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SUMMARY

An F-16 advanced electro-optical (EO) pod field of
view (FOV) simulation study was accomplished to determine
the effects of sensor FOV and field-of-regard (FOR) on the
pilot's workload and ability to locate, acquire, and attack
targets in a day weapons-delivery environment. The simula-

- ted EO pod had a slewable TV sensor and laser designator
head with two selectable FOVs for the TV sensor (wide and
narrow FOVs), selectable area correlation and contrast
tracking modes, and the capability to be either slaved to
a preprogrammed set of coordinate or slaved to the air-
craft's velocity vector. -Three combinations of wide and
narrow FOV pairs representative of current EO pod designs
were examined - 6 and 1.5 degrees, 6 and 0.86 degrees, and
3 and 0.86 degrees. The three FOV pairs were evaluated
subjectively and objectively in three experiments. ™ Each
experiment was designed around a laser-guided weapon and
a corresponding weapon delivery mode. The weapons simula-
ted in the study were chosen from current and potential
(weapons under development) laser-guided ordnance -- GBU-10,
Laser Guided Maverick, and Sabre. The weapon-delivery
modes simulated were derived from basic F-16 avionics ca-
pabilities. The weapons and weapon delivery modes were
chosen to interact with the FOVs of the simulated EO pod so
that each FOV pair could be evaluated under separate ac-
quisition range, weapons delivery, and target constraints.

For the three experiments, interdiction mission scen-
arios were designed around a high-threat, Central European
environment that included simulated visibility and weather-
ceiling restrictions. Pilots emploved high-speed low-
altitude egress to counter the simulated threat and weather
environment.

In each experiment, the three FOV pairs were evaluated

at long, intermediate, and short aircraft-to-target ranges.
The ranges were based on typical visibility restrictions
in the Central European region and on weapons-delivery

» constraints. The ranges were controlled through prebriefed
pop-up points and the activation of the EO pod video at
specific aircraft-to-target ranges. With three data run
replications planned for each range point, each experiment
contained a total of 27 data runs (3 FOV pairs X 3 ranges
X 3 replications = 27 data runs).
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Subjective data from each participating pilot were
obtained through questionnaires. In the questionnaires,
pilots rated each FOV pair by workload and system effect-
iveness at the completion of each experiment and at the
completion of all experiments. Objective data were obtained
from each data run through measures of specific parameters
related to pilot workload and system effectiveness. Work-
load measures were total time to acquire (lock on) the tar-
get and the number of pod-related events to acquire (lock
on) the target. Pod-related events consisted of pod-sensor
slewing events, target designation events, and FOV changes.
Effectiveness measures consisted of target acquisition and
weapons delivery success rates. Other objective measures
were target acquisition and weapons delivery ranges.

Six of eight pilots scheduled to participate in the
study completed all the experiments. Two pilots did not
complete the experiments because of a facility breakdown.
The analysis of pilot ratings determined that the 6° and
1.5° FOV pair provided the least pilot workload and the
most system effectiveness. Analysis of the objective work-
load measures determined that the 6° and 1.5° FOV pair pro-
vided the lowest pilot workload over the three experiments.
Analysis of the objective effectiveness measures did not
determine any significant difference between FOV pairs. This
was most likely due to the small subject population and the
large variance between pilot performance levels. The trends
in the target acquisition and weapons release range indica-
ted that the 6° and 1.5° FOV pair provided the longest tar-
get acquisition and weapons release ranges. Analysis of
narrow-FOV utilization determined that narrow-FOV usage for
target acquisition was significantly higher in the 1.5°
narrow FOV.

The pod-sensor FOR was evaluated through analysis of
pod-seeker line-of-sight warning, obscuration, and gimbal
limit data. A simulated pod-seeker line-of-sight obscura-
tion limit was implemented in the simulator on the basis
of actual F-16 aircraft/stores masking - with the pod mount-
ed at the lower right side of the air inlet. For convenience
of analysis, the pod-seeker gimbal limits were defined from
150 to 180 degrees of azimuth at zero degrees of elevation
(see Figure 1.1-4, page 7). In addition, a warning tone was
provided to the pilots that had an onset 10 degrees below
the obscuration and gimbal limits. Analysis of the pod-
seeker line-of-sight warning, obscuration, and gimbal limit
data from the data runs determined that
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1, Pilots responded well to the warning in that
out of 255 warnings only 90 resulted in pod-
seeker line-of-sight obscuration or gimbal
limit.

2. The largest percentage of pod-seeker gimbal
limits occurred between 160 and 170 degrees
of azimuth.

From the results of the FOV and FOR analyses, it is
concluded that

1. Given the mission and environment simulated
and the simulator constraints, the 6° and
1.5° FOV pair provide the lowest pilot work-
load and the best system effectiveness of the
three FOV pairs evaluated.

2. Pod-sensor gimbal back-look limits between 160
and 170 degrees accommodated the majority of
pod-sensor gimbal limits required for laser
guided bomb delivery in the study.

3. Because of excellent pilot response to the
pod line-of-sight obscuration and gimbal limit
warning in the study, consideration should be
given to the implementation of a warning system
on aircraft carrying an advanced EO pod.
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SECTION 1

INTRODUCTION

The F-16 advanced electro-optical (EO) pod field-of-view (FOV)
study was accomplished by General Dynamics at Martin-Marietta's
Simulation and Test Labcratory (STL) under contract to the United
States Air Force, Aeronautical Systems Division (ASD). The study
was conducted to aid ASD in defining pod field-of-view and field-
oI-regard requirements for a daylight advanced EO pod employed from
an F-16 type fighter aircraft. The study was confined to the ex-
amination of three FOV pairs, provided by ASD/AER, which are re-
presentative of current EO pod designs. The three FOV pairs were
evaluated in a simulated Central European weapons delivery environ-
ment by TAC pilots emploving current and potential laser-guided
weapons, weapons delivery modes derived from basic F-16 avionics
capabilities, and up-to-date tactics. The objective of the study
was to determine which FOV pair created the lowest pilot workload
and the greatest effectiveness in locating, acquiring, and attack-
ing targets in the simulated environment. In addition, pod-sensor
gimbal angles were investigated during target attacks from weapon
delivery to weapon impact to determine the pod field-of-regard
required by a pilot to successfully deliver laser-guided ordnance.

Before the simulation tests were conducted, a test plan
(Reference 1) was prepared and submitted to the Air Force for
approval. Since this plan is lengthy, it is summarized in this
report for convenience (Section 2) so that along with the infor-
mation provided in the following sections (Sections 3, 4, and 5),

a coherent final report would result. Also, details on the stat-
istical equations used to achieve the study results, the supportive
data from which the study results were derived, and a detailed
description of the simulation facility are provided in three
appendixes (Appendixes A, B, and C, respectively).




SECTION 2
SIMULATION DESCRIPTION

2.1 Simulation Configuration

2.1.1 Simulation Facility

- The study was conducted at the Simulation and Test Laboratory

(STL) of the Martin Marietta Corporation, Orlando, Florida. The
simulation was mechanized through an F-16 cockpit mockup, analog and
digital computers, a terrain board, and an electro-optical probe

system. The F-16 cockpit mockup configuration was based on the full-
scale development (FSD) aircraft and contained the controls and dis-
playvs required to operate the aircraft and deliver various laser-

guided weapons employing an electro-optical pod. The major controls

and displays employed in the cockpit mockup are depicted in Figure 2.1-1.

The computer software implemented in the study consisted of an
F-16 aerodynamic model adjusted for representative ordnance load; a
model of the fly-by-wire flight control computer; a model of the
integrated digital avionics system; and a model of the advanced EO
pod, which included a SLAVE mode (pod sensor line-of-sight slaved to
preselected coordinates or to the aircraft's velocity vector), an area
correlation track mode, and a contrast track mode. Also implemented in
the computers was the fire control logic, release constraints, ballis-
tics, and heads-up display (HUD) symbology for each weapocn system and
delivery mode simulated. '

The terrain board was 80-feet long by 40-feet wide which, at a
scale of 1200 to 1, provided a 16 n.mi. by 8 n.mi. area of simulated
terrain. Mirrors surround the terrain to provide the illusion of
terrain extension. Motion excursion limits implemented in the compu-
ters to prevent the electro-optical probe system from damaging the
mirrors limit the working area on the terrain board to an approximate
l4 n.mi. by 7 n.mi area. The topography of the terrain board was
characteristically Central European and contained all the natural and
man-made features normally found in that region. A two-probe EO system
was suspended over the terrain board by a gantry that was driven in
combination with the terrain board to provide the flight simulation.
The orientation of the two probes was fixed longitudinally. The North
probe provided the video for the windscreen display at the cockpit mock-
up. The South probe, which was located 1 foot (1200 scale feet) behind
and 2 inches (200 scale feet) below the North probe, provided the
simulated EO pod video at the cockpit mockup.

