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Our work has rcsulted in a prcliminar
mects electromagnetic, orbital, attitude,
quirements.

v desigghfor a passive space array that
deployment, and manufacturability rc-
The central portion of the prototype consists of 10,000 spherical

aluminum scattering elements %hat- aré uniforml
line to form an array %hatffg 150 meters long.
i awl-2in diameter and are resonant over the frequency

Supported by 75 segments of stiff wire 1 mm (40

mils) in diamctcr. These scg-
gl
ments are connected by joints whose free motion is limited to 3%?4 We found -that

3he stiff sections wergﬁnecdedctgtabsorb transve

Yy spaccd along a straight vertical
The sphcreéugre<6ne.centimeter9
range 10 % 0.5 GHz. They arc

P

rse kinetic enefgy occurring
during deployment.

To provide needed damping of librational motions,
will be extendcd by a coil of the same construction as
stressed to assume a pigtail shape when rcleased in spa
a radius of 5 meters and will carry 2000 spheres,
by converting librational energy into flexural moti
to viscopsdforces in the joints.

--has-«beéﬁ; %élculated. Yorim

each cnd of the array

the main array, but prec-
ce. Each coil will have
These coils provide damping
on, which in turn is subject
A damping time constant of less than two months

The mechanical behavior of an array with libration-damping devices has been
4 investigated by analytical and numerical techniques.

Per turbing effects such as
solar radiation pressur

€ and thermal strain have been considered,
We also simulated the array behavior,

One of them--the Flexible Spacecraft Dynami
been used w;

using two different computer programs,
¢s Program--is a general code that has
th considerable success in modeling other gravity-gradient satellites,
and that wec have modified to include libration damping using tip configurations,
In addition, we have written a program specific to our tasks.
1 work by entirely differcnt mathematical procedures and give diffcrent insights
e into the array behavior. Thc results are mutually consistent, and agree with
analytical results, Simulation has made it

variables concurrently--a proccdure not
analysis,

The two programs

possible to consider a grcat many
possible in a tractable mathcmatical

We have designed a deployment mechanism that will constrain the array with-
X in a circularly cylindrical storage locked during launch and, at the appropriate
- time, will eject the array along the local vertical. Capture by gravity zradient
3 is expected even if the array initially tumbles after deployment,
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C 1 INTRODUCTION

This report examines the orbital and attitude mechanics of a passive

space array and describes a mechanism for its deployment. Such an array,

first proposed by Joseph C. Yater in the mid-60s, consists of an ordered ,

set of scattering elements. Incident electromagnetic radiation scattered

from these elements is reinforced at certain angles to provide a powerful

1% return signal (see Figure 1).

SRI is conducting a program to demonstrate the feasibility of this

& array concept. The concept will be implemented by nttachment of the

ring elements to a semiflexible cable. The cable is to be placed

3
- scatte
i

1 be maintained in a vertical

in a geostationary orbit, where it wil

‘E attitude by the gravity gradient.
: This program to develop and demonstrate the passive-space-array
A Work done during the first year,

concept is in its second year.

covered in Summary Report--Phase 1, dated April 1975, concentrated on

feasibility. Several factors affecting orbit and array stability were

- considered. These included collapse of the array due to solar pressure,

and libration pumping

distortion of the orbit due to solar pressure,

s due to orbital eccentricity. Elementary models were used to study thece

effects. In addition, extensive use was made of the Flexible Spacecraft

Dynamics Program (FSDP), a program designed to deal with gravity-gradient

“; satellites having flexible appendages.

various configurations involving supported arrays were considered

and rejected because of difficulties in meeting straightness requirements,

especially for arrays on the order of a kilometer in length that may be

useful in communications systems. An array consisting of relatively

b et sty AR i ok
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FIGURE 1 CONFIGURATION OF FEASIBILITY DEMONSTRATION

massive balls supported on a thin cable evolved as a means of satisfying
diverse requirements. This configuration is a departure from the light
ribbon that was originally considered, and that was found to collapse
and to be blown out of orbit due to solar pressure. The substantially
higher mass-to-area ratio of the beads than that of the ribbon provides
the needed margin for feasibility. The conclusions drawn from the first
year of work are that it is feasible to put this array into synchronous

orbit, and that it will remain stable there.




T ¢ e e T e

During the first year we found that the lowest normal vibration

7 mode of the cable, the libration mode, is straight (unlike that of a

e cable hanging in a gravity environment). Therefore, a flexible cable

g could become straight and thereafter librate as a rigid body without
internal relative motion. Such a 1ibration would persist unless some

g mechanism for damping was provided. Two mechanisms for damping libration
were identified and studied. Both involved adding structures to the

f; ends of the array in order to introduce flexure into the lowest libration
mode. TFlexure of the cable that supports the array will dissipate energy

through internal friction, ultimately leaving the structure in the

desired stable gravity-gradient equilibrium position.

3 The FSDP simulation was unable to deal with the complexities of the
3 proposed tip arrangements. Hence, evaluation of the two libration-

3 damping methods remained as a part of the task being reported here.

The first year of work also identified several deployment mechanisms.

This work was important because the array configuration is intimately

related to the deployment scheme selected.

The work being reported herein i3 a continuation and elaboration of

the work discussed in our first summary report. Most of the subsequent

effort has been directed toward the design of a test array 150 m long,

consisting of 10,000 scattering elemente. This array length was

o selected for a feasibility demonstration purpose. A much longer array
(1500 meters), with 100,000 scattering elements, is considered more

appropriate for later systems application. The theories that have been

. developed are applicable to arrays of any length, but most of the

. calculations presented are concerned with the shorter test array.

g Vo L B A s A e o

R A




11 APPROACH

A, General

We have investigated a large number of com®*nations of array con-

each candidate combination to evaluate its feasibility in terms of the

various constraints that are imposed by the deployment process and the :

subsequent requirements of capture by gravity gradient, attitude stability,

these requirements. However, the configuration described in the

following sections seems best to meet the overall system requirements.

Many of the requirements are actually or seemingly in conflict.

launch requirements. In contrast, a heavy array having a large vatio of

mass to surface area is desirable to minimize the effects of solar

figurations and deployment mechanisms. The approach has been to examine &

and orbital stability. We found that many combinations meet several of b

For example, a very light array is attractive from the standpoint of o

radiation pressure., A very flexible array is desirable in the interest
of obtaining straightness under the weak forces of gravity gradient,
On the other hand, an array having considerable stiffness is desirable

8 to minimize the risk of tangling during deployment.

To avoid distortion by solar radiation pressure, it is desirable to
3 make the array homogeneous--i.e., to make each section exactly like every

other section. Also, the deployment process is greatly simplified if

.
. the array is essentially homogeneous. In contrast, libration damping

requires that the ends of the array have a configuration that is in some

way significantly different from that of the rest of the array.

il e SR s PUNUUTCINCIF RIS PSR
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The deployment process would be greatly simplified if the launch
vehicle were perfectly stationary in orbital space for a time fully
adequate for the deployment process. Actually, the transtage of the
TITAN I11-C maintains approximate stability by a cycling process that
produces accelerations and motions that are inconveniently large for the
planned deployment process. The time available for deployment is limited
by this cycling process and by the small amount of fuel and battery energy

that will be available after both prime payloads are discharged.

The array must remain straight to within a few centimeters and

stationary in space to properly serve its communication function. However,

prior to deployment it must be stored in some reasonably compact container.
This pair of requirements leads to the choice of a stiff but highly
elastic wire as the supporting element. The apparent conflict between
flexibility and stiffness is resolved by the use of limited-motion

joints that are quite free for small motions but that prevent larger

motions.,

We have investigated the candidate array structures in two supple-
mentary ways. First we have treated the individual effects that influence
the orbital and attitude dynamics of each configuration. This approach
provides for tractable analysis and makes it possible to check special
cases. Secondly, we have used an overall simulation modeling all of the
essential effects on orbital and attitude dynamics simultaneously in

specific cases.

B. Analysis

By limiting our attention to small-amplitude cable motions we were
able to use linearized theoretical models so that each effect on orbital
and attitude dynamics could be investigated individually., By this

method we have determined the normal modes of vibration for the cable.

TS AT N e e ER R (S TS




The importance of these modes is that, once identified, they can be
introduced as initial conditions into the more complex simulation models
in order to permit investigation of the damping of the lower-order modes.
This procedure makes it unnecessary to wait for higher-order modes to
damp out. The higher modes would be introduced into the simulation only

if an arbitrary cable shape were used as an initial condition,

C. Simulation

Two types of simulations were used~-the Flexible Spacecraft Dynamics
Program at Computer Sciences Corporation and an SRI-developed, finite-
segient mudel; Tihe Ylexilble Spmeceraft Dynanies PBrogran uses nodnal
analysis. For specified initial mode shapes this program calculates the
time behavior of the amplitudes of these modes. A summation of the
individual modes gives the shape of the cable. At SRI we chose to rursue
a finite-element approach--that is, the cable was considered to be
composed of a finite number of rigid links., In the limit of a large
number of modes and a large number of links, the two techniques become
identical, At the other extreme, where only a few modes and a few
elements are used, the two techniques yield different results. The
Flexible Spacecraft Dynamics Program uses three modes on each of two
limbs, or six independent variables, while the SRI program has modeled

*
arrays of up to ten segments.

D. Array Configurations Modeled

We set out to examine the orbital and attitude dynamics of four

array configurations,

(1) A free cable

(2) A cable with tip masses

*
A much larger number of links can be modeled in the SRI program with
increased computer run time.
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(3) A cable with tip masses attached by means of hys-
teretic springs ('bouncing tip mass' arrangement)

(1) A eable with tip masses having large noticuts of

inertia.

Cases 3 and 4 are of primary interest because they correspond to
systems in which the lowest normal mode includes curvature, which may be
used to damp libration. Cases 1 and 2 are more tractable problems that
wvere used to develop our intuition and to provide a basis on which to

formulate the more complex problems.

The spring-mass arrangement shown in Figure 2 corresponds to the
third configuration. 't is patterned after the Applied Physics Laboratory
TRAAC satellites, also illustrated in the figure. Libration causes
extension and contraction of the spring. Coriolis forces associated with
outward and inward motions of the tip mass cause that mass to lag or lead
the natural libration motion of the array. Libration energy is dissipated
in flexing both the cable and the spring. The energy req:: red to extend
the spring is greater than that recovered when the extension is reduced.
This hysteresis of the spring mechanism, augmented by coatings on the
spring, was the energy dissipation mechanism used in the TRAAC

satellites.

We have determined that the affect of the spring-mass damper on the
satellite motion is considerakly different for in-plane than for out-of-
Plane motions. Specifically, for small-amplitude libration, the damping
effect disappears in the out-of-plane direction. Figure 3 demonstrates
this result, For the in-plane case, the libration rate is added to
the orbital rate, n, The increment in é about the orbital rate makes

a significant difference in the centrifugal acceleration of the mass,

causing the spring to extend,
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FIGURE 3 FORCE ON SPRING DUE TO LIBRATION

In the out-of-plane direction, the fate of the libration is added
to zero, As shown, a small change in é from zero gives no significant
change in the centrifugal acceleration and therefore no spring extension
(and damping). Our concern with this phenomenon is that out-of-plane
damping will decrease as the libration amplitude decreases. The approach
to alleviating this difficulty is to transfer energy from the out-of-
plane motion to the in-plane motion. This can be acromplished by tuning
one of the in-plane modes to a frequency at which this mode can be
excited by forces at twice the natural frequency of the out-of-plane
libration. This tuning increases damping for small libration, out-of-plane

ampli tudes.
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The natural frequency required of the spring-mass arrangement
corresponds to a period an order of magnitude greater than the one-hour
period of the TRAAC satellite, To achieve this frequency, the spring
must be very "soft"--i.e., 8.5 x 10 ~ N/m for a tip mass of one kilogram,
Our concern is whether such a spring can be built without excessive
length or fragility, both of which contribute to softness. Additional
concerns are whether the exact tuning frequency could actually be

established and whether the mechanism could be successfully deployed.

The tip-inertia concept is similar to that of the bouncing tip
mass in that the basic idea is to mzke the patural Lehsyios 5F Lhe tiy
mass different from that of the rest of the array. A tip mass with
large inertia would tend to travel back and forth without rotating.
Attacment of this tip at a position other than the center of gravily
of the array would give rise to a set of rocking frequencies that

interact with the medal frequencies of the cable itself.

We envision the tip body as an extension of the cable. In the
gravity environment on earth the tip would be indistinguishable from the
rest of the array, but in space the wire would assume a preset curvature.
If the natural frequency of this wiie were well above the libration
frequencies of concern, the tip would hppear as a rigid body. Figure 4

illustrates the concept.

The viscous magnetic damper has also been investigated but appears
to offer no advantages. The magnetic field gives a reference against
which damping of relative motion can take place. A magnet tends to
align with the field and is viscously coupled to the housing, either by
fluid or eddy current. ‘‘his device is space-proven and is an accepted
means of libration-damping for conventional gravity-gradient satellites
at synchronous alt.tuce. However, it is not clear how the damper could

be attached to the space array so as to take advantage o. the magnetic

11
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FIGURE 4 TIP-INERTIA CONCEPT

€._eld. Furthermore, additional discouraging factors are: (1) The
smallest available damper is about the size of a fist--i.e., much larger

than the array beads; (2) the magnetic field at synchronous altitude is

distorted by the solar wind so that, depending on the orbital relationships

and the i-itensity of solar activity, the magnetic field may be perturbed

by many degrees and thereby give rise to an unwanted periodic disturbance;
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(3) in the steady state, the viscous magnetic damper applies a constant
torque to the array which increases the problem of desagning a flexible
structure. Because this approach has no demonstrable advantage over the
Cip-inertin euneopt, and has a Lot of difeouraging foatures, 1t was mit

pursued further.

E. Deployment Method

The approach to finding a deployment method has been to compare
various proposed schemes against the attitude requirements, keepiﬂg in
mind the most likely configuration of the array. Probably the most
severe criteria are that the deployment mechanism be simple, that it be
able to fit aboard the launch vehicle as a secondary package, and that
it be capable of using the attitude-control system of the transtage.
These criteria have strongly affected the design of the array as well

as the deployment method.

F. Other Considerations

A variety of secondary factors have been evaluated in the course
of the work, usually to ensure that a particular effect is not important.
Our approach has been that of a design engineer; we first identify the
dominant considerations, and then check and continue to check on the
other concerns that were at first ignored. There is no way to ensure
that every relevont factor has been considered short of the actual
experiment. However, we have made a diligent effort to avoid overlooking
any important detail and have supplemented our own efforts by exposing
our concepts to a variety of people, both in and out of the satellite

business, and have followed up the suggestions given.
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III ANALYSIS RESULTS

A, General

The equations of motion of the array have been formulated with
respect to an orbiting reference system. The local vertical has been
chosen as one of the coordinates, and the orthogonals for the in-orbit
and out-of-orbit planes are the other two coordinates. We have assumed
a linearized gravity gradient and small-amplitude deflections of the

array. Equations for the first four array configurations mentioned

above, as well as analytical or numerical solutions, are given in

Appendices A and B. Our results are summarized in this section. The

reader should note that the small-amplitude assumptions apply only to

the analysis. The computer simulations, discussed in Section 1V, are

not so restricted.

