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SUMMARY

The local l inear d ispers ion rela tion for the hot ion cylotron
beam-whistler mode instabilit y near the leading edge of parallel shock
waves is generalized into a WKB eigenvalue problem . Its solution
reveals the existence of stationary eigen growth modes capable of gen-

erating turbulence i n the lead i ng edge regi on.
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I. INTRODUCTION

It has been theoretically demonstrated that the low frequency ion cyclo-

tron beam-whistler plasma instability is a principal source of turbulence in

parallel shock waves* in collisionless plasma s (Refs. 1 ,2 ) .  The local ana lyses

of Refs. la ,b po i nt to the ex i stenc e of uns table modes near the lea di ng edge

of the shock which propagate at the velocity of the leading edge for shock

Al fvén Mach numbers MA greater than some critical value M*. Viewed more con-

veniently in the rest frame of the shock front, this suggests that such sta-

**tionary modes have ample time to grow to amplitudes sufficiently l arge to

scatter the incoming (unshocked) ions thereby providing the key mechanism for

turbulent dissipation in the leading edge region . These stationary modes

were determined from the k~ ?~ l inear dispersion relation at points through-

out the shock layer under the assumption that the local ion distribution

function is a Mott-Smith superposition of interpenetrating unshocked and

shocked ion flows , each flow being characterized by its own density , avera ge

velocity , and temperature ; the electrons , unl i ke the ions , were model ed as be-

ing warm flu id. The val ue of M* depends on whether one adopts a hydrodynami cal

or kinetic description of the shocked ions. In Ref. la where they are modeled

(for the sake of mathematical simplicity ) as a cold monoenergetic ion cyclotron

beam driving unstable the leading edge whistlers , M* = 5.5; in Ref. lb , where

they are more realistically considered to be thermal ized, M* = 2.77.

1. a. Golden , K.I., L.M. Linson and S.A. Mani , Phys. Fluids 16 , 2319 (1973).

b. Cipolla , J.W., K.I. Golden and M.B. Silevi tch , Phys. Fluids 20 282 (1977).

2. Chen , Liu and K.I. Golden , Phys. Lett. 58A, 462 (1976).

* Shock waves which propagate along the constant applied magnetic field B0.

* * In the sequel , modes having zero group velocity in the rest frame of the
shock lead ing edge are referred to as stationary modes.

1
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Recently, two of the authors substantially refined the previous local

hydrodynamic theory (Ref. la) by generalizing its kHBO l inear dispersion

relation into a WKB type eigenvalue formulation more appropriate for a shock

layer description of ion cyclotron beam-whistler mode interactions near the

leading edge (Ref. 2). All of the key elements of the local theory are re-

tam ed in this WKB formulation. The most significant difference between the

local (Ref. la) and WKB (Ref. 2) hydrodynamic theories is that in the former

there is one and only one frequency and growth rate corre~~onding to a given

wave num ber k0 while the latter features a broad spectrum of eigen frequencies

and elgen growth rates corresponding to k0.

The purpose of this paper is to reformul ate and solve the WKB eigenvalue

problem under the assumption that the shocked ions are more realistically

treated as hot Maxwellian particles . This we do in Section II , III and IV.

In Section V we discuss the results and draw our concl usions .

II. WKB DISPERSION RELATION

In this Section we present a derivati on of the kHB0 WXB type d ispers ion

relation for ion cyclotron beau -whistler mode interactions near the leading

edge of the parallel shock layer.

We work in the rest frame of the leading edge (located at z = 0; z in-

creases across the layer). In this frame, unshocked plasma enters the l ayer

from the upstream (z < 0) region wi th constant velocity V~ and shocked plasma

emerges from the layer and flows through the downstream region with constant

vel ocity Vd < V~. Adopting the Mott-Smith description for the ion velocity

distri bution function ,

f1 (z ,v ) = n
~
(z)tS(v - ezVu ) + nd (z )(

~
C
~Y

312exP[-(! - 
~z

Vd )~
’Cd), ( 1)

C~ 
= 2IcTd/mi,

2
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we assume that the shock la yer i s a su per pos iti on of inter penetra ting upstream

cold* and downstream hot ion flows , each flow being characterized by its own

density n5 (z), avera ge veloc ity V5, and tempera ture I~ (s=u ,d) **. The mean

motion of the warm background electrons is dictated by the requirements of l ocal

charge and current neutrality : 
-

+ 
~~~~ 

= 

~
ue~~

)
~ 

(2)

+ 
~~~~~ 

= ‘e~~~e~~~’ 
(3)

compatible with the equation of continuity . Or equivalently,

Ve(T’l) 
= (1 - n)V

~ 
+ nVd, 

• (4)

where ri(z) = nd(Z)/[flu(Z) + nd(z)] is the beam strength parameter.

