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ABSTRACT

A general method for representing the flow properties in the three-
dimensional boundary layers around ship hulls of arbitrary shape is described.
It makes use of an efficient two-point finite-difference scheme to solve the
boundary-layer equations and includes an algebraic eddy-viscosity representa-
tion of the Reynolds-stress tensor. The numerical method contains novel and
desirable features and allows the calculation of flows in which the circum-
ferential velocity component contains regions of flow reversal across the
boundary layer. The inviscid pressure distribution is determined with the
Douglas-Neumann method which, if necessary, can conveniently allow for the
boundary-layer displacement surface. To allow its application to ships, and
particularly to those with double-elliptic and flat-bottomed hulls, a non-
orthogonal coordinate system has been developed and is shown to be economical,
precise and comparatively easy to use. Present calculations relate to zero
Froude number but they can be extended to include the effects of a water wave

et

and local regions of flow separation which may stem from bulbous-bow geometries.
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PRINCIPAL NOTATION

Van Driest damping parameter, see (2.18b)
constants

local skin-friction coefficient in streamwise direction
constants

transformed vector potential for vy

transformed vector potential for ¢

metric coefficients

net spacing in n-direction

boundary-layer shape factor along streamwise direction, &*/67
net spacing in x-direction

geodesic curvatures, see (2.5)

geometric parameters, see (2.6)

mixing length, see (2.18a), or reference length
coefficients, see (2,28) or (2.32)

static pressure

total velocity in the boundary layer

Reynolds numbers, ues1/v and u_L/v

Reynolds number, usec*/v

Reynolds number, Use911/“

arc length along coordinate line

unit tangent vectors along x and z directions
velocity components in the x,y,z directions
velocity components in the Cartesian coordinate
velocity components in boundary layer parallel and normal,
respectively, to external streamline

friction velocity, see (2,18¢c)

freestream velocity

reference velocity

nonorthogonal boundary-layer coordinates
Cartesian coordinates

Reynolds stresses

crossflow angle
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Subscripts
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S
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w

Timiting crossflow angle
boundary-layer thickness

displacement thickness, gr (1 -us/use)dy

eddy viscosity
dimensionless eddy viscosity, /v
similarity variable for y, see (2.21)

momentum thickness, JP Ug/use(l — ug/usg)dy

dynamic viscosity

kinematic viscosity

density

shear stress

two-component vector potentials, see (2.23)

boundary-layer edge
streamwise direction
total value

wall
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I. INTRODUCTION

! A general method for determining the local flow properties and the over-
all drag on ship hulls is very desirable and particulary so with the present
need to conserve energy resources. It is difficult to achieve for a number

As of reasons including the turbulent nature of the three-dimensional boundary

layer, the complexity and wide range of geometrical configurations employed,
the possibility of local regions of separated flow and the existence of the
- free surface. In addition, and although these difficulties may be overcome
in total or in part, the resulting calculation method must have the essential
features of generality, efficiency and accuracy.

The purpose of this report is to describe a general method which is 3
capable of representing the flow properties in the boundary layer around
ship hulls of arbitrary shape. It is based on the general method of Cebeci, =
Kaups and Ramsey], developed for calculating three-dimensional, compressible
laminar and turbulent boundary Tayers on arbitrary wings and previously
proved to satisfy the requirements of numerical economy and precision. To 4
allow its application to ships in general, and to double-elliptic and flat-
bottomed hulls in particular, an appropriate coordinate system has been
developed. Previously described coordinate systems, for example a streamline

system such as that of Lin and Ha’('l2 or the orthogonal arrangement of Miloh 1
and Patel3 are limited in their applicability and the present nonorthogonal
arrangement is similar to that of Cebeci, Kaups and Ramsey‘. }

The numerical procedure for solving the three-dimensional boundary-layer
equations makes use of Keller's two-point finite-difference method4 and Cebeci
and Stewartson's procedure in computing flows in which the transverse velocity
component contains regions of reverse flow. This is in contrast to previous
investigations, for example those of Lin and Ha112 and Gadd5 which are limited
either to zero crossflow or to a unidirectional and small crossflow. It is
also in contrast to the previous methods of Chang and Pate16 and Cebeci and
Chang7 which did not have a good and reliable procedure for comjuting the flow
in which the transverse velocity component contained flow reversal.




In representing turbulent flow by time-averaged equations, a turbulence

model is required and an algebraic eddy-viscosity formulation, similar to that
of Cebeci, Kaups and Ramsey], is used. This is in contrast to the two-
equation approach which Rastogi and Rod1‘8 have applied to three-dimensional
boundary layers and which, in principle, should be better able to represent
flows which are far from equilibrium. The previous comparisons presented in
Cebec'ig’]0 demonstrated that the present eddy-viscosity model allows excellent
agreement between measurements and calculations but did not include comparison
with the three-dimensional boundary-layer measurements of Vermeu]en]]. Since
this data includes a strongly adverse-pressure gradient case which allows a
stringent test of the present model, corresponding calculations and compari-
sons are reported.

The calculation method is described in detail in the following section
which states the three-dimensional boundary-layer equations in curvilinear
nonorthogonal coordinates and describes and discusses the required initial
conditions, turbulence model and transformations in separate subsections.
Section 3 is devoted to the coordinate system which is an essential feature
of the present method. The numerical method is discussed briefly in section 4
and calculated results are presented in section 5 which includes comparisons
with the measurements of Vermeu]en]] and demonstrations of the ability of the
method to represent the geometry of different hull configurations and to result
in realistic velocity and drag characteristics. Summary conclusions are pre-
sented in section 6. Finally, in Appendix A we present a description of the
computer program.




IT. BASIC EQUATIONS

2.1 The Boundary-Layer Equations

The governing boundary-layer equations for three-dimensional incompres-
sible laminar and turbulent flows in a curvilinear nonorthogonal coordinate
system are given by:
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Continuity Equation
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Here h1 and h2 are the metric coefficients and they are, in qeneral, func-
tions of x and z; that is,

hy = h](x,z); h2 = hz(x.z) (2.4)

Also, 6 represents the angle between the coordinates x and z. The param-
eters K] and K2 are known as the geodesic curvatures of the curves
z = const and x = const, respectively. They are given by

K, = ! - (h., cos ah]
17 RR,sine [ax ‘M2 €050) - 57
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The parameters K]2 and KZ] are defined by

o 120 120 !
Ki2 = Tms [}(K] + r 3—) + oS 6 (Kz iy 3 z) - (2.6a) |
Ko K, + 1 29) 4 cose (K + 1 LR} (2.6b)
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o T Relbd K ® = % (2.8)

At the edge of the boundary layer, (2.2) and (2.3) reduce to
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The boundary conditions for equations (2.1) and (2.3) are:
gy U,V,W = 0 (2.11a)
y=6: u = ue(x,z), W= we(x’z) (2.11b) s

2.2 Initial Conditions *

The solution of the system given Ly (2.1) to (2.3), subject to (2.11),
requires initial conditions on two planes intersecting the body along coordinate




lines. In general, the construction of these initial conditions for three-
dimensional flows on arbitrary bodies such as ship hulls is difficult due to
the variety of bow shapes which may be extensive and complicated. For this
reason, assumptions are necessary for them in order to start the calculations.

In our study we choose the inviscid dividing streahline on which
ap/3z = 0 to be one of the initial data line (see figure 1). In the case

7

¥

INITIAL CONDITIONS ON

NITIAL CONDITIONS (z = 0) ON
THE PLANE OF SYMMETRY |

Figure 1. The nonorthogonal coordinate system and the initial data Tines |
for the ship hull.

of a rectilinear motion of a ship, this streamline runs along the plane of
symmetry. Because of symmetry conditions w and 3p/5z are zero on this
Tine causing (2.3) to become singular. However, differentiation with respect
to z yields a nonsingular equation. After performing the necessary differ-
entiation for the z-momentum equation and taking advantac2 of appropriate
symmetry conditions, we can write the so-called longitudinal attachment-line
equations as:

Continuity Equation

a 2 "
ox (Uhy sing) + hy sinew, + 5;-(v h)h, sing) =0 (2.12)
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x-Momentum Equation
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z-Momentum Equation ;
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where ", ow/3z and (w'v')z = 3/3z(w'v"). These equations are subject
to the following boundary conditions:
y=0 : yevew, =4 (2.15a)

y=5: u=u W. = W (2.]5b)

The other initial data should be selected near the bow of the ship along

some x = const. coordinate line (see figure 1). However, because of

the variety of possible bow shapes, approximations are necessary. For a
simple, smooth bow section, where curvatures are small and no separation is
expected, the flow along the initial 1ine can be successfully assumed to be
two-dimensional without pressure gradient, and the governing two-dimensional
equations for a flat plate are solved. However, for most general merchant
ships, the bow section is complicated and flow separation and reattachment
are expected because of large curvature variations and adverse pressure
gradients; as a consequence, the boundary-layer calculations can only

be performed downstream of the reattachment line (or point) where turbulent
flow is presumed (since it is unlikely that the flow remains laminar after
separation and reattachment with high Reynolds number). Generation of the

initial data for turbulent flows is much more involved if there are no




experimental data available. It requires sound mathematical and physical
Judgment and tedious trial-and-error efforts. We shall discuss this aspect
of the problem later in the report.

