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ABSTRACT

A general method for representing the flow properties In the three-
dimensional boundary layers around ship hulls of arbitrary shape is described .
It makes use of an efficient two-point finite-difference scheme to solve the
boundary-layer equations and incl udes an algebraic eddy-viscosity representa-
tion of the Reynolds-st ress tensor. The numerical method contains novel and
desi rable features and allows the calculation of flows in which the circum-
ferential velocity component contains regions of flow reversal across the
boundary layer. The Inviscid pressure distribution is determined with the
Douglas-Neumann method which , if necessary, can conveniently allow for the
boundary-layer displ acement surface. To allow Its aDplicati on to ships , and
particularly to those with double-elli ptic and flat-bottomed hulls, a non-
orthogonal coordinate system has been developed and is shown to be economical ,
precise and comparatively easy to use. Present calculations relate to zero
Froude nun~er but they can be extended to include the effects of a water wave
and !ocal regions of flow separation which may stem from bulbous-bow geometries.
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PR INC IPAL NOTATION

A Van Driest damping parameter, see (2.18b)
A1 ,A2,A 31A4 constants
Cf local skin-friction coefficient in streamwise direction
C1,C2,C3,C4 constants
f transformed vector potential for ~

,

g transformed vector potential for •
h1,h2 metric coefficients

h~ net spacing in n-direction
boundary-layer shape factor along streamwise direction , 6*/e11

k~ net spacing in x-d irection
K11 K2 geodesic curvatures, see (2.5)

K12,K21 geometric parameters, see (2.6)
L mixing length , see (2.18a), or reference length
m11 m2,...m12 coefficients, see (2,28) or (2.32)
p static pressure
Q total vel ocity in the boundary layer
RX,RL Reynolds numbers, UeSl/v and u,,L/v

Reynolds number, Use~*/v
Re Reynolds number, UseO ll /v
s arc length along coordi nate line
11,12 unit tangent vectors along x and z directions

u,v w  velocity components in the xy,z directions
velocity components in the Cartesian coordinate

velocity components in boundary layer parallel and normal ,
respectively, to external streamli ne
friction velocity, see (2.l8c)
freestream velocity

uref reference velocity
x,y,z nonorthogonal boundary-layer coordinates

Cartesian coordinates
-pu ’v~,-p~’~

T Reynolds stresses

8 crossflow angle
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l imiting crossflow angle
6 boundary-layer thickness

displacement thickness, (1 — us/Use)dy

c eddy viscosity
dimensionl ess eddy viscosity , cm/v

similarity variable for y, see (2.21)

811 momentum thickness, ( u5/us~(l — us/use)dy

dynamic viscosity

kinematic viscosity
p densIty

shear stress
two-component vector potentials , see (2.23)

Subscripts

e boundary-layer edge

s streamwlse di rection
t total value
w wal l
primes denote differentiation with respect to n
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I. INTRODUCTION

A general method for determining the local flow properties and the over-
all drag on ship hulls is very desirable and particulary so with the present
need to conserve energy resources. It is difficult to achieve for a number
of reasons including the turbulent nature of the three-dimensional boundary
l ayer , the complexity and wide range of geometrical confi gurations employed ,
the possibility of local regions of separated flow and the existence of the
free surface. In addition , and although these difficulties may be overcome
in total or in part, the resulting calculation method must have the essential
features of generality , efficiency and accuracy.

The purpose of this report is to describe a general method which is
capable of representing the flow properties in the boundary layer around

• ship hulls of arbitrary shape . It is based on the general method of Cebeci, - -

Kaups and Ramsey1 , developed for calculating three-dimensional , compressible
laminar and turbulent boundary layers on arbitrary wings and previously
proved to satisfy the requirements of numerical economy and precision . To
allow its application to ships in general , and to double—elli ptic and flat—
bottomed hulls in particular , an appropriate coordinate system has been
developed. Previously described coordinate systems, for example a streamline
system such as that of u n  and Hal l 2 or the orthogonal arrangement of Mi loh
and Patel3 are limited In their applicability and the present nonorthogonal
arrangement is similar to that of Cebeci , Kaups and Ramsey1 .

• The numerical procedure for solv 4nq the three-dimensional boundary-layer
equati ons makes use of Keller ’s two-point finite-difference met hod4 and Cebeci
and Stewartson ’s procedure in computing flows in which the transverse velocity
component contains regions of reverse flow . This is in contrast to previous
investigations , for example those of Lin and Hall 2 and Gadd5 wh i ch are limi ted
either to zero crossflow or to a unidirectional and small crossflow . It is
also in contrast to the previous methods of Chang and Patel6 and Cebeci and
Chang7 which did not have a good and reliable procedure for com ;uting the flow
in which the transverse velocity component contained flow reversal .
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In representing turbulent fl ow by time-averaged equations , a turbulence
model is required and an algebraic eddy-viscosity formulation , similar to that
of Cebeci , Kaups and Ramsey 1, is used . This is in contrast to the two -
equation approach which Rastogi and Rodi 8 have applied to three-dimensional
boundary l ayers and which , in principle , should be better able to represent
flows which are far from equilibri um . The previous comparisons presented in
Cebeci 9’10 demonstrated that the present eddy-viscosity model allow s excellent
agreement between measurements and calculations but did not include comparison
wi th the three-dimensional boundary-layer measurements of Vermeulen~~. Since
this data includes a strongly adverse-pressure gradient case which allows a
stringent test of the present model , corresponding calculations and compari-
sons are reported.

The calculation method is described in detail in the following section
which states the three-dimensional boundary-la yer equations in curvilinea r
nonorthogonal coordinates and describes and discusses the required initial
conditions , turbul ence model and transformations in separate subsections. p
Section 3 is devoted to the coordinate system which is an essential feature
of the present method. The numerical method is discussed briefly in section 4
and calculated results are presented in section 5 which includes comparisons
with the measurements of Vermeulen~ and demonstrations of the ability of the
method to represent the geometry of different hull configurati ons and to result
in realistic velocity and drag characteristics. SunTnary conclusions are pre-
sented in section 6. Finally, in A ppendix A we present a description of the
computer program.
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II. BASIC EQUATIONS

2.1 The Boundary-Layer Equation s

The governing boundary-layer equations for three-dimensional incompres-

sible laminar and turbulent flows In a curvilinear nonorthogonal coordinate
system are given by:

Cont inu ity Eq uation

~~~~~~ (uh~ sine) ~ ~
-
~j  

(wh 1 s i n e ) + ~~~~~ (vh 1h~ sino) 0 (2.1)

x-Momentuni Equation

U ~U W •~~U 2+ ii— ~~
-
~
- f v ~~~~~ 

- K 1 u ’ cot~ + K2w csc o + K 12uw

= - 
csc ’ u 

+ ~~~ 
csc o 

~~ (P.)+ ~~~ - (2 .2)

z-Momentum Equation

- . 

*~- ~~~~~ 

+ 
~~

—. 
~~~~~ 

+ v - K2w 7coto  + K1 u
2csc o + K21 uw

— 
COt (~ cscO ~ IP \ csc ’o ~ ~ ~w- 

~ 
- h2 ~~

_ (~) ) + __
(v 

~
y - v w~) 

(2.3)

Here h1 and h2 are the metric coefficients and they are, In general , ~unc-

tions of x and z; that is ,

= h1 (x,z); h2 = h2 (x ,z) (2.4)

Also, e represents the angle between the coordinates x and z. The param-

eters K1 and K2 are known as the geodesic curvatures of the curves

z = const and x = const, respectively. They are given by

1K1 h 1h2 ~T~o [
~ 

(h., case) - 
(2.5)

I r1(2 h1 h2 s1i~ ~~ 
th1 coso )  - .;ç~z:
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The parameters 
~l2 

and K21 are defined by

~l2 = 

~~~ [~(~i 
+ 

~~

_- 

~
) + cos e (Kz + . (2.6a)

K21 = 

~~~~ [_ (K2 + + ~~~ (Kl + 

~
-
~~

] (2.6b )

Far an orthogonal system e = ir/2 and the parameters I(i~ 
K2, K12 and K ,1,

reduce to

1 1 — 1 2 (2 7)K1 = - 

~i1h2 
‘ 2 - - W1j ~~~

K12 = - K1 K21 
= - 

~2 (2.8)

At the edge of the boundary layer , (2.2) and (2.3) reduce to

u au w au
.
1
1 + 

~~~~~ ~~~ 
- K1 

u~ cote + K2 We 
csc e + K12 UeW e

= - 
csc2e a (P\  + 

cot e csc e i._ (~.\ (2.9)
h1 ax ‘~e i  h2 az ~p/

u aw w aw• 
+ . - K2 w~ cot e + K1 U

c 
CSC O + ‘~21 U

e
W

e

- cot e ~~~ a (P\ csc 2o a (2.10)
- h1 ~~~~~ ~Z ~p/

The boundary conditions for equations (2.1) and (2.3) are:

y = 0 : U, V ,W = o (2.11a)

y = : u = u(x ,z), w = w (x ,z) (2.llb)

2.2 Initial Condltions

The solution of the system given ...y (2.1) to (2.3), subject to (2.11),

requires initial conditions on two planes intersecting the body along coordi nate

4
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lines . In general , the constructi on of these initial conditions for three-
dimensional flows on arbitrary bodies such as shi p hulls is difficult due to
the variety of bow shapes which may be extensive and compl icated. For this
reason , assumptions are necessary for them in order to start the calculations .

