
		4063 47	TES	T PROCE	EDURE -	- LINEA	R EQUAT	ION RO	UTINES.	(U)			
	UNCL	ASSIFI	ED	NWC	-TM-241	0		61	DEP-E09	5-0475		NL	
		OF 1 AD 3 73			60050000 	; ;							451
A REAL PROPERTY AND A REAL				A Construction of the second s	and Constant and Constant of C			A Base			t suffer of the second		
	A Annotation	- 855*				eginer ⁴ - 100	a di serie d			END DATE FILMED 3-79			
										,			
	uñ												
1	1. A. 1.							-					

95-0475 NWC Technical Memorandum 2410 AD AO 63473 6 TEST PROCEDURE - LINEAR EQUATION ROUTINES, 10 L. W. /Lucas Research Department 10 Mar 3975 NWC- TM-2414 COPY DDC FILE RULUE GIDEF JAN 19 1979 300 SUGIVE \$95-\$475 Δ Approved for public release; distribution unlimited. This is an informal report of the Naval Weapons Center and is not to be used as authority for action. NAVAL WEAPONS CENTER China Lake, California 93555 78 11 28 111

403 019

1B

		and supplied and supplied that the	IR	
	GOVERNMENT-INDUSTRY DATA EXCHANGE DCUMENT SUN Please Type All Information - See Instructions of	MARY	SHEET	1 OF 1
E095-0475	Please Type All Information - See Instructions of 2. COMPONENT/PART NAME PER GIDES Computers, Soft	and the second		
Engineering	4. MER NOTIFICATION		S. DOCUMENT ISSUE (Month/Year) March 1975	
ORIGINATOR'S DOCUMENT TITLE	ation Routines		7. DOCUMENT TYPE	
ORIGINATOR'S DOCUMENT NUMBER	9. ORIGINATOR'S PART NAMEZIDENTIPIC.	TION		<u> </u>
NC IM 2410 DOCUMENT (SUPERSEDES) (SUPPLEMENTS) ACCESS NO.	11. ENVIRONMENTAL EXPOSURE CODES			
IODE 2. MANUFACTURER	N/A		14. INDUSTRY/OOVERNMENT STANDAGE	
N/A 5. Outline, Table of Contents, Summary, or Equival	N/A		N/A	
AX=B				(1)
			n) then V will be	
pproximation to A. The the residual matrix	accuracy achieved can b	e measured t		
R = AX - I	$(or \qquad R = XA - I)$			
or better, by computing the	norm of the error matr	ix		
$\mathbf{E} = \mathbf{X} - \mathbf{A}^{-1}.$	I/A	the for	st equation	
		solve Eq. (1)	prepeatedly using	
				, 5 C C C C C C
				, 0 : C : I
	78]	1 28	8 111	
right-hand sides B for each			es; Univac 1110);
This approach is used in or right-hand sides B for each . KEY WORDS FOR INDEXING Error Measu Fortran . Gidep Representative M. H. Sloan	res; Test Output; 1	est Matric		2;

FOREWORD

This work was done in connection with the author's position as Numerical Mathematics Coordinator, Central Computing Facility (CCF) and was supported by CCF funds. The actual testing of routines under the procedure outlined here is continuing. This is a preliminary report, subject to revision or withdrawal, and is not to be used as the basis for official action.

> D. E. ZILMER Head, Mathematics Division Research Department 31 March 1975

ALCESSION W . White Last 0 0 URACHOMICER HISTHMONTH EY DISTRIBUTION /ATAILABILITY CODES AVAIL ME, & SPICIAL Blat.

NWC TM 2410, published by Code 607, 50 copies.

CONTENTS

Introducti	on					•																					1
Error Meas																											
Test Outpu																											
Test Matri																											3
Wilkin	son Matr	ix													•	•	•	•		•	•	•	•	•	•	•	4
Hilber	t Matrix				-						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Newman	-Todd Ma	tr	ix									•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Rutish	auser Ma	tr	ix					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Pei Ma	trix										•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
Givens	Matrix	-					•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
				•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'
Appendixes																											
A. Mat	rix Norm	s	and	d	Cor	nd	it:	io	n 1	Nu	mbe	ers	S														9
B. Pro	gram Pac	ka	ge	f	or	Te	281	tin	ng	L	ine	eat	r 1	Equ	uat	tic	on	R	out	tin	nes	5					13
	FNORM .																										15
	LEQTST																										17
	LTERR .																										19
	LTEST .																										21
	LTGIVN																										23
	LTHILB																									-	25
	LTNEWT																										27
	LTPEI .																										29
	LTPRNT																										31
	LTRITE																										33
	LTRUTH																										35
	LTWILK																										37
	MXRITE																										39
																											33
References																											40

INTRODUCTION

The general test procedure is to apply each candidate routine to a number of test problems (with known answers) and to record the resulting accuracy and execution time. It is assumed that each candidate routine can solve the problem

(1)

AX = B

where

A is a general n x n coefficient matrix

B is a general n x m right-hand-side matrix

x is an $n \ge m$ solution matrix

If B is set equal to the $n \ge n$ identity matrix I (so that m = n), then X will be an approximation to A^{-1} . The accuracy achieved can be measured by computing the norm of the residual matrix

R = AX - I (or R = XA - I)

or better, by computing the norm of the error matrix

 $E = X - A^{-1}.$

This approach is used in order to avoid having to solve Eq.(1) repeatedly using various right-hand sides B for each test matrix A. Execution time is measured by the system clock.

