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1. INTRODUCTION

Infrared radiation from clouds is an important background signal
contribution that must be considered in the design of high-altitude sensor
systems deployed for missile and aircraft detection. Thermal radiation
from clouds and its transmittance through the atmosphere can be computed
in a relatively straightiorward manner. On the other hand, the calculation
of apparent cloud radiance that results from the diffuse reflection of solar
radiation from clouds is a much more complicated problem in multiple-
scattering radiative transfer theory. Even with the simplifying assump-
tions of an infinite, plane-parallel cloud layer composed of spherical
particles, the computation of exact solutions of the reflected radiation
field for arbitrary solar and viewing angles is complex and time consum-
ing, prohibitively so for routine application to parametric system design
studies. The overall objective of the present study is to investigate
approximate cloud reflectance models that can be effectively applied in

systems analysis.

The accuracy of these models is not of paramount importance. The
problem is usually phrased by the system analyst as '"how much reflectance
would I expect from high-altitude clouds'' without any specification of cloud
type, homogeneity of cloud cover, particle type or size distribution, etc.
At the same time, very large errors cannot be acceptable since these
could presumably influence the system design. The subjective criterion
set for acceptable model accuracy here is that the model should predict
within a factor of two of the exact reflectance for a typical cloud type. The
cloud type chosen is a model, plane-parallel, semi-infinite cumulus cloud
composed of spherical water or ice particles. Further consideration of

this test standard is made in Section 3.

The method of approach to the problem is straightforward. A liter-
ature search was made for suitable models that appeared amenable to the
problem. The methods were adapted to the present problem in the simplest
manner possible and the predictions for the test standard compared to the

exact results for the standard case.




2. EQUATION OF RADIATIVE TRANSFER

Consider parallel solar radiation of spectral flux density EO(WI cmz-m)
impinging on the top of a plane-parallel, homogeneous cloud layer at zenith
angle 90 (see Fig. 1). (1,2,3) The incoming radiation is scattered by the
particles comprising the cloud, and a steady state spectral radiance field
L(T,u,¢)(W/cmz-lr-um) is established within the cloud. T is a dimension-
less measure of distance into the cloud (from the top) and is defined later.

p is the zenith angle variable p = cos6. The field L is composed of two

parts, a direct component L0 which contributes to L only for 6 = v - 90
and ¢ = b0 and a diffuse component LD. The solution for the direct com-~
ponent is Lo = Eoexp(-p.'r). The diffuse component for a plane-parallel,

% vertically homogeneous cloud of infinite horizontal extent under conditions
of thermodynamic equilibrium and with no embedded sources of radiation
is governed by the following integro-differential equation of radiative

transfer:
’ 2w 1
w3t e8) - pir,p0) -k C C pe,osu,00L(r, i, 0000 ae
0 -1
1 -/kg
iy v Eoe P, 9, 'P-oo ¢0)- (1)

Note that the subscript D has been dropped. From this point on, the sym-
bol L will be used to denote LD. The function p(u, @, ', ') is the scattering
phase function for the cloud particles and describes the probability for
scattering by a single particle from the direction u'¢' to the direction p¢.

For spherical particles, p does not depend individually on p and ¢ but is a 1
function only of the scattering angle @ defined by 1

cos® = cos(¢-¢')y /(l-uz)(l-u'z) + pp'. (2) |
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The phase function is normalized such that

2w 1 1
( \‘ Plp, ¢, ', ¢')du'dg' = 2w S P(x)dx = 4mw,. (3)
0 -1 -1

where x = cos®. @ is the single-scattering albedo of the cloud particles
and is defined in terms of the particle cross sections for absorption (oa)

and scattering (o') by &
8

o
e

“o (4)
where O is the total extinction cross section o war + O, These cross
sections, and the differential scattering cross section do’(v)/dﬂwhich
defines the phase function through

do_(¥)
plcos®) = 3—:1'“— (5)

are considered in the following section. The optical depth.parameter T is
defined by T = No 2z where N is the cloud particle density.