In our study we choose the inviscid dividing streaihllne on which
• 1 ap/az = 0 to be one of the Initial data line (see figure 1). In the case

H
INITIAL CONDITIONS ON
A CROSS SECTION (x

-fUE SURFACE

*

INITIAL CONDITIONS (z - 0) ON
THE PLANE OF SYMMETRY

Figure 1. The nonorthogonal coordinate system and the initial data lines
for the ship hull.

of a rectilinear motion of a ship, this streamline runs along the pl ane of
syninetry . Because of syninetry conditions w and ap/az are zero on this
line causing (2.3) to become singular. However, differentiation with respect
to z yields a nonsingular equation . After performing the necessary differ-
entiation for the z-momentum equation and taking advanta~~ of appropriate
syn netry conditions , we can write the so-called longitudinal attachment-line
equations as:

Continuity Equation

f~- 
(uh2 sine) + h1. sinew 2 + . (v h 1h2 sine) = 0 (2 .12)
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x-Momentum Equation

+ ~ - cot ~ 
= 

~~~~~ ~~~ 
- 

~~ 
cot 0 + .~~

_. 
(v
!! !. ..,JVT)

(2.13)

z-Momentum Equati on
aw w 2 3w

U Z~~ ~~~~ Z + K uw
• 1i~~ax li~ ay 21 z

= 
Ue 3 ze ~

4ze + K21 uewze + ~~~~~~ - (w ’v ’12) (2.14)

• where w
~ 

= ~w/9z and (w
~~
’]
~ 

= a/ az (w ’~ ’) . These equations are subject

to the follow ing boundary conditions :

y = 0  : u v w ~~~ O (2.15a )

y = 6 : U = U~~ w
~ 

= Wze (2.15b )

The other initi al data should be selected near the bow of the ship along

• some x = const. coordinate line (see figure 1). However, because of

the variety of possible bow shapes , approximations are necessary . For a

simple , smooth bow section , where curvatures are smal l and no separation is

• expected , the flow along the initial line can be successfully assumed to be

two-dimensional without pressure gradient, and the governing two-dimensional

• equations for a flat plate are solved. However, for most general merchant

ships , the bow section is complicated and flow separation and reattachment

are expected because of large curvature variations and adverse pressure

gradients; as a consequence, the boundary-layer calculati ons can only

be performed downstream of the reattachment line (or point) where turbulent

flow is presumed (since it is unlikely that the flow remains laminar after

separation and reattachment with high Reynolds number). Generation of the

initial data for turbulent flows is much more involved if there are no

6
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experimental data availab le. It requires sound mathematical and physical
judgment and tedious trial-and-error efforts . We shall discuss this aspect
of the problem later in the report.

2.3 Turbulence Model

For turbulent f lows , It is necessary to make closure assumptions for the
Reynolds stresses, -pu~v~ and -p~ ’~~~. In our study, we satisfy the require-
ment by using the eddy-viscosity concept and relate the Reynolds stresses to
the mean velocity profiles by

_
~wr 

aw (2.16)—

may ‘ 
£m 3 y

We use the eddy-viscosity formulation of Cebeci9, and define cm by two
separate formulas . In the inner region , cm is defined as

3u (2.17)= L2I(~L~
2

+ 
(
~w)2 + 2 cos e (~v)(~

• where

(2.18a )L = 0 .4  y [1 - exp(-y/A) ]

= (~~) 
½ 

(2.l8b )A = 2 6
T ’ pt .

1½
au\ (3w\ ITtw = ~[(~ + (~~\2 + 2 cose (~)~i~ j (2.18c )

w

In the outer region Cm is defined by the following formula

= 0.0168 I J (ute 
- Ut) dy (2.19)

1 0

where
I

Ute = (u 2 + w 2 + 2u w coseJ~ (2.20a )e e ee

• 
7
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A

= (u 2 + w 2 + 2tkI cose) ½ (2.20b )

The inner and outer regions are established by the continuity of the eddy-

viscosity formula.

2.4 Transfo rmation of the Basic Equations

The boundary-layer equations can be solved either in physical coordinates

or in transformed coordinates . Each coordinate system has its own advantage.
In three-dimensional flows , the computer time and storage required is an
important factor. The transformed coordinates are then favored because the

coordinates allow larger steps to be taken in the longitudinal and transverse

directions .

We define the transformed coordinates by -- 
-

x = x , z = z , dii (_
~

_) dy, S
1 ,)fhldx (2.21 )

and introduce a two-component vector potential such that

uh2 sin e = 
~4~- , 

wh 1 sine 
= (2.22a)

vh 1h2 sin e 
= - (

~ 
+ (2.22b )

where ~ and • are defined by

* = (v s 1 ue )
~ 

h2 sin e f ( x ,z ,n) (2.23e )

• = (vs 1 ue )½ Uref/Ue h1 sine g(x,z,n) (2.23b)

and Uref is some reference velocity.

Using these transformations and the relations given by (2.9), (2.10) and

(2.11), we can write the x-momentum and z-momentum equations for the general
case as

8
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x-Monientum

(bf”)’ + m1ff” - m2(
f’)2 - m5f’g

’ + m6f”g - m8(g
’)2 + m11

- f “ + m7 (~‘ ~~~ 
— fH (2.24)

z-Momentum

(bg”)’ + m1fg ” - m4
fs g s 

- m3(g’)2 + in6 gg ” - m9(f’)2 +

• 

= m10(f ’ .
~ -- - g” ~1)+ m

7(~
’ ~~~~~-- - g” (2.25)

and their boundary conditions as

= 0:  f = f ’  = g = g ’ = 0 ; ii = 
~~~~, 

f’ = 1 , 9 ’ = we/Uref (2.26)

Here primes denote differentiation with respect to n, and

f ’ =
~~~~

— , g ’ = -
~~~

---—
, b = 1  ~~~~~ , c~~=~~~ (2.27)

Ue uref

The coefficients m1 to m 12 are given by

= 

~~~ 
~~~ 

~~e) + h1h2 sine 
~ (h2 sine)

m2 = ~~ —~~— — s 1K1 cot o , m~ = — S
1 K2 

—
~~~~~

- cote

in = K = 

S i 
Uref 3U

e + K 
Uref

4 ~i 21 m5 h2 Ue
2 

~~~~~~~~ 
S

1 12 tI
e

(2.28)

1)16 = 

~~
:
~~

n0 
~~~~~ 

}j- 

~~~~ 

h1 sin e 
Ur:f

)

= 

~~~ 

in8 
= s11(2 (_~ c) csc e

Ue Si
m9 = 

~ l~~1 csce ‘ 
in10 =

m11 
= in

2 
+ m5 Uref 8 

(

~~~~~
)2 

1

~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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m9

To transform the longitudinal attachment-line flow equations and the
boundary conditions , we use the transformed coordinates given by (2.21) and
define the two-component vector potential by

uh2 sine = , w~h~ sine =

(2.29)

vh 1h2 sine = - ~~~~ +

wi th • and i~ still given by (2.23). Wi th these variables , the longitudinal
attachment-line equations in the transformed coordinates can be written as

(bf”j’ + m 1ff” - m2 ( f ’ ) 2  + m6f” g + in11 
= j~!~(f ‘ - f’ (2.30)

(bg”)’  + m 1g ”f - m4 f ’ g ’ - m3 (g ’ ) 2  + m6gg” - m9(f’)2 +

~~~~~~~~~~~~~~~~ ~~~~~~ 231ax ax

The boundary conditions and the coefficients in
1 to m12 are the same as i n

(2.26) and in (2.28) except now

w
• • ref

S u_ l  ref m6 -m 3

m9 
= 0 , m11 = m 2 (2.32)

— /W ze_\2 + 
Wze + ~l 1 3W em12 

- 1)1
3 

~~~~~~~~~~~~~~ 

m4 Uref ~~ 
1
~ref ~

In terms of the transformed variables , the algebraic eddy-viscosity
formulas as given by (2.17) to (2.20) become

(cm)l = LL. ~2[1 - exp (_~~ 2~ fh1 )
2
+(_!!.t ) (g”)

2
+ 2 cose 

Ur:f f h1 g 1~~½ 
(2.~ 3)

10 •
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(cm)o 
= 0.0168 ~~~ + ( w )

2 
+ 2(i) ]½

~ri~ 

- [ (f i  )
2 

+(~.!~.!)
2

(g ’ )
2 

+ 2 
~~~~~~~~~~ 

cose f 1
~~1] 

½~

Here R
~ 

= UeSl/V and

= 

~~~~~~~~ ~, [(f~~ + 
(
~i~~f )

2

(g u ) 2  + 2 cose 
U

f fII
gn]¼
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11



• ~~~~~~

— -------

• 1I

• III. COORDINAT E SYSTEM

Since , in general , a ship hull is a complicated nondevelopable surface,
a Cartesian coordinate system is not suitable for boundary-layer calculations.
Most existing merchant and naval vessels possess the following features: a
flat bottom t~~ 

= f(~~,~~) is not a single-valued function]; a bottom which
is not parallel to the water surface; and a bow which has a submerged bulb
extending toward the origin. In addition , the prob lem is further complicated
by the existence of a free surface, corresponding to the water level of a
partly-submerged hull. The chosen coordinate system must be sufficiently
general to allow these various features to be represented in the boundary -
layer calculat ions.