ERROR MEASURES

Measures of error used in previous studies of linear equation routines [4,5] are¹

¹ See Appendix A for definitions of the matrix norms $\|\cdot\|_{S}$, $\|\cdot\|_{F}$, $\|\cdot\|_{\mu}$, $\|\cdot\|_{\infty}$.

$$a = \frac{1}{n^{2}} \|R\|_{S} \qquad [4,5]$$

$$f = \frac{1}{n} \|R\|_{F} \qquad [4,5]$$

$$m = \frac{1}{n} \|R\|_{M} \qquad [5]$$

$$q = \frac{1}{n^{2}} \|E\|_{S} \qquad [4]$$

Newman and Todd [5] caution that matrices A and X exist for which AX - I is almost 0 while elements of XA - I are arbitrarily large. In their tests AX - I and XA - I varied by as much as three orders of magnitude. Lietzke et al. [4] report that

- 1. $a \leq f$ for each test matrix and each routine tested.
- 2. a and f are not reliable estimators of q.
- 3. The following estimator for $||E||_{\infty}$ seems to work for well-conditioned matrices:

$$\ell = \frac{\|XR\|_{\infty}}{1 - \|R\|_{\infty}}$$

where R = AX - I.

Measures of error recommended here are listed below. The Frobenius norm is recommended, since (like the Euclidean matrix norm) it is compatible with the Euclidean vector norm and invariant under unitary transformations.

Type of Error	Computation
Actual relative error	$\frac{\ \boldsymbol{E}\ _{F}}{\boldsymbol{n}\boldsymbol{\varepsilon}\ \boldsymbol{A}^{-1}\ _{F}}$
Actual absolute error	$\frac{1}{n\varepsilon} \ E\ _F$
Estimated absolute error	$\frac{\ xR\ }{n\varepsilon(1 - \ R\ }_{F}$
Residual error	$\frac{1}{n\varepsilon} \ R\ _F$

where $E = X - A^{-1}$ and R = AX - I. The above calculations must be done in double precision.

The infinity norm may also be used--as a check on the computations, and to test the conjecture of Lietzke *et al.* The normalization factor $\frac{1}{\varepsilon}$ (where $\varepsilon = 2^{-26} \cong 1.5 \times 10^{-8}$ is the single-precision machine 'infinitesimal' on UNIVAC 1100 Series computers) is used to scale calculated errors to unity. The normalization factor $\frac{1}{n}$ is used to scale the calculated errors to the same units as the elements of the error matrix.

TEST OUTPUT

For each candidate routine and each test matrix the following <u>summary</u> output is needed.

Heading identifying routine Name of test matrix Order of test matrix Value of error return flag Time for solution Logarithm of condition number of test matrix Actual relative error Actual absolute error Estimated absolute error Residual error

In addition, the following <u>detailed</u> output should be available upon request.

Test matrix A Calculated inverse X Exact inverse A^{-1} Error matrix $E = X - A^{-1}$ Residual matrix R = AX - I

TEST MATRICES

The test matrices recommended for use are listed below, together with a summary of their properties. These test matrices were culled from [3,7]. Each family of test matrices (except Wilkinson) is defined for any order *n*. The test matrices and their exact inverses are easily computed. The test matrices (except Newman-Todd) all have integer elements and span the range from well-conditioned to very ill-conditioned. One family (the Pei matrices) have a parameter that allows one to vary the condition number. Subroutines for generating the test matrices and their inverses are documented in Appendix B.

IM 2410	TM	2410	
---------	----	------	--

Matrix	<u>n</u>	Conditiona	Form
Wilkinson	6	good	nonsymmetric
inverse Hilbert ^b	small	very bad	symmetric
Newman and Todd ^b	a11	good	orthogonal, symmetric
Rutishauser ^b	small	very bad	lower triangular
Pei ^C	all	variable	symmetric and positive definite
Givens ^b	all	fair	symmetric and positive definite

^a Precise condition numbers are given in Appendix A. ^b Used in study by Newman and Todd [5]. ^c Used by Newman and Todd [5] for a = n and by Lietzke *et al*. [4] for a = 1.

Wilkinson Matrix

This matrix (#3.4 in [3]) is for initial program checkout. It is well-conditioned and nonsymmetric.