The boundary conditions that the radiance field L must satisfy are
(1) that there be no downward directed diffuse radiance at the top of the
cloud, i.e.,

L(O,u, ) = 0 p<o, (6)

and (2) for a finite thickness cloud, that there be no upward directed
radiance at the bottom, i.e.,

L(Tonb‘-o $)=0 p>0, (7)

or (3), for a semi-infinite cloud, that L(T) remain bounded as 7 = =,

The three terms on the right of Eq. (1) have clear physical signifi-
cance. The first term reflects Beer's law that the change in L is propor-
tional to L. The second (integral) term is a source term corresponding
to the scattering of diffuse radiation from all directions into the particular
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direction p¢, and the last term 18 a source function corresponding to the

scattering of radiation from the direct radiance component Lo into the
direction pg.

T i Al ekacs il Foien

Given the phase function p(cos®), its normalization constant @ and

the boundary conditions of Eqs. (6) and (7), the scattering problem «
described by Eq. (1) is fully defined. In principle, one solves this equa-

i

tion for L(7,u,9). Then, an appropriate cloud reflection coefficient 1
p(sr'l) is defined by

|
L(0
Pk, 8) = —(-g;'-ﬂ. u> 0. (8) ;
| |
: In practice, the solution of Eq. (1) is formidable. The primary purpose
of this paper is to investigate rational approximate sclutions. Descriptions e
L

of the approximations comprise Section 4 of this report. For the most
i part, the difficulty in solving Eq. (1) is caused by the presence of the inte-

gral scattering source term, and the principle methods of approximation

f simplify this term. The first-order approximation of completely neglect-
{ ing this term is the so-called single-scattering approximation and is also ¢
considered.

I
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" Lf' 3. TEST CONDITIONS

A" 3 The cloud standard is a plane-parallel, semi-infinite cumulus cloud

: composed of spherical water droplets. The size distribution of particle

| radii is described by %>

91 e

E, n(r) = ar%e pr (9)
3 where

a= N{yp‘“””/"/r(ﬁ—:-—l-)}.

’
YTCY
N = particle density (cm-3), re = radius of peak distribution (um), and «
and y are size parameters controlling the shape (e.g., width and skew-
ness) of the distribution. For the present work, a = 6, vy = 1 and re = 4um
are used and the resulting distribution f(r) = n(r)/N is shown in Fig. 2.

Necessary inputs to any nonempirical model of cloud reflectance are
the scattering (total and differential) and absorption cross sections for

single cloud particles. These parameters were computed according to

standard Mie scattering theory(s’ *) and averaged over the size distribution
i of Eq. (1). The index of refraction for water was taken from Ref. (6) and

: is shown in Fig. 3. Results in the 2-20um spectral region for the total
scattering (o'), total absorption (aa) and total extinction (ce o + oa)
cross sections are shown in Fig. 4. The differential scattering cross
section dos(O)/dﬂ as a function of scattering angle at A\ = 2, 70 and 4. 35um
is shown in Fig. 5. A fundamental feature of the differential scattering
cross sections (i.e., the phase function) evident in Fig. 5 is the stroag
probability for forward scattering. Advantage is taken of this feature in |

|
]
|
|
1
{
]

*S. J. Young, Calculation of Scattering Cross Sections for Clouds, ATM
75(5409-40)-5, The Aerospace Corporation, El Segundo, California, 9
June 1975.
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the formulation of various strong-forward-scattering approximations in the
next section. The principle index for measuring the degree of forward
scattering is the fraction of scattering events for which the scattering angle
is less than 90 degrees. The fraction n is shown in Fig. 6. Also, the type
of simplifications that can be made in modeling cloud reflectance is strongly
influenced by the albedo for single particle scattering, a parameter that
measures the fraction of events in which the incident radiation is scattered
rather than absvorbed. This parameter is defined by wg = c.vs/cxe and is
shown in Fig. 7.

Exact calculations for reflectance from this model cloud have been

£r=32) using the '"doubling'' method of radiative trans-

made by Hansen et al.
fer. The test case against which the results of the approximate methods
are compared is shown in Fig. 8. The case is for normally incident radia-

tion at \ = 3.4 pm.