2.3 Turbulence Model

For turbulent flows, it is necessary to make closure assumptions for the
Reynolds stresses, -pu'v' and -pv'w'. In our study, we satisfy the require-
ment by using the eddy-viscosity concept and relate the Reynolds stresses to
the mean velocity profiles by

au SEY . w
-u'v' = ‘n 3y ° -V'w n 3y (2.16)
We use the eddy-viscosity formulation of Cebecig, and define €n by two
separate formulas. In the inner region, ¢_ 1is defined as

m
(en); = LZ[(I_;%)ﬂ (%)2 + 2 cose (%%)(g—;r (2.17)
where
L=0.4y[1- exp(-y/A)] (2.18a)
T Y
of M (2.18b)
A= 26 %T- u_ ( - )

%
- (v 4 (2w)? au) (aw
Ty = [(ay)w + (ay)w + 2 cose (”)w(ay)vj (2.18¢)

In the outer region €m is defined by the following formula

ey = 0.0168 / (ugq - ug) dy (2.19)
0
where
Upg = (ué + wg + 2ugw, cosef’ (2.20a)
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N, = (U2 + w? + 2w cose);i (2.20b)

The inner and outer regions are established by the continuity of the eddy-
viscosity formula.

2.4 Transformation of the Basic Equations

The boundary-layer equations can be solved either in physical coordinates
or in transformed coordinates. Each coordinate system has its own advantage.
In three-dimensional flows, the computer time and storage required is an
important factor. The transformed coordinates are then favored because the
coordinates allow larger steps to be taken in the longitudinal and transverse
directions.

We define the transformed coordinates by

'

X
u
i - o . I -
X=x, 2=2, dy ("Sl) dy, 5 /h]dx (2.21)
0

and introduce a two-component vector potential such that

uh2 sin8 = %}g . wh] sing = %3- (2.22a)

vhih, sine = - (%% + %%) (2.22b)
where y and ¢ are defined by

V= (vs] ue)li h, sine f(x,z,n) (2.23a)

6= (vsy u)?u_ c/u, hy sin6g(x,z,n) (2.23b)
and Upef is some reference velocity.

Using these transformations and the relations given by (2.9), (2.10) and
(2.11), we can write the x-momentum and z-momentum equations for the general
case as
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x-Momentum

"y Bivs - L (] N 1\2
(bf")' + m]ff mz(f') m5f g' + msf g m8(g )2 + my

v of w 3f ' " i
="'10(f ke a) m (9 - f _a) (2.24)

z-Momentum

(bg")' + m]fg" e m4f'g' i m3(g|)2 + '“6 ggn g mg(fl)2 + m]2

» ) a ) " af ] a ! n
k! - mw(f L-¢g )*m7(g gg—- g 3%) (2.25)

and their boundary conditions as

n=0: f=f =g=g"=0;3n=n_,f =1,9" =w/u.. (2.26)
Here primes denote differentiation with respect to n, and
. K
frel geaM . pelec, o=t (2.27)
Ue g Uref L

The coefficients my to m, are given by
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To transform the longitudinal attachment-line flow equations and the

boundary conditions, we use the transformed coordinates given by (2.21) and
define the two-component vector potential by

- Y . ¢
uh, sing = 5y 0 Wphy sine = -
(2.29)

: AT
vh]h2 sing = - (3% + ¢)

with ¢ and y still given by (2.23). With these variables, the longitudinal
attachment-line equations in the transformed coordinates can be written as

S '
(bf")' + m]ff" = mz(fl)Z + m6f"g + m]] = #(f' % = Y %) (2.30)

(bgll)l + m]g"f = m4f'g' 28 m3(g|)2 + msgg" 5 m9(f')2 3 m]Z

s :
=F:-('39—-g" 91) (2.31)

The boundary conditions and the coefficients m to mo, are the same as in
(2.26) and in (2.28) except now

w
n=n: g' = uze
ref
s ;
= | ref
m % m. =m
3 s U 6 3
o SR g R (2.32)
W w S ow
m, = m, ( ze )2 T N Hl 1 2
Uref Uref 1 uref ™

In terms of the transformed variables, the algebraic eddy-viscosity ;
formulas as given by (2.17) to (2.20) become

2 u !5
) Ny (uref) s o ref cu ..] 2.23
(eg)y = = nz[l - exp( /\ﬂ Ef ) H\ ) (9") + 2 cose gk b (2.33)
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ITTI. COORDINATE SYSTEM

Since, in general, a ship hull is a complicated nondevelopable surface,
a Cartesian coordinate system is not suitable for boundary-layer calculations.
Most existing merchant and naval vessels possess the following features: a
flat bottom [y = f(x,z) is not a single-valued function]; a bottom which
is not parallel to the water surface; and a bow which has a submerged bulb
extending toward the origin. In addition, the problem is further complicated
by the existence of a free surface, corresponding to the water level of a
partly-submerged hull. The chosen coordinate system must be sufficiently
general to allow these various features to be represented in the boundary-
layer calculations.

The streamline coordinate system is superficially attractive but the
determination of the streamlines, the orthogonal lines, and the associated
geometrical parameters requires considerable effort. They are dependent on
the Froude number, and also on the Reynolds number if the displacement effect
is taken into account. Consequently, and in addition to being hard to compute,
this coordinate system becomes uneconomical to use when the effect of the
Froude number and the Reynolds number are to be systematically examined.

A desirable requirement of a coordinate system for the boundary-layer
calculations, is that it be calculated only once. Miloh and Pate13 proposed
an orthogonal coordinate system which depends only on the body geometry and
is calculated once and for all. This coordinate system has been applied by
Chang and Patel6 to boundary-layer calculations on two simple ship hulls:
ellipsoid and double elliptic ship. One of the coordinates is taken as lines
of x = X = constant and the other as z(x,z) = constant, which is ortho-
gonal to x = constant 1lines everywhere on the ship hull, and is obtained
from the solution of the differential equation

f-f
= —1—1‘-—, (3.1)

z
Here y = f(X,z) defines the ship hull, and (X,y,z) denote the Cartesian
coordinates. The major advantage of this coerdinate system is its simplicity.
Because one of the coordinates is subject to the condition (3.1), there is no

NI
—h|NI

(=9 lo.
x1

12




guarantee that the boundaries of the ship hull are coincident with the coord-
inate lines. Furthermore, for a ship with flat bottom for which y = f(x,z)
is not a single-valued function, one of the coordinates cannot be calculated
from (3.1). The coordinate system is limited, therefore, to some special
geometries only.

In this study we adopt a nonorthogonal coordinate system similar to that
developed by Cebeci, Kaups and Ramsey] for arbitrary wings. It is based on
body geometries only and, hence, it is calculated once and for all. In
addition, the system can deal with the peculiar features of most merchant and
naval vessels discussed previously. The details of this coordinate system are
ucscribed briefly in the following paragraph.

Now consider the ship hull as given in the usual Cartesian coordinate
system; that is, X along the ship axis, y and Z 1in the crossplane (see
figure 1). We select x = x = constant as one of the coordinates and the
other coordinate z lies in the yz-plane. Because the coordinate system is
nonorthogonal, we are free to select the values of 2z in the plane to satisfy
the condition that the boundary lines of the ship hull are coincident with

z = constant coordinate lines. There are several ways of defining the z-values.

