strain curve beyond the yield
point; we assume here that it is suitably represented by the secant modulus drawn from the yield
point. Thus since

S =\/%. [Y +Sq-arc sinh 48¢)
and we are concerned with the modulus to Fpy, ep>

_Fp-2YN3 2 foe
Et = ————eD = 73' ep arc sinh 48eD

or

= 48 (F - 2YA/3) /sinh  [(Fp - 2YA/3)/2SoA/3)]-

Now let us .examine our formula for S, where S = Fp

4E
Fp =—3 In {(3/2)[ p/(Euge)] - &/3 Y)(2E) + 1} + 2YA/3 -
If p is small so that the {} term is ~1,

4E
Fo~—3 16/ [pIBugg)] - &/F DI} +2YA/3 = 2pfugg

our usual formula for stress at the base of the notch, and our former expression from which we found
K, since ugy =+/Pg/a and K =py/a.

Substituting K = p/Z, our formula for F becomes

4E
t*z K ﬁExﬂigv_

3

FD =—3_ln

2 Eg/Pgo R




ey,

v —

so that
2Y
K : S 2E, Fp -3 ]
= ex - .
Jing  oT Bl 4B B
L We may also express this formula for K/\/_ 0 1n terms of 8y, Fp, and Y alone or S, ep, and
Y alone by insertion of our secant formulae for g
E .2 52)- Fp - 2YA/3 sinh [(FD - 2YA/3)/(2Sy/E,)]
e =S b = lexp : =
ZSM
and
> L + 4 Solep inh 48 % = 1;
S e arc sin en Yexp— —1 (-
Ve V3 3 V3 e 4
In the last expression, note the heavy dependence of K on Y and S,.
Thus, if
Y = 200 ksi
Fy — 2YA/3 = 100 ksi
So =15 ksi

\/T_l:; = 361.026
by the first of these two formulae, so that if \/Foo =1/30, K = 12.034.
Suppose,
1 : ep =In 203
Y = 200 ksi f
Sp = 15 ksi.

Then,
- 300.475 ' | ‘
vPhoo | :

by the second of these two expressxons so that if \/p b 1/30, K = 10.016. Ife
KA/pgg = 552.606 and if/pgg = 1/30, K = 18.420 sl\/h—l If S, were 45, KA/po = 1426 878 and
with \/pgq again equal to 1/30, K 47.563. In this K = 142.688.

Note on Tip Radius

In the above treatment uj, was closely expressed by

w3 \/’3'Y+l

e IR~




where uy =+/pgla, ugg =v/Pgo/a. Since K = p\/a this may be written
vog . 3 [ K Y]
Voo 2B |VPoo V3]

which on substituting our expression for E, becomes

Vg W[ °D/SOW[ o Y]ﬂ
a VPoo :

+ 1

VPoo 4 rc sinh 48ep | |VPgo V3
Examples:
Let ep = 3, SO =15 ksi, Y = 200 ksi.
Then
N K
VP - 0045878 [——— = 11547 +1. ;
VPoo VPoo |
If K =10 and \/pgq = 1/30,
VP = 0.3155.
If K =50 and ‘/pOO = 1/30,
Vpg = 2.1507.

IfK=10 and\/poo = ]/10,
case is impossible; notch has not yielded.

If K =50 and \/"00 =1/10,

VPg = 1.8642.

These figures indicate that the tip becomes quite blunt as failure is approached. If the blunted
region is very small, this may not be observed by crack opening displacement measurements. In partic-
ular, if we artificially flatten the tip of a narrow parabolic notch under load, the opening of the sides
near the tip would give no indication of the real tip configuration, although the measurements of such
opening might very well be used to compute a radius which may be effective for some analyses. Such,
for example, may be the determination of the significant portion, for strength considerations, of the
slip line structure.

