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THE PREDICTION OF ATTRITION FROM MILITARY SERVICE

INTRODUCTION

Mazry situations arise where individuals must be classified into some category on
the basis of observed characteristics. This classification problem Is faced daily by
college administrators, bank loan officers, and company employment managers. Appli-
cants have to be classified as "successes" or "failures" on the basis of their observed
characteristics. Thus, college applicants might be classified as successes or failures
on the basis of factors such as SAT scores and high school ranking, loan applicants on the
basis of income or net worth, and job applicants on the basis of past training aLd experience.

Beginning with the seminal work of Fisher (reference 1), the classification problem
has been studied Intensively in the statistics literature. The approaches tO the classifica-
tion problem may be separated into two general classes, those based on a linear probabil-
ity model, and those based on some non-linear probability distribution such as the logietc
or normal. In either approach, an equation for the probability of being a "success" is fit
to oLberved data, and the fitted equation is used to predict the succeso chances of new
applicants. Then, a critical success chance, or qualifying score is picked. New applicants
whose predicted chances equal or exceed this ,ualifying score are cleasified as succ-esses,
while those whose predicted chances are lower are classified as failures. The optimal
score for distinguishing between successes and failures depends upon the expected cost of
misclassifying new applicants.

Despite extensive discussions of the relative efficiency of linear and non-linear models
in the theoretical literature on classification (e.g., references 2 and 3), we have not found
a detailed applied comparison of them. The purpose of this research contributlon is to
make such a comparison of these models when they are estimated with very large samples
and used to classify other large cohorts of people. 1

This work is an outgrowth of a study on attrition of first-term enlisted personnel from
the U. S. Navy. Witlh the advent of the all-volunteer force and higher pay scales for en-
listed personnel, attrition (personnel leaving the Navy before completion of their first en-
listment) is becoming more and more costly, and the Navy, as well as the other services,
Is under considerable pressure from Congress to reduce it. In the process of estimating
equations for attrition probabilities that could be used for screening applicants with high
chances of attrition, we had to answer the question of which empirical method gave the best
discriminalion between attrlttrs and non-attrlters.

INerlove and Press (reference 2) do provide an empirical application of these modelp,
but they were concarned primarily with estimating probabilities rather than classification.
Also, their work is Latsed on fairly anafl samples relative to the ones "tUized hen.
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Two linear probability models are compared with two non-linear probability models.
The two linear models are the individual linear and groupetd linear probability models,
respectively. The two non-linear models, which are based on the logistic distribution,
are the individual logit and the grouped logit models, respectively. The individual linear,
grouped linear, and grouped logit models are all estimated by ordinary least squares
(OLS) or generalized least squares (GLS) while the individual logit model is estimated by
the method of maximum likelihood.

These four models are reviewed in detail. Theoretical reasons 1or expecting that the
logit models will provide a better fit to the data are noted. Four models of first year
attrition are estimated with a sample of 30, 000 individuals from the cohort of 67, 000 non-
prior service males who enlisted in the U.S. Navy in CY 1973. Next, the ability of the
fitted equations to discriminate between the attriters and the non-attriters in a separate
sample of 30, 000 individuals from the CY 1973 cohort is analyzed. In addition, we analyze
the ability of grouped linear and grouped logit equations fit with all of the data from the
C'! 1973 cohort to discriminate between attriters and non-attriters in the CY 1974 cohort
of nan-prior service male enlistees. Finally, we examine the question of which CY 1973
equation gives the better prediction of attrition rates in the CY 1974 cohort.

METHODOLOGIES FOR PREDICTING THE PROBABILITY OFATRITION

This section discusses the existing methodologies for estimating attrition probabil-
ities and discriminating between attriters and non-attriters. It begins with a review of
the individual and grouped linear probability models. The equivalence between the in-
dividual linear probability model an, the linear discriminant function is noted. Then, the
two logit models are discussed. Both are consistent and asymptotically efficient and should,
therefore, yield similar parameter estirnates in large samples. This is an important
point, since the estimation of the individual logit model is considerably more expensive in
large samples. Theoretical reasons for believing that the logit models will provide a
better fit to the data than the linear models are examined.

