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PREFACE

This paper will appear in the Physics of Fluids.
Dr. Liu Chen (Plasma Physics Laboratory, Princeton Univer-

sity) has been a principal participant in the research
and is cited as a co-author.
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SUMMARY

The local linear dispersion relation for the hot ion cylotron
beam-whistler mode instability near the leading edge of parallel shock
waves is generalized into a WKB eigenvalue problem. Its solution
reveals the existence of stationary eigen growth modes capable of gen-
erating turbulence in the leading edge region.
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I. INTRODUCTION ?

It has been theoretically demonstrated that the low frequency ion cyclo-
tron beam-whistler plasma instability is a principal source of turbulence in
parallel shock waves* in collisionless plasmas (Refs. 1,2). The local analyses
of Refs. la,b point to the existence of unstable modes near the leading edge
of the shock which propagate at the velocity of the leading edge for shock
Al1fvén Mach numbers MA greafer than some critical value M*. Viewed more con-
veniently in the rest frame of the shock front, this suggests that such sta-
tionary** modes have ample time to grow to amplitudes sufficiently large to
! scatter the incoming (unshocked) ions thereby providing the key mechanism for
turbulent dissipation in the leading edge region. These stationary modes
were determined from the gllgo linear dispersion relation at points through-
out the shock layer under the assumption that the local ion distribution
function is a Mott-Smith superpositicn of interpenetrating unshocked and
shocked ion flows, each flow being characterized by its own density, average
velocity, and temperature; the electrons, unlike the ions, were modeled as be-
ing warm fluid. The value of M* depends on whether one adopts a hydrodynamical
or kinetic description of the shocked ions. In Ref. la where they are modeled
(for the sake of mathematical simplicity) as a cold monoenergetic ion cyclotron
beam driving unstable the leading edge whistlers, M* = 5.5; in Ref. 1b, where

they are more realistically considered to be thermalized, M* = 2.77.

1. a. Golden, K.I., L.M. Linson and S.A. Mani, Phys. Fluids 16, 2319 (1973).
b. Cipolla, J.W., K.I. Golden and M.B. Silevitch, Phys. Fluids 20 282 (1977).
2. Chen, Liu and K.I. Golden, Phys. Lett. 58A, 462 (1976).

* Shock waves which propagate along the constant applied magnetic field go‘

* * In the sequel, modes having zero group velocity in the rest frame of the
shock leading edge are referred to as stationary modes.
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Recently, two of the authors substantially refined the previous local
hydrodynamic theory (Ref. 1a) by generalizing its 5]]@0 linear dispersion
relation into a WKB type eigenvalue formulation more appropriate for a shock
layer description of ion cyclotron beam-whistler mode interactions near the
leading edge (Ref. 2). A1l of the key elements of the local theory are re-
tained in this WKB formulation. The most significant difference between the
local (Ref. 1a) and WKB (Ref. 2) hydrodynamic theories is that in the former
there is one and only one frequency and growth rate corre.ponding to a given
wave number ko while the latter features a broad spectrum of eigen frequencies
and eigen growth rates corresponding to Ko

The purpose of this paper is to reformuiate and solve the WKB eigenvalue
problem under the assumption that the shocked ions are more realistically
treated as hot Maxwellian particles. This we do in Section II, III and IV.

In Section V we discuss the results and draw our conclusicns.

II. WKB DISPERSION RELATION

In this Section we present a derivation of the 5}]50 WKB type dispersion
relation for ion cyclotron beam-whistler mode interactions near the leading
edge of the parallel shock layer.

We work in the rest frame of the leading edge (located af z=0; z in-
creases across the layer). In this frame, unshocked plasma enters the layer
from the upstream (z < 0) region with constant velocity Vu and shocked plasma
emerges from the layer and flows through the downstream region with constant
velocity Vd < Vu' Adopting the Mott-Smith description for the ion velocity
distribution function,

-3/2

fi(z.y) = ny(2)8(y - e,V,) + ny(2)(nc5) ¥ Zexpl-(y - e,v,)%/c2], (1)

cg = 2%Ty/m;,
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we assume that the shock layer is a superposition of interpenetrating upstream

* !
cold and downstream hot ion flows, each flow being characterized by its own

*k
density ns(z), average velocity Vs’ and temperature TS (s=u,d) . The mean
motion of the warm background electrons is dictated by the requirements of local
3 charge and current neutrality:

ny(z) + ny(z) = n(2), (2)
nu(z)Vu + nd(z)Vd = "e(Z)Ve(Z)’ (3)

compatible with the equation of continuity. Or equivalently,

Vo(n) = (1 - n)v, +nVy, ' (4)
where n(z) = nd(z)/[nu(z) + nd(z)] is the beam strength parameter.
Note that just inside the leading edge (0 2 z < < L, L = typical scale length
of shock), n < < 1 since nd(z) £ o nu(z) there.

