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ABSTRACT

L
In this report, we present some basic theory on unidirectional error

• 
- - - 

• -~
. 

~~~~ ~

(i.e. all bits fail in the same direction) correction/detection~for binary

~~ ~: ~~
block codes. Then ve—eeae-tru9~b a new class of codes which corrects single

• errors and detects any number of multiple unidirectional errors. -We--s1~e~~

F ~~~~~ tb~~ some codes which hither—to—fore known to possess only sy etric

error detection/correction properties1,can be modified to make them suitable

for unidirectional error correction/detection.
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• INTRODUCTION

Error correcting and/or detecting codes have been extensively discussed

for improving the reliability of computer systems and communication networks

(1—15]. Most of the theory on random error correcting/detecting codes have

been developed under the fault assumption of symmetric errors in the data

bits. The predominant faults in some of the recently developed LSI memories

are of unidirectional type (i.e. all bits fail in the same direction) rather

than symmetric type (15,16]. For example, Cook et. al. [15], have analysed

the nature of faults in integrated circuits and come to the following

conclusion.

“.... any number of bits may fail but they all fail in the same direction,
either s—a—i or s—a—o. Both no access and multiple access of words from a

memory cause unidirectional errors. Also, most failures on a chip that affect

multiple bits on that chip, e.g., power failures, tend to affect all parallel

bits in the same direction .... “

These unidirectional failure properties of some of LSI memories have provided

the basis for a new direction of study in coding theory and fault—tolerant

computing.

In this report, we develop the basic theory for unidirectional error

correction/detection for binary block codes. Some of the background material

useful for this report is presented in Section II. In Section III, we

establish the necessary and sufficient conditions on binary block codes f or

unidirectional error correction/detection. In Section IV we construct a

new class of codes which is capable of correcting single errors and detecting

any number of multiple unidirectional errors. The unidirectional error

correcting/detecting capabilities of some of the known codes are discussed

in Section V.

J
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II • AS~~*fETRIC, UNIDIRECTIONAL AND SYMMETRI C ERRORS AND THE CONCEPT
OF ASYMMETRI C DISTANCE*

To use the terminology introduced by Kim and Freiman [18], we will refer

to the transition 0+1 as 0—error and to the transition 1+0 as 1—error. For

this report we make a clear distinction among asymmetric, unidirectional and

symmetric errors as follows.

Asyninetric errors are those in which all errors in the received words

are of only one type (say 1—errors) at all times. This assumption will be

appropriate for memories or channels which have asyizinetric properties (17-24].

Unidirectional errors are those in which all errors in a received word

are of type 0—errors or 1—errors but both the types of errors do not appear

simultaneously in any word.

Symmetric errors are those in which both 0—errors and 1—errors can

appear simultaneously in a received word.

The following remarks will help clarif y further .

If we assume that only asymmetric 1—errors can occur in the code words,

then this implies, the probability of occurrence of 0—errors is zero. This

type of channel is called ideal binary asyimnetric channel by Rao and

Chawla (233 . On the other hand , if we assume the errors are of unidirectional

nature, then this Implies that occurrence of 0—errors and 1—errors is equally

• likely but the probability of simultaneous occurrence of both 0—errors and

1—errors in the bits of a received word is zero. Finally if we assume the

errors are of symmetric type, then the probability of occurrence of 0-errors

and 1—errors are equall’ likely. A channel model that is commonly used for

symmetric random errors is the binary symmetric channel ( 2 ] .

*The reader is assumed to be familiar with the basic concepts of coding
theory, such as, Hamming distance, minimum distance of a code, minimum
distance—error detection/correction relationships .



I
Let X and Y be two n—tuples over CF(2)— {0,l}. We denote the number

of 1.0 crossovers from X to Y by N(X,Y). Note that in general

I
For example when X — (110110) and Y — (001110) then N(X ,Y) 2

and N(Y,X) — 1.

It is well known that the concept of Hanining distance (1 3 is useful

in discussing the symmetric — error correcting/detecting abilities of codes.

This is defined below.

Definition 2.1. The }laniming distance between two n-tuplea X and Y,

denoted by Dh(X,Y) is defined to be the number of positions in which the

two words differ.

In terms of 1+0 crossover, we can express the Hamming distance between

two n-tuples X and Y as

Dh
(X
~
Y) — N(X,Y) + N(Y,X) (2—i)

Rao and Chawla [23] have defined ‘asyninetric distance’ with reference

to the asyimnetric error correcting capability of binary codes as follows:

Definition 2.2. The asyimnetric distance between n—tuples X and Y,

denoted by D8(X Y) is defined to be the maximum number of possible 1+0

crossovers from X to Y or from Y to X.

i.e. D
5

(X I Y )  — max[N(X,Y), N(T,X)] (2—2)

It is shown in [ 23 ) ,  that asymmetric distance is a metric , which mea~c

• I D satisfies (2—3).

~~ 
Da(~

c
~
’
~ 

— 0 iff X — Y

~J D5(X Y )  D5(Y ,X) ~, (2—3)

~~ 
DC (X ,Z) D5 (X ,Y) + D ( Y ,Z) J
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The following theorem gives the asymmetric error correcting capability

of binary codes.

Theorem (Rao and Chawla ( 23))

A binary cod e ‘C ’ of minimum asymmetric distance d5 is capable of

correcting d5— l or fewer asymmetric 1—errors (or 0—errors) .

Outline of the proof:

For any codeword X, let S~ denote the set of vectors obtained from

X by replacing l’s with 0’s in t places, where t d — l . Then for any

two codewords X and Y , we need to show the corresponding S~ and S ,, are

disjoint. Since for all X ,YeC , D ( X ,Y) > d holds, it is straight

forward to show S,, and ~~ are disjoint . A forma l proof can be found in ( 2 3 ] .

Remarks

Note that Dh
(X,Y) d implies b(X ,Y) > [s!], where (r] denotes the

integer part of r .  We know that a code ‘C’ with minimum Hamming distance

2t+1 is capable of correcting t or fewer symmetric errors . For this code C ,

the minimum asymmetric distance will be at least t+1 and hence C is

capable of correcting t or less asymmetric errors. Since the condition

required for asymmetric error correction is less restrictive than for •

symmetric error correction, it is expected that f or a given n, a

t—asyimnetric error correcting code to have more codewords (i.e. higher

information rate) than a t—symetric error correcting code. Research

in this particular direction has led to the derivation of “Group —Theoretic

codes” (24] .  The Group—Theoretic codes are single asymmetric—error correcting

codes having information rates better than single symmetric error correcting

codes such as Hamming codes. Also see the references (18—24).
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III. NECESSARY AND SUFFIC IENT CONDITION S FOR UNIDI RECTIONAL ERROR
- CORRECTION/DETECTION

In this section we establish the necessary and sufficient conditions

for unidirectional error detection and correction. The concepts of both

Hamming distance and asymmetric distance are useful in establishing these

conditions. We start with the following definition.

Definition 3.1. A vector X— (xi.. ..x ) is said to cover vector

‘
~ 

~
‘i” ’n~ 

if for all i, 71
_ i implies x~ .l. We represent X covers Y

by Y<X. If X ?Y and Y IX , then these vectors are said to be ‘unordered’.

:1 If X < Y or Y< X then they are said to be an ‘ordered pair’.

For example, when — (1011) and Y1 • (1001) then Y~ <

i.e. covers Y
1. On the other hand, the vectors X2 — (1010) and

(0110) are unordered since and 
~2 ~

x2~
Note that when the vectors X and Y are unordered then

N(X,Y) > 0 and N(Y,X) > 0. Also note that if X and Y are an ordered pair

then the asymmetric distance and Hamming distance between them are equal

i.e. If X < Y or Y < X then

D
h
(X,Y) — D(X,Y).

3.1 UNIDIRECTIONAL ERROR DETECTION

It is’knowii that Berger codes [17] and m—Otit of n—codes [14,15,19] are

capable of detecting multiple unidirectional errors in the code words. For

completeness we prove the following theorem which gives the necessary and

sufficient conditions for unidirectional error detection.

Theorem 3.1

A code C is capable of detecting multiple unidirectional errors if f

every pair of code words is unordered

______________ 
_ _ _  _ i

~~J
__ __

• - • -  
- - • -