Note that just inside the leading edge (0 ~ z < < L , L = typical scale length

of shock), ii < < 1 since 
~~~~ 

< < n~(z) there.

We assume the following WKB form for the perturbed transverse (perpendicular

to e
~
) electric field vector:

Ej
(z ,t ) = E

1
(z ) ex p[i ( k0z - w~

t)], (5)

• where: = + ii, Ii! < < l~~I~
> > lEa(z )

~
/lEa(z)! > > L ’, (c~ = x ,y) (6)

In our previous local theory (Ref. lb) , it was found that ‘

~ o(ri). We

shall retain this principal feature in the present WKB formulation. In terms

of a smalln ess parame ter , ~ < < 1 , the ap propr iate order ing i s then taken to be

Ik0I~ IEa(z)I/IE~
(z)
~ 

o(c), Ik0L[
1 o(c2) (7a ,b)

o(c~). - 

(8)

• * Aside from the = 0 approximation in Eq. (1), made for the sake of mathe-
matical expediency, it is , never thel ess unders tood tha t there i s a sma l l but
sufficient amount of upstream warmth to precl ude the possibility of switch-
on phenomena . The effects of upstream warmth are discussed in Ref. 1 b.

* * Note that the upstream ion density n (z) decreases from its upstream value
n at the l ead i ng edge to zero at t~e tra i l ing edge , while fl d(Z) has theopposite dependence on z.

3
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In the sequel , we shall keep terms up to and including o (€ 2) smallness. For

the very low frequencies of interest in this paper, vacuum displacement currents

are negl igibly small , so that the appropri ate Maxwell equation is
4

2 ,. ‘ I
~ Ej~z~t~ 3j

1~
Z,t

________ 
- 4’hT 

________

where j
1

(z ,t) = ene(z)[(1 - n)v
~1
(z,t) + nvdj(z ,t) - ~e1(s t

~1 (10,

is the transverse current due to the perturbed motions of the plasma particles.

Upon combin ing Eqs. (5), (9), and (10), one obtains the following Maxwell’ s

equation for the envelope ç(z), (ce =

4iriew n (z) —

(1k0 + ~ ) E (z) + 
S e  [(1 - n)V (z) + TlVda(Z) 

- V~~(z)J = o.(ll)

We next calcul ate from appropriate equations of motion the perturbed transverse

velocity envelopes in the second ~.h.s. term of (11).

A. Upstreaming Cold Ions. Since the upstream ions are cold , the momentum

equations

(ws - k0V~ 
+ lV u~~

)V ux (Z) = (ie/m1 )[E
~
(z) - (l/c)V

~
B
~

(z) + (l /c)V
~~

(z )B0Js (12)

~~ 
- k~V1~ + iV

~~~
)V
~~

(z) = ( ie/m
~

)[E
~
(z) + (1/c)V

~
B
~
(z) - (1/c)V ux (z )Bo]i (13)

and Maxwell ‘s equa tions

B~(z) = -(ic/~5)( i k0 + 
~~
.)E
~

(z) , (14)

B
~

(z ) = ( ic/~5)( i k0 + ~ .)E~(z). (15)

are most suitable for the calculation of the perturbed ion vel ocity components

in terms of the perturbed electric field components. Upon combining these

equations and taking account of the fact that E~ 
= iE

~ 
for the r ight circularly

polarized whistl er modes under consideration here, one obtains
4
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~~s - koVu + ~ + jV~~ -)V (z) (ie/m1w5)(w5 
- koVu + iV u~~

)E x (z )
~ 

( 16)

wher e ~ = eB0/cm1. The sol ut~~n to Eq. (16) is, to

• — w-k V iQ.V
V
~~

(z ) ( ie/miwS)W
S
k~~~ Q~ 

L 

+ 

~~ 
- koVu

) (
~s~ 

k0V~ 
+ ~~)W~

• + (17)

+ 
- k~V~)(w~ - k0V~ 

+ ~~)2 
-_
~
J

Ex(z).

