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— W~~then ototç a particular,an~4 yp~
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gap statistics from a random number of exponential random variables with
suitably chosen parameters.~ This method can also be used , at the cost of
programming complexity and ’~ome memory , as the basis for a very efficient
technique for simulat_iei1~of nonhomogeneous Poisson processes with more com-
plicated rate functions such as a log—quadratic rate function .
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method is also applicable to the geheration of individual intervals between
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SIMULATION METHODS FOR POISSON PROCESSES IN NO~ STATIONARY SYSTEMS

Peter A. W.  Lewis
Naval Postgraduate School
Monterey, California

Gerald S. Shedler
IBM Research Laboratory
San ~Iose , Cal i fornia

ABSTRACT Finally , we describe a simp le and rela—

The nonhomogeneous Poisson process is tive ly efficient new method for simulation

a widely used model for a series of events 
of one—dimensional and two-dimensional n~-

(stochastic point process) in which the homogeneous Poisson processes. The method

rate” or “intensity ” of occurrence of is applicable for any given rate function

points varies, usually with time . The and is bi.sed on controlled deletion of

process has the characteristic properties points in a Poisson process with a rate

that the number of points in any f in i te  set function that  dominates the given rate  func-

of nonoverlapping intervals are mutually 
tion. In its simrlest implementation , the

independent random variables , and that  the method obviates the need for numerical in-

number of points in any of these intervals tegration of the ra te fun ction , ~or order-

has a Poisson distribution . In this paper ing of points , and for generation of P0ISSOfl

we first discuss several general methods variates. The thinning method is also

for simulation of the one—dimensional non- applicable to the generation of xndlvi du3l

homoge’~eous Poisson process ; these include 
intervals between points , as is required in

time—scale transformation of a homogeneous many programs for discrete—event simulations.

(:ate one) Poisson process via the inverse

of the integrated rate function , genera tion 1. INTRODUCTION

of the individual intervals between points , The one-dimension~il nonhomogeneous

and generation of a Poisson number of order (nonstationary) Poisson process (see e.g.,

statistics fro m a f ixed density fun ction. [5 , pp. 28—29; 3, pp. 94-101]) has the

We then state a particular and very characteristic properties that the numbers

efficient method for simulation of nonhomo— of poin ts in any finite set of nonoverlap—

geneous Poisson processes with log—linear ping intervals are mutually independen t

rate function . The method is based on an random variables , and that the number of

identity relating the nonhomogeneous Poisson points in any interval has a Poisson distri—

process to the gap statistics from a random bution . The most general nonhomoqeneous

number of exponential random variables with Poisson process can be defined in terms of

suitably chosen parameters. This ~~thod a monotone, nondecreasing, ri ght-continuous

can also be used, at the cost of progranl- func t ion  ‘ (x) which is bounded in any

ming complexity and some memory , as the f i n i t e  i n t e r v a l .  Then the number of poin ts

basis for a very efficient technique for in any f i n i t e  in terva l , for  example  (0 ,x0],

simulation of nonhomogeneous Poisson pro- has a Poisson distribution with parameter

cesses with more complicated rate functions ~~~ 

A ( x ~~) - A ( 0 ) .  In this paper we assume

suc h as a log—quadratic rate function , that f~(x) is  cont inuous , bu t net necessarily

1
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POISSON PROCESSES IN NONSTATIONARY SYSTEIIS. . .Continued

absolutely continuous. The right deriva- bed being free at a time corresponding to the
tive A ( z )  of A (x) is the rate function peak of arrivals from afternoon operations
for the process; A (x)  is called the in— is of interest. Note that in simulations
tegrated rate function and has the inter— of nonhomogeneous systems of this kind ,
pretation that for x > 0 . A ( x )  - MO) estimates of measures of system behavior