We assume the following WKB form for the perturbed transverse (perpendicular

to gz) electric field vector:

E|(2.t) = E|(2)expli(kyz - ugt)], | (5)
where: wg = wy + iy, |v| < < oy,
Ik, > > [E(2)/1E(2)] > > LT, (a = x.y) (6)

In our previous local theory (Ref. 1b), it was found that lY/wol ~o(n). We
shall retain this principal feature in the present WKB formulation. In terms
of a smallness parameter, € < < 1, the appropriate ordering is then taken to be

Ik, )T IE(2)I/1E,(2)] ™ o(e)s [koLI™" ™ o(e?) (7a,b)

n "~ o(e?). | (8)

* Aside from the T = 0 approximation in Eq. (1), made for the sake of mathe-
u

matical expediency, it is, nevertheless understood that there is a small but
sufficient amount of upstream warmth to preclude the possibility of switch-
on phenomena. The effects of upstream warmth are discussed in Ref. 1b.

* * Note that the upstream ion density n (z) decreases from its upstream value
n,. at the leading edge to zero at the trailing edge, while nd(z) has the
onosite dependence on z.




In the sequel, we shall keep terms up to and including o(ez) smallness. For
the very low frequencies of interest in this paper, vacuum displacement currents

are negligibly small, so that the appropriate Maxwell equation is

3% | (z,t) 33, (z,t)
___l z i’% _____l ; (9)
322 ¢ ot
where il(z,t) = en (2)[(1 - n)!ul(z,t) + n!dlﬂz,t) - Vo (st)] (16,

is the transverse current due to the perturbed motions of the plasma particles.
Upon combining Eqs. (5), (9), and (10), one obtains the following Maxwell's

equation for the envelope Ea(z), (o = x,¥):

: dh2= 4niewsne(z) % » -
(ik, + ) B, (2) + S [ - n)Vua(z) + Vg (2) - v (2)] = 0.011)

We next calculate from appropriate equations of motion the perturbed transverse
velocity envelopes in the second g.h.s. term of (11).

A. Upstreaming Cold Ions. Since the upstream ions are cold, the momentum

equations

(g = KoYy + VgV, (2) = (e/m)IE,(2) - (/e B (2) + (1/c), ()81, (12)

(g = k¥, + VgV, (2) = (fe/m)IE,(2) + (/€)Y B,(2) - (1/c)V (28], (13)

and Maxwell's equations

B,(2) = -(ic/ug)(iky + gDE,(2), (14)
B,(2) = (ic/ug)(iky + gE (2), (15)

are most suitable for the calculation of the perturbed ion velocity components
in terms of the perturbed electric field components. Upon combining these

equations and taking account of the fact that Ey = iEx for the right circularly

polarized whistler modes under consideration here, one obtains
4




R e " pa TP P
(ws - k¥, + 9y ¢ 1vu37’vux(z) - (1e/miws)(wS - k¥, * 1quE)Ex(Z)’ (16)

where Q, = eBo/cmi. The solut’un to Eq. (16) is, to o(ez),

2 w_~-k V iQ.V
V. .(2) = (ie/mu )—2Y 1+ - d (17)
ux s wg- KV ¥ 0 (wg = oV M wg- kv, + Qi)al
2
inu 2 [~

+

d
E ().
22X
(g = k¥, )lug = kov, +2,)° dz

B. Downstreaming Hot Ions. Since near the leading edge the contribution

of the downstreaming hot ion beam to the transverse current perturbation is at
most o(ez) smallness compared with the other contributions (see Eq. (10)), we
need only calculate de(z) to 0(1). This is routinely done from linearized

Vlasov theory and one readily obtains

2,2
e -u-/C w-kV o
1 j due d s _od E(2). (18)

