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Abstract

A unitized stack of containers in transit is susceptible to dynamic
overloading due to vibrations in the transporting vehicle . The boxes’
compressive stiffnesses interact with the content masses to amplify or
attenuate the vehicle motions through the height of the column. Modeling
a unitized load as a multiple-degree-of-freedom vibration system provides
for identifying its sensitivity to the frequencies inherent to the
transportation environment. This report presents the theoretical analysis
of the analog that represents a stack of containers and an example that
carries the mathematics through a package design problem . To supplement
the manual computations which are too time-consuming for practical
packaging design, a computer program--not included herein--is discussed .
This program plots the transmissibility in each container over a range
in frequencies , including the damaging resonants. An example using the
program shows employment of the generated plot for unitized package
designing.

I
Abbreviations Used

cycles/s = cycles per second

G gravities

in./s2 inches per second squared

lbf = pounds-force

lbf/in . pounds-force per inch

lbf . s/in. = pounds-force x seconds per inch

lbm = pQunds-mass

s = seconds

s/in. = seconds per inch

s2/in. = seconds squared per inch



‘~~~~~~ 

~~ANSPORTATION ~JBRATION EFFECTS/ ON UNITIZED CORRUGATED CONTAIN ERS
l_. 

~~~~
,

— .-- . -. ,.-.— .. ~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2 / t  ~~~~~
Forest Products Laboratory,’! Forest Service

U.S. Department of Agriculture . , 
‘
, /

- .-.—‘— ~. . . . . .. ( / . .h. _~
f
~ ,/ (

—~~ . 
—.—.—— 

- —-  — I “—.————‘ 
—

i c  1’ ~~~~~~~~~~ ~~~~~
- ~~~~~~~~~~~~~ c 

~~
. 

~~~~~ / —
~

_. ) •1~ i.~ 
•
~~~~ -

IntroductiOfl~~~~ i I ~ ~ 1

Shipments of like packages have come increasingly to be unitized for
reasons of economy. Mechanically arranging and stacking containers
on a single pallet or other platform off ers the advantages of mechanized
transfer and storage with protection from the hazards of manual handling.
This new environment for the package has shifted its probability of
transportation damage from the shock and impact mode coimnon with manual
handling to the vibration mode .

Even where dropping or impacting a package does not occur, the product is
still exposed to transit vehicle vibrations enroute between the manufac-
turer and recipient . And this most probable source of damage becomes an
environment over which the package designer has little control; his
option is to design vibration protection into the package system.

Shocks and impacts acting on single packages in simulated small parcel2shipping environments have been well analyzed in numerous reports (5).-.
Some studies (3,4) have also examined the damage susceptibility of a
product ’s container due to vibrations . But all these publications,
although accurate documentations of the pertinent vibration theory, were
still aimed at the single package environment and are limited to a
single-degree-of-freedom analysis.

Where quantities of s imilar packages a re shipped as a unitized lot, a new
approach to the vibration analysis ii demanded. The vibration theory
developed for the single parce l environment may grossly underesti~atcthe severity of acceleration levels in a unitized load . For example ,

1/ Maintained at Madison , Wis., in cooperation with the University
of Wisconsin.

2/ Underlined nu bers in parentheses refer to Literature Cited at
the end of this report.
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the dynamics in a stack of containers ten high on a pallet may approach
a modeled ten-degree-of-freedom system with ten critical frequencies,
each being a potentially damaging resonant.

Because corrugated boxes yield in compression due to their contained
weights, they act like springs and the resulting stack natura l frequen-
cies may fall within the range of the transportation environment (3).
The weight of the product supported by the resilient container behaves
like an analogous spring—mass system to amplify or attenuate the vibra-
tory motion delivered to its base. Often a product ’s component sub-
assemblies will necessitate avoiding acceleration levels within certain
frequency bands. Or frictional holding forces must be maintained to
insure protection from load disarrangement and subsequent stack toppling
and product impact damage. Also , the lower containers may require
protection from dynamic crushing.

This report was written to demonstrate for package engineers the appli-
cation of the fundamental theory for analyzing vibration forces in a
unitized load. Because charts or tables are more revealing to the
package designer than their underlying equations, the theory was extended
to a computer program for plotting the containers ’ responses. Graphs
produced via this program make apparent the shifts in product damage
susceptibility among unitized load options with containers differing in
mechanical properties and contained weights. Such graphs thus highlight
the trends in response levels over a parameter change.