The streaml i ne coordinate system is superficially attractive but the
determination of the streamlines , the orthogonal lines , and the associated
geometr i cal parameters requ i res cons iderab l e effo rt. They are de pendent on
the Froude number , and also on the Reynolds number if the displacement effect
is taken into accoun t. Consequen tly, and in additi on to being hard to compute,
this coordinate system becomes uneconomi cal to use when the effect of the
Froude number and the Reynolds number are to be systematically examined .

A desirable requirement of a coordinate system for the boundary-layer
calcul ations , Is that it be calculated only once. MIloh and Patel 3 proposed
an orthogonal coordinate system which depends only on the body geometry and
is calculated once and for all. This coordinate system has been applied by
Chang and Patel 6 to boundary-layer calculations on two simple ship hulls:
ellipsoid and double elliptic ship. One of the coordinates is taken as lines
of x = = constant and the other as z(~,~ ) = cons tant, which is ortho-
gonal to x = cons tant l ines ever ywhere on the s hip hull , and is obtained
from the soluti on of the differential equation

d~~ ~~~
~~~~~~ + f ~ 

( .1)
dx

Here ~ = f(~,~) defines the ship hul l , and ~~~~ denote the Cartesian
coordinates. The major advantage of this coordinate system is Its simplicity .
Because one of the coordinates is subject to the condition (3.1), there is no

12
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guarantee that the boundaries of the ship hull are coincident with the coord-
m a te lines . Furthermore, for a ship with flat bottom for which ~ =
is not a single-val ued function , one of the coordinates cannot be calculated
from (3.1). The coordinate system is limited , therefore, to some special
geometries only.

In this study we adopt a nonorthogonal ~.oordinate system similar to that
k developed by Cebeci , Kau ps and Ramsey1 for arbitrary wings. It is based on

body geometries only and , hence , it is cal culated once and for all. In
addition , the system can deal wi th the peculiar features of most merchant and
naval vessels discussed previously. The details of this coordinate system are

~~~ribed briefly in the following paragraph.

Now consider the ship hull as given in the usual Cartesian coordinate
system; that is , ~ along the ship axis, ~ and i in the cross pl ane (see
fIgure 1). We select x = = constant as one of the coordinates and the
other coordinate z lies in the ~~-plane. Because the coordinate system is
nonor thogonal , we are free to select the val ues of z in the plane to satisfy
the condition that the boundary lines of the ship hul l are coinci dent with
z = constant coordinate lines. There are several ways of defining the z—values .
Here z is determined by mapping each ~ crosspl ane into a half or full
unit circle depending on whether the crossplane intercepts the free surface
or is compl etely submerged . The polar angle , normal ized by n or 2ff on the
unit circle , is taken as z-values . The z-values then range from 0 to 1 on
each crossplane. The advantage of the mapping method is that equi-interval ,
z=constant coordinate lines are automati cally concentrated in the region of
large curvature where the boundary-layer characteristics are expected to
vary greatly. Hence the number of z=constant coordinate lines can be reduced
wi thout loss of accuracy.

There are several methods available for the mapping of an arbitrary body
onto a unit circle. Here we use the numerical mapping method devel oped by
Halsey12. It makes ful l use of Fast Fourier Transform techniques and has no
restrictions on the shape of the body to be mapped . To map a smooth cross-
plane onto a unit c i rcl e, the procedure i s fai rl y easy . If there are inner
corner points , or trailing-edge and leading-edge corner points (see figure 2)
caused by the reflection of the crossplane , they must be removed before mapping 

• • ~• •~~
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/ \~,.—REF LECTION OVER W.L.
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/
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/ \ CORNER POINT

2R:~ R~NT
Figure 2. Notation of corner points used in the mappinq orocedure .

is performed to improve numerical accuracy and to provide rapid convergence .
The inner corner points are rounded off by using Fourier series expansion ¶
techni que and the leading-edge and/or trailing-edge corner points and removed
by using the Ka rman-Trefftz mapping . For details see Halsey 12 .

To use the mapp ing method to find the coordinate system , i t  is only

necessary to define the ship hull as a family of points in the x=constant
planes , to locate the intersecti on of the ship hull and the free surface ,
and to indicate whether c.orner points exist. The data in each plane is then
mapped into a unit circle as vs z and ~ vs z and interpolated for
constant values of z. Another set of spline fits in the planes z=constant
for ~ vs x and ~ vs x compl etes the definition of the coordinate system.
The lines formed by the intersection of the planes x=constant and z=constant
wi th the hul l constitute the nonorthogonal coordinate net on the surface , and
the th ird boundary-layer coordinate is taken as the distance normal to the
surface in accordance wi th first-order boundary-layer approximation .

Since the spline-fitting also yields derivatives , the metric coefficient
and the geodesic curvatures of the coordinate lines can be calculated from
the formulas given below .
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The metric coefficients:

h~ = I + (a): + (u): 
• 

(3.2a)

h
2 

= (~~~\
2 

+ (3.2b )
2 \ az /~ ~J’z/ ,~

The angle between the coordinate lines :

cose = + 

~z~~~x] (3 .3)

The geodesic curvature of the z=constant line

K~ = 
h
~
h2 sine ~[(~ )( .~i) 

~~~~~~ 
•
~i~

• -

~~~~~
)X (

~~~~
)Z ~~~~~

)
X
(
~~~~~

) Z]~ 

3.4)

The geodesic curvature of the x=constant line

K2 = 

h i h~ 
sine [(

~~~ X~~~~~z 
-(

~
)
~~~][(~~~~

- 
~~~~)] 

(3.5)

The other parameters K12 and K21 are calculated from (2.6). It may be
noted that K1 and K2 can also be obtained from (2.5) . This provides a
check on the expressions given by (3.4) and (3.5).

In boundary—layer cal culations , we need the inviscid veloc ity compon-
ents along the surface coordinates . Let be the total velocity vector on
the hul l , ~~~~ the corresponding velocity components in the Cartesian
coordinates , and (ue, we) in the adopted surface coordinates. As can be
seen from figure 3,

+ +V . t — cose V
Ue = 1 

2 
2 (3 .6)

sin 0
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2

Li

- - t
i 

COS0
We = 

2 
( 3 . 7 )

sin 0

Ii /~
Figure 3. Resolution of the velocity components .

Here and 12 are the unit tangent vectors along x ar.d z coordinates
and are given by

= ~~~ + 
(4)

Z 
~ 

+ 
(
~~~~

)
~ 
k] (3.8)

t2 = + 

~~ ~1 (3.9)