~~~~~
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i.e. for distinct X , Y C
• (3—1)

N(X,Y) > 0 and N(Y,X) > 0J

proof

Since for arbitrary X and Y in C, N(X,Y) > 0 and N(Y,X) > 0,

we have the following form in at least two positions say 1 and j of

X and Y
I

X 0 1

Y 1 0

Any vector obtained from X due to 1—errors is distinct from Y in position 1,

and any vector obtained from X due to 0—errors is distinct from Y in

position j.

Conversely, if there exists X and Y in C such that N(X,Y) > 0 and

N(Y,X) — 0, then 1—errors (0—errors] in the positions where X differs from

Y can transform X to Y[Y to Xl . These errors are not detectable.

3.2 UNIDIRECTIONAL ERROR-CORRECTION

It is well known that a code C is capable of correcting t or less

symmetric errors if f the minimum Hamming distance of C is at least

2t + 1 (1 3. In the following theorem we establish the necessary and

sufficient conditions in the case of unidirectional error correction.

Theorem 3.2

A code C is capable of correcting t or fewer unidirectional errors

1ff the following condition (3— 2) holds.



For all distinct X,YcC

D (X,Y) — D (X,Y) > 2t+1 for X and Y an ordered pair~(a h )(3—2)
D(X Y) > t+l otherwise )

Before establishing the validity of Theorem 3.2, first we prove the

following lemmas which are useful in proving Theorem 3.2. In the following

discussion, S refers to the set of all vectors obtained from a word Z duezl
to t or fewer (possibly zero) 1—errors and S 0 refers to the set of all

vectors obtained from a word Z due to t or fewer (possibly zero) 0—errors.

Also S refers to the set of all vectors obtained from Z due to t or
z

fewer (possibly zero) unidirectional errors, i.e. S S 0 U S 1.

Lemma 3.3

For an ordered pair X and Y, if D(X,Y) Dh(X,Y) > 2t+ 1 then

• Sx nSy
_,.

Proof:

Let Dh
(X,Y) — m > 2t + 1. Now for any X

e c S , Dh
(X ,X )  —

• where m
1 

c t . Also for any Y c S , Dh(Y ,Y) — m2, where m2 
c t.

• From triangular inequality property of Hamming distance, we have

Dh(X,
Y )  + Dh(Y ,Y) > D h(X,Y) i.e. Dh

(X,Y )  
~~~~~ 

- Dh(Y ,Y) — r n - r n2 .

But m — m  > t + 1. Hence if Y c S , then Y i S , which implies2 —  e y e x
s~r i s7 — . .

L~~~ a 3.4

For an unordered pair X and Y if D (X,Y) > t + 1 then S fl S —
~~~~
.a — xl yl.