Here z is determined by mapping each yz crossplane into a half or full
unit circle depending on whether the crossplane intercepts the free surface

or is completely submerged. The polar angle, normalized by = or 2r on the
unit circle, is taken as z-values. The z-values then range from 0 to 1 on
each crossplane. The advantage of the mapping method is that equi-interval,
z=constant coordinate lines are automatically concentrated in the region of
large curvature where the boundary-layer characteristics are expected to

vary greatly. Hence the number of z=constant coordinate 1ines can be reduced
without loss of accuracy.

There are several methods available for the mapping of an arbitrary body
onto a unit circle. Here we use the numerical mapping method developed by
Halsey]z. It makes full use of Fast Fourier Transform techniques and has no
restrictions on the shape of the body to be mapped. To map a smooth cross-
plane onto a unit circle, the procedure is fairly easy. If there are inner
corner points, or trailing-edge and leading-edge corner points (see figure 2)

caused by the reflection of the crossplane, they must be removed before mapping
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Figure 2. Notation of corner points used in the mapping procedure.

is performed to improve numerical accuracy and to provide rapid convergence.
The inner corner points are rounded off by using Fourier series expansion
technique and the leading-edge and/or trailing-edge corner points and removed
by using the Karman-Trefftz mapping. For details see Ha]sey‘z.

To use the mapping method to find the coordinate system, it is only
necessary to define the ship hull as a family of points in the x=constant
planes, to locate the intersection of the ship hull and the free surface,
and to indicate whether corner points exist. The data in each plane is then
mapped into a unit circle as y vs z and Z vs z and interpolated for
constant values of z. Another set of spline fits in the planes z=constant
for y vs x and z vs x completes the definition of the coordinate system.
The lines formed by the intersection of the planes x=constant and z=constant
with the hull constitute the nonorthogonal coordinate net on the surface, and
the third boundary-layer coordinate is taken as the distance normal to the
surface in accordance with first-order boundary-layer approximation.

Since the spline-fitting also yields derivatives, the metric coefficient
and the geodesic curvatures of the coordinate lines can be calculated from
the formulas given below.
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The metric coefficients:

2 3z \2 27 \2 g

h =|+(—) +( ) (3.2a)

1 ax/, ax/,

he = (32)2 + (?l)z (3.2b)

2 9z . 9z A
The angle between the coordinate lines: ;

i ay\ [y 3z\ (9z 4
c0s0 = f 2[(%)x(s‘¥ By (2 - (%) ] (3.3) 7

The geodesic curvature of the z=constant line

s 20,8, 60,60 - 553

+[(%)x(gi ), +(g_§)x(%>zrzf)z]: (3.4)

The geodesic curvature of the x=constant line

S W[@L(gl -(gg)z(gg)][(a—f = TZZ)X] e

The other parameters Kyp and Kyy are calculated from (2.6). It may be
noted that Ky and K, can also be obtained from (2.5). This provides a
check on the expressions given by (3.4) and (3.5).

1

In boundary-layer calculations, we need the inviscid velocity compon-
ents along the surface coordinates. Let V be the total velocity vector on
the hull, (u,v,w) the corresponding velocity components in the Cartesian
coordinates, and (”e’ We) in the adopted surface coordinates. As can be
seen from figure 3,

V-?]—cosev-fz

u_ = (3.6)
. sinze i
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Figure 3. Resolution of the velocity components.

Here f] and %2 are the unit tangent vectors along x and 2z coordinates
and are given by

?} (3.8)

(&) 5+ (& ‘] (3.9)

>
With the definition of V and with the use of (3.8) and (3.9), equations
(3.6) and (3.7) can be written as
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IV. NUMERICAL METHOD

We use the Box method to solve the boundary-layer equations given in
Section II. This is a two-point finite-difference method developed by Keller {
and Cebeci. This method has been applied to two-dimensional flows as well as |

three-dimensional flows and has been found to be efficient and accurate.
Descriptions of this method have been presented in a series of papers and
reports and a detailed presentation is contained in a recent book by Cebeci i
and Bradshaw]3.

In using this numerical method, or any other method, care must be taken
in obtaining solutions of the equations when the transverse velocity compon-
ent w contains regions of flow reversal. Such change in w-profiles will i
lead to numerical instabilities resulting from integration opposed to the ’
flow direction unless appropriate changes are made in the integration pro-
cedure. Here we use the procedure developed by Cebeci and Stewartson. In
this new and very powerful procedure, which follows the characteristics of
the locally plane flow, the direction of w at each grid point across the
boundary layer is checked and difference equations are written accordingly.
At each point to be calculated, the backward characteristics which determine
the domain of dependence, are computed from the local values of the velocity.
Since the characteristic must be determined as part of the solution, in the

calculation procedure a Newton iteration process is used to correctly deter-
mine the exact shape of the domain of dependence. s

To illustrate the basic numerical method, we shall at first consider the |
solution of the longitudinal attachment-line equations (2.30) and (2.31) and 1
then the solution of the full three-dimensional flow equations are given by
(2.24) and (2.25). We shall not discuss the Cebeci-Stewartson procedure for
computing three-dimensional flows with the transverse velocity, w, con-
taining flow reversal since that procedure will be fully described in a forth-
coming paper.

4.1 Difference Equations for the Longitudinal Attachment-Line Equations

According to the Box method, we first reduce the equations (2.30), (2.31),
(2.32) and (2.26) into a system of five first-order equations by introducing
new dependent variables u(x,z,n), v(x,z,n), w(x,z,n), t(x,z,n) and o(x,z,n).
Equations (2.30) and (2.31) can then be written as
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u' = v (4.1a)

e (4.1b)

(bv)' + ov ~-m2u2 +m =My u %%- (4.1c)
(bt)' + ot — m,uw —-m3w2 —-m9u2 My =My U %%- (4.1d)
8' = mu + mew + ™o %% (4.1e)

The boundary conditions (26) and (32) become

= 0: = = =0
n u W 0 (4.2)

L Bl R u-=1, W = wze/u

ref
We next consider the net rectangle shown in figure 4 and denote the net

points by

X, = 0 Xn = X1 K, n=1, 2, s N
= 0 + 2 =
no nJ nj_] hJ j ]$ 2’ ’ J
n
|
}
|
" A P‘! Pl s
W12 - = == —t—
=1 . 2 5 -
3 i b
T
FU8 Gt ]
4 -
| X
LR PR/

(x )”_‘ (» ’n

Figure 4. Net rectangle for the longitudinal attachment-line equations.

We approximate the quantities (u, v,g t e) at points (xn,n ) of the
net by funtions denoted by (u $ vJ. wJ, tg, (] ) We also employ the notation

for points and quantities midway between net points and for any net function sg:
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o e oo N s
- . - - " S S o

i

= o
Xn-]/2 = E-[Xn + Xn_]] nj_]/2 " 2 (nj + “j_])
12 1 1 1 n i
n- [ n n- .3 n

The difference equations which are to approximate (4.1) are formulated by
considering one mesh rectangle as in figure 4. We approximate (4.1a,b)
using centered difference quotients and average them about the midpoint
(x n*"j- ]/2) of the segment P,P,.