An experimenter's console was also provided at the cockpit
mockup. The console contained the necessary computer controls,
video displays, and communication lines for the experimenter to
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monitor and conduct all familiarization, training, and experimenta-
tion. Photographs of the simulation facility are provided in
Figures 2.1-2 and 2.1-3., A detailed discussion of the simulation

e
facility is contained in Appendix C.

2.1,

(g%}

Field-of-View Pairs

. The following three field-of-view pairs were implemented in
the study:

1. 6 degrees and 1.5 degrees

degrees and 0.86 degree

3
.
(o))
(0]

-~

3. 3 degrees and 0.86 degree

The original intent of the studv was to evaluate a 1.5-degree
and a l-degree narrow FOV, Underscanning the 1.5-degree FOV to
achieve a l-degree FOV was attempted; however, the resultant
video was unusable. Therefore, a new lens which provided an 0.86-
degree FOV was manufactured by lMartin Marietta, Although the
video clarity provided by the 0.86-degree lens was degraded as
compared with the 1,5-degree FOV, it was usable and was as close
to the desired l-degree FOV as was possible given the time and
cost constraints of the study.

2.1.3 Field-of-Regard

For the purposes of the simulation, the assumed mounting
location for the pod was on the lower right side of the F-16's
air inlet (pod-seeker gimbal located at FS-178.24, WL-48, BL-20).
At this location, the pod sensor masking limits were as described
in Figure 2.1-4, assuming gimbal limits between 150 and 180 degrees
of azimuth at zero degrees of elevation. Equations which approxi-
mated the true masking limits were developed and implemented in the
computer, which veilded the simulated aircraft/stores limits de-
picted in Figure 2.1-4. 1In addition, an aircraft/stores masking
and gimbal limit warning which provided a warning tone to the
pilot 10 degrees below the simulated limits was implemented in the
simulator. The warning onset is also depicted in Figure 2.1-4.

2,1.4 Weapons and Weapons Deliverv Modes
P I

Weapon simulations implemented for the study consisted of a
laser-guided bomb (LGB) with MK-84/GBU-10 ballistics and charac-
teristics; a standoff- range laser-guided missile (LGM) with laser-

L
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guided Maverick characteristics; and a short-range, light-weight,
laser-guided missile (LWLGM) with Sabre characteristics.

Weapons delivery modes for the study were created from basic
F-16 avionics capabilities to support the weapon system and mis-
sions chosen for the study. The standard F-16 Continuously Com-
puted Release Point (CCRP) weapons delivery mode was simulated
for the delivery of laser-guided bombs against prebriefed tar-
gets. This mode provided head-up and head-down cueing and stee-
ring to a preprogrammed set of target coordinates and head-up
weapons release solution cues for weapons delivery. Employing
this mode, the pilot had the capability to toss, to deliver
level, or to divedeliver the weapon at the target.

A candidate laser-guided Maverick head-up delivery mode was
simulated for attacking prebriefed targets. Missile acquisition
and launch symbology was implemented on the head-up display for
weapon delivery, and target cueing was provided on the head-up
and head-down displays as in the CCRP weapons delivery mode.

A candidate visual target-acquisition weapon delivery mode
for attacking targets of opportunity was simulated for the de-
livery of the light-weight laser-guided missile. In this mode
the seeker head of the missile and line of sight of the EO pod
were initially slaved to the flight path of the aircraft. Because
this technique is found in the dive-toss weapons delivery modes
on aircraft, this mode was named the Laser Guided Missile Dive
Toss (LGMDT) weapons delivery mode. Missile acquisition and
launch symbology was implemented on the head-up display as in the
Maverick mode.

In addition to the weapons delivery modes, the F-16 naviga-
tion (NAV) mode was simulated to provide the pilot with the means
to steer to a waypoint prior to target attack. The weapons, wea-
pons delivery modes, and navigation mode simulated for this study
are summarized in Figure 2.1-5, !

2.1.5 EO Pod/Weapon/Weapon Delivervy Mode Interaction

- The weapons, weapon delivery modes, and attack scenario em-
ployed in the study were chosen to have a specific impact on the
requirements for an EO pod. The LGB/CCRP combination was chosen
to investigate the impact of aided target acquisition (target
cueing) and weapons delivery from medium to short ranges on the
pod sensor wide and narrow fields of view. Since the LGB has the
longest time of flight, it was also chosen for its impact (follo-
wing weapon release) on the pod sensor field-of-regard require-
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Figure 2.1-5 Simulated Weapons and Weapon Delivery Modes
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ments. The LG Maverick/LGM combination was chosen to investigate
the impact of aided target acquisition and weapon delivery from
stand-off ranges on the EO pod sensor narrow fields of view. The
LWLGM/LGMDT combination was chosen to investigate the impact of
unaided (visual) target acquisition and weapons delivery from
close ranges on the EO pod sensor wide fields of view. The EO
pod/weapon/weapon delivery mode interactions are summarized in
Table 2.1-1.

2.2 Experimental Method
The experimental design, the evaluation basis, and the data
retrieval system emploved in the study are described briefly below.
Details are given in Reference 1, Sections 4 through 7, pages 20

through 58,

2,2.1 Scenarios for FOV Evaluation

Interdiction missions were simulated in the study. For
laser guided bombs, a deep interdiction mission (40 miles behind
the FEBA (Forward Edge of the Battle Area) against prebriefed
fixed targets was simulated. Targets consisted of bridges, POL
storage tanks, aircraft hangers, etc. For the laser-guided
Maverick, two interdiction missions were simulated -- interdiction
(1-5 miles behind the FEBA) against groups of armored vehicles in
battle arrays, and interdiction (40 miles behind the FEBA) against
both armored vehicles in battlefield and linear arrays and fixed
hardened targets (aircraft revetments, bunkers, etc). For the
LWLGM, an armed reconnaissance mission behind the FEBA against
armor in both linear and battlefield arrays was simulated.

With the exception of the Maverick shallow interdiction mis-
sion, the mission profile was low-altitude (500 feet AGL), high-
speed (540 KTAS) ingress, pop-up for target acquisition and weapons
delivery, and low-altitude (500 feet AGL) egress. The ingress
altitude was set at 500 feet in lieu of multiple altitudes of 250,
500, and 1000 feet owing to the need to limit the length of the
tests because of simulator facility availability. The Maverick
shallow interdiction mission was conducted at 2000 feet and 540
KTAS for ingress so that target acquisition could be examined at
long range. The attack scenarios emploved for each weapon and
weapon delivery mode are depicted in Figures 2.2-1 through 2.2-4,

A Central European environment was simulated. The simulated
environment included West German topography on the model board,
limited visibility (3 to 6 n.,mi), and a low weather ceiling
(2500 feet MSL). Since actual visibility restrictions (smoke,

10
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haze, dust, etc.) could not be simulated, target visibility was
denied to the pilot by using terrain masking during the low-alcizude
ingress and by turning the video off to the radar/electro-opticel
(REQO) displav until a specific range to target was reached. The
weacher ceilin ng was simulated by briefing the pilots to stay below
2500 feet MSL in their pop-up maneuvers and by penelizing them

the run unsuccessful when theyv flew above the briefed

2.2.2 Experimental Design

The studv consisted of three experiments. Each experiment was
esigned around a weapon and the co*respond;nc weapon delivery
ode -- LGB/CCRP, LG Maverick/LGM, and LWLGM/LGMDT--emploving the
ttack scenarios described above. In each expierment, the pilot's
14
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m

ability to employ each of the FOV pairs at three pop-up/REO dis-
plav activation ranges was investigated. The pop-up and REO cis-
plav activation ranges were based on wezpon capabilities and tvpi-
cal weather phenomena for the Central European environment. Th
detailed rationale for pop-up and REO display activation ranges in
each experiment is given in Table 2.2-1. Three replications were

planned for each FOV pair and pop-up/REO activation range combina-
tion. The resultant experimental matrix for each experiment had
27 data runs (3 FOV pairs X 3 pop-up/REO activation ranges X 3
replications = 27 data runs). The total of three experiments thus
contained 81 data runs (3 experiments X 27 data runs/experiment).

So that the results of the simulation would not be influenced
by unrealistic inertial target accuracy or by pilot memorization
of target locations, additional parameters were varied. An error
of 1000 feet was introduced with random azimuth for each pre-cuec
target to simulate inertial error and coordinate uncerctainty. This
error assumed an inertial update within 5 minutes of the target
with an inertial drift rate of 1 n.mi/hr. Twelve targets were
assigned to each of the three experiments (36 separate targets).