Linear Models

To begin with, let X = (XI ... Xk) be a I x k vector of variables which determine the

probability that an individual will be an attrrter. Then p(AI X) is the conditional probability
that the Individual will attrite given X. The problem Is to estimate the relationship between
p(AI X) and X. One way to do this is to assume a simple linear relationship between p(AI X)
and eZ rk-

p(A IX) - xS where u- (1)

.-kJ



Equation (1) is called the linear probability model. The parameters In the linear prob-
ability model can k a estimated two ways.

The Indivkuw. Linear Probability Model

The Individual linear probability model is estimated by assigning a value of 1 to
attrlters and 0 to non-attriters. This binary dependent variable is then regressed on.
X. Formally, the model to be estimated Id given in (2):

1

Y X8 + e whereY+- . (2)

-0

Y is an n x I vector of observations which may be partitioned Into an nI x I vector of ones

representing the nI attrlters in the sample, and an n2 x I vector of zeros representing

the n2 non-attrlters. X In (2) is an n x K matrix of obeervations on the independent

variables. The well-known OLS estimator of (C.) is shown in (3):

A X Y • ()

After computing , the probability that an individual with set of characteristics XI will

attrte Is A X .

The linear model is appealing because of the computational ease of OLS and because
of the ability of OLS to handle very large samples. On the other hand, It has been sub-
ject to criticism in the literature. A major criticism is that the individual linear model
violates the constamn variance assumption of OLS. The error term In (2) is binominal -- it
can take on the value -XO or the value I X8 . For the Ith observation, the variance of
the error term 1 9 is Xi0 (1 -X 0). Since the error term is heteroskedastic, the OLS

estimator of B will not be the minimum variarce linear estimator. 1

Goldberger (reference 4) suggests the following solution to this problem. First, (2)

It estimated by OLS and the wcig) t Wr - F4 o(-X) Is, computed for each individual

SeGoldberger (reference 4) for a dli~cussion of the problem of heteroskedsastcit.
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in the sampie. Tfhen, each Y1 and Xi is teighted by 1/w1, and Yi/wi is regressed

on Xi/wi. This weighting procedure yields a model with a constant error variance, and

the regression of Y iwi on X 1wi gives the generalized least squares (GLS) estimator of

, which is the m!nimum variance unbiased estimator (reference 4, p. 250).

A
A second criticism of the linear problbiiity model is that it does not restrict p

to lie within the unit interval, although a p outside of this interval could not be inter-
preted as a probability estimate. In addition, Goldberger's procedure for correction
for heteroskedasticity is invalidated when predictions outside of the unit interval are ob-
tained. While the problem of prediction outside of the unit interval should diminish as the
sample size increases, we still encountered it in the empirical work reported below with
a sample of 30, 000 observations. Nerlove and Press (referer-e 2, pp. 54-55) discuss
some work by Smith and Cicchetti (reference 5) on methods for handling inadmissible
weights obtained In the Goldberger procedure. We adopted the one that uses .02 as the

A
estimate of p for the cases where p was less than zero. While this procedure can be
applied to get around the problem of negative weights in the GLS estimation of 8, the
problem of interpreting the resulting equation as a probability model still remains.

A third criticism of the individual linear probability model is not so serious as it
first appears.. It is often stated that since the error term in (2) is not normally distribu-
ted, tests of significance are not exact tests. Ladd (reference 6) shows tha't despite the
binary form of the dependent variable in (2), the usual tests of significance are exact
tests.

The (unweighted) individual linear model is proportional to the linear discriminant
function (LDF) first proposed by Fisher (reference 1) in 1936 as a means of identifying
binary group membership. The goal of LDF is to derive some linear combinrtion of
known characteristics, say Z = X' X, from known data, and then use this linear combina-
tion to identify the group to which a new applicant belongs. For the ith new applicant,
if Z1 = X' X Is less than some critical value of Z, say Zo, the individual Is classified

as a member of group I (say, attriter). Otherwise he Is classified as a member of group
2 (say, non-attriter).