-18-
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Fig. 6. Forward Scattering Parameter for Model Cumulus Cloud
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4. MODEL DESCRIPTIONS AND RESULTS

A.  Single-Scattering Model

The single-scattering model(lz) for cloud reflectance considers the
diffuse radiance field within the cloud to be composed only of those photons
that have been scattered once from the primary incident beam. The radia-
tive transfer equation for this condition is obtained from Eq. (1) by
neglecting the integral source scattering term. The solution for L is
obtained simply by solving the resulting first-order differential equation.
The result for a semi-infinite cloud that satisfies the boundary conditions
L(O,pn,9) =0 for p<0and L(T,pu,9) = 0 for 1~ = is

E p
0
L(t,p,®) = - (10)
9 -t/ug _t0
ye p(coscpo)e >0

™

where

cos®y = cos(@-bo)y [(1-k7)(1-R]) - hig. (11)

The reflection coefficient of Eq. (8) is then

A Mo
pp, @) = Z;P(c°3¢o) e Fo . (12)
The comparison of the prediction of this result with the standard
test case is shown in Fig. 9. The single-scattering approximation under-

predicts the reflectance by about a factor of three.

Although the single-scattering approximation fails as a general
approximation, it has two redeeming features; (1) it is extremely simple
to apply, and (2) it can be quite accurate in some spectral regions. The
first feature is used to advantage in the formulation of modified single-
scattering approximations (Sections B and C). Results from a previous

‘,._..._.

Sal




180 150 120 90
0.1‘ i | l | ] ' \ | |
L R
"\
0,12 ] \\ = |
I
- ' ‘ -
] \
L1\ MODIFIED SINGLE SCATTERING |4
0.10 : : | 4
fiied
[ ) ;
i ,
t \ 2
[} \ i
i \

ooz /. SINGLESCATTERNG -5
N ”

\
- \.\§--_—'¢ &
0 gtz il de g coages safua g o
i 0 30 , 60 90
8 (deg)

Fig. 9. Comparison of Single -Scattering Approximations
with Test Case

S e i




study on cloud reflecunce* has established that this model is adequate for
practical application in the 2- to 3-pm spectral region. In Fig. 10, a
comparison is made between the model and experimental field measure-

ments., (13,14) The measurements were made with an airborne sensor
flying 1 km above a uniform cloud deck with an observation zenith angle
of 80 degrees, a solar zenith angle of 88. 5 degrees, and a nearly coplanar

B A

geometry for the entrance and exit rays (i.e., ¢ - ¢0 == 0). When proper
account of atmospheric attenuation is made of the path from space, to the
cloud, and back to the sensor, the agreement is quite good.

The success of the single-scattering model in the 2. 7-pm region can } 3
be attributed to the large value of the absorption coefficient of liquid water l‘
in this spectral region (Fig. 3b). This large value is carried over into a i

broad peak in the spectrum for the absorption cross section o (Fig. 4)

and, consequently, into a broad valley in the spectrum for the single- v
scattering albedo @y (Fig. 7). The effect is that photons that must be
scattered more than once in order to escape the top of the cloud in the

desired reflection direction have a large probability of being absorbed

rather than scattered. At \ = 3.4-pm, on the other hand, the absorptance

by liquid water is small, and higher orders of scattering contribute sig-

nificantly to the reflected radiation field.

B. Two-Stream Theoretical Modification of the Single-Scatterin&Model

The general development of radiative transfer in scattering media ]
has produced a set of approximate solutions collectively known as ''flux 1
approximations.'' Among the more important are those due to Eddington,
Schuster and Schwarzchild (two-stream approximation), and Sagan and b
Pollack (modified two-stream approximation). Use of these approxima- j

g tions for cloud reflectance has been considered by Irvine. N The essence

| of these approximations is the sacrifice of angular information of the

S J. Young, Solar Scatte gCalculatwns ATM-75(5409-41)-3, The
Aerospace Corporation, E gundo, Cal ornia, 14 December 1974.
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general radiation field in order to efficiently compute the total flux in a
given direction. In application to the cloud reflectance problem, these
approximations yield only the albedo of the cloud, that is, only the total
radiation reflected into the upper hemisphere. Because of this lack of
angular information, these types of approximations are not considered

3 1 here as final models. This approach is used, however, in order to derive

an improvement on the simple single-scattering model.

The basic simplification made in Eq. (1) to obtain these flux approx-
imations is to assume a phase function of the form

P(u, 0,1, 8') = dwa | nb(w-w)8(9'-0) + (1-m)blutu)s(@'-m-0) | (13)

where 8 is the Dirac delta function. This form allows only direct forward
and backscatter along the primed beam axis. n is the forward scattering
parameter. The radiance field is similarly constructed as

|~ Lit,1,0) = L T EY (1)6(u-p)6(8-7=0 ) + E()6(u+p,)6(d-0.) . (14)
B L 0 0 0 o)

Thus, the field is assumed to contain components only in and opposed to
the direction of the incident solar radiation. E' and E” are the radiance
flux variables for the forward and backward directions, respectively.