Proof:

From hypothesis Da (X
~
Y) — Max(N(X,Y), N ( Y ,X ) )  — m where m > t + l .

Let us assume N(Y,X) — m > t + 1. For any X
1 c S 1, N(X,X1

) — m1

~~~~~~~~~~TTTiiTT E —-------• — - ---- ——- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ — -- • - - - -- -
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and N(X1,X) — 0 where m
1 

c 
~~~. Also for any Y

1 c S 1, N( Y ,Y1) — a2 and
N(Y1,Y) — 0 where m

2 
c 

~~~• Hence for any X
1 c S 1, N(Y,X1) —

where m > m > t + 1. So if X c S then X i S which implies3 — —  1 xl 1 yl
S I) S — $ .xl yl

L~~~a 3.5

For an unordered pair X and Y if Da(X~
Y) > t + 1 then S

~i
I) S~0 —

Proof:

Since X and Y are unordered pair , X has value 0 and Y has

value 1 in at least one position, say position j. Now any X
1 

c S
1

has value 0 and any Y
0 

c S
0 has value 1 in position j . Therefore

if X
1 c S

1 
then X

1 I S 0 which implies S 10 S 0 —

Lemma 3.6

For an unordered pair X and Y, if D ( X ,Y) > t + 1, then
s O S  —

~~
.xO yl

This can be proved similar to Lemma 3.5 .

Lemma 3.7

For an unordered pair X and Y if D(X,Y) > t + 1 then

S flS —
~~
.xO yO

This can be proved similar to Lemma 3.4

Lemma 3.8

For an unordered pair X and Y if D(X,Y) > t + 1 then
S fl S — 4.x y

Proof:

S () S  — ( S  U s  ) l 1 (s U s  )x y xl xO yl yO
— (S

~i /1 S71
) U (S

~1
r) 5

yo~ 
U (S,~~fl S

71
) I) (S

~o (1 S70)
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Since X and Y are unordered and D(X,Y) > t + 1

~~~~ 
S 1 4 by L~ ima 3.4, S~~ f~ S 0 4 by Lemma 3.5, S

0
A S

y1 
—

by Lemna 3.6 and S
~~~

(
~ 

S 0 — 4$ by L~~~a 3.7. Therefore S f l  S — 4 .

Now we give the complete proof for Theorem 3.2.

Proof for Theorem 3.2:

To establish the sufficient condition , we have to prove for every

pair of code words X and Y in C, S f ~ S — 4. Consider some

arbitrary code words X and Y. When X and Y are an ordered pair

then by hypothesis , D(X ,Y) — Dh(X,Y) > 2t + 1. Therefore by Lemma 3.3

~~~ ~ — •. When X and Y are an unordered pair , then by hypothesis

Da(X~
Y) > t + 1. Therefore by Lemma 3.8, again S fl S — 4. This completes

the proof for the sufficient condition.

Conversely, let there be an ordered pair X and Y in C such that

D ( X ,Y) — D
h(X,Y) — m1 < 2t. Let us assume N (X ,Y) - rn1 and N (Y ,X) — 0.

• Then 1—errors in some k(k < t) positions of K and 0—errors in some

m — k (m — k < t) positions of Y may result same vector which is ambiguous

to decode . Therefore if X and Y are an ordered pair in C, then

D (X,Y) > 2t + 1 for t or fever unidirectional error correction . Again ,

let there be an unordered pair X and Y in C such that Da(X~
Y) ~ m2 < t.

Without any loss of generality we assume N(X,Y) — m2 and N(Y,X) — m3

where m3 
< m

2 
< t. Nov 1—errors [0-errors] in m2 positions, where X

has l’s and ‘1 has 0’s of X(Y] and in ni3 positions where X has 0’s

and Y has l’s of YIX) will result the same vector which is again

ambiguous to decode. Therefore whenever X and Y in C are unordered,

D (X,Y) t + 1 for t or fewer unidirectional error correction.a

_______  
----
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Remarks

A t—symm.tric error correcting code ‘C’ has minimum Hamming distance

at least 2t + 1. Hence for any two code words X and Y in C if X and

Y ar e unordered pair then Da(X
~
Y) > t + 1 and if X and Y are ordered

pair, then D
~

(X ,Y) > 2t + 1. Hence a ‘ode C capable of correcting

t—symm.tric error is also capable of correcting ~. unidirectional errors.

Since the conditions required for t—unidirectional error correction is

somewhat less restrictive than that of t—syminetric error correction, we may

look for unidirectional error correcting codes which have better information

rate than symmetric error correcting codes. However not.e that there is no

difference between single symmetric error and single unidirectional error .

3.3 UNIDIRECTIONAL ERROR CORRECTION AND DETECTION

In the case of symmetric errors, a code C is capable of correcting

t—errors and simultaneously detecting d(d > t) errors if f the minimum

Haimning distance of C is at least t + d + 1. A somewhat similar result

in the case of unidirectional errors is established in Theorem 3.10 .

• We start with the following lemma which is useful in proving Theorem 3.10 .

Lemma 3.9

For a pair of vectors X and ‘1 if N(X,Y) t + 1 and N(Y,X) ‘ t + 1

then

where S is as defined before and Q is the set of vectors obtained fromx y
Y due to m (m 

~ 
t + 1) unidirectional errors in y.