In the absence of explicit experimental proof of the existence of radii such as we have computed,
one may choose to believe that the tip radius discussed here will be found to be connected to an actual
radius to be computed without making the simplification that the stresses are the same as those of linear
elasticity theory. In any case, the radius drops out in the determination of transition yield strength
and temperature. {

i

PART II. TRANSITION PROPERTIES CONFORMING TO A TWO-SEGMENT STRESS-STRAIN 3

: CURVE AND ASSOCIATED FINITE BOUNDARY DISPLACEMENTS

We assume the stresses are from usual elasticity theory for crack-like notches, but that the strains Z

are from a two-straight-line stress-strain relationship and that boundary movements and other deforma- §
tions may be large. : ‘ §




L T

vy R TR

Strains in Parabolic Coordinates
x/a = (u2- v2)/2 andy/a=uv

where u and v are the parabolic coordinates.

Ax/a) _ ayja) _
du ou

(x/a) _ a(y/a) _ =
v ov

h2=h2= @2 +v?)=h2

It is well to remember that on the v = 0 (crack) axis, that u = /2 xJa is not only a measure of
distance to a parabola tip, but u =/p/a also, where p is the tip radi\_ls of the parabola. In particular,

ug = \/p07a where p, is the tip radius of the bounding parabola.
Let U and V be the displacements in the u and v directions.

<) aU+aV) 1 (Uah +Vah)
h\dv du h2 ov au/

Thus, on the crack axis where v=V =0,

=13V,
o :
Near Tip Elastic Stresses in Parabolic Coordinates
h? oip= = u%u + ud
h4ov/p = - u% u + u(u2 + 2v2)
h“anv/p = - u% v + vu?
where
h? =u2 +v2,




Thus, on the crack axis, v =0,

o= [1-a))e

a =
7.

& u p
O " [l+(_8) ]'u_
Oyy =0

and
_2p
o, to, =y
2
=Y P
ov-ou—2(-uo) ue

Strain for Plane Strain with a Piecewise Linear Stress Strain Relation

(Ref: J. W. Hutchinson, Eq. 35, J. Mech. Phys. Solids, v. 16, 1968)

tan

eI

E and E“n are the moduli of the
straight-line segments of the
stress-strain curve.

0, = equivalent tensile stress, ag =3/2 Sijsij
Sij = 0jj - (1/3) oy 5ij
A =(3/2) (E[E,, - D if o5/Y > 1
A=0ifgy/Y<
a=(l-Ya,).

. The stress-strain curve is (Hutchinson)

Eey; = (1 +v)oj; = v 0,85 + X (1 - Y/o,) §;;

N s T e
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thus for plane strain

011 +"22“"'33)

Eeyy = (19)oy) -» (o) +0p tazy)t 7‘“("11 5 3

0, t0,9 t o
A = 11 22 33
ELZZ_(I +V)022-V(011 +022+033)+Aa (022- 3 )

01y t 09y + 0O
0= Ee33 = (1 +V)033 "V(Oll + 022+ 033)-}-)(1 (033 - d) 322 33)

From the expression for ¢33 we have,

ousw X RE3
33 " T+2a/3

=Bloy) +032)

(01 +037)

where

v +2Aa/3 ; B =
el Note: If v =1/2,8=1/2.

Thus introducing* this expression for 035 into the expressions for ¢, and e),, we have,

B

Ee,; = (1 - 621 + 27\a/3)[o” - _3022]

Ee,y, = (1 - B2)(1 + 2)a/3) [022 -E50 1].

*For example.

it ) St (e *"33)’“—2%‘—@ o1 '%9(022 * 993)

=01y 1+ 200/3) - 0 +A2) (0, + 033)

=0ll (] +2)\a/3)-ﬂ(l +2Ka/3)[022+(a” +022)‘3]
= (1 +2:a/3) [o; (1 = %) - B (1 +B) 05, ]
=(| _ﬁZ)(l +27\a/3)[a“ -—]—-&B 022]

Ao
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Also, for plane strain,*
02 = (1-B+62)(0yy - 0y)% + (1 - 4B +48%) 05y 0}y + 307,
Thus, for plane strain, if v = 1/2
B=v=1/2
062 = (3/4) (055 -0 1y)* + 30,2
[and o, = (\/3-/2) (099 - 0yy) where 0, = 0]

4E

"3 = (0, - 05y) (1 + 20a/3)
4562 '

—3—2'= (022 - all) (l + 2)\0,/3)

where

a=1-Yo,.

