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SIMULATION METHODS FOR POISSON PROCESSES IN NONSTATIONARY SYSTEMS

ABSTRACT

The nonhomogeneous Poisson process is
a widely used model for a series of events
(stochastic point process) in which the
"rate" or "intensity" of occurrence of
points varies, usually with time. The
process has the characteristic properties
that the number of points in any finite set
of nonoverlapping intervals are mutually
independent random variables, and that the
number of points in any of these intervals
has a Poisson distribution. 1In this paper
we first discuss several general methods
for simulation of the one-dimensional non-
homogeneous Poisson process; these include
time-scale transformation of a homogeneous
(rate one) Poisson process via the inverse
of the integrated rate function, generation
of the individual intervals between points,
and generation of a Poisson number of order

statistics from a fixed density function.

We then state a particular and very
efficient method for simulation of nonhomo-
geneous Poisson processes with log-linear
rate function. The method is based on an
identity relating the nonhomogeneous Poisson
process to the gap statistics from a random
number of exponential random variables with
This method

can also be used, at the cost of program-

suitably chosen parameters.

ming complexity and some memory, as the
basis for a very efficient technique for
simulation of nonhomogeneous Poisson pro-
cesses with more complicated rate functions
such as a log-quadratic rate function.

Peter A. W. Lewis
Naval Postgraduate School
Monterey, California

Gerald S. Shedler
IBM Research Laboratory
San Jose, California

Finally, we describe a simple and rela-
tively efficient new method for simulation
of one-dimensional and two-dimensional nca-
homogeneous Poisson processes. The method
is applicable for any given rate function
and is based on controlled deletion of
points in a Poisson process with a rate
function that dominates the given rate func-
tion. In its simrlest implementation, the
method obviates the need for numerical in-
tegration of the rate function, for order-
ing of points, and for generation of Poisson
variates. The thinning method is also
applicable to the generation of individual
intervals between points, as is required in

many programs for discrete-event simulations.

1. INTRODUCTION

The one-dimensional nonhomogencous
(nonstationary) Poisson process (see e.g.,
[5, pp. 28-29; 3, pp. 94-101]) has the
characteristic properties that the numbers
of points in any finite set of nonoverlap-
ping intervals are mutually independent
random variables, and that the number of
points in any interval has a Poisson distri-
bution. The most general nonhomogeneous
Poisson process can be defined in terms of
a monotone, nondecreasing, right-continuous
function A(x) which is bounded in any
finite interval. Then the number of points
in any finite interval, for example (O,XOL
has a Poisson distribution with parameter
Ho A(xo) = A(0).
that A(x) is continuous, but not necessarily

In this paper we assume




POISSON PROCESSES IN NONSTATIONARY SYSTEMS...Continued

absolutely continuous. The right deriva-
tive A(x) of A(x) is the rate function
for the process; A(x) is called the in-
tegrated rate function and has the inter-
pretation that for x > 0, A(x) - A(0) =
E[N(x)]), where N(x) is the total number
(0,x). Note that A(x) may
jump at points at which A(x) is not abso-
In contrast to the

of points in

lutely continuous.
homogeneous Poisson process, i.e., A(x) a
A), the in-
tervals between the points in a one-dimen-

constant (usually denoted by

sional nonhomogeneous Poisson process are
neither independent nor identically dis-
tributed.

Applications of the one-dimensional
nonhomogeneous Poisson process include
modelling of the incidence of coal-mining
disasters [5], the arrivals at an inten-
sive care unit [12], transaction processing
in a data base management system [15], oc-
currences of major freezes in Lake Constance
[23]), and geomagnetic reversal data [22].
The statistical analysis of trends in a
one-dir>nsional nonhomogeneous Poisson pro-
cess, based on the assumption of an expo-
nential polynomial rate function, is dis-
cussed by [4, 5, 12 and 15].