Proof:

Let N(X,Y) • 9. and N(Y,X) • k where L,k > t + 1. For any

Y t Q eithere y

• 
~~~ -~~~

- 
• • •~~~

.
~~~~ —-~-- =- -
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N(Y ,Ye) 
> t + 1 and N(Y ,Y) — 0 (3—3)

N(Y ,Y )  — 0 and N(Y ,Y) > t + 1 (3—4)

Also for any X c S eithere x

N (X,X) < t and N(X ,X) — 0 (3—5)

or 
N (X ,X )  — 0 and N (X ,X) < t (3—6)

If the condition (3—3) satisfies for any 
~e ~ ~~ 

then N(X
~
Ye
) 9. > t+l

or if the condition (3—4) satisfies for any 
~e 

C Q then N(Y
~
,X) > k > t + 1.

So in both cases if any Y c Q then Y I S - Therefore S fl Q — 4.e y e x x y

Theorem 3.10

A code C is capable of correcting t or fewer unidirectional errors

and detecting multiple (t + 1 or more) unidirectional errors if f the

condition (3—7) holde.

i.e. for all X,Y c C N(X,Y) > t +
• (3—7)

(and also N(Y,X) > t + 1))

Proof:

Let Q be the set of all vectors obtained from all code words in C

due to m (m > t + 1) unidirectional errors in the code• words.

i.e. Q Q U Q I . )  

— (.1) Q
seC

where Q is the set of vectors obtained from a code word Z due to

m(m > t + 1) unidirectional errors in Z. In order to prove the sufficient

condition we have to prove, for arbitrary X and Y in C

S i ”~ S — 4  (3—8)

S n  ~ — 4

-
~~~~~~~~

- • •— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ I
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Since for any X,Y c C, N (X ,Y) > t + 1, and N(Y,X) ‘ t + 1, then

Da (X sY) > t + 1. Therefore by L~~~a 3.8 S 1) S,, — 4 is true. Now

S fl Q — (S (% Q ) U (S “~ Q ) U .  
X X X X 

~~ (3—10)
U S f l QseC x z

S f l  O~ — 4 is true because for any Xe £ S~ , Da(X~
Xe
) < t and for

any X ’ c Q~, D(X,X ’) > t + 1. Also for any Y(,~X) in C, since

N(X,Y) > t + 1 and N(Y ,X) > t+1, S
~ fl Q7 

— 4 is true by Lezxma 3.9.

Therefore S r )  Q — 4 is true.

Conversely, let there be X and Y in C such that N(X,Y) — m1 
< t

and N(Y,X) — m 2 . Let x’(Y’] be the vector obtained from X [Y] by

l-~O (0+1) crossovers in m1 (m1 
< t) positions where X has 1~s and

Y has 0’.. The same vector X’[Y’] can be obtained from Y[X] by

l~~0 (0+1] crossovers in the positions where Y has l’s and X has

0’s. Hence both X’ and Y’ are ambiguous to decode. Therefore for

any X and ‘1 in C, N(X Y) > t + 1 and N (Y ,X) > t + 1 for t uni-

directional error correction and multiple (t + 1 or more) unidirectional

error detection.

A strong~r result for the code C with the property (3—7) is given in

Theorem 3.11. A complete proof is given in the Appendix A.

Theorem 3.1].

For all X,Y c C if N(X,Y) > t + 1 and N(Y,X) ~ t + 1 then C is

capable of correcting t—syinmetric errors, detecting t + 1 symmetric errors

and also detecting multiple (t + 2 or more) unidirectional errors. 

~~~~~~~~~~
-

•—•- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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IV. SINGLE ERROR CORRECTING AND MULTIPLE UNIDIRECTIONAL ERROR DETECTING
(SEC-MUED ) CODES

In this section , we construct a new class of codes which is capable

of correcting single errors and detecting multiple (more than one) uni-

directional errors. We call these codes as Group Theoretic Single Error

Correcting and Multiple Unidirectional Error Detecting (SEC—MUED) codes.

In the following discussion we denote the set of code words by ‘C’, the

length of code words by n and the number of code words by M. We start

with the following leimna.

Leans 4.1

A constant weight code ‘C’ with minimum Ramming distance 4 i. capable

of correcting single error and detecting multiple unidirectional errors.

Proof:

Since C is a constant weight code, for any u,v c C, N(u v) — N(v,u).

Furthermore, Dh(u,v) — N(u,v) + N(v,u) — 2N(u,v) > 4. Therefore

N(u,v) > 2. Hence by Theorem 3.10, C is a SEC—MUED code.

A generalization of Lemma 4.1 is as follows.

Lemma 4.2

A constant weight code ‘C’ with minimum Ramming distance 2t.f 2 is

capable of correcting t— unidirectional errors and detecting multiple

(more than t) unidirectional errors.

This can be proved similar to Lemma 4.1 and hence a formal proof is

not given.

From L~~~a 4.1, one can see that constant weight code with minimum

Hamming distance 4 is a SEC—MUED code. One of the aspects of coding theory

problems is to get high information rate codes i.e. for a given n, to com e

up with maximum number of code words. At this point we can ask the question ,

“What would be the information rates of SEC—MUED codes if the codes are

___________________________ - -
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generated by applying Len a 4.1?” Best et.al. [25] have given bounds for

the maximum number of code words Mmax~ 
for constant weight codes with

minimum Hamming distance dh and length a for the range dh 
c 10 and

a < 24. M for the case d. • 4 is of interest to us and is given in
— max a

Table I. Note that (n/2] out of n codes have highest information rate.