To keep target studyv to an acceptable level, four separate targets
were assigned to the nine data runs for each FOV pair. During the
nine data runs for each FOV pair in an experiment, the four tar-
gets were ordered such that that pilot would not attack the same
target without first attacking two other targets. No target was
attacked more than three times. When the same target was attacked
more than once, the run-in heading was varied at least 30 degrees
so that the pilot never achieved the identical target aspecct.

In each of the three experiments, nine sets of conditions
were tested, each representing a unique combination of FOV pair
and pop-up/REO activation range. Each set of conditions was re-
peated three times against different targets. The effects of tar-

16
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get order and difficulty on the data were removed by systematically
counterbalancing the nine conditions over the run matrices for
three sets of two pilots. Therefore, six pilots had to complete
all 81 of the data runs to fully counterbalance the data. The
counterblanaced run matrices for each experiment are shown in
Tables 2.2-2 through 2.2-4,

2.2.3 Subject Pilots

A total of eight subject pilots were requested from the Uniced
States Air Force Tactical Air Command to participate in the study.
The request covered four A-7 qualified pilots from operational
squadrons and four F-4 qualified pilots, two from an operational
squadron at Eglin AFB, Florida, and two from Nellis AFB, Nevada.
Pilots were to be randomly selected with the exception that none
were to have experience flying the F-16 aircraft. The mix of A-7
and F-4 pilots was requested to obtain pilots with and without
head-up-display (HUD) experience. The eight subject pilots are
listed in Table 2.2-5 along with their experience.

2.2.4 Evaluation Basis

The evaluation of the FOV pairs was based on two data sources
-- subjective data elicited from the pilots through questionnaries
and objective data taken from parameter readouts provided by the
simulation computer after each of the data runs. Because of the
brevity of the experiments (small subject population and small
number of replications for each data point), the primary data
source was the subjective data.

For the FOV pair evaluation, both data sources were broken
into two categories - pilot workload and system effectiveness.
For the subjective analysis, pilots rated workload and system
effectiveness for each FOV pair in each weapon delivery mode.
The collective ratings were analyzed to determining which FOV
pair provided the least workload and the most effectiveness
over the three weapon delivery modes. For the objective analysis,
separate measures were employed to determine pilot workload and
system effectiveness. Pilot workload was evaluated by two mea-
sures. The first was to determine the time required by the pilot
tdo locate, acquire (lock-on) and identify the target emploving
each FOV pair. Included in this measure was total time to locate
acquire and identify the target in both wide and narrow FOVs and
the time spent in each wide and narrow FOV. Since the pilot had
to physically operate discrete switches and controls to search
for, acquire and verify the target, the second workload-measure
was to sum the number of discrete switch and control operations
related to the pod during this phase of the mission. These opera-

18
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Table 2.2-2 COUNTERBALANCED LGB/CCRP RUN MATRICES

Note: Number inside matrices indicate sequence

in which data runs.were accomplished.

WEERK #1 PILOTS 1 & 2

RS REQ RANGE
75 T 6 N 4.5N4
N
FoV NEBE I EERERREET AT N
o 5 1 b2t sl alslal 2dml s
6° & 1.5
1001212131615 1617} 18
6° & 0.86° !
19| 20 | 22 2% | 2 27
. 9 21 23 5| 26
WEER #2 PILOTS 3 & &
R..O R-\I-bi
RE
PLICATIO 3N 4. 5N 6304
T~
Fov L 11 2131 112131101213
6° & 0.86° 1 e o
3% 2 o.58° 10 14 18
19 23 27
6" & 1.5°
WEER #3 PILOTS 5 & 6
Reo-FEO RANGE
L o 4. SN 6N k)
FOV 1l 201 3ft1]213] 11213
3° & 0.86° 1 S °
10 14 18
613
6 & 0.86° 19 23 27

S —
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Table 2.2-3 COUNTERBALANCED LG MAVERICK/LGM MATRICES

Numbers inside matrices indicate sequence

Note:
in which data runs were accomplished.
WEEK #1 PILOTS 1 & 2
oo RE0 RANGE
fLg o 68 4Nt ART
Fov ST 1121311121311 1z213
3 1ol gl stel 7] 813
6° & 0.86°
B 2n P 10| 12220 13] 15§25} 36 27} 218
19 {20 1 211 22| 23} 26 | 25 | 26 | 27
3® & 0.86°
WEEK #2 PILOTS 3 & &
REQ RANGE
R
L%, 5 4N ARI 6t
Fov T 1T 20131 112130111213
5 9
6° & 1.5° .
3% & 0.88° 10 14 18
& 5 658 19 23 27
WEER #3 PILOTS 5 & 6
4NM 6NM
11 21 2] 31 271 3
5 9
A 18
23 27




Table 2,2-4 COUNTERBALANCED LWLGM/LGMDT RUN MATRICES
Note: Numbers inside matrices indicate secuence
in which date runs were accomplished.
WEER #1 PILOTS 1 & 2
PCP-UP
RE:’» <% '-A\’FEI
224 Lok 7 .5 400
Gy ™ 5.5Mt 2
FOV AT EEEETE R A EE R
Q
30 & 0.86° 1 2 3 4 5 6 7 8 9
0 ° 10 11 12 13 14 15 16 17 18
6~ & 0.85
19 20 1 22 24 25 6 27
60 & 1.50 21 yA 23 & 2
LTEY 12 PTIOTS. A & L
R PCP-CZ
£ QaneT
SLIones 5.5NM 4N ™\
FOV Fi i3y 3 Tt 28303124 21| 3
1 5 9
6° & 1.5°
10 14 18
6° & 1.5°
1° & 0.86° L 23 -
WEEX #3 PILOTS S & 6
R L0PLP
B 7 5. st
FOV AR EEES T BN NN
) 5 9
6° & 1.5°
3° & 0.86° 30 o =
2 27
6° & 0.86° i .
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tions included pod sensor slewing, target designation events, and
pod FOV changes.

System effectiveness with each FOV pair was evaluated by two
measures -- target acquisition success rates and weapons delivery
success rates. Target acquisition success rates were used to
measure system effectiveness during initial target search, acqui-
sition and verification. Weapons delivery success rates were used
to measure svstem effectiveness after initial target acquisition
during weapons delivery and the designation turn. Target acquisi-
tion success was based on whether or not the pilot found the
correct target and locked the pod on it outside the minimum wea-
pons delivery range. The determination of weapons delivery suc-
cess or failure was much more complex. The conditions for
success were based on:

1. Meeting weapon release constraints

2. Tracking the target consistently (laser aiming) during
the weapon's time-of-flight

3. Keeping the laser "OXN" consistently during the weapon's
time-of-£flight,

Pod sensor field-of-regard requirements were evaluated
through an analysis of pod line-of-sight warning and obscuration
data. These data were applied to the aircraft masking and pod
gimbal limits emploved in the study to define the field of re-
gard required by pilots to deliver laser-guided weapons from the
F-16 aireraft.

2.3 Data Categories Evaluated
A brief description of the subjective and objective data
evaluated in the study is given below. A complete description of

the data collected during the course of the experiments is given
in Reference 1, Section 7 and Appendix B.

2,3.1 Subjective Data

Three subjective data categories were evaluated in the study:
pilot comments and observations, pilot FOV pair workload ratings,
and pilot FOV pair effectiveness ratings. All subjective data were
collected on debriefing forms emploved after each data run, after
each simulation period, after the completion of each experiment,
and after the completion of all experiments.
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Pilot comments and observations were summarized both from
their direct responses to questions in the debriefing materials
and from their unsolicited remarks regarding the pod FOV pairs. ;
Following the completion of each experiment and after all experi-
ments were completed, the pilots rated the relative workload and
effectivenessS associated with each FOV pair on a scale ranging
from 0.0 to 10.0 for a series of four tasks:
y ’
1. Search for targets

2. Verify targets
3. Fly designation turn and maintain tracker on target
4, Perform complete mission (summarv of all tasks).

Included in the ratings was one non-pod-related task, weapon de-
liverv. An example of the questionnaire, showing the rating scale,
is presented in Figure 2.3-1. Data were retrieved from the scales,
which were exactly 10 cm long, by measuring the distance from the
left-hand index to the point at which the pilot had indicated his
rating for each FOV pair.

2.3.2 Objective Data

The objective data were subdivided into the following four
categories:

1. Workload data
2. Effectiveness data

3. Other data (data collected to evaluate the FOV pairs
which did not fit either workload or effectiveness
categories)

4, Field-of-regard data,

The majority of the objective data was taken from parameters mea-
sured by the computer during each data run and printed immediately
after the run. A sample end-of-run computer printout with pertinent
events highlighted is shown in Figure 2.3-2.