B. Free Cable

As reported in Summary Report--Phase I, the shapes of the normal
fJ modes of the free array are Legendre polynomials in both the in-plane
y and out-uf-plane directions. The first several of these polynomial

. shape functions (eigenfunctions) of the free array are shown in

Figure 5. Also shown are the harmonic frequencies (eigenvalues) for

both the in—piane and out-of-plane modes. As noted earlier, the first

mode is straight--i.e., its motion is similar to the librational motion

of a rigid body. As noted in Appendix A, n is the orbital frequency,

which, for a geostationary satellite, is one cycle in 24 -urs.
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increasing tip mass. The ordinates give the frequency compared with
the orbital frequency, and the abscissas show the value of the tip mass,

M, normalized to the total mass of the active portion of the array.

Several important conclusions may be drawn from these figures.
First, for all the modes above the first, the frequency increases
as m increases, and the difference between frequencies for the in-plane
and out-of-plane modes becomes smaller. Second, there are three modes
that do not change frequency as the tip mass increases. Two of these
are out-of-plane modes and one is an in-plane mode. The in-plane mode
is the familiar libration mode. Once again, attention is called to the
fact that this libration mode remains straight and has a fixed frequency
for any array displacement regardless of the mass distribution or the
array length. In the out-of-plane case, the higher of tke two modes that
do not change in frequency is the out-of-plane libration mode. The
lowest frequency mode, whose frequency is exactly that of the orbital
rate, actually corresponds to an orbit with a slight inclination from
the reference orbit. The two orbits then move with respect to one

another with a frequency of one cycle per orbit.

In order to prvent distortion of the array shape by solar pressure,

the tip masses must have a projected area-to-mass ratio that is the same

as that of the cable.

D. Bouncing Tip Mass

The small effect of the bouncing tip masses on out-of-plane libration
can be increased if one of the in-plane modes is tuned to a frequency
four times the orbital rate. This "parametric" tuning causes the in-plane
mode to be excited by the out-of-plane libration. Figure 8 shows how a
spring-and-tip-mass combination could be selected to accomplish this, We
note that for each value of the tip mass there are two in-plane modes that
can be tuned to the desired frequency--one odd and the other even.

19
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@2 We have examined the bouncing-tip-mass configuration for the special
;i l case in which one of the in-plane normal modes had a natural frequency

of four times the orbital rate. For this tuned system, the spring

extension is 90° out of phase with the anguar deflection of the cable.
That is, when the cable is at its maximum deflection and stationary,
the tip mass is at its equilibrium position and moving with maximum

speed.




Even when the spring-mass is selected to give an in-plane natural

frequency of four times orbital rate, the out~of-plane damping goes to
zero as the libration angle goes to zero. This is not a serious concern,
however, because damping down to a few degrees of libration is adequate.
The decision to use the bouncing-tip-mass depends on several practical

questions of implementation; in theory, the method can be made to work.

The practical questions are (1) whether a spring-mass can be
built with a natural frequency an order of magnitude lower than that of
the TRAAC satellites gwhich took considerable development); (2) whether
the frequency of that system can be controlled to sufficient accuracy
to give the tuning required to augment the out-of-plane damping; and
(3) whether the system could be deployed. Because of these practical
concerns, and because of the early positive results on the tip-inertia
scheme discussed in the following section, effort was focused on the
latter method. Were the bouncing tip mass to be pursued further, the
next analytic step would be to determine the sensitivity of the out-of-

plane damping to tuning.

E. Large Tip Inertia

Solutions have alsc been achieved for the motions of the array with
the large tip moments of inertia shown in Figure 4. The solutions are
very similar, except for minor perturbations, to those of the tip-mass
cases. These perturbations are of the kind anticipated--that is, there
is distortion of the mode shape from those associated with the cable
and tip masses. This distortion is the greatest at the tips of the
cable and can either be toward the local vertical or away from it,
depending on the parameters chosen for the tip body. This inter-
dependence of mode-shape distortion and tip-body parameters is shown in
Figure 9 for the lowest mode. When the distance from the center of mass

to the point of attachment of the tip body is small, resulting in an
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FIGURE 9 FIRST MODE SHAPE WITH TIP INERTIA

oscillating frequency of the tip body less than the libration frequency,
the array departs from straightness toward the local vertical as shown

in Figure 9(a). In this case, the angle made by the tip body is out

of phase with the libration angle.

When the distance from the attachment point to the center of mass

gg' : of the tip body is large, the oscillation frequency of the tip body is

Lf : greater than the libration frequency. Consequently, the array libration

mode departs from straightness away from the local vertical as shown in

3 Figure 9(b). 1In this case the angle of the tip body is in phase

22




with the libration angle. The greatest amount of damping can be %}
achieved when the length of the tip body is chosen to achieve
resonance--that is, when the tip body rocks back and forth at the same

frequency as that of the array libration.

It should be noted that there exists a minimum value for the
distance b (see Figure 4) between the point of attachment and the center
of gravity of the tip body for which the tip body will be stable. The i
tip body tends to line up in the gravity gradient with its longest axis
in the local vertical. In order to put the axis of the largest moment

of inertia in the direction of the local vertical, it is necessary to

apply a restoring torque grealer than any gravity-gradient destabilizing
torque. This implies that the distance from the center of gravity of
the tip bwdy b Ehe puist of sttachment to the arraw is great enowh so
that the moment arm generated an angular deflection of the attachment

joint times the body force gives a sufficient torque to counter the

natural tendency of the loop to be upset. .

It is practically impossible to make a tip body that is radially
symmetric, and this fact was included in the analytic considerations.
With such a lack of symmetry, there will be a tendency for the longer

axis to lie in the orbital plane.

F. Summary

Analytical and numerical results have been generated to examine
the behavior of the array with the candidate libration-damping

schemes. The validity of the analyses is supported by internal

I A B i R TR ST A S e

consistency and by conformity to known results. For example,

(1) The numerical solutions for the frequencies of the
cable with tip masses degenerate to give the fre- s
quencies for the free cable when the magnitude of i
the tip masses goes to zero.
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(2) The tip mass, called for when an infinitely stiff
spring is required to achieve tuning in the bouncing-~
tip-mass case, corresponds to the mass of a simple
tip mass.

(3) The tip-inertia solutions are similar to the tip-mass
solutions.

(4) Numerical solutions for the tip inertia agree with
approximate analytic solutioms.

(5) The frequency of straight modes is independent of
linear density.
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1V COMPUTER SIMULATIONS

A, General

The Flexibtle Spacecraft Dynamics (FSD) Program that was used in

the first phase of this project has been further modified for use in

Phase 1I1.

written our own program which is described in Appendix C.

In addition, during the current phase of the project we have

A side-by-

side description of the two programs is presented here in Table 1 to

show how they complement each other.

Table 1

COMPARISON OF SIMULATION PROGRAMS

FSD Program

SR1I Program

Origin and Location:

The Flexible Spacecraft Lynamics
Program was written in the 1960s
by Mr. Edward Lawler of the AVCO
Corporation, Waltham, Mass. T'e
program was resident at the God-
dard Spacecraft Center, Greenbelt,
Md., in the care of AVCO repre-
sentatives. In 1974, this group
became a part of the Computer
Sciences Corporation, Silver
Spring, Md., where the program is
currently located. The program
was developed under Government
contract and is government
property.

Origin and Location:

The SRI Program was written by
Dr. Arthur R. Tobey under this con-
tract. The program is resident at
SRI; the code is a deliverable to

the government.




Table 1 (continued)

Purpose:

This program was developed to
deal with the IMP class of satel-
1ites. Specifically, the program
is able to model satellites with
a central body and up to a dozen
flexible booms, plus momentum
wheels and magnetic dampers. The
program was used to study and de-
sign the Radio Astronomy Explorer
(RAE) satellites and most recently
it has been used in the planning
studies for the GEOS-C spacecraft.

Code and Machine:

The FSDP is written in FORTRAN
for IBM equipment.

Method of Analysis:

The FSDP uses modal analysis.
The amplitudes of assumed modes,
taken to be the generalized co-
ordinates, are computed by the
program. Up to 3 modes in each
of two directions can be con-
sidered for each of the booms.
Méjor revision of the program
would be required to accommodate
additional variables.

Orbit:

This program calculates orbital
position and is capable of using
simple or sophisticated gravita-
tional models.

Purpose :

This program was written specifi-
cally to study the gravity-
gradient dynamics of the space
array.

Codz and Machine:

The SRI program is written in
FORTRAN for CDC equiprent.

Method of Analysis:

The SRI program uses a finite-
element analysis--that is, the
array is considered to be composed
of straight links with joints in
between. No assumption needs to
be made as to plausible mode
shapes. This program has been
written to accommodate up to 10
1inks of individually specified
lengths in the aryraj. A greater
number of links can be modeled
by increasing memory allocated
to link positions.

Orbit:

This program assumes an orbit
based on a simple earth gravita-
tional model. Eccentricity can be
included. The effect of solar pres-
sure on the orbit is not calculatea,
and the effect of earth oblateness
is not considered.
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Table 1 (continued)

Damping:

The FSDP calculates damping for
each mode on the basis of the gra-
dient change of curvature and ad-
justs the corresponding modal
amplitude accordingly.

Sffect of folar Pressure on Shape:

Damping:

The SRI program explicitly con-
siders viscosity in the joints.
Resistance to motion is provided in
proportion to the rate of change of
the angle of the joint. Nonlinear
viscous properties can also be
used. Individual joint behavior
can be specified.

Effect of Solar Pressure on Shape:

The FSDP considers that the
array is a uniform cylindrical
cable.

Coordinate System:

The FSDP is writtcun primarily
for spacecraft with large central
bodies, The coordinate systems
chosen to express the satellite
attitude and configuration are
the Eulerian angle of the central
body and the amplitudes of the
modes of flexures for the beams,
The central angle and the three
generalized coordinates allowed
for exch of c¢wo booms gives a
description of the cable in one
plane in terms of seven variables.

Other Features:

This program calculates a rela-
tive Hamiltonian which is a mea-
sure of the energy of the config-
uration.

Other features are also avail-
able, such as a fast Fourier
analysis to determine the fre-
quency of various satellite
motions.

The SRI program considers that
the array is made up of spheres
and that these sphercs can shadow
each other,

Coordinate System:

The SRI program is written to
give the position and orientation
of each link in terms of the co-
ordinate system defined by the
local vertical and the in-plane
and out-of-plane directions. Ten
variables are needed to describe
the complete position of the array
in one plane.

Other Features:

This program calculates relative
energy so that the amount of damping
can be determined.




B. Simulation Results

1. Test Cases

Both computer programs have been run _or a variety of test
cases in order to verify that the programs are working properly. These
cases included observing that the lowest mode remains straight for the
free cable and for the array with tip masses. TFurthermore, the programs
wvere used to verify the small-amplitude analytical solutions. In par-
ticular, we have verified most of the analytically predicted normal
modes for the bouncing tip mass and for the tip-inertia configurations.
When the correct mode shapes are used as inputs for simulations,
oscillations occur at the predicted frequencies. In addition, the two
programs have been checed against each other; the same input conditions

yield similar results.

2, Comprehension Runs

Several different runs have been made to reinforce our under-
standing of the array attitude dynamics. A number of those runs are

discussed in the following paragraphs.

We have studied the effects of varying the distance from the center
of mass to the point of attachment of the tip body with inertia, and
the overall array behavior. In this study, which used the SRI program,
the array was considered to be composed of two components. The first
component is a long, rigid member of length equal to that of the active
portion of the array. A tip mass is attached to one end of the rigid
member. The second component is a tip body with inertia attached to the
opposite end of the rigid member. The mass of the "tip inertia' is equal
to the tip mnss at the opposite end. The initial condition chosen was
an in-plane libration angle of 10° with no initial velocity. We

expected that the results of this simple model would not differ

EEry e




significantly from those of a symmetric array with many links, because
the shape of the libration mode is nearly straighu. This expectation
was verified by running one simulation of an eight-link array with
symmetrical tip inertias. The resulting tip-body angles in one orbit
were within 57 of those obteined from the sinple mudel.. Thus the simple

model allows exploration of variables with a minimum of computer time.

Figure 10 shows our results. The ordinate is the angle of the tip
body, and the abscissa shows the array's orbital position. One can see
that when the length, b, between the center of mass of the tip and
the attachment point is large, the tip body tends to librate at fre-

quencies considerably higher than those of the array. As b ‘s shortened,
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FIGURE 10 SIMULATION RESULTS WITH TIP INERTIA AND NO DAMPING, r = 5 m
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a resonance condition is passed through and the tip-body motion becomes
180° out of phase with respect to the libration. For the case shown,
the value of b to achieve the resonance is one-third of a meter. Where

there is no damping, the shape is independent of the linear density.

Figure 11 shows the results of test runs with different amounts
of linear damping at the joints. The lower curves show the percentage
of the initial energy remaining as a function of time. As the viscosity
in the joint is increased, the rate of energy dissipation increases up
a maximum and then decreases as the joint becomes so stiff that the
tip inertia tends to oscillate with the array as a rigid budy. il though
there is an optimum joint viscosity, substantial departures from the
optimum degrade the damping performance only slightly. Figure 11
showe thiat the three values of viscosity that give the greatest daupliiy

range over a factor cf 6.

The joint damping is given as a ratio of the torque applied in a
joint (N-m) to the angular rate of change of the joint (s_l). The
units of the joint damping coefficient, Y, are thus N-m-s. When
damping is involved, the array behavior is not independent of the linear
density, ¢, but is similar only when the dimensionless grouping A
has the same value, If we find that the optimum damping for a
50-kg array is in the neighborhood of v = 0,005 N-m-s, we can infer

|

that similar behavior would be achieved from a 20-kg array (constructed

from aluminum rather than steel) with vy = 0,002 N-m-s.

Runs have also been made starting with greater and lesser amplitudes,
and, as expected, the period of oscillation decreases with increasing
amplitude. We have also simulated cases starting with kiretic energy

but no initial displacement of the array.
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One of the interesting features that is expected and appears in
our simulations (but is absent in the small-amplitude analysis), is
that out-of-plane libration transfers energy to in-plane libration.
Figure 12 shows the result of a simulation of the motion of a rigid
body beginning with 20° of out-of-plare libration angle. Some of the
energy from this libration mode is transferred, giving rise to in-plane
libration. Also shown in this figure are data for the same body with
an initial angular displacement of 40°. As can be seen by comparing
the data, the larger initial libration produces disproportionally
greater coupling between out-of-plane and in-plane motion. At very

small angles the coupling disappears.
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V DEPLOYMENT

A, General

Deployment is integral to orbital and attitude considerations,
because the deployment provides the initial conditions, In the case of
a completely passive satellite, such as the space array, the deployment

is the last phase in which the behavior of the array can be affected,

The requirements of the deployment and several candidate mechanisms
were examined in Summary Report--Phase I, The desired function of the
deployment is to put the array into its stable equilibrium condition,
That is, the array should be (1) straight, (2) pointed toward earth,

(3) rotating at the orbital rate so that it will continue to be earth-
pointing, and (4) tranquil and at low stress, It should be possible to
stow the array on the transtage so that it is not damaged by the launch

environment,

B. Me thod

Several depioyment mechanisms have been considered, They can
generally be classified as mechanically assisted, naturally assisted, or
jnertial. The use of booms or of rockets to position the array fall in
the category of mechanically assisted deployments, Although booms could
conceivably be used to deploy the 150-m test array, booms to deploy the
1,5-km array lengths being considered for systems applications are out of
the question, The rocket-assist concept becomes applicable for very
long arrays where the gravity-gradient strength is sufficient to tolerate
the turbulent forces involved, This may be possible with the 1,5-km

arrays and larger, The deployment mechanism most frequently conceived
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for long tethered bodies takes advantage of the gravity gradient to

separate the bodies, This type ot deployment would be a naturally
assisted deployment, Note that other forces such as the solar pressure,
which is normally considered to be a difficulty, could conceivably be
used to assist the deployment, In order to take advantage of the gravity
gradient, however, jnitial separation must be achieved by other means,
These other means generally are to give an initial velocity to a part

or parts oif the array. Wheun lhese tiitial veloetties doninate the
deployment, then the deployment is what we call a quick inertial deploy-
ment, Gravity-gradient-assisted deployments are most desirable where
very large (several kilometers) arrays are being deployed, For arrays
of shorter length, and in particular the 130-m test array, the gravity-
gradient forces are too small to assist the deployment, Thus, we have

focused on quick inertial deployments,

The basic strategy of our selected deployment is to launch each

subsequent bead into the identical trajectory. In this way the string

of beads would be projected into a straight line with zero tension from
bead to bead, and it would make no difference how the beads were inter-

connected, In order to get the one rotation per orbit, a linearly

increasing transverse velocity can be added to each subsequent trajectory,
Such a linearly varying transverse velocity could be prcvided either by
uniformly accelerating the deployment mechanism in the transverse
direction or by slowly changing the direction of the trajectory. The
angular rate at which the trajectory should be changed corresponds to a

negative orbital rate with respect to the fixed stars, or a negative

twice-orbital rate with respect to the rotating frame of reference, This

would require a control system comparable to that required for making

e ok e m S SR T YR

telescopic time exposures, The existence of such systems allows us to
infer that an attitude-control system could be constructed that would

give a nearly perfect deployment, However, the actual system will have

e
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to function in a more adverse environment since it must tolerate the
control system of the transtage selected, For the test satellite this

will be the TITAN III-C launch vehicle.