G (z) = (Ge/m.w_)
dx i's we - kOVd + Q_i - kou X

™ Cd il

C. Electron Fluid. For the low frequencies of interest in this paper,

we assume that |wsl, Ikove(z)|< < IQel. The appropriate description of the

perturbed electron fluid motion is then given by the equations:

0, (19)

2

E(2) - (1/)V,(2)8,(2) + (1/e)V (28,

0. (20)

L

E,(2) + (1/6)04(2)8,(2) - (1/c), (2)8,

Upon combining Eqs. (15) and, (20), one readily obtains the desired equation

~ 3 W) ™
Veg(2) = (c/B) [ 1 + o (iky + 52) |Ey(2) =
= i(e/Bug)lug - k Vo(2) + iV (2)gE, (2). (21)




It is now a straightforward matter to assemble the WKB dispersion equation

from Eqs. (11), {17), (18), and (21). Taking account of Eq. (4) and noting

that
2 2
4n[nu(z) + nd(z)]e ;
m1°2 Cg(z)’

where the local Alfvén speed

1/2
c(0)[1 -n(1 -vyVI)] ,2z>0,
€, (0), z2<0,
ore ultimately obtains to 0(52):
D(wysk,y - igan)E,(2) = 0, (22)
where:
Dlugsky = Tgaon) = Dolugsk, = igmsn) + 1D, (uy kg om), (23)
D (w_,k_,0)
. d o r‘“o’o’ . d
Dr(wo.ko = Iagun) = Dr(“o’ko'°) + -——323—————— (-13;) + (24)
2 2
4 J_ ] Dr((ﬂo,ko,O) . di2 i 1 3 Dr(wosko:n)
72 gt ;
-9k ¢r2
0 avn /M=0
2.2
w, kV kCx(o) Q.
A i
D(w. .,k ,0)=1-=2+244 00 __ : (25)
ro’o Qi Qi ﬂf Wy ~ kOVu + Qi
] 2 (2
k(V, - V) Kk Cilo) ¥
D,.(wyskgsn) = D, (wy sk s0) + n| =2 Q? s 2 2 (Vg-- 1) (26)
i Qi u
Q -u?/c @ - k.u)
4 i S ki rdue d s ’




; 2
¥y o in (wy - koVy + 9)

Dylugaligen) = = wps & qppe (k¥y = 4y @ |- ——7 73 e
Q o'"“d kocd

‘u'- o _2

% = 052 - (u, - ko, + 2,)72 > 0. (28)

It is now evident that Eq. (22) is the WKB generalization of the algebraic
linear dispersion relation

D(wo,ko,n) =0 (29)
for the local theory (Ref. 1b).

The analysis of Ref. 1b revealed that for MA > 2.77, stationary unstable
whistler waves exist near the leading edge and are driven unstable by their
interaction with the downstream hot ion cyclotron drift mode only if

i kovd -, > 0. These stationary modes are the ones which evidently have ample

time to grow to sufficiently large amplitude to irreversibly scatter the up-
stream ions. One can approximately incorporate this same stationarity of
leading edge whistlers into the present WKB formulation by supposing that (wo,ko)

satisfy the cold plasma whistler mode dispersion relation,
D (wgskys0) = O (30)
at z = 0 and the zero group velocity condition there equivalent to

30 (w_,k_,0)
rro’o =
_T'?o—-_—- 0. , (31)

We see now that Dr(“o’ko - id/dz,n) is a real operator of O(ez). In assuming

y ~ 0(n) ~ 0(52) (as suggested by local theory and Eq. (7)), the pure imaginary

part Di(wo’ko’") and, consequently, D(wo,ko - id/dz,n) must also be 0(32). Note

from Eq. (31) that, while modes at the leading edge (z = 0) are exactly station-
ary, those nearby in the region 0 < z < < L will have group velocities which are,

however, negligibly small, i.e. V__ = 3w°n/ako ~ o(ezvu), n=20,1,2,.... This

gn
is discussed at greater length in Section V.

