AD=A063 561 MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF OCEAN E=-=ETC F/6 12/1 \‘\
DYNAMIC PLASTIC RESPONSE OF CIRCULAR PLATES WITH TRANSVERSE SHE==ETC(U)
DEC 78 N JONES: J G DE OLIVEIRA NO0014=76=C=0195

78=9

UNCLASSIFIED







MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF OCEAN ENGINEERING

CAMBRIDGE, MASS. 02139

t

DYNAMIC PLASTIC RESPONSE OF
CIRCULAR PLATES WITH TRANSVERSE
SHEAR AND ROTATORY INERTIA

by
Norman Jones
and
J. Gomes de Oliveira

Report Number 78-9

December 1978

Distribution Unlimited

This research was carried out under the Structural Mechanics
Program of the Office of Naval Research, Arlington, Virginia. ‘
Contract Number N00014-76-C-0195, Task NR 064-510. ]

3




Contents

page

R O O B e o s i tatta et et chra ) s o o Sl S Nt G | e el TR S L

NG ER IO o hlere o s0etaie s ah el et s ol o oo ey R i s S

15
23

3is

InEroducbEon . . e e ket oretallols e ke
Basiic EqGUatTONS. o:ic c it oo sleisols aroisio e slsiohasier s shoniorand

Impulsive Loading of a Circular Plate with 4
Transverse Shear

3.1 Class T Plates, 0 < vV S 3/2..cceccsasaneed
3.2 €lass IT Plates, 3/2 £V 5 2. i.6sees < esee B

3.2.1 First Phase of Motion,
0 < T S_Tl..... .......... e Sl B

3.2.2 Second Phase of Motion,
T1 <T S_Tf... ......... alsl s aliaiie @ ete s e 8

3.3 Class TII Plates, v = 2 L o e aeta s olieols o esB

3.3.1 First Phase of Motion,

0 <T 5_T1.... ......... A ol O
3.3.2 Second Phase of Motion,

Tl._<_T .ST2... ..... elselei s e e vn i eiendO
3.3.3 Third Phase of Motion,

T2 SRS Tf........ ....... R

Impulsive Loading of a Circular Plate with
Transverse Shear and Rotatory Inertia........12

4.1 Plates with 0 < vy £ 3/2.cccccocoissessnsdd
4.2 Plates with VZ23/2, i icveninvsosiesvevesedd

4.2.1 First Phase of Motion,
O sT < Tl.......................13

4.2.2 Second Phase of Motion,
Tl <T < Tf.................-....16

DABCUSBEON ¢ 46 o-b/v o v oo v b /e v 8 o ses & 08666 68 b0 6w el




Contents (Cont'd)

page
B N IS ONE o e e e A A A A 22
ACENOWI GAgEmMEntE, .\ o v o e e e s e LRI 22
Lot R G R AT SRR I o | S| L s 23
Titles OFf PUGNEa ol oy e vt s iLm Bl ) 5, e 26
PRGUERE oo w56 ik i s o alh e o A b s o b s Nen 2
EADERLY CHEQ: o vv'c chvunomssnis A e e 37

<

A e s o S — "




Abstract

* The response of a simply supported circular plate made
from a rigid perfectly plastic material and subjected to a

- uniformly distributed impulsive velocity is developed herein.
Plastic yielding of the material is controlled by a yield
criterion which retains the transverse shear force as well
as bending moments and the influence of rotatory inertia is
included in the governing equations. Various equations and
numerical results are presented which may be used to assess
the importance of transverse shear effects and rotatory

inertia for this particular problem.
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Notation

ii

defined by equation (46a)
Mr/Mo' Me/Mo

lateral pressure

Q. /9,

polar coordinates

time

transverse displacement

dimensionless transverse displacement (equation
(109))

coordinate through plate thickness (Figure 1)
plate thickness

dimensionless rotatory inertia defined by
equation (46b)

pH3/12

radial and circumferential bending moments
per unit length defined in Figure 1

magnitude of bending moment per unit length
required for plastic flow of cross-section

transverse shear force per unit length defined
in Figure 1 -

magnitude of Q_ required for plastic flow of
cross-section

outside radius of plate

bending and shear energies divided by the
initial kinetic energy

dimensionless time defined by equation (10f)




Notation (cont'd)