Figure 13 shows an artist's concept of the deployment mechanism
and storage canister, The array is shown coiled, similar to a spool of
twine, and resting in a canister, Constraint means will be provided
for support in the launch environment; an elastic diaphragm for this
purpose is shown in Figure 13, The canister will be bolted to the
transtage and the driving drums solidly affixed to the canister, Only
the lightweight guide tube will be pivoted to provide the directional

correction, should that be needed,

The entire mechanism will be launched with the end of the array
led through the drive sprockets and the guide tube and with the con-
straint mechanism in place, The deployment sequence consists in removing
the constraint and then quickly accelerating the drive sprockets to the

deployment velocity,

Gz Transtage Detail

The TITAN III-C transtage, now regarded as the designated launch
vehicle, has a statistically described limit-cycle attitude-control
system, The transtage cycles from +1/2° to -1/2° from its set position
in all three axes, This cycling of position together with the fact that
the pitch and yaw attitude control jets also accelerate the transtage
creates special problems that are considered in detail in Appendix D,
Our tentative conclusion is that the deployment must take place at a
few feet per second in order to overcome the acceleration effect, and
that the attitude-control system will not support a deployment
sufficiently quiescent so that the attitude can be maintained by the

gravity-gradient forces alone, It has been noted that if the array is
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made up of stiff sections of wire instead of being completely flexible,
then sufficient energy can be absorbed in the flexing of this wire to
give a stable deployment, As noted in Appendix D, the guide tube can
significantly reduce spurious transverse velocities, but a complete
elimination of them would also require motion of the deployment

mechanism relative to the transtage,

A deployment with no average rotation will be achieved if the

forward and backward rocking motions of the transtage cancel each

other., In this case, the deployed array would start with an initial
libration of 36°, which would have to be damped out by the tip-inertia
process, By initiating the deployment on a forward angular motion in
the orbit plane, one can ensure that the transverse velocity will never
give rise to a negative average in-plane rate., If the deployment is
completed during a reverse motion of the transtage, the average angular

rate of the array may be near one revolution per orbit, Thus, the

anticipated libration values resulting from this deployment technique

are 36° or less,

D, Orbital Distortion

Figure 14 shows the eccentricity of the orbit generated as a
function of the deployment velocity when the array is deployed from a

transtage in a perfectly circular, synchronous orbit, A deployment

velocity of 5 m/s would generate an orbital eccentricity of 0,0027, a

value that is somewhat greater than the tolerance limits we have
selected for the array orbit., This difficulty could be overcome by
making an adjustment of the velocity of the transtage just prior to
deployment, or making the deployment at a chosen time in an imperfect

orbit of the transtage so that a nearly perfect array orbit results,



UPPER LIMIT
T llll”lr T T TTTTTT

MAKE
CORRECTION

DESIRED

1 Illllll

ECCENTRICITY

ECCENTRICITY DUE TO DEPLOYMENT VELOCITY 7]
(FROM CIRCULAR ORBIT)

L] lllllll L1 lllllll [ ey

1.0 10 100

DEPLOYMENT VELOCITY—m/s
LA-3323-79

FIGURE 14 ECCENTRICITY DUE TO DEPLOYMENT VELOCITY

E. Tests

Various parts of the deployment mechanism have been built and
tested, Arrays having bead densities from aluminum to lead, and with
stiffness parameters ranging from completely flexible to that provided
by a 1-mm-diameter steel wire have been driven out from between a
drive wheel and a mating flexible roller, The consistency of the bead
trajectores has been examined as a function of the deployment variables,
The beads appear to be deliverable without a guide tube within a total
angle of one degree, where the spectrum of disturbance is at high
frequency (i,e,, there is no correlation between the delivery angle of

beads spaced a meter or more apart),

The concept of accelerating a stiff section of the bead array to
5 m/s within one meter has been experimentally verified. An analysis

of the acceleration behavior remains to be completed,
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A complete model is presently being prepared for testing. This

model will confirm parameters for the design of the prototype package.

The tension of 2.34 newtons involved in the deployment at 5 m/s
dominates the array behavior within the deployment mechanism, It seems
likely, therefore, that testing of the concept and the mechanisms

developed can be accomplished in the earth's gravity environment,
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VI ARRAY STIFFNESS CONSIDERATIONS

A, General

There are several reasons why it would be desirable for the array
to have considerable stiffness instead of being completely flexible,
This section presents the advantages and disadvantages of such

stiffness,

B. Reasons for Stiffness

1, Prevention of Collapse During Deployment

As explained in Section V, the array is to be spun or fired
out of its storage chamber, Ideally, each bead would follow the
preceding bead in exactly the same trajectory. In a perfect deploy-
ment of this kind the desired equilibrium conditions would be attained

immediately.

For economic reasons, the deployment mechanism will be bolted
directly to the launch vehicle, Consequently, the deployment will be
perturbed by any motion resulting from vehicle station-keeping, In
particular, since the launch vehicle uses a limit cycle in its attitude
control, successive beads will be subjected to different deployment
conditions--i,e., the station-keeping process will impart to the beads
velocities that are transverse to the intended direction, These
transverse velocities carry with them undesired kinetic energy, which
might exceed the gravity-gradient potential energZr and hence might

collapse a flexible array,




If the array has stiffness, some of this kinetic energy will

be expended in bending the array, in addition to overcoming the gravi-

tational potential. Hence, stiffness would provide another sink for

spurious kinetic energy introduced during the deployment, consequently

increasing the probability of deployment success,

2, Tolerance to Compressional Forces

When the array is in its stable equilibrium position, all

portions of the array are under tension, However, under some circum-

stances the forces within the array are compressional, In the worst

case the magnitude of the compressional force is one-third the value

of the tension in the stable position., If we assume that the array

might sometimes approach this unstable equilibrium position, either as

a consequence of large-amplitude librations or through the necessity

of capturing from tumbling, then stiffness would help to avoid collapse

ol the array, ;qrthermore, sufficient stiffness will prevent buckling

and help ensure straightness during deployment,

The motion of a thin, long, rigid body with large-amplitude

motion is considered in Appendix E, The principal result is contained

in the phase-plane plot of Figure 15, Demarkated regions in this

figure include forward and backward tumble of the array, and gravity-

gradient capture of the array, The indicated regions of compression

intersect other regions of behavior, As shown, capture from backward

tumble (that is, tumble opposed to the rotation direction) could take

the array through the point of maximum compression, Capture from a

forward tumble, on the other hand, would never subject the array to a

compression of more than half the maximum value, Also indicated is the

fact that the array would never be subject to compressional forces if

the amplitude of libration can be limited to a maximum of 66°,
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3. Increased Damping Rate

45 hes been shown, all the motions of the array under the

gravity-gradient forces are slow--i,e,, comparable with the orbital
rate—-even if large tip masses are added. If the array were given some
stiffness it would vibrate as a beam as well as a gravity-gradient

controlled cable, This beam behavior results in faster relative motion,

with a period measured in seconds, which could be used to accelerate

the dissipation of energy.

4, Avoidance of the Collapsed State

As shown in Appendix F, the mutual gravitational effect of
the balls is small but is noi entirely negligible, For example, an
array consisting of half a dozen balls would collapse on itself even
if it were initially extended along the local vertical, More generally,
the collapsed state is a stable equilibrium state for any completely
flexible array, Addition of only a very small amount of stiffness

completely avoids the possibility of entering this state,

Cs Reasons for Avoiding Stiffness

We rely entirely on gravity-gradient forces to straighten the

cable, as required for reinforcement of electromagnetic scattering,

There is no way that stiffness can improve upon the straightness

resulting from those forces, but there are at least two ways in which

stiffness could degrade it.

1, Residual Shape

The residual shape of wire produced on carth is an important
factor affecting the array performance in space, For example, if the

wire had a residual radius of curvature of one kilometer, a 150-m length

A



would have a displacement at the center of the array of nearly 3 m,

Thim displsecnent is two orders of magnitude larger than that which

gives'tolerable electromagnetic performance.

2. Thermal Strain and Excitation

Even if all residual strain were removed, a stiff array would
be distorted by thermal strains resulting from solar heating. The
deflection due to these strains is important in itself., However, there

is an additional concern that the periodic nature of the thermal

3 ' strains might excite orbital or attitude perturbations. Several

satellites with extended booms appear to have experienced such

excitation,

Appendix G shows a calculation of the temperature distribution
in a wire exposed broadside to the sun, The thermal gradient that
caises strain (or bending) is a function of the surface radiation
properties and the thermal conductivity of the wire, Curiously, the
amount of bending is independent of the size of the wire, Calculations
of the thermal strain, given in Appendix G for a beryllium copper wire,
indicate that thermal effects will produce a radius of curvature near
50 km, Although this degree of curvature is small, it produces a
deflection of several centimeters at the midpoint of the array. Con-
sequently, thermal excitation is of concern, It is noted that the
actual deflection of the array would probably be less than that cal-
culated because approximately two-thirds of the wire is constrained

within the beads of the array.

D, The Chcsen Array Structure

Certain advantages result from making the array stiff, whereas

other advantages result from making it very flexiple, Forfunately,
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a compromise is available that preserves all the advantages of both
choices, This compromise is to make the array of stiff sections

joined by hinges that permit only a limited amount of deflection, on
the order of 3° of motion, Since only small motions are permitted,

the array appears stiff to greater deflections, Hence, during deploy-
ment, a large amount of energy can be accommodated by the flexing of
the relatively stiff sections of wire, Then, when the energy is
dissipated and the array quiets down, the structure is flexible so that
residual stresses and tne:mal excitation duv nol distuib its shape, The

joints provide this needed flexibility,

Measurements are currently under way to determine how much curvature
can be expected in various kinds of wires manufactured by different
techniques, This information together with simulations of the electro-
magnetic performance of arrays constructed with these wires will set
an upper limit on the length of array segments that can be used for the
array, It is reasonable at this point to suppose that the array will

be composed of sections of between one meter and ten meters long,

It should be noted that the flexible-cable analysis and the cal-
culations of energy during deployment assuming beads on a wire are both
still valid, but only in a limited range, The flexible-cable analysis
applies only when the joints do not go to their stops, and the energy
calculations apply only when the joints do go to their stops. The in-
between region is of interest, but the details are not crucial, We
are assured by these separate analyses that deployment will not collapse
the array, and that the array will achieve the desired straight, earth-

pointing position,
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VII ORBITAL CONSIDERATIONS

Al Interference with Other Satellites

It is planned that the array will be carried as a piggyback

package on a launch vehicle whose primary mission is to deploy other

satellites, It is therefore necessary to demonstrate that there will be

no interference between the array and the other satellites.

The envisioned deployment sequence is shown in Figure 16, This

figure is a modification of a figure from a TITAN III-C handbook, The
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FIGURE 16 REPRESENTATIVE DEPLOYMENT SEQUENCE
47

gAE TR




deployment sequence proceeds as follows, After the first satellite

is released, the transtage is rotated by 90° and accelerated an
additional five feet per second, This procedure is repeated after the
release of the second satellite, Finally, the deployment of the space
array takes place along an earth radial, It might be desirable to make
a slight upward or downward adjustment to the velocity of the transtage
before deployment of the array, in order to avoid introducing eccen-

tricity to the orbit of the array.

The Euler-Hill equations have been written to describe the relative
motion of the three bodies in the local reference frame of one of the
prime satellites, Solution to these equations shows that the closest
point of approach of an upwardly deployed array to the second satellite
should be about 20 km after the first day, This distance increases
thereafter, If the array is deployed downward, the corresponding

distance of closest approach is 50 km,

The satellites that are to be deployed before the space array
contains thrusters to move them into test positions and subsequently
into operational positions, The calculations that we have performed,
of course, do not consider the possibility of collision during these
movements, although they could easily be performed were the data
available, However, the calculations do give assurance that there will
be large separations and that it is possible to achieve the transfer of
these satellites from their test position to their operation positions

without any interference from the array,

3, Inclination of Orbit and Earth Oblateness

Because the ecliptic plane is not aligned with the equatorial plane,

and because the moon does not lie exactly in the ecliptic, forces will

be exerted by the sun and the moon that will tend to change the
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inclination of the array orbit, The calculations shown in Appendix I
indicate that, starting with an equatorial orbit, the inclination will
increase to 17° and return to zero during a 50-year period, This
inclination of the array orbit decreases the possibility of interference

with station-kept satellites that remain in the equatorial plane,

Although the sun and the moon have a significant effect on the
inclination of the orbit, their effect on the gravity-gradient environ-
ment of the satellite is negligible., This is shown in the following
comparison of the gravity gradients from the earth, the sun, and the

moon, The gravity gradient of the earth is used as a reference,

Earth Sun Moon

-6 -5
1.0 7.36 X 10 1,604 X 10

As shown in an earlier report, orbital eccentricity excites
libration in a uniform cable array. We therefore were concerned that
eccentricity might have some pumping effect on the normal modes of the
more complex array structure, Furthermore, if other than circular
synchronous equatorial orbits are considered, it becomes necessary to
evaluate secondary perturbations of the earth's gravitational field,

In particular, for inclined orbits, the oblateness of the earth is

important because it can pump array libration as does orbital eccentricity,

Our analysis of forced libration due to eccentricity and to

oblateness of the earth is summarized in the following equations:

2
R

" 2 2] 2
Y+ 3n9Q = 6,5J2 (j;) sin i sin 2nt + 2€n sin © (1)

2

i 2
¥ + 4n' ¥ = 7.5J2 (—9) sin 2i sin nt (2)
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In-plane libration angle

Out-of-plane libration angle

Inclination of crbit

Orbital angle from perigee

-3
Orbital constant due to oblateness (1,08 X10 )