If v = 0.28 and X\ = 100, which we assume to be reasonable values,

_ 0.28 + 100 a/3
B = + a

sothatifa=1-Y/o,=1-1/2=1/2,
B = 0.494

and ifa =1-09=0.1,
B=0471.

Thus, for A # 0, it is especially interesting to make the simplification g = 1/2 which makes
v=8=1/2.

Strain and Axial Displacement U in Parabolic Coordinates on v = 0 Axis, for v =8 = 1/2 for a
Piecewise Linear Stress-Strain Relation

Setting )| = e, and 0y} = 0, 0yy = 0y,

4Ee,
=3 =(oy-0y) (1 + 2ra/3

*For example,

0.2 = (3/2) Sij: S; is also given for plane strain by
2062 = (01 - 033)2 + (01 = 033)2 + (0 - 033)2 + 602
=01y - 039)% * [0y, = B(oy) + 012 + [0 - B(oyy +03)12 + 052
=(Q2-28+262) (02 + 0132) - 48 (1 - )0y 03 - 2010y + 6072

o 2(1 -B + 32) (0“(- 022)2 + 4(1 -6 + 62)0”022 - 46(' -6)011022 '2011022 +60122

=2} =8 +82) (o)) - 0902 + (1 - 48 + 462) 0,095 + 60,2}
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witha=1 - Y/ae
Y

(m (ov S ou) :

=] -

Thus,
_y =% AY
Sl S

with M = (3/2 + M)/E.
We recall that

gkt up\ p
oy - 0y 2(—u)u

Thus, since (with p constant)

1 du

e
U ugy

U= fe,udu =/[—(UT°-2

uy2 AY u?
=+—9—Mp+—— — + Const.
u

J3E 2

AY 4
u u
V3E

Hence, if A =0

3 uQZ p
= — ———
¥ 2 . w B

At the yield point at u = ug, p = py

Hence U at u = ug, p = py is

N M
UY 20-5-205'

IfA#0

2 2
u Y
U=LMp+A—- -u—+Const
u p

J3E

4

Defined

M

Yu

; 0 .
where the constant is determined by equating this expression at u = ug, p = py == to U at yield
at u = ug of the A = 0 case, i.e., V3 !

Y Yug\ v ug?
"/73“02'53“0”(\/3') ——+Const

V3E 2
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Therefore, if A = 0, '
2 A 1
u X
U=%Mp+2\/3—_5 (u2 -3u02) P = py.

However, determination of the constant was unnecessary to the case where we are concerned only
with a change in U caused by a change in p.

In fact, this expression is not the same as an expression for U that takes account of the change
in u as loading proceeds.

INCREMENTAL THEORY
Relation between Instantaneous and Initial Values of u forv=0

Let x = uO/u and U refer to the previously derived equation for U based on stationary u.

Then,
Uatp+dp-Uatp
du = h
= x2M dp
since h = u forv=0and M = (3/2 + A)/E.
Thus, : ‘ :
dUO =M dp
and
dx = d(ug/u) = (u dug - ugdu)/u?
= (d du)
- - x du
Uy Ug = X 4
d A
=x(1- x3) Mu—:;— ’
=x(l - x:’)ijuuoL
ie., ‘
du = x2M dp )
dug = M dp J‘
dx = [x(1 - x3)M dpl/ug. dx versus dp/uo ‘
\

By elimination of dp from du and duy it is readily seen that
wl - u03 = Const.
Thus, if
u; - initial value of u

and




Ugo = initial value of u 1
we see that 1
ul - "i3 = u03 - u003 u versus u;
independent of the value of A. {
Ug versus p: 1
Since
dug = M dp, J
ug = Mp + Const.
IfA =0
Ug ~ Ugo =(3/2) (p/E) i
since ugq is the initial value of uy and M is (3/2)/E when A = 0.
At yield
gy - Ugo = (3/2) (py/E) 1
IfA=0
ug = Mp + Const. 4
Uy = M py + Const.
i.e.,
ug - Yoy = M(p - py).
Stresses
In our previous nonincremental theory, we replace p by dp and the stresses by differential stresses | 1