I. Design Consideration

The hazards of transportation reveal themselves with toppled stacks and
crushed containers. Sometimes the damage is concealed until the packaged
product is put into service. Given enough resources a shipper can employ
trial and error adjustments to the package system until a protective
design emerges. But analysis rather than trial and error would improve
efficiency. Solving a typical problem serves to illustrate the knowledge
gained from an analytical treatment. The appendix carries the problem
through the detailed mathematics; only the results are presented here.

A manufacturer finds his containers totally disarrayed when unitized
and shipped via a particular carrier. The transportation environment is
monitored and he learns that a significant input occurs at 0.25 C
acceleration at 5 cycles per second. Before employing a new design and
suggested antiskid treatment, he requests an analysis to learn if the
new approach will indeed solve the problem.

The new design calls for vertically alined boxes stacked four high with
each box containing a rigid, fixed, nonload-supporting content W of
55.3 pounds and an antiskid treatment applied to the top and bottom flaps
of each box. All boxes are identically constructed, and from top-to-
bottom compression tests on similar boxes the box stiffnesses are esti-
mated relative to their equilibrium supporting loads. Also, f r om
vibration test observations it is estimated that the box material
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contr ibutes about 30 percent of critical damping. The four high stack
(fig. 1) calls for a 3 degree of freedom model since the weight in the
bottom box does not affect the stack. Once the stiffnesses are linearized
from the static compression test curves at

K1 = 771 lbf/in.

K2 = 607 lbf/ in.

K3 = 500 lbf/in.,

they may be combined with the weights of the contents to predict the
natural frequencies of the system.

= 4.84 cycles/s,

:::::: :::::: ::‘ I
‘

55.3 Ibm 

K(Ib ~~~ dilbi’-, //n) 

~~~~
55.3 lb/fl 500 5.07

55.3 Ibm [ -I
607 f 5.59

I
55.3 Ibm I

LJ 6.30

_ _ _ _ _ _ _  
I I

Figure l.--Scheaatic diagram of a four-high stack
arrangement, showing the relationship between
a column of boxes and the vibration model. (N 146 029)
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The excitation frequency at 5 cycles per second is close to the first
natural frequency of the box stack. It is, therefore , warranted to
investigate if the damping is sufficient to inhibit a damaging resonant
response. A solution to the equations of motion with damping considered
yields the acceleration level in each container in units of G’s.

= l75.5e3(3l
~

4t ll68) 
= 0.46 G cos (3l.4t-l.168),

329 .4e3(3 4t
~~~
500 