Earth radius

Orbital radius,

From these equations, we conclude that the in-plane, forced, steady-
state oscillation amplitude 1is equal to the eccentricity. This con-

clusion is a well-known result,

For oblateness we find

Amplitude of @

Amplitude of {

The worst case for in-plane oscillation is the polar orbit; oblateness
will cause an amplitude of 0,01°, The worst case for out-of-plane
oscillation due to oblateness is the 45° inclined orbit where an
amplitude of less than 0,004° results, Thus, the effect due to oblate-

ness is negligible for all synchronous orbits,

A possible parametric excitation of the out-of-plane libration due

to eccentricity was considered, Our result showed stability with a




limit-cycle amplitude proportional to the fourth power of eccentricity,
As long as nearly circular orbits are involved (i,e., ¢ < 0,01), this

effect is negligible,

Cr Effects of the Sun

The sun has several additional effects on the array and on
altitude and orbital dynamics, These effects result from solar pressure

and solar heating of the array,

Solar pressure tends to distort the orbit, and to collapse the
array, Both of these considerations apply to completely uniform cables
as well as to irregular structures, and both are discussed in the
Summary Report for Phase I, We note that the orbital distortion and

collapse of the array can be prevented by a design that satisfies

straightforward criteria pbreviously developed,

An additional distortion of the array can result if the array has
a nonuniform area exposed to the solar pressure and a nonuniform area-
to~-mass ratio, and if the beads have nonuniform optical properties,
This last consideration is probably the most serious, since the optical
properties may change with time, Calculations of deflection due to

inhomogeneities in area-to-mass ratio were given in Summary Report--

Phase I, leading to the conclusion that uniformity was an essential

consideration, Appendix J gives calculations to show how differences

in optical behavior for a few selected beads affect the array. Once
again the conclusion is that uniformity is an essential consideration
for the final design, However, the numbers that have been obtained

for deflections in simple cases lend confidence to the assertion that

sufficient, long-term uniformity can be achieved,

The identified thermal effects are bending, lengthwise straining,

and possible change in the behavior of the joints, The bending is a
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differential temperature problem and has been dealt with in this report
(see Appendix G). These stresses are one of the principal reasons for
making a segmented array, Lengthwise strain is important because it
changes the moment of inertia of the array (and could be a parametric
or pumped excitation), and because, if it happens fast enough, it could
accelerate the array more than the gravity gradient, These average
temperature effects have been considered and reported in the Summary
Report for Phase I, The daily temperature variation will not exceed
100°C for the worst-case orbit, where the array sometimes points directly
toward the sun and sometimes is broadside to the sun, In this same
orbit, when the array is eclipsed, the temperature will drop an addi-
tional B80°C, Appropriate coatings can reduce these values, In the
earlier report we have discounted the possibility of a pumped
instability, or of the ends of the array snapping together due to

rapid shortening, The libration amplitude will vary somewhat as the
moment of inertia is changed by thermal extension of the array, The
joints will have to be designed and lubricant selected to give the
desired joint behavior (i.e,, the viscosity must remain within about

six, as discussed in Section IV) over a temperature range of -80°C to

+20°C,
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VIII STATUS AND CONCLUSIONS

The orbital and attitude behavior of the passive-communication
space array has been studied through analysis and computer simulations,
We have examined alternative tip configurations that provide libration
damping, These studies, together with manufacturing and deployment
considerations, have led us to the selection of an array design that

promises to be readily deployable and stable in orbit, This array will

have inertial tips and it will be made from sections of stiff wire on

i which the scattering elements will be placed, These sections will be

hinged together through viscous joints that are limited in their motion,

This construction technique results in an array that is flexible for

small deflections and relatively stiff for large deflections, This
type of array can be captured from tumble and can be made to have a

libration-damping time constant of less than two months,

Deployment of the entire array including the tip bodies can be
accomplished from a driving device on the transtage, The deployment

rate will be about 5 m/s in order to minimize the effect of acceleration

of the transtage due to the attitude-control system, Orbital correc-
tions of the transtage are recommended to give the most nearly circular
orbit for the array, Deployment will be initiated on a forward-
tilting motion of the transtage, Depending on the attitude behavior

of the transtage, the array will be deployed with a maximum libration

of 36°,

&
i
|

The preliminary design parameters for the 150-m test array are as

e

follows, The main array will be made up of 75 two-meter sections of

steel wire approximately 1 mm in diameter, Attached to this wire will
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4
be 10 one-centimeter aluminum spheres with center-to-center spacings

of 1,51 cm, Twenty percent additional length, preformed into the

pigtail tip-inertia arrangement, will be provided at each end. This

inertial tip arrangement will be 5 m in radius (when deployed) end have

a drop of one-third of a meter from its point of attachment to its

center of mass, The joint connecting the end of the array to the tip

inertia will be capable of large excursions; the other joints will be

limited to 1° to 3° of deflection,

The test array has been designed so that it will capture from

tumble without collapse, Although such design is not realistic for

much longer arrays, the possibility of their tumbling is also remote,

Considerable effort is now going into the design and testing of

joints that produce the desired kind of behavior, This effort will

lend support to the analysis and simulation described herein,

The reasons for the present array design are summarized as

follows:

l-cm beads Resonant at the elgctromagnetic trans-
mission frequency.,

150-m test length Sized to test concept with available
ground facilities,

1,51-cm spacing Electromagnetic requirement for dif-
fraction pattern,

5-m tip-body radius Large enough to give less than two-month
damping time constant; greater size would
give more damping but would begin to
effect the array shape during libration,

Sized primarily not to be excessively
large; already adds 40% to the mass
of the array,

*

Not covered in this report,




0,33-m drop to
center of mass

2-m sections

1°~to0-3° included
angle in limited-
motion joints

Aluminum beads

l1-mm~diam steel wire

Gives resonant excitation of tip-inertia
by array,

Selected to give straightness to within
0,001 m assuming a radius of curvature
of 100 m,
prove to be sufficiently better, this
length may be increased, Residual rather
than thermal strain will be the dominant

Should the residual curvature

consideration,

Must be small so that wire is bent to
absorb energy., An included angle less
than 9,6° will prevent the 2-m sections
from wrapping around on themselves with-
out stress,
that the array cannot find a non-straight
equilibrium position,

The smaller angles ensure

Minimum kinetic energy relative to
bending energy,

Gives sufficient bending stiffness to
ensure deployment from TITAN III-C limit-
cycling transtage, Ensuring stability

from buckling is a second consideration,
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Appendix A

ANALYTICAL FORMULATIONS

1. Coordinates and the Equation of Motion

We use a reference frame attached to the center of mass of the
cable. This reference frame moves in a circular orbit of radius r as
shown in Figure A-1. The x-axis (with unit vector 13 is defined by the
direction of the radius vector from the center of the earth, the y-axis
(with unit vector 33 lies in the orbital plane, and the z-axis (with

N
unit vector k) is perpendicular to the orbit plane.

We consider the motion of a uniform, perfectly flexible cable or
chain. The equation of motion for an array element, ds, located at
-
position p with respect to the origin of the chosen reference system,

can be written as

8 ods [; + 2@k X 53 + 1k X (nk X 53]

: = ods n2[3(; . 53; - ;] + [string tension terms] (A-1)
;; where

ﬁ? s = Length along the array

-@: 0 = Linear density

gs n = Orbital rate

ol
]

Position vector
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FIGURE A-1 COORDINATE SYSTEM
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2, Small-Amplitude Approximations

If the cable is nearly straight and in a nearly vertical position

dx = ds,

and the position vector can be approximated by

f—y
D

- - -
=Xi o+ y(x,t) § o+ z(x,t) k (A-2)

then the bracket, noted previously as string-tension terms, can be

written as

dT ; . d dy\ - d dz ;
- — —— —— 4 — S— —
dx dx dx J dx dx (4=3)

4 where T is the cable tension. Furthermore, we can assume that the

cable tension is near its equilibrium value and that this tension is

nearly independent of the cable displacement. Thus a lincarized dif-

ferential equation for the equilibrium tension, T » can be written as
e

—— = 3n X0 (A-4)

The solution of this equation depends on boundary conditions, which

} for the free cable are zero tension at its ends. Hence, we obtain

3 2 L 2
Te = 5 g n |:<5> - X:I (A-5)

wvhere L is the total length of the array.

The components of the vector equation (A-1) can now be written
explicitly to give the desired equations of motion for the cable. The

-
g equation for the component in the i direction is not solved identically
il
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but has an unsatisfied term that depends on ¥; howevzr, for small

deflections this term is small, and our approximations are valid. The

- —_
J and k components are

1]
N w
=1
\V]
1
I/\
[\ B
SN—
\V]

I
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N
1]

W
=

]

r 1

Z

i 2 d

L _oan x & (A-6)
2 dx

dx
2

d z 2 2

— -3n X~—-nz . (A-7)
2 dx

dx

Equations (A-6) and (A-7) are separable in the independent variables

X and t. The following harmonic forms are obtained:
= iwjt
y(x,t) = Ze y, ) (A-8)
Jj=1
o] iw_t
z(x,t) = Ze J Zi(x) . (A-9)
Jj=1
3. Normalization of the Equations of Motion

The equations of motion of the cable depend on its tension, which

is a function of the tip arrangement,

Therefore, it would be advantageous

to normalize these equations in such a way that the tip arrangement

affects only the boundary conditions.

This approach suggests a normali-

zation based on the variable €, given by

where

g =

"n_n
a

the array.
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is the distance to a zero-tension point, which may be outside
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Using this variable, the differential equations for the shape functions

:5 of the harmonic solution can be written as
2. d d 2 o
3 W
Q-9 8L Xy y = 0 (A-11)
2 dg 2
dg 3n
2 2
; 2. d7z dz 2 {w
e Q-g)—=-26 —+-—7-1)=z2 = 0, (A-12)
A 2 dg 3 2
'éA‘ The cable tension and normalization variable for three cases--no
gi tip masses, a single tip mass, and two equal tip masses--are shown in

Figure A-2. 1in the case of the free cable,

a = L/2 (A-13)

and the boundary conditions are applied at £ = %1, For one tip mass

l% at the upper end of the array,
.
; 1 + 2L
' L oL
¢ = = | — A-
a - T (A-14)
b oL
-
! . 1
and the boundary conditions are applied at € = -1 and § = 2 0
m
1+ =
oL
For two equal tip masses,
4m
a = — 1l + — A-15
2 oL ¢ )
1
and the boundary conditions are applied at § = % '”—_Z;T—' .
Vl + —
9 cL
A
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The solutions for the tip-mass cases considered above are consistent
with the assumption that the equilibrium tension exists in the cable when
the cable swings lhiough small amplitudes. Aun aldditlonal appivaliatlion
must be made, however, when dealing with the bouncing tip masses or with
tip inertia configurations. ¥For these cases, the tension will change
with the bouncing or rotating of these devices., The approximation of
constant cable tension with time is still justified if we also assume
either that the tip masses are small (compared to the array) or that
small arrav motions are involved. Provided either of these assumptions
is satisfied, the normalization factor for a pair of bouncing tip masses

is

! e
2 5 g 1L+ — \1 + — (A-16)

where 4 is the equilibrium length of the spring (the distance between
e

the end of the array and the bouncing tip mass at equilibrium). For

the case in which large inertial tips are connected to the ends of the

array using a rigid link of length zl, and b as shown in Figure 4,

1
a = —4§/1+— 1 4+ — | . (A-17)
2 o

L
g =t~ . (A-18)

The problem can also be solved for a single tip attachment or any

combination of the tip arrangements described.
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4, Boundary Conditions

The boundary conditions to be used with Eq. (A-11) or Eq. (A-12)

are given in this section.

a. Cable with Free End

The boundary condition at a free end is that the cable

deflection must remain finite.

b. Cable with Tip Mass

The cable is straight at the point of attachment to a tip

mass--i.e.,

2 2
Jy d z
5 = — = 0. (A-19)
o5 og
Gl Cable with Bouncing Tip Mass

To establish the boundary conditions for this case, we
balance the components of force at the tip in the x-direction and in

the direction of interest.

As we have noted earlier, the bouncing tip masses provide
no linear damping for out-of-plane libration if the cable is undergoing
small-amplitude motions. To achieve damping we need to mechanically
tune the natural frequency of the composite structure so that it is
parametrically excited by the out-of-plane motion. This means tuning
one of the in-plane normal modes to a frequency of 4n. We have deter-
mined the boundary conditions for such a tuned array in the following

manner.




i a7 "' =3
S L T T T T

AR AR Lifeer Ao

*
The x-direction force balance gives

STe] K K . .
X +—X 4+ —Xx =-2ny = 0 (A-20)
s m s m s
; where
J? xS = S8pring stretched length
\f K = Spring constant
E K = Damping constant
5' The y-direction force balance gives
ig a + upper end
2nk +¥t= = = 0 (=-21)
& s m dx
4 - lower end
i where T at the tip is
L T = m 3n |x | (A-22)
4 end
f? Eliminating the spring-length variable, x , between Eqs. (A-20) and
0 S

(A-21) and making the harmonic substitution results in the following

boundary condition:

A d
- § EZ 3 4n2
- c 9 e —‘”—2 1% (A-23)
y 3n K K. 2
3 -+ — Jjw - w
3 m m
4
i N
e The equilibrium length of the spring has been taken to be zero, and
ﬁ the equilibrium position of the mass is taken to be at the tip.
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d. Cable with Tips Having Large Values of Inertia

The in-plane inertial tip boundary condition can be obtained

from the equations governing the rotation of the tip inertia and the

displacement of the end of the cable. These equations are

upper end

(A-25)
dx
end lower end

where

8 = In-plane angle of tip mass from local vertical
- b = Distance from the center of mass of the tip
f? inertia to its attachment point
i I = Moment of inertia about respective axis
. X,¥,z
and the tension T at the tip is
.
3 2
5 T = m3n” (x| +1p) . (A~26)
i end
.
g
§< Eliminating 6 from these equations results in an in~plane
E' boundary condition of
b d
L E = 2
1 € 1 <Q> 1 .
T 3 n \ - b w\2 -
y o) 23 (%)
‘? 1 w)2
ey I -1 - 5 ; I
1+
. ’
W
; mp(b + L/2) + ;
3 o 3n J

(A-27)
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The out-of-plane boundary condition must include yaw because out-
of-plane tipping (roll) is coupled to yaw. Thus we must write an
equation for roll, ¢, an equation for yaw, {, and an equation for the

out-of-plane cable displacement, z. The cable is assumed to have no

tormional idertin, bt ite stiffness and danpiog are ineluded. We hawve
. 2 :
IV + (0 -I)ny+ @@ -1 -1I)np = Q (A-28)
x z y z y X
, -
-ka -k v even modes
Q = Q (A-29)
0 odd modes

. N 2 ¢ d dz
- L = R K'— ==
(IX+Iy IZ) ny + chp + 4(1Z Ix) n <bT+ d't) (cp+ dx)

(A-30)
. 9 top end
m((z+nzt b@) = FT — (A-31)
lower end

For simplicity, we have ignored torsional effects. The above equations
can be combined to eliminate the variables { and ¢. This manipulation

yields the following out-of-plane boundary condition:

£ dz g
P 1
d (w -n
Zg = 5 ) i (2 2 bz (A-32)
- <1+2 _) | _mG-nD) b”
L 2
C - B /A
where
2 2 2
A = 0w I +n (I-I) +Kk + jouk (A-32a)
X z y
B = @wn (I -I -1) (A-32b)
z y X
2 2 2 L
C = -~wlI 4+4n (I -I ) +3bnm <b +-—> . (A-32¢)
y z X 2
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5. Solutions to the Equations of Motion

Solutions have been obtained by both analytical methods and numeri-
cal methods on the computer. Cases have been studied both ways to provide

cross checks.
a. Free Cable

The oscillations of a free cable can be decomposed into normal
modes whose shapes are Legendre polynomials for motions both in the
orbital plane and out of it. These Legendre shapes and their corre-
sponding eigenvalues (frequencies) are shown in Figure 5. The require-
ment that the amplitude be finite at the tip limits the selection to

series that terminate (e.g., to the Legendre polynomials).

b. Cable with Tip Masses

The numerical method described in Appendix B was used to
obtain the appropriate eigenfunctions (normal mode shapes) and eigen-
values (frequencies) for the cable with tip masses. The values of the
parameter m/0L examined were 0.0, 0.1, 0.2, 0.3, 0.5, and 1.0 These

values cover the realistic range of tip mass to cable mass ratios.