Wi th the definition of V and with the use of (3.8) and (3.9), equations

(3.6) and (3.7) can be wri tten as

ue = 

~~~~~~ ~{u 
+ v (~~ ) + w (~~)j~ - - ~~~~~ [v(~~~ + w (~f)j } 

3.10

We = _____ + 

~
(
~) ] — ~~~~~ 

[
~ 

+ + (3.11)
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IV . NUMERICAL METHOD

We use the Box method to solve the boundary-laye r equations given In
Section II. This Is a two-point finite-diffe rence method developed by Keller
and Cebeci . This method has been applied to two-dimensional flows as well as
three-dimensional flows and has been found to be efficient and accurate.
Descriptions of this method have been presented in a series of papers and

• reports and a detai led presentat ion Is conta ine d in a recent book by Cebeci
and Bradshaw 13 .

In using this numerical method , or any other method , care must be taken
in obtaining sol utions of the equations when the transverse velocity compon-
ent w contains regions of flow reversal. Such change in w-profiles will
lead to numerical instabilities resulting from integration opposed to the
flow direction unless appropriate changes are made In the integration pro-
cedure . Here we use the procedure developed by Cebeci and Stewartson . In
this new and very powerful procedure , which follows the characteristics of
the locally plane flow , the direction of w at each grid point across the
boundary l ayer is checked and difference equations are written accordingly.
At each point to be calculated , the backward characteristics which determine

• • the domain of dependence , are computed from the local values of the velocity .
Since the characteristic must be determined as part of the solution , in the

calculation procedure a Newton i teration process Is used to correctly deter-
mine the exact shape of the domain of dependence.

To illustrate the basic numerical method , we shall at first consider the
solution of the longitudinal attachment-line equations (2.30) and (2.31) and
then the solution of the full three-dimensional flow equations are given by
(2.24) and (2.25). We shall not discuss the Cebeci-Stewartson procedure for
computing three-dimensional flows with the transverse velocity , w , con-
taining flow reversal since that procedure will be fully described in a forth-
coming paper.

4.1 Difference Equations for the Longitudinal Attachment-Line Equations

According to the Box method , we first reduce the equations (2.30), (2.31),
(2.32) and (2.26) into a system of five fi rst-order equations by introducing
new dependent variables u (x ,z,n), v(x ,z,n), w(x ,z,n), t(x,z,n) and o (x,z,n).
Equations (2.30 ) and (2.31 ) can then be written as

17
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u s = v (4. la)

t (4.lb)

(by)’ ÷ uv — m 2u2 
+ m11 = m10 u ~~~~~- (4.lc)

(bt)’ + ot — m 4uw — m 3w2 — m gu2 
+ in12 = in10 u (4.ld)

0 ’ = m1u + m6w + m10 (4.le)

• The boundary conditions (26) and (32 ) become
= 0: u = w = e = 0

(4.2)
u = 1 , W = W ze/U ref

• We next consider the net rectangle shown in figure 4 and denote the net

• points by

x0 - 0  X n Xf l l + k n n = l , 2 , ..., N

no 
= ci

,) 
+ h,j j = 1 , 2 , . . . ,

P P
— —  ____ _4 1

— — — — — —  - - — — — - -

— _ _ _  

P3 
~ 

P2 
—

~~ ~n— 1/2
~
“ 

~n—i ~~

FIgure 4. Net rectangle for the longitudinal attachment-line equations.

We approxima te the quantities (u,v ,g,t,o) at points (x~~n~) of the

net by funtions denoted by (u~, v~, w~, t~, es). We also employ the notation

for points and quantities mi dway between net points and for ~~ net function s~:

18
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1 1Xn_ l /2 = ~~~~ + x~ _ 1 ] flj _ 1/2 = 
~~ (n~ +

F (4. 3)
5n-l /2 = 

~~ (s~ + s~~~) sJ_ 1, 2 = ~~ (s~ +

The difference equations which are to approximate (4.1) are formulated by
considering one mesh rectangle as in figure 4. We approximate (4.la ,b)

• using centered difference quotients and average them about the midpoint
(x n~

nj _ l/ 2 ) of the segment Ph 1’2.

h~
1 (u~ 

— u~~1 ) = ~~~~~ (4.4a)

h~~(w~ —w ~~1 ) = t~~~1,2 
(4.4b)

Similarly, (4.lc ,d ,e) are approximated by centering them about the mi dpoint
(x~..1/2~n~_1/2) of the rectangle P1 P2P3P4. This gives

h 1 [(bv)~ — (bv )~~1] + ( ov)
~~i,2 

— (m~ + ctn
)( u2)~~l/2 = ~~~~~ — m~~ 

(4.4c)

h;
1[(bt)~ - (b t ) ~~~1

] + (ot )~~112 - (m~ + 
~fl

) ( uw )
~~l f 2  

_ m
~(w 2 )~~h/2

• n, 2.,n r n-i n n-l n , n-i n• in
9 ’~U ‘j -1/2 + clriLW j  112u~_ 112 _ u

1 1/2 wj_ 112 J = ~~~~~ — i n12

(4. 4d)

h~~(o~ 0
~_i ) — (m~ + 2a~~)U~ 1/2 

m6w~ 1/2 = Tj l/2 (4.4e)

Here

= 
~fl

( u ) j i,2 - 1h~~~
(bv)

~~ 
- (bv)~~~] + (ev )

~~~,2

• 
_ m

~
_1 (u2)~1,2 + m!~~

1
~ (4.5a)

= -a
fl

(
~~~

)
~~:~~,2 

— 

~h [(bt)~~ — (bt)~~~] + (et)~:~,2
_

m?2
1 _m

~~
’(uw )

~1,2

_ m ~~
l w2~

ti
~ _ m ~~

1 u2~’~
1 ~ (4.5b )

3 ‘ ‘j-l/2 9 ‘ ‘j_l/2~
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~~ f~~~
•—.w 

~~~

T~~~,2 = -2
~fl

u
~~~,2 h ( u ~~ - o

~~~
) - r n) 

~j i / 2 i n W ,2~ 
(4.5c )

• ~~ 

n-l/2
= x ~-

°x (4 .5d )
n n-i

4.2 Difference Equations for the Full Three-Dimensional Equations

The difference equations for the full three-dimensional equations , as
given by (2.24) and (2.25), are again expressed in terms of a first-order

• system. Wi th the definitions given by (4.la) and (4.lb), they are written
as

(by ) ’  + Uv — Ifl
2

U — m5uw ~ 8
W + J1)~~ = m10 U ~~~~

- + m7 w (4.6a )

(bt ) ’  + Ot — in
4
UW — 111

3
W flI

9
U

2 + 11112 = 1
~lO U + 111

7 W (4.6b )

0 ’ = m1u + m6w + ui~~ ~~~~~ + 111
7 

(4.6c )

Their boundary conditions, (2.26 ) become :

= 0: u = w = 0 = 0 (4.7a)

e~~ U 1 , w = W / U
ref 

(4.7b)

The difference equations for (4.la) and (4.lb) are the same as those
qi ven by (4.4a) and (4.4b): they are written for the midpoint (x n~ 

z1 ,

of the net cube shown in figure 5; that is

h~
1 (u~’

1 — u~’~) = v
J 1,2~ 

hT i(w~~
1 — w ~ ’~ ) = ~~~~~~~ (4 .8)

The difference equations whcih are to approximate (4.6a ,b ,c) are rather
lengthy . To illustrate the difference equations for these three equations ,

we consider the following model equati on

(by) ’ + ev + in11 = m10 U }
~

- +  m7W -~~ (4 .9 )
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H
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Figure 5. Net cube for the difference equations for three-dimensional
flows. w3 

> 0.

The difference equations for (4.9) are: - -
•

+ 
~-~~~j -1/2 + (~ 11 )~H~”~ 

— —

— ~n-l/2 
— 

U~ — tl~~~ 
+ ~ )n_ l/ 2  U. — U 1 1

- (m10 ,1 112 
u
H12 

—h-- - — 1.1117 1-1/2 j-1/2 r1
(4.lC)

Here , for exampl e

= 
~~
- (v~~’~ + vhi 1 t 1  + y

~
u 1
~~

l + ~fl_ lIi)

= ~ (u~~’~ + ~~~~~~ + u~~’~ + u~~’~~~
1
) (4.11)

= ~- (u~~’~ + u~~
1 ’’ + u~~

’
~ +

and

n-l/2
i— l /2 = ~- [(m~1 

) ‘? + (in11 ~~ + (m11 
)?_ 1 + (11111 )?~ ]

(4.12)
2
0 

= 0 z
1 

= 21_ i + r1 I = 1 , 2 , . . . ,  I

4.3 Solution of the Difference Equati ons

The di fference equations (4.4) for the longitudina l attachment-line flow

and the difference equations for (4.6) are nonlinear algebraic equati ons. We

use Newton ’s method to lineari ze them and then solve the resulting linear

21
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system by the block-elimi nation method discussed by Keller 14 . A brief descri p-
tion of it will be given for the longitudinal attachment-line equations.

Using Newton ’s method, the lineari zed difference equations for the system
given by (4.4) are:

— 6u~~1 — ~~~ (~v~ + ov 1 1 ) = (r 1 ~ 
(4. 13a)

6w
1 
—6w

1 1  
—~~ - (~ t~ + 6t 11 ) = (r

2)1 
(4.13b)

+ (c 2 )6v~_ 1 + (~3 )~ su 1 
+ (c4)16e1.~1 +

+ (c 6 )
16u1_ 1 = (r

3)1 
(4.l3c)

+ (8 2 )~6t 1_ 1 + (~3 )
J 6O J + (a4)1

6o1_ 1 + (8 5 )
1~w1

+ (86 )~6w1_ 1 + (87)1
6u
1 
+ (88)1

6u1_ 1 
= (r

4)~ 
(4 . l3d )

(
~l

)j 60 J + (a2 )
1601..1 + (ci3 )

15u1 + (a4)1
6u1.1 

+ (a5)1~
w
1

+ (a6)~
6w

1 1  
= (r

5)1 
(4.l3e)

Here we have dropped the superscripts n, i and have defined (rk)j ,  
~ k~j’and 

~‘k~j 
by

r1 
= Uj.1 — U

1 
+ h

J
v1.1/2 (4.l4a)

= w~~1 — W i 
+ h

1t11~,2 (4.l4b )

(r3)1 = ~~~~~ — m11 — [(bv)~ 1,~2 + 
~°~~j -l/2 — (m2 + an )(U 2 )j ..l/2] (4.14c )

(r 4 )
1 

= S~~~~1~ — i n12 — [(bt)~~1/2 + (o t)
1 1/2 

— (in
4 

+ 
~n~~~~j-1/2

-m 3 (w 2 )
1 112 

_ m
9 (u2 )~ 1/2 + c1~ (W~ 1/2 U

j 1/2 
— U

~~~1/2
W
j 1/2 f l (4 l4d )
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(r 5 )1 
= T

j 1/2 
— [6

~~~l,2 
— 

~~~~~ 
+ 2~~)u

1 1/2 — m5w3 112] (4.14e)

= ~~~- +  ~~~ (4.l5a)

= _
~~ J~+ ~~0J~~ (4.l5b)

(
~3 )j = ~- v~ 

(4. 15c)

= v11  
(4.lsd)

(c 5 )
1 

= — (in
2 

+ 
~n)uj 

(4.15e)

~~~~ 
= — (in2 

+ ~~)u
1 1  

(4. l5f)

= 
~~l~~j  

(4.l6a)

- ~~2~ j  
= 

~~2~ j  
(4.l6b)

(
~3)j = ~~ t

1 
(4.16c )