	[1	0	0	0	0	ī
	1	1	0	0	0	-1
w =	-1	1	1	0	0	1 -1 1
	1 1	-1	1	1	0	-1
	-1	-1 1 -1	-1	1	1	1
	-1	-1	1	-1	1	-1_
	[16	8	-4	2	-1	1 -2 4
	0	8 16 0 0 0	8	-4	2	-2
$w^{-1} = \frac{1}{32}$	0	0	16	8	-4	4
32	0	0	0	16	8	-8
	0	0	0	0	16	16
	16	-8	4	-2	1	-1

Hilbert Matrix

These matrices (#3.8 in [3]) are very ill-conditioned. The Hilbert matrix H_n of order n is defined by

4

 $H_n = (h_{ij})$

where

$$h_{ij} = \frac{1}{i+j-1}$$
 (*i*, *j* = 1, 2, ..., *n*)

Because they are so badly conditioned, Hilbert matrices are often used to test matrix inversion routines. But this must be done properly. Inverses of the Hilbert matrices $T_n = H_n^{-1}$ are used as the test matrices, since all elements of T_n are integers. Reference [3] lists the inverse Hilbert matrices T_n for n = 2, 3, ..., 10. For testing purposes it probably suffices to try n = 3, 5, and 7. Integer overflow will occur on the UNIVAC 1110 for n = 8. Some facts about Hilbert matrices, based on information in [2], are summarized below. Here $C_2(H_n)$ denotes the l_2 condition number of H_n (see Appendix A) and $l(T_n)$ denotes the largest element of T_n .

TM 2410

ACCO ADOUL HITPOLL HALITCC	F	acts	About	Hilb	ert	Matrices	
----------------------------	---	------	-------	------	-----	----------	--

n	C ₂ (H _n)	H _n 2	<i>T</i> _n ₂	l(Tn)
2	1.93(+1)	1.27	1.52(+1)	1.20(+1)
3	5.24(+2)	1.41	3.72(+2)	1.92(+2)
4	1.55(+4)	1.50	1.03(+4)	6.48(+3)
5	4.77 (+5)	1.57	3.04(+5)	1.79(+5)
6	1.50(+7)	1.62	9.24(+6)	4.41(+6)
7	4.75(+8)	1.66	2.86(+8)	1.33(+8)
8	1.53(+10)	1.70	9.00(+9)	4.25(+9)
9	4.93(+11)	1.73	2.86(+11)	1.22(+11)
10	1.60(+13)	1.75	9.15(+12)	3.48(+12)

Newman-Todd Matrix

These matrices (#3.11 in [3]) are orthogonal and symmetric, but <u>not</u> positive definite. They are defined by

$$A_n = (a_{ij}), \quad a_{ij} = \sqrt{\frac{2}{n+1}} \sin \frac{ij\pi}{n+1}$$

These matrices are well-conditioned, but costly to generate (because of calls to DSIN and DSQRT).

Rutishauser Matrix

These matrices (#3.15 in [3] are ill-conditioned and lower triangular. They are defined by

	Γ1	0	0	0	0		0 -	1
	1	-1	0	0	0		0	
	1	-2	1	0	0		0	I
	1	-3	3	-1	0		0	l
R _n =	1	-4	6	-4	1			
		•	•	•		•		
		•	•	•		•		l
		10. ····	•	•				
	1	-n+1					$(-1)^{n-1}$	J

The elements of R_n , except for sign, are the numbers in Pascal's triangle, that is, binomial coefficients. R_n is its own inverse.

Pei Matrix

The Pei matrices ([3, p. 18] and #18 in [7]) are symmetric and positive definite. They are defined by

$$P_{n}(a) = (p_{ij}), \quad p_{ij} = \begin{cases} a+1 & i=j \\ \\ \\ 1 & i\neq j \end{cases}$$

where a > 0. Note that as $a \neq 0$, *P* becomes singular. Eigenvalues of *P* are $\lambda = a + n$ (simple) and $\lambda = a$ (multiplicity n - 1). Thus, for $a \cong n$, *P*_n is well-conditioned; but for $a \cong 0$, *P*_n is very ill-conditioned. Recommended choices of the Pei parameter *a* are

 $a = 64\epsilon, 1, n$

where $\varepsilon = 2^{-26} \approx 1.5 \times 10^{-8}$.

To compute the inverse of $P_n(a)$, let J be the matrix with all elements equal to 1. Then (dropping the subscript n)

P = aI + J.

Since $J^2 = nJ$, we expect $P^{-1} = Q$ to be linear in J,

Q = bI + cJ.

Computing the product PQ we find

$$I = PQ = (aI + J)(bI + cJ) = abI + (b + ac + nc)J.$$

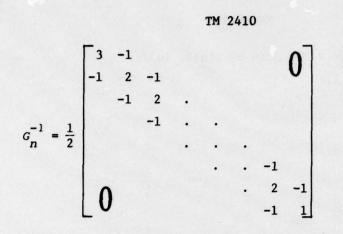
Equating coefficients,

$$\begin{array}{c} ab = 1 \\ b + ac + nc = 0 \end{array} \right\} \xrightarrow{b = \frac{1}{a}} \\ c = -\frac{b}{a+n} = -\frac{1}{a(a+n)} \end{array}$$

Hence,

$$Q = \frac{1}{a} \left(I - \frac{1}{a+n} J \right)$$

or


$$p^{-1} = (q_{ij}),$$
 $q_{ij} = \begin{cases} \frac{a+n-1}{a(a+n)} & i = j \\ -\frac{1}{a(a+n)} & i \neq j \end{cases}.$

Givens Matrix

The Givens matrices (#8 in [7]) are poorly-conditioned, symmetric, and positive definite. They are defined by

	[1	1	1		1 7
	1	3	1 3		3
	1	3	3 5		5
G _n =		•	•	•	•
		•	•	•	•
		•	•	•	
	1	3	5		2n-1

Thus, $G_n = (g_{ij})$ where $g_{ij} = 2 \min(i,j) - 1$. The inverse is given by

Note that the inverse Givens matrix is tridiagonal.