so that we have only an incremental stress, corresponding to an incremental pressure, when the co-
ordinates have the instantaneous values u, including u = ug, or Xx, i.e.,

do,, = x (1 - x2) (dp/ug)

do, =x (1 +x?) (dp/up)

ouv = 0 ‘

dS =d (o + 0y,) = 2x (dp/ug)

dD =d (o, - o) = 2x> (dp/ug).
We recall that,

du =xZMdp |

dug =Mdp

and

e




dx =
x(—l_:-)_(T)- M (dp/uo)

and note that there is a one to one relationship between p and u at any specified location, in particular
between p and ug, the coordinate of the notch tip.

For D we have, from
du=x2 Mdp
and
dD = 2x3 (dp/ug) = 2x2 (dp/u),
dD = (2/M) (du/u)
D = (2/M) 1n u + Const.
Thus, for A = 0, since D = 0 when u = y;
D = (4E/3) In (u/uy)

where u3 = u03 + “13 - uyn> in terms of the initial coordinate of the place where D is desired and the
notch tip coordinate u, which represents the load, i.e.,

ug — Yoo = (3/2) (p/E).
At the yield point, at the base of the notch, whether or not A = 0, we have u = uy = ugy so that
i _4b . oy

D=S=—=
3 3 uOO
1€l
% V3Y
uOY = uOo exp (—2— E
Y
and,
Py - 200 (o (VEY)
E 3 2 E
IfA#0
- 2 u 2Y
D=’Hln'56; +7—_3_
e 15 u® +ug® -ugo’ | oy
- 3M "
oY
and
P = py + (1/M) (ug - ugy)-
H
‘ L.‘ g " '?:m“.hr.An.f. Y

\
— el

. g——

‘_.
i

A

e

e
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We note that if u = ug and A#0
= 2 Yo 2Y

D=S=3In o
MTugy " /3
For S we have,
i dp
dS = 2x —
xuo
_2x _dx
=M x (1-x3)
2 dx
"M I'-x3
Thus
g2l bed g e TN
—— e =—=fq y
Mle " (-x3 V3 T e
2‘]] u3_u03 1 IZUO/U"'I'
I, e + o ey« o ISP
M') nm \/3_ tan \/3. + Const.

For A = 0, S is zero when Ug = Ugg» U = uj. Hence,

i.

3 3
s 4E ‘ ] (u3" UO ) (ui'uOo) l _l 2u /u+] l _l 2u IU' + 1 '
S=3,"1n +—= tan ] 0 —— _ ' tan’! 2000
3 (6 (U-UO)T (ui3-u003) \/3- \/3‘ \/3- \/?
2 4_35.;1 peECN00 o L gt ST b e dgiup )
2 u—uo \/3 \/3- \/§ \/3-

since, again u- - u03 = ui3 - Ugo~-
Since

5‘U00=53‘U003 - U2+UUO+Uo2
u- UO u3 % UO‘37

7
u;® + ujugg + ugg2

Emay also be written

2 2
§=4TE L; TR, S, WSO RIS s G S R LR
< 2 2
which expression has the advantage that it may be more readily interpreted as Uj —~ugg, U —Up.

If Ui - uOo, u=s uO

5 e ug = (4E/3){In (ug/ugg)}
Ui = Ugo
in agreement with our former result for D.




For A # 0, we note that S may also be written as follows.

= 3 _ .32 +uy2 1 2ug/u + 1

]
=ﬁ2 {é_ln (u2 tuug + uoz) -=1In (u3 - u03) "'\/]3 tan —21033-—£+ Const.
=%=%ln(u2+uu +u2)-.l_ln(u

_1__ -1 2u /u+l'
i ’“00 -9-\/.3 tan ——%——’+Const

2YA/3 = M) {(1/2) In Bugy?) = (1/3) In (u? - ugo?) + (1A/3) tan *4\/3 }+ Const
from which we have the expression for the constant.
Thus,