Also note that the information rate of these codes are comparable to

Hamming distance 4 SEC—DED codes. (For a given ‘n’ the redundant bits

required for SEC—HUED codes may be at most one greater than that of SEC—DED

codes. But at the same time one should note that SEC—HUED codes detect

multiple unidirectional errors.) These observations suggest the existence

of good information rate SEC—HUED codes and also motivate us to pursue

further research in this direction.

• Now consider the (7,3) cyclic code ‘C’ generated by the polynomial

g(x) — x4 + x3 + x2 + 1. There are eight code words and they are given

below:
(000 0000, 00]. 0111, 010 1110, 011 1001,

100 1011, 101 1100, 110 0101, 111 0010).

Note that between any two nonzero code words u and v in C , N(u ,v) — 2.

Hence the set of nonzero code words of (7,3) cyclic code constitutes a

SEC—HUED code with a — 7 and M — 7. Also if we omit the code words

(0000 0000) and (1111 1111) from (8 ,4) SEC—DED code , the set of remaining

code words forms a SEC—HUED code. Hence we have a SEC—HUED code with

n 8  and M — l 4 .

In the following paragraphs we give a systematic way of constructing

SEC—HUED codes for any a. These are subcodes of Group—theoretic codes

developed by Rao and Constantin (24].

- -- - -  ~~~~~~~~~~~~~~~ 
— ii
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2 3 4 5 

- 

6 7 8 
— 

9 10 
-
— 11 12

2 1 1  
-_ _ _ _  _ _ _

5 2 2  1 1
• 

6 3 4  3 1 1

7 3 7  7 3 1 1

8 4 8  14 8 4 1 1

9 4 1 2 18 18 12 4 1 1

10 5 13 30 36 30 13 5 1 1

11 5 17 35 66 66 35 17 5 1 1

12 6 20 51 73—84 132 73—84 51 20 6 1 1

13 6 26 65 99— 143— 143— 99— 65 26 6 1
—132 —182 —182 132—

14 7 28 91 143— 210— 232— 210— 143— 91 28 7
—182 —308 —364 —308 —182

15 7 35 105 213— 321— 435— 435— 321— 213— 105 35
—271 455 —660 —660 —455 —271

16 8 37 140 305— 513— ? 870- ? 513— 305— 140
336— —722 —1040 —1320 —1040 —722 —336

17 8 44 154— 424— 792— ? ? ? ? 792— 424—
—157 —476 —952 —1753 —2210 —2210 —1753 —952 —476

18 9 48 198 480— 1188— ? ? ? ? ? 1188—
—565 —1428 —2448 —3944 —4420 —3944 —2448 —1428

19 9 57 228 612— 1428— ? ? ? 9 ? 9
— 752 —1789 —3876 —5814 —8326 —8326 —5814 —3876

20 10 60 285 816— 2040- 9 ? ? ? ? 9
—912 —2506 —5111 —9690 —12920 —16652 —12920 —9690

21 10 70 315 1071— 2856— ? 9 ? ?
—1197 —3192 —7518 —13416 —22610 —27132 —27132 —22610

22 11 73 385 1386 3927— ? ? ? ? 9
—4389 —10032 —20674 —32794 —49742 —54264 —49742

23 1]. 83 416— 1771 5313 ? 9 ? ? ?
—419 —14421 —28842 —52833 —75426 —104006 —104006

24 12 88 498 1859— 7084 9 ? ? ? ? ?
—2011 —18216 —43263 —76912 —126799 —164565 —208012

TABLE I. The number of code words M for constant weight code with Hamning distance 4
(Table from ref. [25])

a — length, k — Hamming weigh t

________  :~ -~~ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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Let G be an additive Abelian group of order n + 1 having elements

(a0,a1,a2 a~) where a0 is the identity element. Let B — {O,l}.

Consider the set V, where V — {v/v c B’~}. Note that lv i —

We define a function T: V+G such that

T(v) — T((cz1,ct2 ~ )) — I ~i
a1 (4—1)

n

where

Ia0 for

~ ai 
— ( (4— 2 )

- 
j~i 

for

The operation of summation in the equation (4—1) is group operation .

Now consider the set V ’, where V’ — {u iu £ Ba and u has k(k> 2)

l’s and n—k 0’s 1. Note that V’ ~~~~. V and iv’ I — [
~J ~ ~

The function T defined above, will partition the set V’ of (
~J

elements into (n+l) mutually disjoint sets. i.e.

v’ -v 0u v 1 u U V

~ (4...3)

v~fl V~ • 4 i ,j  — 0 ,1,2 a i 
~ 
iJ

where the set is defined as follows.

— — ~~~~~~~~~~~ £ V’~ j — l ~~~~ — a
i) 

(4—4)

- - ~~~~~~~~~ ---— - — -—- _: Li
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The following example illustrates the construction of such a set

using the additive group of GF(23).

Example 4.1 The additive table for the additive group of GF(23)

is given below.

a0 a1 a2 a3 a4 - 
&
5 a6 a7

2 2 2 20 1 x x i+x 1+x i+x+x x+x

0 0 
— 

1 x l+X l+X2 1+X+X2 X+X2

1 1 1 l+X 1+X2 X X2 X+X2 l+X+X2

X X l+X 0 X+X2 1 l+X+X2 l+X2 X2

l+X2 X+X2 0 1+X+X2 1 l+X X

l+X l+X X 1 i+X4-X2 0 X+X2 X2 l+X2

l+X2 l+X2 x2 i+x+x2 1 x+x2 o x i+x

l+X+X2 1+X+X2 X+X2 l+X2 l+X x 0 1

x+x2 x+x2 i+x+x2 x2 x l+X2 l+X 1 0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _
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The vectors in the set V0 are

— (1110010)

— (1100101)

— (1011001)

— (1001110)

v5 — (0111100)

v6 — (0101011) -

v7 
— (0010111)

Every vector v~ — (~1a2a3a4u5a6a7
) £ V0, has the property

T
~ a~a~~— a 0 .i—i

The other sets V1, V2 .... V7 can be constructed similarly.
The following leimna is a direct consequence of property (4—3).