= 0.85 C cos (3l.4t-l.50l),

X3 = 
~~~~~~~~~~~~ 609) 

= 1.13 G cos (31.4t-].609).

The response in the top box exceeds 1.0 G in acceleration and bouncing
would occur , thus making the antiskid treatment ineffective. The design
must either be altered, or more effective but costly methods of unitizing
be employed.

One can also determine if any box has been loaded beyond its maximum
compression strength by examining the compressing load F on a box due to
dynamic compression plus the equilibrium supporting weight. With knowledge
of the relative displacements , D, between adjacent containers

F1 = K1~1 + 3 W = 293.9 lbf,
F2 = K 2~2 +2W=2 l7 .2 lbf,

F3 = K3~3 + W = 112.7 lbf.

If no force exceeds the load-carrying capacity for the respective con-
tainer, the design is not likely to fail from dynamic compression over-
loading .

II. Computer Application for the Matrix Analysis

One can examine the response in a container stack by repeatedly solving
the equation. of motion with changing frequencies . However , it can be
ore useful for design purposes to note trends as one or ore of the

para meters vary . Computer-plotted grap hs can show varying level, of
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product damage susceptibility across a range of packaging options—-for
instance , with containers differing in mechanical properties and contained
weights. Vibrational analysis computer programs which are presently
conunercially available (6) are uneconomical for this purpose. (They must
be made comprehensive beyond the present need so as to have broad spec-
truins of adaptability.) For this reason, we have developed a specialized
program for the multiple-degree-of-freedom analysis described in this
paper. (Due to limitations of space, our program is not reproduced in
this article , but may be requested from the author along with all neces-
sary definitions and subroutines.) The following discussion illustrates
the utility of our program and may suggest the benefits to be derived
from this and similar computer programs.

To illustrate the computer program in a quantitative comparison, consider
again an example where a package designer desires to weigh the advantages
between two palletized loads for protection against a 5-cycles/s input at
0.25 G acceleration. The situation is similar to that in the previous
examp le--that is , four vertically aim ed boxes, each containing
55.3 pounds. Another alternative is to package the product in stronger,
larger boxes able to contain 73.7 pounds, but vertically alined in a
three-high stack. Therefore , the pallet ’s loaded weight is conserved
although the product is packaged and unitized differently .

The designer tests the two box types in top-to-bottom compression to
establish their stiffnesses relative to their equilibrium supporting
loads , as suggested by Godshall (3); figure 2 illustrates the results.
On the three-tier pallet , the boxes support 73.7 pounds at the second
layer and 147.4 pounds at the bottom layer. Tangents drawn to the solid
line curve in figure 2 at these ordinate values suggest relative stiff-
nesses of 666 and 810 lbf/in. For the boxes on the four-tier pallet
supporting 55.3, 110.6, and 165.9 pounds from top to bottom, their
stiffnesses may be similarly assumed from the dashed line curve in
figure 2 to be 500, 607, and 771 lbf/in. Each box is roughly estimated
to absorb energy at 0.3 times its critical damping ratio, and the analy-
sis is supplemented with a comparison between 0.1 and 0.7 times the
critical damping ratios .

These physical parameters thus define the computer program input and are
subsequently organized on cards following two executions.

The plotted output from the two analyses is produced in figures 3 and 4.
The damping ratio used in an analysis may be recognized by extending a
horizontal line from the last point in a dashed-line curve to intersect
the bottom of the characters “DR.” Some significant trends are observed
regarding the major amplification and attenuation ranges for the
0.3 critica l damping analysis and are su arized in table I.

The potentially damaging frequencies, those amplifying the input by at
least two , have b roadened from a band of 3.23 to 6.23 cycles/s for the
four-tier pallet to a band of 4.40 to 7.63 cycles/s for the three-tier
pallet . Reducing the stack levels has made the load sensitive to higher
frequencies. The attenuation region has also shifted to the higher
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Figure 2.--Top-bottom compression curves for two box types. Solid curve is for
a box designed to contain 73.7 pounds in a three-high stack; dashed line is
for a box designed to contain 55.3 pounds in a four-high stack. (M 146 134)

frequencies for the three-level stack. However, the transmissibilities
at the resonant levels are changed. Although the three-high stack is
sensitive to a wider frequency range, a greater input magnitude would be
necessary to cause damage.

The decision to choose between the two designs would be based on experi-
ence with present designs and inferences from this experience regarding
anticipated transportation inputs. If the designer feels confident that
the 5-cycles/s vibration is the most prominent, a decision to accept the
three-high stack to avoid high—level transmissibilities would be logical.

The significance of damping becomes apparent at the higher frequencies.
At these frequencies , damping, which is proportional to the base velocity,
dissipates energy at an increasing rate. It can be seen from the plots
for all masses that even for a lightly damped system of 0.1 critical , the
responses at natural frequencies beyond the first do not even approach
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Figure 3. --Vibrational analysis of a four—high stack
arrangement using three containers with different
stiffness values and equal masses. (Actual com-
puter plots, but with redundant labels deleted.)
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Table I . --Summa ry of 0 3  cri t i ca I dan~p in g  ana ly s i s
(1 igu r e s  3 afl([4~

Stack Element Amplification Attenua tion Maximum

hei ght No. >2(cyc les/ s)  >I(cycles/s)

3 boxes 1 5 .23-6 .46 7.73 2.20

3 boxes 2 4 .40-7 .63 9.80 3.32

4 boxes 1 4 .26-4 .90 5.59 2.15

4 boxes 2 3.58-5 .64 6.61 3.63

4 boxes 3 3.23-6 .23 8.23 4.72

the severity of the first resonant response. To the designer this
suggests that he may saf ely abbrev ia te his anal ys is by examining only
the first natural frequency.

Further analyses can be performed by determining if the bottom containers
can withstand the dynamic compression-loading condition. The user may do
this by adjusting certain subroutines in the computer program to generate
the relative transmissibilities between adjacent masses. The plotted
output would then be inte rpreted as the factors by which to multiply a
displacement input magnitude to obtain container compressions .

The dynamic; compression loading value can be conservatively determined
by consider ing the limiting case of relative disp lacement between the
base and mass one . Adding this to the statically supporting weight
gives the maximum force experienced by the bottom box . For an input

magnitude Y in C’s at a frequency f in cycles/s the critical load CL
- can be determined from the transmissibility in the bottom mass Tr1.

I’

386 K Y (Tr + 1)
CL= 1 1 +~~W .

(2nf) 2

If this value is greater than the load-carry ing capacity of the bottom
box , it will obviously cause failure and the design would be rejected.

For the four-high stack example , the transmissibility at 5 cycles/s and
0.3 critical damping is 1.82. Thus the critical load is

~~~~~~~~



CL = 
386 771 . 0.25 (1.82 ~_ 1) + 165 .5 = 2 12.6 + 165.5

(2 n 5 )

= 378.1 lbf.

