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ABSTRACT

This thesis was undertaken to examine the post-development
process of verifying the correctness of software programs,
specifically to evaluate the effectiveness and practicality of
several proposed methods of verification. Of interest were the
degree to which utilization of a given methed can be said to
demonstrate correctness and the feasibiiity for general use of
that method. The method of research was tb study current
literature concerning software testing and formal proofs of
correctness, select a well-documented program of intermediate
size for experimentation, apply selected verification methods
to that program, and finally to compare the results of the
several experimental demonstrations of correctness. The
experiments conducted included a proof of correctness and
dynamic testing with test data cases selected by a condition

table method, by path analysis, and by structural decomposition

of the program.
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I. INTRODUCTION

This first chapter reviews the environment in which software
verification methods are employed and presents generally accepted

definitions and descriptions of software testing.

A. THE SOFTWARE PREDICAMENT

1. Scope of Software Development

AN ol W ALK

Ware Myers has characterized the cuffent-state of expanding
programming applications as a serious software predicament (28). §§
The cost of computer hardware has declined significantly over
the last decade, making more and more applications feasible for

automation. In 1973 it was estimated that between $15 and $25

billion were being spent annually on software development and

0 P I 0T St e o A

maintenance (3). The Department of Defense spent about $3 billion
in 1976 on computer software (34), and has been doubling the
number of functions performed by software every few years, -

primarily in converting weapons systems components from analog

to digital.

2. Problems in Software Development

Unfortunately for the growing user communities, and
despite the expectations raised with the advent of modern pro-
gramming practices (MPP), all is not well with software

de?elopment.

a. Our ability to estimate time and resources required
for the design and development of software has not appreciably

increased.

b. Most major software projects have required that

7 T TN S i s
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special support tools be developed, that new automated testing

aids be generated, or that a new language capability be acquired;
in short, there is inadequate transfer of technology between
projects within single organizations, and even less among organi-
zations.

€. An unreasonable share of software effort has been
expended on maintenance of existing programs. Estimates of 75%
or more of a company's programming effoft being devoted to mainte-
nance have not been uncommon.

d. The rate of increase in programmer productivity has
not kept pace with the introduction of improved management and
programming methodologies, let alone with the rapidly increasing
hardware capabilities; in fact, we are still struggling to learn
to measure this productivity.

e. The quality of software has been less than desired.
While theré is no agreement on how to quantify the quality of
software, many shortcomings are apparent (4): software is still
difficult to read, understand and modify; programs are frequently
hard to use properly and easy to misuse; they are often lacking
in sufficient generality to be used in several applications or
transported to different machines; and program reliability has
been disappointing.

The applications planned for automation require bigger and
more complex systems than ever before. Dijkstra pointed out
that complex systems which are perhaps one thousand times larger

than existing system cannot be constructed with the same

techniques used to cowpose the smaller systems; order-of-magnitude
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leaps in scale cannot be treated as gradual increases that can

"~ be handled by simple induction (10). A systematic and scientific

method to accomplish functions of such magnitude is required.

Improvements in the reliability of software (the extent

. to which programs can be expected to satisfactorily perform

their intended functions) are desired without incurring the

staggering costs of totally exhaustive testing. That reliability

needs improvement seems obvious. The relative level of program-

ming effort devoted to maintenance of existing programs bears
testament to the existénce of errors in programs presumably
tested and certified correct prior to their release for use.
Even diligent application of the modern programming practices
by talented programmers has not necessarily produced reliable
software. Gerhart and Yelowitz (15) identified errors in pro-
grams that were published to demonstrate these MPP, errors in
specifications, in construction, and in programs formally

"proven’ correct!

B. SOFTWARE ENGINEERING

1. Current Trends

A discipline has arisen, referred to as software engi-
neering, which draws from established principles of science
and engineering in attempting to formally define a systematic
approach to software development. While the goals of this
discipline are broad in scope, the application of software
engineering toward attainment of correct software is of

particular interest.

12
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Recent trends in software engineering have emphasized the ;
‘role of design and implementation in preventiﬁg errors over
the role of testing to detect errors for correction. These
techniques include:
a. More thorough analysis énd definition of requirements:
The lack of adequate system specifications has been a major

cause of software shortcomings (12).

b. Modular design of programs.
c. Top-down design and implementation techniques.
d. Management practices such as the use of the team

# concept (possibly including the chief programmer team concept),

project workbooks, formal documentation requirements{ formal
and peer review, and structured walkthrough of code.

e. Structured programming: This concept is at the core
of modern programming practices. While many managers complain
that they encounter resisfance in implementing structured pro-
gramming in their organization (5), there is growing data to

support the proposition that structured programming techniques

SR e

can produce more reliable and more cost effective software
systems (28).

2. Need for Post-Development Testing

The experience of the research reported in later chapters

of this thesis confirmed the need for greater relative emphasis

et S .
S e ——"

1? on design and implementation techniques as compared to verifi-
; . cation techniques. Much of the process of constructing a formal
‘% proof of correctness of the sample program selected for experi-

mentation was clearly a duplication of the design and implementation
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effort; it was necessary to analyze the completeness and con-
sistency of the program specifications, verify the particular
modular design selected, justify the control flow of each pro-
cedure, and determine the reasoning behind the choice of
particular stopping criteria for program loops. To a somewhat
lesser extent the same was true of the most rigorous of the
dynamic testing strategies employed (Chapter III, Section ().
The duplication of effort is simply not cost effective,

The successful and widespread use of as yet undeveloped
techniques that will ensure development of correct software
programs lies many years ahead. For the foreseeable future,
programs under development will need to be subjected to an
effective and practical ex post facto verification process.
Diligent application of existing program testing techniques has
been shown to enhance the software development process (1,2,6).
Significant efforts are required in applying the discipline of
software engineering toward refinement or replacement of the

verification methods now in use.

C. DEFINITIONS IN SOFTWARE TESTING

Methods of testing or proving the correctness of software
have been developed until quite recently on an'ad hoc basis, to
fill particular needs in the field rather than to build a ;
complete scientific model for the verifit=ution process. The 5

terms used to describe the activities involved in demonstrating

correctness have likewise evolved sporadically. The following

definitions are widely but not universally accepted.




1. Correctness of Software

The central issue in software testing, verification,
validation, or similar terms is a demonstration that the software
at hand is correct; i.e., that the given software system produces
the intended results. The assertion that a program is correct
is in effect a statement that it»performs precisely those func-
tions, and only those functions, called for in its specifications,
and furthermore that its specifications'are an accurate repre-
sentation of a design suitable to satisfy the intended require-
ment. The term "correctness" has a connotation inclusive of and
stronger than the notion of reliability of software, which was
defined earlier as the extent to which programs can be expected
to satisfactorily perform their intended functibns. A thorough
demonstration of correctness involves more than showing that a
program satisfies some written specifications; it involves an
analysis of the completeness, clarity, and consistency of the
specifications as well.

2. Debugging

This term has frequently been used synonymously with
testing, but should be distinguished in the following sense:
testing is a process to uncover errors, while debugging begins
when an error has been detected and is the process of isolating
and correcting these known errors. A succinct statement of this
distinction is:

When debugging is completed the program definitely

solves some problem. Testing seeks to guarantee
that it is the problem that was intended.(18).

15
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3. Testing

Testing has just been distinguished from debugging. In

Reference 24 five major activities in testing were defined, using
the terms most commonly accepted in practice:

a. Verification is the process of establishing logical
correctness of a program (i.e., correspondence with formal require-
ments) in a test environment. Verification is typically accom-
plished by actual program execution usiﬁg selected test data.
This process of dynamic execution is the single activity most -
often intended by use of the general term testing.

b. Validation is the process of establishing logical
correctness in some given external environment, although not
necessarily in the operational environment.

. c. Proving is the mathematical establishing of logical
correctness without regard to the environment; it does not
involve program execution.

d. Certification is an organizational endorsement that
a programAmee}s certain standards of correctness and effectiveness
in a useful environment.

e. Performance testing is the demonstration of non-
logical properties, usually execution timing and throughput
capability.

4. Verification and Validation

Verification and validation is a currently popular term

used to describe the processes involved in testing software

prior to user acceptance; used as such the term actually encom-

passes to some degree all five of the above testing activities
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(with the frequent exception of proving).

-

5. Scales of Testing

Duriﬁg the development and operation of a software system, |
differing scales of testing must be performed. Traditional
scales of testing are unit testing, integration testing, and
regression testing. : ' ;

a. Unit Testing

Unit testing is the testing of the independent modules
comprising the functional decomposition of a large systém. Testing
at the unit level involves examination of the internal logic of
the module to ensure that the module's effects on the larger
program containing it are consistent with those effects required
by the specification, and verification of the assumptions made
within the module about the larger program. Because specifications
are frequently ambiguous, unit testing often results in reexami-
nation of the unit specification.

The two methods employed in unit testing are functional
(black-box) tests, which are based on no knowledge of the inter-
nal structure of the program, and logical tests which are based
on program structure. Selection of test data which are appro-
priate for an ideal test (as described in Chapter II, Section A)
is difficult or impossible for black-box testing because it is
impossible to distinguish data that are treated similarly or
differently internal to th; black-box. Therefore program veri-
fication tests by the developer are nearly always based on pro-
gram structure. Acceptance testing by the user is generally

functional in nature of necessity.

17
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b. Integration Testing

Integration testing is conducted to determine the extent

v “__.».14 e

to which a system meets its specifications in an environment
similar to its working environment. The focus of integration
testing is on module interaction as opposed to internal module
operations. When unit testing has been conducted thoroughly
beforehand, integration testing is primarily a verification that
modules do not modify those relationshiﬁs in the environment
that the specification states must be preserved (e.g., that pro-
~ tected portions of memory have not been affected and that global
variables have not beeh modified in an undesirable or unantici-
;ated manner), and a thorough test of the consistency of the
specification itself. Were the techniques of formal definition
of requirements and automated verification of specifications
more developed, integration testing would be less than the
crucial and expensive effort it so often has become.

The relationship between unit and integration tests is
formalized by the following theorem which is the basis for
demonstrating the correctness of software by testing or proving:

If it can be demonstrated that each module in

a system meets its specifications assuming only
that all submodules meet their specifications,
then the entire system is correct (16).

It should be noted that the demonstration required by the
above statement is essentially a verification that the inter-

actions of modules are consistent with the specifications.

There is controversy over the best strategy for sequencing
unit and integration tests. The classical strategy of bottom-up

testing proceeds from unit to integration tests as lower-level

18




modules are completed, and requires test program drivers to run

lower-level module tests until the calling modules are ready to
be incorporated. Common criticisms of this strategy are the 3
duplication of effort in writing driver programs, the cost in-
volved since execution of higher-level modules involves reexecu-
tion of the lower modules, and-most severely the fact that inte-
£ gration errors if present are discovered at a late stage in
development, thus inflating the cost of'their correction.
The top-down testing strategy is much heralded as an integral

part of the top-down design technique, butit is little practiced. ]

; , Its benefits are purported to be the early detection of specifi-
’ cation errors relating to interfacing, since the high-level pro-
gram skeleton is coded and executed first, with simple dummy
programs required as sub-program stubs. These stubs are to be ;
¢ replaced by the actual lower-level modules as they are written, —

thus facilitating the check-out of new modules one at a time

"
s

while continually verifying the correctness of module interfaces.
4 H In introducing the concept of a built-in package of 'test pro-
cedures' deliverable with a software product, Panzl contends

that neither of the above goals are well served by the top-down :
‘ strategy (30). He states that top-down testing discourages

{r thorough testing of lower-level modules because they are never
{

‘executed directly; in fact, it is often difficult to find an

input data combination that will force execution of a desired

submodule.