& Substitution of Eq. (13) and (14) into Eq. (1) yields the following pair of

coupled, first-order differential equations governing one-dimensional

e R een ot

radiative transfer

ae*(r) _[1-"%] .+ woll-n] 4 —f
= -[ ™ E (1) - T ET(T) - wyE (1-n)e *0

(15)

- l-nw w (1-m)
dE (1) _ 0| g- 2 gt -/p
- = -[“0 ]E(-r)-[ ™ ]E(T)-onone e

i i i i
A g e e S A e+

The relevant boundary conditions are

- E(0) = 0
and

- .

E*('r)-oo as T —=®,

-27-
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The solution of this set of equations yieldn(lb)

+

E -kt/
Speh = worge ™ M0

0

l_-:f(n * Po[e-k'r/uo S e""/FO]

0

k = J(T‘wo)[ 1'(2*\’1 )woj‘l

k - (l-mo)

o "k +—"(1-w°)

where

and

The reflection coefficient (total albedo) is obtained as

Adamlon(l6) has expanded T,

where

[n/2]

n/m\" 2n-2j)! @2n-1) )’
Pn = “’o(.?) T?ﬁ Z 7 !_—(—_J)-—(n-j)!(n-ZjHT! [' " ] y
j=0

The contributions to the albedo from once, twice, and three times scattered

photons are, respectively

-28-

in orders of scattering to obtain

(17)

(18)

(19)

(20)

(21)

(22)
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)
Py = ?— 2(1-n),
2
0%
Py = ‘—23— 2n2(1-n), (23) ﬂ

and

3

3
Ba®
Py = 30| @ 20-m + (-]

In the limit of strong forward scattering (n - 1), these contributions

approach ’
1-

b .(_211). ’

20
P, —> KoY .(_ZTJ). ; (24)

and

3 (1-1)
i A e

and, in general
1-
p—> roun L5 (25)

In this limit, one can calculate simply the ratio of all multiple scattering
contributions to the first order (single-scattering) contribution as

Py 1
i o
Z"n
n=2

0
Although this result has been obtained in the flux approximation, it is
applied as a correction factor to the single-scattering result of Eq. (12)
to obtain an improved model

. (26)

29«
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p(ps #) = Cpgglm, @) (27)

where Pss is the single-scattering approximation. The form of the cor-
rection factor is intuitively correct. As the probability for single scattering
increases, i.e., as W, increases towards unity, the effects of multiple
scattering contributions to the reflectance must increase. This intuitive
result is evident in the increase of the multiple-scattering correction

factor C with wge This approximation must fail, however, for conserva- ! ‘5:
tive scattering (wo = 1) since then p =®, For the present application, this E

poses no problem since @, never exceeds ~ 0.9 (see Fig. 7).

For the test case condition of Fig. 8, wg = 0. 729 and the correction
factor is C = 3.56. The product of C and PSS is shown in Fig. 9. The

agreement with the exact reflectance curve has been improved so that the
maximum error, except at 6 ™= 90 degrees, is only ~ 50 percent,

C. Empirical Modification of the Single-Scattering Model

Comparison of the predictions of the theoretically modified single-
scattering model with exact calculations was extended beyond the single

comparison of Fig. 9 in order to determine the range of its application.
The exact results were obtained from Refs. 9 and 11. The results of this
comparison are given in Table 1 and Fig. 11. Column one of Table 1 gives
the wavelength of the eight cases used in the comparison. The second
column lists the figure number and reference from which the exact result
was obtained. The size distribution function of Eq. (9) with Te = 4 pm,

vy =1 and o = 6 applies in all cases, but for three of the cases, the cloud
particles were assumed to be spherical ice particles. The cloud particle
type is listed in column three of the table., The fourth column tabulates
the single~scattering albedo for the wavelength \, the fifth column is the
theoretical correction factor of Eq. (26), and the last column is the factor
obtained from the exact results. This last factor was obtained from the 3

figures referenced in the second column by computing the mean ratio
between the exact and single-scattering reflectance over whatever variable

-30-




Table 1. Data for Construction of Empirically Modified
Single-Scattering Model.