One-dimensional nonhomogeneous Poisson
processes are often used as models for
event streams when there is gross inhomo-
geneity in a system, e.g., time of day
effect or long-term growth in use of a
facility. It is important to be able to
simulate these processes since analytic
results are difficult to obtain. This is
particularly true in the context of queue-
The methods

given here for simulation of the one-dimen-

ing systems; see e.g., [19].

sional nonhomogeneous Poisson process have
application, for example, to study of the
length of a queue at a toll booth at a

time corresponding to the peak traffic
time, or to study of the arrivals at an in-

tensive care unit where the probabilityof a

bed being free at a time corresponding to the
peak of arrivals from afternoon operations
is of interest. Note that in simulations
of nonhomogeneous systems of this kind,
estimates of measures of system behavior

will be based on multiple replications.

The two-dimensional homogeneous Poisson
A > 0) is defined by the
properties that the numbers of points in

process (of rate

any finite set of nonoverlapping regions
having areas in the usual geometric sense
are mutually independent, and that the num-
ber of points in any region of area A has
a Poisson distribution with mean !A; see
e.g., [10, pp. 31-32]. Note that the num~
ber of points in a region R depends on its
area, but not on its shape. The homogeneous
Poisson process arises as a limiting two-
dimensional point process with respect to

a number of limiting operations; cf., [7,8].
Properties of the process are given in [18].
Applications of the two-dimensional homo-
geneous Poisson process to problems in
ecology and forestry have been discussed in
[24]) and [9].
connection with naval search and detection

The model also arises in

problems.

The two-~dimensional nonhomogeneous
Poisson process is characterized by a (con-
tinuous) positive rate function ' (x,y).
Applications of the two-dimensional nonhomo-
geneous Poisson process include problems in
forestry as well as naval search and detec-
tion. The detection and statistical analy-
sis of trends in the two-dimensional non-
homogeneous Poisson process is discussed in

[21].

2. SIMULATION OF THE ONE-DIMENSIONAL
NONHOMOGENEOUS POISSON PROCESS

There are a number of methods for sim-
ulating one-dimensional nonhomogeneous
Poisson process which we review briefly.
Time-scale transformation of a homogeneous

(rate one) Poisson process via the inverse




of the integrated rate function A(x) con-
stitutes a first general method; cf. [3,
pp. 96-97]). This method is based on the

result that xl, xz, ave are the points
in a nonhomogeneous Poisson process with
continuous integrated rate functions A (x)
if and only if Xi = A(xl), Xi = A(xz),...,
are the points in a homogeneous Poisson
process of rate one. The time-scale trans-
formation method is a direct analogue of
the inverse probability integral transfor-
mation method for generating (continuous)
nonuniform random numbers. For many rate
functions, inversion of A(x) is not
simple and must be done numerically; cf.,
[6] and [20]. The resulting algorithm for
simulation of the nonhomogeneous Poisson
process may be far less efficient than

simulation based on other methods.

A second general method for simulating
a one-dimensional nonhomogeneous Poisson
process with integrated rate function A(x)
is to generate the intervals between points
individually, an approach which may seem
niore natural in the event scheduling ap-
proach to simulation. Thus, given the
points X = Xp0 Xy = Xppeeey X, =%, 7ith

1

Xl < x2 G =ea g xi, the interval to the

next point, xi+l
Xyreoor X5 4 and has distribution function
F(x) = 1 - exp[-{A(xi + x) - A(xi)}]. It

is possible to find the inverse distribu-

= xi, is independent of

tion function F 1(+), usually numerically,
and generate fi+1
xi+1 - xi =F (Ui), where Ui is a uni-
form random number on the interval (0,1).

= xi according to

Note, however that this not only involves
computing the inverse distribution function
for each interval xi+1 - xi, but that each
distribution has different parameters and
possibly a different form. An additional

complication is that xi - xi is not

necessarily a proper ran;gm variable, i.e.
there may be positive probability that
X;41 - %5 is infinite. It is necessary
to take this into account for each interval

- X before the inverse probability

xi+1 i

integral transformation is applied. The
method is therefore very inefficient with
respect to speed, more so than the time-
scale transformation method.