T n o ol
hj (UJ "Uj_]) = Vj_]/z (4.4a)

=lgn N -

Similarly, (4.1c,d,e) are approximated by centering them about the midpoint
(xn-1/2’“j-1/2) of the rectangle P]P2P3P4 This gives

g"-1 n o (4.4¢)

=
hj [(bv) (bV)n ]] + (OV)J 1/2 (mz * “n )(u )J ]/2 j-]/z _-m]]

-1 n n
h; [(bt) (bt) RYE. (e'c)j 172 = (Mg * o )(uW)J 2 3(w )J 1/2
n n-1 .n _ h-1 n
(“ )J e [WJ 1/2 §a142 T '-1/2w3-1/2] = S572 ~™2
(4.4d)
-1,.n n nn _ +n-1
hj (ej - ej—]) - (m] + 2a )uJ 1/2 mswj_]/2 = TJ._”2 (4.4e)
Here
n-1 _ -1 n-1
Ryo1y2 = ¢ (u )J ]/2 hy L(bv); —-(bv) ] % (ev)J ]/2
n-1 n-1
- m, (u )J ]/2 + mn (4.5a)
n-1 _ el n-1 "-1,_
Sil1/2 = o (uw)J ]/2 " [(bt)j —-(bt) ] + (et)J ]/2 12 (uw)j ],2
n 1 n-1 4.5b
(w? )J 1/2"“ (u? )J ],2} ( )
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ot -1 _ . -1,n-1 _ n-1y  n-1n-1 _ n-1n-1 |
Ticay2 = 200U 0 2 =)0y (05 0 —054) —my Tuy g0 — Mg W5 300 (4.5¢)
m]8-1/2
«, ® ey i (4.5d)
LB N, "

4.2 Difference Equations for the Full Three-Dimensional Equations

The difference equations for the full three-dimensional equations, as
given by (2.24) and (2.25), are again expressed in terms of a first-order
system. With the definitions given by (4.1a) and (4.1b), they are written
as

' 2 £ 2 S U qu
(bv)' + ov —mpU” — mglw = mg” Mg = Mg Uk, W (4.6a)
(bt)' + 0t —muuw — m W mmgul iy, = u Mo (4.6b)
4 3 9 12 10 © 3x T i
Y U aw
0= mu + Maw gy o My ST (4.6¢)
Their boundary conditions, (2.26) become:
n=0: Uu=w=6 =0 (4.7a)
neRs  u=l, WS WU (4.7b)

The difference equations for (4.1a) and (4.1b) are the same as those
given by (4.4a) and (4.4b): they are written for the midpoint (xn, Z;s
”j-llz) of the net cube shown in figure 5; that is

-] n,i Fors n'i - n,i "] n,.i ) n,] @ n,i 4 8
hy (ug® =ugly) = vilyyas By O =wyily) = B0 (4.8)
The difference equations whcih are to approximate (4.6a,b,c) are rather

lengthy. To illustrate the difference equations for these three equations,
we consider the following model equation

' = g! gy-
(bv)' + ov + My = Mo Yot ¥ 55 (4.9)
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(j.n.i)

(=10,

o«— o
i1, n=1,i=1) a(i)

k’—— Y e

Figure 5. Net cube for the difference equations for three-dimensional

flows, wj >0

The difference equations for (4.9) are:

T n-1/2
hj [(bv)j (bv) 1] + (‘v)j ]/2 + (m”)j 172
- V2 ~ Uy n-1/2 Ui "%
= (mo)isiy2 Yja172 ‘T‘—“* ()i vy2 M52~
(4.10)
Here, for example
= _ 1 ,.n,i n,i-1 n-1,i-1 n-1,i
Rt R ey !
'6' & l (un,'l + un,i-] + un,i + un,i-l) (4 '”)
n- 4 j j-1 T Y31 c
o n-1,i n,i n-1,i
u; =z (u,”" + uj + uj_] + uj_] )
and
-1/2
(m, )" n n-1
Wy = g L+ )0y + 570+ (myy) Wt
(4.12)
z,=0 Z, =2z 4ty i=1, 2, v I

4.3 Solution of the Difference Equations

The difference equations (4.4) for the longitudinal attachment-line flow
and the difference equations for (4.6) are nonlinear algebraic equations. We
use Newton's method to linearize them and then solve the resulting linear
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system by the block-elimination method discussed by Kel]er]4. A brief descrip-

tion of it will be given for the longitudinal attachment-line equations.

Using Newton's method, the linearized difference equations for the system
given by (4.4) are:

(4.13a)

Su. — du,
j-

(st + 6Vj_]) = (r])J

(&
-—

dwj —-ij_]

(ct oty ) = (rp)y (4.13b)
(;])jdvJ + (az)cvj_] + (c3)jaoJ + (c4)jse + (cs) U,
+ (gg)youg_y = (rg)y  (4.13c)
(By)j6t5 + (By)yoty  *+ (B3) 5805 + (By)s00; 1 + (8g) 6wy
* (Bg)joms_y *+ (8;)j0uy + (g)jeuy ;= (ry); (4.13d)
(o])Jcej + (°2)j5°j-1 + (a3)jcuj + (64)j6uj_] + (os)jswJ
+ (06) 5"j 1" (rs)j (4.13e)

Here we have dropped the superscripts n, i and have defined (rk)1, (ck)j,
(Bk)j and (Uk)j by

1% Y1 TV T PV (4.14a)

W,

r j-1 T W + h, tj 1/2 (4.14b)

n-1

B2z =My = LV g p + (ov)5 g 5 = (my + 6 (4% ] (4.14c)

(r3)j

-] 1
(r4)j i sg_]/z —m]2 g [(bt)J- + (et)J ]/2 (m4 ta )(W)J ]/2

2 2 n-1
My )5172 = Mg(u ) 0 *+ an 150512 = U3y My 1/0) )6 140)
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n-1

Tisrz = (850072 -
;i. ] j-1/2
+
j 2%
b
.15__ 1.
] e
i 4
7Yy
1
249
—-(m2 4 an)uj

- (m, +
2 * o)y

(c1)J-

(Cz)j

t

N|—

j-1

—]
7 (my +apsu
n"j

(m + Zq Ju

-2

n-1

o 4
2 *nY35-1/2

6%3-1/2]

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

14e)

15a)

15b)

15¢)
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1
J
Pk ik .
(03)3' i (m] + 2un) (4.17¢)
e . 4.17d
( feeal
9); =~ 7 Mg (4.17¢)
AR 1 (4.17f
The boundary conditions become
Suy = oW = 80 = 0, Suy = dwy = 0 (4.18)

The solution of the linear system given by (4.13) and (4.18) is obtained
by using the block elimination method. According to this method, the system
is written as

o Tt ° (4.19)
Here
Ao 5 Fﬁo
B]\\il::ggss::::\\\\ ;
g BJ~\fj\:§§:E:::::\\\\\ i
Baet Ayt S
3. A
8
P J J i _'\'J_J




i _:] ¥ [(r)) j- Csu ;
| N (rp); ",
\ A B L = | (ra) £y = | oy
& (r4)J ctj
¥ . £  (r5),] &

. The A., Bj, C. and A denote 5 x 5 matrices. The solution of (4.19) is

obtained by the procedure described in Cebeci and Bradshaw]3

AT o)




V. RESULTS

5.1 Turbulent Flow Calculations for a Curved Duct and Comparison with

Experiment

The turbulence model described in Section II has been used with consider-
able success to compute a wide range of two-dimensional turbulent boundary
layers, see for example Cebeci and Smithls. The model has also been used to
compute three-dimensional flows and again is found to yield accurate results
(see for example Cebecig’]0 and Cebeci, Kaups and Moser]s). To further test
the model for three-dimensional flows, we have considered the experimental
data taken in a 60° curved duct of rectangular cross section. Figure 6 shows
a sketch of the flow geometry. The experimental data are due to Vermeu]en]].
Here z denotes the distance from the outer wall, measured along normals to
the wall; x denotes the arc length along the outer wall; and y denotes

distance normal to the plane x,z.

TR INITIAL

s Y], CONDITIONS
c 2.

D

E

INITIAL CONDITIONS
e

)\  MEASURING LOCATIONS

Figure 6. Coordinate system and notation for the curved duct.

To compare the computed results with the data, it is necessary to specify
the initial profiles given by experiment. This can be done in a number of

ways. In the study reported by Cebeci, Kaups and Moser"'6 the profiles were
generated by using Coles' velocity profile formula. That formula, which

represents the experimental data rather well for two-dimensional flows, was
not very satisfactory for three-dimensional flows. Here we abandon the use
of Coles' formula in favor of Thompson's two-parameter velocity profiles as
described and improved by Galbraith and Head]7. According to this formula,
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the dimensionless u/ue velocity profile is given by

u S \u

4=y 9—) + (1 —v) (5.1)
e e

inner
Here s is an intermittency factor defined by the following empirical
formulas:

0<¥-<0.05 vg = |
0
2
0.05 < £« 0.3 <= T =2 Ghzik (1—-— 0.05)
§ -— S §
(0] 0
3
6.3 Y 6.3 L 4.4053(Y-—0.5>—1.8502(L—0.5)+ 0.5
§ -— S § §
0 0 0
: (5.2)
0.7 < - < 0.95 = 2.68214 (i-—-o.os)
G = S §
0 0
§—-> 0.95 v, = 0.0
0

The dimensionless velocity profile for the inner layer, that is, (u/ue)inner’
is given by

y+ i P
+ + +.2 +.3
4 <y <30 W =gt ny Feliny ) *c,iiny )}
1 2 3 4
y' > 30 ut = 5.50 ny" +5.45 (5.3)

Here c, = 4.187, ¢, = -5.745, ¢; = 5.110, ¢, = -0.767, y = yu /v,
12+ . . 5

- (rw/p) s W ® u/uT and 8§, isa parameter which is a function of

8, C¢ and H.