=~
O e

In practice a mix of top-down and bottom-up strategies has

4 ‘ been used. Unfortunately, a common choice of strategies is to

19
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defer all testing until the entire system can be tested. This
all-at-once strategy is costly in execution time because all
modules must always be present, and costly in effectiveness be-
cause the intellectual task of isolating errorsAis greatly magni-
fied when a systematic strategy is missing. However, it is the
most prevalent testing strategy today (36). In fact, the experi-
ments in testing and hroving which are reported in the following
chapters of this thesis were performed in an all-at-once fashion
by virtue of the fact that a program which had completed develop-
ment was the subjecf of the experiments. Even so, elements of
bottom-up testing were apparent in several of the strategies used.
c. Regression Testing

Regression testing is the reverification and revalidation
of software after adding new capabilities or after performing
maintenance to correct errors discovered in operation. Its
purpose is to verify that the desired modification and none other
has been made. Regression testing has until :ecently received
very little formal attention (12), which is puzzling in light
of the previously mentioned estimates of the percentage of
programming effort devoted to maintenance. A simple management
technique to enhance regression testing is to ensure that the
test cases produced during development testing are collected
and documented as a package, and maintained to be reexecuted
after maintenance. If extensive maintenance is performed, addi-
tional analysis of the thoroughness of test achieved with the
saved data should be conducted. While the test procedures

suggested by Panzl (30) add to the effort of development, their

20
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value at regression test time merits careful consideration of

the idea.

‘'D. APPROACHES TO DEMONSTRATING CORRECTNESS

As suggested earlier, testing is a discipline that has been
learned through application, with little formal basis until
very recently. The first major collection of testing concepts
resulted from a 1972 conference at the University of North
Carolina, the proceedings of which were published in book form
by W. C. Hetzel (18). The first significant attempt to establish
a mathematically-based theory of program testing was a paper by
John B. Goodenough and Susan L. Gerhart (17); this theory is
discussed in Chapter II.

In the development of testing methods, two complementary
approaches arose, static analysis and dynamic testing. "Methods
thaf have been employed in an attempt to show correctness have
ranged from purely static (e.g., formal proof of correctness)
to purely dynamic (e.g., execution of the programs with randomly
selected test data), although usually a combination of the two
approaches has been used.

1. Static Analysis

a. Capabilities
Static analysis refers to a wide range of activities
that can be performed without program execution talthough more
and more such activities involve automated analysis of source
programs by software tools). Quite often static analysis is

perfomred prior to live testing to help in test planning and

test data preparation. The technique can in itself detect errors




R

in logic (such as uninitialized variables) and questionable
software practices (such as initialized but never referenced
variables). It can also be used as a means of enforcing pro-
gramming standards.

The most familiar form of static analysis is program checking,
or desk checking. While automated static analysis techniques
of significant capability are being developed, thorough desk
checking is still an efficient method f&r insuring software
correctness. When formalized by management in effective peer
review or structured walkthrough policies, program checking is
"very effective" in reducing errors (1). Program checking can
detect syntax errors, undeclared variables, unreachable program
segments, etc.

Directed graphs of program control flow and data flow are
common tools of static analysis, and are the basis for the path
analysis techniques of dynamic testing. Graphs of data flow
lend themselves to detection of errors in initialization and
referencing of data. Control flow graphs provide visual evidence
of program adherence to structured programming practices and
offer several measures of program complexity. Considerable study
of the relationship between program structure and complexity
and resultant error characteristics has been conducted at the
Naval Postgraduate School (most recently reported in Ref. 33).

A strong relationship has been found to exist between complexity
and errors, suggesting that complexity measures may be used to

establish programming standards (note that constructs of

‘structured programming have lower complexity measures than

22
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non-structured constructs) and to indicate how to allocate
' scarce testing resources.

b. Automated Aids

Particularly when dynamic testing is to be performed

with the number of paths tested as a criterion, static analysis
techniqﬁes are used to aid in &eveloping test cases, frequently
by automation. Fairley (12) suggests that static analysis
algorithms (including cross-reference tébles, numbers of
occurrence of statement types, number of subprogram calls, graph
analysis, etc.) can and should be included in compilers.
Ramamoorthy et al. (32) discuss the techniques and problems
involved in automated generation of test data inputs selected
to satisfy varying requirements for coverage of the branches
of a program graph, and describe a prototype generator included
in their Fortran Automated Code Evaluation System (FACES).

c. Limitations 5

Whether test data is generated manually or by auto-

SR

mated means, there is unfortunately no reliable way of automating
the computing of the correct output. Needless to say, dynamic
testing presupposes a known (or at least bounded) output, and
specifications must be available for each program tested. A

limitation in the degree of testing which is feasible is fre- : 3

quently imposed by the difficulty of determining the desired
output. .

A serious limitation of static analysis, and particularly
of test case generators, is the decidability problem (12).

Algorithms may be easily written to identify all syntactic

23




paths of control flow in a program, but it is not possible to
algorithmically determine the semantic paths (those syntactic
paths which can in fact be executed for some set of input data).

Therefore it is not possible for all programs to determine

whether some statements (including termination statements) can

ik L Rasina . Lol slala b d Bl dela o

be executed for any input data. In these cases dynamic testing
or the more difficult techniques of symbolic execution or proofs
of correctness are often used to decide the question. ;

2. Dynamic Testing

Dynamic testing is the process of actual program execu-
tion to provide evidence upon which some conclusion may be
b reached as to the correctness of the software. Applications
of theoretically-based testing methods (as described in Chapter ;

II) have not yet countered Dijkstra's pronouncement that "Program

i: testing can be used to show the presence of bugs, but never to
show their absence!'" (10). Nonetheless, dynamic testing has .
been and will remain the most common evidence proffered to show
program correctness or reliability.
a. Selecting Test Cases

The critical activity during dynamic testing is the

% selection of test cases. Intuitively it is desirable to select

: a set of test cases which are representative of the actual input 3
domain the program will have to contend with during operation. ]
f ; g The principle guide in selecting test cases has been to test

for the likely kinds of errors in the program, particularly in

the program modules deemed most critical to proper program

f operation. Since it is not possible to anticipate all the

24
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possible errors, it is unlikely that this principle alone can

be relied on to select a suitable set of test data. Selection

of a data set truly representative of the'input domain is parti-
cularly difficult without knowledge of the internal structure

of the program (i.e., when doing black-box testing), because it
is then impossible to distinguish data that are treated similarly
internally. Knowledge of the program structure can be used to
identify the complex portions of the prdgram which should be
subjected to the most thorough testing, and to help identify

the groups of data that are handled similarly and thus aid in

selecting those cases representative of certain subsets of the

~input domain. However, use of this knowledge is of limited value

in that there is no certainty that the program structure is a

correct representation of the conditions required for correct
operation of the program (16).
b. Thoroughness of Tests
The thoroughness of test, or degree of test coverage,

is intended to provide a measure of the reliability of the
testing process. The more thorough the test, the less probable
that undetected errors remain., Unfortunately, no perfect quanti-
tative measure of test thoroughness has been recognized, although
it is clear that the criteria.used to select test cases will
determine the thoroughness of test.

Typically, estimates of test thoroughness have been based
on a count of the source statements executed or the program
control paths traversed. While a test which causes the execution

of all program source statements may appear thorough, there are
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numerous counterexamples which demonstrate the actual lack of

thoroughness (for example, in Ref. 22). Since there are typically

an infinite number of possible sequences of statement execution,
any finite tests which execute each program statement at least
once cannot be said to have tested all possible sequences, and
thus may fail to reveal all program errors. The path analysiS
strategy of dynamic testing involves execution of selected con-
trol flow paths in the program under test. Because the number
of control flow paths may be very large or infinite (due to the
presence of loops), practical path analysis strategies are
limited to execution of some subset of the total paths. Huang
~defined a "minimally thorough'" test as one which caused at least
one traversal of every branch or arc in the program's control
flow graph (flowchart) (22); however, such a test cannot assure
detection of all errors. In fact there is no agreement as to
what an adequate measure of thoroughness may be (traverse each
arc twice, traverse all poséible arc pairs, etc.). Nonetheless,
it has been shown that for many programs (65% of a small survey
of eleven programs conducted by Howden), path analysis criteria
are "almost reliable'" (21). Given the alternatives, testing
based on path analysis is today a sound choice, particularly
when accompanied by careful program checking and a structured
walk-through of the design itself.

The discussion in Chapter II of a theory of testing further
examines the critical matter of thoroughness of tests.

c¢. Automated Aids

Automated aids to support dynamic testing include




the experimental test case generators discussed in the section
on static analysis, and programs which compute the degree of
coverage of the program graph according to the given path analysis
criterion. Pimont and Rault (31) describe an implementation of
such a technique, with a more ambitious coverage criterion than
most of the path analysis techniques.

The insertion of software counters in the target branches,
a relatively simple form of program insérumentation for testing,
assists in test data selection by providing feedback as to the
coverage obtained from each set of input data (22, 23). A common
form of program instrumentation is the use of assertion statements
expressing the relationships among data which should hold at
various nodes in the program. During execution the assertions
are evaluated to check their validity. Program instrumentation
can also be used to perform data flow analysis by setting state
flags as variables are defined, referenced, and undefined, and
noting any illegal state transitions. Program instrumentation
requires much of the information normally available in a compiler;
therefore it is becoming a feature of experimental test facilities
that program instrumentation be performed as a compiler option.

More extensive instrumentation of the source program is
involved in execution analysis or execution histogram systems.
Such systems have as a goal the creation of a data base of pro-
gram execution information that can be output in batch fashion
or remain available for interactive query. These systems facili-
tate source language debugging, can provide control and data

flow information, environmental information, assertion checking,
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tracebacks, etc. The information can aid static analysis and
dynamic testing (path analysis or other). There are drawbacks
to these systems: very high cost, both in development and use,
lack of generality (machine and language dependent usually),

and the attendant problems of handling the large data bases that
can be created. Fairle} describes an Interactive Semantic
Modeling System (ISMS) implemented experimentally for application
to Algol 60 prgrams (11). The Naval Sea Systems Command has
successfully used a software processor AUDIT to aid program
verification and to monitor adherence to structured programming
standards (71).

Prog;am instrumentation in most cases involves modification
of the source code, and generally incurs an unacceptable per-
formance penalty (as does the evaluation of assertions). There-
fore it is common to remove such instrumentation from production
programs, and to repeat dynamic testing with the optimal set of
test data to ensure that program performance remains correct.

There are two simpler automated aids to dynamic testing

~that should be mentioned. Generators of random test data are

not uncommon; although random data do not generally provide a
thorough test, they are easy to obtain. While automated compu-
tation of the expected results of tests is not feasible (because
such computation amounts to automation of the function of the

program under test and is the object of verification), automated

comparison of actual results with the expected results is practical,

and useful as a labor-saving aid. The expected results are

typically computed by hand or determined from historical data,
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or bounds defining reasonable results are established if compu-
‘tation is overly difficult.
d. Limitations
Limitations to the effectiveness of dynamic testing

at ensuring the correctness of software were evident in the dis-
cussion of the difficulty of determining a reliable measure of
-test thoroughness. An additional drawback to any forﬁ of dynamic
testing is the cost both in time and resburces.

Testing or verification techniques include several indepen-

dent or even contradictory methods, due to the infancy of soft-

ware engineering and program testing theory. The rationalization
of this apparent inconsistency lies in the realization that,
given the present understanding of software, nearly every soft-
ware development is a unique and individual design. Cerification
of such programs requires the testing team to be familiar with

a variety of testing methods and tools, and to judiciously apply

those which seem best suited to the task at hand.
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II. NATURE OF THE PROBLEM

A. A THEORY OF TESTING

As alluded to in the first chapter, a tentative theoretical
basis for the testing of software has been formulated by Good-
enough and Gerhart (17). That theory is capsuliied in this
section.

1. Types of Errors

Testing is a process of collecting and analyzing evidence
relating to the presence of errors. To reach a meaningful con-
clusion as to the presence of errors, the nature of errors must
be clear. On a logical basis, errors can result from failure
in implementing the specification (construction errors), failure
of the specification to accurately reflect the design, failure
of the design to adequately solve the requirements that are under-
stood, or failure to identify the real requirements. Each of
these logic errors will ultimately appear as an inappropriate
effect produced by tﬁe implementation, namely as:

a. missing control flow paths,

b. inappropriate path selection, or

¢. 1inappropriate or missing action on a path.