E ( N ( x ) ] ,  whe re N ( x )  is the total number will be based on multi p le rep li cations.
of points in (0 ,x J .  Note that A ( x )  maY The two-dimensional homogeneous Poisson
jump at points at which A(x) is not abso- process (of rate A > 0) is defined by the
lutely continuous. In con trast to the properties that the n umbers of points  in
homogeneous Poisson process , i .e. ,  A ( x )  a any finite set of nonoverlapping regions
constant (usually denoted by A) , the in- having areas in the usual geometric sense
tervals between the points in a one—dimen- are mutua l ly  independent , and tha t  the num-
sional nonhomogeneous Poisson process are ber of points in any region of area A has
neither independent nor identically dis- a Poisson distribution with mean ‘A; see
tributed. e .g . ,  [10 , pp. 3 1-32]. Note that  the nuts-

Applications of the one—dimensional ber of points in a region R depends on its

nonhomogeneous Poisson process include area, but not on its bhape . The homogeneous

modelling of the incidence of coal—mining Poisson process arises as a limiting two—

disasters [5 ] ,  the arrivals at an inten— dimensional point process wi th  respect to

sive care unit ( 12] ,  transaction processing a number of limiting operations; cf., [7 ,8).

in a data base management system [15], oc— P roperties of the process are g iven in [181.
currences of major freezes in Lake Constance App lications of the two-dimensional homo-

[23] , and geomagnetic reversal data (22]. geneous Poisson process to problems in

The statistical analysis of trends in a ecology and fo r e s t ry  have been discussed in
one—dir .~nsional nonhomogeneous Poisson pro- (241 and (91. The model also arises in

cess , based on the assumption of an expo— connection with naval search and detection

ne..tial polynomial rate function , is dis- problems .
cussed by (4 , 5 , 12 and 15]. The two-dimensional  nonhomogeneous

Poisson process is characterized by a (con—One-dimensional nonhomogeneous Poisson
tinuous) positive rate function -. (x,y).processes are of ten used as models for
Applications of the two-dimensional  nonho mo—event streams when there is gross inhomo-

geneity in a system , e.g., time of day geneous Poisson process include problems in

forestry as well as naval search and detec-effect or long—term growth in use of a
tion . The detection and statist ical an aly-facility. It is important to be able to
sis of trends in the two-dimensional non-simulate these processes since analytic

results are difficult to obtain. This is homogeneous Poisson process is discussed in

(2 1]
particularly true in the context of queue-

ing systems ; see e.g., (19]. The methods
2. SIMULATION OF THE ONE-DIMENSIONALgiven here for simulation of the one-dimen-

NONHOMOGENEOUS POISSON PROCESSsional nonhomogeneous Poisson process have

application , for example, to study of the There are a number of methods for sim—

length of a queue at a toll booth at a ulating one—dimensional nonhomogeneous

time corresponding to the peak traffic Poisson process which we review briefly.

time, or to study of the arrivals at an in- Time-scale transformation of a homogeneous

tensive care unit where the probabilityof a (rate one) Poisson process via the inverse

2
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of the integrated rate function A ( x )  con- integral transformation is applied. The
stitutes a first general method ; of .  (3 , method is therefore very inefficient with
pp. 96—97 ] .  This method is based on the respect to speed , more so than the time-
result that X1, X2, ... are the points scale transformation method.