To find the functional relationship between 8y Cgs 6 and H, we use
the definitions of displacement thickness &* and momentum thickness 6.
Substituting (5.1) into the definition of ¢&*, after some algebra, we get

A C C
s*( 1)- f Ean o e 4
S = | =05+ds A, In A, — A, 1n {R (5.4)
5 Ry N A B P B s*\2

g 27

s
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where

A, = 50.679, A, = 1.1942, A3 = 0.7943, A4 = 1.195

1

An expression similar to that given by (5.4) can also be obtained if we
substitute (5.1) into the definition of 6. However, the resulting expression
is quite complicated. For this reason, the expression for & is obtained
numerically, and for a given value of 6 and H, the corresponding values

of Ce and §, are computed from that equation and from (5.4).

Equation (5.1) is recommended for two-dimensional flows. Here we assume
that it also applies to the streamwise velocity profile by replacing u/ue by
uS/use with Cg¢ Now representing the streamwise skin-friction coefficient.

In order to generate the crossflow velocity component (un/use), we
use Mager's expression and define u /ug, by

u 2
n S
Py - (1 —-62- ) tang (5.5)

with the 1limiting crossflow angle By obtained from the experimental data.

Once the streamwise and crossflow velocity profiles are calculated by
the above procedure, we compute the velocity profiles u/ue and w/we in
the orthogonal directions x and 2z by the following relationships

u Ug b T
W R (5.6a)
Ue Use Use Ug
u u. u
:‘;‘_= 65_+L_e_ (5.6b)
e Se uSe e

Figure 7 shows a comparison of generated and experimental total velocity
profiles along the line A. As can be seen, the above discussed procedure
for generating the initial velocity profiles from the experimental data is
quite good. This is important for an accurate evaluation of a turbulent
model especially for three-dimensional flows. Here
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Figure 7. Comparison of generated initial total velocity profiles with
Vermeulen's data.

2 2 1/2
%_ _(us +w ) (5.7)
e u +w2

- e

The solution of the boundary-layer equations also requires the specifica-
tion of the metric coefficients and the geodesic curvatures. They are calcu-
lated from the following expression:

1 straight section
e =
1 1 —-z/Ro curved section
h2 = 1.0, K2 =0 (5.8)
( 0 straight section
K -
! 1/(Ro —2) curved section
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A comparison of calculated and experimental values of streamwise momentum

thickness 011 shape factor H]1. skin-friction coefficient Ce and limit-
ing crossflow angle By is shown in figures 8, 9, 10 and 11, respectively,

along the lines B, C, D, E. Here the 1imiting crossflow angle is computed
from
w /u [(u_ /u)g" —f"]
ef
tang = €8 2r e S (5.9)
" + "
(we/ue) (uref/we)gw fw
o DATA o DATA
6 1 1.75
——— PRESENT METHOD ——— PRESENT METHOD
-8 ,_O/E’U—‘O'O/s it }-2.00 c __6)500-
o € O U a0 E
fo——2—% e 175 ° 1.25
0 / R ()
L4 D 0t 8 1.50 o 1.00 +2.00

e ———— G oo o e o o D g 0 " s
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Figure 8. Comparison of computgd Figure 9. Comparison of computed
momentum thickness with shape factor with
Vermeulen's data. Vermeulen's data.
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Figures 12 and 13 show a comparison of calculated and experimental total
velocity profiles and crossflow angle profiles along the lines C and E.
Here the crossflow angle is computed from

WelUp [lUyes/Melg” — '] (5.10)

0/q, (Qy/u,)”

sing =

As in figures 8 through 11, again the agreement between calculated results
and experiment is very good. The computed results follow the trend in the
experimental data well and indicate that the present turbulence model, as in
two-dimensional flows, is quite satisfactory for three-dimensional flows.

5.2 Results for a Double Elliptic Ship Model

To test our method for ship hulls, we have considered two separate hulls.
The first one, which is discussed in this section, is a double elliptic ship
whose hull is given analytically. The second one, which is discussed in
section C, is ship model 5350 which has a rather complex shape. Its hull is
represented section-by-section in tabular form and contains all the features
of most merchant and naval vessels. It proves an excellent test case to study
the computational difficulties associated with real ship hulls.

The double elliptic ship model can be analytically represented by

7= f(x,2) = 8 [1 -(%)2]]/2[} -(é)z]‘/z (5.11)

It has round edges except for the sharp corners at X = +L and 2z = +H. The
body of L:H:B = 1.0:0.125:0.1 together with the nonorthogonal coordinate
nets on the hull is shown in figure 14.

The potential-flow solutions were obtained from the Douglas-Neumann
computer program for three-dimensional flows. To get the solutions, 120 con-
trol elements on the surface were used, 12 along the x-direction and 10 along
the z-direction.

Before we describe our boundary-layer calculations, it is useful to
discuss the pressure distribution for this body shown in figure 15. As can be
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32 1




e PRESENT METHOO

e PRESENT METHO o \DAYA

© Ce
ce R

° DALA

~ PREMINT METHOD
© ° DATA
e PRESENT METHOD

© DATA

Figure 13. Comparison of computed crossflow angle with Vermeulen's
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Figure 14. Three-dimensional picture of double elliptic ship model with
the nonorthogonal coordinate system.
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,

—— 0% seen from the figure, the longitudinal
atbl pressure gradient is initially favorable
in the bow region and then adverse up
to the midpoint of the body. This is
followed by a region of favorable
pressure gradient and then by a sharp
adverse pressure gradient very close to
the stern. The transverse pressure
gradient varies in a more complex
manner. Near the bow the pressure
decreases from the water surface to

a4 minimum and then increases as the
keel is reached. As the flow moves
downstream, the location of the mini-

005 I

0.10

WL = -097

015}

mum pressure moves up and reaches the

Figure 15. Pressure distribution for water surface at about x/L = =0.80. ;

the double-elliptic ship.
The minimum pressure remains at the f

water surface to about x/L = 0.80 and then moves toward the keel. As a
result, near the bow and the stern, one may expect flow reversal of the
transverse profiles while on the remaining major part of the ship hull, the
transverse across the boundary layer does not reverse direction from the keel
to the water surface. This conclusion is drawn from considering the pressure
gradients only. The real situation may be somewhat modified because, in
addition, there are the upstream effects and the curvature effects on the
flow characteristics.

The boundary-layer computation starts with turbulent flow from x/L = -0.90.
We have tried to start the computation from Xx/L = -0.97 and x/L = -0.95.
However, flow separation was observed at x/L = -0.90 near the keel due to
the sharp curvature and adverse pressure gradient in the bow region and can be
seen from figure 15. In the previous calculations of Chang and Patel6 and
Cebeci and Chang7. the flow separation near the bow was not found due to the
orthogonal coordinate system they adopted in which the second net point from
the keel is so far from the keel that the region of adverse pressure gradient
is omitted.
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In our boundary-layer calculations, we have used 40 points along the
x-direction and 16 points along the z-direction. In the normal direction,
we have taken approximately 40 points. The nonuniform grid structure des-
cribed in Cebeci and Bradshaw13 is employed in the normal direction so that
the grid points are concentrated near the wall where the velocity gradients
are large.

Some of the computed results for R = 107 are shown in figures 16 to
18. Figure 16 shows the transverse distributions of the pressure coefficients,
cp, local skin-friction coefficient, Ces the shape factor H]], the
Reynolds number based on the momentum thickness, Re and the limiting cross-
flow angle for x/L = -0.85, -0.50, 0,0, 0.25, 0.50, 0.75. As can be seen from
these figures, the boundary-layer parameters vary greatly near the keel where
the curvatures and the pressure gradients are large and remain almost unchanged
near the water surface where the curvatures and the pressure gradients are
small. Except at x/L = -0,85, the limiting crossflow angle is positive. This
implies that the crossflow near the wall moves from the keel to the free
surface as predicted from the pressure distribution. Figure 17 shows typical
longitudinal and transverse velocity profiles at z = 0.6 for several values

'
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Figure 16. Computed cp. Cg, » Rg and for the double-elliptic ship
model for R =f109]]at (a) x/LB"--v -0.85, (b) x/L = -0.50, (c)
x/L = 0.0, %d) x/L = 0.25, (e) x/L = 0.50, (f) x/L = 0.75.
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Figure 17. Compdted longitudinal and transverse ve}ocity profiles for the
double-elliptic ship model for RL = 10/ at z = 0.6.
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of x/L and figure 18 shows typical
transverse velocity profiles at x/L

= -0.2 -for several values of z. As "
can be seen from figures 17(b) and 18, 12
the transverse velocity component under-

goes drastic changes in the longitudinal P
and transverse directions under the .