When u = uy = ugy, S = 2YA/3. Therefore

o 2 +uugy +u,2 2ug/u + 1
=2 )l 1 070 ¢l 00 L gl a2
M T " 52 Vel T i il W

We note that if u= uq this expression becomes
S=(2/M)In (uoluoy) +2YA/3

as obtained in the analysis for D. lt also satisfies the differential equation from which it was derived
if account is taken that d(u3 - uy3) =

Since fi
2upfu + 1
= 0 =1 =1 [ -1 2u /u + 1 -1 ]
tan”' ————— - tan™" /3 = tan~! tan | tan’! =0 _— ¢an
2uQ/u +1 il

= tan"}

= tan T u+
1 ( “\//3 V3

= tan’! e Nt
73' ug +u

7

?may also be written (A # 0)

In u u ug +ugy - tan'l u)

2)1 5,,
M)2 3“0Y2 W uo+u}




-~

we have

=S +D)2
= (S -D)/2.
Thus, for A = 0
2 2 ¢
_ 4E) 1 u +uug +ug L, 2uglutl o 2uggfu; + | R
2a,=3=In : + — tan — tan —7§—+_ln_
i 3 %2 |.4|l2 + U.i UOO + UO02 \/3- \/-3- \/3- ‘ 3 ui
i.e.,
0. = 2E ‘ l |nr u2 (U2 + UUO + u02) J+ ] [tan-l 2?7{?2_4-_'-[3"-] .N_O()M]x
WE - S ik
# l & lu12 (u% +uj ugqg + ugg? Ve 4l
_2E)1 ui2 (u2 +uyg + uoz)] 1 -1 2u0/u + l_ ] 2u fu: + 1
o, === —In + b tanl 0 gl 20071
3 2 u (ulz + UinO + uOozﬂ ﬁ ﬁ
AF0
2 2
H —]-l u+uu0+u0 +_L (UQ-U) 4 2Y _2__]_] u? +_21.
20"M2n 3 ugy 2 (ug +u M "u_z\/?
(1) 4 0 oY
e 1 L u? (u2+uuo+u02) il tan! O-u) & 2.
VM )2 3ugy? V3 V3 (uy +u) e S
2 2
o =_I _l'_ln u +qu+uO] l tan-l Q-u)
U M|2 3u2 V3 V3 (ug +u)
Transition

By transmon we mean a change in failure location from notch tip surface to a position below the
surface. It is presumed that the subsurface failure is more brittle and cataclysmic.

In this analysis we use a maximum stress failure criterion where the stress necessary for failure
depends on the amount of plastic straining. The fracture stress at the surface is Fp, occurring with
ductility (subscript D) since the material at the tip is under simple (plane strain) tension, while the
subsurface fracture stress is Fy occurring with very little ductility (subscript Y signifying proximity to
initial yielding) since it takes place at or close to the elastic-plastic boundary under a combined-stress
condition involving considerable hydrostatic tension. Although the yield strength Y is on the same
stress-strain curve as Fpy, Fy is greater than Y at the transition so that the hydrostatic tension is
necessary to reach it. And while the stress distribution below the notch tip is such that the maximum
stress at any location there is always less than that at the tip, Fy is less than Fp so that both Fp,
and Fy may be reached simultancously. This is the condition for the transition. It is a relationship
between Fpy, Fy and Y. The temperature dependence of the transition is dependent on that of Fp
and Y, especially the latter.
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We consider the case in which X # 0 because we are interested in the maximum stress o, at the
elastic-plastic boundary.

Since ‘
= ST u 2Y
D = M ln qu +ﬁ ’
we have

= = fi ﬁ:zy
T

the elastic-plastic boundary.