¥, initial impulsive velocity
W dimensionless transverse displacement defined 4

by equation (10q)
o r/R
B dimensionless radius of an axisymmetric interface r }
Y transverse shear strain |
KerKg radial and circumferential curvature changes ;
u PH
v QOR/2Mo |
p density of material ‘
% uniaxial yield stress é
U} rotation of mid-plane due to bending
(x] X=X,
) 3( )/3t or a( )/aT.
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1. Introduction

The rigid-plastic idealisation of a ductile material
considerably simplifies theoretical investigations into
the dynamic response of structures subjected to large dy-
namic loads which cause inelastic behavior [1-4, etc.].
These analyses can give surprisingly accurate yet simple
predictions for a wide range of practical problems. How-
ever, it turns out that transverse shear effects can exer-
cise an important influence on the dynamic plastic behavior
of various structural members as discussed in Reference [4].

Two recent theoretical studies on beams loaded dynam-
ically [5,6] have examined the effect of rotatory inertia in
the governing equations and the influence of transverse
shear force as well as bending moment in the yield condition
for a rigid perfectly plastic material. References [4] to
[6] contain citations to earlier work which explore the in-
fluence of transverse shear effects on the dynamic plastic
response of beams, while various yield criteria are discussed
in Reference [7].

The influence of transverse shear forces on the.static
plastic collapse of circular plates has been examined by
several authors ([8-12], but no papers appear to have been
published for any dynamic loading case. Moreover, the

influence of rotatory inertia on the dynamic plastic response
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of circular plates has not been examined, despite the fact

that many authors have explored its effect for linear elas-

tic plates [13, 14, etc.].

Reference [15] contains a review of many of the theo-
retical solutions on the dynamic response of circular plates
which have been obtained since the publication of Reference
[16] . However, the analyses were developed for plates made
from rigid perfectly plastic materials which were controlled
by a yield criterion relating the circumferential and radial
bending moments, while the influence of transverse shear
forces were disregarded. Wang [17] examined the behavior
of a rigid perfectly plastic circular plate which was simply
supported around the outer boundary and subjected to a
uniformly distributed impulsive velocity Vo' It may be
shown that the transverse shear force in this analysis is
infinitely large at the supports immediately after the start
of motion. It is the purpose of the work in section 3 of
this article to seek the behavior of Wang's problem when the
circular plate is made from a rigid perfectly plastic ma-
terial with a finite transverse shear strength. The simul-
taneous influence of transverse shear and rotatory inertia

effects is then examined in section 4.
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2. Basic Zquations

The equilibrium equations for the dynamic behavior of
the element of an axisymmetrically loaded circular plate shown

in Figure 1 may be written in the form

P 2 2
aMr/ar + (Mr - Me)/r + Qr = Ira Y/t (la)
o 2 2
and aQr/ar + Qr/r = -p + pa‘w/at”° , (1b)

where Ir = pH3/12, u=pH, OW/3r =y+ y, Y is the rotation
of lines which were originally perpendicular to the initial

mid-plane (z = 0) due to bending and

Y= A/ = U k.= WfAr, Kg = v/x (2a-c)

are the transverse shear strain, radial curvature change, and
circumferential curvature change, respectively.
The dynamic continuity condition across a discontinuity

front, which travels from region 1 to region 2 with a velocity

c in a continuum with a constant density p, may be written ([18,19]

[°i1] = -pc[aui/at], (3)

where [X] = X, - X,, and when the particle velocity (3u,/3t)
in region 1, which is normal to the discontinuity front, is
negligible compared with c. The displacements u, act along

the x; axes with Xy directed from region 1 to region 2 and normal

to the discontinuity front.

Now, x1 E, x2 = ¥e, X3 = 2, 011 = or, 021 =0, 031 = Og,

0, and uy =w for the particular case of an axi-

symmetrically loaded circular plate with the variables defined

ul o -Zlb, uz

in Figure 1 and in the Notation. Thus, if equation (3) with

PITRETE s




i = 1 is multiplied by z and integrated with respect to z then
M1 = -cI_[V], (4a)

while equation (3) with i = 3 when integrated with respect to

z gives
Q] = -culwl. (4b)
The kinematic continuity condition associated with equation

(3) is [18,19]

laui/at] = -claui/axl], (5)
which using the variables appropriate for an axisymmetrically
loaded circular plate predicts

[

and [Q]