in a nonhomogeneous Poisson process with In a third method , simulation of a
continuous integrated rate functions A ( x )  non-homogeneous Poisson process in a fixed
if and only if X], = A ( X 1) ,  X~ = A ( X 2 ) , . . . ,  interval (0 , x0 ] can be reduced to the
are the points in a homogeneous Poisson gene ration of a Poisson number of order
process of rate one. The time—scale trans— statistics from a fixed density function
formation method is a direct analogue of by the following result ; Cf., [5, p. 45].
the inverse probability integral transfor— If 

~~~ 
Xn are the points of the

mation method for generating (continuous) nonhomogeneous Poisson process in (0, x01,
nonuniform random numbers . For many rate and if N(x0) n , then conditional on
functions, inversion of Aix) is not ha ving observed n ( > 0) points in (0 , x0 1,
simple and must be done numerically; cf., the X are distributed as the order sta-i[6) and ( 2 0] .  The resulting algorithm for tistics from a sample of size n from the dis-
simulation of the nonhomogeneous Poisson tribution function
process may be far less efficient than defined for 0 < x < x0. Simulation of the
simulation based on other methods. nonhomogeneous Poisson process based on

A second general method for simulating order statistics is in general more effi-

a one—dimensional nonhomogeneous Poisson cient (with respect to speed) than either

process with i ntegrated rate function A (x) of the previous two methods. Of course , a

is to generate the intervals between points price is paid for this greater efficiency.

individually , an approach which may seem First, it is necessary to be able to gen-

more natural in the event scheduling ap— erate Poisson variates , and second , more

p~roach to simulation . Thus, given the memory is needed than in the interval-by-

points X1 = x1, X2 = x2,..., X. = x., -~ith interval method to store the sequence of
1 1

< X2 < < X~ , the interval to the points. Enough memory must be provided so

next point , x. — x., is independent of that with very hi gh p robabi l i ty  the randomi+1 1

x1,..., x~~1 and has distribution function number of points generated in the interval

F(x) = 1 — exp (— (A(x. + x) — A (x
~
)}]. It can be stored. Recall that the number of

is possible to find the inverse distribu— points in the interval (0,x0J has a Poisson

tion function F”~~(’), usually numerically, distribution with mean = .~(x0) -

and generate X1÷1 - X1 according to Memory of size, e.g., ~~ +4
/2 

will en-
— = r’l(u1), where U

~ 
is a uni- sure that overflow will occur on the aver-

form random number on the interval (0 ,1) . age in on ly  1 out of approx imate ly  40 , 000

Note , however that this not only involves realizations. This probability is small
computing the inverse distribution function enough so that in case of overflow , the
for each interval x• - X., but that each realization of the process generally can

1+
distribution has different parameters and be discarded.
possibly a different form. An additional We now summarize several recently
complication is that X~.f1 — is not developed methods for simulating one- and
necessarily a proper random variable , i.e. two—dimensional nonhomogeneous Poisson pro—
there may be positive probability that cesses. These methods are discussed in

— X1 is inf ini te. It is necessary greate r detail  in [14 , 16 , 17) .
to take this into account for each interval

— X~ before the inverse probability

3 
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POISSON PROCESSES IN NONSTATIOWARY SYSTEIiS. . .Continued

3. SIMULATION USING GAP STATISTICS number of events since time , not serial
number, is the basic parameter of the in—In a previous paper [14], we have con—
homogeneity discussed here . Thus the gapsidered the simulation of nonhomgeneous
statistics algorithm for simulation of thePoisson processes with degree-one exponen—
nonhomogeneous Poisson process generatestial polynomial rate function, i.e.,
the sequence of times—to—events in a fixedA ( x )  of the form
interval. Although such a method requires