0, =L -l-'lnl’u2 (u2 e uoz)-]+_]_ tan'l._._L__ u)“ 2Y
VoMY L 3ugy? ] V3 \/3(“0““)

Thus at u/ugy =1,

( ug )
u u
. oy *\ov tan

whereas at the base of the notch, u = ug,

u/uoy = l

4
v = 1)L a0} ol 4 2Y
base of notch M{Z n(uoy) V3

0+2Y

ZIN

Thus the transition takes place when 0 at U/UOY =1 lS FY and Oy at the base of the notch is
F i.e.
D> *»

11 1+ R+R2 1 ol
FY Mlzln 3 +\/§tan ﬁ(R"’l)} %
FD=-%IHR+2Y

R = exp[% (FD -%)] M=32¥h

Fy for transition is readily found from known Fp, and Y by solving for R and substituting this value
into the expression for Fy .

s i 2




Note that the crack tip radius does not appear in this expression for transition. The introduction
of fracture stress Fpy absorbs the radius. To some extent one may regard the tip radius as a mathe-.
matical parameter computed from Fpy, loading stress, and crack depth, rather than an actual or effec-
tive or average tip radius.

Transition: Approximation

Here we compare the above formula with the simple formula for transition which does not take
into account the change in boundary associated with loading. We do this by showing that each reduces
to the same approximate form.

We consider the above formula under the assumption that the exponent of the expression for R
is small, i.e.,

~ M SO
R-12=2(Fn --4—=).
2(” )

(This might not be true for a very flat stress-strain curve, i.e., if A = (3/2) (E/E,, - 1) is very large.)

tan
Exactly,
Ll 1t + RoD ¢ + BE1? 4 1 gonl R-1_|,2Y
g 1 - 3 V3 Q+R-1) /3

which, if R-T1is small, becomes

FY_—L‘lln(l+R-l)+——tanl R-1

+

M |2 B el
=T k=1l. 2
T T
=31M-(R-1;+%

i.e.,

Fy = -%-(FD -%)+%

i.e., Fy is equal to the yield strength in plane strain plus one third of the difference between Fp and
this yield strength.

Our simple theory, which did not include changes 'in the boundary under load, led to the formula

3/2
o-Frlan- )
We make our approximation to this by considering the case in which
(Fy - 2YA/3) oLl

YV3




That is, exactly,

3/2
. __zx[(FY-ZY/\/?)+2YA/§_1] /

LY YA/3
= l\i[] ¥ F_Y__zw_]yz
V3 YA/3

becomes, on the above approximation,

Fozl![n.i EL:M]

V3l 2 YA3
1.e., A
Fy e L{F, -2Y) +2Y_
¥ 3( D~ /%
as before.

Loading Stress and Toughness at the Transition

We recollect that (p19)
& .
=py +—(ug - U
P = Py M ( 0 oy)
i.e.,
_ Yoy
= + VY (R -1
PPyt ( )

where

R = ug/ugy = exp [% (Fp - 2Y/\/3')]

Yoy = Yoo €XP (Ag %—)
2

2 E

ugo = VPoo/a-

and the toughness K = pva is

et e e Mt s ol e

»
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exp (V3 ¥) - ex \/;l )
K =\/b‘@% l (n/g;)?/i) - p(M- L)[cxp[%—(r") : QY/\/T)]- l]

at the transition.

Approximately,

M
wn l— (Fp - 2YA/3) |~ 1
e Y «,xp[ D
NG Vi V3 M
or, if the second portion of the stress-strain curve is not too flat (i.e., M too large),
Va 2 A

at the transition.

We append Table 4 of \/p/pgq at the transition to convey an idea of how much p may differ from
Poo and of the value of the exponential term in the above formula. Although we believe that E,,, =
300 ksi is probably most representative for steel, it may be less and if this is the case, it may be seen
(according to this model) that the tip radius p under load at the transition may be far greater than its
no-load value. Likewise, in this case, according to the above formula, K will be significantly increased
over the value it would have if the second portion of the stress-strain curve were steeper.

PART I1l. TRANSITION PROPERTIES BASED ON NOTION OF
ELASTICALLY LIMITED STRAIN AND A SLIP LINE THEORY

We assume that the strains are from usual elasticity theory for crack-like notches on the argument
that even in the yielded region they are substantially contained within a fairly rigid elastic mass.

Contained Strain Theory and Comparison with the Contained Stress Theories

In a paper called ““Characteristics of Crack Failure”! Beeuwkes presented a curve which he used
to determine subsurface fracture stress and crack tip radius from experimental curves of G]c or K.
versus yield strength Y which, in turn, is a function of test temperature or tempering temperature.
The curve may also be considered to be the transition relationship between Fy, Fp, and Y, for a
change in fracture location from notch tip surface to subsurface, or vice versa, as % is changed, as
will be explained below. We take Y = 2YA/3, the plane strain yield strength.