—c[ay/ar] (6a) T

-c[ow/dr]. (6b)

3. Impulsive Loading of a Circular Plate with Transverse Shear

It was remarked in the Introduction that the transverse
shear force at the simply supported edge of the impulsively
loaded circular plate examined in Reference [17] is infinitely
large at the start of motion. A theoretical analysis of the
same problem is presented in this section but for a plate made

from a rigid perfectly plastic material with a finite transverse

shear strength. Plastic flow is controlled by the simplified

yield criterion shown in Figure 2 which was used by Sawczuk
and Duszek [ 8] to examine the static loading of circular plates.
Q6 and M, are the respective values of the transverse shear
force per unit length and bending moment per unit length required

for independent plastic yielding of the plate cross-section.

ﬁf
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This condition may also be obtained from the equivalent pos-
tulate [¢] = 0 which was used in References [5] and [20]
for beams.

B
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i Class I Plates, 0 < v < 3/2

The dimensionless transverse velocity profile for this
class of plates subjected to a uniformly distributed initial

impulsive velocity e is
Ww=W for 0<a S (7)

which gives a circumferential shear hinge at the supports as
indicated in Figure 3(b). Thus, if Me is assumed constant in
the rigid region 0 < a < 1, then equations (la,lb) with Ir =0,

and p = 0, and equation (7) give

% = -v/3, gq(la) = -a, (8a,b)
m_(a) = -2v(1-a’)/3, m (o) = -2v/3 (9a,b)
when satisfying g(l) = -1, and mr(l) = 0, where
& = x¥/R, V = QOR/ZMO, q = Qr/Qo' m,. = Mr/Mo,

> 5 2 = 2.2
my = MB/MQ' T = 12Mot/uVOR ¢ W = 12MOW/1.IVo R,

and W = W/Vo. (10a-h)

Now, equation (8a) predicts

W(T) =T - vr’/6 (11)
since W(0) = 1 and W(0) = 0. Thus, motion ceases when
T, = 3/v (.12)

and the associated maximum permanent transverse displacement is

ﬁf = 3/2v. (13)




This transverse displacement is manifested as a shear slide

at the supports which must not therefore become too large to

avoid failure of the plate. A suitable failure criterion for
engineering purposes was developed in Reference [21] for

beams and may be written for the present case in the form

W. < kH, (14)

f_
where 0 < k £ 1 and H is the plate thickness.

The generalised stress fields given by equations (8b)

and (9) are statically admissible provided 0 < v < 3/2.

3.2 Class II Plates, 3/2 < v < 2.

If v 2 3/2, then equation (9) shows that mgy violates the
yield condition throughout a plate and m_ penetrates the yield
surface in a central region. Thus, the first stage of motion
for the present case is governed by the velocity profile
sketched in Figure 3(c) which gives plastic bending throughout
a plate with a stationary shear hinge at the supports. This
phase of motion is completed when shear sliding ceases at the
supports and is followed by a final stage of motion with the
velocity profile illustrated in Figure 3(d).

S 2l First Phase of Motion, 0 £ T £ T

1
The transverse velocity profile in Figure 3(c) is
w(r,t) = W(t) + {W (t) - W(t)}x/R, (15)

which predicts ér = 0 and Ee <0 if W > Wl according to equations

(2) with vy = 0 in the region 0 < o < 1. Thus, the normality




rule of plasticity requires

L P m. =8, "and =1 <g < 1. (16a-c)

Equations (15), (16a), and (la,b) with I =p= 0 give
Wl =1l-v, W=v-2, (17a,b)

q(a) = a{2(3-2v)a + 3(v-2)}/v,

and m_(a) = -1 - (3-2v)a> - 2(v-2)a2, (18a,b)
since qg(l) = -1, mr(l) = 0, and mr(O) = -1. Thus,
W, =T+ (1-v)T%/2, and W = T + (v-2)T2/2 (19a,b)

because W(0) = 1, W,(0) = 1, W(0) =0, and W (0) = 0. This
phase of motion terminates at

Ty = 1/(v-1) (20)

when Wl = 0, and the associated shear sliding at the supports is

Wl(Tl) = 1/{2(v-1)}. (21)

The total energy dissipated due to shearing deformations is

Rg = v/{3(v-1)} (22)

when non-dimensionalised with respect to the initial kinetic

energy uszvoz/z.