Lemana 4.1

At lea t one of the sets V , V .... V has cardinality greater than or

equal to~~4 

0 1 n

i.e. (V~ ( for some i — 0, 1 n. (4—5)

Remark:

If is not divisible by n+l then (4—5) holds with strict inequality.

Next, we will consider one of the partitions V~, induced by G in the

• set of vectors V and establish the following important result in constructing

SEC—HUED code.

• ~-~~~- - - - - •-
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Theorem 4.2

For any two arbitrary vectors u and v of V~, the minimum number of

1 + 0 cross—overs from u to v is at least 2.

i.e. N(u,v) > 2 for all u,v e V~.

Proof:

Suppose there exists two vectors u and v in V~ such that N(u ,v) is

just 1. Since the Hamm ing weight of each code word is same, the following case

is the only alternative.

u ta a  a la a O c x  a1 2 k—l k+2 t—l t+l •“ n
(4—6)

v — (a
1
a
2 “~~k—l 

0 Uk+2 .... at_1 1 cxt+l .... a
where k # L .

Since u,v c V~

n n
+ ak — a4a, + a~ — a~i i  J J  j•]• ~~~~~~~

j#k
j#t j~ t

Hence we get

ak — a~ — a~ — 

~~ 

a1
a~ (4—8)

j#k
j  #9.

This gives the contradiction because ak # a9. 
for k # P.. Hence for

distinct u,v c V1, 
N(u,v) > 2. 

-

By consequence of Theorems 3—lO and 4—2, one can see that the sets of

vectors V0, V1 Vn individually can be used as SEC—HUED codes.

We explain below how error correction/detection process can be imple-

mented for the above SEC—HUED code. An ordering of the elements of the group

G is presupposed for purposes of u niquely determining the faulty position.

- ~~~~~~~~~~~~~~~~~~~~ 
- - ~—- -  —-- --—-T~ - -
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Let the set of vectors V~ constitute SEC—HUED code. Let us assume that

the number of l’s in each code word is k where k>2. If an error say 0—error

occurs in a code word v c V~ resulting the word v’ — (a1a2 
.... a )

such that n
~ cx4a4 a~,j—l -‘ -,

then the number of l’s in the word v ’ will be k+l and hence it is

immediately known the existence of a 0—error in the word v’. The position

r in error can be located by

• a — a  — a .r 9. 1

Thus r is determined, and therefore correction can be implemented.

On the other hand, if an 1—error occurs in a code word u c V~ ,

resulting a word u’ — (8182 .... 8) such that

j~ l 
8~a~ — a ,

then the number of l’s in the word u’ will be k—i and it is immediately

known the existence of a 1—error in u ’. The position s in error can be

located by a — a — a . Once s is obtained, error correction can be
5 i in

implemented.

Finally, if more than one 0—error occurs in any code word w c

then the number of l’s in the received word w’ will be greater than k+l

and if more than one 1—error occurs in any code word w c V~, then the

number of l’s in the received word will be less than k—l . In both cases

the multiple unidirectional errors can be detected .

The following example illustrates the above concept. 

_ • ••~ ~~~~~~~~~~~~~~~~~~ ~~~~•
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Example 4.2 Consider the additive group Z9 whose group operation

is mod 9 addition. The code words in the set V0 are

8 7 6 5 4 3 2 1

v1 — ( 1 1 0 0 0 0 1 1 )

v2 — ( 1 0 1 0 0 1 0 1 )

( 1 0 0 1 1 0 0 1)

v4 — ( 1 0 0 1 0 1 1 0 )

v5 — (0 1 1 0 1 0 0 1)

v6 — (0 1 1 0  0110)

v7 — (0 1 0 1 1 0 1 0)

v8 (0 0 1 1 1 1 0  0)

Suppose an erroneous message v’ — (1000 0011) is received , the existence

of 1—error in the word is readily evident because the weight of v’ is only 3.

Also T(v’) — 8 + 2 + 1 — 2 and since 0—2 — —2 — 7, the seventh bit of

v’ is in error. Hence the actual message transmitted is the code word

v’ — (1100 0011).

On the other hand, if the erroneous received message is u’ — (1101 0011),

again the existence of a 0-error is readily evident because the weight of u’

is 5. Since T(u’) 8 + 7 +5 + 2 + l 5 0 + 5 , the fifth bit of u’ is

in error. The actual transmitted message is again the code word v1 (1100 0011).

Computation of the Number of Redundant Bits in a SEC—HUED Code

One of the aspects of coding theory is to obtain codes with as high

information rate as possible. That is, we wish to have the cardinality of the

code approach the theoretical maximum which we denoted by Mmax~ For the

group—theoretic SEC—HUED codes, at present time, we don’t have a closed formula

to find out Mmax~ For a particular -group G1 of order a + 1, to find out Mmax

0-

I
_______________________________  ~~~~~~ -- ~~~~~~~~~- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •  - -•- -~~ 

--- - - - - --____
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in a Group the’~’retic SEC—HUED code, two important points need further

investigation.

1. What should be the optimal value of k the number of l’s in a

code word, and

2. Which subset V1 has the highest cardinality. mlFrom Table I we can see that M will be maximum when k — L~J where

(r] is the integer part of r. Hence we conjecture that M will be maximum

when k — [
~
]. The second question is under investigation.

In the following lem~a we calculate the upper bound for the number of

redundant bits required in the Group theoretic SEC—HUED code.

Lemma 4.3

For large values of a, the number of redundant bits required for the

Group theoretic SEC—HUED code is less than or equal to ~~ lo~2 (n + 1)] + 1.

Proof: (a

By Lemma 4.1 H > — where
— n+l

H is the number of code words, n is the length and k is the number of l’s

in each code word

when k_ [~] 
. 

•

(
~

) = 
~~~~ 

~~~~~

Using Stirling approximation for factorial function (i.e. a! — ~~~~~ (~
)

for large a) we have



n! 
_ _ _ _ _ _ _ _ _

(C~~
J )2

Therefore
- 2

n 
_________

• M ,�.. 
~ 3/2/~~(n + l)  (n + l)

i.e. 1ogM�. n — ~~~log (n+l)

n - log log (n+l)

Hence the lemma is proved.

I
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V. OTHER UNIDIRECTIONAL ERROR DETECTING AND CORRECTING CODES

In this section we discuss the unidirectional error correcting/

detecting properties of some existing codes which were developed for

symmetric error correction/detecting. We will study mainly the unidi-

rectional error correcting/detecting properties of equidistance linear

codes and the codes generated from Hadamard matrices (2,3].

a. Equidistance linear codes

Definition 5.1 A code C is called equidistance code iff the

Hamming distance between every pair of code words is the same.

The dual code of single error correcting Hamming code is an example

• of equidistance code. So, for any a (in > 0) we can have (2in 
— 1, in)

equidistance linear code [2,3). The Ramming distance between every pair

of code words in a equidistance code ~~ 2~~~ and the Hamming weight of

each nonzero code word is also

Example 5.1

A (15,4) equidistance linear code can be represented by the generated

matrix
0 0 0 0 0 0 0l l l l l l i i

0 0 0 1 1 11 0 0 0 0 1 11 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Note that the generated matrix C for (15,4) equidistance code is also the

parity matrix of (15,11) Ramming single error correcting code. The Hamming

distance between every pair of code words in the code generated by C is

exactly 8.

Nex t, we discuss the unidirectional error—correcting/detecting

properties of these codes. 