A(x) = exp(y0 + y1x}=A exp{y 1x },  11710. ifi more memory than successive generation of
individual times until the next event , itThe rate function (1)- is the simplest of
is far  more e f f i c i e n t .a general family of log-linear rate func-

tions, i.e., rate functions whose loga— We now state the method of Lewis and

rithms are linear in the coefficients [4; Shedler [141 for simulation via gap statis-

12] which are useful in analyzing nonhomo— tics of the one—dimensional nonhomogeneous

generous Poisson processes. The rate Poisson process with rate function (1).

f unction (1) represents a situation in This scheme , wh ich is particular to the
which the rate is monotonically increasing degree-one exponential polynomial rate

or decreasing depending on whether is function, can use standard packages for cx-
greater than or less than zero, with ponential random numbers (e.g., [13]) and

equal to zero giving a homogeneous Poisson obviates the need for ordering of the random
process. The case where is less than numbers . It is based on the res ilt (see

zero and the case where is greater [251) that the gap process associated with

than zero are quite distinct; in the first a Poisson distributed (parameter -~ /y1 >0)

situation A (x) -
~ 0 as x + = , and in the number of exponential (parameter ~3 = — y 1> O )

second, A (x) + as x -, =. t~breover, gap statistics is a nonhomogeneous Poisson

when y is less than 0, the intervals process with rate function A(x) = exp(y 1x)

between events are not proper random van - on (0,°’). Efficient methods for genera-
abies since there is a nonzero probability tion of Poisson random numbers for which
that there is no event after any fixed the generation time does not increase pro-

point x. portionally with the mean are g iven by [1, 2 1
In (14 1 a method for simulating the and (I l l .

nonhomogeneous Poisson process is given Ass uming the ava i l ab i l i ty  of a source
based on an identity relating the nonhonc- of unit exponential random numbers E1, E 2 ,
geneous Poisson process with rate function 

.. ., obtained by logarithms or by other
(1) to the gap statistics from a random methods , the res u l t ing  al gor i thm for  gener-
number of exponential random variables with ating the events in the nonhomogeneous
suitably chosen parameters . This methri d Poisson process is as follows .
avoids costly ordering and taking of loga-
rithms required by direct simulation methods Algorithm 1. Gap Statistics Technique

and is more efficient than time-scale trans- (y 1 < 0).
formation of a homogen eous Poisson process 1. Generate m as a Poisson random number
via the inverse of the integrated rate with pa r ameter ->/y 1. If  is = 0 , exi t ;
function A i x ) . there are no events in (O , x0 ] .

Simulation of the one—dimensional 2. For is > 0 , i f  E1/ ( B m )  is greater
nonhomogeneous Poisson process in a than x0, exit; there are no events in
fixed interval (0,x01 is more (0,x 01. Otherwise , set E1/(i~m) equal
natural than simulation for a fixed to X1.

4
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3. If E2/(B (m—l)} + X1 > x0, then return extended to more complex rate functions

and exit. Otherwise, set it equal than the degree-two exponential polynomial .

to x2.
4 .  SIMULAT I ON OF NONHOMOGENEOUS4. Continue, possibly for m times. If

POISSON PROCESSES BY THINNINGEm/B + Xm_ l > x~~, return X1,X2,.
and exit. Otherwise, set this equal In this section we describe a new

to Xm D return X1,X2,... ,X and exit. method [17] for simulating a nonhomogeneousm
Poisson process. The method is not only

The case > 0 is handled in the conceptually simp le , but is also computa-
same way as < 0 by using a time—rever-- tionally simple and re la t ively  e f f i c i e n t.
sal technique, as follows. Simulate ac— In fact , at the cos t of some e f f i c i e n c y,
cording to Algorithm 1 with A (x) = A the method can be app lied to s imula te  the
x exp {y~ x },  where A * = exp{y0 + given nonhomogeneous Poisson process w i t h-
and = — The output of Al gorithm 1 out the n~ ed for numerical integration or
is a sequence ~~~~~~~ ..X~ . Then set 