In a third method, simulation of a
non-homogeneous Poisson process in a fixed
interval (O, xol can be reduced to the
generation of a Poisscn number of order
statistics from a fixed density function
by the following result; cf., [5, p. 45].
If X,
nonhomogeneous Poisson process in (0, xol,

x2, G o xn are the points of the

and if N(xo) = n, then conditional on
having observed n ( > 0) points in (O,xol,
the Xi are distributed as the order sta-
tistics from a sample of size n fromthe dis-
tribution function {A(x)—A(O)}/ii(xO)—i(O);,
defined for 0 < x < Xg - Simulation of the
nonhomogeneous Poisson process based on
order statistics is in general more effi-
cient (with respect to speed) than either
of the previous two methods. Of course, a
price is paid for this greater efficiency.
First, it is necessary to be able to gen-
erate Poisson variates, and second, more
memory is needed than in the interval-by-
interval method to store the sequence of
points. Enough memory must be provided so
that with very high probability the random
number of points generated in the interval
can be stored. Recall that the number of
points in the interval (O,xol has a Poisson
distribution with mean g5 = M(xqg) - A(0).
Memory of size, e.g., Ho +4p0 will en-
sure that overflow will occur on the aver-
age in only 1 out of approximately 40,000
realizations. This probability is small
enough so that in case of overflow, the
realization of the process generally can

be discarded.

We now summarize several recently
developed methods for simulating one- and
two-dimensional nonhomogeneous Poisson pro-
cesses. These methods are discussed in
greater detail in [14, 16, 17].

e ————— N S




POISSON PROCESSES IN NONSTATIOWARY SYSTEMS...Continued

3. SIMULATION USING GAP STATISTICS

In a previous paper [l4], we have con-
sidered the simulation of nonhomgeneous
Poisson processes with degree-one exponen-
tial polynomial rate function, i.e.,

A(x) of the form

A(x) = exp{y0 + ylx} = A exp(ylx} G Yl#o. (1)

The rate function (1). is the simplest of
a general family of log-linear rate func-
tions, i.e., rate functions whose loga-
rithms are linear in the coefficients [4;
12] which are useful in analyzing nonhomo-
generous Poisson processes. The rate
function (1) represents a situation in
which the rate is monotonically increasing
or decreasing depending on whether Y is
greater than or less than zero, with Yy
equal to zero giving a homogeneous Poisson
is less than

process. The case where Y1

zero and the case where Y1 is greater
than zero are quite distinct; in the first
x + =, and in the

situation A(x) - 0 as

second, A(x) » » as x + =, Moreover,

when V7, is less than 0, the intervals
between events are not proper random vari-
ables since there is a nonzero probability
that there is no event after any fixed
point x.

In {14] a method for simulating the
nonhomogeneous Poisson process is given
based on an identity relating the nonhomo-
geneous Poisson process with rate function
(1) to the gap statistics from a random
number of exponential random variables with
This method
avoids costly ordering and taking of loga-

suitably chosen parameters.

rithms required by direct simulation methods
and is more efficient than time-scale trans-
formation of a homogerneous Poisson process
via the inverse of the integrated rate
function A(x).

Simulation of the one-dimensional
nonhomogeneous Poisson process in a
(_?.xol
natural than simulation for a fixed

fixed interval is more

number of events since time, not serial

number, is the basic parameter of the in-
homogeneity discussed here. Thus the gap
statistics algorithm for simulation of the
nonhomogeneous Poisson process generates

the sequence of times-to-events in a fixed
interval. Although such a method requires
more memory than successive generation of
individual times until the next event, it

is far more efficient.