Recognizing the types of inappropriate effects that may be
caused by errors, the problem in testing is to select test cases
that can show that these errors do not arise. As mentioned ear-
lier, a common criterion for selecting test data is to choose
data which will exercise each arc or branch in the directed graph

representing the program at least once. Because logic errors,
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particularly specification, design, and requirements errors, may
be manifested by missing paths, it should be obvious that this

criterion alone cannot select test data that will thoroughly
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test a program.

2. Criteria for Test Case Selection

Goodenough and Gerhart defined an ideal test as one which
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: succeeds only when a program contains no errors. They defined
L - § two predicates about a criterion C for selecting test cases that
if satisfied are sufficient to establish that any complete test

is an ideal test (a complete test is one using the criterion C

1 ¢
| to select a set of test data T which are subsequently used to 4
3 i § : :
: L i dynamically test the program). These predicates, RELIABLE(C) 3
and VALID(C), are defined as follows. A criterion is reliable .;

only if all complete tests yield the same (not necessarily
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accurate) result; that is, if one complete test is successful

(no program errors are revealed), -then all complete tests must
f be successful, and if one complete test reveals an error, all ;
% must reveal that error. Reliability of criteria refers to con-
5 sistency; using a reliable criterion, a second complete test is
redundant as it can provide no new information. A criterion is
valid only if for every error that can exist in a program there

is (at least) one complete test that can show the presence of

the error.
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The concept of reliability of a criterion for selecting test

cases is not to be confused with the earlier definition of soft-

e g

ware reliability as a measure of the extent to which programs
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satisfactorily perform their intended functionms.




.The fundamental theorem of testing that Gdodenough and Gerhart
have suggested is simply that there exist some criterion b for
selecting test data and some subset T of a program's input domain
D such that when it is shown that a test using test data T is
a complete test and that the criterion C is both reliable and
valid, then success of the test implies that the program is
correct.

Stated formally, the theorem is:

(3TsD) (3C) [(COMPLETE(T,C)ARELIABLE(C)
AVALID(C) A SUCCESSFUL(T)) => (¥deD)0K(d)],

where COMPLETE (T,C) is a predicate indicating that the test T
is complete according to the criterion C, and OK(d) is a pre-
dicate indicating that program execution with the element d
from the input domain D produces the results required by the
program specification.

-The theorem is not profound; its proof is simple and is
assured by the convenient definitions of reliable and valid
criteria. If there is some complete test capable of revealing
any error (valid criterion) and if all complete tests yield the
same result (reliable criterion), then clearly any complete
test based on a valid and reliable criterion must correctly
demonstrate the presence or absence of errors.

For the skeptic, a proof of the theorem may be written as
follows:

- As to the existence of such a Te€D and criterion C, either
the program is correct or it is not. If it is correct, then a

criterion C such that a complete test T is {d}, where d is any
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element of D, will satisfy the theorem. If the program is not
correct, there is some element d€D such that —O0K(d). Then a
criterion C such that T={d} is a complete test. In either case,
the required conditions are satisfied, and the criterion and
test set exist (the challenge for the program tester is to dis-
cover them).

-'As to the theorem's implication, assume the truth of the
hypotheses and assume (3deD) == OK(d); iﬂe., assume the theorem
is false. ;

- Then VALID(C)=® (3TsD) [COMPLETE (T,C) A = SUCCESSFUL (T)].

- Then RELIABLE(C)=»'"all complete tests fail."

- But this contradicts an hypothesis of the theorem, namely
(3T<=D) SUCCESSFUL(T).

- End of proof.

Use of the theorem is not an easy matter. A criterion for
selecting test data must be chosen and that criterion must be
proven reliable and valid. Techniques using dynamic testing to
"prove' software correctness will be practical only if the proofs
of criterion reliability and validity are simpler to construct
and at least as convincing as proofé of program correctness.
The experiments reported in this thesis examined some aspects

of applying the above theorem.

B. SATISFYING THE PREMISES OF THE THEORY

1. Formal Proofs of Correctness

A degenerate application of the above fundamental
theorem of testing is selection of a criterion C such that a

complete test is complete only if T is the null set; in this
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case, no testing is done. The criterion C is clearly reliable
since there can be no tests. To show that C is valid (any
possible program error will be revealed by at least one comnlete
test), it must be shown that the program has no errors at all,
Application of the theorem with such a criterion is therefore
equivalent to a proof of program correctness. Such a proof

was constructed for the sample program of this thesis (Chapter
IV, Section B). :

2. Symbolic Execution

Symbolic execution is a technique whereby symbols are
used as input values rather than real data elements and the
program is symbolically executed by replacing all data operations
with symbolic operations. Intermediate results then are compu-
tational expressions of the input symbols rather than data
objects. In the case of conditional branching in the program,
logical statements on the input symbols, called path conditions,
describe the conditions under which a given control path may be
traversed. Program correctness is shown by proving that at
termination the constraints of path conditions imply that the
computational expressions of input symbols are equivalent to

those required by the program output specification. That proof

‘and the required proof of similar intermediate theorems con-

stitute a general theorem-proving problem; automated theorem-
proving capabilities are currently quite limited, and proving
the theorems by hand is quite tedious. This drawback restricts
the practical use of formal proofs of correctness as well. A

system for symbolic program execution is' described in Ref. 8.
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Symbolic execution is related to the theorem of testing in
that the criterion C is to choose input symbols satisfying the
program's input specification; to show the reliability and
validity of C, it must be shown that the output specification
of the program can be expressed as a computational expression of
input symbols and that the intermediate expréssions are valid
over the entire domain of values for input symbols.

The technique of sumbolic execution was not directly applied
in these experiments; however, the experiment using test data
execution and the principle of distributed correctness (Chapter
IV, Section C) relied on some of the ideas of symbolic execution.

3. Test Data Execution

Clearly one ideal test is execution of the program for
every member of the program's input domain. Since most input
domains are infinite, this test is usually impossible and nearly
always prohibitively costly, and can therefore hardly be called
ideal in any practical sense. Goodenough and Gerhart used in
Reference 17 a '"condition table method" to select test data for
program execution. While they were not able to conclusively
prove the reliability or validity of this method as a selection
criterion, they attempted to show that they did identify equiva-
lence classes'coverihg the input domain of an example program
and choose a representative of each class which by induction
tested each member of that equivalence class. The condition
table method was incorporated in an experiment of this thesis

in conjunction-with the distributed correctness principle.
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Test data selection techniques such as path analysis and

independent sub-structure analysis are also attempts to identify

equivalence classes in the input domain, while again only in-
formally trying tb establish criterion reliability and validity.
These techniques were used in the experim@nt reported in Chapter
1V, Sections D and B} in each case, however, it was not possible
to determine whether the equivalence classes identified actually
covered the input domain until comparison with the results of

other experiments.
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III. EXPERIMENTAL PROCEDURES

An example program was selected for experimentation, and
several verification methods were applied to demonstrate the
correctness of the example program The hours of effort required
for each method were recorded and qualitative assessments were
made abgut the degree of difficulty of using each method. The
example program and the methods employed are described in this
chapter; the actual results and a comparison of the methods is

presented in the next chapter.

A. THE PROGRAM AND INTUITIVE TEST DATA

1. Origin and Description

Reference 20 is a report of an experiment in software
error occurrence and detection conducted at the Naval Post-
graduate School. Four programming projects were undertaken and
data were recorded on the man-hours expended in each development
phase, time of detection and occurrence of errors, and man-hours
expended correcting errors., Errors were classified according
to the development phase in which they occurred and by descriptive
types, and were analyzed with respect to development phase,
correction time, and program complexity.

Project number one of Reference 20 was chosen as a program
for experimental'verification. The subject program reads and
ﬁfoéesses a variable length string of text characters, recording
all occurrences of palindromes (sub-strings which read the same
forward or backward), including overlapping palindromes and

omitting palindromes entirely included with another. The program
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was written in Algol-W to run under OS/MVT. It contains 141
source statements and consists of the main program and ten
procedures, five of which are significant to the palindrope-
finding algorithm; the remaining five are called to print the
results. The original program development required 5.0 man-
hours in the design phase, 7.0 in the coding phase, 4.0 in
debugging, and 5.8 hours in the original testing phase.

2. Program Listing

Figure 1 is a listing of the palindrome program.
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begin
comment This program finds palindromes within a character string
of maximal length = 286.
Minimum string length is 2,
All input cards will be listed.
The program will produce a list of only those palindromes
which are not entirely included in a larger palindrome;

comment data declarailons;

string(1) array text(1::256); comment contains character
~ string;
string(80) cardbuffer; commwment 170 buffer for cards;

integer arrsy begin_of_palindrome, end_of_palindrome(1::256);
integer cardlimit, length_of_text, bufferposition, card_counter,

palindrome_counter;
- integer ix, Jx; comment index variables;

comment initializations

procedure initialize;
comment inlitialize all variables, read length_of_text, write textl;
begin
textl;
Jx!!l‘
palindrome_counter:=1;
cardlimit:=80;
intfieldsize:=5;
read( length_of_text);
if ((length_of_text < 2) or (length_of_text > 256)) then
begin
write("Illegal input:", 3
* length of input string is: *,length.of_text);
assert(false); i
end;
cardbuffer:="
end initialize;

comment utilities;

procedure blank_lines(integer value n);
comment write n blank lines:

begin
integer 1i; comment local counter;
assert(n>9); comment safoty check;

for 1:21 step 1 until n do write(" ");
end blank_lines;

procedure textl;

begin

write( "Find all pslindromes within the following string:");
blank_lines(2);

write( "Card Text");

write( "Number") ;

blank_lines(1):

end textl;

FIGURE 1
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procedure text2;

begin

blank_lines(2);

write( "The following palindromes have been detected:");
blank_lines(1);

write( "Palindrome Begin End");

write( "Number Card Character Card Character®);
write(" Number Position Number Position®);
write(" ")
writeon("* ")
end text2; o

procedure text3;

begin

write( "No palindromes fonnd. End of run. ")
end text3;

procedure read_and_write_input_cards;

comment read Input cards according to given length_of_text;
begin

integer number_of_input_cards;

number_of_input_cards:=( lengthof_text - 1) div cardlimit + 1;

ix:®}; comment reset text index;
for card_counter:=1 step | until number_of_input_cards do
begin

write(card_counter);
writeon(" ");

readcard(cardbuffer);
writeon(cardbuffer);

bufferposition:=0; comment reset index;
while ((ix<{zlength_of_text) and (bufferpositioni{cardlimit)) do
begin
text{ ix) :=cardbuffer(bufferpositionil);
ix:=zix+l;
bufferposition:=bufferposition+l;
end; comment done for all characters on a card;
end; comment done for all cards;

end read_and_write_input_cards;

procedure write_all_palindromes;
comment list all pqllndro-n- being found;

_begin
integer i,J; comment local counters;
text2;
for {:=1 step 1 until jx—-1 do
begin
if end—of_palindrome(i) ~=0 then

begin
write(palindrome_counter);
writeon(" ");
writeon(((begin_of_palindrome(i)=1) div cardlimit) + 1);
writeon(" ");
{f (begin_of_palindrome(i) rem cardlimit = 0) then
writeon(cardlimit)
else
writeon((begin.of_-palindrome(i) rem cardlimit));
writeon(" s 4
writeon(((end-of_palindrome(1)~1) div cardlimit) + 1)
writeon(" ");

FIGURE 1
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if (end—of_palindrome(i) rem cardlimit =0) them
writeon(cardlimit)

elme
writeon((end_of_palindrome(i) rem cardlimit));

write("® ") .
for J:=begin_of_palindrome(i) step 1
until end_of_palindrome(i) do writeomn(text(J));
write(" ")
writeon(" )
blank_lines(!);
pslindrome_counter:=palindrome_counter+l;
end; comment end if;

ends comment done for all palindromes;

end write_all_palindromes;

comment subroutines;

procedure palindrome_check; .
conment find all palindromes within given text string:
begin
comment scan text from left to right;
for ix:32 etep 1 until length_of_text do
begin
if text(ix—1) = text(ix) them continme_checking((ix-1),ix);
if ix ~= 2 then
if text(ix-2)=text(ix) then comntinue_checking((ix-2),ix);
ends ;
end palindrome_check;

procedure continue_checking (integer value first, last);
comment GCiven first and last as pointers to a palindrome
of size 2 or 3, this procedure checks whether or not this
palindrome is included in a larger palindrome;
begin
logical palindrome;
palindrome:=true;
whlleb((f!r-t>l) and (last< length of_text) and (palindrome=true)’ do
egin
if text(first-1) = text(last+l) then
begin
comment larger palindrome found;
first:=first-1;
last:=last+1;
end
eclse
begin
p.;lndro.z:’lnllo; comment Iargest palindrome found;
end;
end;
record_palindrome(first, last);
end continne_checking;