It is straightforward to show that the generalised stress

e

fields (18) are statically admissible provided 3/2 < v < 2.

P T . TSR
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3.2.2 Second Phase of Motion, T, X T < Te-

The equilibrium equations (la,b) together with equation

(15) with ';‘1 = 0 and equations (l6a-c) predict

W=-1, gq(a) = -a(3-2a)/v, (23a,b)
and  m_(a) = 2a° - o’ - 1 (23c)
since mr(l) = 0, and mr(O) = -1. Now, integrating equation

(23a) and making the displacements and velocities continuous

at T, with equations (19) gives
w(a,T) = (2-T/2) (1-a)T+ (a=-1/2)/(v-1). (24)

Finally, motion ceases at
Tf = 2 (25)
when W = 0 and

w(a, Te) = (4v-5)/{2(v-1)} + (3-2v)d/(v-1). (26)

The ratio of the enerqgy dissipated in bending to that

dissipated in shear is
RB/Rs =2 - 3/v. (27)

3.3 Class III Plates, v 2 2.

It is evident from egquation (18b) that azmr(O,T)/Ba2 =0
when v > 2, which leads to a yield violation at the plate
center. These yield violations are avoided when a plate re-

sponds with the three phases of motion indicated in Figure 4.




3351 First Phase of Motion, 0 < T £ T

1°
A stationary hinge circle forms at a dimensionless
radius Bl (B1 = rl/R) and transverse shear sliding develops

at the plate supports as shown in Figure 4(b). This transverse

velocity field may be written

w(a,T) = éYT) for 0 < a £ Bl' (28a)

and W(a,T) = W(T) (a-8;)/(1-8)) + W(T)(1-a)/(1-8), B, < o < 1. (28b)

Equations (2) with y = 0 and the flow rule of plasticity again

give equations (16), which together with the equilibrium equa-

tions (1), equations (28), and g(l) = -1, mr(l) = 0, mr(sl) = -1,
q(0) =0, [q(By,T)] = [m_(B;,T)] = 0 predict

W=o0, W =-((1-) %14}t (29a,b)
g(a) = 0, mg(a) = mr(a) = -1 for 0 < a < Bl' (30a-c)
while q(a) = -(a-8))2(2a+8)) /{a(1-8)) % (248) }, mg(a) = -1,

and mr(a) = v(a—Bl)3(a+Bl)/{a(l-Bl)2(2+Bl)}—1 when Bl Lacx<l,
(3la-c)

bE ey, (32)

where Bl = {(4v2 - 8y + 1)

Equations (28) and (29) with the initial conditions

W(0) = ﬁl(O) = 1, and W(0) = W, (0) = 0 give

W(a,T) =T, 0 < a

A

By (33a)
and #W(a,T) =T - sz(a-Bl)/{2(2+Bl)(1~81)2}, By < a < 1. (33b)

This phase of motion terminates when Wl = 0 which occurs at

TR TRy wpTTre
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and the associated dimensionless transverse displacements are

W(a,T) = (148 (1-)%, 0 <a < B (35a)

and  w(y,T)) = (1-812)(1-81/2-a/2), 8.5 e.5 0 (35b)

while the corresponding dimensionless energy dissipated due

to transverse shear deformations is

Rs = (2+31) (1-31)/3. (36)

3.3.2 Second Phase of Motion, T1 I

No transverse shear deformations occur during this phase
of motion. The transverse velocity profile illustrated in
Figure 4(c) with a circumferential hinge travelling at speed g
is given by equations (28) with W, = 0 and g, replaced by B(T)
and is similar to that used by Wang [17] during the first phase
of motion of the bending only solution for a simply supported
circular plate loaded impulsively. Thus, following a theore-
tical procedure similar to Wang [17] and matching the velocity
and displacement fields at T = T1 with equations (33) shows

that this phase of motion ends at
T, =1 (37)

when B= 0. The associated transverse displacements are

Wla,T,) =1 -a%/2 -0’2, 0<acs (38a)

and W(a,T,) = (1-312)(2-31—a)/2 + 8, (1438,/2) (1-a) ,

B1 £ & £ 1. (38b)

e A g 0 S 5 b v




It may be shown that the transverse shear force q(a,T)

and the other generalised stresses are statically admissible.