B. Downstreaming Hot Ions. Since near the leading edge the contribution

of the downstreaming hot ion beam to the transverse cu’-rent perturbation is at

most o( c2) smallness compared with the other contributions (see Eq. (10)), we

need onl y calcula te V dx (z) to 0(1). This is routinely done from linearized

Vlasov theory and one readily obtains

2 2
VdX(z) 

= (ie/m
~
w5) v

~~
Cd I due 

/Cd 
~ 5 

~~~~~~ 

~ 
- k~u 

E
~
(z). (18)

C. El ectron Fluid. For the low frequencies of interest in this paper ,

we assume tha t IW s l~ IkoVe(Zfl< < The appropriate descri ption of the

perturbed electron fluid motion is then given by the equations :

E
~
(z) - (l/c)Ve(z)B y(z) + (l/C)V ey(Z)Bo o~ (19)

E~(z) + (l /c)V e(z)B x (z)  - (l /c) V ex (z)B o 0. (20)

Upon combining Eqs. (15) and (20), one readily obtains the desired equation

— iV (z) d —

V ex (Z) (c/ B0 ) 
L1 

+ (ik0 + 
~•i•,~

jEy
(z) =

• = i(c/B0w~
)[w5 

- koVe(Z) + iV e(z )
~~JEx

(z)• (21)

5

- ,—- ~~~~~-— -  .. ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ .-.~~~~ —-..- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



It is now a straightforward matter to assemble the WKB dispersion equation

from Eqs. (11), (17), (18), and (21). Taking account of Eq. (4) and noting

that

4u[n
~
(z) + nd (z)]e2 

= _____

IC A Z

where the local Al fvén speed
1/2

• (CA(O)[l - n (l - Vd/V )] , z > 0,
CA(Z) ~ 

U

I Cf~(0)S z < 0,

ore ultimately obtains to 0(c2) :

- i
~~
.,r1)E

~
(z) = 0, (22)

where: 
-

- i~~,fl) = D~(W0~k0 
- i~~,fl) + iD1(w05k04i), (23)

d aD (5) ,k ,o)
Dr(ti)o~

ko 
- i~~

.,1) = Dr(wo~
ko so) + ° (-i.H~

.) + (24)

1 ~
20r~~o

,ko~
0) 

. d 2 1 f~
2Dr(wo,ko,nf\(-i s—) + 2~1 1  I

0 \~~~~
2

w k V k2C2(o)
Dr(wo~

ko iiO) = - + + °~~ - 
- + ‘~ 

‘ (25)

rk (V - V ) k2 C2(o ) V
Or(wo~

kosfl) = Dr(wo iko~
o) + U + 

~~ 
(
~~- - 1) (26)

L ‘~l
______________ 1 -u2/Cd - k u)

+ 
- k0V

~ 
+ 

- 

i~ Cd L due 
- koV d + 

~~ 

_—~irj

6
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D~(~0,k0,n) 
= - Ik~IC~ 

(k oVd - exp [(wo 
k~C~ 

+ 
(27)

= ~-2 
- - koVu + 

~ 
)~2 > 0. (28)

it is now evident that Eq. (22) is the WKB generalization of the algebraic

linear dispersion relation

D(~0,k0,~) = 0 (29)

for the local theory (Ref. ib).

The analysis of Ref. lb revealed that for MA > 2.7 7, stationary unstable

whistler waves exist near the l eading edge and are dri ven unstable by their

interaction wi th the downstream hot ion cyclotron dri ft mode only i-f

kOVd 
- > 0. These stationary modes are the ones which evidently have ampl e

time to grow to sufficiently l arge amplitude to i rreversibly scatter the up-

Stream ions . One can approximately incorporate this same stationari ty of

leading edge whistlers into the present WKB formulation by supposing that (w0,k0)

satisfy the cold pl asma whistl er mode dispersion relation ,

D(w0,k050) 
= 0 (30)

at z = 0 and the zero group velocity condition there equivalent to

~D (w ,k ,o)
__________  = 

~~. • (31)

We see now that Dr(wosko 
- id/dz,~) is a real operator of 0(c

2). In assuming

y — O(~) — 0(c2) (as suggested by local theory and Eq. (7)), the pure imaginary

part D1 (w0,k0,ii) and , consequen tly, D(w05k0 - id/dz ,~) must also be 0(c
2). Note

from Eq. (31) that, wh ile modes at the leading edge (z = 0) are exactly station-