The basis of the curve is the determination of the subsurface stress Fy, through the hydrostatic
addition of stress associated with the change in direction of the shear stress trajectory having the
greatest change in crossing the yielded region. The flow strength in the vicinity of this trajectory was
found to be very near the yield strength Y. A parabolically shaped tip was assumed so that the stress
increased with load, i.e., yielding; with no tip radius all trajectories are the same and consequently
there is no increase in stress with yielding. The subsurface hydrostatic stress at the yield boundary is
solely due to the change in direction of a trajectory and the yield strength, not with work hardening.

The abscissae of the curve are the angular changes in direction_corresponding to the different
degrees of yielding. In these Fy is connected by the relationship Y + Y < = Fy, i.e,, €<= Fy/Y - |
assuming the fracture prolongs the crack.*

*Fracture along a line perpendicular to the crack axis may occur under the stress Y < if the fracture stress across this direction is
sufficiently low.
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The ordinates are values of
Y. /p
L=X /P
p a
which may be written
[pvap/E]

_YE___YE
ep/2 K/(E\/p)

where E is the Young’s modulus for plane strain,
E=E/(1 -v?)
K = py/a = toughness
2p\/aJp = virtual stress at the notch tip, i.e., stress by elastic formula

(2p\/a/p)/E = ep = actual strain at the notch tip assuming contained strain.

Although this strain is computed elastically, it is valid beyond the yield point on the assumption
that the case is one of small-scale yielding largely surrounded by a fairly rigid though elastic region.
Thus ey = FD/Es is the ductility strain if fracture separation occurs at the tip. Here, E_s is the secant
modulus corresponding to a line drawn on the tensile stress-strain diagram of the material used, from
the origin to the fracture point where the actual stress is 0 = Fp.

Thus, also

L= ___ZY—_.
E/E )Fp

Hence, letting f stand for “function of]’ the curve may be written

L=f()
i.e.,
VE o YIE o 2BE. (Fy - ) '
LormoreDlzorF—D/v- f v 1

since Eg = Fp/ep by definition and E(/E = E,/E.

Thus, we have expressed the curve L versus < in terms of variables associated with our model of
transition which is that this point occurs at a yield strength with which ductile fracture at the tip
occurs simultaneously with essentially brittle subsurface fracture. That this L versus < curve is the
transition relationship follows from the assumption that the relationship of these variables is for prac-
ticable purposes unique. Simultaneous fracture means that at some yield strength the load p required
to reach Fp or ep is the same as that required to reach Fy. Thus, p and the cross-axis stress oy at
the yield boundary (on the crack axis) are uniquely related to each other for fixed Y, as are p/Y and
o,/Y. Likewise, p and the strain e at the notch tip are uniquely related to each other for a given
material with its stress-strain curve, as are p/Y and e/ey where ey = Y/E, the yield strain. Hence,
whatever the stress-strain curve, the condition that e/ey is reached at the same load as 0,/Y, is found
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by elimination of p/Y from the p/Y = f(ay/Y) and p/Y = f(e/ey) relations. The e is the epy corre-
sponding to o, = Fyy for the stress-strain curve with its specific value of Y. If Y is the only param-
eter specifying a set of stress-strain curves (i.c., one to each value of Y), ¢p and Fpy may be found
for each Y and the group of these form the transition relationship for the specific type of stress-strain
curve under consideration.

We now make the assumption for this application, that for practical purposes Y sufficiently
characterizes the usual engineering stress-strain curves, for we have seen that Fy is practically only
determined by Y from the standpoint of effect of materials properties, in our derivation of the L
versus < curve, and by hypothesis the notch tip reaches ep, Fpy. Both Fp and Fy are postulated
from prior knowledge of the material and are therefore reached at the transition. It appears, therefore,
that the effect of shape of the stress-strain curve would only be to affect the place where Fy occurs
and with this the amount of angular change of direction of the shear stress trajectories. This is unlikely
to be very significant since, again, they undergo their change in direction in a region where the flow
stress is practically equal to the yield strength Y.