2.,3.2.1 Workload Data

As previously discussed, the workload data consisted of tar-
get acquisition time lines and pod-related events. In both the
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Figure 2.3-1 Debriefing Questionnaire Example
(not to scale)

On those questions requiring a subjective rating, place an X and
the field of view pair (6°/1%°, 6°/1°, 3°/1°) at the appropriate
spot along the rating line.

Example:
Least 100%
Effective Effective
L 16%4ax° 13%0a° y  6%41% 4 |

FOV Effectiveness

1. Rate the performance effectiveness of each FOV pair for
each of the following tasks.

Task Effectiveness

Least 1007

Effective Effective
Perform Complete Mission L1 | 11 1 | | | 1
Check Waypoints (LGMDT) AN W DN R ST PN N
Search for Targets l 1 | P (| S e ) J
Verify Targets l | { RN [0l [ ot S i S ALAAJ
Wpn Delivery l ] gt | M e ) AJ
Fly Designation Turn LA_ [ S T . S N TS AJ
Other l | | 1 | | | 1 ]
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LGB/CCRP and LG Maverick/LGM experiments, the time to search,
acquire (lock-on) and verify the target was determined in each run
by measuring the time from REO activation to target acquisition.
Acquisition of the target was determined by the: experimenter, who
placed a '"MARK" in the data when the pilot designated (locked the
pod tracked on) the correct target. The pod-related events per-
formed to search, acquire (lock-on), and verify the target were
summed from REO activation to target acquisition.

In the LWLGM/LGMDT experiment, the REO display was on through-
ut the run; therefore, a different technique for measuring acquisi-
ion time and pod-related events was applied. Following the pop-
up maneuver, pilots did not go head-down and begin slewing the pod
sensor to search for the target until theyv located the suspected
target area heads-up on the windscreen display. Therefore, the
time to search, verify, and acquire the target employing the EO
pod was measured from the first slewing event following the pop-up
maneuver to target acquisition. Pod-related events were measured
by the same criteria.

~
o
-

2.3.2,2 Effectiveness Data

Effectiveness data consisted of acquisition and weapons de-
livery success/failure data for each run accomplished over the
three experiments. Acquisition success was initially determined
at the experimenter's console, where he placed a '"MARK" in the
data when the pilot successfully acquired (locked-on) the correct
target with the EO pod. The acquisition success was later con-
firmed by reviewing the data printout to determine if the acqui-
sition was made outside minimum weapons delivery constraints.

In a few instances, either the experimenter forgot to insert the
mark in the run event data or the computer malfunctioned and did
not produce a good end-of-run printout. In these instances, the
video tape made during the run was reviewed to ascertain the
acquisition success/failure.

Weapons delivery success was determined after examination
of the data from the individual runs. During a run, the experi-
menter would watch for specific events and conditions to occur.
These included successful target acquisition, weapons release,
consistency of target tracking, consistency of laser designation,
and obscuration warning cues. When a run appeared to be success-
ful on the basis of observation, a mark was entered in the run
event data at the conclusion of the run and logged in the experi-
menter's log as successful. Also logged were any events or condi-
tions which might make the run unsuccessful (pod obscuration
warnings, late pickle, loss of target lock-on, target overflight,
etc). For all runs logged as successful, data printouts were ex-
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amined to determine their validity. Conditions for a successful
weapons release are described below.

(1) Weapon Release Conditions

(a) LGB - The following formulas were emploved to
calculate the maximum steering error and maximum
weapon release delay that could be tolerated by the
weapon seeker head. The formulas were derived
from information provided by Texas Instruments,
Inc., manufacturer of the GBU-10 guidance kits.

Steering Error = Arc Sin { 600/ [Rp - (8.0 Rp/Tg) Cos 9]}

where
600 = 600 ft allowable azimuth error with an
8-sec weapon guidance time
Rb = Release range (ft
Tf = Weapons time-of-fall at weapon release (sec)
e = Aircraft pitch angle at weapon release

Weapon Release < Computed Weapons Release + 0.7 sec.

(b) LG Maverick and LWLGM - Maximum seeker off-boresight
launch limits and maximum/minimum launch ranges for
the proposed LG Maverick and Sabre missile svstems
were implemented in the analysis, Classification
of this information prevents its publication in this
document.

(2) Target Tracking Requirements after Weapons Release

(a) Tracker drift tolerance when pod tracker broke lock
during laser designation - 100 feet.

(b) Time tolerance when pod tracker broke lock or when
pod line-of-sight became obscured during laser
designation - 1 second.

(¢) Target laser-designation requirements during weapon
terminal guidance -- stabilized for final 2 seconds
of weapon time of flight (target dependent).

(3) Laser Fire Requirements - Laser fire not interrupted
more than 1 second.
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When runs were questionable in this analysis, the final deter-
mination for success/failure was made in a review of the video
tapes.

2.3.2.3 Other Data

Two other measures were applied to the FOV pair evaluation.
Target acquisition and weapon release ranges were evaluated to
determine if one of the FOV pairs provided a range advantage.

The acquisition and weapon release range data were taken directly
from the end-of-run data printouts. A narrow-FOV employment
analysis was conducted to determine how frequently the narrow FOV
was employed in each FOV pair, and for what purpose. These data
were derived from a review of all runs in which a successful
target acquisition was achieved and the narrow FOV was emploved
during the target-acquisition phase.

2.3.2.4 Field-of-Regard Data

Pod sensor gimbal angles were measured at the point of sen-
sor line-of-sight warning onset and at the point of aircraft/stores
masking or gimbal limit during each run. Both data sets were
retrieved from the end-of-run data printout.
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SECTION 3

DATA ANALYSIS METHODS

3.1 Subjective Data Analysis Methods

The significant effects in the pilot FOV pair ratings created
by the independent variables of the study were determined by both
parametric F-tests (Reference 2) and non-parametric Friedman Tests
(R
(
would be used for the analysis of subjective data. However, for
the complex experiments of this study, the assumptions implicit in

the non-parametric analysis methods are often violated. W. J.

Conover, a non-parametric statistical advocate, concludes a discus-

ion of the Friedman test by saying that for complex experimental
situations one is practically forced to use parametric tests
(Reference 4). The most appropriate parametric tests for the data
after it was determined to be ordinal and normal in distribution
r regu
non-parametric from the standpoint that it is not derived from
interval scale measurements, the non-parametric Friedman test was
also applied to the data. Details of both tests are contained in
Appendix A.

The two tests were applied to both workload and effectiveness

data, with the following independent variables being common to both:

1. Subject pilots (6).
2. Field-of-view pairs (3).
3. Pod-related tasks -- workload (3), effectiveness (&).

4. Rating parameters (4) -- the rating parameters consisted
of the FOV pair ratings for each experiment and "overall"
FOV pair ratings completed by each pilot during the end-
of-study debriefing.

significance, the null-case hypothesis (probability that the
ects due to the independent variables were random) was tested
a probability of less than or equal to 0.05 for both tests.

When the Friedman test determined significance due to an inde-

pendent variable, the source of the significance was determined by

employing the Friedman test between each rating condition within the
independent variables. When the F-test determined significance due
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to an independent variable, a T-test (Reference 2) was used to
determine the source of the significance. The details of the T-
test are contained in Appendix A.

Employing the F-test, significant interactions between the in-
dependent variables could be determined. For significance, the
null-case hypothesis (propability that the effects due to the inter-
actions between the independent variables were random) was tested
for a probability of less than or equal to 0.05. When significance
was detected, a graphical analysis was employed to determine the
source of the interaction and its effect on the main effect(s).

An analysis of the pilot's comments and observations was con-
ducted to determine a consensus of opinions about each individual
field of view employed in the study and the field of regard required
to deliver laser-guided ordnance.

3.2 Objective Data Analysis Methods

The objective data analysis required two separate analysis
methods because of the nature of the data. The success/failure
data for target acquisition and weapons delivery were discrete,
whereas the time, event, and range-measurement data were continuous.
Therefore, individual analysis techniques were applied to the
discrete and continuous data.

3.2.1 Discrete Data

The discrete target acquisition and weapons delivery success/
failure data had a very limited range due to the small number of
replications performed for each data point. In addition, the small
number of pilots participating in the study created a large variance
in the success/failure data across the experiments. Thus, because
of the small range in the data and the variance of pilot perform-
ance, the assumption of normality implicit in most statistical
analysis techniques could not be made, confining the analysis to
techniques which do not assume normality. The data were analyzed
by use of an analysis of variance for ranked data -- the Friedman
Test. With this test, the analysis was limited to determining
significant effects in the data due to the following independent
variables in each experiment:

1. Subject (6)
2. Field-of-View Pair (3)

3. Pop-up/REO activation Range (3).
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For significance, the null-case hypothesis (probability that the
effects in the success/failure data due to the independent variables
were random) was tested for a probability less than or equal to
005"

3.2.2 Continuous Dats

Because of the many empty cells in the continuous data created
each time a pilot failed to acquire the target, normal statistical
analysis techniques could not be applied to these data. However, a
trend analysis was accomplished on the mean performance level across
the pilots for each pop-up/REO activation range in each experiment
to determine if these data supported the subjective results. The
analysis was based on the difference between the mean performance
levels and the deviation within the mean performance measures.