We now state the method of Lewis and
Shedler [14]
tics of the one-dimensional nonhomogeneous

for simulation via gap statis-

Poisson process with rate function (1).

This scheme, which is particular to the
degree-one exponential polynomial rate
function, can use standard packages for ex-
[13]) and
obviates the need tor ordering of the random
numbers.
[25]) that the gap process associated with
—)/Yl >0)
number of exponential (parameter 8 = —yl>0)

ponential random numbers (e.g.,
It is based on the res:lt (see
a Poisson distributed (parameter
gap statistics is a nonhomogeneous Poisson

exp(ylx)
Efficient methods for genera-

process with rate function A (x)=:
on (0,=).
tion of Poisson random numbers for which
the generation time does not increase pro-
portionally with the mean are given by [1,2]
and (11].

Assuming the availability of a source
El'EZ'
..., obtained by logarithms or by other

of unit exponential random numbers

methods, the resulting algorithm for gener-
ating the events in the nonhomogeneous
Poisson process is as follows.

Gap Statistics Technique
(Yl < 0).

Algorithm 1.

1. Generate m as a Poisson random number

with parameter —l/yl. If m= 0, exit;
there are no events in (O,xO].
2. For m >0, if El/(Bm) is greater

than Xq exit; there are no events in
(0,x0]. Otherwise, set El/(ﬁm) equal

to Xl.




3. 1If Ez/{B(m-l)} + X, > x4, then return
x1 and exit. Otherwise, set it equal

to Xz.

4. Continue, possibly for m times. If
Em/s + X 1 > Xor return Xy oXgeeeeoXp 4
and exit. Otherwise, set this equal
to xm, return xl'x2""'xm and exit.

The case Yy > 0 is handled in the
same way as vy, < 0 by using a time-rever-
sal technigue, as follows. Simulate ac-
cording to Algorithm 1 with A(x) = A"

x exp{y{x}, where \* = explyy + v;%4}

and y{ =N e The output of Algorithm 1
is a sequence x{,xg,...,x:. Then set
x1=x0-x::, X, = xo-xn_l,...,xn=xo~xi'.
These xi are the required events in the
nonhomogeneous Poisson process for Y1 > 0.

Lewis and Shedler [16] consider the
simulation in a fixed interval of the non-
homogeneous Poisson process with degree-

two exponential polynomial rate function
A(x) = expla, +a,x+a x2} a, #0 (2)
s i | e

the case a, = 0 giving the degree-one
exponential polynomial rate function.
Again, the case where a, is less than
zero and the case where a, is greater
than zero are distinct. The simulation
method give.. is based on representation of
the process as a superposition of two inde-
pendent nonhomogeneous Poisson processes,
one of which has a fitted rate function of
the form (1); simulation of the latter
process is accomplished via the gap statis-
tics algorithm [14]. A rejection-accep-
tance technique is used to generate the
other, more complex, nonhomogeneous Poisson
process. The resulting algorithm is more
efficient than time-scale transformation of
a homogeneous Poisson process; see [20].
This method can be improved by using the
thinning algorithm given in the next sec-
tion to simulate the second nonhomogeneous
Poisson process. The method can also be

extended to more complex rate functions
than the degree~two exponential polynomial.

4. SIMULATION OF NONHOMOGENEOUS
POISSON PROCESSES BY THINNING

In this section we describe a new
method [17] for simulating a nonhomogeneous
Poisson process. The method is not only
conceptually simple, but is also computa-
tionally simple and relatively efficient.
In fact, at the cost of some efficiency,
the method can be applied to simulate the
given nonhomogeneous Poisson process with-
out the nced for numerical integration or

routines for generating Poisson variates.
Used in conjunction with the special methods
given by Lewis and Shedler [14,16], the
method can be used to simulate quite ef-
ficiently nonhomogeneous Poisson processes
with rather complex rate function, in
particular, combinations of long-term trends
and fixed-cycle effects. The method is

also easily extended to the problem of simu-
lating the two-dimensional nonhomogeneous
Poisson process (see Section 5), and of
simulating conditional and doubly stochastic

Poisson processes.