This compares safely with the exact value of 293.9 lbf determined in the
previous example. Because the maximum compressive strength of this box
(fig. 2) is at least 690 lbf , the critical load of 378.1 lbf is well
below the failure level.

ill. Multiple-Degree-of-Freedom Vibration Theory

A mechanical structure may often be modeled as a multip1e-degree-~ f-
freedom system of lumped masses with adjacent linear couplings . The
solution to the system becomes an expression for the displacement of
each element relative to time t in terms of some known input . For the
dynamic system shown in figure 5, the inpu t is a base d isp lacemen t w ith
a harmonic motion of a constant amp litude Y at the frequency w.

Y~~~~~cos (wt) . (1)

L~I~IIIJ J~ ~~~~~~ COS (Wt +~N)
C

Xp,..1 X1~ 1 COS

K3

Al2 X2:!~ COS (ojt+~~2)

Cj*

Al1 ..J’ X1: I~~~ COS (.4.~~,)

K1 C1 J~ y : P CO $ (~ f)

Figure 5.--Schematic diagram of a box stack modeled as a
vibration system with N degrees of freedom. (H 146 030)
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The analysis will consider only the steady state response that occurs
after the input has been applied long enough for the transients to
dissipate . I f li near s t i f f ness and viscous damping are assumed , the
output at each element i will be a similar harmonic displacement at the
same frequency w with an amplitude X1 and phase •~ from the input .

X1 = Xi cos (wt + •.) - (2 )

For design considerations it is usually desirable to express the solution
in terms of the transmissibility Tr

~ 
at each element, where

Tr. = . (3)

By differentiating equations (1) and (2) with respect to time, it
can be shown that the displacement transmissibility is equal to both the
veloc ity (X . /i ) and acceleration (X

~/Y) transmissibilities. Therefore ,
the respon~~~ atios developed froiT~isplacement input define also theresponse ratios when the input is expressed in its acceleration mode.
The modal shape or pattern may also be of interest. This becomes

($1/m , $2/m , ...,

where rn is selected to conveniently normalize the series of numbers.

Of prima ry significance are the natural frequencies of the system. For
N degrees of freedom there will be N frequencies where, if damping is
neglected, the input would produce an infinite response in each element.
Where damping is considered , the system approaches a maximum response
near these frequencies and is said to resonate.

The dynamics of the system may be modeled by a series of differential
equations expressing the sua~ation of forces existing at each element,

H1X1 = K1(Y-X 1) + C1(i-i1) - K2(X 1-X2) - C2(k1-i2)

? I .X .  = K~(X 1..1—X1) + C~(~~~1—k1) - K1÷1(X1—X1~1) + C
~O~

C
~
—
~1+1)

__  _ _i



MNI N = KN (XN_ l~XN ) + CN (XN_ l _X
~J

)

Here , ii
~ 

is the resisting force due to a unit compression , c1 is the
resistiig force due to compressing at a unit velocity , and is the
mass lumped at an infinitely small point . 

—

Rearranging and collecting terms into a more desirable form produces

(K1+K2)x1 + H1X1 + (C1 + C2)k1 - K2X2 
- C~~2 = K~Y ÷

-X X. - ci. + (K.+K. )X. + MX . + (c.+c. )
~ .1 i—l 1 i — i  1 i+l 1 1 1 1 i+l 1

- C1~1]~1.f1 = 0
I

YN-l 
- CN _ l  + KNXN + MNXN + CNXN = 0

Expressing the harmonics in the real components of their complex notation
equivalents (7) makes the system solution more readily attainable.

Accordingly:

y~~~~e
JWt

~~= j w ~ejwt 
,

=

= j~~1e
3~~

t
~~i
)

x = 
_~2~~~j (wt+$1)

1
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where j  denotes the imaginary unit.