For m/oL = 0, which corresponds to the free-end case whose
solution we know analytically, the numerical technique yielded the same
eigenvalues and eigenfunctions for the lowest even and odd modes as
obtained by the analytical approach. This concurrence of results gives

credence to our solutions.

Numerical solutions were written out for 5, 10, and 31 joints in
the half cable--i.e., matrices of the orders of 5, 10, and 31 were solved--
for the in-plane case. This was done in order t» refine the analysis.
However, we are primarily concerned with the lower-order modes (four
even and four odd); heuce the matrix of the order of 10 is sufficient.

This is true because the higher-order modes are readily and rapidly
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damped by friction in the joints. The numerical results for the tenth-
order matrix are given in Table A-1. The eigenvalues for the modes are
shown in Figures 6 and 7 of the main text. One should note in reading
the table that the last value given in the eigenfunctions corresponds to

a point 95% of the way to the end of the cable.

el Bouncing Tip Mass

Because we are interested only in the case where the tip
mass is designed to provide a normal mode with an in-plane frequency of
4n, the solution strategy is simplified. All one does is integrate the
differential equation for the shape function with w set equal to 4n, and
check at each point to see whether the boundary condition has been

gatisfied. This is what we have done.

Figure A-3 shows the spacewise integration starting with odd
and even cable-center conditions. The odd shape shows no reversals in
curvature; hence there is only one mode to be dealt with. The even
shape shows a reversal in curvature; hence, depending on the parameters,
one of two different even modes is involved. Figure 8, in the main text
gives a design curve to produce the normal modes of the desired frequency.
This figure specifies the required value of spring constant for a given
value of tip mass. We note that for a given tip mass, we can select the

spring to tune either the odd or the even mode to the 4n value.

A check on the results is provided by the tip rass value at

which the even mode calls for an infinite spring constant. This value
should, and does, correspond to the cable-with-tip-mass case that gives

w = 4n.
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d. Large Tip Inertias

(1) Numerical Solution

A solution for the eigenfunctions and eigenvalues of
cables with large inertial tips is obtained by a numerical technique
that is an elaboration of that already used for the tip masses. ‘lhis
more complicated numerical method is also described in Appendix B. We
note that a complete numerical solution of the bouncing-tip-mass problem

could be obtained hy this method if it were needed,

For the numerical calculations we have taken the inertial
tip to be a circular loop of wire with radius, r, and a linear density

equal to that of the cable. TFor this configuration,

2
I = mr (A-33)
X
1 2
I =1 = = nr (A-34)
y b/ 2
where
m = 27rc . (A-35)

In addition to the radius, the other important variable
to be specified for the tip is the distance, b, etween its center of
mass and its point of attachment to the array. If b is too short, the
loop will not be stable in a horizontal orientation but will instead
tend to orient its axis of largest moment of inertia in that direction.

For this "instability" not to occur, the following condition must be

satisfied:

L
I -1 4 mb 5‘> o . (A-36)

kg




Another consideration in selecting b is to make the natural frequency

b of the tip mass,

when alone in a gravity-gradient field, equal to that

i of the cable libration. With this matching, one would expect large-

amplitude motions for the tip mass and consequently faster damping of

e the cable libration. The matching condition is

<18 L
I, = mb 5 b (A-37)

) i- For the case of the circular inertial tip, Condition (A-36) can be put
‘ %, ‘ in the form [using Eqs. (A-33) and (A-34) ]

b b 2

g r
i = 1= g A-38
o L <L> ( )

. where
e s |

oG 2

Note that in thisg equation when the constant k

= 1.0, we have the

: 1
desired match (resonance), and when k = 5 We reach the stability limit

of expression (A-36).

In computing the eigenfunctions for this array configura-

tion, all permutations of r/L = 0.04, 0.0335; 0.03, and 0.02, and of

k = 2.5, 1.5, 1.0, 0.75, and 0.5 were examined. The results of the

first four even and odd modes are Printed in Table A-2. Again, the

value of the eigenfunction is not given at the tip but at a distance

within 5% of the tip; however, an extrapolated tip value is also given.

The amplitude of the modes has been normalized to give a maximum deflec-

tion of unity. The tip angle, also printed in a dimensionless form, can

be found from either Eq, (A-24) or Eq, (A-25),
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2y Approximate Analytic Solution

Because of the similarity of the two configurations, one

can reasonably assume that the solution to the tip inertia problem will

be similar to that of the tip mass problem. That is, the solution for

the lowest mode will be the straight libration mode plus a sm

perturbation.

y = §8+tey
o}

o the differential Eq. (A-11) yields,

Substituticn of this equation int

after somz: manipulation,

dzy dy
Q-g —>-% 2y, "8
d§2 dg o

whose solution is

= = % In (1 - §2) + EO0(E) .

where

SRR s > e B R =




The use of Eq. (A-42) and the boundary condition given in
Eq. (A-27) allows us to arrive at an approximate relationship between

¢ and values of r/L and b/L (ur k):

The values of € found from the above equation are close to those that

can be inferred from the ta’

-

:"ation of our numerical resuits. 1In

particular, we find that when 0.5 < k < 1.0, the tip of the cable
bends inward, and the natural frequency is slightly increased. When

k > 1.0, the tip bends away from the local vertical, and the natural

frequency is slightly decreased.
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Appendix B

NUMERICAL METHODS USED IN THE SIMULATIONS OF
THE OSCILLATING CABLE

Numerical solutions are usually generated by writting the steady-
state equations of motion of a system in finite-difference {orm, This
procedure results in a matrix equation that can be manipulated by
standard computer routines to yield the eigenvalues and eigenfunctions

that correspond to the frequencies and modes of vibration of the system,

In the case of the tip inertia, however, the boundary conditions
contain the natural frequency information, The matrix to be scivcd thus
contains entries that are only known after the matrix itself is solved
by the conventional means, An iterative procedure to obtain the
eigenvalues could be used--that is, the eigenvalues could be estimated
to give all the matrix entries and the matrix solved, If the eigen-
values so obtained matched the assumed values, the problem would be
solved; otherwise a new eigenvalue would be assumed and the process

repeated,

This appendix discusses a relatively new, expanded matrix method
for generating the desired eigenvalues and eigenfunctions without
iteration., One should note that because of the expanded matrix, this
method generates spurious eigenvalues and eigenfuncticns that are

sometimes difficult to distinguish from the desired solutions,

1, The Eigenvalue Problem

We write Egs, (A-11) and A-12) in the form

95
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2 2 /L
f=1-€'yl=d§' E(E

The boundary conditions for y are of the form

y(o) = 0 odd case

yl(o) =0 even case

(B-7)
2b/L (B-8)

and q = Q(0) = a given function of 0, and b/L = a given constant, The
boundery conditions for z are the same as for y except that ? is replaced

by 7, and Q may be changed.

The problem is to determine the eigenvalues 7 (or 2) and the

corresponding eigenfunctions y (or z) that satisfy Eags. (B-1) through
(B-5). Because q is a function of 7, the eigenvalue problem is in
general nonlinear. For q =1, and m = 0, we obtain odd or even Legendre

polynomials depending on the boundary condition at y(o).




-— et i : - ——— T ey g < R

2. Numerical Approximation

We will use a finite difference approximation to solve the differen-
tial equations over the interval (0,£) ; we give the details only for
the y function. We employ a standard centered difference technique

over a uniform mesh given by gk =k - h, fork=0,1, 2, ..., N, and h

is the mesh interval given by

h = E/(N - 1/2) (B-9)

where

il

E_+ h/2 . (B-10)

E = (gN + gN+1)/2 = Nh o+ h/2 = £

Our approach is to set y(gk) = y and obtain an approximation at gk,

k
2
with an error constrained to be on the order of h-. That is,

(ty’) ' = [— £ + (g + f+) 55 ]/h2 + 0
L & kVk-1 k T Tk Yk kY k+1J’

B-11
where ¢ )
(g h)
f = - * = , 0=k <N . B-12
k gk 2 g )
For example, with this equation and the symmetric (even) beundary
condition at the origin (y1 =y 1). the first iteration at £ = 0
becomes
£ 2t" h’ o (B-13)
a - = ( =
oyo oyl yo

+
since £ =f ,
o o

The other boundary condition--i,e,, Eq, (B-5)-- at £ = £ can be

written using

97
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as

£ - = hoq - 4 B-14
.(yN+1 yN) q (yN+3N+1)/2 (B-14)

2
again with an accuracy of the order of h . Elsewhere, for 1 = k < N,

we use Eq. (B-1l1l) to get

2
, + = h") B--15
“kk-1 T %Ykt i1 kel 4" ( )
where
- 27 2 2
—-f'—-1-kh—h)—-1-(2k-1)(5) (B-16)
TR 2/ | 2
= J
27 2 2
e r1 (kh h) 1 - (2 +1) 1) h) (B-17)
= - = - - + =) |= - - - = -
®k+1 k 2/ | * 2
= - + f B-
k “k ¥ kel th=dlo
Now, we let
2
A=h2Q (B-19)
and rewrite Eq. (B-14) as
.
[0) .
_ % e A0 + - q A B-20
YN N T My ) te Yy * Vet (B-20)
where
.
o] +
s 2 T =1/2 £'h
qo 2 q o) / §

Then Egqs. (B-15) and (B-20) can be written in matrix form as follows:
Aly = AB.y (B-21)
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where
- , )T (B-22
y - yo!yvyzv ’ )vaN+1 - )
and
10 7]
|
|
A I
o .
|
e
I N+1 =
A= - L.-- (B-23)
0 0o -1 :1
and A is a tridiagonal square matrisz of order N+1 with (a ,al, o aN)
o o

as its main diagonal, (2e1,e2, S eN) as its superdiagonal, (61’62’

o000 )

eN) as its subdiagonal, and zeroes elsewhere,

The matrix B1 is given by

o
|
|
I |
) E
) O
Bl= ------- - - - (B-24)
0 0 q 'q
OIO
L -

where I is the unit matrix of order N+1. Since q is in general a function

of » , Eq. (B-21) represents a "nonlinear'" eigenvalue problem. To solve

this system for a general g would require special techniques; however,

in our problem g is a continued fraction. This allows us to transform

our problem into a generalized (but linear) eigenvalue problem:

Ay = ABy (B-25)

where B is independent of A.

T R s




3L Svlution of the Eigenvalue Problem

The function q

Q(1) often has the form

1 1
q=—+ — (B-26)
b q
1 1
where
b_A b A
4 =il 5 —— =] - == (B-27)
1 b _+bAr ' -
37 4 4y
We assume this is valid for our case. 1In order to reduce our problem

to the form of Eq. (B-25), we introduce a new variable yN defined by

= £ + (B-28)
Yns2 © a, ()N yN+1) :

This allows us to reexpress Eq. (B-20) as

T 1
(e}

.
- = == + = — A (B-29
YN F YN b, " q (yN Ter) = 2 Myeo )
which is in a linear format, with 7 = To/bl. Likewise the relation

for q1 yields

b A
- 2, = + (B-30)
YN+2 a, Yoz TN T YN
=" "o R . B-31
93 = %3 7 P4 B3t

y =y . (B-32)

Then Eq. (B-30) can be written in the form

- - + = )\b 8'33)
yN yN+1 yN+2 2yN+3 (

100

.
S e ot o,




which is also in a linear format. Finally, from Eq. (B-32) we get the
lin ar equation

= = b )\y . (B-34)

b =
4 YN+2 4" YN+ 3

3" N+3
(This process is analogous to the evaluation of a polynomial by nesting

of variables.)

By combining Eq. (B-21) with Egs. (B-29), (B-33), and (B-34) we

obtain the desired form for Eq. (B-25).

Since each of our equations, except (B-33), involves only three of
the variables and since the most efficient methods for solving Eq. (B-25)
will be applied to either tridiagonal or Hessenberg matrices, we will
change Eq. (B-33) by eliminating yN. Thus if we subtract Eq. (B-33)

from Eq, (B-29) we get

T

= il < B-35
Nel  IN42 x(z ( )

2y y

- b
N+2 2yN+3)

which replaces Eq. (B-33) and which involves only three variables.

The final system can then be written as AY = ABY or

10 0 07 [y, 1 [~ 10 0 0 7 My 7
| (o] | (o]
l |
A , . !
L ,
| I
| . ]
| |
l |
| ) = |
' 0 o 10 0 o0
LeN+1 N e Rttt N
______________________ !
- 0 T/2 0
0...0 -1 E 1 0 o ¥5.9 E / YN+l
0...0 0 E 2 -1 0 Yyes 0 i 0 T/2 -b Yyuo
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4, Particular Cases

Parameters for either in-plane or out-of-plane oscillation of the

extended tip mass are given by

2
b_ = (3/2)Kb /h
2 o
= 3b K - 3/2 B-37
b3 0 / ( )
2
b = -3/4h
" /

To get the case of free ends we let bo = 0 (thus b2 = 0), b3 =10
and b4 = 0. A similar simple modification applies to the bouncing tip

masses,

In all the cases, if we wish to obtain the odd cases, in which v(0)
= 0, we merely set aO =1, e1 = 0 in the A matrix, and made the first
row of the matrix B all zero.