ﬁ
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I11. FORMULATION OF THE EIGENVALUE PROBLEM

We turn next to the formulation of the eigenvalue problem. Near the

leading edge, n(z) = nd(z)/nu(o) and we assume its profile to be:

g, z2<@
n(z) = 2 -
(z/L), 2> 0and z < < L. (32a,b)

For convenience, we adopt the notation:

. E(z), 2<0
Ex(2) =9
Ez). 2> 0.

z < 0. In this region, we have from Eqs. (22) to (28), (30), (31) and (32a) that

b T (33)
e Z) = 0,
K a2 @2/
i 22D, (w 57Ky 10) cf(o) nivﬁ
where — = - 5
K H ak2 92 (w. - kV +Q )3 (34)
(o} i o o u i

From Eq. (30) and the zero group velocity condition (31) written equivalently as

My = Vy/C(0) = -xg + (14 xZ/m)V2 4 (a1 + 5w VE, (35)
Xy * koCA(o)/Qi'
it can be shown that K2 > 0. (36)

z > 0. For this region, we have from (26) and (32b) that

2 2
L Dr("’o’ko’") 2 l‘jo(vd E vu) ko Zc (0) >
= (z/L)¢ | —F— "_TF_'_' -1

N —

avn

Q -u /C ( -k u)
i r“° ‘ ‘1v+ :
Wo = koVy ¥ 95 Jﬁtd 2 (g = KoV Qiyf; k¥ b3
37




Then from Eqs. (22) to (25), (27), (28), (30), (31) and (37), one obtains the

desired equation

2 ivR. 2
1 d i Rz™ |z
+ - e, (z) = 0, 38
(;fz;z 7 L2)+ i
where: R = R, * iRi, ' (39)
2
R =.]_3 Dr(wo,ko,n)=
r 2 3/52 (40)
31x 11 + x2/2) (M2 - 1)
_ -] 2,01-1/2 0 0 A :
=My (1 + x5/4) E* m,
1 _u2/C§ (Qi - kou)
“-Prd“e o -kV, +0)-kKu
wey o o od i o

2
(wo - koVq * gi) ;]‘ (a1)

- /T
Ry = Tere— (koVa = wolexp |- ——
o'"d kocd
We note that Eq. (40) is expressed mostly in terms of the more convenient
shock Alfvén Mach number MA‘ This equation is easily derived from Eq. (37) by

*
use of the gasdynamic Rankine-Hugoniot shock relation

2
;g x MA + 3 (42)
u 4M§

The specification of the eigenvalue problem is now completed when, aside from
the usual required boundedness of E_(z > -=) and E (z + +=), one demands that
E(z) and its first derivative be continuous at z = 0, i.e.

E.(0) = E,(0), (43)

E'(0) = EL(O)- (44)

* For the derivation of Eq. (43) we have assumedﬁgz(O) = 5.<Tu/3m,i to avoid a
switch-on occurrence.




. IV. SOLUTION TO THE EIGENVALUE PROBLEM

z < 0. If one makes the ansatz

larg(y!/2e71"/4)| < a2, ' (45)
one then has for z < 0,

E_(z) = A_exp(K_z), | (46)
where

X = (KZQiYe-in/Z/;zZ)'I/Z (47)

The other solution is discarded due to its divergence at z = -=, The matching
conditions (43) and (44) at z = 0 therefore become
E,(0) = A_, (48)
EL(0) = KA._. (49)
z > 0. For z > 0, Eq. (38) can be reduced to the standard equation for para-

bolic cylinder functions (Ref. 3),

[(¢%/ae?) - (} €2 + a®)2E,(E) = o. (50)
Here & = z/a,
2\ 1/4
a=1 ——Lf
4RK (81)
iyﬂ,'IKIL
and a = ——— . (52)
2R

The solution, well behaved at z = =, is then

E,(€) = AV(a,E). ' (53)
From the matching conditions (48) and (49) at z = 0, one obtains the following
conditions for the eigenvalues: 2ia 62R1/2
W ETRT— (e 0.2,.) (54)
i

3. M. Abramowitz and 1.A. Segun, Handbook of Mathematical Functions, (Dover,
New York, 1968), p.686.
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and a, is the nth root of the equation
. sin[n(1/4 - a/Z_} r(3/4 - a/2) .
a7z —'—H_—sm (374 - a/zg ‘f‘Lr 1/4—‘%}- a/ (5)
By writing Eq. (55) in the form,
. @
- sin[n(1/4 - a/2)] Tr(3/4 +aj2) ,
va/2 = =5 r§1/4 ¥ a/2§
sin“[n(3/4 - a/2)]

*
one can see that all its real roots must be positive. Numerical computations

bear this out: We obtain a, 2 0.09, Y < 1.004, a, e

For those a_'s which are real, Eq. (54) now reads
-2i[an|92R]/2

Yn * R RTC (56)

or equivalently,

] ~2¢ne 2\1/4
D 2|an|Q (Rr + Ri) :

Il = @5 TKTC o
3 g
Evidently, for instability (which corresponds to Re Ty * 0), it is necessary
that**
R, >0, (58)

or -(m/2) < arg Y, < 0.