(pm) Fig. /Ref. 91.1;’;’;’ wg Cetlil-ng) =~ oot

1.28 13/9 Water  0.9984 625 20 !
1.50 l 0.973 37 18 |
2. 00 0. 900 10 10 F |
2.25 17/11 0.991 108 28 i
2.47 15/9 Ice 0. 940 12 17 '
2.72 0.830 5.9 4.5

3.10 l ‘ 0. 520 2.1 1.8 :
3. 40 21/11 Water  0.729 %, 3.4 i
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(e.g., © or @) was used to plot the results in Refs. 9 and 11. A plot of
this exact factor versus the theoretical factor l/(l-mo) is shown in Fig. 11,
For w, 0. 9[ l/(l-wo) €10], the comparison between the model and exact
results is very good. For more conservative scattering, however, the
model overpredicts the multiple-scattering contribution to reflectance.
The model predicts a continuing linear increase with 1/ (l-mo) while the
exact results indicate a saturation for W, ? 0.99[ l/(l-wo) » 100] such

that the true reflectance is never more than 25 times larger than the
single-scattering prediction. An empirically modified single-scattering
model was thus constructed by taking the correction factor Ce to be its
theoretical value for w, S 0.9, the saturation value Ce = 25 for w2 0. 984,

and the interpolated value

F
= (28)
with
r 0.0160\7°
F = 1.3979 - 0.6282 ' log, o( 2 =22) | (28)
G-

for 0.900 < w, < 0.984. This correlation for Ce is the curve labeled
Empirical Factor in Fig. 11. In all, the approximation appears to be

accurate to € + 50 percent for most cases, with an occasional excursion
to a factor of two error.

An example of the application in the 2- to 20-pum region of the single-
scattering, theoretically modified single-scattering and empirically modi-
fied single-scattering models is shown in Fig. 12. The sun is at the zenith

and the observation is at the coplanar 45 degrees zenith.

D. Turner Model

Turner(3' $ 18 has developed and applied a multiple-scattering
model that is developed along the lines of the flux approximations, but
which retains the dependence of the reflectance on the entrance and exit
zenith angles. In effect, this model is the next logical step after the flux

-33-.
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A approximations, The solutions for E*('r) of Eq. (17) are substituted into

. Eq. (14) for L(T,n,¢) and this result, in turn, substituted into the radiative
transfer equation [Eq. (1)]. Equation (13) for p(pn, ®, ', 9') is also sub-
stituted into Eq. (1), but this time, only into the integral scattering term.
Integration over the angular variables in the integral scattering term

& reduces Eq. (1) to a linear first-order differential equation for which the

solution is (for a semi-infinite cloud)

| E
; or ; T Mo [ -kt/po _ _T/n
9 | p(cosvo) + rop( cosgo)- ———-“0 ry ‘e -e } u<o0
1 L(T,1,8) = (29)
i Eo 1_Ho  _-kt/ug
i i | p(cos@o) + rop(-cosq:o)_, ;o—m e u>0
i from which the reflection coefficient is obtained as ’
1 1 g T |
N - p(k, @) = 7 Plcoswy) + rp(-cos®y) Fotkm M >0 (30)

where L is defined by Eq. (11), k by Eq. (18), and T by Eq. (19).

f

‘ The significant feature of this model is that it augments the contri-
:I bution from single-scattering by adding a '"backscatter component, ' that
is, the component rop(-coupo). The prediction of this model for the
standard test case is shown in Fig. 13. For this normal incident case,
the principle failing of the model is evident — a gross overprediction of
the reflectance results for direct back reflection (6 = 0). This results
because the Turner model's '"backscatter' contribution to the single-
scattering contribution is, in fact, the strong forward scattering lobe of
the phase function. For large exit zenith angles, this model adds little
to the predictions of the single-scattering model (compare Figs. 9 and 13
for 6 = 90 degrees).

?
]
i
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E. Romanova Approximation

For scattering problems involving phase functions that are strongly
peaked in the forward direction, Romanovo,(19 -21)
separating the general transfer equation into two parts. One part describes

gives a procedure for

the strongly angle-dependent forward radiation field, while the other
describes the weakly angle-dependent remainder field. The separation is
effected by rewriting the transfer equation [Eq. (1)] as

2w 1
"l*o &% TT = L(T,p1,0) - Z{? S c PR, @, ', 2')L(T, P'a¢')dﬂ'd¢'

0 -1

E
o d
= F?‘ e T/“OP(P'» ? 'P'oo ¢0) - e(P'o + ) _L(g;ﬁl'll .