Simulation of a nonhomogeneous Poisson
process with general rate function *(x)
in a fixed interval (0,x0] can be based
on thinning of a nonhomogeneous Poisson
process with rate function \*(x) > 2 (x).
The main result [17, Theorem 1] is that if
XI,X;,...,X;*(XO) are the points of the

process with rate function X*(x) in the
interval (0,x0] and if the point xI is
deleted with (independent) probability

g = x(x})/f(x;), then the remaining points
form a nonhomogeneous Poisson process with
rate function ) (Xx) in the interval (O,xoL

This result is the basis for the method
of simulating one-dimensional nonhomogeneous
Poisson processes on an interval (O,xol

given by Algorithm 2.

-
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Algorithm 2. One-Dimensional Nonhomogen-
eous Poisson Process (Thinning)

1. Generate points in the nonhomogeneous
Poisson process‘ (N*(x)} with rate
function A"(x) in the fixed interval
(O,xo]. If the number of peints gen~

*
erated, n , is such that n = 0, exit;
there are no points in the process
{N(x)}.

* *
2. Denote the (ordered) points by X ,x2,
*
“"ﬁﬁ' Set i =1 and k = 0.

3. Generate Ui’ uniformly distributed
* * *

between 0 and 1. If UiS_R(Xi}/A (Xi),
set k equal to k+l and X = x;.

*
4. Set i equal to i+l. If i< n, go

to 3.

5. Return xl,xz,...,xn, where n = k, and
also n.

The method of thinning of Algorithm 2
is essentially the obverse of the condi-
tional method of Section 2 using condition-
ing and acceptance-rejection techniques to
generate the random variables with density
function A(x)/{A(x) - A(0)} [16, Algorithm
3]. The differences are subtle, but compu-
tationally important. 1In the acceptance-
rejection methcd, it is first necessary to
generate a Poisson variate with mean
Mg = Alxy) - A(0), and this involves an
integration of the rate function Xi(x).
Then the Poisson(lgy) number, n, of vari-
ates generated by acceptance-rejection must

be ordered to give xl,xz,...,xn.

In the simplest form of the method of
*
thinning, A (x) is taken equal to
*

A = max A(x), so that, for instance
0

0<x<x
the points x;,x;,...,x;, can be generated
by cumulating exponential (A*) variates until
the sum is greater than X (cf. [14, Al-
gorithm 1]. The generated points are then
thinned. No ordering, no integration of

A(x) and no generator of Poisson variates

is required. Of course for both algorithms
to be efficient, computation of A(x) and
A.(x) must be easy relative to computation
of the inverse of A(x).

For the thinning algorithm (as well as
the algorithm based on conditioning and
acceptance~rejection) efficiency as measured
by the number of points deleted is propor-
tional to

* * *
uo/u0 = {A(xo) ~ A(0) }/{A (xo) - A (0)};

this is the ratio of the areas between 0
agd X under A(x) and A*(x). Thus,
A (x) should be as close as possible to
A(x) consistent with ease of simulating
the nonhomogeneous Poisson process

(N (x):x > 0}.

It is important to note that the method
of thinning can be used to generate individ-
ual intervals between events occurring in
(0,x0] if X (x) s bounded on (0,x41.
The resulting algorithm is not only useful
in the event scheduling approach to simula-
tion, but also in the genexration of con-
ditional Poisson processes. Informally,
the 'one at a time” thinning algorithm is

*
as follows. If ) (x)=)*3max A(x) .,

0 ﬁ.xf.xo

then the ith interval Xi - X. is ob-

i-1
tained by generating and cumulating expo-
* *
nential()*) random numbers FE. ., E. ,,...
S i,2
until, for the first time,

U, . < A(X +E. * i
Lo B A gk By g Yot By WA,

R b R S R O

where the Ui j are independent, uniform

(0,1) random numbers.