• (
~4 )j = 

~~ t1 1  
(4.l6d)

• (
~5)j  = —

~~~
- (in

4 
+ CtnJILj  — m 3w1 ~~~~~~~~~~~ 

(4.16e )

(8 6 )j = —
~~~~~ 

(m4 + a~ )u1..1 ~~m3w~_1 —~ - c t~u~~~,2 4.16f

= —
~~~~ (m

4 
+ a~ )w

1 
— m 9u1 

+ ~~~~~~~~~ (4.16g)

(B 8)1 
= —

~~~~~ 
(m4 + an~~j~l ~~ 9uj 1 + ~~~~~~~~ (4.16h)

(4.17a )
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- = (4. l7b )
3 1

(03 )j = — }  (in
1 

+ 2cm ) (4. 17c )

= —
~~ - (in

1 
+ 2cz~) (4. 17d)

= —~~~m~ (4.17e)

= —1- m (4.l7f)
2 6

The boundary conditions become

6U0 6w0 600 O, 6U~~~ 6W~~~ O (4.18)

The solution of the linear system given by (4.13) and (4.18) is obtained

by us i ng the block elimination method. According to this method, the system

is written as

(4.19)

Here

A0 C0

B1 A C

~~~
= 

~i

B~_ 1 A~~1 ~~~
N

B~ A~

_ _  

_ _  

_ _ _ _ _  
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‘l

~ l (r 1)
1

6vj

6W
1

(r 4 )
1 6t1

The A1, B1, C1 
and A denote 5 x 5 matrices . The soluti on of (4.19) is

obtained by the procedure desc ribed in Cebeci and Bradshaw 13.

I
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V. RESULTS

5.1 Turbulent Flow Calculations for a Curved Duct and Comparison with
Experiment

The turbulence model described in Section II has been used with consider-.
able success to compute a wide range of two-dimensional turbulent boundary
l ayers , see for exampl e Cebeci and Smi th 15 . The model has also been used to
compute three-dimensional flows and again is found to yield accurate results
(see for exampl e Cebeci9’1° and Cebeci , Kaups and Moser16 ). To further test
the model for three-dimensional flows , we have considered the experimental
data taken in a 60° curved duct of rectangular cross section . Fi gure 6 shows
a sketch of the flow geometry. The experimental data are due to Vermeulen 11 .

Here z denotes the distance from the outer wall, measured along normal s to
the wall; x denotes the arc length along the outer wall; and y denotes

distance normal to the plane x ,z.

- .  

INIT IAL
_

~0~~~TT0N5 
•

Figure 6. Coordinate system and notation for the curved duct .

To compare the computed results wi th the data, It Is necessary to specify
the initial profiles given by experiment. This can be done in a number of
ways. In the study reported by Cebeci , Kaups and Moser 16 the profiles were
generated by us ing Coles ’ velocity profile formula. That formula , which
represents the experimental data rather well for two-dimensional flows, was
not very satisfactory for three-dimensional flows . Here we abandon the use
of Coles ’ formula in favor of Thompson ’s two-parameter velocity profi l es as

descri bed and improved by Galbraith and Head 17 . According to this form ula ,
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the dimensionless u/Ue velocity profile is given by

= 

~~ (
~

_) + ~i 
—

~~~~~~~ ) (5.1)
e inner

Here is an intermi ttency factor defined by the fol lowing empirical

formulas :

0 < ~~— < O . 0 5  ~ 
= 1

0.05 < 
~~~ = 0.3 = 1 — 2.64214 (

~ 
0.05)

0.3 <~~~~< O.7 = 4.4053(E _ 0 .5 )_ 1 .8 5 0 2(
~~~~

_ 0 . 5
~

+ 0 . 5

2 ( 5 .2 )
0.7 ~— <O. 95 = 2.64214 (~__ o.o s )  -

~~~~

0 0

> 0 9 5 
~s °°

The dimensionless velocity profile for the inner layer , that is , (U/Ue)inner~
is given by

+ + +y < 4  u = y

4 <  < 3 0  u~ = c1 + c 2 l n y~~+ c3(1n y~)
2 

+ c4 (ln + ) 3

> 30 u~ = 5.50 In y
~ 

+ 5.45 (5.3)

Here c1 = 4.187 , C2 
= -5.745 , C3 = 5 .110 , C4 = -0.767 , y~~= y u / ,

= (T
~

/ p) ”2, u~ u/u and is a parameter which is a function of
O~~~ Cf and H.

To find the functional relationship between 6
~
. Cf. e and H, we use

the definitions of displacement thickness 6* and momentum thickness e.

Substituti ng (5.1) into the definition of 6*, after some algebra , we get-

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where

A1 = 50.679 , A
2 

= 1.1942 , A
3 

= 0.7943, A4 = 1 .195

An expression similar to that given by (5.4) can also be obtained if we

L substitute ( 5 . 1 )  into the definiti-on of 8. However, the resulting expression
is quite complicated . For this reason, the expression for e is obtained

numerically, and for a gi ven value of 8 and H, the corresponding values
of c f and 60 are computed from that equation and from (5.4).

Equation (5.1) is recommended for two-dimensional flows. He re we assume
that it also applies to the streamwise velocity profile by replacing U/Ue by

• us/use with Cf now representing the streamwise skin-friction coefficient.

In order to generate the crossflow velocity component (un/use)~ 
we

use Mager ’s expression and define un/Use by

= 

~~~ 
(i — ~ 

)
2 

tanB
~ (5.5)

with the limitin g crossflow angle 
~ 

obtained from the experimental data .

Once the streanwdse and crossflow velocity profi l es are calculated by
the above procedure , we compute the velocity profiles U/Ue and W/We in
the orthogonal directi ons x and z by the following relationships

u u~ U~ We
(5.6a)

U U U
(5.6b )

We Use Use We

Figure 7 shows a comparison of generated and experimental total veloc i ty
profiles along the line A. As can be seen, the above discussed procedure
for generating the initial velocity profiles from the experimental data is
quite good. This is important for an accurate evaluation of a turbulent
model especially for three-dimensional flows. Here
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• Figure 7. Compar ison of generated initial total velocity profiles with
• Vermeulen ’s data.

~~~~= 

~~~ 
(5.7) 

~1The soluti on of the boundary-layer equati ons also requires the speci fica-
tion of the metric coefficients and the geodesic curvatures . They are cal~ u- j
lated from the following expression:

- • 1 straight section
h =

1 — z/R0 curved section

h2 = 1 .0 , K2 = 0 (5.8) 
4

0 straight section

— z) curved section
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A comparison of calculated and experimenta l values of strea,m&ise momentum
- • thickness 0 110 shape factor H11 , skin-friction coefficient Cf and limi t-

i ng cross flow angle 
~ 

is shown in figures 8, 9 , 10 and 11 , respectively,
along the lines B, C, D, E. Here the limi ting crossflow angle is computed

from

t ans = 
~~~~~~~~~~~~~~ — f~] 

(5.9)
W (We/U) (U f/w )g~ +

0 DATA 0 DATA
6 1 7 5 -

— PRESENT METHOD — PRESENT METHO D

E 
D

4 0 8 -1 50 I 00 7 00

i 
_—v-—

0 6 H 11 42 5  175
-: 