When the parameter ¢ is set to unity, the exact transfer equation is

(31)

recovered. When ¢ = 0, the equation describes the field in the direction
- “Hoe The field variable L(T,,®) is now decomposed by

L(t, @) = Ll(fo l-‘p¢) + CLZ(T, “o¢) (32)

and substituted into Eq. (31). Collecting terms independent of ¢ yields
the following transfer equation for Ll

dL (7,1, 9) v 1
'l-"o _T_ L (T, s ®) - (‘ \ P(l-l.¢, F'n¢')L(T' l-"'|¢')dl‘-'d¢'
0 -l

2 (33)
p GO_ e-T/FOP(l"n ®, “Ko ¢o)o

Collecting terms containing ¢ and setting ¢ = 1 yields the following transfer
equation for LZ

dL, (T 2r 1
z D“‘D¢) \\
b= Ly, ®) -5 O (Bl 6,00, 0Ly, 10, 01)dprdey
0 -l
(34)
dL (‘rol‘o¢)

“(ho + W) — g
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Presumably, Eq. (33) describes the field in the direction p * Ko and

9~ L) (which is strongly angle dependent, at least for T not too large)
and Eq. (34) describes a field that is relatively slowly varying with angle,
The original transfer equation is recovered by adding Eqs. (33) and (34).

Along with this separation, the boundary conditions are also modi-
fied. In particular, a condition is placed on 1..l that suppresses back-
scattering, That is, Ll(O, u,®) = 0 for p > 0. Coupled with the condition
Ll(O. B, ®) = 0 for p < 0 imposed by the fact that Ll is a diffuse field yields
the general result LI(O, M, ®) = 0 for all p. This diffusivity agreement also

requires LZ(O’ M, @) = 0 for p < 0. In addition, both Ll and L, must remain
finite for T = =,

The method of solution for Ll is complicated, and is only sketched
out here. Standard(z) expansions of both L, and p are made. The azimuth
angle variation is handled by expansion in a series of cosine functions of
the form cosmg¢ and the zenith angle variation by expansion in a series of
associated Legendre polynomials P;n(p.). When these expansions are sub-
stituted into the radiative transfer equation [Eq. (1)], a first order dif-
ferential equation for the optical depth dependent expansion coefficients

fm(T) can be isolated. This equation is solved subject to the boundary
condition Lfm(O) = 0 for all p. The solution is then substituted back into
the expansions over { and m. The resulting form can then be summed

explicitly over m to obtain the final solution

Eo e~ ro > '|
L, (7,1, 0) = 32 > @as1)P(cosog) explppy = -1l e
' 2=0
where w, are the expansion coefficients

1

w, =281 { )P, xiax (36)
-1

for the expansion of p in Legendre polynomials




N

p(cos9y) = Z sz‘(conp). (37)
o =0

This contribution to the total field L cannot contribute directly to
the reflectance since LI(O, i, @) = 0 for all u. This solution is required,
however, in the solution for LZ' The significant advantage of this approx-
imation is that since LZ is assumed to be a slowly varying field with angle,
the solution of Eq. (34) is substantially easier to obtain by standard tech-
niquea(zz) than Eq. (1) is for the original field L. The simplest case,
that is, when LZ
independent of the angle variables in the integral source term of Eq. (34),

is nearly isotropic, is considered here. If LZ is assumed |

then the resulting transfer equation for L, is

dLZ(T, s @) dLl(T! M, 8)
p——gr— = (1-0g)L, (T, 1, ) = (rotp) —g7— - (38)

The solution of this first-order differential equation that satisfies the

boundary condition LZ(O, 2, ®) = 0 for p <0 is

(tpq) (wtpg)(1-wy) Eg
LZ(TIP'D $) = - g Ll(Tn|~|-3¢) + OP.Z 9 -4'1_'.' X
N wxpiill ~adbe) 1), eapl-i-gg L - X
D @141)P (cosay) A ol (39)
X L+ cos® - .
£=0 $ i [l-wo + (1 = ._wL. ._l_-‘ [ﬂp.q..L-‘
T 24+1 Ho- v Po-
Finally then, the reflection coefficient is [ Eq. (8)]
: N
[ p.o(p+p.o)(l -wo) w‘P‘(coswo) )