FIGURE 1
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procedure record_palindrome (integer value first,last);
comment Record only max length palindromes. Flag previously
recorded palindromes if they are included in the palindrome
specified by first and laet.
Jx was initialized to 1. After completion )x points to the
next entry in begin_of_palindrome and end_of_palindrome;
begin
integer i comment local countar;
logical emntrys
entry:strue;
for 1:=1 gstep 1 until Jgx-1 do
begin ;
if ((firet>=begin_of_palindrome(1i))
and (lasti{zend_of_palindrowe(i))) then
begin
comment Palindrome is emtirely incinded in a previously
recorded palindrome. No entry required;
entry:=false;
end
else
begin
if ((begin_of_palindrome(i) >= first)
and (end_of_palindrome(i) <= last)) themn
begin
end-of_palindrome(1i):20;
co:..nt flag smaller palindrome;
end;

end;
ends comment All previously recorded palindromes

compared with last input;
if entry = true then
begin
comment larger than all previous or over lapping or disjoint;
begin_of_palindrome(yx):=first;
end_of_palindrome(jx):=last;:
Jxi=gx+1;
end;
end record_palindrome;

comment wmaing

initlalize;
read_and_write_input_cards;
palindrome_check;

if yx=1 then text3

else write_all_palindromes;
end.

FIGURE 1
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3. Program Graphs

Figure 2 presents the control flow directed graph repre-
sentations of the significant procedures of the example program.
The graphs, originally presented in Reference 20, are annotated
with key-words indicating the structured programming constructs
comprising the decision nodes, lower-case letters which label
the arcs, upper-case letters representing the counters placed on
the individual decision-to-decision pathé for path analysis, and
with complexity measures of the procedures. The complexity

measures shown are defined as follows:

a. The number of statements is a count of the source
code statements in the procedure.
b. The number of nodes is a count of the nodes in the

control flow graph. Nodes are points of starting, stopping,

branching, or merging of control flow; i.e., decision points.
¢. The number of arcs is a count of the arcs in the

graph. Arcs are concatenations of zero or more program state-

ments with no decisions except at the nodes. )
d. The cyclomatic number of a strongly connected graph ;

is equal to the maximum number of linearly independent circuits

(27). A program control flow graph with one entry and one exit

such that each node can be reached from the entry and such that

the exit can be reached from every node can be considered as a

strongly connected graph with an imaginary arc from the exit

node back to the entry node. For such a control flow graph the

cyclomatic number can be variously interpreted as the maximum

number of independent paths, one more than the number of predicate




nodes (nodes with more than one path leaving), the number of
regions in the graph (plané graph with no arcs crossing), or
the number of arcs minus the nﬁmber of nodes plus two (27).
The experimental method described in Section E of this chapter

makes use of the cyclomatic number.

e

44




ey ok

Procedure:

INITIALIZE
Number of statements: 1k
Number of nodes: 5
Number of arcs: 5
Cyclomatic number: 2

FIGURE 2
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Procedure:
READ AND WRITE_
INPUT CARDS

Number of statements: 1

Number of nodes:
Number of arcs:
Cyclomatic Number:

W3
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Procedure:
PALINDROME CHECK
Number of statements: 7

Number of nodes: 10
Number of arcs: 13
Cyclomatic number: 5

FIGURE 2
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Procedure:
CONTINUE+CHECKING
Number of statements: 15
Number of nodes: 8
Number of arcs: 9
Cyclomatic number: 3
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Procedure:
RECORD+PALINDROME
Number of statements: 21
Number of nodes: 10
Number of arcs: 13

Cyclomatic number:

FIGURE 2

Page 5 of 6
PROGRAM GRAPHS




e e B A A

Procedure:

MAIN
Number of statements:
Number of nodes:
Number of arcs:
Cyclomatic number:

NO OO

FIGURE 2
Page 6 of 6
PROGRAM GRAPHS

e I S

ol ol g




4, Error Data

Forty-four errors were detected during original program

g
development. Error descriptions by type are recorded in Reference i
20. Table I presents the errors (using Hoffman's original error
numbering) which could be directly related to a particular pro- i

gram fragment. |

TABLE I ; ¥
SELECTED ERRORS

d Error

i Number Procedure Description
Y 1 read«and«write... Need for 256-character variable
"text" in addition to an 80-
character buffer noted.
3 initialize Syntax error.
4 initialize Syntax error.
t 35 palindrome«check Error in limits to counter of
,i for statement.
¢ 36 palindrome«check Missing "if ix+=2" resulted in
indexing error at run.
37 initialize "jx" not initialized; resulted
in indexing error. :
42 initialize "jx" initialized to 0 vice 1. 3

5. Intuitive Test Cases

After a first examination of the example program and

before commencing any of the verification experiments, a set of

|
! ‘5 test cases was selected by intuition which appeared to test the

| program's handling of all conditions significant to proper 1
! program operation. Those test cases are listed in Table IT.
The intuitive test cases‘yere used for conducting additional

: s dynamic testing after completion of the experiments using the

methods described in the remainder of this chapter.




TABLE IT

" --INTUITIVE TEST CASES

Test String ; String or
Number Length String Description

1 2 "xx" - length 2 palindrome

2 3 "xyz" - length 3 palindrome

3 1 - Invalid string length

4 257 Invalid string length

) 256 A maximum length string containing palin-

dromes of length 10, 9, 6, and 12, of
which the first included length 3 palin-
dromes at both ends, the second and third
overlapped, and the fourth was written
across an input card boundary.

6 15 String with no palindromes
7 100 Entire string one palindrome
8 256 One maximum length palindrome

B. PROOF OF CORRECTNESS

A method of formal proof of correctness was used to verify
the logical correctness of the algorithm of the example program.
The method required the éssumption that the environment in which
the program operates is also logically correct, most particularly
that the compiler and operating system ensure performance -of the
expected semantic actions for the program statements.

References 9,13,19,25 and 26 were consulted to develop the
methodology for constructing the proof. The work of Floyd (13)
is considered the basis for matheﬁatical program proofs; the
paper by Manna and Waldinger (26) was particularly helpful in an
operational sense, and Hoare's paper (19) was applicable to the
treatment of procedure calls.

The first step in constructing the proof was to formalize
the required result of the program in a logical statement called

the output assertion, and to describe the restrictions on input
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data as an input assertion. Translating the rather loosely
defined purpose of finding palindromes to an output assertion
required significant analysis of the requirements.

The proof itself was constructed using the method of in-
variant assertions. to show partial correctness; i.e., that when the
input data satisfied the ipput assertion, -the output assertion
was satisfied if the program terminated. Terminatioﬁ‘of the
program was proven separately by findiné for each loop a set
and an ordering relation on that set such that the set can have
no infinite decreasing sequences (well-founded ordering), and
defining a termination expression which is a member of that
set and which is decreased each time control passes through the

loop. The proofs of partial correctness and termination together

.establish the '"total correctness” (26) of the program.

The method of invariant assertion involved inserting appro-
priate intermediate assertions (also called Floyd assertions) at
selected labels in the program such that they defined a condition

which would be logically true each time control passed through

" that label (hence the name invariant). At least one intermediate

assertion was inserted on every loop. Corresponding to each
path between assertions a verification condition was written. A
verification condition is a theorem of the form <assertion 1>
and < semantic meaning of program statements on path > implies

< assertion 2>. Proving all verification conditions completed
the proof of partial correctness.

The construction of appropriate verification conditions was

aided by using the invariant deductive system described in
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Reference 26. The notation {P} F {Q}, where P and Q are logical
statements (assertions) and F is a program fragment, is used to
mean that if P holds before executing F and if F terminates,
then Q holds after executing F. Thus the proof of program correct-
ness is a proof of the invariant statement:

{input assertion} program {output assertionl.
Rules of inference were supplied in Reference 26 to provide sub-
goals for proving certain invariant statements; in particular
there is one rule of inference for each statement type in the
programming language. For instance, the rule for conditional

statement "if R then F else G" is written as:

{P and R} F {Q}, {P and =R} G {Q}

{P} if R then F else G {Q!

The notation signifies that proof of the two invariant statements
in the nominator of the '"fraction" is sufficient to infer the
invariant statement in the denominator.

The reference provided rules of inference for assignment
statements, conditional statements, while statements, and for
the concatenation of statements. Additional rules were formu-
lated for iterative for statements and procedure calls. The
rules are introduced as required in the presentation of the

proof (Appendix AJ. .

C. DISTRIBUTED CORRECTNESS
Test cases for dynamic testing were selected using a criterion

based on the condition table method of Goodenough and Gerhart

(17) and the principle of distributed correctness described by
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'representative of equivalence classes covering the input domain

Geller (14). The criterion was not proven reliable and valid,

but an effort was made to show that the data selected were

of the program such that correct operation for all data in the
domain could be induced from correct operation for the test data.
As in the proof of correcfness, input and output assertions
were stated. At selected labels in the program (fewer than in
the correctness proof), '"synthesized assertions" (14) were in-
serted, similar to Floyd assertions but more general. The syn-
thesized assertions expressed invariant conditions of the program.
A condition table was constructed (if necessary) to analyze all
conditions affecting program operation from the previous asser-
tion to the one under consideration. Test data were selected
for each class identified in the table (similar to the decision
rules of a limited-entry decision table), and a "test data
assertion'" was stated, namely that execution of the program
fragment with the test data would satisfy the synthesized
assertion. The test data assertion was verified by dynamic
festing. At the same label, a generalization assertion was made
attempting to state the conditions for correct operation of the
program fragment, and where possible the synthesized assertion
was proven from the test data and generalization assertions. In
several cases, however, a basis for verifying the generalization
assertion could not be found and hence the verification method
could not be claimed to have proved program correctness through
testing. Certainly, however, an intuitive feeling of '"high"

reliability and validity of the test case selection criterion
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was established. %
The principle of distributed correctness was called upon to :

infer program correctness from the correct operation of the

distributed program fragments verified by the synthesized

assertions.

D. PATH ANALYSIS

1."Basicffecﬁni§ue<

Path analysis techniques are described in References 21,
22, 23, 31 and 32. For the example program, test data were
selected to force program traversal of each arc of the program

control flow graph. Execution of the arcs labeled with.upper-

case letters on the graphs of Figure 2 is sufficient to ensure
traversal of all arcs. Data were selected to satisfy path pre-
dicates for each such arc, predicates which describe constraints
on the inputs to ensure execution of the arc. The program was
instrumented with a counter on each labeled arc to count the
number of arc traversals, thus ensuring after testing that no
arcs had been missed.

More stringent criteria could have been applied, but execution
of all possible control paths was not possible since the program
has an infinite number of paths.

2. Extended Technique

The method of selecting test data as described above
was repeated with the additional criterion that each conditional
branching statement with more than one predicate be executed

with each possible combination of truth values of the predicates,
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thus expanding the class of errors that might be detected by
the tests. Additional path predicates were considered and a

larger set of test data was selected.

E. INDEPENDENT SUB-STRUCTURES.

A method for selecting test cases which is similar to path
analysis has been suggested in References 27 and 33. As applied
herein, the technique was to decompose the control flow graph
of each procedure of a program into independent circuits corre-
sponding to language constructs and to use these sub-structures
as an aid in identifying control flow paths for testing. The
cyclomatic number of a single-entry single-exit procedure is
the maximum number of such sub-structures; these independent
circuits can be identified by inspection for simple graphs or
more generally as follows:

A spanning tree (33) is a connected sub-graph consisting of
all nodes Qf a procedure's graph but containing no circuits. Its
arcs are called branches. There is one independent circuit
corresponding to each arc of the parent graph not included in
the spanning tree; these arcs, including an imaginary arc from
the exit node back to the entry node, are called chords. As
each chord is added to the spanning tree, the corresponding in-
dependent circuit can be identified.