____$—~~
--—

~~

•-- 

~~~~~~~~~ C C

~ a 0 0 4 200 100 C ISO

6 8 2 1 7 5  125

0 
0 1 5 2.0 7 5  3 0  
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~~~~~~~~~~~~~~~~~~
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2 5  30

1 00

.)m) .(m)

Figure 8. Compari son of computed Figure 9. Comparison of computed
momentum thickn ess with shape factor with
Vermeulen ’s data. Vermeulen ’s data.
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Figure 10. Comparison of computed Figure 11. Comparison of computed
skin friction coefficient limiting crossflow angle
wi th Vermeulen ’s data . with Vermeulen ’s data .

• 30

4 - • - •  ~~~~~~- • - - •~~~~~~~~~~~~~~~~~~~~~~~~~~~--• - -



-
~~ --~~ --40_- - •- ----•• • •— —

- - __

Figures 12 and 13 show a comparison of calculated and experimental total
velocity profiles and crossflow angle profiles along the lines C and E.
Here the crossfl ow angle is computed from

w e /Ue [(U ref /w e )9 ’ —f’] (5.10)
• S 1fl8 2

~‘~ e ~ e”~e~

As in figures 8 through 11, again the agreement between calculated resul ts
and experiment is very good. The computed results follow the trend in the
experimental data well and indicate that the present turbulence model , as in

two—dimens ional flows , is quite satisfactory for three-dimensional flows .

5.2 Resul ts for a Double Elliptic Ship Model

To test our method for ship hulls , we have considered two separate hulls.
The fi rst one , which  is discussed in this section , is a double elliptic ship
whose hul l is given analytically. The second one , which is discussed in
section C , is ship model 5350 which has a rather complex shape . Its hul l is
represented section-by-section in tabular form and contains all the features

• of most merchant and naval vessels . It proves an excellent test case to study
the computational difficulties associated with real ship hulls .

The double elliptic ship model can be analytically represented by

- -\2 1/2 2 1/2
y = f ( x ,~ ) = B 1 — (? 1 — (ft) (5.11)

It has round edges except for the sharp corners at ~ = +L and ~ = +H. The
body of L:H:B = 1.0:0.125:0.1 together with the nonorthogonal coordinate
nets on the hull is shown in figure 14.

The potential-fl ow solut ions were obtained from the Douglas-Neumann
computer program for three-dimensional flows . To get the soluti ons , 120 con-
trol elements on the surface were used , 12 along the i-direction and 10 along -

•

the i-directi on .

Before we describe our boundary-layer calculations , it is useful to
discuss the pressure distribution for this body shown in figure 15. As can be
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Figure 14. Three-dimensiOnal picture of double ell iptic ship model with
the nonorthoqonal coordinate system .
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—-.-_~~~~~~~~~~~~~~~~~~~~~~~~~~~ seen from the figure4 the longitudinal

~~ 
pressure gradient is initially favorable
in the bow region and then adverse up
to the midpoint of the body. This is

-•0.06 

-4° followed by a region of favorable
pressure gradient and then by a sharp

0 — ‘ 
400 adverse pressure gradient very close to

GIRTH .
the stern. The transverse pressure

$ 
- 006 gradient varies in a more complex

manner. Near the bow the pressure

000 
decrease s from the wa ter surface to
~ minimum and then increases as the
keel is reached . As the fl ow moves

0 05
downstream , the location of the mini-

I mum pressure moves up and reaches the
Figure 15. 

th: double ellipt ic ship. water surface at about x/L = —0.80.

The minimum pressure remains at the
water surface to about x/L = 0.80 and then moves toward the keel. As a
result, near the bow and the stern , one may expect flow reversal of the
transverse profiles while on the remaining major part of the ship hull , the

transverse across the boi,ndary layer does not reverse direction from the keel
to the water surface. This conclusion is drawn from considering the pressure
gradients only. The real situation may be somewhat modified because , in
addition , there are the upstream effects and the curvature effects on the
flow characteristics.

The boundary-layer computation starts with turbulent flow from ~/L = -0.90.
We have tried to start the computation from ~/L = -0.97 and ~/L = -0.95.
However , flow separation was observed at ~/L = -0.90 near the keel due to
the sharp curvature and adverse pressure gradient in the bow region and can be
seen from figure 15. In the previous calculations of Chang and Patel6 and
Cebeci and Chang 7, the flow separation near the bow was not found due to the
orthogonal coordinate system they adopted in which the second net point from
the keel is so far from the keel that the region of adverse pressure gradient
is omitted .
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• In our boundary-layer calculations , we have used 40 points along the
x-direction and 16 points along the z-direction . In the normal directi on ,
we have taken approximately 40 points . The nonuniform grid structure des-
cribed in Cebec i and Brads haw 13 is employed in the normal direction so that
the grid points are concentrated near the wal l where the velocity gradients
are large .

Some of the computed results for RL = l0~ are shown in figures 16 to
18. Figure 16 shows the transverse distributions of the pressure coefficients ,
c~. local skin-friction coefficient , Cf~ the shape fac tor H11 , the
Reynolds n umber based on the momentum thickness , R0 and the limiting cross-
flow angle for x/L = -0.85, -0.50 , 0 0 , 0.25 , 0.50, 0.75. As can be seen from
these figures, the boundary-layer parameters vary greatly near the keel where
the curvatures and the pressure grad ients are large and rema in almost unchanged
near the water surface where the curvatures and the pressure gradi ents are
small. Except at x/L = —0.85, the limiting crossflow angle is positive. This
implies that the crossfl ow near the wall moves from the keel to the free
surface as predicted from the pressure distribution . Figure 17 shows typica l
longitudinal and transverse velocity profiles at z = 0.6 for several values

• ~~~~~~~ 
—

(a )  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_

_~ O GIRTH. S I
KEEL

Figure 16. Computed cD$I Cfo 
~1l’ R0 and &~, 

for the double— elliptic ship
model for R~ = 1 0’ at (a) x/L = -0.85 , (b) x/L = -0.50 , (c)
x/L = 0 .0 , (d) x/L  = 0.25, (e) x/L = 0.50 , ( f )  x/L = 0.75 .
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of x/L and figure 18 shows typical
transverse velocity profiles at x/L
= —0.2 for several val ues of z. As 4 0

can be seen from figures 17(b) and 18, 4 2

the transverse velocity component under-
goes drastic changes in the longitudi nal 

1~~

and transverse directi ons under the
infl uence of pressure gradient and body
geometry. As was discussed before ,
when the transverse velocity changes °~

sign across the boundary layer and con-
tains regions of reverse flow, numerical
instabilities resul t from integration 

________ 

\~~~~~~
_ 4

opposed to flow direction unless appro- 003 002 - 0 04  0 005 001 003 004

priate changes are made in the integra - Figure 18. Computed transverse veloc-
ity profiles for the double-tion procedure. The new numerical pro- elliptic ship model at

cedure of Cebeci and Stewartson handles x/L = -0 .2.
this situation very wel l and does not show any signs of breakdown resulting 

4

from flow reversal of transverse veloc ity component.

53 Results of Ship Model 5350

The shi p model 5350, unlike the one discussed in section B, is a realistic
tanker model . The geometry of Lhe hull is so compl icated that it is repre-
sented in tabular form section by section . The model possesses all the special
features of existing merchant and naval vessels, that is , a bottom which is
flat and not parallel to the still-water surface and an extended bow completely
submerged under the wa ter surface , and consequently serves as an excellent case
on which to apply our method.

Figure 19 shows a three-dimensional picture of this ship model together
with our nonorthogonal coordinate system. We see from this figure that, as
a by-product of the mapping method discussed earlier , the z=const. coordinate
lines are concentrated i n the bow and corner regions where the curva ture i s
large . Figure 20 shows different cross-sections (indicated by solid lines )
and interpolated values obtained by a cubic-spline method (indicated by
circles) from which the geometric parameters are obtained .
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Figure 19. Three—dimensional view of ship model 5350 with the nonorthogona l
4 coordinate system.
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1~’~
25 

Figure 20. Bod; plan ;or ship model 5350. 

25

The inviscid velocity distribution for the model is obtained by using the
Douglas-Neumann method treating the model as a double shi p model . Figure 21
shows the pressure distribution for the entire ship and figure 22 shows a
detailed pressure distribution for the bow region . We see from these figures
that the longitudinal pressure gradient near the keel is favorable and later
becomes adverse. The pressure gradient in transverse direction decreases
rapidly from the keel to a minimum value and then increases continuously up to
the free surface. Due to this rapid pressure variation in the bow region ,
preliminary boundary-layer calculati ons showed flow separation and required an
approximate procedure to generate the solutions for x < 22.5m. After that
(x > 22.5m), the three-dimensional boundary-layer calculati ons were performed
for a given inviscid pressure distributi on . The initial conditions at x = 22.5m
were generated by solving the boundary-layer equations in which the z-wise
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Figure 21. Pressure distribution for the entire ship model 5350.

der ivat ives for a constant z were -0.6

neglected.
—0.4

FIgures 23 to 25 show some of the / /
computed results for RL = 3 x 108. -0.2 /

Figure 23 shows the variation of cp, c,~ 0~~~

c~, R0, H11 and ~ at the cross- 0

planes of x = 3c~n, 60m , lO5m, l65m, GIRTU . %

21am. Typical streamwise vel ocity 0.2 0~~~~ 875\
\

profiles at x = I05m and z = 0.2

are shown In figure 24 and typical 01 0 .3 75 .4
0 - 5.625.s

crossfl ow velocity profiles at x =

6am are shown in figure 25. As can 0.6 
~

‘-‘-•.-•_.••.•••
~••••,, ~~~~

be seen from these figures , the cross-
flow velocity profiles show great 0.8 $