~~~~~~ - - - - -~~~~~ •~~~ 
- j



Lemma 5.1

If C is a (2m _ 1, in) equidistance linear code, then for every pair

of nonzero code words u,v £ C, we have N(v,u) — N(u ,v) — 2a—2

Proof

Since the Hamming weight of nonzero code words is constant (i.e.

for all nonzero u,v e C, N(u,v) — N(v u). Furthermore for all nonzero

u,v £ C, Dh(u,v) — N(u,v) + N(v,u) — 2N(u,v) _ 2 m 1
• Therefore for all

nonzero u,v c C, we have N(u,v) — N(v,u) — 2

By consequence of Theorem 3.10 and Lemma 5.1, one can easily verify

that by simply omitting the 0 vector from (2
m_]

, a) linear equidistance

in- 2code, the set of remaining code words C1 is capable of correcting 2 
— 1

unidirectional errors and detecting any number of unidirectional errors.

The number of code words M, in C, will be 2~ — l. Note that when C is

used for symmetric error correction/detection , it is capable of correcting

symmetric errors and detecting 2m 2  symmetric errors.

For example (15 ,4) equidistance code is capable of correcting

3 symmetric errors and detecting 4 synnnetric.errors. If we omit the 0

code word from the code, the set of remaining code words is capable of

correcting 3—unidirectional errors and detecting any number of multiple

unidirectional errors.

Consider the first order Reed—Huller code C [2,3] which is of the form

(2m, m+l). If we omit the 0 code word and all one code word from C, the

• set of remaining code words C’ has the following property. i.e. for all

u ,v c C’ , N(u ,v) — 2m—2 Therefore C’ is also capable of correcting

2m 2  
- 1 unidirectional errors and detecting multiple unidirectional errors

with a — 2m and M — 2m+l 
- 2.

• ~ - -- -~~~~~~~~~~~~TJ.~ 
______________
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b. Codes generated from Radamard Matrices

The codes generated from this method are also equidistance codes but

not necessarily linear codes.

Definition 5.2

A Hadamard matrix of order n is an n x n matrix H with +1’s and

—l’s as entries and is such that

H E  n 1 , (5—1)

where nI is the diagonal matrix with a’s in the diagonal.

In other words, the inner product of any two distinct rows is equal to 0,

whereas the inner product of a row with itself is equal to a.

Definition 5.3

A Hadamard matrix is said to be normalized if its first row and first

column consist entirely of +1’s.

• Example 5.2

A normalized Radamard matrix of order 8 x 8 is given below.

1 1 11 1 1 1 1
1 1 1 —l 1 —l —i —1

1 —l 1 1 —l 1 —l —l

1 —1 —l 1 1 —l 1 —l
1 —l —1 —1 1 1 —l 1

1 1 —l —1 —l 1 1 —l

1 —l 1 —1 —1 —1 1 1
1 1 —l 1 —l —l —1 1

It is shown in (2,3], that if there exists an n x n Hadamard matrix,

there exists a binary code with n symbols, 2n code words and minimum

Haimning distance n/2. The following theorem gives the unidirectional error

correcting/detecting properties of the codes generated by Hadamard matrices.