~~~~~~~~~~ ~~~erating Poisson variates.
X1 = x 0 — X ~ , X2 = xO

_ X
~_l,...,

Xn =x O
_ X

~
. Used in conjunction with the special methods

These are the required events in the given by Lewis and Shedler [14 ,16], the
nonhomogeneous Poisson process for > O~ method can be used to simulate quite ef-

Lewis and Shedler [16] consider the ficiently nonhomogeneous Poisson processes

simulation in a fixed interval of the non- with rather comp lex ra te func tion , in

homogeneous Poisson process with degree— particular, combinations of long-te rm trends

two exponential polynomial rate function and fixed—cycle effects. The method is

also easily extended to the problem of simu—

A (x) = exp{00 +c& 1x+ 02x
2}, 02 710 (2) lating the two-dimensional nonhomogeneous

Poisson process (see Section 5) , and of

the case 02 = 0 giving the degree-one simulating conditional and doubly stochastic

exponential polynomial rate function . Poisson processes.

Again , the case where 
~2 

is less than Simulation of a nonhomogeneous Poisson
zero and the case where 

~2 
is greater process with general rate function ~(x)than zero are distinct. The simulation in a f i xed  interval  (O ,x01 can be based

method give.~ is based on representation of on thinning of a nonhomogeneous Poisson
the process as a superposition of two inde- *

process with rate function ‘
~ (x) > (x)

pendent nonhomogeneous Poisson processes , The main result (17 , Theorem 1] is tha t i f
one of which has a fitted rate function of * * *X1,X2,.. . ~~~~~~~~~ 

are the points of the
the form (1); simulation of the la t te r  

*

process is accomplished via the gap statis- process with rate function i x )  in the
interval (O ,x0J and i f  the point X. istics algorithm (14]. A rejection-accep— 1

deleted with (independent) probabilitytance technique is used to generate the
1 — X ( X ~other, more complex, nonhomogeneous Poisson 1)/)~(X~) then the remaining points

form a nonhomogeneous Poisson process withprocess. The resulting algorithm is more
rate function )-(x) in the interval (0 ,xefficient than time—scale transformation of 01.

a homogeneous Poisson process; see [201. This result is the basis for the method

This method can be improved by using the of simulating one-dimensional nonhomogeneous

thinning algorithm given in the next sec— Poisson processes on an interval (0 ..x0]

tion to simulate the second nonhomogeneous given by Al gorithm 2.
Poisson process. The method can also be

5
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POISSON PROCESSES IN NONSTATIONARY SYSTEMS.. .Continued

Algorithm 2. One—Dimensional Nonhomogen- is required. Of course for both al gorithms
eous Poisson Process (Thinning) to be efficient, computation of A i x )  and

*
A ix) must be easy relative to computation1. Generate points in the nonhomogeneous

* of the inverse of A(x).Poisson process (N (x)} with rate
*

function A (x) in the fixed interval For the thinning algorithm (as well as

(0,x0
]. If the number of points gen— the algorithm based on conditioning and

crated , n , is such that n = 0 , exit ; acceptance-rejection) efficiency as measured

there are no points in the process by the number of points deleted is propor-

{N (x )} .  tional to
* * * * *

2. Denote the (ordered) points by X1, X2 ,  ~~~~ = ( A ( x 0 ) — A ( 0 ) 1 / { A  (x0
) — A (0));

* Set i = l  and k = 0 .
this is the ratio of the areas between 0

3. Generate U~ , uniformly distributed and x under A (x) and A ix) . Thus ,
between 0 and 1. If (I. < A (X.)/A (X.), A (x) should be as close as possible to1— 1 1
set k equal to k+l and = 

A ix )  consistent with ease of simulating

* the nonhomogeneous Poisson process4. 5et i equal to i+l . If i < n , go *{N (x):x > 0).to 3. —

It is important to note that the method5. Return X1,X2,... ,X~ , where n = k, and
of thinning can be used to generate individ-also n.
ual intervals between events occurring in

The method of thinning of Algorithm 2 (0,x0] if >- (x) ~s bounded on (0 ,x0].

is essentially the obverse of the condi— The resulting algorithm is not only useful

tional method of Section 2 using condition- in the event scheduling approach to simula-

ing and acceptance—rejection techniques to tion, but also in the gene’~ation of con-

generate the random variables with density ditional Poisson processes. Informally,

function A(x )/(A(x) — A (0)} [16, ~~goni thm the ’bne at a time ” thinning algorithm is
* *3]. The differences are subtle, but compu— as follows. If A ix) = A > max0 A ix) ,< x  < x~tationally important. In the acceptance— then the ith interval X - X is ob-i i— irejection method, it is first necessary to tam ed by generating and cumulating expo-

generate a Poisson variate with mean nential (A*) random numbers F.1 1 ,  E 1 2 , . . .
= A (x0) — M O ) ,  and this involves an until, for the first time ,

integration of the rate function A ( x ) .
* * *Then the p oisson(u 0 ) number , n , of van - u .  - < A(X. + E .  +~~• .+ H .  .)/A

— i— l  i ,1
ates generated by acceptance-rejection must

i = 1,2,...; j = 1, 2 , . . . ,be ordered to give X1,X21... ,X~.