Appendix A.

MATRIX NORMS AND CONDITION NUMBERS

The more common matrix and vector norms are defined here, without much explanation. For a more complete discussion of matrix and vector norms and their properties, see [1,6]. Vector norms in common use are

$\ \mathbf{x}\ _1 = \mathbf{z}_i \mathbf{x}_i $	
$\ x\ _2 = \sqrt{\Sigma_i x_i^2}$	(Euclidean)
$\ \mathbf{x}\ _{\infty} = \max_{i} \mathbf{x}_{i} $	(Chebyshev).

These are particular instances of the p-norm

 $\|\mathbf{x}\|_p = \Sigma_i |\mathbf{x}_i|^p.$

....

Any vector norm induces a matrix norm according to the following relation:

$$\|A\| = \max_{\|x\|=1} \|Ax\|$$
 (A.1)

where the maximum is taken over all x such that ||x|| = 1. Matrix norms induced in this way are <u>compatible</u> with the underlying vector norm, in the sense that

$$\|Ax\| \leq \|A\| \cdot \|x\| \qquad (\text{for all } x).$$

The matrix norms induced by the vector p-norms ($p = 1, 2, \infty$) are

 $\|A\|_{1} = \max_{j} \Sigma_{j} |a_{jj}|$ $\|A\|_{2} = \sqrt{\text{largest eigenvalue of } A^{T}A}$ $\|A\|_{\infty} = \max_{j} \Sigma_{j} |a_{jj}|$

9

(row sum)

(column sum)

(Euclidean)

Matrix norms, besides those induced by vector p-norms, are also used. Among the most useful are

$$\|A\|_{S} = \sum_{i} \sum_{j} |a_{ij}|$$
 (sum norm)
$$\|A\|_{F} = \sqrt{\sum_{i} \sum_{j} a_{ij}^{2}}$$
 (Frobenius norm)

 $\|A\|_{M} = n \max_{i} \max_{j} |a_{ij}| \qquad (\max \text{ norm}).$

It is easily proven that $||A||_{S}$ is compatible with $||x||_{1}$, that $||A||_{F}$ is compatible with $||x||_{2}$, and that $||A||_{M}$ is compatible with $||x||_{\infty}$. Also,

$$\frac{1}{n} \|A\|_{S} \le \|A\|_{\infty} \le \|A\|_{M} \le n \|A\|_{S}$$
$$\frac{1}{n} \|A\|_{S} \le \|A\|_{1} \le \|A\|_{M} \le n \|A\|_{S}$$

so that the choice of a norm is not too critical in finite-dimensional linear spaces (that is, for matrices).

The condition number of a matrix for a given matrix norm is defined by

(A.2)

 $c(A) = ||A|| \cdot ||A^{-1}||$

From this definition it is clear that $c(A^{-1}) = c(A)$. The condition number recommended in this report is derived from the Frobenius matrix norm

$$c_{F}(A) = \|A\|_{F} \cdot \|A^{-1}\|_{F}.$$

The Frobenius condition number should be a good approximation to the Euclidean condition number

 $c_2(A) = \sqrt{\text{largest eigenvalue of } A^T A} \sqrt{\text{smallest eigenvalue of } A^T A}$

because of the inequalities

$$\|A\|_{2} < \|A\|_{F} < \sqrt{n} \|A\|_{2}$$
.

A specialization of the Euclidean condition number, introduced by von Neumann and Goldstine in the early days of computing, is frequently found in the literature (for example, [3]). This condition number is defined by

$$c_{\lambda}(A) = \frac{|\text{largest eigenvalue of } A|}{|\text{smallest eigenvalue of } A|}$$

It is sometimes called the 'spectral' condition number, since the spectral radius of A is the magnitude of the largest eigenvalue of A. When A is symmetric, the Euclidean and spectral condition numbers agree

 $c_2(A) = c_\lambda(A)$.

Spectral condition numbers for some of the test matrices discussed in this report are given below. These are quoted from [3].

matrix	spectral condition number
Newman-Todd	1
Rutishauser	$\sim e^{4n \ln 2}$
Pei	$1 + \frac{n}{a}$
Givens	$\sim \left(\frac{4n}{\pi}\right)^2$

Condition numbers computed from Eq. (A.2) for various matrix norms will, because of the inequalities relating the matrix norms, all be of the same order of magnitude as the spectral condition numbers quoted above.