variations and indicate clearly the
1 .0

flow reversal that takes place in
the crossplanes. This implies that Figure 22. Pressure distribution for

differential methods based on two- the bow region of ship
model 5350.

dimensional and/or small crossf l ow
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VI . CONCLUDING REMARKS AND FUTURE WORK

According to the studies presented in this paper , the three-dimensional
boundary layers on ship hulls can be computed very efficiently and effectively.
The turbulent model , as in two-dimensional flows, again yields satisfactory
results for three-dimensiona l flows. This has been demonstrated by Soejima

• and Yamazaki ’9 who also have appl ied the present turbulence model to compute
three-dimensional boundary layers on ship hulls. However, there are additional
studies and problem areas that need to be considered and investigated before
the present method can become a more effective tool to design ships. They
are briefly discussed below.

6.1 Generation of Initial Conditions on Arbitrary Bow Configurations

In section 5-3, we presented calculations for the ship model 5350 and
mentioned that due to flow separation in the bow region , we had to start the
boundary-layer calculations at some distance away from the bow. Additional
studies are required to generate the initial conditions on the bow. These
studies can lead to a better design of bow configurations and to better
handling of bilge vortices, which contribute to the total drag of the ship.
However , this is by no means an easy task. Consider , for example , the ship
model 5350 discussed earl i er. A sketch of the bulbous nose wi th a plausible

inviscid streamline distribution is shown in figure 26. We may assume that
________ 

A 0 F R E E  SURFAC E D

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 26. Pattern of streaml i nes near the bow of ship model 5350.
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the ship is symmetrical about the keel plane and there is a nodal attachment
point on the bu lbous nose at B. If the ship is floating 1 then the water
line - s determined by conditions of constant pressure and zero normal velocity.
Hence the intersection of the plane of symmetry-with the water line at A

is a saddle point with the streamlines of the inviscid flow converging
on A along the line BA and diverging along an orthogonal direction. It
is known that the boundary-layer equations can always be solved at B but
that at A the situation is more complicated and furthermore it is still not
entirely clear what their role is In relation to the general solution . It is
likely, however, that provided no reversed flow occurs at A in the component
of the solution along the direction BA , then separation can be avoided along
this line by appropriate choice of design. Furthermore, if separation does

occur , its effect may be limited . The recently developed Cebeci-Stewartson
procedure however , can be applied to the present probl em but there are some
hurdles to be overcome. - -

Of part icular difficulty is the choice of coordinate system on which to
compute the solution and to join it with the already well-established method
downstream of CD. We have seen that in the case of the prolate spheroid
(see Cebeci , Khattab and Stewartson20) it is helpful to have a mesh which is
effectively Cartesian near the nose and the methods which were used to produce
it in the earlier study are applicable to any body which can be represented by
a paraboloid of revolution in tne neighborhood of the nose. Now here we have
a paraboloid near B but not one of revolution , but we believe that the
necessary generalization is possible. The mesh now has to match with that
which has proved convenient downstream of CD. Again we believe that a smooth
transition can be achieved by building into the mesh sides, right front CBA , an
appropriate spacing such that the points of a uniform mesh on CD are also

points of this mesh although not, of course , at a constant value of one of the
coordinates. Our evidence for this is based on a successful scheme that we
have already worked out for the prolate spheroid , Cebeci , Khattab and

Stewartson 2° -

Other aspects that reed further study include the condition at the water-

line section. It has been usua l to assume that the normal veloc ity -is zero at

the undisturbed free surface. This is not quite correct and the error may
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have implications for the nature of the solution near A and especially the
question of separation along BA. Even if separation does occur, it may be

$ possible to handle the post-separation solution , since it probably extends
only over a limited region of the ship, by means of an Interaction theory,
i.e. modifying the inviscid flow by means of a displacement surface.

6.2 Viscous -Inviscid Flow Interaction

The present boundar ’-l.iyer calculations are done for a given pressure
distribution obtained from an inviscid flow theory. In regions where the
boundary-layer thickness is small , the inviscid pressure distribution does

not differ much from the actual one; as a result, the boundary-layer calcula-
tions are satisfactory and agree wel l with experiment , see for example , the
papers by Cebeci , Kaups and Moser 16 and by Soejima and Yamazaki 19. When the
boundary-layer thickness is large , which is the case near the stern region ,

the effect of viscous flows on the inviscid pressure distribution must be
taken into account. One possible way this can be done is to compute the dis-
placement surface for a given inviscid pressure distribution and iterate.

• Such a procedure is absolutely necessary to account for the thickening of the
boundary layer as was observed by Soejima and Yamazaki 19.

6.3 Prediction of Wake Behind Shi p Hulls

The present boundary-layer calculations can be done up to some distance
close to the stern; after that, flow separation occurs. Since one , and
probably the biggest , reason why there is interest in boundary- layer calcula-
tions on ship hulls , is the calculation of drag of the hull , additional
studies should be directed to perform the calculations in the separated region

and in the wake behind the ship. Recent calculation methods developed by

Cebeci and his associates at Douglas for two-dimensiona l wake flows and for
separated flows by using inverse boundary-layer theory are appropriate for

these purposes.
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APPENDIX A
DESCRIPTION OF THE BOUNDARY-LAYER COMPUTER PROGRAM

This appendix describes in detail the computer program which calculates
three-dimensional boundary layers on arbitrary ship hulls based on the non-
orthogonal coordinate system and the numerical method described in the text.

• The computer program consists of two separate subprograms : the GEOMETRY and
BOUNDARY-LAYER subprograms . The GEOMETRY subprogram requ ires the card input $

of the ship hull geometry section by section and the correspond ing inviscid
- 

- velocity components in a Cartesian coordinate system. It performs the
following functions: (1) smooths the input data by the use of Fourier series
expansion; (2) maps each section defining the ship hull onto a unit circle
and defines the transverse stations , z, for boundary-layer calculations;
(3) computes the geometric parameters, h1, h2, K1, K2, ~l2~ 

K21, S1, and ~
and the inviscid velocity components along the boundary-layer coordinate
lines. In the steps 2 and 3, numerical interpolation and differentiation are
frequently encountered . These operations are accomplished by the use of the
cubic spline function. Because of the sensitivity of the spline function to
smoothness of data, the input data (which are sections defining the ship hull
and velocity components) have to be fairly smooth; -if not,step 1 , which is
optional in the program, should be executed. Since the mapping of an
arbitrary section onto a unit circle proceeds clockwise , it is convenient to
use the right-handed Cartesian coordinate system for defining the ship hull.
Hence, data defining each section must be input clockwise from the keel to the
free surface.

The boundary-layer subprogram requires the geometric parameters , hl,
etc., and the inviscid velocity distributions along the boundary-layer
coordinate lines , which are the output of the geometry subprogram and are
stored in tape unit 1. In addition , physical var iables and program control
parameters are input to Indicate the unit Reynolds number, transition
location, and specify the initial condition and to choose the grid points
across the boundary layer . Details of the input instruction wi ll be described

later . The program logic and structure of the boundary-layer subprogram are
rather complicated ; the basic flow chart is shown in Figure A- I .
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The computer program is written in Fortran IV for the IBM 370 system.
When other systems are used to run the program, it is evident that slight
modifications may be required to meet the specific requirements of that
system. Three external units are used in the program for data storage. Unit 1
(defined as TAPEDT) is used in both the geometry and boundary-layer programs
for storing the geometric parameters and freestream velocity distributions
generated from the geometry program. Units 2 and 3 (defined as TAPEGP and
TAPEPF) are exclusively used in the boundary—layer program as direct—access
storage; unit 2 stores the body geometry and freestream velocity distribu-
tions; and unit 3 stores the pressure parameters and boundary-layer profiles .
The region size needed to execute the program is about 200K bytes based on
41 longitudinal stations , 29 transverse stations and 61 grid points across
the boundary layer.

The detailed input and output instrUctions of the program are provided

below.

A- I Input for the Geometry Program

Card 1 contains the title of the problem under consideration . The input
is punched as 80-column alphanumeric field as shown below.

________________________________________________________________________________________

Ii~I~13T4 l ~~~~~~~~~~~~~~~~~~~~~~ F l  ~~
4

~I 64 L
~~H7I!72{, 741’ 1 

- 
I

( 
TITLE 

_______________________________

L ~~~~~~~~~~~~~~ l i l I i ( I I I l I I  1 1 1 1 1 1  ________________________________
Load Sheet for Card I

Card 2 requires the following information to be specified . The input is
punched in (415) format.

‘
~~~~~