In analyses of the Kj. versus Y curves of steel versus test temperature or tempering temperature
| + <« =J;¥ =2 to 2.50. In this range the L versus < curve may be approximated by
L=095[1—-0.56 <]
= 0.95 [1 - 0.56 (Fy/Y - 1)]
=0.532 [2.768 - Fy/Y]I.
From this, if Fy/Y =2, L = 0.418, and if Fy/Y = 2.5, L = 0.152.

Such analyses also indicate that (at the load corresponding to K|, measurement)

Ve ~V 1/30/in.
From the above, in general, in the range 2 € 1 + €< 2.5,
Y/E YE 2EE, [ F ]
= 0.532 [2.786 - .
L or Kl(m or eD/2 or FD/V +
We note especially that toughness

K=(E CD\/[—))/Z

so long as the failure is not subsurface, i.e., so long as we are “above” the transition.

Let us suppose that valid Ky, measurements really do correspond to the transition, and see how
well, if at all, values for L and K derived with the aid of the above expressions coincide with our
expectations from experience.
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)
Case A Case B 1
Let Fy/Y = 2, hence L = 0.418 Fy/Y = 2.5, hence L = 0.152
Assume \/p = 1/30 Assume \/p = 1/30
Reasonable expectations: Reasonable expectations:
Y = 280 ksi Y = 200 ksi
E = 28,000 ksi E = 28,000 ksi
ep = 0.20 ep < 0.40
K = 25 ksi/in. K = 50 ksi/in. :
L=YE-o010 L = 0.035
ep/2
K= (Eepyvp)/2=93 K=186
A comparison between the calculated and postulated values of L and K shows that had the
computations been made with values of epy one quarter as great as the expected tension test values ‘i

used, the values of L and K would have closely agreed with those postulated. However, agreement
would also be reached with retention of the values of ep, by using a notch stress concentration
factor four times as large as the one employed, i.c., 84/a/p instead of 24/a/p on the speculative basis
that the actual irregular notch front is four times as severe a stress concentrator as the smooth tip 1
assumed. By this argument the 2’s on the left side of the transition formulae above are replaced
by 8’s.

{
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APPENDIX A. Near Tip Stresses along a Crack-Like Notch Axis in Terms of Polar, Rectangular, and
Parabolic Coordinates for a Loading Stress Acting Perpendicularly to the Notch Axis.

The expression for the stresses in terms of polar coordinates (r, 0) is the same as that in rectan-
gular coordinates taking the crack axis to be 0 = 0.

The equivalent loading stress acting far from the notch and perpendicularly to it is S;. The
loading stress along the axis S;x does not appear in the expressions for near tip stresses for crack-like
notches (a/p>>1). k, is the stress concentration coefficient, i.e., S = k, Sl\/aZp at the notch tip
for such notches; k; = 2 for the elliptical crack in the center of a wide plate which-is loaded perpen-
dicularly to the crack axis.

In the following exbressions, the tip of the notch is at a distance p/2 from the origin of coordi-
nates, which is within the notch.

Polar and Rectangular Coordinates
25 _ pla + 1
ki S1 a2 (2r/a)ll2

2(59-S)= 9
k; S (2r/a)a372 :

Here p is the radius of the notch tip.

Parabolic Coordinates

In parabolic coordinates (u,v) where v =0 when 8 = 0 and r/a (=x/a) = u2/2 and the tip radius is
given by u = 4/p/a for any of the coordinate parabolae with their differing values of p, including that
of the notch itself

_%2 =play 1
k; S 3 u

u

2(Sy -8y)=2p/a
kl sl ul

where Sy acts perpendicularly to the crack axis and S, along the crack axis. In these expressions p
is the radius of the notch tip itself.

In the body of the report a notation for tip radius is taken over from the writer’s analyses
taking account of load-induced change in tip radius. Thus, the radius of the tip of the crack in the
unloaded condition is pgg with ugg =+/pgo/a and in the loaded condition pg with ug =+/pg/a.
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