For any condition number c(A), Forsythe and Moler [2] argue that

 $\log_{10} c(A)$

is approximately the number of significant digits lost when calculating A^{-1} . A little arithmetic, based on the condition numbers quoted above, yields the following:

matrix	order	$\frac{\log_{10} c(A)}{\log_{10} c(A)}$
Inverse Hilbert	3	2.72
	3 5 7	5.68
	7	7.18
Newman-Todd	a11	0
Rutishauser	3	3.61
	3 5 7	6.02
	7	8.43
Pei a = n	a11	0
a = 1	10	1.
	50	1.70
	100	2.
· a = 64ε	10	7.02
	50	7.72
	100	8.02
a = E	10	8.83
	50	9.53
	100	9.83
Givens	10	2.71
	50	4.10
	100	4.71

From the above table it is apparent that condition numbers for families of dense matrices of orders up to several hundred can be classified as follows:

Condition	Functional Form	Example
Good	constant	Newman-Todd, Pei $(a = n)$
Fair	linear in n	Pei (a ≅ 1)
	quadratic in n	Givens
Very bad	exponential in n	Rutishauser, Hilbert

Note too that Pei ($a = 64\varepsilon = 2^{-20}$) presents a more interesting test problem than Pei ($a = \varepsilon$).

-

TM 2410

Appendix B

PROGRAM PACKAGE FOR TESTING LINEAR EQUATION ROUTINES

A program package for testing linear equation routines was written according to the specifications of this report. It consists of the following:

Main Program:	LEQTST	- overall logic
Subprograms:	LTxxxx	 generates test matrix and its exact inverse
	LTEST	 calls candidate routine to calculate inverse and measures execution time
	LTERR	 computes error matrix, residual matrix and four measures of error
	FNORM	- returns Frobenius norm of a matrix
	LTPRNT	- prints summary test results
	LTRITE	 writes all matrices, if detailed printout requested
	MXRITE	- writes a single matrix

Program documentation for these program elements is contained in this Appendix, and conforms to the documentation standards of [8].

13

FNORM-1

NAME	FNORM			
PURPOSE	To return Frobenius norm of a matrix			
	$\ A\ _{F} = \sqrt{\sum_{i} \sum_{j} a_{ij}^{2}}$			
USAGE	F = FNORM (A, N, NN)			
	AThe matrix - NOrder of matr NNRow dimension	ix A Input		
ACCESS	LIB NWC*MATHLIB.			
ERRORS	None			
REMARKS	Although A is single pr is done in double preci	ecision, the computation of FNORM sion.		
PROGRAM INFO)			
	Date14 MarchStatusCertifieEntry NamesFNORMExternal RefsDSQRT, NFilenameNWC*MATHElement/VersFNORMStorage74 wordsTimingUnknown	V Icas, Code 4033 NWC 1975 d, Fully Supported by CCF ERR3\$ LIB		
TESTING	Output from FNORM was c hand.	hecked against values computed by		

REFERENCE

NWC TM 2410

LEQTST-1

NAME LEQTST

PURPOSE

To test a linear equation routine by using it to compute inverses X of tests matrices A having known inverses. The resulting error $E = X - A^{-1}$ and residual R = AX - Iare used to compute several measures of computational error.

USAGE

Main program. There are no inputs to LEQTST. User options involve the setting of three program variables.

NN......Parameter variable which controls the maximum size of test matrices used.

DETAIL...Logical variable which if .TRUE. causes all matrices involved - A, X, A^{-1} , E, R - to be printed out, as well as summary test information.

LEQTST is set up to use the following test matrices.

order
6
3, 5, 7
5, 10, 50, 100
5, 10, 15, 20
5, 10, 50, 100
5, 10, 50, 100
5, 10, 50, 100
5, 10, 50, 100

The maximum order actually used is controlled by the value of NN.

ACCESS

IN 4033519*NM-BENCH.LEQTST

REMARKS

The size of test matrices used in LEQTST is limited only by the available core storage. The design of LEQTST does not provide for buffering to mass storage. LEQTST is not intended to test sparse matrix routines. The test matrices used are believed to be representative of moderately-sized dense matrices.

IW.....Integer variable which specifies the logical unit number for output.

LEQTST-2

PROGRAM INFO

Machine	UNIVAC 1110
Language	FORTRAN V
Author	L. W. Lucas, Code 4033 NWC
Date	14 March 1975
Status	Unsupported
Entry Names	None
External Refs	LTHDG, LTWILK, LTEST, LTERR, FNORM, LTPRNT, LTRITE, LTHILB, LTNEWT, LTRUTH, LTPEI, LTGIVN, NINTR\$, ALOG, NSTOP\$
Filename	4033519*NM-BENCH.
Element/Vers	LEQTST
Storage	51080 words (NN = 100)
Timing	103 seconds (NN = 100)
Consultant	None

TESTING REFERENCE The component subprograms for LEQTST were all handchecked.

NWC TM 2410

LTERR-1

NAME LTERR PURPOSE To compute error and residual matrices and four measures of computational error. USAGE CALL LTERR(A, X, AI, E, R, N, NN, ERR) A.... Test matrix - (N, N)Input X....Computed inverse of A Input AI...Exact inverse of A Input E....Error matrix, E = X - AIOutput R....Residual matrix, R = AX - IOutput N.... Order of matrices A, X, AI, E, R Input NN...Row dimension of A, X, AI, E, R Input ERR. . Array of error measures output ACCESS IN 4033519*NM-BENCH.LTERR ERRORS None REMARKS Although the arrays A, X, AI, E and R are all single precision, the computations within LTERR are performed in double precision. The measures of error returned in ERR are defined in the reference. PROGRAM INFO Machine UNIVAC 1110 Language FORTRAN Author L. W. Lucas, Code 4033 NWC 14 March 1975 Date Status Unsupported Entry Names LTERR External Refs FNORM, DSQRT, NERR3\$ Filename 4033519*NM-BENCH. Element/Vers LTERR Storage 333 words Timing unknown Consultant None TESTING Output from LTERR was checked against values computed by hand. NWC TM 2410 REFERENCE