? We note that y satisfies the ansatz Eq. (45). Egs. (41) and (58) reveal that
there can be instability only if kOVd -, > 0, consistent with the instability
criterion of our local theory (Ref. 1b). Since Ianl, I(K_)nl and the turning
|2

point Iztn = |4ana2| increase with Yp» Our results indicate that modes with

higher growth rates are peaked deeper inside the shock front and extend further

* We believe that all the roots of Eq. (55) are real, but this has yet to be
proved.
** Stable modes correspond to Ri <0or -m<argR<O0.

1

— - i P & el et S eadta ol . j




e ————————

into the shock. This is physically expected since the instability is driven
by finite n and n increases with z. The validity of the approximations made
here requires |k°| > > I(K_)nl and lztnl <<l thereby giving an upper bound
to the acceptable values of Y- Keeping this in mind, Eq. (57a) and our order-
ing scheme given by Eqs. (7) and (8) guarantee that

Ivy/2;1 = OLCIKIL ™1~ OL(Ik,IL)™'T ~ 0(e?) = 0(n), again consistent

with the local theory.

V. DISCUSSION AND CONCLUSIONS

Perhaps the most suitable way to enumerate the similarities and differences
between the WKB and local (Ref. 1b) theories is to cite the relevant frequency

and growth rate formulas.

WKB theory
(hianh * ol F A BV G o B (60)
Won'Ko*N/ = Wolkg TKTL Q g T B
2la_| 2 R;
Q 172 _. -
Yolkoen) = T o IRl /2 sin(} tan™ R (-0l (o)
LOCAL theory
o2
- )
wo(ko,n) o wO(kO) + ﬂﬁ‘— RY" (62)
i
Y(koﬁn) o ”91 Ri’ (63)
where ‘ 1/2 F
2,2 2.2
k-Cy(0) k>Cx(0)
= 0 A o“A
wo(ko) Sky. ¢ 7, ~koCa(0) {1 + " (64)
i

is the whistler mode frequency at the leading edge (see Eq. (25)).

12
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We have already pointed out that in both theories:
(i) 0<argR< 7 or Ri must be positive for instability
(stable modes correspond to -m < arg R < 0 or Ri < 8);
(ii) growth rates are O(ez) in smallness.
Furthermore, in the vicinity of the leading edge (0 < z < < L), both theories
indicate a real frequency shift (from its z = 0 value) of O(ez); in the WKB
case, this shift is clearly seen to be positive.
Noting that Eq. (31) is equivalent to the condition awo(ko)/ako = 0, the

eigen group velocities calculated from Eq. (60) are negligibly small, i.e.,

y

)

(o = 0,1,2,...)
Eqs. (61) and (65) permit us to estimate the distance A required for one e-fold H

2]a | =2 R.-]
= .2 n' g 1/2 1 -1 Jill ~ 2
Vgn = &no(ko,n)/ako- —3k0 TKTL__—Q-i IR] COS(Z tan —"’R> 0(e vu)’ (65)

growth of the very slowly rightward propagating eigen whistlers. One obtains
_ -] -1y _ 2
An ® Ty Vgn ~ O(Vu/Qi) ~ O(k0 ) = O(AO) ~ 0(ez) ~ o(e"L). (66)

Suppose that € ~ 0.1 (corresponding to beam strengths n ~ .01). By the time
the mode has moved a distance z < Iztnl through the leading edge region, it will
have undergone 10 e-folding growths in its amplitude and should therefore be

capable of scattering incoming ions, especially since it remains in the leading

edge region for a time long compared with the residence time of an incoming
particle (Vgn/Vu ~ .01). Thus in our WKB theory, the eigen growth modes can be
considered to be approximately stationary, an essential condition for the gener-
ation of whistler turbulence.

Finally, conditions (30), (37) and (58a) indicate that the stationary ion
cyclotron beam-whistler eigenmode instability is operative near the leading edge

for MA > AT

13
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VI. RECOMMENDATION

We recommend that this WKB theory be re-formulated for the more
realistic shock layer model where the unshocked plasma is warm. Such a
reformulation should be a relatively easy task. ‘
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