5. SIMULATION OF TWO-DIMENSIONAL
HOMOGENEQUS POISSON PROCLSSES

Recall that the two-dimensional homo-
geneous Poisson pfocess (of rate X > 0) nas
the characteristic properties that the num-
bers of points in any finite set of




nonoverlapping regions having areas in the
usual geometric sense are mutually inde-
pendent, and that the number of points in
any region of area A has a Poisson dis-
tribution with mean )A.

In considering the two-~-dimensional
homogeneous Poisson process, projection
properties of the process depend quite
critically on the geometry of tne regions
considered. These projection properties
are simple for rectangular and circular
regions, and make simulation of the homo-
genecus process guite easy. We consider
here the case of a rectangular region. The
following result forms the basis for simu-
lation of the two-dimensional homogeneous
Poisson process of rate X in a fixed
rectangle R = ((x,y):Oixf_xo,0<y§_ yo}.
If  (X.Y)) 0 (X3, Y5) e e (X YY)
the positions of the points of the process
in R, labelled so that X1< X, <m0, then
X ,xz,...,xN form a one-dimensional homo-

1
geneous Poisson process on 0 < x ¢ x, of

denote

0
rate Ayo; if tne points are relabelled

(Xi,Y'l), (xi,,yp, arer g (x&,v&) so that

. L e e e ’ " ] '
Yl < Y2 < < YN' then Yl'YZ""'YN form
a one-dimensional homogeneous Poisson pro-
cess on 0 < y < Yo of rate Axo.

We state next conditional properties
of the Poisson process in a rectangle. The
important thing to note is that although
the processes obtained by projection of the
points onto the x and y axes are not
independent, there is a type of conditional
independence which makes it easy to simu-
late the two-dimensional process. Thus,
conditional on having observed n > 0 points
(Xl,Yl), (XZ,YZ),...,(Xn,Yn) in R, labelled
so that Xl < X2 AT xn, the xl,xz,...,xn
are uniform order statistics on 0 < x < x4,
and the Yl,Yz,....Yn are independent and
uniformly distributed on 0 <y < vy, in-
dependent of the xi.

From these two results, the following
simulation procedure is obtained.

Algorithm 3. Two-Dimensional Homogeneous
Poisson Process in a Rectangle

1. Generate points in the one-dimensional
homogeneous Poisson process of rate
Ay, on (o,xol. If the number of
points generated, n, is such that n=0,
exit; there are no points in the
rectangle.

2. Denote the points generated by

Xl < X2 faiskeic Xn.

3. Generate Yl,Yz,...,Yn
uniformly distributed random numbers

independent,

on (O,yol.

4. Return (Xl,Yl),(XZ,Yz),...

the coordinates of the two-dimensional

,(Xn,Yn) as

homogeneous Poisson process in the
rectangle, and n.

Note that generation of the points xl,xz,
...,xn in steps 1 and 2 can be accomplished
by cumulating exponential(lyo) random
rnumbers. Alternatively, after generating a
Poisson random number N = n (with parameter
Xxoyo), n independent, uniformly distributed
random numbers on (0,x0] can be ordered;

see [14, p. 502].

The basis for another algorithm for sim-
ulation of the two-~dirensional homogeneous
Poisson process in a rectangle is the follow-
ing corollary. Denote the Poisson points by
(Xl.Yl),(XZ,YZ),..., where the index does
not necessarily denote an ordering on either
axis. Conditionally, the pairs (Xy.Y,),
(XZ.YZ),---.(XN,YN)
variables, and furthermore, for each pair
(Xi,Yi). Xi
0 and Xq 1 independently of Yi' which is

are independent random
is distributed uniformly between

uniformly distributed between 0 and Yo-

Direct generation of homogeneous Poisson
points in noncircular or nonrectangular
regions is difficult. The processes ob-
tained by projection of the points on the
two axes are nonhomogeneous Poisson processes
with complex rate functions determined by
the geometry of the region. However, the

conditional independence which is found in
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circular and rectangular regions for the
processes on the two axes is not present.
In particular, given that there are n