LTEST-1

22

NAME	LTEST			
PURPOSE	To call candidate routine for calculating inverse of test matrix and to measure execution time			
USAGE	CALL LTEST (A, X, N, NN, TIME, WK, C, IER)			
	XCom NOrd NNRow TIMETim WKWor CWor	t matrix - (N, N) sputed inverse of A er of matrices A, X d dimension of A, X te to compute inverse k space of length N*N k space - (N, N) for return flag	Input Output Input Input Output Scratch Scratch Output	
ACCESS	IN 4033519*NM-B	ENCH.LTEST		
ERRORS		ccur within LTEST itself or flag from the candida		
REMARKS	is passed to th tine destroys a will obviously routine tested.	x A is copied into the w e candidate routine, jus ny coefficient matrix gi- have to be rewritten for SETCLK and LKCLKS are outine. LEQTIF is the ro	t in case the rou- ven to it. LTEST each candidate entry points to the	
PROGRAM INFO				
	Machine Language Author Date Status Entry Names External Refs Filename Element/Vers Storage Timing Consultant	UNIVAC 1110 FORTRAN L. W. Lucas, Code 4033 14 March 1975 Unsupported LTEST SETCLK, LEQTIF, LKCLK, 4033519*NM-BENCH. LTEST 167 words unknown None		
REFERENCE	NWC TM 2410			

LTGIVN-1

23

NAME	LTGIVN				
PURPOSE	To generate the Givens test matrix of order N and its exact inverse.				
USAGE	CALL LTGIVN (G, GI, N, NN)				
	GTest matrix - (N, N)OutputGIExact inverse of GOutputNOrder of GInputNNRow dimension of GInput				
ACCESS	LIB NWC*MATHLIB.				
ERRORS	None				
REMARKS	None				
PROGRAM INFO					
	MachineUNIVAC 1110LanguageFORTRANAuthorL. W. Lucas, Code 4033 NWCDate14 March 1975StatusCertified, Fully Supported by CCFEntry NamesLTGIVNExternal RefsNERR3\$FilenameNWC*MATHLIBElement/VersLTGIVNStorage198 wordsTimingunknownConsultantL. W. Lucas, Ext. 3561				
TESTING	Output from LTGIVN was handchecked against Gregory and Karney.				
METHOD	The Givens test matrix G_n and its inverse are defined by				
	$G_n = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 3 & & & \\ & & \ddots & \\ 1 & 3 & 5 & \dots & 2n-1 \end{bmatrix}$				
	$G_n^{-1} = \frac{1}{2} \begin{bmatrix} 3 & -1 & & & \\ -1 & 2 & & & \\ & \ddots & & & \\ & & 2 & 1 \\ & & & 1 & 1 \end{bmatrix}$				

REFERENCE

Gregory and Karney. A Collection of Matrices for Testing Computational Algorithms. Wiley-Interscience, 1969.

LTHILB-1

NAME LTHILB PURPOSE To generate the inverse Hilbert test matrix of order N and its exact inverse (Hilbert matrix) USAGE CALL LTHILB (T, H, N, NN) T....Inverse Hilbert matrix - (N, N)Output H....Hilbert matrix Output N....Order of T, H Input NN....Row dimension of T, H Input ACCESS LIB NWC*MATHLIB. ERRORS None REMARKS The inverse Hilbert matrix is used as a test matrix since its elements are integers. Due to integer overflow in computing the elements of T, the maximum usable value of N is 7. The elements of H are computed using double precision arithmetic and are exact to single precision. PROGRAM INFO Machine UNIVAC 1110 Language FORTRAN Author L. W. Lucas, Code 4033 NWC Date 14 March 1975 Status Certified, Fully Supported by CCF Entry Names LTHILB External Refs NERR3\$ Filename NWC*MATHLIB Element/Vers LTHILB Storage 254 words Timing unknown Consultant L. W. Lucas, Ext. 3561

TESTING

Output from LTHILB was handchecked against Gregory and Karney.

METHOD

The algorithm for computing the elements of T is given in Forsythe-Moler, p. 85. The formula defining H is

	[1	$\frac{1}{2}$	$\frac{1}{3}$	 $\frac{1}{n}$
	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{3}$		$\frac{1}{n}$
H =	$\begin{vmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{3} \\ \vdots \\ 1 \end{vmatrix}$		•	
	:			
	$\left\lfloor \frac{1}{n} \right\rfloor$			$\frac{1}{2n-1}$

REFERENCES

Gregory and Karney A Collection of Matrices for Testing Computational Algorithms Wiley-Interscience, 1969

LTHILB-2

Forsythe and Moler Computer Solution of Linear Algebraic Systems Prentice-Hall, 1967