3.3.3 _ Third Phase of Motion, T, < T < T,.

Again no transverse shear deformations develop during
this final phase of motion which is governed by the trans-
verse displacement profile in Figure 4(d). Thus, the theor-
etical procedure for this phase of motion is similar to that
employed by Wang [17] for the final phase of motion in the
bending only case and is also similar to the second phase of
motion in section 3.2.2 for class II plates.

It may be shown that motion finally ceases when
Tf = 2, (39)

and the final deflection profile is

W(a,Tg) = (1-a) (a® + 2a + 3)/2 for 0 < a < By, (40a)

and W(a,Ty) = (1-a) (1 + 28 + 38,°)/2 + (1-8,%) (2 - 8, -a)/2
when Bl <o g B "(40b)

The ratio of energy dissipated in bending to that dissi-

pated in shear is
Ry/Rg = (148,+8,°)/(2-8,-8,2), (41)

where Bl is given by equation (32).
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4. Impulsive Loading of a Circular Plate with Transverse

Shear and Rotatory Inertia

4.1 Plates with 0 < v < 3/2.

It is evident that the transverse velocity field illus-
trated in Figure 3(b) and used to describe the behavior of the
class I simply supported circular plates in section 3.1 does
not involve any rotation of the plate elements. Thus, ¢y = 0
and the rotatory inertia term in equation (la) is zero even
when I_ # 0. The theoretical analysis in section 3.1 therefore :
remains valid for the case when transverse shear and rotatory

inertia effects are retained in the basic eguations.

4.2 Plates with v 2 3/2.

It may be shown that the transverse velocity fields illus-

trated in Figures 3(c,d) and 4 do not give statically admissible
solutions when the influence of rotatory inertia is retained
in equation (la). For example, it may be shown that the solu-

tion of the equilibrium equations (la,b) with the velocity

field illustrated in Figure 3(c) gives a yield violation near
the plate center since m, = -1 and amr/aa<l at a = 0. It
turns out that in order to satisfy the kinematic and static
requirements, plastic hinges do not develop
in a plate, a circumstance which was also found in Reference
{ 5] for beams.

If M, = M, = -M_ and Ier < Q, throughout a plastic zone

]
in a circular plate with Ir $# o, then equations (la,b) give

o e IRt
FOMEY - 2y M
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azv';r/ar2 + r’laﬁ/ar - uv'v'/Ir = 0. (42)

If w(r,t) is written using the separation of variables, then
the spatial dependence of w is governed by a modified Bessel

equation of zero order. Thus,
3 e 1/2
w o= Cl(t)Io{(“/Ir) o (43)

when disregarding the usual Ko{(u/Ir)l/zr} term to avoid a
singularity at r = 0 and where cl(t) is an arbitrary function
of time, and Io{(u/Ir)l/zr} is a modified Bessel function of
the first kind of order zero. Equation (43) therefore leads

to a velocity field in the plastic zone
w=c®I1 (i) %) + pio), (44)

where C(t) and D(r) are found from the initial conditions and
the boundary conditions at the interface.

The response of a simply supported circular plate which
is subjected to a uniformly distributed impulsive velocity Vo

consists of the two phases of motion illustrated in Figure 5.

4.2.1 First Phase of Motion, 0 £ T X Tl'

The transverse velocity profile illustrated in Figure 5(b),
which has a central zone governed by equation (44) with a
stationary axisymmetric interface at o = 81 and a stationary

shear hinge at the supports (a=1l), may be written in the form

W, T = 1+ (W(T)-1}1_(a0)/I (aB)), 0 <o <8,  (45a)
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and w(a,T) = W, (D) (a-B;)/(1-6)) + W(T) (1-a) /(1-8,),

By Lok (45b) ;
since w(0,0) = 1 and W(0) = 1, and where
2 2
a“ =6/I, and I = GIr/uR & (46a,b)

Equations (45) give lﬁ(Bl,T)] = 0 and 3w(0,T)/3a = 0. Further-
more, y = 0, K, £ 0 and ée < 0 in the central plastic zone
(0 < o < By) with W < 1 which is consistent with the normality

requirements of plasticity associated with the portion me(a,T)

m (a,T) = -1 and |ga(a,T)] <1 of the yield surface in Figure
2, while in the outer region B, < a <1, Yy =0, ér =0,
and Ee;50 if ;1 < W and therefore me(a,T) =0 =t el mr(a,T)fo

and |q(a,T)| < 1.