=04

influence of pressure gradient and body 3
geometry. As was discussed before,

when the transverse velocity changes ..o.:?;?\\\\\

sign across the boundary layer and con- . N
tains regions of reverse flow, numerical Ho2

instabilities result from integration ¢ * : g p g o
opposed to flow direction unless appro-  °® °% oo o oo om oo oo

priate changes are made in the integra- Figure 18. Computed transverse veloc-

ti d The new nussricsl Bree ity profiles for the double-
b bt - bl elliptic ship model at

cedure of Cebeci and Stewartson handles x/L = -0.2.

this situation very well and does not show any signs of breakdown resulting

from flow reversal of transverse velocity component.

5.3 Results of Ship Model 5350

The ship model 5350, unlike the one discussed in section B, is a realistic
tanker model. The geometry of the hull is so complicated that it is repre-
sented in tabular form section by section. The model possesses all the special
features of existing merchant and naval vessels, that is, a bottom which is
flat and not parallel to the still-water surface and an extended bow completely
submerged under the water surface, and consequently serves as an excellent case
on which to apply our method.

Figure 19 shows a three-dimensional picture of this ship model together
with our nonorthogonal coordinate system. We see from this figure that, as
a by-product of the mapping method discussed earlier, the z=const. coordinate
lines are concentrated in the bow and corner regions where the curvature is
large. Figure 20 shows different cross-sections (indicated by solid lines)
and interpolated values obtained by a cubic-spline method (indicated by
circles) from which the geometric parameters are obtained.
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Figure 19. Three-dimensional view of ship model 5350 with the nonorthogonal
coordinate system.

INPUT SHIP FORM

INTERPOLATION BY CUBIC SPLINE FUNCTION

1

WATER SURFACE
BOW SECTIONS g STERN SECTIONS
0

Figure 20. Body plan for ship model 5350.

The inviscid velocity distribution for the model is obtained by using the
Douglas-Neumann method treating the model as a double ship model. Fiqure 21
shows the pressure distribution for the entire ship and figure 22 shows a
detailed pressure distribution for the bow region. We see from these figures
that the longitudinal pressure gradient near the keel is favorable and later
becomes adverse. The pressure gradient in transverse direction decreases
rapidly from the keel to a minimum value and then increases continuously up to
the free surface. Due to this rapid pressure variation in the bow region,
preliminary boundary-layer calculations showed flow separation and required an
approximate procedure to generate the solutions for x < 22.5m. After that
(x > 22.5m), the three-dimensional boundary-layer calculations were performed

for a given inviscid pressure distribution. The initial conditions at x = 22.5m

were generated by solving the boundary-layer equations in which the z-wise
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Figure 21. Pressure distribution for the entire ship model 5350.

derivatives for a constant z were 06
neglected.

Figures 23 to 25 show some of the
computed results for R = 3 x 108,
Figure 23 shows the variation of cp,
cfs Rg, H11 and g, at the cross-
planes of x = 30m, 60m, 105m, 165m,
210m. Typical streamwise velocity
profiles at x = 105m and z = 0.2
are shown in figure 24 and typical
crossflow velocity profiles at «x
60m are shown in figure 25. As can
be seen from these figures, the cross-
flow velocity profiles show great
variations and indicate clearly the
flow reversal that takes place in

GIRTH, %

x = 75m

A

the crossplanes. This implies that Figure 22. Pressure distribution for

the bow region of ship

differential methods based on two- model 5350.

dimensional and/or small crossflow
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approximations as well as methods

based on integral methods are not
adequate to boundary-layer calcula-
tions on ship hulls. Other interesting
results that emerge from these calcu-
lations are the sudden jumps of the
lTimiting crossflow angle from positive
to negative, and the thickening of the
boundary layer in the corner region of
the crossplanes. The jumps of the
crossflow angle indicates the con-
vergence of the flow from both sides

of the corner region and, hence,
enhances the thickening of the boundary
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layer. This thickening of the boundary .. ... o

layer in the corner region of ship

hulls has been verified experimentally

by Hoffman'®.
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VI. CONCLUDING REMARKS AND FUTURE WORK

According to the studies presented in this paper, the three-dimensional
boundary layers on ship hulls can be computed very efficiently and effectively.
The turbulent model, as in two-dimensional flows, again yields satisfactory
results for three-dimensional flows. This has been demonstrated by Soejima
and Yamazaki]9 who also have applied the present turbulence model to compute
three-dimensional boundary layers on ship hulls. However, there are additional
studies and problem areas that need to be considered and investigated before
the present method can become a more effective tool to design ships. They

are briefly discussed below.

6.1 Generation of Initial Conditions on Arbitrary Bow Configurations

In section 5-3, we presented calculations for the ship model 5350 and
mentioned that due to flow separation in the bow region, we had to start the
boundary-layer calculations at some distance away from the bow. Additional
studies are required to generate the initial conditions on the bow. These
studies can lead to a better design of bow configurations and to better
handling of bilge vortices, which contribute to the total drag of the ship.
However, this is by no means an easy task. Consider, for example, the ship
model 5350 discussed earlier. A sketch of the bulbous nose with a plausible

inviscid streamline distribution is shown in figure 26. We may assume that
A D FREE SURFACE D

Figure 26. Pattern of streamlines near the bow of ship model 5350.
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the ship is symmetrical about the keel plane and there is a nodal attachment
point on the bulbous nose at B. If the ship is floating, then the water

line s determined by conditions of constant pressure and zero normal velocity.

Hence the intersection of the plane of symmetry with the water line at A

is a saddle point with the streamlines of the inviscid flow converging

on A along the line BA and diverging along an orthogonal direction. It
is known that the boundary-layer equations can always be solved at B but
that at A the situation is more complicated and furthermore it is still not
entirely clear what their role is in relation to the general solution. It is
likely, however, that provided no reversed flow occurs at A in the component
of the solution along the direction BA, then separation can be avoided along
this 1ine by appropriate choice of design. Furthermore, if separation does
occur, its effect may be limited. The recently developed Cebeci-Stewartson
procedure however, can be applied to the present problem but there are some
hurdles to be overcome.

0f particular difficulty is the choice of coordinate system on which to
compute the solution and to join it with the already well-established method
downstream of CD. We have seen that in the case of the prolate spheroid
(see Cebeci, Khattab and Stewartsonzo) it is helpful to have a mesh which is
effectively Cartesian near the nose and the methods which were used to produce
it in the earlier study are applicable to any body which can be represented by
a paraboloid of revolution in the neighborhood of the nose. Now here we have
a paraboloid near B but not one of revolution, but we believe that the
necessary generalization is possible. The mesh now has to match with that
which has proved convenient downstream of CD. Again we believe that a smooth
transition can be achieved by building into the mesh sides, right from CBA, an
appropriate spacing such that the points of a uniform mesh on CD are also
points of this mesh although not, of course, at a constant value of one of the
coordinates. Our evidence for this is based on a successful scheme that we
have already worked out for the prolate spheroid, Cebeci, Khattab and
Stewartsonzo.

Other aspects that reed further study include the condition at the water-
line section. It has been usual to assume that the normal velocity is zero at

the undisturbed free surface. This is not quite correct and the error may
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‘ have implications for the nature of the solution near A and especially the
question of separation along BA. Even if separation does occur, it may be
possible to handle the post-separation solution, since it probably extends
only over a limited region of the ship, by means of an interaction theory,
i.e. modifying the inviscid flow by means of a displacement surface.