SECTION 4

STUDY RESULTS

4.1 Summary of Experiments

Six pilots completed 162 valid data runs in each experiment.
Two pilots did not complete the study because of a facility failure
Their data, which consisted of 30 data runs accomplished in the
LGB3/CCRP experiment, were not used to derive the study results.
This did not invalidate the experimental results since the study
required only six pilots to complete the experiments and fully
counterbalance the data over the experimental variables.

4.2 Subjective Data Results

4.2.1 Pilot Comments and Observations

A consensus of pilot comments and observations regarding each
field of view employed in the study and the field of regard required
by pilots to employ laser-guided weapons is provided in Tzble &.2-1.

4.2.2 Pilot Workload Assessment

The F-test and the Friedman test determined one effect due to
the independent variables. Of the four independent variables
(subjects, FOV pair, task, and rating parameter), FOV pair was the
single significant influencing factor on pilot workload as rated
by the pilots. The mean of the pilot workload ratings for each FOV
oa1* is aeplcted in Flgure 4.2-1. As shown, the 6 and 1. 5°, 6° and

.86, and 3° and 0.86° FOV pairs were rated by the p;lots 1r an
ascendlng order of pilot workload, respectively. The 3° and 0.86°
FOV pair was obv1ouslv the hlghest in workload The difference
between the 6° and 1.5° and the 6° and 0.86° FOV pairs was not as
obvious; however, the T-tests and the Friedman tests determined a
significant difference between the pilot ratings for each FOV pair.
The detailed results of the F-test, T-tests, and Friedman tests
for the workload analysis are contained in Appendix B.

The F-test determined one effect due to the interaction between
independent variables. This effect was due to the interaction of
FOV pair by task. The graphical analv31s of this 11teractlor is
depicted in Figure 4.2-2. 1In the 6° and 1.5° and the 6° and 0.86°
FOV pairs, the pilots rated the verify-targets, fly-designation-
turn, perform-complete-mission, and search-for- targets task in a
cescending order of relative workload. In the 3° and 0.86° FOV pair,
this trend reversed, as shown in Figure 4.2-2 by the crossover between
data points. However, the basic trend of rating the 6° and 1.5
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SUBJECTIVE FOV WORKLOAD RATINGS
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Figure 4.2-1 Pilot Workload Ratings for Each FOV Pair
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SUBJECTIVE FOV WORKLOAD RATINGS BY TASK
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the 6° and 0.86°, and the 3° and 0.86° FOV pairs in an ascending
order of relative workload for each task did not change. There-
fore, the interaction between FOV pair and task variables had nc
confounding effect on the main effect - pilot workload by FOV
pair. )

result of the subjective workload ar

e alysis 1is
1.5° FOV pair create the least pilot workl

oad as

ad
o

rated by pilots.

£.2.3 Pilot Effectiveness Assessment

As in the workload analysis, the F-test and Friedman ¢
determined one effect due to the independent variables. Again, the
FOV pair variable was the single significant influencing factor
pilot effectiveness as rated by the pilots. The mean of the pilot
effectiveness ratings for each FOV pair is deo*cfed in F‘gure

.2-3. As shown, the 6° and 1. 1y 6° and 0.86°, and 3° and 0.86°

! pairs were rated by the plloes in a aescendlng order cof effec-

tiveness, respectively. The 3° and 0.86° FoOV pair was obv1ouc1v
lowest in effectiveness. The difference becween the 6° and 1.5°

and the 6° and 0.86° FOV pairs, although larger than in the work-
load analysis, was not as obvious; however, the T-test and Fried-
man tests again determined a significant difference between the
pilot ratings for each FOV pair. The detained results of the F-
test, T-test, and Friedman tests for the effectiveness are contained
in Appendix B.

‘_\

P'J

The F-test determined one effect due to the interaction be-
tween independent variables. This effect was due to the inter-
action of FOV pair by task. The graphical analysis of this inter-
action is depicted in Figure 4.2-4. As in the workload analvsis,
the source of the effect was due to changing trends in the order
of pilot FOV pair ratings by task. This is indicated in Figure
4.2-4 by the crossover between data 001nts However the ba51c
trend of rating the 6° and 1.5°, the 6° and 0.86°, and the 3° and
0.86° FoOV pairs in a descendlng order of relatlve effect*veness
for each task did not change. Therefore, the interaction between
FOV pair and task variables had no confounding effect on the main
effect - effectiveness by FOV pair.

The 51gﬁ1L1cd1f result of the subjective effectiveness analysis

is that the 6° and 1.5° FOV pair provide the most effective system

&
as rated by pilots.




SUBJECTIVE FOV EFFECTIVENESS RATINGS
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SUBJECTIVE FOV EFFECTIVENESS RATINGS BY TASK

(Secondary Effect)

C..

; Perforz Comp
- A ol Ear T
(iane Bftastisay ST e oearck for 4

n

5 -
= 6 =k=
> L
; =
= 5 ——
< i
=

= 3
n

wn o
C Vi [
~ -

[}

2 E
g _
< i
o

“ b
g 3
=

~ -
< -
(-4

(least - FIELD-OF-VIEW
Effective) !

6° & 1.5°1
6° & 0.86°
3° & 0.86°

Figure 4.2-4 Graphical Analysis of the Interaction Between

FOV Pair and Task in Effectiveness Ratings

39




4.3 Objective Data Analysis
The analysis of workload measures, effectiveness measures,
acquisition and weapons delivery ranges, and narrow FOV employment
was conducted on the data retrieved from each experiment.

4.3.1 LGB/CCRP Objective Results

Results of the trend analysis conducted on workload measure-
ments are shown in Table 4.3-1. The analysis determined that the
6° and 1.5° Fov pair created the lowest workload in the LGB/CCRP
experiment. Data from which the results were drawn are contained
in Appendix B.

A summary of successful runs is contained in Table 4.3-2,
which shows:

1. The number of runs in which a successful target acquisition
was made out of the number of valid runs.

2. The number of runs in which a successful weapons delivery
was made out of the number of runs in which a successful
target acquisition was accomplished.

3. The number of runs in which a successful weapons delivery
was made out of the number of runs in which a successful
target acquisition was accomplished adjusted for non-pod-
related weapons delivery failures.

The adjustment to the weapons delivery data was necessary because
the number of non-pod-related failures did not balance over the FOV
pairs. An analysis of weapon delivery failures for each FOV pair

n which the adjustment was based is provided in Appendix B.

The Friedman test on the target acquisition and weapons
delivery success/failure data found no significant effects due to
FOV pair or pop-up/REO activation range. Appendix B contains the
detailed results of these analyses.

The results of the target acquisition and weapons delivery
range analyses are shown in Tables 4.3-3 and 4.3-4. Because of
small differences between the mean performances and large standard
deviations in these data, no significant results could be deduced
from these analyses. However it is interesting to note that,
employing the 6° and 1. 5° Fov pair, the pilots had the longest

target acquisition range for all REO activation ranges and the
longest weapons delivery ranges for the 6-n.mi and 3-n.mi REO
activation ranges based on the mean performance levels.
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The narrow-FOV analysis for the LGB/CCRP experiment is shown
in Table 4.3-5. The frequency of narrow-FOV utilization was
approximately the same in the FOV pairs employing the 6° wide FOV
and almost non-existant for the FOV pair employing the 3° wide FOV.
Significang narrow-FOV usage for target acquisition was confined
to the 1.5 FOV.
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4.3.2 LG Maverick/LGM Objective Results

Results of the trend analysis conducted on workload measures
areoshown in Table 4.3-6. The analysis determined that the 6° and
1.57 FOV pair created the lowest workload in the LG Maverick/LGM
experiment. Data from which the results were drawn are contained
in Appendix B

A summary of successful runs is contained in Table 4.3-7. The
weapons delivery success rates were again adjusted to remove the
non-pod-related failures due to an uneven distribution of those
failures over the FOV pairs. An analysis of the weapon delivery
failures on which the adjustment was based is provided in Appendix
B.