LTNEWT-1

NAME	LTNEWT			
PURPOSE	To generate Newman-Todd test matrix of order N and its exact inverse.			
USAGE	CALL LTNEWT (A, AI, N, NN)			
	ANewman-Todd test matrix - (N, N)OutputAIExact inverse of AOutputNOrder of AInputNNRow dimension of A, AIInput			
ACCESS	LIB NWC*MATHLIB			
ERRORS	None			
REMARKS	Since A is orthogonal, AI is set equal to the transpose of A. The computations are done in double precision, since the elements of A are not exactly representable in single precision.			
PROGRAM INFO				
	MachineUNIVAC 1110LanguageFORTRANAuthorL. W. Lucas, Code 4033 NWCDate14 March 1975StatusCertified, Fully Supported by CCFEntry NamesLTNEWTExternal RefsDSQRT, DSIN, NERR3\$FilenameNWC*MATHLIBElement/VersLTNEWTStorage142 wordsTimingunknownConsultantL. W. Lucas, Ext. 3561.			
TESTING	Output from LTNEWT was handchecked against Gregory and Karney.			
METHOD	The Newman-Todd test matrix A is defined by			
	$A = (a_{ij}), a_{ij} = \frac{2}{n+1} \sin\left(\frac{ij\pi}{n+1}\right)$			
REFERENCE	Gregory and Karney A Collection of Matrices for Testing Computational Algorithms Wiley-Interscience, 1969			

26

To generate Pei test matrix of order N with parameter S

CALL LTPEI (P, Q, N, NN, S) P....Pei test matrix - (N, N)Output Q....Exact inverse of P Output N....Order of P, Q Input NN....Row dimension of P, Q Input S....Pei parameter Input LIB NWC*MATHLIB. None The elements of P are integers and are exact to single precision. The elements of Q are fractions and are computed in double precision. The parameter S can be used to vary the condition number of P. Machine UNIVAC 1110 Language FORTRAN Author L. W. Lucas, Code 4033 NWC Date 14 March 1975 Status Certified, Fully Supported by CCF Entry Names LTPEI External Refs NERR3\$ Filename NWC*MATHLIB Element/Vers LTPEI Storage 183 words

TESTING

NAME

USAGE

ACCESS

ERRORS

REMARKS

PROGRAM INFO

PURPOSE

LTPEI

Timing

Consultant

and its exact inverse.

Output from LTPEI was handchecked against Gregory and Karney.

L. W. Lucas, Ext. 3561

unknown

METHOD

The formulas defining P and Q, taken from Gregory-Karney, are

 $P = (p_{ij}) \qquad p_{ij} = \begin{cases} 1+s & i=j \\ 1 & i \neq j \end{cases}$ $Q = (q_{ij}) \qquad q_{ij} = \begin{cases} \frac{s+n-1}{s(s+n)} & i=j \\ -\frac{1}{s(s+n)} & i\neq j \end{cases}$

where s is the Pei parameter.

LTPEI-1

LTPEI-2

REFERENCE Gregory and Karney A Collection of Matrices for Testing Computational Algorithms Wiley-Interscience, 1969

LTPRNT-1

NAME LTPRNT PURPOSE To print summary test results for LEQTST USAGE CALL LTHDG (IW) IW..... Unit number for printout CALL LTPRNT (IW, NAME, N, IER, TIME, COND, ERR) IW..... Unit number for printout Input NAME....Name of test matrix Input N.....Order of test matrix Input IER....Error return from candidate routine Input TIME...Time to compute inverse Input COND...Logarithm of condition number Input ERR....Array of error measures Input ACCESS IN 4033519*NM-BENCH.LTPRNT ERRORS None REMARKS NAME is a 12-character hollerith string giving the name of the test matrix. Entry LTPRNT is used to print summary test results. Entry LTHDG is used to print headings for the summary test results. PROGRAM INFO Machine UNIVAC 1110 FORTRAN Language Author L. W. Lucas, Code 4033 NWC Date 14 March 1975 . . Status Unsupported Entry Names LTHDG, LTPRNT NWDU\$, NIØ1\$, NIØ2\$, NERR3\$ External Refs Filename 4033519*NM-BENCH Element/Vers LTPRNT Storage 108 words Timing unknown Consultant None

REFERENCE

NWC TM 2410

LTRITE-1

RITE
k

PURPOSE

To write matrices for LEQTST

USAGE

CALL LTRITE (IW, A, X, AI, E, R, N, NN)

IWLogical unit number for output	Input
ATest matrix - (N, N)	Input
XComputed inverse	Input
AIExact inverse	Input
EError matrix	Input
RResidual matrix	Input
NOrder of matrices	Input
NNRow dimension of arrays	Input

ACCESS

IN 4033519*NM-BENCH.LTRITE

ERRORS None

REMARKS None

PROGRAM INFO

Machine	UNIVAC 1110
Language	FORTRAN
Author	L. W. Lucas, Code 4033 NWC
Date	14 March 1975
Status	Unsupported
Entry Names	LTRITE
External Refs	MXRITE, NERR3\$
Filename	4033519*NM-BENCH
Element/Vers	LTRITE
Storage	96 words
Timing	unknown
Consultant	None

REFERENCE

NWC TM 2410

.