6.2 Viscous-Inviscid Flow Interaction

The present boundar:'-layer calculations are done for a given pressure
distribution obtained from an inviscid flow theory. In regions where the
boundary-layer thickness is small, the inviscid pressure distribution does

not differ much from the actual one; as a result, the boundary-layer calcula-

tions are satisfactory and agree well with experiment, see for example, the

papers by Cebeci, Kaups and Moser]6 and by Soejima and Yamazaki]g. When the

boundary-layer thickness is large, which is the case near the stern region, i
the effect of viscous flows on the inviscid pressure distribution must be
taken into account. One possible way this can be done is to compute the dis-
placement surface for a given inviscid pressure distribution and iterate.
Such a procedure is absolutely necessary to account for the thickening of the

boundary layer as was observed by Soejima and Yamazaki‘g.

6.3 Prediction of Wake Behind Ship Hulls

The present boundary-layer calculations can be done up to some distance
close to the stern; after that, flow separation occurs. Since one, and
probably the biggest, reason why there is interest in boundary-layer calcula-
tions on ship hulls, is the calculation of drag of the hull, additional
studies should be directed to perform the calculations in the separated region
and in the wake behind the ship. Recent calculation methods developed by
Cebeci and his associates at Douglas for two-dimensional wake flows and for
separated flows by using inverse boundary-layer theory are appropriate for
these purposes.
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APPENDIX A
DESCRIPTION OF THE BOUNDARY-LAYER COMPUTER PROGRAM

This appendix describes in detail the computer program which calculates
three-dimensional boundary layers on arbitrary ship hulls based on the non-
orthogonal coordinate system and the numerical method described in the text.
The computer program consists of two separate subprograms: the GEOMETRY and
BOUNDARY-LAYER subprograms. The GEOMETRY subprogram requires the card input
of the ship hull geometry section by section and the corresponding inviscid
velocity components in a Cartesian coordinate system. It performs the
following functions: (1) smooths the input data by the use of Fourier series
expansion; (2) maps each section defining the ship hull onto a unit circle
and defines the transverse stations, z, for boundary-layer calculations;

(3) computes the geometric parameters, hy, hy, Kj, Ky, Kj2, K37, S1, and o
and the inviscid velocity components along the boundary-layer coordinate
lines. In the steps 2 and 3, numerical interpolation and differentiation are
frequently encountered. These operations are accomplished by the use of the
cubic spline function. Because of the sensitivity of the spline function to
smoothness of data, the input data (which are sections defining the ship hull
and velocity components) have to be fairly smooth; if not,step 1, which is
optional in the program, should be executed. Since the mapping of an
arbitrary section onto a unit circle proceeds clockwise, it is convenient to
use the right-handed Cartesian coordinate system for defining the ship hull.
Hence, data defining each section must be input clockwise from the keel to the
free surface.

The boundary-layer subprogram requires the geometric parameters, hy,
etc., and the inviscid velocity distributions along the boundary-layer
coordinate lines, which are the output of the geometry subprogram and are
stored in tape unit 1. In addition, physical variables and program control
parameters are input to indicate the unit Reynolds number, transition
location, and specify the initial condition and to choose the grid points
across the boundary layer., Details of the input instruction will be described
later. The program logic and structure of the boundary-layer subprogram are
rather complicated; the basic flow chart is shown in Figure A-1.
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The computer program is written in Fortran IV for the IBM 370 system.

When other systems are used to run the program, it is evident that slight

modifications may be required to meet the specific requirements of that

system. Three external units are used in the program for data storage. Unit 1

k (defined as TAPEDT) is used in both the geometry and boundary-layer programs

3 for storing the geometric parameters and freestream velocity distributions
generated from the geometry program. Units 2 and 3 (defined as TAPEGP and
TAPEPF) are exclusively used in the boundary-layer program as direct-access
storage; unit 2 stores the body geometry and freestream velocity distribu-
tions; and unit 3 stores the pressure parameters and boundary-layer profiles. 1
The region size needed to execute the program is about 200K bytes based on ’

| 41 Tongitudinal stations, 29 transverse stations and 61 grid points across

the boundary layer.

The detailed input and output instructions of the program are provided

below.

A-1 Input for the Geometry Program

Card 1 contains the title of the problem under consideration. The input

F i is punched as 80-column alphanumeric field as shown below.

vsz als{el7isfofroftrfralr msw».’;Fozaulzuauz:u:wumr o1 ;,;L\Mﬁor 7‘*’[‘1’«“‘4‘.‘3};'!9
TITLE

..LLL_L_I_L_LJ_.L.L_L.I_LJ__L_I_LL_L_I_LJ—I_J_I_I_/ (111L1L4_41AAJL:4AL1L11

Load Sheet for Card 1

-~

AT —_— o

SR

Card 2 requires the following information to be specified. The input is
? punched in (415) format.

2[3 alslel7lelorofrifaliafiah shaliAiahief2

NXTL NZTL |IMOOTH | IPRINT

P N . LliL PO |
Load Sheet for Card 2

cc 1-5 NXTL total number of the sections defining the ship hull,
3 < NXTL < 41. This is also the maximum x-stations (NX) !
in boundary-layer calculations.




cc 6-10 NZTL maximum transverse stations (NZ) to be used in boundary-
layer calculations, 3 < NZTL < 29,

cc 11-15 IMOOTH this flag controls whether the input data (body geometry g

and freestream velocity distributions) needs to be smoothed
no smoothing of the input data

1 smooth the input data

cc 16-20 IPRINT this flag controls printing of the input data
=0 no printing of the input data
=1 print the input data
Card 3 specifies the fo]]ow1ng information related to the ship hull sections.
The input is in (F10.0, 3I5) format.

\I}I[J alslel7(e]? ‘01!\2‘!11!4\5!01,”]192 lenLqu:q :

X INI IQUAD | IC@RN

T B Y (S I S (A LLE X & V0 T 1 11

Load Sheet for Card 3

cc 1-10 X(I) dimensional Xx-value of Ith cross section of the ship hull,
in feet or meters.

cc 11-15 INI total number of the points on Ith cross section, INI < 29.
This quantity may be different from one section to another.

cc 16-20 IQUAD this flag identifies whether the cross section is completely r
submerged under the water surface or not

1 the cross section is intercepted by the water surface ,

2 the cross section is completely submerged under the 4

water surface

cc 21-25 [ICORN this flag indicates whether the section has trailing-edge
corner point defined in Section III i
0 there is no corner point in the section
1 there are corner points in the section

Card (Set) 4 contains the coordinates of the section and corresponding inviscid
veloc1ty components in Cartesian coordinate systems. The input
is punched in (5F10.0) format. There are INI cards of this type
in each section.

T | | | ¥ ¥ 1
‘|7I3 ale 5!7 (1K iOll!)[lJHl&Hb, ’Lnnwou 21.2]:4151742!!.;;-11?( il'ﬂ?{]."}]d&*!?éb‘;]ﬂlﬂ‘04111‘241"“‘."—‘“6&"’]‘9 (90
YB ZB UE VE WE
O I T ST N | S | ) VI SO S S D | LSO N A NS N I O T ) S YOG P ) A (SR S S . TN . )
Load Sheet for Card 4
-
cc 1-10 YB dimensional y-value of the cross section, in feet or meters.
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cc 11-20 1ZB dimensional z-value of the cross section, in feet or meters.
|
| cc 21-30 UE gondimensiona] inviscid velocity component in x-direction,
! Ug/Upaf-
? cc 31-40 VE nondimensional inviscid velocity component in y-direction,
N Ve/Uref-
3 cc 41-50 WE nondimensional inviscid velocity component in z-direction,
We/Upef-
; It should be noted that Card 3 and Card (Set) 4 have to be input for all
i cross sections (NXTL)
& A-2 Input for the Boundary-Layer Program
‘i’ Card 1 contains the title of the problem under consideration. The input is
d punched as 80-column alphanumeric field as shown below.
g n‘:;; alsie)7isl? wnnInu\suou,‘lnw‘z 7|!7]r2]:41;1r‘:17;e‘:z¢{.1r la}ui«}s&}o@‘ﬁlﬂ‘07"’J«‘];§‘1‘1¥71'E RO
4 TITLE
§34 »L_L.L_‘_IJ_LJ_J—-L‘I_J_I—.L_L_J_L_LLI_LH—LL—J—/ALIILL[[JIJJLLLLI[IIAA
g Load Sheet for Card 1
??1 Card 2 contains the following information to be specified. It is punched
8 in (615) format.
\;YJJ afslel7]e 9]\’)\\1;‘]‘13“1!5“,l%lﬁ?!?]:ﬂ)l];?[?]?l?iJILV.‘:L;{.W
NXT NZT  [NXSTRT NTR NSWCH | JPRINT
| O b - L kb k. } TG - (0T T
; Load Sheet for Card 2.
. cc 1-5 NXT the number of the last x-station (NX) to be calculated,
| 3 < NXT < NXTL
' cc 6-10 NZIT the number of the last z-station (NZ) to be calculated,
3 < NIT < NZTL
cc 11-15 NXSTRT the number of x-station (NX), referred to the geometry
data, where boundary-layer calculations begin.
: cc 16-20 NTR the number of x-station (NX) where turbulent flow calcu-
4 lations begin. For laminar flow only, set NTR > NXT;
5 for turbulent flow only, set NTR = 1. NTR will be over-