A matrix representation of the circuits was useful in gener-
ating control paths for dynamic testing from the sub-structures.
A fundamental circuit matrix (33) was constructed with rows

corresponding to arcs (chords and branches); its entries were

o




0 for arcs not contained in a circuit, 1 for arcs oriented in

the direction of an assumed circuit flow, and -1 for arcs
oriented against the assumed flow. Chords were listed on the
left of each row, forming a unit matrix because there is a one-
to-one correspondence between chords and circuits.

The usefulness of the fundamental circuit matrix was that
linear combinations of circuits (the rows) having at least one
arc in common generated control paths uéeful for testing. Selec-
tion of paths in this manner satisfied a criterion more stringent
than traversal of each arc at least once, while considerably less
stringent than traversal of all possible paths.

In Section E of Chapter IV, the results of the application
of this technique are discussed. Following the generation of
the paths to be tested, test data were selected to satisfy the

path predicates and dynamic testing was conducted.
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IV. PRESENTATION OF RESULTS

A. STATIC ANALYSIS

Prior to the commencement of the experimental methods, 1.0
man-hours of effort were expended in static analysis of the
example program. Code was read to check syntax and reachability
of program fragments, and control flow graphs were examined to
check for adherence to structured programming constructs and
to learn the general flow of the program. No exceptions were
noted in these areas.

All global and local variables were examined to ensure
proper declarations and to check the transitions among the states
of being undefined, defined and not referenced, defined and
referenced, and an anomalous state (23). No illegal state
transitions were found; however, two instances of questionable
programming practice were noted. First, the string array variable
"cardbuffer" is initialized to contain 80 blank characters in
the procedure "initialize'" (state = defined and not referenced).
In a data flow sense, the next action performed on that variable
is to re-define it in the procedure '"read«and«write+input+cards,"
thus transitioning to the anomalous state. Since the variable
is re-defined before being referenced, the initializing of
"cardbuffer" in the "initialize'" procedure is superfluous.
Second, all iterative counters in for statements in the example
program are explicitly declared. Because the Algol-W compiler
implicitly declares such counters, the effect in the example

program is to explicitly declare several variables that are

59

I I T R N T <

-




T 1o 21 i

e NS

subsequently not defined or referenced. Although this is a
shortcoming in style, the superfluous declarations cause no
ill effects other than to waste a small amount of storage.

The verifications performed during static analysis were
required to ensure satisfaction of several assumptions for the
experiments in correctness demonstration, particularly that the
program has no significant data flow anomalies and that the
program is well structured and procedures do not contain
statements leading to unexpected side effects. The two in-
stances of style noted above were not corrected prior to ex-

perimentation.

B. PROOF OF CORRECTNESS

The detailed proof of correctness for the example program
is presented in Appendix A. The first step in constructing
the proof was to formalize the output specification of 'the
program, a task requiring 0.8 man-hours of effort. It was
desired to prove that at program termination the arrays "begine«
of«palindrome'" and "end«of«palindrome' would contain, correspon-
ding to indices starting from 1, integers representing the
bgginning and ending characters in the string "text" for all
palindromes in the string, subject to the constraint that
palindromes fully contained within a larger palindrome would
not be recorded. A palindrome initially recorded in the arrays
and subsequently found to be included in a larger one would be
"deleted" by setting the "end«of«palindrome'" entry to zero.

Overlapping palindromes would be recorded.
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The formal statements made for the specification are ("g"
is an dbbreviation for "1ength+of¥text"; "bop" and "eop" are
abbreviations for the beginning and ending entry arrays; "jx"
is a counter which is equal to one more than the number of entries
made in those arrays):
Q: Vx[(2<=x<=2 A text(x-1)=text(x))=>

Jy (y<jx A l<=bop(y) <=x-1 a x<=eop(y)<=2)]

R: ¥ x[(3<=x<=2 A text(x-2)=text(x)) ==
By(y<jx A l<=bop(y)<=x-2 A x<=eop(y)<=L)]
S: Vy[(0<y<jx A bop(y)>1 A O<eop(y)<i) =
(text(bop(y)-1)=text(eop(y)+1))]
T ¥y[ (0<y<jx A = (eop(y)=0))=>
[string (bop(y),eop(y))=ok A bop(y)>=1 A eop(y)<=L
AVzZ( (0<z<jx A D (z=y)) =>
( — (bop(z)=bop(y))
A (bop(z)<bop(y) => eop(z)<eop(y))) )1

The assertions Q and R require, respectively, that all

palindromes of length 2 and length 3 are included within some

entry in the arrays "bop" and "eop." Due to the symmetry of
palindromes, all must contrain a palindrome of length 2 or 3 at
the center; therefore, when conditions Q and R are satisfied,
all palindromes have at least been detected by the workings of
the algorithm, even if their total extent has not been recog-
nized. Condition S requires that any valid entry in the arrays
"bop'" and "eop' represents as long a palindrome as can be
recognized starting from the length 2 or 3 palindrome at the

center; symmetry is again relied upon. Finally, condition T
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requires that all strings represented by valid entries (those
with non-zero "eop'" entry) are in fact palindromes (the notation
"string(l,Z)-ok" is used to indicate that the sub-string starting
at position 1 in "text" and ending at position 2 is a palindrome),
and that no entry in the arrays "bop“ and "eop" is included

with another entry. -

Together the four assertions provided a formal statement
that could be proved from the semantics of program statements
and the assumption that the input constraints (see Appendix A)
have been satisfied.

Given the output specification to be proven, five procedures
were determined during static analysis to have no bearing on the
program's performance of the desired process. Procedures '"textl,"
"text2," and '"text3,'" merely print output labels; "blank«lines"
inserts blank lines in the output. Procedure "write«all«palin-
dromes,'" while complex,.serves only to print the strings corre-

sponding to the entries in the previously mentioned arrays. No

G duadil spacaon

correctness proof other than for termination was supplied for
these procedures.

For the remaining significant procedures, Table III presents %
the man-hours of effort expended in constructing their proofs.
As is discussed in Chapter V, there was a relationship between
procedure complexity and the time to construct a proof for the :
procedure. The time required to prove procedure 'read+and+write<« |
input«cards," the first somewhat complex procedure proved, was

distorted by the presence of a significant learning curve.
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TABLE III
TIMES TO CONSTRUCT PROOFS

Man-Hours

Formalize output specification 0.8

"initialize" : 0.8

Show termination of 5 utilities 0.6
"read+and«write+input+«cards" 4.2

: "palindrome<«check" 1.6
"continue+checking" 1.8
"record+palindrome" 3.5

"main" 0.2

Total 13°.5

C. DISTRIBUTED CORRECTNESS

The detailed demonstration of correctness of the example
program using the condition table method and the principle of
distributed correctness (described in Chapter III) is presented
in Appendix B. As in the formal proof of correctness, this
method required formalization of the output specification as
a first step; the same output assertions were established as
in the formal proof. The six significant procedufes were tested
by choosing synthetic assertions, test data assertions, and
generalization assertions, and then executing test data to
verify the assertions. Table IV presents the man-hours of

effort expended in demonstrating correctness by this method.

63 ]




b sk e S et et i

TABLE IV

TIMES TO DEMONSTRATE CORRECTNESS

Task Accomplished or

Procedure Shown Man-Hours

Formalize output specification
"initialize"
"read«and«write«input+cards
"palindrome<+check"
"continue«checking"
"record+palindrome"

"main"

OCUNMNHOOOO
e o o & o o o
SN NOIN

| |

Total

~
.
w

The test data elements used to verify the test data asser-

tions in the correctness demonstration are consolidated in

Table V into one comprehensive set of test cases; the palindromes

whiéh should be recorded for the given texts are indicated by

underscoring. The degree to which these test cases satisfied

the requirements for an ideal test is discussed in a later section.

TABLE V

TEST CASES IDENTIFIED BY
CONDITION TABLE METHOD

] Test Length Test Length
j Number of text Text Number of text " Text
( 1 2 ab 13 4 " aabc
_ 2 2 aa 14 4 abba
(] 3 80 Note 1 15 4 abbe
: 4 81 Note 1 16 5 abbad
(l 5 160 Note 1 17 5 abbcd
(! 6 240 Note 1 18 S abcchb
1 7 256 Note 1 19 ) abccd
i 8 3 aba 20 6 abccba
9 3 aab 21 6 ‘abccbd
10 3 abb 22 6 abccde
11 4 ab§§ 23 9 baaabaaab
] 12 4 ' ‘'aaaa

Note 1 - any text which includes overlapping palindromes




For purposes of comparison with later sets of test cases,

it is noted that execution of the above tests required 0,88

e R u e ——

seconds of CPU time.

D. PATH ANALYSIS

1. Basic Teéhnique

Static analysis of the program identified 21 individual
decision-to-decision paths in the program control flow graph. |
The program was instrumented with integer counters placed in ;i
added assignment statements to record the number of traversals
of each of these arcs (which are identified by upper-case letters

in Figure 2, Chapter III). The analysis.and instrumentation

required 0.8 man-hours of effort.
Path predicates were established and test cases selected to }

force traversal of each arc at least once (0.3 man-hours required).’ |

For the example program the path predicates were quite simple

to satisfy. Finally, the test data (shown in Table VI) were

used in dynamic testing of the program (0.2 man-hours). Table

VII lists the individual arcs and the number of traversals of

each which were recorded. No program errors were detected. Each

arc was traversed at least once, and thus the selected data
provided at least a '"minimally thorough" test of the program

(22). The total effort involved in the application of this

method was 1.3 man-hours. The tests required 0.05 seconds of

f : CPU time.
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TABLE VI
TEST CASES IDENTIFIED
BY PATH ANALYSIS

Length
- of text Text
1 S

2 Xy
7 baaaaca

TABLE VII
ARC TRAVERSALS USING
PATH ANALYSIS DATA

4 3221563245311

Extended Technique

Preceding the arcs labeled D, N, P and Q in Figure 2
are decision statements involving two or more predicates (e.g.,

"if (A and B) then"). The basic path analysis technique pro-

vided simply for traversal of each arc following such decisions
(i.e., "A and B" true, and "A and B" false). A more thorough

test of a bi-conditional decision would execute the decision

statement under the four truth combinations for the two predi--

cates (A true and B false, A true and B true, A false and B
true, A false and B false); similarly a tri-conditional decision

could be executed under the eight truth combinations for the




three predicates.
Analysis of the appropriate path predicates identified
four additional test cases (Table VIII) which, when added to
the three cases selected by the basic technique, ensure execution
of multi-condition decision statements under all (possible)
combinations of truth values for the decision predicates. Table
IX presents the arc traversals recorded for the additional tests.
No program errors were detected. The total additional
effort to select the additional cases was 0.9 man-hours;
therefore, the total time to apply the extended path analysis
method was 2.2 hours. The additional tests required 0.18

seconds of CPU time, for a total CPU time of 0.23 seconds for

the extended method.

TABLE VIII
TEST CASES IDENTIFIED BY
EXTENDED PATH ANALYSIS

Test Length
Number of Text Text
4 257 --
S 3 aaa
6 5 baaab
¢ 160 *

*Any string of 160
zharacters
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TABLE IX
ARC TRAVERSALS USING
EXTENDED PATH ANALYSIS DATA

] Arc: Z_ A_ B .0 BB G 3

mEm- BEee eee Ceae ECCE EE® EEew eEmw WwEe® ®ee

Test 4 1
Test S : s}
Test 6 1
Test 7 1

P
w
—t
hiv-u-'r-‘
NN
~
-
N

Total,
Tests 1-7 7 S P 6 5 8 164 5 162

s ok bl N PR R
Test 4
Test S
Test 6
Test 7

[l
(R
(SN
W
NN
-
(%
el

Total,
Tests 1-7: 5 5 8 15 5 6 6 10 3 1 4

E. INDEPENDENT SUB-STRUCTURES

The techniques described in Chapter III, Section E, were
applied to the six significant procedures of the example program
to identify control paths for testing based on the independent
language constructs of the procedures. A spanning tree (consis-
ting of all nodes but containing no circuits) was constructed
corresponding to each procedure control flow graph presented in
Figure 2 (Chapter III); the arcs of the spanning tree were
considered as branches. The remaining arcs of the parent graphs
were considered to be chords, with a single independent circuit

or language construct corresponding to each. The tundamental
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matrices for the six procedures are presented below; the rows
are labeled with the language construct names of the fundamental
circuits; the columns are headed with the arc (branches and
chords) labels; If a fundamental matrix has n rows, the first
n column labels from the left are the chords and the remaining
column labels are the branches. The matrix entries have tﬁé

meanings described earlier.