Now, it may be shown when substituting the above generalized
stresses and velocity fields (45) into the equilibrium equa-
tions (la,b) and when ensuring g(0,T) = 0, q(1,T) = -1,

m(1,T) = 0, [m.(8;,T)] = 0, and [am_(B,,T)/3a] = O* that

*It may be shown when using equation (la) for the present

case with my = -1 for 0 < a < 1 with Bl time-independent
that [q(Bl, T)] = 0 may be replaced by the requirement

[Smr(81, T)/3%a) = 0 provided [82W(Bl, T)/aTz] = 0.

AR o i) 1 -
G TGN o .
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ala) = [VEI/VIWI, (aa) /T, (aB,)
mr(a) = me(a) = -1, for 0 < a < By (47a-c)f
and q(a) = (l-a){(3Bl+3a81—2a2-2a—2)ﬁ1 “
- (l-a)(l+2a)W}/{va(1-81)} - 1/a,

mr(a) = -(l-a)z{(3-481-2a81+2a+a2)ﬁ1 +
+ (l—az)W}/{a(l-Bl)} - I(l-az)(W14W)/{a(1-Bl)} -

- (1-a) (2v-1) /a, me(a) = -1, when Bl < Aot e (48a-c)
where W = -[(1-8)) 2(2+8,-v(1-8,%)} + 1{g +v(1-8) %11 /2, (49a)
W, = [(1-8,)2(1428,) - v(1-8,) 3 (1+38,) - I{B,+v(1-8.)2}1/Q, (49b)

1 1 1 1 1 1 1 '
and @=(1-8)) 2((1-8)) * (1+a8,+8,%) + 1(3+28,+8,%)). (49¢)
Thus, equations (49) with ﬁl(O) = #(0) = 1 predict
Wo=1 - [(1-8,)2{248,-v(1-8,2)} + I{B,+v(1-8,)°}IT/a (50a)
= 1 1 1 by ¥ULLEE, a

and Wy = 1 - [v(1-8,)°(1+38)) - (1-8))%(1+28,) +

+ 1{8,+v(1-8)) *}11/0, (50D)

so that motion ceases at

T, = T8 +v(1-8) %) - (1-)) (1428, - v(1-) (43117 (5

when Wl = 0, and the associated dimensionless transverse dis-

placement at the supports is
+

Io( ) and Il( ) are modified Bessel functions of the first

kind of orders zero and one, respectively.




16

W, (r)) = QI21(s,+v(1-8)%)} - 2(2-8,) {1428 -v(1-8)) (143NN 7L (52)

It was remarked previously that the flow rule of plasticity

requires W, - W<0 and W < 1 which leads to the restriction

3(1+8,) /{2(1-8,) (1428 ) }< v <{(1-8 )% (2+8)+18,}/{(1-8)) * (1-8, %-1}. (53)

The location of the stationary interface between the two
plastic zones at a==Bl is obtained from the requirement that

i22u(8,,m) /3t%] = 0%, or  I,(aB))/I_(aB;) =

Py 2 £ C o R
= (1-31){2V(l-31)(1+231)-3(1+Bl)}[(1'81) {2+31 v(l 81 )} +

s 1{31+v(1-31)2}1“1. (54)

This equation may be evaluated numerically to predict the
position of the interface Blas shown in Figure 6. It turns
out that the inequality (53) is satisfied up to at least

v = 50 when the calculations were terminated.

4.2.2 Second Phase of Motion, T1 2 T Tf.

The transverse velocity is zero at the supports and the
dimensionless radius B of the central plastic zone decreases

with time during the second phase of motion which is governed

*It was remarked in a previous footnote that the requirement
[q(Bl,T)] = 0 may be replaced by [amr(Bl.T)/aa] = 0 provided
(2% (8,,m /312 = o0.

i AT R L5
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by the transverse velocity profile in Figure 5(c) which is

described by equations (45) with W, = 0 and By replaced by

B(T). This velocity profile gives [w(B,T)] = 0 and therefore

[gq(B,T)] = 0 is required according to equation (4b). Fur-
thermore, if [mr(B,T)] = 0, then from equation (4a),

[V(B,T)] = 0, which leads to the expression
W= a(l-g) 1, (ap)/{I_(ap) + a(l-p)I;(aB)}. (55)