The results of the target acquisition and weapons delivery
range analysis are shown in Tables 4.3-8 and 4.3-9. Again, the re-
latively small difference between the mean performance levels and
the large standard deviations in the target acquisition data made
it impossible to deduce any significant results from the analysis.
However, it is interesting to note that the pilots had the longest

target acqulsltlon range and over all REO activation ranges while
employing the 6° and 1.5° and the 3° and 0.86° Fov pairs. The
weapon release analysis determined a significant result. For the
two longest REO activation ranges, REO activation at run initiation
(ARI) and at 6 n.mi, the pilots launched the Mave‘lck at Slgnlfl-
cantly longer ranges while employing the 6 and 1. 5° and the 3°
o :

0.86  FOV pairs.

The narrow-FOV employment analysis for the LG Maverick/LGM
is shown in Table 4.3-10. The frequency of narrow-FOV util%zation
was approx’mately the same in the FOV pairs employing the 6  wide
FOV. In the 3° and 0.86° FOV pair, the frequency of narrow-FOV
utilization was high (86% of the runs) for the longest REO activa-
tion range but decreased to 37.5% for the intermediate range and
was non-existent for the short REO activation range. Narrow-FOV
usage for target acquisition was significantly higher in the 1.5
FOV over all REO activation ranges.
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4.3.3 LWLGM/LGMDT Objective Results

Results of the trend analysis conducted on workload measures
are contained in Table 4.3-11. At one pop-up range point for the
6° and 1.5° FOV pair there was insufficient successful runs to _make
a validoworkload dgtermination. The analysis shows both the 6°
and 1.5  and the 6 and 0.86 FOV pairs to be lowest in workload,
with no significant difference existing between the two for those
data points with sufficient data to make a determination. Data
from which the results were drawn are contained in Appendix B.

A summary of successful runs is contained in Table 4.3-12.
The weapon delivery successes have been adjusted to remove the non-
pod-related failures. A comparatively high target-acquisition
failure rate existed for all FOV pairs in this experiment. A tar-
get-acquisition failure analysis was performed to determine the
cause of the high failure rate. The analysis determined that 61 of
the 78 failures to acquire the target were due to pilots not locat-
ing the target area visually on the wind screen display with suf-
ficient time to locate the targets and to lock the pod on. The
results of the failure analysis are contained in Table 4.3-13. The
high target-acquisition failure rates were therefore not related
to the EO pod. Instead, the failures were related to the pilot's
inability to employ the windscreen display to navigate and locate
the target area heads-up. Since the target acquisition success/
failure data did not relate to the EO pod, this measure was not
analyzed to determine system effectiveness.

The Friedman test on the weapons delivery success/failure data
found no significant effects due to FOV pair or pop-up range. The
detailed results of these analysis are given in Appendix B.

The target acquisition range data did not reflect the pilots'
capability to employ the pod to search and acquire targets. In-
stead, it indicated where the pilots located the target area
visually, head-up on the windscreen display. Since weapon delivery
range was dependent on target acquisition range, the weapon delivery
range data did not reflect the pilot's ability to employ the EO pod
to deliver a weapon. Therefore, the range data analyses contained
in Appendix B for the LWLGM/LGMDT are not representative of the
pilots' capability to employ the EO pod to acquire a target or
deliver a missile.

The narrow-FOV employment analysis for the LWLGM/LGMDT experi-
ment is shown in Table 4.3-14., The narrow FOVs were used signifi-
cantly more often in the FOV pairs employing the 6° wide FOV.
Narrow-FOV_usage for target acquisition was significantly higher
in the 1.5 narrow-FOV over all pop-up range points.
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4.4 Field-of-Regard Results

The seeker field-of-regard requirements were evaluated through
an analysis of pod-sensor line-of-sight warning and obscuration
data. Pod-sensor line-of-sight warnings and obscurations occurred
predominantly in the LGB/CCRP experiment. As an example of the
dominance, 90 obscurations occurred in the LGB/CCRP experiment, 12
in the LG Maverick/LGM experiment, and none in the LWLGM/LGMDT
experiment. Therefore, only the data obtained from the LGB/CCRP
experiment were analyzed:

4.4.1 Pod Sensor Line-of-Sight Warning Results

A total of 255 pod-sensor line-of-sight warnings occurred in
116 of 162 valid runs. Figure 4.4-1 shows the warning onset
implemented for the study and the number of warning occurences by
10-degree azimuth increments. Of the 255 warnings, 128 were due to
aircraft or stores masking and 127 were due to pod-sensor gimbal
limits. Of the 128 warnings due to aircraft or stores masking,
79 (62%) occurred between -10 and -50 degrees of azimuth. An
analysis of the aircraft attitude at these warnings determined that
the warnings were due to excessive left roll induced by the pilots
immediately following bomb release while the aircraft was pitched
up greater than 10 degrees for a toss maneuver. Roll to the right
under the same conditions did not create the same effect because
the greater field-of-regard with the pod mounted on the right side
of the aircraft inlet.

4.4.2 Pod Sensor Line-of-Sight Obscuration Results

A total of 90 pod-sensor line-of-sight obscurations occurred
out of the 255 pod-sensor line-of-sight warnings. The 90 obscura-
tions occurred in 73 runs. Figure 4.4-2 shows the obscuration
limits implemented for the study and the number of obscuration
occurrences by 10-degree increments. Of the 90 obscurations, 41
(45%) were due to pod-seeker gimbal limits and 49 (55%) were due
to aircraft or stores masking. Again, the major portion (70%) of
the obscurations due to aircraft and stores masking occurred
between -10 and -50 degrees of azimuth.

4.4.3 Pod Gimbal Limit Analysis and Results

The pod- sensor gimbal angles and aircraft ground track from
weapon release to weapon impact for a typical LGB delivery in
which the simulated pod- sensor gimbal limits were reached are
shown in Figure 4.4-3. Of specific interest during the delivery
are the aircraft ground track and pod- sensor gimbal angles from 15
seconds to 20 seconds after bomb release. During this period the
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the aircraft's longitudinal axis (tail of the aircraft) is passing
through the target, which is at the origin of the X and Y axes.
When this occurs, the pod gimbal translation is almost totally in
the elevation axis, as indicated by the vertical movement of the
line describing the pod gimbal angles.

Because of this phenomenon, the simulated pod- sensor gimbal
limits were defined between 150 and 180 degrees of azimuth at zero
elevation to detect the azimuth angle at which the pod gimbal inter-
sected the zero elevation line (azimuth axis). The azimuth angle
at the zero elevation line provided an approximation of the pod-
seeker gimbal back-look requirement to contain the excursion. This
is shown in Figure 4.4-3, where pod gimbal back-look limits of 150
and 162 degrees are shown on the right-hand side of the azimuth
axis by dashed lines. Note that the line describing the pod gimbal
translation clearly violates the 150-degree back-look limit and
that the 162-degree back-look limit is not viclated since the line
is running tangent to the limit. Also note that the line describ-
ing the pod gimbal translation crosses the zero elevation line
(azimuth axis) at approximately 162 degrees.

The point at which the line describing the pod gimbal trans-
lation begins its vertical climb and crosses the azimuth axis is
dependent on aircraft altitude above the target and aircraft pitch
and roll in the turn. In the LGB/CCRP experiment the point at which
the line began its vertical climb, thus creating pod gimbal limit
warnings and limit broaches, was almost totally dependent on air-
craft altitude above the target. This was primarily due to the
canned scenario employed in the study. If the pilot had sufficient
altitude when a gimbal limit warning occurred he could duck under
the gimbal limit by rolling the aircraft level and pushing the
nose down.

Three techniques for measuring the required pod- sensor gimbal
limits were considered: (1) defining gimbal look-back limits and
measuring the frequency that each limit was used during the runm,
(2) defining gimbal look-back limits and measuring the frequency
that each limit was used when the pilots reached a simulated pod
gimbal 1limit warning, and (3) defining gimbal look-back limits and
measuring the frequency each limit was used when the simulated
gimbal limits were reached. The first technique was not used since
the pilots could have reached a gimbal limit defined for analysis
without warning. In 81 instances of 127 pod gimbal limit warnings,
the pilot had sufficient altitude and time available to avoid simu-
lated gimbal limit and possibly the gimbal limits defined for
analysis, therefore, the second technique was not appropriate.

The simulated gimbal limit was reached because the pilot was either
istracted by workload and did not react quickly enough to avoid
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the simulated gimbal limit or did not have sufficient altitude to
escape the gimbal limit. 1In either case the pilot would not have
avoided gimbal limits defined for an a1y51s Therefore, the third

technique was chosen as the method for analysis.

The pod sensor gimbal limits for analysis were defined in

ree increments from 150 to 180 degrees of azimuth. The fre-
that each limit was used when Lhe simuleted gimbal limits

were reached is graphically portrayed in Figure 4.4-4.