Procedure "initialize':

£ et carcib. o Ad
1.0 1 1 1 0 main-line
0 1 0-1 0 1 if-then

Procedure ''read+and+write«input<«cards'":

k@ £ 'a b ¢ & B

I 900 0 0 0:1 sain-line
0 1 0 06 0 1 0 0 while~do
) S B SR e T G R S

Procedure '"palindrome«check":

% €& 3T - J.;wm a.boR a8 g0 4 X

1 0.0 0 0:1.1 0.0 @0 4 0 0 0. mum~line
0 176 0 0 0 '0 0 1=-2 0 0 % U if-then
680 1000 9 0 ¢ 90<1 1 9 1 if-then
0.0 . 010 9 08 ¢ 0. 90 0 1 ~-1_ 4f-shen
00 B0 LW Pl o8 1k 9 9N Ioew

Procedure "continue<«checking':

) NS S0 S SRR SRR -G THE B T

1 0:0 1:0 0.0 0 1 1 wmein-line

0 1 0 0 0-1:1-1 0 0 if-then-else
0 0 1 0.1 1 0 1 0 0 while-do
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o A B s

483 e b e st e % k1
1 0 0 0 0 1 0 0 0 0 O 1 1 0 main-line
0 1.0 0 0 0 O 1-1 O0-1 O O 0 if-then-else
o 01 0 0 0 0 0 0 1-1 0 O O if-then
g 6-0.1 06 0% -0 -3 0 3 0.0 0 For
g 0 0 0 1 0 0 @ 00 0 0-1 1 1if-then
Procedure '"'main'":
£

1 main-line
0 if-then-else

O =0
oo
o
- o
—~on
-

The control paths for testing were selected by using the rows
(fundamental circuits) and all linear combinations of rows having
one or more branches in common to identify sequences of arcs which
should be tested. The paths for each procedure that were selected

in this manner are presented below; paths are identified here in

a node-to-node format (node numbers correspond to those in Figure

2).

Procedure '"initialize'":

1-2-3
1-2-4-5

Procedure "read«and+write«input«cards'":

1-2-3-5-2-6 4
1-2-3-4-3-5-2-6

Procedure '"palindrome«check":

1-2-10 .
1-2-3-4-5-9-2-10
1-2-3-5-2-9-10
1-2-3-5-6-7-8-9-2-10
1-2-3-5-6-8-9-2-10




Procedure "continue<+checking":

1-2-8-9-10 *
1-2-8-10
1-2-3-5-7-2-8-10
1-2-3-4-6-7-2-8-9-10
1-2-3-4-7-2-8-9-10

Procedure "main'":

1-2-3-5-6

1-2-4-5-6

Path predicates were established for the control paths
listed above and test cases were selected to force their
traversal. The paths above followed by "*" have path predicates
which cannot be satisfied by any input data; the given execution
sequence is impossible for any allowable input. The minimal set
of test cases selected to satisfy the path predicates is presented
in Table X. Dynamic testing with these test cases revealed no
program errors; 0.12 seconds of CPU time were required for the
tests. Table XI describes the allocation of the 2.2 man-hours

of effort expended in the application of this method.
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TABLE X
TEST CASES IDENTIFIED BY
INDEPENDENT SUB-STRUCTURES METHOD

Test Length
Number of text Text
1 1 --
2 2 Xy
3 2 aa
4 3 aba
- 3 abc
6 7 " aabbbba
TABLE XI
TIMES TO APPLY METHOD OF
INDEPENDENT SUBSTRUCTURES
Task Accomplished or :
Procedure Shown Man-Hours |
"initialize" 0.1 !
"read«and«write«input<«cards" N.é
"palindrome«check" 0.6
"continue«checking" 0.3
"record«palindrome" 0.7 ]
"main" 0.1 :
0.2

Conduct dynamic tests

N
.
N

Total

RV

For purposes of comparison of the degree of arc coverage of

tests conducted by this method with that of the path analysis

tests, the instrumented version of the example program was

executed with the test cases from Table X; the results are

given in Table XII.

72




TABLE XII
ARC TRAVERSALS USING
INDEPENDENT SUB-STRUCTURES DATA

Test 1 1

Test 2 00 1. e (e 1 1 [

Test 3 3 e Lo i i G 1 1 1 1

Test 4 171311 21 1 1 1 1

Test S S el 1S 5 | 2 11 1

Test 6 E17-1F 42228 X246 32753 1
Total 18§ 51755 57 34 5248535275323

F. INTUITIVE TESTS

The intuitive test data selected prior to conduct of the
previous experimental demonstrations of correctness were used
for dynamic testing. No program errors were revealed. For
purposes of comparison of the degree of coverage with other
methods, Table XIII presents the results of execution of the
instrumented program with the intuitive test data listed in
Table II (Chapter III, Section A). The selection and testing
of these data required 0.7 man-hours of effort; the tests

consumed 0.44 seconds of CPU time..
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' l Arc:

Test
Test
Test
Test
Test
Test
Test
Test

coNONHEUNM-

Total,
Tests 1-8

} Arc:

Test
Test
Test
Test
Test
Test
Test
Test

CONONELUN -

Total,
Tests 1-8

TABLE XIII

ARC TRAVERSALS USING

INTUITIVE DATA

T &k 8 ¢C B F 8 R J
TR G e
1.1 333 e
1
1
T #0386 4 1 358 St
A R e 14
Pl iee. P %N
}oohgme o TN
2 6 13632 13 6 ¢ 680
E-L oW N # o ou &g
1 1 1
1 1 1
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V. CONCLUSIONS AND RECOMMENDATIONS

e . e
acadeda

A. COMPARISON OF METHODS

1. Level of Effort

Table XIV is a summary of the man-hours of effort required

for each method of demonstrating the correctness of the example

program, broken down by procedure for those methods where pro-

cedures were examined individually. The cyclomatic number and
number of statements for each procedure are included in the table
as measures of procedure complexity. The times to apply the
verification techniques are to be compared with one another and
with original program development times of 5.0 hours to design,
7.0 hours to code, 4.0 hours to debug, and 5.8 hours to test (21.8

hours total).




TABLE XIV
SUMMARY OF TIMES
TO DEMONSTRATE CORRECTNESS

; Cyclomatic- Time (Man-Hours) Per
Task or: Number and Method
Procedure No. of Stmts A B C D E
Formalize output i ;
Specification -- 0.8 0.8 -- - -
"initialize" 2 ; 14 0.8 0.2 -- 0.1
Show termination
of utilities - 0.6 - - - -
"read+~and«write..." Jos 18 4.2 0.7 - - 0.2
"palindrome+check" 0% 1.6 0.9 - - 0.6
"continue«checking" - R 1.8 1.3 - - 0.3
"record+palindrome" 923 3.3 2.2 - - 0.7
"main" F BECNE 0.2 0.4 -- - 0.1
Conduct dynamic
testing - - 5 - - 0.2
Total s . R N 55 T TC AR % 4
Methods:
A - Formal proof
B - Condition table/distributed correctness
C - Basic path analysis
D - Extended path analysis
E - Independent sub-structures
* - Test time included in times for procedures.
; Quite expectedly the two more formalized verification tech-
niques (proof and condition table method) required considerably
f more effort than any of the other methods, and in fact required
r 3 more hours of effort than were involved in program design (time

to construct the proof exceeded even the time to design and code).
';‘ ! As the subsequent discussion of the thoroughness of each method

indicates, these two methods provide higher confidence in program
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correctness than the other simpler and more mechanical methods.
The question becomes whether the increased return from formal
methodology is worth the cost. The complexity and importance of
the software, budget constraints, and several other factors come
to bear on the decision, and the decision should be made separately
for each software project.

From a philosophical standpoint at least, ex post facto

proof of correctness is inefficient because of a great deal of

duplication of effort. The logical process of constructing the

proof, in the case of this experiment and in general, requires

at least as thorough an understanding of the application and of

4 the'program control structure and data flow as does the design

and implementation effort. The logical techniques of proof can
I ; give excellent evidence as to the correctness of programs (but
not conclusive; see Ref. 15 and others) and are clearly desirable

for use, but a higher cost effectiveness than that suggested from

this experiment is required. Possibilities include attempts to
automate ex post facto proving of correctness or to introduce the

1gocal techniques in the design and implementation of software.

e AT NP A

| | These alternatives are major areas of research; brief mention
! is made here.
Structured programming concepts, advanced language design,
and formal definition of requirements are examples of software
’ engineering efforts to emphasize the use of logical methods in
the design and implementation of provable programs. Mann has
‘ discussed the feasibility of using logic techniques to geherate

programs guaranteed to satisfy the output specifications, thus




obviating the need for ex post facto verification (26). It is

A A

in this area that the greatest promise for correct software is
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to be found.
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Several aspects of the formal proof process may be subject

to automation. Manna discussed briefly in Reference 26 (pp. 203-
204) progress that has been made in systems to automatically |
generate invariant assertions and verification conditions and
systems (theorem provers) to prove the verification conditions.
Both tasks are formidable and it is unlikely that full automation

can be achieved; yet, partial solutions would be extremely help- ;‘

ful in reducing the tedium involved in the process of formal
proof. The limitations on automation of the process are succinctly
stated by Dijkstra (9):

The distorting spell of speed still seems to

take its victims. We see automatic theorem
provers proving toy theorems, we see automatic
program verifiers verifying toy programs and

one observes the honest expectation that with
faster machines with lots of concurrent processing,
the life-size problems will come within reach as
well. But, honest as these expectations may be,
are they justified? I sometimes wonder...

The level of effort required to apply the condition table

method of selecting test data in a fashion as nearly reliable

and valid as possible (according to the theory of testing dis-
cussed in Chapter II) compares more favorably with the original
program design effort. If similar relationships exist for large-
scale applications, the method is likely to be effective at

reducing the life cycle cost of software as the method appeared

in these experiments to offer a greater ability to locate errors

than less formal methods, thus reducing maintenance costs.
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Evidence of the cost effectiveness of this or similar formalized
test case selection criteria is required from large-scale appli-
cations in a commercial environment to be conclusive.

It is interesting to relate the effort required to apply
to individual procedures the methods A, B, and E (Table XIV) with
the complexity measures of these procedures. While the sample

size of the data collected here is too sméll for statistical

significance and the data are distorted by the presence of learning

curves (e.g., procedure 'read«and«write+input«cards'" was the

first procedure with loops proven correct, and several false
starts were included in the 4.2 hours of effort), there did appear
to be a relationship between complexity and effort to demonstrate
correctness. Although the level of effort did not linearly

relate to the magnitude of either of the measures of complexity
shown in Table XIV, effort appeared to increase with increasing
complexity, and the cyclomatic number appeared to be a better

predictor of effort than did the number of statements.

2. Thoroughness of Verification

As discussed in Section B of Chapter II, the requirement
for an ideal test according to the theory of testing presented
in that chapter may be satisfied in’several ways. Selecting no
test data.and proving that the program is correct (i.e., contains
no errors) clearly satisfies the criteria for an ideal test.
Accordingly, on the basis of the proof of correctness constructed

as part of this experiment it can be stated that the example

program is correct as written, provided the proof contains no

it ol ade oy
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errors and no unwarranted assumptions. That proviso is not easily

ignored; Reference 15 is only one source of examples of programs
"proven" correct which in fact contain errors. Nonetheless, the
proof provides a high degree of confidence in the correctness of
the example program.