Beginning with the assumption that X values are distributed multivariate normal
with mean- vector 4 and variance-covariance matrix E , the "best" LDF coefficients
are those which maximize 0 in equation (4):

0 A -' ýiA ] (4)

Nerlove and Press (reference 2) note that extreme sensitivity of OLS estimator of 0 to
the sample in small samples. -4-



In (4), p A is the vector of means of the X values fo- the attriters and iN. Is the

vector of means of X values for the non-attrlters. Thus, the X vector is c nosen such
that the ratio of the squared difference between the means of the two groups, )X'u A and

X' NA, Pto their variance, X'EX, Is maximized. The X vector that maxtmizeR (4) is

given in (5): . (

X (-. PA1A- )

The mean vectors uA and p and the variance-covariance matrix Z are unobservable.

However, X can be estimated by using the sample averages X-A and XNA as estimates

of LA and UN and the sample variances and covariances of the X values to estimate
A NA

. Thua, X is estimated by (6):

S 1 [7A XNA) (6)

Ladd (reference 6) has shown that the vpctor obtained from (6) is directly pro-
portional to th#; regression coefficient vector T obtained from (3). This relationshin is
shown In (7):

= (n2) • (7)

ESS in (7) Is the e-ror sum of squares from the linear regression (3). Thus, using a
1inear discriminant function to assign individuals to group 1 (say, attriters) or group 2
(say, non-attriters) with a cutting score of Z is equivalent to assignment' on the basis

0

of the linear probability model with a cutting score of po = (-) Z) Z

The LDP procedure is not subject to quite the same criticisms as the Individual lintar
probability model, even though the parameter estimates from the two procedures are pro-
portional to one another. Since the fitted LDF is not used to predict probabilities, but
only for classification,' it Is not subject to the criticism that It gives predicted probabilities
outside of the unit Interval. In addition, there is no problem of heteroskedasticity since
the estimation procedure Is not based on the assumption of (LS that the error term is
normally distre.tted with constant variance.
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Grouped Linear Probability Model

An alternative to the linear probability model based on individual obserirations is the
grouped linear probability model. In this procedure, the observations are grouped into
cells based on all possible con..:'nattons of the independent variables. Grouping is easy if
all of the independent variables are categorical variables (e.g., race). If some of the vari-
ables are continuous (e.g., education level or age), they have to be broken up into a (reason-
ably small) number of intervals in order to group the data. The number of cells li the pro-
duct, over the number of classifiers (e.g., race, age, education), of the number of intervals
for each classifier. Thus, if there are five classifiers and 3 intervals for each classifier,
there will be 35 = 243 cells Into which observations can fall.

A

Once the data are grouped, the proportion, p= aj/n, of n Individuals in the jth
A j j

cell who were asteiters Is computed. pj Is an estimate of the true probability p that in-

dividuals who fall Into the Jth cell will attrite. To estimate the grouped linear probability
Amodel, pj Is regreseed on dummy variables representing the different levels of the

classifiers.

One problem with a simple regression between p and X is that the error term in

the regression (p - p P) has a non-constant variance, and hence the OLS estimator of 0 is

not a minimum variance estimator. The variance of the error term ( - p) is

pj(1 - pj)/n1 and is Inversely related to the cell size nj . This heteroskedasticity problem

is handled by weighting each observation by the inverse ofz the estimated standard deviation

error term, nAi ----. The weighted regression !etween pA Aii andp/- %j) - anld

v iz gives the minimum variance unbiased estimator of •

Since the dependent variable In the grouped linear model is actually a rate rather than
a 1 or 0 criterion variable, an in the indlvictual linear model, the grouped linear model seems
more In the spirit of a probability model. Since the dependent variable In the grouped linear
model lies In the unit Interval cne would think that the predictions with the fitted model would
also be more l!kely to lie in this Interval Unfortunately, we have found with # large sample
that this is not necessarily the cace.