With these substitutions , the system becomes

(K1+K2)
~
1e
j

~~

t

~~
l) - w2H~~~e

j
~~

t
~~l
)

+ jw(C1+C
2)~ 1e

J t+~1) - K2~2e
3 2

= K
1Ye

3Wt +

- K.~~. ej(wt+& i) — jw C.i eJ(
Wt+$j_1)i i—l

+ (K. +K. )~~.e3~~ t~~ i) - w2~ .~~.ej~~t~~i)1 j+j 1 11

+ jw(C.+C.~ 1)ie~

- Kj+lXi+le
3
~~

t
~~i+l

) - ~~~~~~~~~~ 
t141.f 1) 

= 0

- KN~~_ l eJ
~~

t
~~N_ l ) 

- ~~~~~~~~~~~~~~~~~

+ K e3~~
t
~~N
) 

- w2MN~~e
3
~~

t
~~N
)

+ NXN 
= 0

Collecting terms again and dividing through each equation by eJ~
t pro-

duces the final equation system form.

((K1+K2) 
- w2M1 + jw(C1+C2))~1e~~l 

- [K 2+jwC2 Jk2e~~2

—13—
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= [1C1+jwC1]Y

— [X1+jwC1]~~~ 1e~~ i—l

/
+ [(K

~
+K1+1) - w2M~ + jw(C

~
+C.+1)]L e3 i

- [1C1÷1 + jwC1÷1]~~÷1e
3 i+l = 0

- [K~+jwC~]ç_1e
J N_l + [KN-MNw

2+jwCNJ L~e~~N = 0

If this system of equation is expressed in its equivalent matrix notation,
matrix algebra may be applied to extract the solution. The component
expressions become:

The (N x 1) output displacement matrix

[XJ = X1ej~l

- j •

.

iie
j.i



the (N x 1) input displacement matrix

I
U , (4)

the (N x N) diagonal mass matrix

[NJ =
H2

N .

- 

1 
•
~ ~~~~~~

_

the (N x N) stiffness matrix

[K] = K1+K2 ~
I(2

-K2 K2+K3 -K3

~Kj:1 K1+K~+1
-K
~+1

- — , (6)

and the (N x N) damping matrix

[Cl = ~c1+C2 -C2
-C2 C2+C3 

• 

-C3

—Ci_l Ci+Ci+l —Ci+l

- 

CN CN (7)
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The final mathematical model for the dynamic response of the idealized
vibrating system becomes

[(K] - w2 [H] + iwICJl [X] = (K
1 + j wC 1) FYI (8)

where the system displacement may be expressed as

r 1-1
[xJ (X J — w2[MJ + jw[CJ (K1+jwC1) [Y]. (9)

Because acceleration transmissibility is equal to disp lacement trans-
missibil ity, an equivalent expression for the acceleration response
becomes

lxi = GKJ-W~’MJ + jwJC~ 
-l 

(K
1 + jwC1) EY J . (10)

To express the response of each mass in the form of equations (2)
and (3), where an element from the displacement matrix of equation (9)
takes the form

~1e~~i = a1 +

where a and i are real numbers . The amplitude is calculated as

= (a~ + b~)
”2

and the phase difference as

= tan ’ (b./a.)

With damping neglected in equation (9), the response becomes infinite
when, according to matrix theory (1), the expression

-16- 
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(K) - w2[H]

is equivalent to the zero-filled matrix. The values of w that satisfy
this condition then become the natural frequencies of the system.
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Appendix

The problem presented in the main text can be analyzed once the physical
parameters and sys tem input are def ined .

The 3 degree of freedo. model is subjected to an input of 0.25 G accelera-
tion at 5 cycles per second. Each element has a weight W of 55.3 pounds
and it is estimated that the box material contributes about 30 percent
of critical damping CCR where

C. = 2(M.K .)1”2iCR ii

for each model element. The stiffnesses are linearized from the static
compression test curves to be

K1 771 lbf/ in. ,

I
= 607 lbf/in.

K3 = 500 lbf/in.

The matrices for solution may be set up with appropriate units for
compatibility. The mass matrix is

H. = W~(lbf)/386(in./s 2)

= H2 H3 = 55 .3/386

0.143 lbf . a2/ in.

[NJ [0.143 0 0

0 0.143 0

[o 0 0.143

-18- 
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I