Thus, the equilibrium equations (la,b) with q(0,T) = 0,

mr(olT) me(olT)' [mr(BIT)] = or [q(BrT)] = ol and

mr(l,T) = 0 gives

qla,T) = (/EEVv)(1-3){Il(aa)/xo(as)}(d/dT){ﬁ/(1-8>},

mr(a,T) = me(a,T) = -1 for 0 < a < 8, (56a-c)
and
qla,T) = (4(a3-83)-6(a2-82)-12bB(1-8) } [2va(1-B) {(1-8) 2(1438) +
+ T(1+8)+12bg(1-p)}17 T,
o 2 2 3
m.(a,T) = (1-a) {B(1+B-B")-a(l+a-a”) -I(a=-B) }{a(l-B) " (1+38) +
2 2,-1
+ aI(l-8°)+12abB(1-8)“} - B{l=a)/{a(l=g)},
and me(a,T) = -1, when B <a<f 1, (57a-c)
where b = Il(aB)/{an(aB)}, (58a)

1

and (d/dT) {W/(1-8)} = -{(1-g) 3 (1+38)+I(1-8%)+12bg(1-p) 2} L.

Equations (55) and (58b) may be solved to give the

velocity of propagation (B) of the interface at o=8

(58b)
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B = -g{1+a’b(1-8) }°[a®b(1+cB) ((1-8) 3 (1+38) +
+ 1(1-8%) + 12b8(1-p)2)7Y, (59a)

where

c = aIz(aB)/Il(aB), (59b)

and IZ( ) is a modified Bessel function of the first kind
of order two.

It is evident from equation (55) that when B = 0 and
T = 'rf then ﬁ = 0 and the motion of the plate ceases. The
duration of the second phase of motion may be obtained

numerically from the expression

Ty - T, JO as/p (60)

B(T))

according to equation (59a), where B(Tl) is calculated from
equation (54). It turns out that a numerical evaluation of
equation (60) up to v = 25 when the calculations were termin-
ated gives a total duration of response Te = 2

The maximum permanent transverse displacement at a = 0

when T = Ty may be evaluated numerically from the expression

0

B(Tl)
where W(0,T) = 1 + (W-1)/I_(ag) (61b)
from equation (45a) (with Bl replaced by B(T) ), and
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BUD.E s B, - [LI=B )R 5eE. o (BP0} &
wi0.%,)= T, 1 By 1
I{8,+v(1-8,) 2} T.2/{201 (aB,)} (61c)
+ I{B +v(1-B4 1 ol2By

according to the integral of equation (45a) with a = 0

and where T, is given by equation (51).

5. Discussion

It may be shown that the theoretical analyses presented
in sections 3 and 4 are kinematically and statically admissible
and therefore exact within the setting of classical plasticity
for the yield surface in Figure 2. The amount of shear slidina
at the plate supports in these analyses should satisfy the
criterion represented by equation (14) as discussed in Refer-
ence [21]. 1In addition, the material is assumed to be strain
rate insensitive, and in order to remain consistent with an
infinitesimal theory the difference between the maximum trans-
verse displacements at the plate center and the transverse
shear sliding at the supports should be less than the plate
thickness, approximately.

The theoretical analysis in section 3 with I = 0 and a
finite transverse shear strength (v < «) is compared in Figures
7 and 8 with the theoretical predictions of Wang [17] which
retains neither transverse shear (v = =) nor rotatory inertia
(I = 0) effects. 1Incidentally, the various equations in sec-
tion 3 with v + »reduce to the corresponding theoretical pre-

dictions in Reference [17]. It is evident from Figures 7 and




8 that transverse shear effects play an important role when :J
v is small, as expected. However, the results in Fiqures 7
and 8 with I = 0 and v > 5, approximately, are similar to

those of Wang, although Figure 9 reveals that a significant

portion of the initial kinetic energy is dissipated through
shearing deformations at the supports for larger values of

V. The theoretical solution in Reference [8] for a simply
supported circular plate subjected to a uniformly distributed
static pressure indicates that transverse shear effects do not
influence the static collapse behavior for the yield surface

in Figure 2 when v > 3/2. Thus, the present study demonstrates

that transverse shear effects are more important for the dy-

namic case than for the corresponding static problem as also

found in Reference [20] for beams and discussed in References
[4] and [5]. It should be noted that v = R/H for the parti-
cular case of a circular plate having a solid homogeneous

cross-section with Qo = ooH/Z and MO = o°H2/4.