q

ridden if laminar separation occurs.
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cc 21-25 NSWCH

cc 26-30 JPRINT

the number of x-station (NX) counted from NXSTRT where
switching to "zigzag" scheme is made. If no switch is
desired, set NSWCH > NXT. If NTR = 1, NSWCH may be
arbitrary depending on the transverse pressure gradient;
if NTR # 1, NSWCH > 3 is recommended.

point interval by which the profiles are printed out. If
JPRINT = 1, the velocity profiles are completely printed
out from the wall to the boundary-layer edge.

l Card 3 contains the following information to be specified. The input is in
; (5F10.0) format.

cc 1-10 ETAE
cc 11-20 VGP

B cc 21-30 DETA(1)

cc 31-40 CNU
cc 41-50 UREF

. ! T T T T R

‘EZIJ ajc|el7ie|9 !0!112!!)|4|5I||¢]:1?11n192 JllﬂI}lth:n}n;ngf ;llfr J:‘L[]_AEJ« »/,J"J;[ JAduu:{nnuﬂabP,T!{ac‘[‘\(‘
ETAE VGP DETA(1) CNU UREF

0 1 S A 1) O e 9 e S 0 T T T V) U S U U 5 (S O () S SN0 O A A TS SIS

Load Sheet for Card 3

transformed boundary-layer thickness, n_ for the first
station. A value of 8 is usually sufficient. For NX > 1,

it is computed internally.

variab1e grid parameter, K > 1.0. For laminar flow,
1.0 is sufficient. For turbulent flow, it is a

function of the Reynolds number, R
initial Anq spacing at the wall. For laminar flow only,

An 0.2 'is suggested. For turbulent flow, it is also
}unctlon of R_,. The suggested K and an; values

for different Reynolds number are provided be1ow
B - W el owE W
K 1.10 1.16 1.20 1.25
An, 0.015 0.01 0.0075 0.0050
kinematic viscosity of the fluid, v, in ftz/sec or m2/sec

reference velocity, Upofs in ft/sec or m/sec.

A-3 Output for the Geometry Program

The output of the geometry program includes the printout of the input
data, the computed geometrical parameters, and the inviscid velocity components

l along the boundary-layer coordinate l1ines. The latter are also stored in
| external store unit (called TAPEDT) and serve as a part of the input data to
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the boundary-layer program, The notation used in printing out the input data
is the same as that used in the input. Therefore, only the meaning of the
calculated geometrical parameters is interpreted here.

I SN BN

NX station number of the x-station
X x-value at NX station
z normalized transverse coordinates in nonorthogonal boundary-layer

4 coordinate system, measured from the keel (z = 0.1) to the free

B surface (z = 1.0)
8 input or interpreted y-value on the ship hull

i 8 input or interpreted z-value on the ship hull

i‘ H1 metric coefficient hjy associated with the coordinate x

i H2 metric coefficient h2 associated with the coordinate z

|
K1 geodesic curvature, K,, of the x-coordinate line i
K2 geodesic curvature, K2, of the z-coordinate line
S1 the physical surface distance Sj measured along the x-coordinate

Tine from the first x-station

K12 geometric parameter, K]2

: K21 geometric parameter, K21

| THETA angle, 6, between the coordinate lines in radian
UE longitudinal velocity component, u,, in the boundary-layer

; coordinates

|

‘ [ WE transverse velocity component, W, in the boundary-layer
; coordinates

CP pressure coefficient, 2(p —-pm)/pui
GIRTH normalized surface distance along z-coordinate line, measured

from the keel to the free surface.

A-4 OQutput for the Boundary-Layer Program

The output of the program includes printout of the geometrical data
passed from the geometry program on external storage unit 1, as well as
tables of boundary-layer profiles and some important boundary-layer parameters.
The notation for the geometrical data is the same as that in the geometry
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program; therefore, only those associated with the boundary-layer parameters
are given below.

1. The Profile Data

J

ETA

us

UN

USE
BETA

point number: profiles are printed from the wall outward. Not
all points are printed and the interval is controlled through
the input variable, JPRINT.

nondimensional boundary-layer variable n.
normal distance from the wall, y, ft or m.

nondimensional velocity in x-direction in the boundary layer,
f' = u/u_.

e
nondimensional velocity in z-direction in the boundary layer,
9' = W/upgg
derivative of U with respect to n, f".

derivative of W with respect to n, g".

velocity component in the boundary layer along the inviscid
streamline direction, Ug.
velocity component in the boundary layer normal to the inviscid
streamline direction, upj.

total velocity at the edge of the boundary layer, Uger

crossflow angle in degree, B, defined as

1

g = tan “n/us |

nondimensional total eddy viscosity, b = 1 + ¢/v 11

2. Boundary-Layer Parameters

CFS

CFN

DLSTS

local skin-friction coefficient in the inviscid streamline
direction, cf¢ = ZTwS/DUSe

local skin-friction coefficient normal to the inviscid
streamline direction, Cfp = ern/puSe

displacement thickness, &*, in feet or meterc, defined as

oo

& = [ (0 = uglugg)dy
0
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THTAS  momentum thickness, e in feet or meters, defined as

0y " Jr us/uSe (1 —'usluse)dy

HS shape factor, Hll = a*/o]]

RTHTA  Reynolds number based on momentum thickness, R = “]]“se/“

Q

CFX local skin-friction coefficient in x-direction,

Sex " 2‘§/°uref

REY Reynolds number, Ry = ugeS/v

CFXB  average skin-friction in x-direction,

cﬁ-( ﬁ‘[cfi dA/A

AREA  total ship hull surface area measured from the starting station

to the current station

DELTA  boundary-layer thickness, &, in feet or meters

il




A-1. BASIC FLOW CHART FOk THE BOUNDARY

(START )

-LAYER PROGRAM

LENITIALIZE VARIABLES, TAPES: READ INPUT

—

DEFINE GRID AND INITIAL PROFILES

YES

|

NTR=1?

GENERATE INITIAL TURBULENT

VELOCITY PROFILES

® WRITE STATION HEADER, SET IT=0 |
[

DETERMINED THE COEFFS TO BE CALCULATED
(LONGITUDINAL, TRANSVERSE, OR GENERAL)

| CALCULATE PRESSURE PARAMETERS |

l
(§> ~ INCREMENT ITERATION COUNT (IT)
t

FOR TURBULENT FLOW, CALCULATE
EDDY VISCOSITY

[

REQUIRED
K

ROWTH

| CALCULATE COEFFICIENTS OF FINITE
DIFFERENCE EQUATIONS

I
SOLVE DIFFERENCE EQUATIONS
FOR VELOCITY PROFILES

HE

NQ

CONVERGENCE
?

YES

DEFINE PROFILES YES “TGROWT
FOR GROWTH, IT=0 '“‘”"““_“<::::;§fQUIRED
[
i3 "

IS LAMINAR
i

FLOW

NZT=NZ-1

OUTPUT AND DEFINE PROFILES
TO DIMENSIONAL FOR FUTURE GROWTH|™

YES |TRANSITION BEGIN

o

o

60




i

STORE

PROFILES AND PRESSURE PARAMETERS

GO TO NEXT LONGITUDINAL
STATION, SET NZ=1

LONGITUDINALWISE

GO TO NEXT TRANSVERSE
STATION

NX=1 YE

NO

SET UP PROFILE GUESS,

RETRIEVE BODY GEOMETRY

b
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