Note that the matrix A is tridiagonal (and thus Hessenberg), while

B is an upper triangle in the general case. This allows us to directly

use the method of Moler and Stewart.1

For the case of a constant 9, as in the free-cable case, we may use
B = I and operate with Eq. (B-25) to get a standard tridiagonal eigenvalue
problem. A simple transformation can be used to symmetrize A1 so that
much faster computational methods can be employed. We also have available
for the latter case the choice of getting only the first few eigenvalues
and vectors. This is not so in the Moler-Stewart algorithm. Thus in the
extended-tip-mass case all the vectors and eigenvalues are computed,
and a typical run takes about 1.5 min for N = 10. The symmetric free-

cable case takes about half as much t*me. 1In the forme: computation

1C. B. Moler and G. W, Stewart, ""An Algorithm for Generalized Matrix
Eigenvalue Problems," SIAM J. Numer. Anal., Vol. 10, pp. 241-256 (1973) .
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we also compute the value

eR(E) = 3(b1F - 1)/boFQo

where

2
i
[
~N
N
D

=
and the approximations for y and y are used as in Eq. (B-14).
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THE SRI SIMULATION PROGRAM
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Arthur R, Tobey
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Appendix C

THE SRI SIMULATION PROGRAM

Purpose of the Simulation

The behavior of a manv-linked chain orbiting the earth with
arbitrary initial conditions may be very complex, Analytical solutions
to the many counled differential equations describing the chain dynamics
are very difficult to obtain, and have been generally restricted to
motion in one plane, single modes of oscillation (simple shapes), and
small displacements from the ideal vertical orientation, Such analysis
is essential to understanding t‘he problem but leaves many unanswered
questions--for example, coupling between oscillations transverse to and
in the orbital plane, effects of complex initial conditions, and large-

displacement phenomena,

The purpose of developing the simulation is to extend our under-
standing of the dynamics of an orbiting chain or cable, and to investi-
gate and evaluate various complex end devices designed to damp unwanted
libration energy from the system, Simulations allow us to investigate
the dynamics of the cable and its acsociated end devices by providing
rigorous treatment of motion in three dimensions; such a treatment

cannot be reasonably obtained through analytical solutions,

2, Design and Limitations of the Simulation Program

As currently envisioned, a 150-meter chain could be made up of as
many as 10,000 individual ball-jointed links, If each of these were

assigned two independent degrees of freedom, 20,000 simultaneous
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equations would have to be solved for 20,000 accelerations during each
iterative step of simulation, Clearly, simulation is not without its
limitations, The SRI simulation accommodatFs up to ten straight sections
with distributed mass, These sections (links) are hinged together at

t heir ends, Two of these links may be end devices with additional
degrees of f.reedom--e,g,, elongation in the case of springs and rotation
in the case of cylinder. (also referred to as tip inertias), Some point
on the chain (we have chosen the top) must be selected as a reference
point and given three additional degrees of freedom to locate the chain
in space, Thus our 10-1link approximation can require the solution of as

many as 25 simultaneous equations for as many accelerations during each

iterative step of simulation, For this many, or more, acceleration

variables, computation time and cost tend to increase with the square

of the number of links.

For up to ten links, the choice of segmentation is a simulation
option in our program, Many end-device tests have been run inexpensively
with only two links, the chain as one and the end device as the other,

In principle, minor programming changes cot1ld adapt the program to any
number of links, subject only to possible loss of precision in the

solution of an excessive number of sirmultaneous equations,

Ideally, we should like the chain to execute a circular orbit at
synchronous altitude, hanging perfectly vertical at all times, We¢ have
chosen to describe the motions of the chain relative to a coordinate system
in which it wovld be at rcst in the ideal case--namely, a coordinate
system centered at the center of mass of the chain, executing an carth
orbit, with the Z-axis always pointing toward the center of the earth,

This is a moving-reference system, with centripetal acceleration toward
the center of the earth and rotation in inertial space., Furthermore,

because we allow orbit cllipticity, this rotation is not nccessarily




constant., Two axes of cur reference frame lie in the orbital plane, the
downward vertical Z axis, and the X axis, which we take perpendicular

to the Z axis and pointed in the general direction of satellite travel,
For a synchronous orbit, the X axis is directed to the East--i,e.,
toward the rising sun, Our Y axis is chosen to complete a right-handed
cartesian coordinate set, thus being perpendicular to the orbit plane
and pointing south, The vector orbital angular velocity a das the
direction of the negative y axis, and is parallel to and has the same

sense as the earth's rotational velocity vector,

In order to confine our solution to the cable motions relative to
the moving reference frame, we must include as body forces not only the
gravitational force but also kinetic reaction terms r¢sulting from the
motion of the reference frame, Force per unit mass in our moving

reference frame has the following cartesian components:

F_= (Qz > LL/R3) + Oz + 205 (c-1)
F == LL/R3y (C-2)
y

2 3 ®, .
F = + 20/R )z - Ox - 20x (C-3)
Z

where

e}
I

Magnitude of the orbital angular velocity

M = The gravitational constant multiplied by the
mass of the ~arth

=]
1}

The distance from the center of the earth to
the center of the moving coovrdinate system

X, ¥y, &z

Cartesian coordinates measured in the moving
reference frame

and lotted quantities are time derivatives,
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These are gravity-gradient forces that vanish for a mass element
at rest at the center of the coordinate system, Terms involving u
are due to earth gravitation, which is linearized in the region of the
satellite, All other terms are exact, Terms involving 02 arise from
the centrifugal force, and those involving () represent the Cariolis
force, The terms in é are less familiar and will be nonzero only for
elliptical orbits, Al1l except the gravitational terms are kinetic

reactions, which appear as explicit forces when we confine our attention

to motion in the moving-axis system,

In applying Lagrange's method to the formulation of the differential
equations for the motions of the 1inks and end masses, we have chosen
the following generalized coordinates, For cach link, including end
devices, the pitch angle, @, is measured in the orbital plane from the
downward Z axis toward the forward-pointing X axis, Thus, positive
pitch is "nose up" in aeronautical terms, Roll angle, B, is measured in
the pitch plane from the orbital plane toward the positive Y axis,
Positive roll is thus counterclockwise to one facing in the direction of
travel, Fixed lergths of the links representing the segmented cable do
not appear as coordinates; however, for a bouncing-tip-mass device the
length of the spring enters as a generalized ccordinate, In the case of
a cylindrical end device, its angle of rotation about its axis also
enters as an independent Coordinate, Finally, the cartesian coordinates
of the top of the cable-plus-end-device assembly fix the position of
the chain in the coordinate system, (For a top-mounted end cylinder,

the center of mass of the ¢ylinder is so chosen,)

Since the ferces, Eqs, (C-1) to (C-3), are Nonconservative--i.e,,
not expressable as partial derivatives of a potential function--we use

Lagrange's equation in the following form:
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T = Total kinetic energy of the system in the
moving coordinate system

qk = One of the generalized coordinates
dk = Corresponding generalize.! velocity r
Qk = Associated generalized external force

i‘ Q; = Associated generalized internal force due !

to hinge friction, spring damping, etc,

Since the mass of the chain is distributed aliong its length, ‘
computation of the total kinetic energy involves an integration over l

the total mass of the system:

1 2
T == fv dm (C-5)

where v is the velocity of the mass element, dm, in the moving reference
frame, Ultimately, T must be expressed in terms of the generalized

coordinates and velocities,

dtaining the generalized external forces also requires integrations

over the total mass of the chain and its end devices--i,e,,

L or
o
Qk = fF . ‘aT dm (C-6)

k

—

where F dm is the vector force on the mass element dm, with the com-

—

ponents of F given in Egs, (C-1) through (C-3), and ﬂjis the vector
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loecating the element dm with respeet to the origin of the coordinate |

system,

The generalized dissipa*ive forees may be obtained by a teehnique

attributed to Lord Rayleigh, With this teehnique,

Q' = - (C=7)
Kk qu

where the Rayleigh dissipation, 5, for hinge damping can be cxpressed

as

(c-8)
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for a chain with N links,

This brief outline of our approach to obtaining the differer tial
equations of motion of the chain in space has an apparent simplic ¢y
that masks the very considerable labor required to aetually cvaluate
the many terms that make up the final set of equations, The largest
and most eomplicated subroutine of the simulation program is eoneerncd
almost entirely with the eomputation of matrix clements ecomposed of

these terms,

3y Run-Time Options

The simulation program is organized for parametric studies, Most
parameters are initialized with realistie default values, minimizing the
number of input eards required to initiste simulation, Parameter values
entered for onc ease carry over to the next, so that only ehange cards
plus a START eard are required to initiate suecessive eases in the same

run. Input eards arc formatted with a ten-column alphanumeric
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field for the card name, followed by up to seven ten-column floating-
point fields for input parameter data, Descriptions of the input para-

meters are given in the following:

(1) Chain Parameters

® MASS (total mass of chain exclusive of end devices).
Default value is 50 kilograms,

® LINKS (number and lengths of links into which chain is
to be segmentec), Maximum number is ten, Lengths
of individual 1links may be specified, Default is
one 150-meter link,

® \NG DAMP (hinge damping constants)., Individual damping
constants may be specified for each hinge,
Default is no damping,

End Devices, Prefixes T- and B- designate the top and
bottom of the chain, Devices may be intermixed at
opposite ends of the chain, but only one device may
occupy a given end,

® T-MASS, B-MASS (end mass affixed directly to end of

chain), These options do not add links
to the chain, Defaults are zero end
masses, Entered with zero-mas~ value,
these cards will effectively remove

end devices entered for a previous case,

® T-SPRING, B-SPRING (end mass, resonant frequency,
spring damping time constant,
equilibrium length, initial length,
initial stretch rate), These options
add a link to the top and/or bottom of
the chain, Resonant frequency is for
vertical motion in the gravity-gradient
field, Equilibrium length is the length
that would be assumed if the chain were
straight and vertical, at "rest” in a
circular orbit, The distributed mass
of the spring is zero.




(3

(4)

(5)

® T-CYLNDR, B-CYLNDR (mass of cylinder, diameter, height,
drop to center of mass, initial spin
rate), These options add a link to the
top and/or bottom of the chain, Axis of
the cylinder is the line joining the end
of the chain and the center of mass of
the cylinder,

® T-BOOM, B-BOOM (end mass, distributcd mass, length), These
options add u link to the top and/or bottom
of the chain, This is a rigid beam attached
to one end of the chain,

Orbital Parameters, The simulation is currently written for

an average synchronous orbit,

® EPSILON (eccentricity of orbit), Default is zero,
circular orbit,

Solar Pressure, Forces due to solar radiation pressure will

be ignored unless this card is entered. Although provision
is made for the entry of a reflection coefficient, the
current status of the program is that solar radiation is
assumed to be totally absorbed, In computing solar radiation
forces on end devices, the assumption is made that they
exhibit the same ratio of mass to projected area as that of
the chain illuminated at right angles to its length, Self-
shadowing by adjacent beads of each link is accounted for;
however, shadowing of one link by another or by end devices
is not, Radiation pressure is cut off in the earth's shadow,
Orbit perturbation due to solar pressure is not computed.

® SOLAR (bead diameter, center-to-center bead spacing,
reflection coefficient),

Program Control

® STEP (orbit degrees per integration step)., Third-order
prediction algorithms preserve adequate precision
under most circumstances if a step size of one
orbit degree (the default value) is used, corres-
ponding to about four minutes of real time,

® ORBITS (number of orbits to be completed in simulation),
Default value is one orbit, The first orbit
terminates at an orbital angle of 360°, If
simulation is initiated at an orbital angle other
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than zero (see START), this orbit will be a
partial one,

® PRINT (print interval in orbit degrees, diagnostic prinu
flag, centering print flag). Decfault values are
ten orbit degrees, no flags, The diagnostic print
option displays the numerical values of all the
array elenents involved in the simultaneous solution
for all of the accelerations, along with those
solutions, at each iteration, It has been retained
beyond the debugging phase because it has proven
useful in understanding unexpected (though correct)
behavior as well as pinpointing the cause of
pathological behavior, In the absence of perturbing
forces, the center of mass of the chain and end-
device system should follow the center of our moving
reference frame, which travels in a synchronous
orbit, In order to prevent the accumulation of
roundoff and prediction errors, wec recenter the
chain at each iteration, The centering printout
option displays the cartesian displacement and
velocity corrections, It is useful in determining
the adequacy of the STEP value selected for a given
situation, and it permits us to check the first-
order effects of solar radiation pressure,
(Modification of the shape of the chain resulting
from solar radiation pressure is due to selective
shadowing and appears as a second-order cffect,)

(6) Initial Conditions, Except for the START parameters, initial
conditions, along with all the parameters listed for the
above-described input cards, are precserved from case to case
within a given computer run,

® ANGLES (1link number, alpha, beta), Links are counted
from the bottom, ircluding end devices, Initial
pitch angle (alpha) and roll anglec (beta) are
assigned to the link whose number is ¢ntered and
to all higher-numbered links, Thus, for a
straight initial configuration at any angle, a
single card siffices, Curved initial configurations
are achieved by entering seversl cards in order of
increasing link number, Default values are zero
pitch and zero roll--i,e,, the cable hangs
straight ard vertical,
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® TUMBLE (initial pitch rate, initial roll rate). These
initial values apply to the whole chain and end
device as a system and cannot be assigned to
irdividual links seclectively, Default values are
zevo pitch rate, zero roll rate,

® START (Julian date, hour, minute, initial orbit angle).
Julian date and local time at initiation of
simulation arec required to position the sun for
solar-pressure computation, The sun is ‘irectly
overhead on Julian day 81 at 12 hours 0 minutes,
moving 23,45° meridians with a period of 365,24
days, Initial orbit angle is measured from perigce
in the direction of satellite travel, A START card
is required for the initiation of each case in a
stacked run, Cards beyond it on the input file
pertain to the following case,

4, Normal Output

Printout from a simulation run falls into threec categories--
verified input, parameter summarics, and simulation results, Data in
the first two classes arc headed by a print line identifying the
computer program, giving the compilation date of the version being run,
a job identifier, and the date and time of the run, Time advances from
case to case, so that the order of a sequence of cases can be

reconstructed,

a, Verified Input

Input data are displayed in a card-image format in order ''as

enterced,” If data on a given input card are incomplete or unreasonable,

all data on that card may be zeroed out, essentially nullifying that
card, Printout will show the modified values, Cards entcred for
previous cases a“e not repecated--only the additional cards required to

initiate the current case are displayed in the heading for that case,
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b, Paramcter Summaries

Values of all variable parameters and initial conditions not
displayed elsewhere are summarized in a header to the simulation results
of each case, Data are repeated here from case to case so that full
information will be available if cases are separated, Additional derived

information is displayed to assist in evaluation of results,

Inclu'ed among these data is a computed value for the minimum
energy of the system as measured in the moving coordinate frame, This
value is a negative quantity representing the potential energy of the
cable and end devices hanging straight and at rest in the ideal orbital
configuration, (The zero reference corresponds to all of the mass of
the system concentrated at the center of coordinates where all external
forces vanish), The minimum energy represents the depth of the potential
well corresponding to ideal deployment--i,e,, jt is a measure of the

inherent stability of the ideal configuration,

c, Simulation Results

Each page of simulation results is headed by a print line
identifying the computer program, giving a page number, and including
two items of computed data, The first, EXCESS ENERGY, is the total
energy of the chain and its end devices, measured in the moving reference
frame, less the minimum energy. This is the amount of energy that must
be removed frsm the system by one or more dissipative mechanisms in
order to achieve the ideal configuration, The second item, RELATIVE
ENERGY, displays, on page 1 of the printout, the ratio of the excess
energy to the absolute value of the minimum energy, and is a measure of
how far above the bottom of the potential well the initial energy level
lies., On subsequent pages, RELATIVE ENERGY is the ratio of the excess

energy at that point in the simulation to the initial excess cnergy-—-
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i,e., to the value printed on page 1., These values provide a ready
index as to how rapidly (or slowly) the system is approaching the ideal
configuration, The current algorithm for computing cxcess encrgy fails

for elliptical orbits,

Each page of simulation results consists of six records, cach
representing a snapshot of the chain and end-deviee configuration after
successive print intervals, The first record on page 1 displays the
initial configuration, The first line of cach record contains the
following data: o:rbit number, orbital angle, Julian date, local time
in hours and minutes, stretch of end springs (if any), rotational
velocity of cnd cylinders (if any), and tip-to-tip loss (length of
ideally straight chain minus tip-to-tip distanece in present configuration),
The next three lines display the cartesian coordinates of the ends of
cach of the links of the chain and end devices, The last twc lines are

a printout of the piteh and roll angles for each of these links,

Using the default value of print interval (ten orbit degrees) ,
each orbit yields six pages of printout, and execess energy is computed

and printed every 60 orbit degrees,

5, Program Checkout and Verification

The current version of the simulation program has evolved through
a large number of modifications, The initial version was a half-chain
simulation, devoid of end devices, with lumped link masses, Starting
with that relatively simple model, testing and verification have becen
done on each successive version, with the help of built-in diagnostics
(many of which have since been removed), Teriods of small librations in
and transverse to the orbit plane have been checked against ell-
cstablished theory, Correct behavior of end devices has been confirmed
for a number of limiting cases, All in all, several hundred test cases
have been run and carcfully analyzed, This step-by-<tep proccdure, with
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many test runs at each phase of modification, has built our confidence

in the correctness of our simulation results,

All of the theory underlying this simulation has been derived
from first principles and is well understood., We have not let
unexpected results go unexplained, Thus we have developec a thorough
understanding of the simulation, This understanding has made it
relatively easy to spot and correct the inevitable logic errors and
programming bugs that occur in the development of a program of this
complexity, Furthermore, this understanding permits us to make major
modifications to the program as required by the ongoing research, with

confidence that we are maintaining the basic integrity of the simulation,

6. Current Modifications

The program is undergoing modifications of the following nature:

(1) to allow use of a larger number of links, e.,g, as the
75 of the full test array

(2) to allow the length of links to be individually specified,
Since most of the bending occurs at the ends of the array,
these need to match the existing conditions more exactly,

(3) to wllow the behavior of each joint to be individually
specified

(4) to permit damping of the forms

. . B
Torque = A (a - o, (A and B constants)
i i+l

and

n I .