-6-



Logistic Models

Because of their ease of application, the linear probability modelis are frequently
employed in the literature, espacially the Individual linear model. However, there are
reasons for suspecting that the linear probability model is a poor specificat'on of p(Aj X).
McFadden (reference 3, p. 374) notes that the (weighted) least squares estimator of 8
in (2) is very sensitive to specification error. Further, Cox (reference 7) and Day and
Kerridge (reference 8) show that, under a variety of assumptions, p(A I X) Is logistic
rather than lirsear. I The form of p(A i X) for the logistic distribution is shown in (8).

p(A X) = where = (8)

There are several ways to estimate the parameter vector in (8). If X is indeed
multivartate normal, the best linear estimates of the a vector In (8) would be the LDF
coefficients in (6). This follow, since Xq Is normally distributed if X Is multivariate
normal, and it was shown above that the I vector In (7) is the best linear unbiased esti-
mate of a when X is multivariate normal. 2 However, Halperin, Blackvelder, and
Verter (reference 9) show that if X Is not multivariate normal, the LDF estimator of a
will not be consistent. Consistent, asymptotically efficient estimates of a may be obrta, ed
from either the grouped logit or individual logit procedures.

Grouped Logistic Model

With a large sample, a can be estimated using linear regression. The logistic
probability function In (8) can be transformed Into the following log-linear equation which
may be estimated with OLS:

In( = Xce. (9)

The dependent variable here is the logarithm of the odds of being an attriter. To estimate
this equation, the data ere grouped into cells just as in the grouped linear model. Then
ln •/(l -I )) rather than is used as the dependent variable in the regression.

1 That p(AI X) Is logistic was originally derived from the assumption that X is multi-
variate normal, bit the authors cited show that p(A I X) is logistic for a variety of other
conditions, Including the case where all the Independent variables are dichotomous.
2 This implies that better estimates of attrition probabiiiLies can be obtained by plugging

the LDF coefficients in (6) into (8) than by converting LDF parameter estimates to individual
linear probability model estimates via (7) and estimating attrition probabilities with a linear
equation.

-7-



One problem is that the error term in this regression has the non-constant variance

(I ) Weighted regressionon Is weighted by ;p(l-pj),

yields the generulized least squares estimator of a . This grouped logit procedure, due
to Berkson (reference 10), is known as the mLnimum logit chi-square method. Cox
(reference 6) shows that under very general conditions this method yields consistent,
"asymptotically efficient estimates of a

Individual Logistic Model

The logistic probability function in (8) is a non-linear equation which may also be
estimated by the method of maximum likelihood. Maximum likelihood estimation of (8)
was developed because the grouped logit procedure is inapplicable in small samples
where many cells are empty or have only a few observations. As Nerlove and Press
(reference 2, p. 60) state, the maximum likelihood procedure yields parameter estimates
that have desirable small sample properties.

To estimate (8) by the method of maximum likelihood, the likelihood function is formed,
and the a vector which maximizes the value of the likelihood function is found. Since In-
dividual observations are used, we call this model the individual logistic model. The
likelihood function is:

L XTa 1 (1I

y =l I+eXa y 1 0 l+eXa

Since (10) is not a rsimp!e linear expression, the a vector has to be estimated by
a non-linear, iterative technique. Using the Newton-Raphson technique, the a vector
in estimated as follows. The logarithm of the likelihood function L is computed, and
then the partial derivative of InL with respect to each a , (ZlnL/d a is computed.

Denote this k x I vector of partial derivatives by f (c). This vector Is called the "score."
The point at which f (a) = 0 is called the "efficient score," since the likelihood function
is maximized at this point. 1

IThe equations that make up the efficient score are similar to the normal equations in a
linear regreuoton, but are non-linear and camiot be solved analytrInally as can the normal
equations.

"-8-



Next. the k x k matrix of second partial derivatives of InL with respect to a

(a lnl/21a1 1aJ), is calculated. Denote this matrix by C'. The vector a is then esti-

mated Iteratively as follows:1

A. r- ,(a)mn) I =(C)L . (11)

The m subscript referbs to the mth iteration. tC" (Inm]-1 Is the inverse of Z'(a)m.