ary, those nearby In the region 0 < z < < I will have group vel ocities which are,

however , negligibly small , i.e. V gn 
= ~w0~/~k0 — O(c 2V

~
), n = 0,1,2 This

is discusse d at greater length in Sect ion V.

7
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III. - FORMULATION OF THE E I GENVALUE PROBLEM

We turn next to the formulation of the eigenvalue probl em. Near the

leading edge, n(z) nd(z)InU(0) and we assume its profile to be:

(o, z < 0
n(z) =

~ 2liz/I) , z > 0 and z < < I. (32a ,b)

For convenience, we adopt the notation:

(E (z), z < O
E
~

(z) =1
IE+(z), z > 0.

z < 0. In this region , we have from Eqs . (22) to (28), (30) , (31 ) and (32a ) that

‘~ l d2 iyc2 .
+ ~21)E(Z) 

= 0, (33)

1 i a2Dr(w ,k0 5o) c~(o) 
________________where— v = —

~~

-- - ___________

K ak~ (
~~ 

- k0V~ +

From Eq. (30) and the zero g~roup velocity condition (31) written equivalently as

MA = Vu/CA(0) = -x0 + (1 + x~/4) 1”2 + (x~/4)(1 + x~/4Y
1”2, (35)

= kOCA (O)/c21,
it can be shown that K2 

> 0. (36)

z > 0. For this region, we have f rom (26) and (32b) that

1 ~
2Dr(wo,ko sn) 

= (z/L) 2 
[o~~

d 
V)
~~ + 

k~C~(O) f’~i. - i +
I

-u2/c~ (
~ - k u )  1

- k0V
~ + a 1 

- 

,. J ~ ~wo - koV d +~
2j ) - k0uJd (37)

8 
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Then from Eqs. (22) to (25), (27), (28), (30), (31 ) and (37), one obtains the
desired equation

(i~..4 + ~~~ - 

p,
~2j.. = 0, (38)

where : R = Rr + iR 1, 
. 

(39)

a2D (w ,k ,r~)
r~~~ ~~ 2 - 

(40)

= M~
1 (1 + x~/4) 

-1/2 
[

~ + 
31 x

~
l (1 

4MA 

(M~ - 1) 
-]

1 (
Co -u2/C~ (c~1 - k u)

- 

/
~~
Cd -i 

due 
- koVd + 12~) - k0u 

‘

R~ = Iko~ d 
(kOVd - w0)exp [- 

(wo koVd + 
~i

)2

j  
(41 )

• We note that Eq. (40) is expressed mostly in terms of the more convenient

shock Al fvên Mach number MA . This equation is easily derived from Eq. (37) by

use of the gasdynami c Rankine-Hugoniot shock relation

~d M~~+ 3  (42)
V~~~~~2

The specification of the eigenvalue problem is now completed when , as ide from
the usual required boundedness of E_ (z -~~ _oo

) and E+(z ÷ +oo), one demands that

E( z) and Its fi rst derivative be continuous at z = 0, i.e.

E (°) = E~(O), (43)

E,.’(o) = E .(O) . (44)

* For the deri vation of Eq. (43) we have assumed C~(O) = 5KT
~

/3mI to avoid a
switch-on occurrence.

9 
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- IV. SOLUTION TO THE EIGENVALUE PROBLEM

z < 0. If one makes the ansatz

larg (y ’2e~~”4)~ < ‘TT/2 , (45)

one then has for z < 0,

E_ (z ) = A_ exp(K _ z ), (46 )

where

= ~~~~~~~~~~~~~~~ (47)

The other solution is discarded due to its divergence at z = -oo• The matching

conditions (43) and (44 ) ~t z = 0 therefore become

E~(0) = A ,, , (48 )

E..(O) = K A _ . (49)
2 > 0. For z > 0, Eq. (38) can be reduced to the standard equation for para-

bol ic cylinder functions (Ref. 3),

((d2/d~
2) - (1 ~2 + a2))E~(~ ) = 0. (50)

Here ~ = z/c*,

- . / 2\
’
~”~a = 1(~~~2) (51)

1y12,~ IKILa n d a =  . (52)

The sol ution, we ll  beha ved at z = oo~ Is then

= A~V(a ,~). (53)

From the matching condi t ions  (48) and (49 ) at z = 0, one obta i ns the fol lowi ng

conditions for the elgen values : 21a
= 

~1 IKIL (n = 0,1,2 ,...) (54)

3. M. Abramowitz and l.A. Segun, Handbook of Mathematical Functions, (Dover ,
New York , 1968), p.686 .

10



and a~ is the nth root of the equation

,