These allow the examinatior. of nonlinear joint behaviors.
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Appendix D

DEPLOYMENT CONSIDERATIONS

Launch Vehicle

The prototype space array is to be carried into orbit as a secondary
or tertiary package on the transport stage (transtage) of a Titan III-C
vehicle. Two synchronous launches are scheduled in 1977 for the
Air Force 777 Program., These are potential hosts for the test space

array,

We have investigated the interface power and the telemetry speci-
fications of the Titan III-C transtage, not only to gauge the feasibility
of our concepts but also to structure some of our preliminary designs.
Summary Report--Phase I includes a figure showing one of our early
deployment concepts relative to this transtage. The space and weight
requirements we have taken are those of the Titan I11-C system with

777 satellites as the primary packages,

Since the deployment from the transtage will require a substantial
period of time, it 1s necessary to consider the motions of the tran-
stage itself, The purpose »f this appendix is to consider the Titan I111-C
attitude control system and the implications it has for the deployment

of the space array,

2, Attitude Control System

The hydrazine tank and other features of the control system are
shown schematically in Figure D-1, The rocket engine modules operate

in an oif-on mode for discrete intervals, Attitude control is maintained
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by a limit-cycle procedure; appropriate rockets are fired to maintain

the desired angular position to a tolerance of half a degree. Since the

rocket thrust is not reproducible, due to variation in fuel pressure and

wear of the rocket and contrcl valves, the rates of the three limit l

cycles can be described only statistically.

Table D-1 summarizes the pertinent attitude--control information;
shown are the pitch, yaw, and roll rates at the 30 limit, together with I
the limit-cycle tolerance. Since the deployment mechanism will not be
located at the center of gravity, these angular rates and positions
translate into linear displacements, which are also shown on the table.
Available gyro information and the transtage orbital rate are also shown,
It is important to note that the integrated rate or position ability of
the gyro is considerably better than that indicated by the rate readout

valug since the gyro drift rate is less than } degree per hour,

Table D-1

ATTITUDE INFORMATION FOR TITAN III-C

Angular Linear
Motion Motion at
of Transtage Mechanism

Transtage control

Pitch and yaw rate | 0.45°/s

30 val 2.4
Roll rate 0.75°/s - e
Position 0.5° 2.6 cm
Control-System
readout rate
Analog 0.01°/s 0.017 cm/s
Digital 0.005°/s 0.0087 cm/s
Orbital Rate 0.00417°/s
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Three potential difficulties have been identified. First, the rate of
change of the transtage attitude is large comparecd to the orbital rate,; there-
fore, rate control cannot be used during the deployment. Second, and even
more serious, the limit cycling during the deployment will introduce trans-
verse motion to the beads that might cause the array to collapse as shown
in Figure D-2. A third difficulty results from the fact that while the
motors that control the roll operate in equal and opposite pairs,
imparting torque only, the pitch and yaw rockets all fire aft, thereby
accelerating the transtage forward, The implications of these problems

are discussed in inverse order,

—

FIGURE D-2 EFFECT OF TRANSVERSE VELOCITY
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3. Acceleration

The calculations in this section are based on the attitude informa-
tion already given in Table D-1 and on the following data: the transtage
will have a mass (m) of 4,200 lbs, and an inertia (I) of 2400 slugs/ft at
the time of our deployment. The thrusters act with a moment arm (Lt)
of 62.6 inches. These figures come from the manufacturers' literature.

Qur assumptions and calculations will be given in metric units,

The forward thrust of each system can be calculated from the

following equation:

= _Ibayg
orce = {' AO{
t

where & = transtage angle from set position,

1f the mass of the transtage is known, the resultant acceleration
can be computed. The results of these calculations are given in Table D-2,
which shows the force from both the pitch and yaw systems operating at
the same time at the lo, 20, and 30 rate values. Also shown is the
resulting acceleration, assuming there are no forces opposing the th-uvst.
Although these accelerations have small values, their integration over
reasonable deployment times results in significant displacements., Table
D-3 .hows these displacements as functicns of deployment velocity., If
the aeployment takes place at 1 m/s, the time to deploy the 150-m active
section plus the two pigtail ends amounts to 210 s. During this time
the transtage, if it is yawing and pitching at the 30 value, will move
nearly 230 m. Since this translation is greater than the length of
material deployed, the situation is unacceptable. At greater deployment
velocities--for example, at 5 m/s--the time to deploy is considerably
reduced, and even at the 30 yaw and pitch rates, displacement during the

deployment is less than 10 n.




Table D-2

FORWARD FORCE AND ACCELERATION
FROM COMBINED YAW AND PITCH THRUSTERS

& ., Acceleration
Forece (N)

(deg/s) (m/s)

-4
3.21 5.8 X 10

-3
12,86 2,3 X 10

-3
28,93 5.2 X 10

Table D-3

FREE 30 ACCELERATION DISPLACEMENT
AT VARIOUS DEPLOYMENT RATES

Vd (m/s) Time to Deploy (s) J. Aee dtdt (m)

210 115
105 20.0
42 4,59

21 1,145

The foregoing calculations do not inelude the reaction force of
the deployment itself, Table D-4 shows these rcaction forces versus
deployment veloeity for arrays assumed to be made up of aluminum sphecres
and uranium spheres, These two materials are seleceted for these sample
caleulations beecause they represent the extremes of the range of density

available and are materials that have been considered for the array,
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Table D-4

*
DEPLOYMENT REACTION FORCE

Force Using Force Using
Vd (m/s) Aluminum Spheres Uranium Spheres
(N) (N)
1 0.0936 0.648
2 0.374 2,59
5 2.34 16.2
10 9.36 61.8

*
Deployment velocity squared times linear density.

We note tnat at a deployment velocity of 5 m/s for thc aluminum array

we have a reaction force of 2.34 newtons (N), which is small compared to
the 28.93-N thrust of the yaw and pitch jets when operating at the 30
values. However, the 30 value represents an extreme, and forces at the
10 value occur nearly 70% of the time. The 1-G force is 3.21 N, compar-
able with the reaction force. In a deployment at these conditions it

is likely that the transtage will not move at all., If uranium beads
were used, the array tension at the deployment mechanism would be in

the neighborhood of 13 N.

1% can be seen that because of the forward acceleration of the
transtage, it is necessary to deploy at rates in the m/s range,
Increasing the velocity of deployment has two effects. The first is to
decrease the time during which transtage motion can affect the deploy-
ment, and the second is to increase the reaction of the array against
the transtage. A deployment velocity of about 5 ft/s with the aluminum
array design can be expected to give a deployment in which the transtage
moves less than a meter under normal conditions. Even un¢ ~ the worst
conditions the transtage moves a distance that can be tolerated.
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4, Transverse Velocity '

The rotation rate of the array--one revolution per day--amounts to
a velocity difference, between thc ends normal to the direction of the
array, of about 1 cm/s. As shown in Table D-1, the motion at the
deployment mechanism due to transtage cycling amounts to 2.4 cm/s at the
35 rate. While this number will probably average out to a much lower
value over several cycles, the comparison between the two numbers shows

that consideration must be given to thc attitude motion of the transtage.

A better way of evaluating the effcct of the transverse velocity

.
L ]

is to compare the kinetic energy stored in the transverse velocity with !
the potentials capable of absorbi.: that cnergy, If the kinetic energy
exceeds that of the potentials available, one must assume that the

array will collapse,

a. Kinetic Energy E

There are two sources of transverse velocity., If the beads
arc not ejected in the desired dircction, they will have a transversc

velocity proportional to the sine of the angle from the desired dircction,

e

The second source of transverse velocity is transverse velocity of the

dcployment mechanism itself, The second source is significant when the

dcployment mechanism is not located at the center of gravity of the

vehicle, These two sources of transverse velocity are shown in Figurc D-3,

We note that the two sources of transverse vclocity are 90 out
of phase, Thereforc, the total transverse velocity in one plane is the

sum of two orthogonal vectors:

2 .
\2 = (o V) + (/Loz)2 . (D-2)
t max d

max
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FIGURE D-3 SOURCES OF TRANSVERSE VELOCITY

The total kinetic energy (DE) can be written

L/2 9
0V dx
t

-L/2

2
OLvt
KE =
4

Substitution of the 30 rate and assumption of a deployment
-3
speed of 5 m/s gives a total kinetic energy of 9,31 x 3 N-m, about
three quarters of which comes from the term with the deployment velocity,

Use of a guide tube stakilized to cut the angular error to a maximum of
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one-tenth of the limit-cycle error would cut the contribution due to the
deployment velocity by a factor of 100, virtually eliminating that
contribution to the kinetic energy. Reference to the attitude-control-
system figures of Table D-1 shows that this should be easily possible.
With this angular correction from the guide tube, the transverse Kinetic
energy is reduced to 2.00 X 10 ° N-m. The same attitude information shows
that the undesired motion could be eliminated by mounting the deployment
mechanism on a x-y table capable of 5 cm motion in both directions. 1In

-5
this case, the total kinetic energy would be reduced to 9.31 % 10 N-m.

Transerse velocities are also introduced by the deployment
mechanism itself. These have been measured in laboratory tests on
freely jointed arrays and were found to be of a random high-frequency
nature with an amplitude about 1% of the deployment velocity. Because
of the random nature of the disturbance, we suspect that the crror is
primarily due to mechanical tolerances in the test arrays that were
deployed from the mechanism. In a completely flexible or freely jointed
array this relatively large transverse velocity would be the dominant
concern, Since the frequency is high, the erergy is qguickly dissipated.
For an array with a stiff support, the energy is easily accommodated
as beam loading. In an; case, the smaller transverse velocities
arising from transtage motion at the lower frequencies remains an

important factcr that we will work to reduce,

b. Gravity-Gradient Potential

The energy (PE) required to collapse the array from its gravity-

gradient (GG) stable position to a peint mass can be given by
PE = — D-5
GG 8 ¢ )
We shall refer to this as the gravity-gradient potential energy.
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Substitution of the values for an aluminum test array at
synchronous orbit gives a value of the potential energy of 2,09 X 10
N-m., This value is smaller than the transverse kinetic energy even
when guide tube control is assumed, Therefore, we conclvde that it is
not practical to deploy such an array by these means where the gravity
gradient potential is the only sink for the energy, The transverse
cnergy with »-y control to eliminate the motion of the deployment
mechanism does yield a transverse kinetic energy that is smaller than
the gravity gradient potential, The margin of safety, however, it not
large, and the approximate nature of the calculations provides no great
confidence in the results, It is prudent, therefore, to seck another

source of potential energy.

C. Bending Potential Energy

The energy involved in bending an elastic beam can be given

as

L/2

b2
EI dzy
= —_— = D-6

dx

PEBeam

-L/2

where EI is the stiffness, x is the coordinate along the beam, and y is

measured from the undeflected position, We assume that y is given as

y = A sin V_ X (D-7)

where W is the frequency of the limit cycling. With this assumption

the potential energy of bending a beam with a circular cross section

can be given as
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PE = 3
Beam

4
16(1 - d/s) Vd

where r is the radius of the beam--i.e., wire running through the beads.
The term in parentheses is a correction term corresponding to the fact
that all bending takes place betweer the beads. A bending potential
energy of 6,48 X 10-2 N-m is given by evaluation of Eq. (D-8) for the

following conditions:

= 2,07 X 1011 N/m2 (steel)
S m

= 0,0005 m (0,001 m diam, 40 mil)
150 m

= 1,414 rad/s (39 value)
0,010 m

=0,015 m

5m/s ,

This figure is considerably larger than the kinetic energy, and the

resulting deflections will be less than five meters.

If the transtage cycling occurs at the one-sigma rate, this
bending potential energy has a considerably smaller value since the
wavelength is much longer. At the same time, however, the transverse

kinetic energy is also reduced.

1t should be noted that Eq. (D-4) for kinetic energy and
Eq. (D-5) for the gravity-gradient potential both contain the linear
density of the array. Changing the density will not change the relative

proportions of those two energies. The bending potential energy,
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Eq, (D-8), does not contain the linear density of the array. To make
this potential large compared with the kinetic energy, onc should make

the linear density small,

One should also note that the gravity gradient-potential energy
is a strong function of the array length, This is to say that for very
long arrays, the potential energy will eventually dominate, Hence,
resistanc~ to bending is not required for very long arrays, but is
needed for the test array, because it is relatively short in terms of

the gravity gradient,
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Appendix E

RIGID-ROD MOTIONS, STRESSES, AND BUC! .ING

1. Introduction

The purpose of this appendix is to determine whether a flexible

array will be subjected to compressive forces during capture from tumbling.

2, Solution

To examine this question, consider a long, thin, rigid body tumbling

in pitch, The incremental tension along the body can be written

2 2 Al
dT = &dx n 3 cos 9 -1+ (1 + ;/ (E-1)
where
dx = Incremental distance along the body
6 = Angle from the local vertical
¢ = Linear density of the body
n = Orbital rate.
We are especially interested in the locus of points on the S-é
plane that describes the zero-tension condition, given by
2 5\ 2
3 cos 9—1+(1+—)=0. (E-2)
n
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The cquation of motion can be written by equating the ratec of

change of angular momentum to the restoring torque as follows:

2
& = =3n sin § cos © . (E-3)
By noting that
”
N : dé
= 8= (E-1)
i do

one can write Eq. (E-3) in the & and & phase plane coordinates as

i J 2
gds = -

3
E n sin 26 dg5 . (E-5)
i Integration of this last equation yields
B 3
= = = cos 20 + C (E-6)
n 2

where C is a constant. Closed curves in the phase plane are separated
from unterminating ones by the solution of Eq. (E-6) that passes through

8 = ; s 8 =0. For this solution the constant, C, equals 2/3, and the

- equation of the separatrix can be written

() -

This cquation and Eq. (E-2) are plotted in Figure 5 of the main text.