The several path analysis strategies, including the identi-
fication of paths for testing by decomposition into independent
sub-structures, did not include any atteﬁpt to show the reliability
and validity of the test cases selected. Consideration of possible
errors in the program, particularly in the statements controlling
control flow, revealed several potential errors that would be
detected using the test cases of the extended path analysis tecﬁ-
nique (multi-conditions emphasized) but not by one or'both of
the other two path analysis methads.

For example, if the statement

while ((ix<=length«of«text) and
(bufferposition<card 1limit)) do

in the procedure '"read+and«write«input«cards" had the incorrect
relational operator "bufferposition<=" vice "<", none of the test
cases selected by the basic path analysis technique or by sub-
structure analysis would reveal the error (no string sufficiently
long), but test 7 (length 160) of the extended path analysis
method would reveal the error through a run-time indexing error
on assigning the 8lst character to '"text." Similarly, if in

procedure ''record«palindrome'" the statement

if ((first>=begin+of+«palindrome(i)) and
(last<=end+«of«palindrome(i))) then

80
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omitted the "or equal" test from the '">=" and '"<=" opefators,

the basic and extended path analysis test case 3 (''baaaaca")
would reveal the error by recording three palindromes (baaaaca,
baaaaca, and baaaaca) which are included in the larger palindrome
(paaaaca) and should be ignored. The error would not be revealed
by the test data selected from independent circuit considerations.

Because there exist potential errors that would not be
revealed by the path analysis test sets (including the extended
method set, as will be shown in the next paragraph), the criteria
as applied in these experiments were not valid and reliable in
the meaning of testing theory. While the particular errors
re?ealed or not revealed in these experiments are peculiar to
the program under test, selection of test data by any means of
path analysis other than exhaustive path testing cannot he ex-
pected to detect all program errors.

The test cases selected by condition tables were capable of
revealing all of the errors considered above, including the two
specific errors mentioned (test cases 4, 5, 6 and 7 for the
first, test 23 for the second). Additionally, there were po-
tential errors which could be detected through dynamic testing
only by the test cases selected by this method. These results
are peculiar to the specific program under test but are consid-
ered representative of the capabilities of the several methods.
(It is not suggested that the condition table method is in

general capable of revealing all errors.)

For example, if in procedure '"continue+checking" the
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statement

while ((first>1l) and (last<length<«of<«text)
and (palindrome=true)) do

mistakenly éontained "last<=" vice 'last<," test case 3 ("baaaaca')
of the path analysis techniques and test 6 ("aabbbba") of the in-
dependent circuit method would both erroneously cause traversal

of the arc "M" (see Figure 2; arc '"M" sets palindrome' equal to

the value "false") during the calls to the procedure with string
(first,last) being the underscored palindrome, but there would

be no external effect noticeable to the tester and the error

(which has potential to cause an indexing error) would go unde-
tected. However, the condition table for assertion B17-18 (para-
graph E.1. of Appendix B) would cause the error to be noticed when
examining the predicates of the assertion as required by the method
during execution of test element '"abb."

This localization of test effort afforded by using the prin-
ciple of distributed correctness is one of the most powerful
aspects of the method as used in this experiment. While the
localization added to the effort required (full knowledge of the
program's internal structure was required), it was the localization
of analysis that enabled some positive statements to be made re-
garding the validity and reliability of the selected test data.
While in several cases it was not possible to prove the generali-
zation assertion for the selected test data assertion, in each
case a high degree of confidence was established that the test
data did in fact partition the input domain for the program frag-
ment under consideration into equivalence classes with respect

to program operation.
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From this confidence and the:- fact that no input data were
excluded from selection, it was concluded that the criterion
for selecting test data as applied to this program was valid
and "almost reliable." Additional work in identifying theorems
which can be used in generalizing from specific test data to
the entire input domain is needed and offers an opportunity for
a highly reliable testing methodology. '

The error data provided in Table I, from the original program
development process, was not useful for discriminating among
the methods applied in verifying the program. Each method
would detect the presence of the errors described in Table I.

It is interesting that fhe set of intuitive test data (Table
II) selected prior to thorough analysis of the example program
is capable of revealing all of the errors considered, including
the "last<=" vice "last<" error in '"continue«checking" (a run-
time indexing error would occur for "text(last+l)" for test case
8 as a result of that error). However, the method of casual
or intuitive selection of test data is not in any way desirable;
the error detection capability in this case is due only to luck
and the relative simplicity of the program function, and the
cost-effectiveness penalty in terms of CPU time expended on

test cases which are in fact not distinguishable can be severe.

B. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

This section presents a summary of the conclusions drawn in

the main text of this thesis.
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1. The need exists for greater relative emphasis on design
and implementation techniques as compared tc verification tech-
niques (pages 13 and 77-78).

2. Significant efforts are required in applying the disci-
pline of software engineering toward refincment or replacement
of the verification methods now in use (page 14).

3. The formal proof of correctness and the zpplication of
the condition table method based on distributed correctness
required significantly more effort than the path analysis stra-
tegies (page 76).

4., There are serious limitations on the feasibility of auto-
mating the process of formally proving program correctness (page '
78). |

5. There was some positive correlation of the level of
effort required to demonstrate correctness with the complexity
of procedures as represented by the cyclomatic number (page 79).

6. The proof of correctness of the example program provides
a high degree of confidence in the correctness of the program
(page 80).

7. The path analysis strategies as applied in these experi-
ments did not provide reliable and valid criteria for selecting
test cases. Selection of test data by any means of path analysis
other than exhaustive path testing cannot be expected to detect
all program errors (page 81).

8. The condition table method using the principle of dis-
tributed correctness afforded a valid and "almost reliable"

criterion for test case selection (page 83).
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9. Additional work in identifying theorems which can be

used in generalizing from specific test data to the entire
input domain is needed and offers an oppoftunity for a highly
reliable testing methodology (page 83).

10. Casual or intuitive selection of test data is not in

any way desirable (page 83).
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APPENDIX A

" FORMAL PROOF

A. ASSUMPTIONS, ABBREVIATIONS, AND NOTATION

Several assumptions :about the ekample program were made in
addition to those verified by static analysis and those‘mentionéd
in Section B of Chapter IV. It was assumed that the host environ-
ment of the program (compiler and operating system) was error--
free. All input data read by the program were assumed type com-
patible with variables - integers for integer variables, valid
printable characters (including blanks) for string variables. It
was assumed that the number of characters following the integer
stating the length of the input character string was equal to
that integer. The domain of the numerical values in all predi-
cate formulae in the proof was assumed to be the integers only,
and only interger division was intended; the operators div and
rem were used to represent the integer quotient and remainder,
respectively.

Because several of the program variable names are verbose,
the abbreviations listed below were used in the assertions and

formulae of the proof:

-% length of text

-4t cardlimit

-cb- cardbuffer

-n number«of«input«cards
-c card+counter

-bp bufferposition

-bop begin+of«palindrome
-eop end+of«palindrome

-p palindrome
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Figures 3 through 8, shown in the following pages, are
listings of six program procedures with labeled invariant asser-
tions inserted for purposes of the proof. Assertions A0 and AS8
are the program input and output assertions. Assertions are con-
tained within braces "{ }," and in Figures 3 through 8 wherever
successive labeled assertions follow a program statement, the
intermediate assertion to be proved at that point is a conjunction
of those assertions. Frequently assertions contain withih the
braces the names (labels) of earlier assertions; the meaning im-
plied is a literal replacement of the label with its earlier
expansion. In the terminology of Section B of Chapter III, the
proof prespnted in this appendix is a proof of the invarient
statement:

{AO} program  {AS8}
This terminology and that for rules of inference (see the same

section) are used throughout this appendix.

B. ADDITIONAL RULES OF INFERENCE
As mentioned in Chapter III, rules of inference similar to

those in Reference 26 were formulated for iterative for state-

ments and procedure calls. Those rules are presented here:

1. Iterative Rule

The statement for C:=E step 1 until L do F is logically

equivalent to the program fragment:

{p} // an assertion
C:=E //C a counter, E an expression
LIMIT:=L //L an expression
{1} //an assertion
more: if C>LIMIT then goto fini
F 7/1cop body

A

R N
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- C:=C+1

goto more ,
fini:
{q} //an assertion

Corresponding to this form of the statement, the rule of infer-
ence is:

P=>1, {I A C<=LIMIT} F {I}, I A C>LIMIT = Q

{P} for statement {Q}

2. Call Rule

All procedures in the example program pass parameters by
value, so that operations on the formal parameters within the
procedure body do not affect the actual parameters. Global
variables may however be modified in the prbcedures. The nota-
tion p(f,g) represents a procedure p with some formal parameters
f which operates on some global parameters g; the procedure has
a body F and input and output assertions Q and R. A call to
the procedure with actual parameters a is denoted by call p(a).
S(a:=f) and T(a:=f) are the assertions in the calling program
located before and after the call, with formal parameter names
substituted for actual. The rule of inference is:

S(a:=f) = Q, R =>T(a:=f), {Q} F {R}
{s} call p(a) (T}

The rule is essentially a statement that a procedure call is
proved when an in-line substitution of the procedure body is
shown to be valid. In showing that R=> T(a:=f), the prover
must verify that global variables referenced in T but not in

R are not modified by execution of the procedure body.




C. PROCEDURES TEXT1,2,3

Because these procedures do not contribute to the essential
program performance (as was determined during static analysis),
only a superficial proof of correctness was performed. It was,
however, necessary to show termination in order to verify that
program execution would not endlessly loop in one of these non-

: essential procedures.

1. Input Assertion: {true} i.e., no restriction.

2. Output Assertion: {true}; i.e., no restriction.

3. Verification Condition:

{true} procedure {true}, or true A null =¥ true, where
null is a notation for program statements having no significant
| effect. Proof of the verification condition is immediate.

4, Termination

The procedure has only one entry and one exit and con-

tains no loops; therefore, it terminates.

D. PROCEDURE BLANK+LINES; TERMINATION OF FOR STATEMENTS

Similarly, only a superficial proof of this non-essential

procedure was performed.

1. Input Assertion: {nx01} .

. Output Assertion: {true} ; i.e., no restriction.

2
3. Verification Condition: {n>0} procedure {truel.
4

e ————

+ Proof
Regardless of the value of the antecedent, the consequent
] : remains the logical value true; therefore, the implication

holds.
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S. Termination

Termination is assured if the error exit at the state-
ment "assert(n>0)" is not taken, and if the for loop following
terminates. The erfor exit is. taken when n<=0. The input
assertion guarantees n 0; therefore, the error exit is not taken.

The for statement loop terminates whenever the value of the

loop counter exceeds some pre-defined limit., Informally it is

clear that, given a finite starting value and finite limit for

the counter and given that the loop body itself terminates (as

it does in this case - no nested loops) either the loop body is

b not executed at all (starting value exceeds limit) or eventually
the counter must exceed the limit (since it is incremently by 1
following each loop execution, by virtue of the '"step 1" portion

1, A of the statement, and no other assignments are made to the counter
in the loop body), and the loop will terminate.

More formally, let EXP=LIMIT+1-COUNTER be a termination

expression, let N be the set of natural numbers, and let > be
the usual greater-than relation. Note that N is well-ordered

by >. In all implementations of a for statement of the type

T BT AN Ve

described in the iterative rule of inference, if the initial
value of EXP is zero or not contained in N (i.e., negative),
then the loop body is not executed and termination is assured.
Likewise, if the initial value of EXP>=1, the loop body is
executed, COUNTER is incremented, and the subsequent value of
EXP is (EXP-1)€&€ N. Since an infinite decreasing sequence of
values of EXPEN is not possible (N is well ordered), the loop

must terminate (EXP=0).
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An important conclusion can be reached from the above proof
of termination of the for statement in procedure "blank lines":

every occurrence of a statement of the type for C:=E step 1 until

L do F terminates provided the program fragment F terminates.

E. PROCEDURE WRITE+«ALL+PALINDROMES

As in the preceding cases, only a superficial proof was
required for this non-essential procedure (non-essential in terms
of the palindrome search problem).