In the simplest form of the method of where the U - are independent , un i fo rm
* 1,]

thinning, A (x) is taken equal to (0,1) random numbers.
*A maxø < x < x A(x ), so that, for instance

* * * 5. SIMULATION OF TWO-DI~~~N SIONAL
the points X1 X2~~~ ~X~* can be gener ated HOMOGENEOUS POISSON PROCESSES
by cumulating exponential (A*) variates until

Recall that the two—dimensional homo-the sum is greater than (Cf. [14, Al— -

gorithm 11. The generated points are then geneous Poisson process (of rate A > 0) I~sS

the characteristic properties that the mum-thinned. No ordering, no integration of

A ix) and no generator of Poisson variates bers of points  in any f i n i t e  set of

6 
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nonoverlapping regions having areas in the ~~~orithm 3. Two-Dimensional  Homogeneous

usual geometric sense are mutually inde— Poisson Process in a Rectang le

pendent, and that the number of points in 1. Generate points in the one-dimensional
any region of area A has a Poisson dis— homogeneous Poisson process of rate
tribution with mean AA. Ày 0 on ( 0 ,x0 1. If the n umber of

In considering the two—dimensional points generated, n, is such that n = 0 ,

homogeneous Poisson process, projection exit; there are no points in the

properties of the process depend quite rectangle.

critically on the geometry of m e  regions 2. Denote the points generated by
considered. These projection properties x1 < < . .•  < x~ .
are simple for rectangular  and c i rcu la r

3. Generate Y
regions , and make simulation of the homo — 1, Y 2 , . . .  ,Y independent ,

uniformly d i s t r ibu ted  random n umbers
genec-us process quite easy. We consider

on (O,y0].here the case of a rectangular reg ion . The
f ollowing result forms the basis for simu— 4. Return (X1,Y1),(X2 , Y2),...,(X ,Y ) asn n
lation of the two-dimensional homogeneous the coordinates of the two-dimensional

Poisson process of rate A in a fixed homogeneous Poisson process in the

rectangle R = f(x,y) :O < x < x 0 , 0 < y <  y0
}. rectangle , and n .

If (X 1,Y1), (X 2 , Y2),...,(XN,YN ) deno te Note that  generat ion of the points X 1, X 2 ,
the positions of the points of the process . . . ,X~ in steps 1 and 2 can be accomp lished
in R, labelled so that < X2 < ~~

.. then by cumulating exponential (~ y0
) random

X1,X2,. .. ,X~ form a one—dimensional homo— r.umbers . Alternatively , af ter generat ing a
geneous Poisson process on 0 ( X < x0 of Poisson random number N = n (with parameter
rate Ay 0; if tne points are relabel led A x 0y0), n independent , uniformly distributed
(X~ 1Y~ ) ,  (X~ ,Y~ ), . . .  , (Xj~,Y~ ) so that  random numbers on (0 ,x0 ] can be ordered ;

< Y~ < - “ <  Y~~, then ~~~~~~~~~~~~~ form see (14 , p. 5021.

a one—dimensional homogeneous Poisson pro- The basis for another algori thm for  sin-

cess on 0 < y < y0 of rate Ax0. ulation of the two-dirensional homogeneous

Poisson proce~~. in a rectangle is the follow-We state next conditional prope rties
ing corollary . Oenote the Poisson points by

of the Poisson process in a rectang le. The

important thing to note is that although 
(X1,Y1),(X 2 , Y2),..., where the index does

not necessarily denote an ordering on either
the processes obtained by projection of the

axis. Conditionally, the pa irs (X 1,Y1),points onto the x and y axe s are not
independent, there is a type of conditional 

(X2,Y2),...,(X.~
,YN

) are independent random

variables , and furthermore, for each- pair
independence which makes it easy to simu- 4

(X. ,Y.), X. is distributed uniformly between
late the two-dimensional process. Thus , 1. 1 1