~~~~~~
= f~ : : :~L (5~)

By writing Eq. (55) in the form,

= 
sin~[-irLl/4 - a/2fl rç3]4 +
s in  [-T1-(3/4 - a/2)] F( / + a! )

*one can see that all its real roots must be positive . Numerical computations

bear this out : We obtain a0 0.09, a1 1.004, a2 2 

For those an ’s wh i ch are real , Eq. (54) now reads

-2i~a V2
2R112

= 

~~iK l L (56)

or equivalently,

2 2”R2 + 2~l/4
— 

an ~ r R
~i , (57a)

— 

~~IK IL

arg y
~ 

= - + ~ tan (~~~
. (57b)

Evid:ntly, for instability (which corresponds to Re > 0), it is necessary

that

R1 > 0, (58)

or -(ir/2) < arg 1n < O~
We note that 

~n satisfies the ansatz Eq. (45 ). Eqs. (41 ) and (58 ) reveal that

there can be instability only if koVd - > 0, consistent wi th the instability

criterion of our local theory (Ref. lb). Since a~ l , J (K_ )~I and the turning

point Iz~~I2 
= l4a~a2

l increase wi th our results indicate that modes wi th

higher growth rates are peaked deeper inside the shock front and extend further

* We believe that all the roots of Eq. (55) are rea l, but this has yet to be
- proved.

** Stabl e modes correspond to R1 < 0 or --Ti < arg R < 0.

11
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into the shock. This is physically expected since the instability is dri ven

by finite n and ii increases with z. The validity of the approximations made

here requires 1k01 > > I(K_ )~ l and Iz~,1J < < I thereby giving an upper bound

to the acceptable values of y1,~. Keeping this in mind , Eq. (57a) and our order-

ing scheme given by Eqs. (7) and (8) guarantee that

O [(jKIL)~~J O[(Ik0IL)’~ ] 
— 0(c2) O(~), again consistent

with the local theory.

V. DISCUSSION AND CONCLUSIONS

Perhaps the most suitable way to enumerate the sir.ilarities and differences

between the WKB and l ocal (Ref. lb) theories is to cite the relevant frequency

and growth rate formulas.

WKB theory
2fa 2 R.

= w0(k0) + I Kj~ F 
IRI cos( 2~ tan fli), (60)

2 1 a 1 ’ 2  R.
= 

IKI~ ~~ 1R 1 1”2 sin(~.tan~ i—), (n = 0,1 ,2,...) (61)

LOCAL theory

w0(k01ri) = w0(k0) + n~
_ R,~ (62)

y(k0,ri) 
= r
~
._R i, (63)
I

where

w0(k0) = k0V~ 
+ 

k~C~(O) 
-kOCA (O) (

~
+ k~C~(0))~ ’2 (64)

is the whistler mode frequency at the leading edge (see Eq. (25)).
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We have already pointed out that in both theories :

(1) 0 < arg R < ii or R
~ 

must be positive for instability

(stabl e modes correspond to - -it < arg R < 0 or R 1 < 0);

(ii) growth rates are 0(c2) in smallness.

Furthermore , in  the v i c i n i t y  of the leading edge (0 < z < < L), both theories

indicate a real frequency shift (from i ts z = 0 val ue) of 0(e2); in the WKB

case , this shift is clearly seen to be positive .

Noting that Eq. (31) is equivalent to the conditi on a~0(k0)/~k0 = 0, the

eigen group velocities calculated from Eq. (60) are negligibly small , i.e.,

= 3w0(k0,~)/~k0 ~~~~~~

- ~ ~~

— IR~
’2 
cos(~ tan~ O(c2V

~
), (65)

(n = 0,1 ,2,...)

Eqs. (61) and (65) permi t us to estimate the distance ~ required for one e-fold

growth of the very slowly rightward propagating eigen whistlers . One obtains

= Y~~V9~ 
O(V

~
/S
~

) - O(k~~) = 0(x0) - O(cz) - 0(e2L). (66)

Suppose that e Z 0.1 (corresponding to beam strengths n — .01). By the time

the mode has moved a distance z < 1z~~1 through the leading edge region , i t  w i l l

have undergone 10 e-folding growths in Its ampl i tude and should therefore be

capable of scattering incoming ions , es pec ially s ince it rema ins in the lead ing

edge region for a time long compared wi th the residence time of an incoming

particl e (Vgn/’Iu .01). Thus in our WKB theory, the eigen growth modes can be

considered to be approximately stationary, an essential condition for the gener-

ation of whistler turbulence .

Final ly, conditions (30), (37) and (58a) indicate that the stationary ion

cyclotron beam-whistler elgenmode instability is operative near the leading edge

for MA > 2.77.
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- VI. RECOMMENDATION

We reconrend that this WKB theory be re-formulated for the more
realistic shock layer model where the unshocked plasma is warm. Such a
reformulation should be a relatively easy task.
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