There were 100 successful runs in the LGB/CCRP experiment.
Twelve runs were scored unsuccessful because of a pod-sensor line-
ci-sight obscuration which lasted more than 1 second. Eight
cbscurations were due to pod sensor gimbal limits, and four ob-
scurations were due to aircraft/stcres masking. Since the 1-
second criteria for determining run success or failure was arbitrarv
for pod sensor gimbal limits, a further analysis of the successful
runs, including the eight failures due to pod-sensor giAbal limies,
was conducted. For the analysis, pod-sensor back-look angles of
150, 150, 170, and 180 degrees were defined, and the percentage
of the 108 runs in which the gimbal limit had no factor (was not
reached) was determined. The results of this analysis are dis-
plaved in Figure 4.4-4 to provide a better picture of pod sensor
gimbal limits in the context of run success.

The frequency analysis of gimbal limit usage determined that
the highest frequency occurred between pod-sensor gimbal back-look
angles of 160 and 170 degrees. The analysis of successful runs
determined that from 75% to 95% of the successful runs did not
have obscurations due to gimbal limits when the gimbal limits were
cefined between 160 and 170 degrees.

4.5 Summary of Results

4.5.1 Subjective Results

The analysis of pilot ratings emploving both a Da*ametrlc F-
test and a non-parametric Friedman test determined that the 6° and
1.5° Fov pair provided the least pilot workload and the most svstem
effectiveness.

4.5.2 Objective Results

The trend analysis of workload measures from the three experi-
ments determined that the 6° and 1.5° FOV pair provided the lowest
workload. In the LWLGM/LGMDT experiment, o1© SLgﬂlLlC”ﬁt difference
existed between the 6° and 1.5° and the 6° and 0.86° FOV pairs. In
the two other experiments, a significant difference occurred be-
tween each FOV pair.
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The analysis of effectiveness measures did not determine any
significant difference between FOV pairs.

Because of small differences between the mean performance
levels and because of large standard deviations in the data, only
one significant result could be deduced from the target-acquisition
and weapon-release range measures. The result occurred in the LG
Maverick/LGM exgeriment where pilots employing the 6° and 1.5° and
the 3° and 0.86° FOV pairs obtained significantly longer weapons
release ranges than when employing the 6° and 0.86° FOV pair.
However, the trends in these data supported the subjective results
in all instances.

The narrow-FOV utilization analysis determined that the narrow
FOV was employed significantly more often in the FOV pairs having
the 6° wide FOV. Narrow-FOV usage for target acquisition was
significantly higher in the 1.5° narrow FOV over all experiments.
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SECTION 5

CONCLUSIONS

5.1 Individual Fields-of-View

Conclusions concerning each individual field-of-view are based
on pilot remarks and observations, pilot field-of-view pair ratings,
and objective experimental measures. These conclusions are dis-
cussed below.

5.1.1 6-Degree Wide FOV

- o - s

When employed for target search, the 6 FOV provided excellent
capability at all ranges against all targets. When employed for
target verification against large fixed targets, the 6 FOV was

good at medium to close ranges; however, against small mobile-type

WV
targets, it was limited to close ranges. When employed for targe
lock-on against large targets, the 6 FOV was good at all ranges;
however, against small targets it was limited to medium to close

ranges.

5.1.2 3-Degree Wide FOV

The 3° FOV was too narrow for target search operations at
attack ranges simulated in the study. However, for target verifi
cation and lock-on operations, the 3° Fov provided a good capabil
at all ranges against all targets.

1lity

5.1.3 1.5-Degree Narrow FOV

The 1.5° FOV was too narrow for target search operations at
all ranges. The 1.5° Fov provided an excellent capability for
targec verification at all ranges. Target lock-on employing the
1.5 FOV was good at all ranges against small targets; however,
it was limited to long and medium ranges for large fixed targets.

5.1.4 0.86-Degree Narrow FOV

The 0.86° FOV with degraded videc clarity was too narrow for
the attack ranges simulated. Although the pilots were briefed on
the degraded video and shown a video tape of an EO Pod flight
demonstration containing profiles emploving 1° and 1° FOVs
with excellent video quality prior to the experiments, some
bias did occur as a result of the poor video quality. The amount
of bias introduced by the degraded video in this FOV on the subjec-
tive pilot ratings and objective performance levels was impossible
to determine.
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5.2 Field-of-View Pairs

From analysis of the primary data source, the subjective
lot field-of-view ratings, it was determined that the 6° and
.5° FOV pair provided the least pilot workload and the most
vstem effectiveness. The significant results from the analvsis
. the secondary data source, objective pilot performance measures,
upported the primary data source. Therefore, for the simulared
ttack scenario, which included:

O W ='0
(=

fuo

o Low-altitude (500 feet), high-speed (540 KTAS) ingress
o Pop-up for target acquisition and weapons delivery
o Visibility restrictions ranging between 6 and 3 n.mi
¢ A weather ceiling of 2500 feet
and for the simulator limitations, which included:
0 Degraded video clarity in the 0.86° FOV

0 A 50-degree (measured diagonally) forward visibility
provided by a 500-line, black and white video monitor

o A terrain board measuring 80 ft by 40 ft that, at
1200-to-1 scale, provided a working area of 14 n.mi by
7 n.mi

the 6° and 1.5° FOV pair is best.
5.3 Pod Seeker Field-of-Regard

The results of the pod-sensor line of sight warning and pod-
sensor line-of-sight obscuration analyses indicated that the pilots
responded well to the warning tone. Of the 255 warnings, only 90
resulted in pod-sensor line-of-sight obscurations or gimbal limits.
These results indicate the need for a warning implementation in
aircraft carrying an advanced EO pod.

The results of the pod-sensor gimbal limit analysis indicate

a gimbal back-look capability defined between 160 and 170 degrees
is required for the delivery of laser guided bombs.
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APPENDIX A
F-TEST, T-TEST, AND FRIEDMAN TEST

FORMULAS

A-1




DETAILS OF F-TEST APPLIED TO PILOT WORKLOAD

RATINGS
DEGREES ESTIMATED
SOURCE OF MEAN F-TEST
FREEDOM SQUARE
1 Subjects (A) S 270'::' None
2 Mode (B) 3 54 r; * 90’§B @0
3 Field(g;f View 2 54 7(2: S 9‘7;2;C @ . @
4 Task (D) 2 54 ‘rg + 90§D @ + @
2 AXB 15 90’§B None
6 AXC 10 90'§C None
7 AXD 10 902 None
8 B X C 6 187§C+30§BC ® - @
9 B XD 6 1872 +392 | @-®@
10 CXD 4 187§D+30§CD @0 - ©
11 AXBXC 30 30'ch None
12| AaxXBXD 30 3ol None
13 AXCXD 20 3 UiCD None
14| BXCXD 12 67;@"’ ojBCD @+ ©
15/ AXBXCXD 60 o None
TOTAL 215

A-2




DETAILS OF F-TEST APPLIED TO PILOT EFFECTIVENESS

RATINGS
DEGREES ESTIMATED
SOURCE OF MEAN F-TEST
FREEDOM SQUARE

1 Subjects (A) 5 48 a’j None

2| Mode (B) 3 nriinel | @0
3 Field(gf View 2 96 ‘rg + 16 Uic @ ¥ @
4 Task (D) 3 ntl+nos, | @0
5 AXB 15 ]_zaiB None

6 AXC 10 1605, None

7 AXD 15 12 a-iD None

8 BXC 6 24T§C+40§BC ®-O
9 BXD 9 13’12315*3";31) ®-®@
10 CXD 6 2475 a0l + @3
11| AXBXC 30 4ol None
12 AXBXD 45 30§BD None
13| AaxXcxp 30 bo ko None
14| BXCXD 18 6T§co+ "iscn @+ O
15| AXBXCXD 9Q Uiaco None

TOTAL 287




The t value was calculated using the following method.

1. The appropriate standard deviation for the denominator
of the t-test was estimated by:
a Estimating o from the Mean Square used as a denomi-
nator in the"F-test

2
b. Estimating a% by:

[9)
2 . o . : 1
o= = X where n = Number of Observations in the
. = Mean
Vn

by

N

(i

was then calculated by:

e

5 .
et




FRIEDMAN TEST

vATE

NCTE: Test equation is for ranked data with ties between rankings.