•-~~--~~~~~~- -~~~~-— ~~~~~~~ _ _ _ _

Theorem 5.2

If there exists an n x n Hadamard matrix (n~.4),  there exists a code ‘C’

with n symbols, 2n-2 code words and N(u,v) ~~
. for arbitrary distinct

u,v in C.

Proof

Let H be an n x n normalized Hadamard matrix. The code C is constructed

as follows. Form a set of 2n vectors C’, from v , v v , —v , —v ....—v1 2 n 1 2 n

where v , v ....v are the rows of H. Let v be the all +1 vector . Then1 2  a 1

in each of C’ change +1 to 1 and —1 to 0. Omit the all 1 vector and the zero

vector. The set of remaining vectors constitutes the code C with id — 2n—2.

Next we prove for distinct u,v £ C

N(u,v) “~~~~~ for v~~~ü

—~~~ for v ü .  (5—2)

Since each of vectors C’ is orthogonal to v1, the number of l’s in each

of the code word is n/4. Hence it is straight forward to prove N(u,v) — n/2

for v — ii. Also since ±v~ is orthogonal to ±v1 if i 
~ .1~ 

they must match in

half the positions and differ in the other half positions and thus the

corresponding code words are at a Hamming distance n/2. Therefore N(u,v) -

for v # ii can be proved similar to Lemma 5.1. Thi~ completes the proof.

Hence, the code C’ generated from an n x n  Hadamard matrix [2,3] is

capable of correcting (
~~ — 1) syimnetric errors and detecting ~ symmetric errors.

On the other hand if we omit the zero vector and all one vector, the set of

resultant code words C, is capable of correcting (~~
— 1) unidirectional errors

and detecting multiple unidirectional errors. If H is an Hadamard matrix of

order a, then it can be proved that n is a multiple of 4 (26 1 .

• —c----- — • - -- - • ~~~~. —~~~~--- ------• - 
— ---

-- . - • 
- - - •-  • - • - —

~~~~
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The following theorem gives how to construct higher order Hadainard

matrices from known lover order Hadamard matrices.

Theorem 5.3

If H is an nxn Radamard matrix then the matrix

ra x l
La -1~J

is also a 2n x 2n Hadamard matrix.

It is straight f orward to prove H ’ R’T — 2n1 and hence the proof is

omitted.

Other methods of constructing Radamard matrices can be found in (263 .

Hadamard matrices of any order which is less than 200 and multiple of 4

except 188 are known. Higher order Hadamard matrices can be constructed

by using Theorem 5.3.

_ _ _ _ _  -- ~~~~~
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VI. CONCLUSION

In this report the necessary and sufficient conditions required

for binary block codes to correct/detect unidirectional errors have

been established. A new class of codes which corrects single errors

and detects multiple unidirectional errors is also presented. We have

established here that the equidistance linear codes, first order

Reed—Muller codes and the codes generated from Hadamard matrices, which

are known to have symmetric error correcting/detecting properties , can

be modified to make them suitable for unidirectional error correction/

detection.

In this report we have not considered the encoding/decoding problems.

Use of ROMS for encoding/decoding of SEC—HUED codes looks to be a feasible

solution. These problems along with construction of separable SEC—HUED

codes are under investigation. -

~ I
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APPENDIX A

PROOF FOR THEOREM 3.11

Before establishing the Theorem 3.11, we prove the following lemma

which is useful in proving Theorem 3.11. In the following discussion

T refers to the set of vectors obtained from Z due to m1 (0 .~~. m , .~. t)
symmetric errors in Z and Q ’ refers to the set of vectors obtained from

Z due to a
2 
(a2 .? t + 2) unidirectional errors in Z.

Leimna A.l

For a pair of vectors X and Y , if N (X ,Y) ~~. t + 1 and N (Y ,X) ~. t + 1
thenH T 

~~~ Q ’  — •  (A—i)x x

and T f l  — (A—2 )

Proof:

For all X ’ c T , Dh (X , X’ )  .~. t .  For any Y’ c Q ’ , if Y’ is obtained

from Y due to in (in .~~. t + 2) 1—errors [or 0—errors), then N (X ,Y’)  ~. t + 1
(or N(Y’ ,X) ~~. t + 1]. In both cases Dh

(X ,Y ’)  .?.. t + 1. Therefore if

c Q~ 
then Y’ 

~ 
T,~ which implies TX(~ Q,

’ — •. Equation (A—l) is

• obvious by definitions of T
~ 

and 
~~~~~~

Proof for Theorem 3.11

The minimum Hamming distance of C is at least 2t + 2 , because for

all X,Y £ C, Dh(X,Y) — N(X ,Y) + N(?,X) ~. 2t + 2. Hence C is t symmetric

error correcting and t+l symmetric error detecting code. Hence it is

sufficient to prove tha t C is capable of simultaneously detecting multiple

(t + 2 or more) unidirectional errors. Let Q’ be the set of vectors obtained

from all code words in C due to t + 2 or more unidirectional errors.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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i.e. Q’ — Li Q U

. U QzcC z

So we have to prove for arbitary X e C, T
~ 

V~ Q’ — •. But

T f l  Q ’ — (T
~
r
~ 

Q ’ ) U (Tfl Q ’  ) L)  .... . By Lemma A.l, each ter i of the

form T f l  Q~’ is empty and therefore their union T
~

fl Q’ — 4. Tha t

completes the proof.

I- 

• - •_ .  • • • •~~~~
— -  • 
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