On the other hand, if a circular plate is constructed with a

sandwich cross-~section, then an inner core of thickness h and

a shear yield stress T supports a maximum transverse shear -
force Q0 = roh (per unit length), while thin exterior sheets

of thickness t can independently carry a maximum bending moment
Mo = obt(h + t), where % is the corresponding tensile yield 3
stress. In this circumstance v = QOR/2Mo gives

v = (B To){ h/H } ‘3
R T L




:
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when H h + 2t. Thus, a sandwich plate with 2R/H = 15,

8, and h/H = 0.735 (e.g., a 0.5 in. thick core with

00/21o
0.1 in. sheets gives h/H = 0.714) gives v = 1.5 for which
transverse shear effects are very important according to the
results in Figure 7.

It is evident from Figure 7 that the inclusion of rotatory
inertia in the governing equations and the retention of trans-
verse shear as well as bending effects in the yield criterion
leads to an increase in the permanent transverse shear sliding
at the plate supports and a decrease in the maximum final
transverse displacement which occurs at the plate center. How-
ever, the inclusion of I gives rise to respective changes in
these quantities of approximately 11.5% and 14.2% at most. Thus,
the simpler theoretical analysis in section 3 with I = 0 would
probably suffice for most practical purposes. If greater
accuracy is required, then it is only necessary to include I
for circular plates with 1.5 < v < 4, approximately.

The duration of response T_. = 3/v is independent of rota-

f
tory inertia effects when v < 3/2. Furthermore, Tf = 2 |is
independent of both I and v when v > 3/2.

It turns out that the theoretical analysis for the im-
pulsively loaded simply supported circular plate presented
herein has many features in common with the corresponding the-
oretical solution for an impulsively loaded simply supported
beam which was discussed in References [5] and [22]. A beam

with I = 0 has three classes of motion v <1, 1 < v < 1.5,

and v > 1.5 and transverse velocity profiles associated with
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each of these regions are similar to those in Figures 3 and

4 here for the three classes of plate behavior examined in
section 3. Two classes of behavior occur for impulsively
loaded simply supported beams with v < 1 and v > 1 and I ¥ 0
[S]. The corresponding transverse velocity profiles are sim-

ilar to those found in section 4 here.

6. Conclusions

A theoretical solution for an impulsively loaded circular
plate made from a rigid perfectly plastic material has been

developed when the transverse shear force as well as bending

moments are retained in the yield condition and the influence
of rotatory inertia is included in the governing equations.
Transverse shear effects are important for small values of
v(QOR/2MO), as expected, while rotatcry inertia can further
decrease the maximum permanent transverse displacement up to
about 14 per cent when v > 1.5, Thus, the simple theoretical
analysis with I = 0 in section 3 should suffice for most
practical purposes, except possibly for circular plates with

1.5 < v < 4, approximately, when greater accuracy is required.
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Titles of Figures

Figure 1. Element of a Circular Plate.

Figure 2. Yield Surface.

Figure 3. (a) Impulsive Loaded Circular Plate, (b) Velocity
Profile for Class I Plates, (c) Velocity Profile for the
First Phase of Motion for Class II Plates, (d) Velocity
Profile for the Second Phase of Motion for Class II Plates.
Figure 4. (a) Impulsively Loaded Circular Plate with v > 2,
(b), (c), (d) are the Dimensionless Velocity Profiles for

the First, Second, and Third Phases of Motion for Class III
Plates.

Figure 5. (a) Impulsively Loaded Circular Plate with v > 3/2
and I # 0. (b), (c), Velocity Profiles for the First and
Second Phases of Motion.

Figure 6. Variation of Bl with Vv, where I = 1/2\)2 for a

circular plate with a solid cross-section.

equation (32), =----=--- equation (54).

Figure 7. Variation of Maximum Permanent Transverse Dis-
placements at Plate Center (Wf) and Plate Supports (Wl).
Figure 8. Permanent Deformed Profiles of Circular Plates
(0 £a=21).

Figure 9. Proportion of Initial Kinetic Energy Absorbed

Due to Shearing (RS) and Bending (RB) Deformations.
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