On each Iteration, E['(a) I-I and f (a) are evaluated with the sample data. The best

fit (I.e., the a vector such that f (a)=) 'is found when Z" (a.) £ (am) converges
to zero. The "start values" in the iteration piocess are the LDF coefficients In (6).

The ML estimate of a Is normally distributed with asymptotic covarlance matrix

-11
•" (a~m1 ' . Thus, a t-test of the significance of a1 Is ai/S1 i where SIis the square

root of the Ith diagonal element of [V"(a)m] .

1 t'was noted above that -C (a) -0 cannot be solved analytically for a. However, equation

(11) for 4' Is derived as Zollows. If Z (a) Is expanded in a Taylor series around the

arbitrarily selected point a. . then

f a ,(x +( -a 'd +1/ (aad2 V"'(a
-02

Ignoring 1/2 (a-a )2 ' (a0 ) and other highev order terms, setting £ (a) equal to

zero, and solving for a , we find that,

a o L 0(ao)]' (0:o)

This equation givesa value for a by expanding t (a) around the arbitrary point a 0

Th bestfitting aA am. fsnd by iterating -* a untln V (a)d )1 1 (ad)veu,1shei.

i
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Finally, it Is worthwhile to note the similarity between parameter estimates obtained
from a model based on the logit distribution and those from a model based on the normal
distribution. Instead of aesuming a logit distribution, one could assume that attrition
probabilitier follow a normal distribution with unit variance (a 2 = 1):

XY -1/2

cie t (12)*

The p.rameters in (12) must be estimated by maximum likelihood. This model Is called
the probit model. While the logit model In (9) and the probit model in (12) look different,

2
their cumulative distributions are very similar. The logtt distribution has variance .r

Therefore, if the a obtained from the logit estimation procedure is weighted by N-E3
rT

it will be virtually the same as the y obtained from the probit estimation. The logit

and probit estimates differ only by the scale factor . Logit estimation is used

more often than probit estimation, because the logit probability finction is clo3ed form
(does not have an integral that must be evaluated) and is therefore much easier to rsstimate.

EMPIRICAL RESULTS

The four models discussed above were applied to data from the CY 1973 cohcrt of
non-prior service male enlistees. The dependent varaiale was whether or not the Individual
was lost before the end of one year of service. The independent variables were years of
education, mental ability as measured by the Armed Forces Qualification Test, marital
status, age, and race. E&dcation waa split into three categories, less than 12 years, 12
years, and more than 12 years. Individuals were classified Into five standard mental
groups (I, II, I11U, I!L, and IV) on the basis of their AFQT scores. Age was split into
three categories, less than 18 years, 18 or 19 years, and greater than 19 years. The
various combinations of education level, mental ability, age, race, and marital status
(3x5x3x2x2) give rise to 180 cells that individuals can fall into.

The CY 1973 cohort contained approximately 67, 000 men. We divided the first
60, 000 of them into 2 samples of 30, 000 each (with 7, 000 left over) by alternatively
assigning indlviduals to an "A" sample and a "B" sample. Then, the four models de-
scribed above were estimated with each sample of data. Splitting the cohort into samples
of 30, 000 was necessary for comparing the individual logit model with the other models,

".10-



because the maximum likelihood computer program used to estimate this model can
accommodate a maximum of 30, 000 observations. Even with 30, 000 observations, 2.5
hours of computer time were required to estimate it.

After die four models were fit with each sample of data, the ability of each fitted
equation to discriminate between the attrlters and the nog-attriters In the ot:ier (cross-
validation) sample was examined. On the basis of qualifying scores ranging from 60 to
100, each individual in the cross-validation sample was classified as an attriter os non-
attr.ter. Thus, If the qualifying score is 75, individuals who have lower survival chances
are labeled attriters and individuals with equal or higher scores are labeled non-attriters.
For scores ranging from 60 to 100, we examined: (1) the percentage of the cross-valida-
tion sample that would be selected, (2) the "bit" rate, or percent of sample correctly
identified as either attriters or non-attriters, (3) the "false negative" rate, or percent
of sample labeled as attriters who actually stayed, and (4) the "false posa.tive" rate, or
percent of sample 'labeled as non-attriters who actually left.