0 and x
conditional on having observed n > 0 points ~~~

‘ 
independently of Y. , which is

uni formly distributed between 0 and y0.(X1,11), ~~~~~~~~~~~~~~~~~~~ 
in R, labelled

so that X1 < <~~“( Xn , the 
~~~~~~~~~~~~ 

Direct generation of homogeneous Poisson

are uniform order statistics on 0 < x < x0, points in noncircular or nonrectanqular

and the 
~
1’12’~~

••’1n are independent and regions is difficult. The processes ob-

uniformly distributed on 0 < y 5 y0, in— tam ed by projection of the points on the

dependent of the X .. two axes are nonhomogeneous Poisson processes
1

From these two results , the following with complex rate functions determined by

simulation procedure is obtained, the geometry of the region . However , the

cond itional independence which is found in

7



POISSON PROCESSES IN NONSTATIONARY SYSTEMS.. .Continued

circular and rectangular regions for the fixed region R can be generated by en-

processes on the two axes is not present. closing the reg ion R either in a c i rcle  [ 1 7 ] ,

In particular, given that there are n ora rectang le, and applying Alaorithm 3. The
points 

~~~~~~~~~~~~~~~~~~~~~~ 
in a nonrec— following procedure assumes that the region

tangular region , the pairs ( X . , Y.) are R has been enclosed in a rectangle R

mutually independent , but X. is in gem— and that  A = m a x ( A ( x ,y) ~~x , y ( R} has
1

eral not independent of y . ,  i = l , 2 , .. . ,n .  been determined ; here the bounding process
1 *

Therefore it is simpler to enclose the is homogeneous with rate A in the rectan-
*

region in either a circle or a rectangle, gle R .

generate a homogeneous Poisson process in
the enlarged area , and subsequently ex— Algori thm 4. Two-Dimensional NonhomoaeneoUS
d ude points outside of the given region . Poisson Process (Th inning)

1. Using Algorithm 2, generate points in
6. SIMULATION OF TWO-DIMENSIONAL the homogeneous Poisson process of rate

NONHOMOGENEOUS POISSON PROCESSES * *A in the rectangle R . If the num—
* *

The two-dimensional nonhomogeneous ber of points , n , is such tha t n = 0 ,

Poisson process (N ( x ,y):x> 0 , y > 0 }  is exit; there are no points in the non-

specified by a positive rate function homogeneous Poisson process.

A ( x ,y)  which for simplici ty is assumed 2. From the n points generated in 1,
here to be continuous. Then the process delete the points that are net in R,
{N(x,y)} has the characteristic properties and denote the rernainina points by

* * * * * *that the n umbers of pcints in any f i n ite ( XY )  (x2 , Y2),..., (X ,Y ) with
ir m

set of nonoverlapping regions having areas * * *
in the usual geometric sense are mutually x x < . . •  < x . Set i = 1 and k = 0 .

1 2 m
independent, and that the number of points 3. Generate U~ u n i f o r m ly distributed

in any such region R has a Poisson dis- between 0 and 1. If U1 < X (X i,Y1
)/A ,

tr~bution with mean A IR ); here AiR) de— * *
set k = k+l , Xk = X

l 
and 17

k 
=

motes the integral of A (x ,y) over R,
*

i.e., over the entire area of R. 4. Set i equal to i+l. If i < m , go

to 3.
The basic result of Section 4 on

thinning of one-dimensional nonhomogeneous 5. Return (X 1,Y1), (X 2,Y2),..., IX ,Y ) ,
n n

Poisson processes generalizes to two-dimen— where n = k and n.

sional nonhomogeneous Poisson processes.
*Thus , suppose that A (x ,y) ( A (x,y) in a 7. CONCLUSION

fixed rectangular region of the plane. If
We have summarized previously known

a nonh omogeneous Poisson process with rate
* general methods for simulating nonhomogen-

function A (x,y) is thinned according to
* eous Poisson processes in one dimension .A ( x , y ) / A  (x ,y) (i.e., each point (X.,Y.)

1 1 In addition , we have described the simole
is deleted independently if a uniform (0,1)

and e f f ic ien t new methods of Lewis and
random number U1 is greater than

Shedler for simulating nonhomogeneousA ( X~~ Y.)/A (X m ,Y~
)), the result is nonhomo-

Poisson processes in one and two dimensions.
geneous Poisson process with rate function

Extensions of the thinning alaorithm to theA (x,y) .
simulation of homogeneous or nonhomogeneous

The nonhomogeneous Poisson process with condi t iona l  or doubl y s tochast ic Poisson
rate function A(x ,y) in an arbitrary but processes will be described elsewhere.

8
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