Sl PR e
co[EEnS - EEx)
Wit o S1EL Y
X< = | o e
r ol ) iy 2
Bif T 2(2 "‘ii)
i=1j=1 i=1Y=l ~
K
For Subjective Pilot FOV Pair Ratings:
n = Number of Raters
k = Number of Conditions Being Rated
X.. = Ranked Rating from the ith - Rater for the jth - Condition

1]

For Objective Success/Failure Data:

n Number of Subjects

k = Number of Parameters Over Which Subject Performance is
Being Ranked

xij = R?ngd Performance Level from the ifth - Subject for the

j - Parameter
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APPENDIX B

SUPPORTIVE DATA RESULTS




SUBJECTIVE DATA RESULTS

B-2




SUBJECTIVE DATA RESULTS

F-Test Results on Pilot Rated Workload

B-3

SOURCE C R i 4 ki
FREEDOM| sQuargs | SQUARE | VALUE | BILITY
PILOT 5 41.81 8.36
MODE 3 7.59 2.53 0.43 N.S
; PILOT X MODE 15 87.88 5.26
FOV 2 315.52 | 157.76 | 66.62 0.01
PILOT X FOV 10 23.6¢2 2.37
MODE X FOV 6 10.89 1.30 1,15 N.S
PILOT X MODE X FOV 30 45,15 .57
TASK 2 0.29 9.15 9.65 x.S
PILOT X TASK 10 23.35 2.24
MODE X TASK 6 7.54 1.26 1.16 N.S.
PILOT X MODE X TASK 30 32.51 1.08
FOV X TASK 4 7.36 1.97 6.20 0.01
PILOT X FOV X TASK 20 6.34 0.32
MODE X FOV X TASK 12 3.33 0.28 0.87 N.S
% 10 % AsE 60 19.08 0.32
N.S. -- No significance based on 0.05 criterion
f
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SUBJECTIVE DATA RESULTS

F-Test Results on Pilot Rated Effectiveness

SOURCE e Dy pa F fBoss-
FREEDOM| SOUARES SQUARE VALUE BILITY
PILOT - 5 140,02 28.00
MODE 3 29.30 9.77 1.30 N.S.
PILOT X MODE 15 112.62 7.51
Fov 2 492,76 246,38 70.52 0.01
PILOT X FOV 10 34.94 3.49
MODE X FOV' 6 8.15 1.36 0.65 N.S.
PILOT X MODE X FOV 30 63.01 2.10
TASK 3 4.34° 1.45 1.03 N.S
PILOT X TASK 15 20.98 1.40
MODE X TASK 9 5.48 0.61 0.68 N.S
PILOT X MODE X TASK 45 40.21 ) 0.89
FOV X TASK 6 52.30 8.72 5.22 0.01
PILOT X FOV X TASK 30 50.09 1.67
MODE X FOV X TASK 18 7.82 0.43 0.65 N.S
g 90 59.74 0.66
N.S. -- No significance based on 0.05 criterion
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APPENDIX C

Simulation Facility Details
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SIMULATION FACILITY

1.1 Terrain Board

The terrain model was 80' x 40' with a fiber glass
surface. Three foot high mirrors ringed the terrain model
for terrain extension. The terrain model was scaled to
1200:1 for the simulation. Simulation parameters for:
1200:1 were:

1200:1
Parameter Ez Eg gg
Slant Range to 96000  15.8  29.3
Lateral to 48000 7.9 14.6 |
Altitude to 12000 Ft (Max) |

84 Ft (Min)
Longitudinal Velocity to 12000 Ft/Sec
Vertical Velocity to 7200 Ft/Sec
Lateral Velocity to 4800 Ft/Sec

The terrain model consisted of mountains, plains, har-
bors, streams, ridges, forests, dams, tunnels, highways, :
railroads, bridges, airports, buildings, docks, etc. '
Topography was rolling hills modelled after West Germany.
Choice of materials used in the manufacture of the terrain
model was based on weather and sun resistance and, at the
same time, a presentation of realistic targets to the sensors.

1.2 Motion Simulation

The 3-D terrain model was mounted on 30 trucks, and 10
central trucks with compound bearings provided lateral
guidance in addition to vertical guidance. The trucks
allowed translation of the assembly in a longitudinal direc-
tion on three tracks. The characteristics of the terrain
model longitudinal drive assembly are listed below.

Displacement + 80 ft (probes up)
+ 78 ft (probes down)
Velocity Accuracy at min + 1.0%

at 0.01 ft/sec
Accuracy at max + .05%
at 10 ft/sec
Acceleration + 10,0 ft/sec?
Positioning Accuracy + 0.1 inch
Repeatability .02 inch max

C-2
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Small signal fre- 3.0 cps
quency response

Weight of longitudinal 24,000 1lbs. static and rolling
drive system friction less than 250 1bs.

The 3-D terrain model was mechanized to simulate the longi-
tudinal movement of the aircraft in flight; and, therefore,
accounted for one degree of freedom.

The remaining two degrees of translational freedom to
simulate vertical and lateral movement of the aircraft were
provided by a lateral carriage and a horizontal beam. The
lateral carriage was free to translate laterally and was
attached to a horizontal beam which was free to move in the
vertical direction between two supporting columms. The
operating characteristics of the lateral and vertical drive
systems were:

Lateral and Vertical Drive Characteristics

Lateral Vertical

Displacement 38 ft 25 £€ 7 dn.
Velocity

Accuracy at minimum + 1.0% at 0.004 + 1.0% at 0.00

Accuracy at maximum 1057 a2t 4.0 £t/s 1057 at 6.0 ft/52
Acceleration 4 fr/s2 6.0 ft/s2
Positioning

Accuracy + 02 inch + .02 inch

Repeatability .005 in. max .005 in. max
Small Signal Frequency 3.0 cps 3.0 cps

Response

1.3 Video System

1.3.1 Optical Probes

Two optical probes were employed to provide wide FOV
imagery for the windscreen display and narrow FOV imagery
for the simulation of the EO pod. The wide FOV probe was a
Schemimpflug corrected probe which had essentially an
infinite depth of field, allowing low level operation over
the terrain board. The specifications of this probe were:

1. Field of View 50° circular

2. Minimum altitude 63mm ~ 250 £t (1200:1)

3. Near focus 25mm =~ 100 ft (1200:1)
c-3




4. Resolution 2.3 arc min at 257 MTV
5. Servo Performance
Displacement Velocity
Roll Continuous 360 /sec
Pitch +25°, -90° 100%/sec
Yaw Continuous 360°/sec

The narrow FOV probe was used to generate the imagery

for the EO probe simulation.

It was also a Schemimpflug

corrected probe which had essentially an infinite depth of
field, allowing low level operation over the terrain board.
The specifications of this probe were:

1. Fields-of-View

Minimum altitude
Near focus

6° circular

4° circular

1.50 circular

0.86° circular

12 mm = 50 ft (1200:1)
30 mm = 120 £t (1200:1)

Ve WLWRN

Resolution 17 arc sec at 257 MTV
Servo Performance
Displacement Velocity
Roll Continuous 360 /sec
Pitch +25°, -90° 100%/sec
Yaw Continuous 360°/sec

The longitudinal separation between entrance pupils
of the two probes was 12 inches (1200 scale feet). The
altitude separation between the entrance pupils of the two
probes was 2 inches (200 scale feet). The resulting
parallex effects were compensated with software on the
hybrid computer.

1.3.2 Video System

Two 1200 lines, 60 MHz high resolution TV systems were
used with the optical probes to generate the video for the
windscreen display and the radar/electro-optical (REO) dis-
play. Both systems had a variable line rate and bandwidth
so that a 512 line signal could be generated for the study.
In conjunction with the optical probes, the TV systems
yielded resolutions of 4.4 arc minutes for the windscreen
probe at the 50-degree field-of-view and 17 arc seconds for
the REO display probe at the 1.5-degree field-of-view. The
TV systems had the capability to be underscanned down to a
maximum ratio of 2:1. The 3-degree field-of-view emploved
in the study was created by underscanning the 4-degree field-
of-view.
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1.4 Analog/Digital Facility

The computational elements of the facilitv are listed
below.

Digital Computer

Sigma 5 - Triple CPU

Memory Size 160K words

Word Length 32 ‘bits

Memory Cycle Time 1.0 us

Arithmetic Fixed point and floating
point

Analog Computers

231R-V's

Number of Consoles 6
Total number of amplifiers 1496
Quarter-square multipliers 276

Resolvers 30
Potentiometers - Servo Set 900
Potentiometers - Hand Set 140
Function generators 120

Hybrid Interface

Digital Computer/231R-V

Multiplying Digital to 56
Analog Converters

Analog to Digital Con- 48
verter Channels

12 BIT DAC 64

Peripheral Devices - Sigma 5

2 Card Readers 400 & 1500 car/min

4 Mag Tapes 75 inches per second
800 bits/inch

2 Line Printers 800 & 1000 lines/min

132 char/line
2 Fixed Head Disk Memories 6.0 Mbytes
b 1 Disk Pack 48 Mbytes
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