The Parameter Estimnates

Table I shows the parameter estimates obtained by applying the four procedures
described above to one of the samples. Estimates obtained with the second sample are
contained in appendix .. The estimates shown in the column labeled "Individual Linear"
are those obtained with the weighted regression procedure described in the last section. 1

Table I also shows the LDF coefficients, which are proportional to the unweighted esti-
mates (not shown) of the Individual lineaz probability model.

Several cnnclusiona are a-parent from table 1. With the large sample used here,
each of the two grouped models gives virtually the same fitted equation as its individual
counterpart. Especially In the -ase of the two linear models, the parameter estimates
obtained with the grouped linear model are in most cases the same down to the third dec-
imal place as those obtained with the individual linear model. Pifferences in the predicted
attrition probabilities obtained with the two linear equations are quite small. Although not
as obvious, the differences in the estimates from the two logit models also imply trivial
differences in estimated attrition probabilities. 2 The parameter estimates from either

lit was noted above that the unweighted estimates of the Individual linear probability

model gave predicted attrition chances of less than zero In some cases. This occurred
for individuals who had more than 12 years of education and who were in mental group I.
These individuals made up about 2 percent of the sample. The problem of negative weights
in the weighted regresslon procedure was handled by assigning these Individuals an attri-
tion probability of .02.
2
A difference in a parameter est.mate between the two procedures of about. 10 will Imply

a difference In the predicted attrition probability of about .01 . Most of the differences
between the pw-wneter estimates obtained yvuth the two logit procedures are considerably
smaller than It.-1
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of the two logit procedures differ from the LDF coefficients on precisely the variables
that have the most Impact on the probability of attrition, the education and mental group
variables. For most of the other variables, the deviations of the logit coefficlents from
the LDF coefficients are small.

The close cc.respondence between the parameter estimates from the two logit
models Is to be expected, since both have been shown in the theoretical literature to be
consistent and asymptotically efficient. The similarity of results is Important, because
with large samples the Individual logit model Is considerably more expensive to estimate.

The Selection Ratio and Distributions of Correct and Incorrect Predictions for Linear
and Logit Models

Figures I through 4 show the selection ratio, hit rate, false positive rate, and
false negative rate for the Individual linear and logit models for qualifying scores ranging
from 60 to 100.' While the dlstributions in these figures are based on the individual
linear and logit models, the distributions obtained with the grouped models were virtually
the same. The differences that exist between models are between the linear models and
the logit models, not between the two versions of the same model.

Looking first at figure 1, at a qualifying score of 60, all of the cross-validation
sample would be admitted. As the q'ialifying score is raised, obviously fewer people
are selected. The sizeable differences between the selection ratios implied by the two
methods occurs in the range of qualifying scores between 74 and 82. In this range, a
higher percentage of the cross-validation sample would be selected with the logit model
than with the linear model. The maximum difference between models occurs at a qualify-
Ing score of 79, where 5 percent more people would be selected using the logit model.

The hit rate distribution is shown in figure 2. Again, the range where sizeable
differences in hit rates occur lies between cutting scores of 74 and 82. In this range,
the logit model gives a somewhat higher hit rate than does the linear model. Apain. the
maximum difference occurs at a qualifying score of 79. Here the logit model gives a 3
percent higher hit rate than the linear model.

Figures 3 and 4 show the rate of false positive predictions and the rate of false

negative predictions for the linear and logit models. As figure 5 shows the rate of false
1..•itive predictions declines as the qualifying score Is raised, because only those whose
survival chances exceed the higher qualifying score are selected. Again, most of the
differences between the models occur" in the range 74 to 82. At the qualifying score of
79, the logit model gives a one percent higher rate of false positives than the linear model.
The higher rate of false positives for the logit model in the range 74 to 82 Is due to the
fact that in this range, a higher percentage of the applicant cohort would be enlisted using
the logit model (recall figure 1).