(xllYl) eesp (xnlyn)
tangular region, the pairs

in a nonrec-
(Xi,Yi)
mutually independent, but xi

points
are
is in gen-
eral not independent of Yi' 3=11520 00 0%
Therefore it is simpler to enclose the
region in either a circle or a rectangle,
generate a homogeneous Poisson process in
the enlarged area, and subsequently ex-
clude points outside of the given region.
6. SIMULATION OF TWO-DIMENSIONAL
NONHOMOGENEQOUS POISSON PROCESSES

The two-dimensional nonhomogeneous
{N(x,y):x>0, y>0}

specified by a positive rate function
Alx,y)
here to be continuous.
{N(x,y)}
that the numbers of pcints in any finite

Poisson process is
which for simplicity is assumed
Then the process
has the characteristic properties

set of nonoverlapping regions having areas
in the usual geometric sense are mutually
independent, and that the number of points
R has a Poisson dis-
A(R) ; A(R) de-
A(x,y) R,
i.e., over the entire area of

in any such region
tribution with mean here
notes the integral of over

R.

The basic result of Section 4 on
thinning of one-dimensional nonhomogeneous
Poisson processes generalizes to two-dimen-
sional nonhomogeneous Poisson processes.
in a

It
a nonhomogeneous Poisson process with rate
function A*(x,y) is thinned according to
A, y) /2 (%,y) (X,,¥,)
is deleted independently if a uniform (0,1)

*
Thus, suppose that A(x,y) < X (x,y)
fixed rectangular region of the plane.

(i.e., each point

random num?er Ui is greater than
A(xi,Yi)/x (xi,Yi)), the result is nonhomo-
geneous Poisson process with rate function
Alx,y) .

The nonhomogeneous Poisson process with

rate function A(x,y) in an arbitrary but

fixed region R can be generated by en-

closing the region R either in a circle [17],
or @ rectangle, and applying Alcorithm 3. The
following procedure assumes that the region

R has been enclosed in a rectangle R*,

and that x' has

been determined; here the bounding process

in the rectan-

= max{\ (x,y):x, y € R}

L *
is homogeneous with rate A
*
gle R .
Algorithm 4. Two-Dimensional Nonhomoaceneous
Poisson Process (Thinning)

Using Aloorithm 2, generate points in
the homoceneous Poisson process of rate
* *
A in the rectangle R . If the num-

* *
ber of points, n , is such that n = 0,
exit; there are no points in the non-

homogeneous Poisson process.

points generated in 1,
R,

*

From the n
delete the points that are nct in

and denote the remaining points by
* * * * * * .

(xllyl)l (leyz)r--., (Xm,ym) with

* < * .

xl X2 : 8

Generate Ui

*
Ceoeel Xm. Set =1 and k = 0.

uniformly distributed

* * *
between 0 and 1. If Ui ik(xi,Yi)/? -

* *
k+1l, X, = X. and Y. = ¥..
5 g

set k = K

k
" *
3 Lm

Set i sl s

to 3.

equal to go

Return (Xl,Yl), (XZ’YZ)""’ (xn,Yn),

where n = k and n.

7. CONCLUSION

We have summarized previously known
general methods for simulating nonhomogen-

eous Poisson processes in one dimension.

In addition, we have described the simple

e e e

and efficient new methods of Lewis and
Shedler for simulating nonhomogeneous
Poisson processes in one and two dimensions.
Extensions of the thinning algorithm to the
simulation of homogeneous or nonhomogeneous

conditional or doubly stochastic Poisson

processes will be described elsewhere.
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