: P, @) = 4nl(1-wy)p +ul w
i O o T -ugieg + {1 - 'ﬁ_ﬁ'l—}“}

Application of this result for p(u, #) requires the decomposition of
the phase function into a series of Legendre polynomials according to
Eqs. (36) and (37). This decomposition is considered to be too complicated
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for a model such as we are trying to formulate here. Since we have
assumed all along that p(9) is a strongly forward-peaked function, we will
continue with this assumption for the final simplification of p(s,¢). Con-
sider the analytic Henyey-Greenstein phase function

(l "ﬂz)wo

—373 41
(1 - 2ncose + n°1° !

p(®) =

whose expansion coefficients are

L
w, = won (22+1). (42)

In the limit n = 1, this function represents a strongly forward-peaked
function and w P wo(zz-!-l). If this result is used in the denominator of
Eq. (38) and Eq. (39) used to evaluate the sum, then p(u,¢) is simplified
to the final result

p(CO!Vo) B+ ko

(43)

The prediction of this model for the standard test case conditions
is shown in Fig. 14. Some improvement over the simple single-scattering
model is evident, but on the whole the model does not meet the general
criterion of a factor of two accuracy. Further discussion on this model
is given in Section G.

F. Truncation Approximation

Hanaen(s) and Potter(23) consider a straightforward approximation
based on a simple, but physically justifiable, redefinition of the problem.
Consider a phase function p(x) that is strongly peaked in the forward
direction (note, x = cos9, ¥ = scattering angle) and normalized by Eq. (3)
to

1
{ pix)dx = 2w, (44)
-1
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Separate off the strong forward diffraction peak by
p(x) = woAé(l-x) + p'(x) (45)

where § is the Dirac delta function. Use of the normalization condition
Eq. (44) gives

1

A= % 5 [pG) - ptx) Jax. (46)
-1

The slowly varying '"remainder' function is normalized by

1
(\ P' (x)dx = wo(Z-A). (47)
-1

The fundamental assumption in this approximation as put by Potter(23)

is to ''treat the radiation that has been scattered into the forward direc-
tion by the delta function as not having been scattered at all, ' and to
still be a part of the incident flux. Thus, the magnitude and angular
distribution of scattered radiation is assumed to be controlled solely by
P'(x). The form of the transfer equation to be solved is not changed. In

Eq. (1), one simply replaces p by p' and replaces all references to

0
by the effective albedo
! r AN
i e o g

and, for finite cloud thickness problems, all references to optical depth
T by the effective depth ;

-

T = rl - Wy -f.-}-"r. (49)

Since p'(x) is much less rapidly varying with angle than is p(x), the solu-

tion of the transformed problem is much simpler.
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The drawback of the method is that the truncation of the forward
diffraction peak is a subjective choice. Moat applications of the method
have been made in the visible portion of the spectrum where the forward
peak is extremely sharp and little judgment is required to determine the
best truncation, In the infrared, though still strongly peak, the truncation
of p(x) is ambiguous. Because of this ambiguity, the method is not pur-

sued further. |

G. Expansion in Orders of Scattering

The essence of this approximation is an approximate expansion of
the radiation field in orders of scattering. This method has been described e f
recently by Chou(24) and, for the most part, the development here follows 1
that reference. Associated with each order (i.e., once, twice, three =
times, etc. scattered photons) is an azimuth independent source function
Qk(T,p) and an effective phase function pk(p.. @, “Hq? ¢o) that is independent o
of . The field is expanded as #

-

Lir, Mo ®) = Z Qk('rp P-)Pk(l«l-. ®» 'Foo ¢0)' (50)
k=l F

The first-order source function and effective phase function are obtained

from the single-scattering solution of Eq. (10) as

E M
0f =t/po _ T/n1_"0
e - e | — “<0
4n - p.+p°
Q,(m,u) = 5 (51)
0 -T/ro "0
T;e p.+p.0 > ' 1

and

pl(coupo) = p(cotﬁo). (52) ;
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The expansion of L(T,u, ) by Eq. (50) is substituted into the transfer
equation Eq. (1) and the following approximations made. First, Qk('r.p.’)
in the integral source term is assumed to be independent of p', taken
outside the integral sign and evacuated at p' = u. ¢ Second, the effective
phase functions are defined by the recurrence relation