The stiffness matrix is

[K] = rl,378 -607 01
—607 1,107 -500

L 
0 -500 500

The damping matrix is

C1 = 0.3 x 2(0.143 lbf . s2/in. x 771

= 6.30 lbf • s/in.

C2 = 0.3 x 2(0.143 x 607)1~
’2 5.59 lbf . s/in.

‘ I
C3 = 0.3 x 2(0.143 x 500)1/2 5.07 lbf . s/in.

= ~~~~ -5.59 0 1
-5.59 10.66 -5.07

L 
0 -5.07 5.07j 

-

The natural frequencies of the system may be calculated fro. the matrix
formed by

[K] — w2(HJ

Equating the determinant of this matrix to zero, the values for may
be solved from one of numerous techniques (8). Accordingly ,

1 ,378 - 0.143 -607 0

-607 1,107-0.143 -500 = 0

0 -500 500-0.143

—19-
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from which

-2.924 x 10 3w6 + 6.104 x 101w4 - 3.080 x 105w2

+ 2.361 x io8 = 0

where the roots become

= 930.5

= 6,412. ~-2

= 1.353 x 10~ s~
2

)

In appropriate units the natural frequencies are

= 4.84 cycles/s ,

= 12.7 cycles/s ,

= 18.5 cycles/s.

To investigate the effect of damping , equation (10) can be solved when
the values with compatible units are substituted . Continuing the
analysis ,

w = 5 cycles/s x 2n radians/cycle

= 31.42 s~~ ,

= 987.0 ~-2

_ _ _ _  i:. : V~~~~~~~~~~~~~~~~~~~
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Y 0.2~~G x 3 8 6 in . / G s

= 96.5 in./s2. (11)

The input acceleration matrix becomes

=

0

0

Real and imaginary components may be collected separately.

[K] - w2[MJ = [i ,237 -607 0

I -607 965.9 -500
I

L 0 -500 358.9

w[C] = r373.6 -175.6 0

1-175.6 334.9 -159.3 
V

L 0 -159.3 159.3

K1[Y] = 
[.440 

l0~~

]

= 

[.910 
. 1041

—21—
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The matrix algebraic expression for the acceleration response is now
formed :

[x] = (1 ,237 + j373.6 —607 - j175.6

-607 - j175.6 965.9 + j334.9 -500 - j159.3

L o -500 - j159.3 359.8 + j159.3

r7.440 1O~ + j l . 9 l0  .

x~ 0Lo
Wit,Jiout demonstrating the calculations , the indicated matrix is inverted )
(2 ,8) and the response becomes

~~ =r 3.4 56 - j22.58 -7.594 - j4l.68 -16.16 - j54.27

I -~ .sg4 - j41.68 -14.53 - j85.42 -31.76 - jlll.4
[-16.16 - j54.~ 7 -31.76 - jlll.4 -35.14 - j153.6

r7.440 + jl.9l01

x (O

[o

Finally 
V

= [V - jl6l.4

23.11 - j328.6

[_16.57 - j434.6 (12)

—22—
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or

= 175 .5e j (3  4t ~~68) 
= 0.46 G cos (3 1.4t-l . 168) ,

= 329.4ej(31 4t 150 1) 
= 0.85 G cos (31.4t-l.501),

X3 = 434 .9e j ( 3  4t 1.609) = 1.13 G cos (31 .4t - 1.609) .

To determine if any box has been loaded beyond ies maximum compression
strength , combine equations (11) and (12).

X3 X2 
= 1i3.2e j(3l 4t l

~
929)

,

X -X = 173 2 j(31.4t-1.838) .4

2 1

1
-y = ~~~~~~~~~~~~~~~~~~

From these the boxes’ compressions may be expressed in terms of relative
disp lacements , D. Because harmonic displacement is a constant multiple
of harmonic acceleration , the constants of integration are equal to
zero .

= X 1-Y = _0.i6ó0ej(3l~
4t
~~~

74l ) = -0.1660 in cos (3].4t—l.741),

= X2-X1 = ~0.l756e
3(3 4t-l.838) = -0.1756 in cos (3l.4t-l.838),

D
3 

= X3-X2 = ~0.ii47e
3(3 4t~~~929 ) = -0.1147 in cos (31.4t-1.929).

-23-
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The compressing load F on a box then becomes the force due to dynamic
compress ion plus the equilibrium supporting weight . According ly:

F1 = K 101 + 3 W = 293.9 lbf ,

F2 = K 2D2
+ 2 W 2 17.2 lbf ,

V 

F
3 = K3D3 + W = 112.7 lbf.
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