-13-
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Looking at the rate of false negative predictions in figure 4, we see again, that, the
differences between the logit and linear models occur in the range 74 to 82. Again, the
maximum difference occurs at the qualifying score of 79, where the logit model has a 4
percent lower false negative rate than tCie linear model.

To summarize, our results indicate that individuals who have very low or very high
chances of early attrition will be correctly classified by either model. Thus, for qualify-,
Ing scores below 74 or above 82, the two models give about the same rate of hits, false
positives, and false negatives., However, in the range between 74 and 82, the logtt model
gives a higher rate of hits and false negatives, but a higher rate of false positives. It Is
significant that this is the area of greatest overlap between attriters and non-attriters.
Seventy-eight is the iyerage SCREEN score of attriters, while 82 is the average score of
non-attriters. In the range where overlap occurs, the logit model gives slightly better
discrimination between attriters and non-attriters than the inear model.

Grouped logit and grouped linear equations fit to the whole CY 1973 cohort are found
in Lockman (reference 11). These equations are reproduced In appendix B. The Navy Is
now using tables based on the grouped logit model to screen recruits, so we wanted to de-
termine how well these two models distinguish between attriters and non-attriters in an-
other cohort. Therefore, these equations were applied to the CY 1974 cohort. The selec-
tion ratio, the hit zate, fa!se positive rate, and false negative rate distributions are shown
in figures 5,6, 7, and 8, respectively. Although the patterns are similar to the ones shown
previously, the differences between the logit and linear models are much less pronounced.
Whereas we found virtually no differences in the lower tails of the distributions in figures
1 through 4 above, we do find some differences In figures 5 through 8.

Prediction of Attrition Rates with Linear and Logit Models

In addition to using the linear or logit models for classification, we are also interected
in just how well they predict future attrition rates. 'Even if the models are not used for re-
cruit screening purposes, they could still be used to predict the attrition that will be suffered.
As noted above, theory tells us that the logit model is a better specification of P(A I X) tlan
the linear model. If so, the logit model should have smaller errors in predicting future
attrition rates than the linear model.

To see If this Is true, we predicted the attrition rates for the 137 cells In the CY 1974
cohort which contained observations from grouped linear and grouped logit equations based
on all of the data from the CY 1973 cohort. We computed two values reflecting he predic-
tive ability of the two equations. The first Is an error sum of squares, E (pi - p9)2 . The

second is an error sum of squares which weights the square of the error by the number of
observations in the cell, E N (p - 0 This statistic should provide a better comparison

of prediction errors for two reasons. First, it weights each error by the "cost" of the error;
-16
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prediction errors are more expensive the more individuals there are in a cell. Second,
it could be that the larger errors are occurring in the upper or lower tails of the proba-
bility distribution where the cell sizes are small. The linear model might be predicting
as well in the middle of the distribution (say, where the .ttrition probabilities lie between

1 and .3)but doing poorly in the tails. If this is so, the difference between the models in
.(p - )2should be smaller than the differences in E (pj - j)2.

Table 2 presents the results of these computations. Based on either measure, the
logit model is found to give smaller prediction errors than the linear model. It is some-
what surprising that there is a larger (percentage) difference in the weighted error sum
of squares between the models than in the unweighted error sum of squares. Differences
between methods were not just due to the linear model having larger prediction errors in
small cells or cells at the extremes of the probability distribution. These results indicate
that the logit specification of P(A I X) was a better predictor than the linear specification
of P(AIX).