(1 + cos 26) . (E-7)

N |2

It should be noted th:’ a reverse tumble will pass through the region of
compression and finally coincide with the decay path of a decreasing
positive tumble. An interesting point is that the positive tumble will
also pass through a compressive region. This can be deduced from the
separatrix of Ea. (E-7), wpich intersccts the zero-tension line at 6 = é 5
b = 0, and at § = 54,74°, g = -1. Between these two locations the separa-
trix passes through a region that indicates compressive stresses in the

array. 140
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Maximum compression occurs at the point 6 = 71.05°, = -0.5625.
The incremental tcnsion here is
2
dT = odx n (-0.49219) . (E-8)

The largest closed curvce (labeled capturc rcgion) docs not pass into
the compression rcgion. This curve corrcsponds to an array whosc maximum
libration amplitude is 66.344°. A short portion of thc closcd curve is

shown in thc figurc. The locus touches the zcro-tcnsion locus ¢ at the

5@

coordinates 6 = 62.275°, = =0.4078.

3. Buckling

The behavior of a flexible array in the phasc-planc regions that
corrcspond to compression is a complicated question that wec have not
addrcssed. In the case of stiff arrays, howecver, thc behavior can be

classified according to whethcr the array is buckled or not., It should

be noted that ''buckling' doecs not imply plastic bchavior or a destruction
of the array, but only that thc array is ncot capable of remaining straight
under the applied (body) forces. If the array is buckled, there is the
gquestion of the amplitudc of the distortion., In the case of no buckling,
there is no sudden change in the array behavior, and for practical pur-

poscs compression has no cifect on the structure.

A simplec, conservative cstimate will be used to demonstratc that
the test array will not buckle, cven under the most severe gravity
gradient compression. Assume that the central compression of the array,

which occurs during rccovery from a ncgative tumble,

[\~]

2
Im + ¢ — (E-9)

mls

141




e s o e

- -~ ot St i e

is applied to the ends of a {ree-{ree beam with the properties of the

supporting stiff wire of the array. For the test array this central
-6

compression is 2.5 x 10 N. The simple Euler buckling load for end

loading 1is

P = = —'——2— (E-10)

-6
which gives P = 4,5 x 10 N. Since the conscrvative pbuckling load for
the test array is greater than the central compression, we are assured
that buckling will not occur, and the test array will be uneifected by

passing through the compr 2ssive region.

We note that buckling will occur for a sufficiently long array if
all the other parameters arc held constant. Further, we note that it
is not feasible to prevent buckling for very long array lengths,
pbecause the thickness of the supporting wire would become prohibitive.
Tumbling, however, is not a concern for the longer arrays. The gravity
gradient effect increascs with length, and the change in moment of
inertia between undeployed and deployed states also increases with
length, so that disturbances and errors before and during deployment

become increasingly jnsignificant.

4. Conclusions

A gradual capture from tumble involves compressive forces that will
affect the straightness of a flexible array. Capture from reverse tumble
involves compressive forces twice thosc of capture from forward tumble.
The test array will not buckle when subjected to the maximum compressive
forces. Although this is not true for longer arrays, such arrays are

not likely to be subjected to tumbling.
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Appendix F

MUTUAL GRAVITATIONAL ATTRACTION OF THE BEADS

I. Introduction

The beads of tne array will be attracted to one another by mutual gra-
vitational forces. If these forces exceed the gravity-gredient force, then
a completely flexible array will collapse. In the absence of a tip structure,
the critical situation occurs at the end bead because this array element
is subject to the gravity-gradient force but not to tension transmitted
to it from beads farther out. At the same time, the mutual gravitation
force on this bead is the greatest because all of the other beads pull
together on this one bead ir the opposite direction to the gravity-

gradient force (see Figure F-1),

2, Formulation

The gravity-gradient force, F , can be written
g

m (F-1)

where

7
m = p'e'd (F-2)

and the variables are defined in Figure F-1,
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G = UNIVERSAL GRAVITATIONAL CONSTANT (6.67 X Nmzlkg)
s = INTERELEMENT SPACING
T Ao
n=1 n2 6

LA-3323-74
FIGURE F-1 BEAD MUTUAL-ATTRACTION STABILITY CRITERION
The mutual gravitation force, Fm, can be written
2 @
Gm 1
| m——— e . F-3
F S g (F-3)
-

Because the forces contributed by beads at large distances from the end

bead is small, the summation to infinity providcs a very good approxima-

tion to F .
m

The sravity-gradient effect will dominate when

2 2
3 > 0,571 . (F-4)
Gd
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3 Conclusions

For aluminum beads and a 150-m array, the left-hand term of

Eq., (F-4) exceeds thc critical value by two orders of magnitude.

If end masses are added and if the array is made stiff, this

criterion becomes extremely conservative.

.
e

g g

e

—_————




Appendix G

TEMPERATURE DISTRIBUTION IN A SOLAR-IRRADIATED CYLINDER

PRECEDING PAGE ELANKeNOT FILMED




Appendix G

TEMPERATURE DISTRIBUTION IN A SOLAR-IRRADIATED CYLINDER

i1 Introduction

The thermal bending of a solid cylinder (wire) will be a function
of the temperature distribution existing within the structure. To
calculate this distribution, we assume that the temperature differences
at the surface of the wire are small. Consequently, reradiation from
the cylinder is the same from all positions on its surface. This assump-

tion was checked, and proved valid, for the solution we obtained.

2, Formulation

We take the heat fiux at r = a to be

1
q” (Fos 6 - —) y =
n

q = (G-1)

< B <

=
N =

"

b1
q /=, §<e<n

where the variables are defined in Figure G-1.

In terms of temperature, T, the steady-state problem is

v T =0 (G-2)
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FIGURE G-1 SOLAR RADIATION ON CYLINDER




with the following boundary conditions:

( "
+ 3 (cos 6 - -l-) -
7
oT

B_r=< —n<6<---2TE (G-3)

=

(S E
N
@
A

N =

1T
<6<,
2

where K is the thermal conductivity. Assuming thut the problem is length-

independent, the solution of Eq. (G-3) is

[+2]
n -n
T = Z(Ar +Br)(C sin n6 + D cosne) . (G-4)
n n n n
n=0
Because the temperature is limited,
B =0 (G-5)
And, from symmetry,
cC = 0. (G-6)

Now, the product of Hrl and Drl can be written as a single constant, A ,
n

and

oo
n
T = Z Anr cos nf (G-7)
n=0

We then differentiate Eq. (G-7) with respect to r, multiply the
result by cos pb, and integrate. The A are thus selected to match
n

the boundary conditions in Eq. (G-3):
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an A cos nb cos pb dg
n

T "

f -qK—ﬂ- cos pb df

=7

"

J/‘ %— cos pb6 cos 6 d6

All the terms of the left-hand side are zero except when p = n,

we find that AO is arbitravy, and, for n = 1,

The even terms make a negligible contribution to the thermal strain
of the overall wire because they are symmetric. The higher-order odd
terms are not as important as the n = 1 term (1) hec suse they have
stresses that create some compensating moments, and (2) because these
terms have smaller amplitudes [Eq. (G-9) . Hence we need consider
only the first term, which yields a temperature profile of

"

q
~— r cos B
2K

and is shown by the isotherms in Figure G-2,

The maximum temperature gradient from this dominant, n =1 term is

ar

g (G-11)
dx 2K

which is secn to be independent of the diameter of the rod.
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FIGURE G-2 FIRST-ORDER ODD ISOTHERMS

3% Conclusion

The temperature distribution calculated in Eq. (G-11) predicts
that a copper rod will bend with a radius of curvature of 47 km when
exposed to solar radiation broadside. Such a curvature corresponds
to a 6-cm displacement at the center of a 150-m wire. This is more
than desired for electromagnetic performance and raises questions of
attitude excitation. This cffect, however, does not apply to the

flexible cable or segmerted array.
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Appendix H

TEMPERATURE DISTRIBUTION IN A SOLAR-IRRADIATED SPHERE

With arguments similar to those presented in the introduction to

Appendix F, the governing equation for a solar irradiated sphere is

0 <6< /2

T /2 <6 < q

The general solution is

fo e}

= =Z [Anrn +‘Bnr-n-1] [Cnpn(X) + DnQn(X)]

n=0
where P (X) and Q (X) are Legendre functions, and X = cos 8§, Because
n n

of finite temperature and symmetry, Eq.,(H-3) reduces to

@x

= E ArP (X)
n n

n=0

where An = HnC . The constants can now be evaluated by taking the de-
n

rivative of Eq. (H-4) with respect to r and matching the boundary

conditions given in Eq. (H-2). Multiplying by PS(S) and integrating

gives
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o 1

n
E nA a / P (X)P (X)dX
n n S
n=0 -1
qm 1 q”' 1
=T XP (X)dX - —— P (X)dX . H=5
- 0 4K/ ) (1-5)
o -1

The left-hand side is zero except when n = S. Hence, the constant AO

is arbitrary and, for n = 1,

Pl(X) = X (H-"

where
A =" . (H=-7)

For n > 1,

n

1

(n + 1/2 -

= . ) a XP_(X)dX
na K

(o)

0 for n odd

+1) n 2
2(n )a n (n-1) n even . (H-8)

These results will be used during the detailed design phase of the

project.
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Appendix I

ORBITAL CHANGES DUE TO GRAVITATIONAL EFFECTS OF THE SUN AND THE MOON

This appendix summarizes the effects of the gravitational fields of
the sun and moon and of the earth's oblateness on zn initially geostationary

orbit. Greater detail is provided in the references given below.z'3

An equatorial orbit will drift due to the gravity-gradient effects
of the sun and the moon. The nature of the drift can be understood by
viewing the average gravitational forces of these bodies as applied
torques that alter the orbital angular-momentum vector. The magnitude
of this torque varies periodically depending on the angle that the radius
vector from the sun or moon makes with the orbital plane. The fundamental

period is half that of the radius vector from the relevant body.

As can be seen in Figure I-1, the torque applied on an equatorial
orbit by the sun is periodic and is a maximum at the solstices and zero
at the equinoxes. The average of this torque applied by the sun and
that of the moon can be added. The total torque causes the angular-

*
momentum vector to precess about the ecliptic pole. The rate of

2A. Kamel and R. Tibbitts, '"Some Useful Results on Initial Node Locations

for Near-Equatorial Circular Satellite Orbits,”Celestial Mechanics,
Vol. 8, pp. 45-73 (1973).

3O. F. Graf, Jr., "Lunar and Solar Perturbations on the Orbit of a
Geosynchronous Satellite,' paper AAS 75/023, AAS/AIAA Astrodynamic
Specialists Conference, Nassau, Bahamas, July 28, 1975,

This precession is not exactly about the ecliptive pole because the
moon's orbit is inclined about 5° to the ecliptic., This perturbation
is of second order.
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FIGURE I-1 EFFECTS OF THE SUN

N 4 . [e]
precession for a synchronous orbit is about 2.4" per year (sec

Figurc I-2), about two-thirds of which is due to the moon.

Oblateness of the earth contributes a torque that causcs the angular-
momentum vector to precess about the earth's pole. As soon as the orbit
is perturbed from cquatorial, oblateness precession occurs. For a
synchronous orbit, this precession has a rate of about 4.8 pcr year
(see Figure I-2). The sum of the two precessions results in a motion of

the angular-momentum vcctor. This motion is circular, centcred at

about 7.50 from thc pole of the earth in tne direction of the ccliptic

polc. The total motion occurs at a rate of 7.4o per year. The time

to travel the circle is therefore about fifty ycars.

From the earth thc satellite motion appears as a figurc eight. The
motion slowly grows from zero, for the equatorial orbit, to a maximum
north-south displaccment of +15° in twenty-five years and then decreases
again for the next twenty-five years, 1In the first year, when the ratce
of growth is greatcst, the displaccment is less than +1° (0.841° according

to Ref. 2). 164
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FIGURE [-2 SYNCHRONOUS-ALTITUDE EFFECTS

A few points should be noted:

(1) The periodic torques and the departure of the moon from the
ecliptic make the angular-momentum motion irregular and not
circular as suggested by the average results presented.

(2) A nearly-steady-state figure eight, as viewed ‘rom the earth,
can be achieved by placing a satellite into an orbit inclined
7.5o from the equatorial plane in the direction of the
ecliptic.

(3) The influence of the sun and the moon is greater with greater
orbital radius, while the influence of oblateness is less.

(4) The effects discussed are orbital considerations and have a
negligible effect on array stability.
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As a side comment, we note that there are at least two kinds of

1 . N . . . .
"solar-stable' orbits. The more common one is an orbit in which the rate

of precession about the earth pole due to oblateness is the same as the
rate of earth orbit about the sun, so that the orbit always has the same

attitude with respect to the sun. The other kind of solar-stable orbit

is one in which solar pressure is a dominant effect and gradually rotates

the major axis of the orbital ellipse so that its orientation remains

constant with respect to the sun.
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Appendix J

CHANGE IN ARRAY SHAPE DUE TO NONUNIFORM SOLAR ILLUMINATION

We will consider a completely flexible cable with a point force, F,
applied at its center and opposed by d'Alembert distributed force, &,
as shown in Figure J-1. Deflection, vy, is obtained as a function of the
distance, x, from the center of gravity of the cable. The tension in
the cable is assumed equal to the value it attains when the cable is in
its stable gravity-gradient position. Small-angle approximations will

be employed.

I-—c-

¥

FIGURE J-1 FORCE APPLIED TO CENTER OF ARRAY
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The differential tension, dT, in the cable is i

dT = —3n23xdx (J-1) .
where
n = Orbital rate (2/day)
¢ = Linear density (0.094 kg/m).

The tension at the ends of the array is determined by the mass, m, of the

two identical tip inertias located at L/2x = + L/2 on the cable.

3,2 (£ 2) 2%
T = o n Lm + ¢ i X (J-2a i

T=A -Bx (J-2b)

Consequently,

or

where A and B are constants. The relevant steady state cable equation |
is

— T=5 = =G . (J-3)

The boundary condition is arbitrary. At the point of force application, b

L
F(— + = - x)
dy 2.0

= (J-4)
dx 2m
(L + fj) T
and we note that
g = -f;——— (J-5)
- 2m ) -
L + —
o

The problem is now completely formulated.

Integration, expansion by partial fractions, and a further integra-

tion gives the general result. For a force applied at x = 0, the solution

is
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where we arbitrarily take the integration constant C2 = 0, and find

1 = F/2 (J-7)

Substituting the following numerical values into Eq. (J-6):

150 m

0.2 oL

2
Pd /4 (solar pressure force on one bead)

-10 -6 2
3.5 x 10 N (P =4.5x 10 N/m",

we obtain

x(m) = 10 20 40 75

-4 -4 -4 -3
y(m) g 2.129 X 10 4.064 X 10 7.454 X 10 1.215 X 10

The actual force that should be considered in a more rigorour analysis
is the difference between the average momentum applied to each bead. This
momentum variation can be due to a slightly different bead area and bead
e. issivity, and a difference in emissivity around each. Differences

due to projected areas will be less than 0.1%.

The force calculated in the analysis is for blackbody absorption
on the bead. Complete specular reflection gives the same result,
neglecting the bead-to-bead effects. If the bead has a black surface
facing the sun, and a zero emissivity on the back side, the momentum
imparted is greater by 33%. Complete diffuse reflection momentum is
greater than the blackbody case by 44%. Hence, the difference from the

average will never approach the value used in the calculation.




e . e —— > — S TEREE R T
Solar-pressure distoriic.s are clearly impertant, Consideration
will have to be given to tolerances in size and surface-degradation
characteristics during the final design.
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