2w 1

pk(P'n ?, 'P'oo ¢0) = (\‘ \‘ P(ll». ®, P'JW)Pk_l(P"- ¢'0"Fon ¢0)dl"d¢'- (53)
0 -1

This procedure, along the definition
Qq(7, 1) = Ege"/ko (54)

leads to the following differential equation for the source functions for
k20

(To
" —%‘— Q(T,1) = - £ Q (7, ). (55)
By working out the solution for the first few values of k, one is led by
induction to the following solution that satisfies the boundary conditions
Qk(O,y.) = 0 for p <0 and Qk('r,p.) -0as T= o

i atpe L 0
k(To p) = E ‘-T Bt P-o:’k T/Ho » eT/FZ j,Ck '1(4;“: (56)
§=0

where
L T,
“Eqolzw .‘rrq) pas
Co» (57)
0 ®>0.

*This as sumption is the major simplification of Chou's method. He
assumes this to be true over the upward and downward hemispheres only.
Here, the assumption of isotropy is made.
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This result gives the source functions for use in Eq. (50).

An expression for pk(cOIOo) to be used in Eq. (50) is obtained by
substituting the Legendre polynomial expansion of Eq. (37) for p(cosvo)
into Eq. (53). The result is

N
w |

p,(cos®,) = -4—1'- E (22+1) [ 4n ‘z‘ITfT]kP ,(cos%,). (58)
£=0 ]

The reflection coefficient is now obtained by substituting Eqs. (56) and (58)
into (50), evaluating at v = 0 for p > 0 and dividing by Eo. The resuit is

s
i
1
{

N
1 )
Pk, 9) = 2o Z C,(2£+1)P (cosw() 1
=0 -
1 |
where [
feghe) (20 :
4+1/ \p+p0/ ;
C, = . (59)
* e ety
20+1. \ptpgy/

Like the Romanova approximation, application of this model would require
the expansion of p(coswo) in a series of Legendre functions. We simplify :
the model as in the Romanova approximation by use of Eq. (50) for w zin ! 3
the limit of strong forward scattering (n—= 1). The result is, in fact, the o
same as that obtained in Eq. (51) for the Romanova approximation, and :
the consideration of accuracy is hence the same as made in Section E.

I
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5. SUMMARY

The principle objective of this work has been to formulate and assess
simple models for computing the diffuse reflectance of solar radiation from
plane-parallel cloud layers. By ''simple,' is meant the ability to compute
the reflectance from no more than the Mie scattering parameters and some
algebraic formula. The most successful model is the empirically modified
single-scattering model. The nominal error of the model is + 50 percent.
Several other models were considered (without empirical correction) but
could either not achieve suitable accuracy in their simplest form (e. g.,
Romanova and orders of scattering), were too simple in their conception
(e.g., Turner), or were ambiguous in application (e. g., truncation
method). These results are summarized in Table 2.
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e | Table 2, Summary of Reflectance Models. 2]
‘. :
i Model Comments
»’
2 . . ‘
& Single-Scattering Fails for v, » 0.5
Single-Scattering with Theoretical Fails for wg »20.9 i‘ i
Modification :
- Empirically Corrected Single- Good for all w
: Scattering
; Turner (two-stream approximation) Fails for backscatter 5
! Order of Scattering-Isotropic Underestimates effects of ;
k| multiple scattering 3
4 ! Romanova-Isotropic Underestimates effects of .
3 i multiple scattering
,;‘ Diffraction Peak Truncation Manner of truncation is ambiguous . 1
| 1
| :
| |

il ettt A

i
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e THE IVAN A. GETTING LABORATORIES

i The Laboratory Operations of The Aerospace Corporation is conducting

i experimental and theoretical investigations necessary for the evaluation and

i application of scientific advances to new military concepts and systems. Ver-

i satility and flexibility have been developed to a high degree by the laboratory

personnel in dealing with the many problems encountered in the nation's rapidly

x| developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry piyﬂcl. chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers. -

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, ciﬁﬁca Teactions in poﬁuud atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo- l’
sensitive materials and sensors, high precision laser ranging, and the appli- :
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, Including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-

conducting, superconducting, and crystal device physics, optical and acoustical
. imaging: atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms o’ carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in

nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, acnn!ty and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California
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