LTRUTH-1

NAME	LTRUTH		
PURPOSE	To generate Rutishauser test matrix of order N and its exact inverse.		
USAGE	CALL LTRUTH (R, RI, N, NN, JR)		
	RRutishauser test matrix - (N, N)OutputRIExact inverse of ROutputNOrder of R, RIInputNNRow dimension of R, RIInputJRWork space array of length NScratch		
ACCESS	LIB NWC*MATHLIB.		
ERRORS	None		
REMARKS	The scratch array JR is used to store the jth column of R, while generating the $j+1$ -th column via a recursion formula. R is its own inverse, so RI is just a copy of R.		
PROGRAM INFO)		
	MachineUNIVAC 1110LanguageFORTRANAuthorL. W. Lucas, Code 4033 NWCDate14 March 1975StatusCertified, Fully Supported by CCFEntry NamesLTRUTHExternal RefsNERR3\$FilenameNWC*MATHLIBElement VersLTRUTHStorage197 wordsTimingunknownConsultantL. W. Lucas, Ext. 3561		
TESTING	Output from LTRUTH was handchecked against Gregory and Karney.		
METHOD	The Rutishauser test matrix is defined by		
	$R = \begin{bmatrix} 1 & & & \\ 1 & -1 & & \\ 1 & -2 & 1 & \\ \vdots & & \ddots & \\ 1 & -n+1 & & (-1)^{n-1} \end{bmatrix}$		

1

LTRUTH-2

The columns of R are, except for sign, the diagonals in Pascal's triangle. Thus, the following recursion formula can be used to generate the elements of R.

$$r_{ij} = \begin{cases} 0 & i < j \\ \\ r_{i-1, j} - r_{i-1, j-1} & i \ge j \end{cases}$$

REFERENCE

Gregory and Karney A Collection of Matrices for Testing Computational Algorithms Wiley-Interscience, 1969

LTWILK-1

NAME	LTWILK		
PURPOSE	To generate Will inverse.	kinson test matrix of order 6 and 1	ts exact
USAGE	CALL LTWILK (W,	V, N, NN)	
	VExact NOrder	Inson test matrix inverse of W of W, V limension of W, V	Output Output Output Input
ACCESS	LIB NWC*MATHLIB.		
ERRORS	None		
REMARKS	N is set equal t	o 6 by LTWILK.	
PROGRAM INFO			
	Machine Language Author Date Status Entry Names External Refs Filename Element/Vers Storage Timing Consultant	UNIVAC 1110 FORTRAN L. W. Lucas, Code 4033 NWC 14 March 1975 Certified, Fully Supported by CCF LTWILK NERR3\$ NWC*MATHLIB LTWILK 165 words unknown L. W. Lucas, Ext. 3561	
TESTING	Output from LTWILK was handchecked against Gregory and Karney.		
METHOD	The internal arrays X and Y are initialized to the Wilkinson test matrix, and its exact inverse, respectively, which are given in the reference. These are then copied into W and V, respectively, upon entry to LTWILK.		
REFERENCE	Gregory and Karney A Collection of Matrices for Testing Computational Algorithms Wiley-Interscience, 1969		

MXRITE-1

NAME

MXRITE

To write out a general matrix, preceded by a title.

PURPOSE USAGE

CALL MXRITE (IW, A, N, M, NN, TITLE)

IWLogical unit number for printout	Input
AThe matrix (N, M)	Input
NRows in A	Input
MColumns in A	Input
NNRow dimension of A	Input
TITLETitle printed above A	Input
TITLETITLE printed above A	Input

ACCESS NWC*MATHLIB.

ERRORS None

REMARKS TITLE is an 18-character hollerith string printed above A. The matrix is printed out 8 columns across the page. Remaining columns are printed below, again 8 columns across the page.

PROGRAM INFO

REFERENCE

Machine	UNIVAC 1110
Language	FORTRAN
Author	L. W. Lucas, Code 4033 NWC
Date	14 March 1975
Status	Certified, Fully Supported by CCF
Entry Names	MXRITE
External Refs	NWDU\$, NIØ1\$, NIØ2\$, NERR3\$
Filename	NWC*MATHLIB
Element/Vers	MXRITE
Storage	167 words
Timing	unknown
Consultant	L. W. Lucas, Ext. 3561
None	

REFERENCES

- 1. Bellman, R. (1970). Introduction to Matrix Analysis, 2nd ed., McGraw-Hill, New York. LC76-96425.
- 2. Forsythe, G., and C. B. Moler (1967). Computer Solution of Linear Algebraic Systems, Prentice-Hall, New Jersey.
- 3. Gregory, R. T., and D. L. Karney (1969). A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, New York.
- Lietzke, M. H. et al. (1964). "A comparison of several methods for inverting large symmetric positive definite matrices," MATH COMP <u>18</u>, 449-463.
- 5. Newman, M., and J. Todd (1958). "The evaluation of matrix inversion programs," J SIAM 6, 466-476.
- 6. Stewart, G. W. (1973). Introduction to Matrix Computations, Wiley, New York. LC72-82636.
- 7. Westlake, J. R. (1968). A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, Wiley, New York.
- Lucas, L. W. (1975). Documentation Guidelines for Subprograms, China Lake, CA, Naval Weapons Center. (NWC TM 2408, publication UNCLASSIFIED.)

415