I
~~~!’1~~~ 

i~~ j c ( i  11(1 2!1~~I4 I 3 t 6 { ~~
t
~~~k

NXTL NZTL IMOOTH IPRINT
I~~~~ I I  ~~~1 J 1  t I L L  I I I 1

Load Sheet for Card 2

cc 1-5 NXTL total number of the sections defining the ship hull ,
3 < NXTL < 41. This is also the maximum x-stations (NX)
in boundaF~y-1ayer calculations.
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cc 6-10 NZTL maximum transverse stations (NZ) to be used in boundary-
layer ca lculations , 3 < NZTL < 29.

cc 11-15 IMOOTH this flag controls whether the input data (body geometry
and freestream velocity distributions) needs to be smoothed
= 0 no smoothing of the input data
= 1 smooth the input data

cc 16-20 IPRINT this flag controls printing of the input data
= 0 no printing of the input data
= 1 print the input data

Card 3 specifies the following information related to the ship hull sections.
The input is in (FlO.0, 315) format.

2 !  
~1~~! ~~~ ~~~~~~ 

f(l 2 h 1 1~~
4

~~~~~~I 6 i 1 + P t 1 ’1~~~ 
f l~~~~~~2~~~?4

!
7

X INI ~~IQUAD ICØRN

I I I I I I 1 ~ J I I I j .. L 1
Load Sheet for Card 3

cc 1—10 X( I )  dimensional i-value of Ith cross section of the ship hul l ,
in feet or meters .

cc 11—15 INI total number of the points on Ith cross section , INI < 29.
This quantity may be different from one section to another .

cc 16—20 IQUAD this flag identifies whether the cross section is completely
submerged under the water surface or not
= 1 the cross section is intercepted by the water surface
= 2 the cross section is completely submerged under the

water surface

cc 21-25 ICORN this flag indicates whether the section has trailing -edge
corner point defined in Section III
= 0 there is no corner point in the section
= 1 there are corner points in the section

Card (Set) 4 contains the coordinates of the section and corresponding inviscid
velocity components in Cartesian coordinate systems. The input
is punched in (5FlO.0) format. There are IN! cards of this type
in each section .

1 7~ 3J ~ I ~ I ~ ~I el ~ 111 211311411 I6~I 4~ P~l c11 I I 2 2 i2
~~

i4I2 ~~ $ ~~~ 1
~~

)
~~

i$.(1cj 41L4 2
~

4 . l ! .444c.
~
1i 

~144’~j
YB ZB UE VE WE

L I I I l U _ i_ _I I L  1 1 1 1 1  1 1 I J  LLJ I 1 J ~ I I  I I I L I I I  IL_ L_ IL_ LLUJ_ . !
Load Sheet for Card 4

cc 1-1 0 YB dimensional ~-va1ue of the cross section , in feet or meters.

III
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cc 11-20 ZB dimensional ~-va1ue of the cross section , in feet or meters.

cc 21-30 UE nondimensional inviscid velocity component in i-direction ,
hletUref.

cc 31-40 VE nondimensional inviscid velocity component in i-direction ,

~e
/Uref.

cc 41-50 WE nondimensional inviscid velocity component in i-d irection ,

~‘e1”ref•

ç It should be noted that Card 3 and Card (Set) 4 have to be input for all

cross sections (NXTL )

A-2 Input for the Boundary-Layer Program

Card 1 contains the title of the problem under consideration . The input is
punched as 80-column alphanumeric field as shown below.

[1T
14 1 Sill 7I’1~ 

112j1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t L l L i l _I J J L I I l _ L I I I I  I I  I I I L  1 1 1 1 1  1 1 ! _ L i I L I I I L  , I I l~~~~~~ I

Load Sheet for Card 1

Card 2 contains the following information to be specified . It is punched
$ in (615) format.

I I ~l ’1 ~ii I ~!i 2~l ~4i 5 1611 ~~l ~jI~~~2 2 I !22 ~~~ ?if2 2 2 ’ ~~~~~~ ”

NXT NZT NXSTRT NTR NSW CH JPRINT

• L I I I  1 1 1 1  t i l L  1 1 1 1  l i i i  l i i i

Load Sheet for Card 2-

cc 1-5 NXT the number of the last x-station (NX) to be calculated ,
3 < NXT c NXTL

cc 6-10 NZT the number of the last z-station (NZ ) to be calculated,
3 < NZT < NZTL

cc 11- 15 NXSTRT the number of x-station (NX), referred to the geometry
data , where boundary-layer calculations begin.

cc 16-20 NTR the number of x-station (NX) where turbulent flow calcu-
lations begin. For laminar flow only, set NTR > NXT ;
for turbulent flow only, set NTR = 1. NTR will be over-
ridden if laminar separation occurs.
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cc 21-25 NSWCH the number of x-station (NX) counted f rom NXSTRT where
switching to “zigzag 1’ scheme Is made. If no switch is
desired , set NSWCH > NXT. rf NTR = 1, NSWCH may be
arbitrary depending on the transverse pressure gradient;
if NTR $ 1, NSWCH > 3 is reconinended .

cc 26-30 JPRINT point interva l by which the profiles are printed out. If
JPRINT = 1 , the velocity profiles are completely printed
out from the wall to the boundary-layer edge.

Card 3 contains the following information to be specified . The input is in
(5FlO.0) format.

$ 21 3J ~1 IIIj 71119 ¶ I ~~ 1 lj 1 2 1 3 1 L 4 1 I 5 I I 6 I I~~~
I l1lciI 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ A

ETAE VGP DETA (1) CNU UREF

I I I I I.J__j_J I 1 1 1 1 1 1 1 1 1  I I I L i L 1 J L  I I  I I L I I I I  I I I I J _ _ _1_ A _,l_

Load Sheet for Card 3

cc 1- 10 ETAE transformed boundary-layer thickness , n,, for the first
station. A value of 8 is usually sufficient. For MX > 1 ,
it is computed internally.

cc 11-20 VGP variabl e grid parameter , K > 1.0. For laminar flow ,
K = 1.0 is sufficient. For turbulent fl ow , it is a
function of the Reynolds number , R~,

cc 21-30 DETA(l) initial ~n1 spacing at the wall. For l aminar flow only,
= 0 .2  is suggested . For turbulent flow , it is also

a funct ion of R,,. The suggested K and ~~ values
for different Reynolds number are provided below .

R 106 lO~ 108 l0~
K 1.10 1 .15 1.20 1.25

0.015 0 .01 0.0075 0.0050

cc 31-40 GNU kinematic viscos ity of the fluid , v , in f t 2/ sec or m 2/ sec

cc 41-50 UREF reference velocity , uref, in ft /sec or rn/sec .

A-3 Output for the Geometry Program

The output of the geometry program includes the printout of the input

data, the computed geometrical parameters, and the invisc id velocity components

along the boundary-layer coordinate lines. The latter are also stored in

external store un i t  (called TAPEDT) and serve as a part of the Input data to
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the boundary-layer program . The notation used In print ing out the input data
• is the same as that used in the input. Therefore , only the meaning of the

calculated geometrical parameters is Interpreted here.

MX station number of the x-station

x x-value at MX station

z normal ized transverse coordinates in nonorthogonal boundary-layer
coord inate system, measured from the keel (z = 0.1) to the free
surface (z = 1 .0)

YB input or interpreted i-value on the ship hull

ZB input or interpreted i-value on the ship hull

• - Hi metric coefficient hl associated with the coordinate x

112 metric coefficient h2 associated with the coordinate z

1(1 geodesic curvature , K1, of the x—coordinate line

• 1(2 geodesic curvature , K2, of the z-coordlnate line

Si the physical surface distance S1 measured along the x—coordinate
line from the first x-statio’~

Kl2 geometric parameter, 
~l2

1(21 geometric parameter, K21 
$

THETA angle, 0, between the coordinate lines in radian

UE longitudinal velocity component, uei in the boundary-layer
coordinates

WE transverse velocity component, we, in the boundary-layer
coordinates

C~, pressure coefficient 2(p — pjfpu~

GIRTH normalized surface distance along z-coordinate line , measured
from the keel to the free surface.

A-4 Output for the Boundary-Layer Program

The output of the program includes printout of the geometrical data

passed from the geometry program on external storage unit 1, as wel l  as

tables of boundary-layer profiles and some important boundary-layer parameters.

The notation for the geometrical data is the same as that In the geometry
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program ; therefore, only those associated with the boundary-layer parameters
are given bel ow.

1. The Profile Data

J point number: profiles are printed from the wall outward . Not
all points are printed and the interval is controlled through
the input variabl e , JPRINT .

ETA nondirnensional boundary-layer variabl e n.

Y normal distance from the wall , y, ft or m.

U nondimensional velocity in x-direction in the boundary layer ,
f ’  = U/U~~•

W nondimensional velocity in z-direction in the boundary layer ,
g ’ = W/ U ref ~

V derivative of U with respect to n , f” .

I derivative of W with respect to r~, g” .

US velocity component in the bounda ry layer along the inviscid
streamline direction , u~.

UN velocity component in the boundary layer normal to the inviscid
streamline direction , un.

USE total velocity at the edge of the boundary layer , use .

BETA crossflow angle in degree , ~~~, defined as
$ 

= tan u
n
/u

s

B nondimensional total eddy viscosity , b = 1 + € / v

2. Boundary-Layer Parameters

CFS local skin-friction coef~icient in the inviscid streamline
direction , Cfs =

CFN local skin-friction coefficient normal to the inviscid
streamline direction , Cf n 

= 2t w /Pu~e
DLSTS d isp lacement  th ickness , ~~~~‘ , in feet or meterc , defined as

~* =f (1 — u5/us~)dy
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A-i. BASIC FLOW CHART FOR THE BOUNDARY-LAYER PROGRAM ~. -
~~~

(
~p~

[INITIALIZE VARIABLES , TAPES: READ INPUT J

DEFINE GRID AND INITIAL PROFILES D

YES

A WRITE STATION HEADER , SET 11=0

DETERMINED THE COEFFS TO BE CALCULATED
[~~~4GITUDIMAL , TRANSVERSE , OR GENERAL )

CALCULATE PRESSURE PARAMETERS

(j~
) INCREMENT ITERATION COUNT (IT)

,,_— TERATIO YES ROWTH NO
<
~~~~~~CEED RE QUIRED~~~

FOR TURBULENT FLOW , CALCULATE YES
EDDY VISCOSITY

CALCULATE COEFFICIENTS OF FINITE
DIFFERENCE EQUATIONS

SOLVE DIFFERENCE EQUAT IONS~~1 YES TR4NSITIOM BEGII’IS
FOR VELOCITY PROFILES J 11=0 B

• v YES HE FLOW NO
NEGATIVE IS LAMINAR NZT=NZ -l

? ? •
~~1~

CONVERGENCE
2

YES

DEFINE PROFILES YES
FOR GROWTH , 11=0 REQUIRED >

cb _ _

I OUTPUT AND DEFINE PROFILES
[TO DIMFNSIONAL FOR FUTURE GROWTH

(CL)
60 
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~STORE PROFILES AND PRESSURE PARAMETERS I

j NO

GO TO NEXT LONGITUDINAL GO TO NEXT TRANSV ERSE
STATION , SET NZ=l STATION

NX=1 YE NTR=l

NO NO D

SET tiP PROFILE GUESS ,
- RETRIEVE BODY GEOMETRY

A

I 1~

H 61
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