TABLE 2

TWO MEASURES OF PREDICTION ERROR, CY 1973 EQUATIONS
APPLIED TO CY 1974 COHORT

Grouped logir Grouped linear

P A ;)2 4.08 4.38

N J -2 165.15 205.76

CONCLUSIONS

Several general conclusions emerge from our empirical analysis. First, with large
samples, the individual linear and logil models give virtually the same fitted equation as
their grouped counterpart. This is essentially an empirical demonstration of the fact that
each individual model has the same asymptotic properties as its grouped counterpart. Know-
ing that the grouped logit model based on linear regression and the individual logit model
based on maximum likelihood yield the same fitted equation is extremely usetil, because
maximum likelihood estimation is computationally expensive in very large ser ples.

Second, the logit models are found to be superior to the linear models on teveral
counts. For a range of qualifying scores most likely to be used by the Navy t1 separate
acceptable from unacceptable applicants, the logit models give somewhat bette•' prediction
of actual success or failure. They are also found to give a lower rate of "Wlle aegatives"

-19-
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(predicted failures who are actual successes). However, they do give a slightly higher
rate of "false positives" (predicted successes who are actual failures).

Third, the grouped lopit model based on data from one cohort (CY 1973 enlistees)
was found to give better estimates of attrition rates of different groups in other cohort
(CY 1974 enlistees) than the grouped linear model based on the same data. Goodness of
fit was measured by both weighted and unwelghted error sums of squares in prediction.
Consequently, the grouped logit model is the best model for the prcdiction of attrition
with very large samples.

-20-
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APPENDIX A

ESTIMATES OF PARAMETER VALUES.
SAMPLE B FROM CY 1973 COHORT

Linear
Individual Grouped Individual Grouped dlscrimlnantVariale linear linear logit himctlon

Ed<12 -. 112 -. 117 -. 727 -. 713 -. 849
(18.01) (15.78)' (22.99) (16.45) (20.92)

Ed> 12 .017 .025 .252 .201 .181
(2.32) ( 2.88) (3.25) ( 2.13) (2.74)

Mental Group 1 .060 .064 .848 .752 .460
(7.79) (7.20) (6.70) (5.04) (5.50)

Mental Group 11 .017 .018 .199 .197 .140
(3.34) (2.90) (4.47) (.3.62) (3.32)

Mental Group ML -. 075 -. 075 -. 484 -. 480 -. SS5
(10.64) (9.08) (10.8) (8.85) (4.37)

Mental Group IV -. 110 -. 111' -. 652 -. 642 -. 794
(13.95) (12.11) (14.58) (11.56) (15.38)

Marital status (married) -. 061 -. 042 -. 435 * -. 487 .-. 470
(6.21) (3.94) (6.87) (6.67) '(7.10)

Age< 18 -. 026 -. 014 -. 078 -. 104 -. 083
(3.43) (1.55) (1.75) (2.05) (1.67)Age> 19 -. 017 -. 020 -. 148. -. 135 -. 134
(3.18) (3.28) (3.31) ( 2.70) (3.25)Race (Non-Caucasian) .013 .022 .075 .035 .113
(1.67) (2.4g) (1.68) ( .67) (2.10)

Constant .890 .890 2.017 2.101 2.14124.20 (0o.74) (43.21) (22.16)
N 30,000 131 30.000 131 30.000

a"t" values In parentheses.
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APPENDIX B

PARAMETER ESTIMATES FOR GROUPED LOGIT AND GROUPED LINEAR MODELS,
BASED ON TOTAL CY 1973 COHORT

Variable Grouped logit Grouped linear
Ed< 12 -. 701 -.11a

(21.20)' (19.03)

Ed> 12 .314 .031
(4.42) (4.49)

Mental Group 1 .989 .079
(8.37) (10.85)

Mental Group II .254 .026
( 6.22) ( 5.28)

Mental Group MiL -. 365 -. 052
* (8.85) ( 7.91)

Mental Group IV -. 597 -. 100
(14.23) (13.44)

Marital status (married) -. 389 -. 038
( 6.95) (4.36)

Age < 18 -. 093 -. 015
(2.76) (2.89)

Age> 19 -. 280 MA 2
(6.43) (5.43)

Race (Non-Caucasian) .119 .034
(2.64) (4.89)

Constant 1.976 .882
(57.3 (26.89)

N 137 137

a't" values in parentheses.
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