1. Input Assertion: {truel.

2. OQutput Assertion: {true}.

3. Verification Condition:

{true} procedure {true}. The proof is immediate.

4, Termination

The procedure has only one entry and one exit. It con-
tains no loops other than for statements (which have been shown

to terminate); therefore the procedure terminates.

F. PROCEDURE INITIALIZE

Figure 3 is a listing of procedure "initialize" with the
necessary assertions included. The notation "input(2)" refers
to the data value in the input stream which will be assigned
to the program variable "&".

1. Input Assertion: Assertion Al.

B T A

. Output Assertion: Assertion A2,

e

2
3. Verification Condition: {Al} procedure {A2}.
4

. Proof.

The proof of this verification condition follows directly




3 | E procedure initializes ;
J comment imitislize all wvariables, read length_of_text, write texti;
: begin
Al: ( 2¢=imput(1)<=2236 A ca20 )
textl;
Jxisl;
palindrome_counter:sl;
; i | cardlimit:380;
K | intfieldsize:=8;
3 i read( length_of .text);
; b if ((lemgthof_text < 2) or (lemgth_of_text > 2856)) then
3 1 3 bocln $
3 r write("Illegal input:"®,
§ " length of imput string is: ",length_of_text);
: assert( false)
{ end;
| 3 cardbuffer:=" "3
l . A2: ( 2¢=1<=286 A caz0 A jx=1 A 1t=80 A cb=blank )

end initialize;

PNl R i Y490 -

14

FIGURE 3
PROCEDURE INITIALIZE
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from the semantic meaning of the assignment statements and read

statement. Each predicate of the output assertion is just an

expression of an assignment made in the procedure body, except
the term "ca=0", which is just a restatement of an input asser-

tion predicate. The proof variable '"ca" is discussed in the

proof of the next procedure. A series of intermediate assertions
could have been made, one following each assignment statement,
to more formally indicate the method of'proof. In particular,
the if statement has been ignored in the preceding simple
proof; it is discussed in the termination proof.

Note that in Algol-W the meaning of an assignment of a

single character value to a string of length greater than one

is to pad out the string variable on the right with blanks; thus
the predicate 'cb=blank'", following the assignment statement
“"cardbuffer:=" "," means that '"cb" initially contains 80 blanks

("cb" is an abbreviation for '"cardbuffer'", a string array of 80

characters).

5. Termination

The procedure is a concatenation of assignment statements,

a read statement, a call to procedure '"textl", and an if state-
ment containing a potential error exit (the assert statement).
Because ''textl'" terminates, 'initialize'" will terminate at the é
output assertion provided the error exit is not taken. Since
assertion Al ensures that 2<=2<=256, the compound statement
forming the consequent of the if statement cannot be executed;
thus the error exit cannot be taken, and the procedure does

terminate,
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G. PROCEDURE+«READ+AND«WRITE«INPUT+«CARDS

Figure 4 contains the assertions for this procedure; several
of the assertions use abbreviafions listed earlier in this
appendix. A proof variable '"ca", a variable that is not an
actual program variable, was used in this proof to represent
the characters assigned, or the number of characters that had
been read from the input stream and transferred into the string
array ''text".

1. Input Assertion: A4

2. Output Assertion: AlS

3. Intermediate Assertions:

A5 through Al4. Verification conditions are provided
for all possible assertion-to-assertion paths in the following

paragraphs.

4. Path A4 to AS

The verification condition is:
2<=2<=256 A ca=0 A 2t=80 A cb=blank
A n=((2-1)div ft)+1 A ix=1 =
2<=2<=256 A ca=0 A 2t=80 A ix=1
A n>=1 A n=((2-1)div80)+1
Given the truth of the antecedents, the consequents are shown

true as follows:

a., 2<=2<=256 A ca=0 A 2t=80 A ix=1:
these predicates are just a restatement of antecedents which

have not been affected by the intervening program statements.
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AS:

A6:
AT :

AD:
Al19:

All:

A12:
AI3:

Al%:

A13:

procedure

read_and_write_input.cards;

comment read input cards according to given length_of_text:

begin

{ 2¢=21<=286 A ca=0 A 1t=80 A cbzblank )

integer number_of_input_cards;

number_of_.input_cardes:=( length of_text — 1) div cardlimit + 1:

ix:=sl;

comment reset text index;

( 2€¢=1<2286 A\ caz® A 1t=80 A ix*1 A =21 A n=((1-1)divB®)+1 )

for card.c

(ix=1)re
< =ix-1<

ounter:=1 step 1

m80=0 =>c=((ix-1)div88)+1 )
sl A (ix=1<1 =9 c<zn) )
remB@=0) =» c=({ix-1)d1v80)+2 )

(ix=121 => c>n) A ((ix~1)remB80=0 v ix-1=1) )
2¢=21<=286 A caz=ix—~1 A 1t280 A =1 A n=2((1-1)divBO)+1 ?

¢
(
C ~¢ix=1)
C
C

until

number_of_.input_cards do

begin

write
write
readc
write
buffe
-while

¢ 8<=bpiel

(card_counter);
on(" ");
ard(cardbuffer):;
on¢cardbuffer);

rposition:=0; comment reset index;

t O<=ix=1<=1 (ix—-1-bp) remBO=0 Ale

chbzstring of next 80 or fewer characters )

((ix<=length of_text) and (bufferpositioni{cardlimit}) do

begin
text( ix) : =cardbuffer(hbufferpositionil);

{ 2¢=21<=2286 A 1t=80 A n>=1 A n=((1-1)div80)+1
A cb=string of 80 characters ) ;

{ cazix A

C AI2Z A 8=ix~1<=1 A ca=ix-1 A [(bp=80 A (ix~1)remB0=0) v ix—-1=1] ?

end;

9<=bp<1t A 1<31x<=1 A (ix=1-bp) rem80=0 )

ix:=ix+l;
bufferposition:=bufferposition+l;

end; comment dome for all characters on a card:

comment done for all cards:

 ix-1=21 A ca=l A 2¢(=[<=206 A 1t=80 )

end read_and_write_input_cards;

FIGURE 4
PROCEDURE READ+«AND<+WRITE«INPUT«CARDS
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b. n=((2-1)div80)+1:

follows from n=((%-1)div 2t)+1 A 2t=80.

c. n>=1:
n=((%-1)div80)+1;
L>=2 =P L-1>=1;
2-1 =1 => (2-1)div80>=0;

therefore n>=1,

S. Path AS to A6-10

The verification condition is:

AS A c=1=> A6 A A7 A A8 A A9 A Al0
The verification condition is proved by considering the conse-

quents one at a time:
~a., (ix-1)rem80=0 =» c=((ix-1)div80)+1  {A6}:
from A5, ix=1;
ix=1 = ((ix-l)§_i_v_80)+1-0+1-1;
because ¢ has been set equal to 1, the consequent of the above

conditional is true, and the conditional is true regardless of

the truth of the antecedent.
b. 0<=ix-1<=% {from A7}

ix=1 =» ix-1=0, and %>=2.
c. ix-1<% = c<=n {from A7}:
c=1 and n>=1, thérefore c<=n, and the conditional must hold.
d. — ((ix-1)rem80=0) => c=((ix-1)div80)+2 {A8}:
ix=1l =5 ix-1=0; thus (ix-1)Tem80=0 is true;

so —((ix-1)rem80=0) is false,
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and the conditional is true.

e. (ix-1=¢ =>c>n) A ((ix-1)rem80=0 v ix-1=2) {A9}
ix-1=0 and 2>=2, so ix-1=g¢ is false, and the ‘conditiona.l is true,
and (ix-1)rem80=0 is true, and therefore the disjunction is true; ;
thus, A9 must hold. '

f. ca=ix-1 {from Al0}:

ca=0 and ix=1 is sufficient for ca-ii-l.

g. the remainder of assertion AlO:
these predicates are just a restatement of antecedents which

have not been affected by the intervening statement.

6. Path A6-10 to All

The verification condition is:
A6 A A7 A A8 A A9 A Al0 A c<=n A bp=0
A cb=string of next 80 or fewer characters = All

Again the consequents (predicates of All) are considered one at
a time.

a. O<=bp<=t:
this follows from bp=0 and 2t=80.

b. (ix-1-bp)rem80=0:
c<=n =» —(c>n);
— (c>n) A (ix-1=2 =» c>n) =» — (ix-1=2);
= (ix-1=2) A ((ix-1)rem80=0 v ix-1=2) => (ix-1)rem80=0;
finally, (ix-1)rem80=0 A bp=0 =3 (ix-1-bp)rem80=0,
which is that which was to be proved.

c. The remainder of the predicates:

these predicates are just a restatement of antecedents which

have not been affected by the interveining statements.




7. Path All to Al12-13

The ve?ifiCation condition is:
All A ix<=f A bp<ft A text(ix)=cb(bpjl) => Al2 A Al3
The consequents of the verification condition are considered
one at a time. !

a., ca=ix {from A13}:

ca=ix-1 A text(ix)=cb(bp|{l) is sufficient for ca=ix to be true.
" text(ix) is the ix-th character, and it is assigned a value in
this program fragment (that it is the proper value is shown
shertly). If ix-1 characters have been previously correctly

assigned to text, and one more character is assigned, then ix

———

characters have been assigned when control reaches assertion Al3.
In Algol-W, the string indexed by bpll is a string of length 1
(i.e., a character) at position bp in the larger string (cb);

the first position is 0, and the 80th is 79. 0<=bp<it guarantees

that bp is in range; '"cb=string of next 80 or fewer characters"

ek e e A —

ensures that the proper characters are in the buffer, and

(ix-1-bp)rem80=0 means that ix and bp+l (the next character to

o) SN AR < A il

be assigned in text and the next character in the buffer avail-

able for assignment) always differ by a multiple of 80, which is

correct when an 80-character buffer is used. So the proper

character is being assigned on this control flow path.
b. 0<=bp<it {from A13}:
0<=bp<=t A bp<it = 0<=bp<it.

N ——

c. l<=ix<=g {from A13}:

O<=ix-1<=0 A ix<=f = 1<=ix<=Q,
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C. l<=ix<=g {from Al3}:
O<=ix-1<=f A ix<=g = l<=ix<=g,
d. Al2 and remaining predicate of Al3:

these predicates are just a restatement of antecedents.

8. Path A12-13 to All (return to start of loop)

The verification condition is:
Al2 A Al3  ix:=ix+l; bp:=bp+l ({All}
The verification condition as expressed'above is rewritten as
foliows, replacing ix and bp by ix+1l and bp+l in assertion All
(as the assignment rule of inference requires):
Al2 A Al3 =»
[0<=bp+1l<=Lt A 0<=ix<=fL A (ix-bp-1)rem80=0 A 2<=2<=256
A ca=ix A 2t=80 A n>=1 A n=((2-1)div80)+1
A cb=string of next 80 or fewer characters]
The verification condition is once more prcved by considering
the consequents one at a time.
a. O0<=bp+l<=Lt:
0<=bp =3 0<=bp+l; and since only integer arithmetic is permitted,
bp<tt =p bp+l<=Lt.
b. the remainder of the consequents:

restatements of predicates of Al2 and Al3,

9. Path All to Al4

The verification condition is:
All A = (ix<=2 A bp<it) => Al4
The proof is constructed by showing the consequents of the veri-

fication condition one at a time.




a. [(bp=80 A (ix-1)rem80=0) v ix-1=2]:

— (ix<=% A bp<2it) means that either ix>%L or bp>=it, or both.
3 Consider ix>g as case 1;
ix>2 A O<=ix-1<=L =P A<ix<=L+],

so ix=2+1 and ix-1=2 , in which case the consequent is true.

f Consider bp>=%t as case 2;

bp>=Lt A 0<=bp<=Lt = bp=1Lt;

T YA

2t=80 A bp=it => bp=80;
bp=80 =» (ix-1-bp)rem80=(ix-1)rem80;
since (ix-1-bp)rem80=0, then (ix-1)rem80=80,

and the consequent is true,

-

So in either case the disjunctive consequent holds.
= b. the remainder of the predicates:

) these predicates are just a restatement of antecedents.

§o : 10. Path A6-10 to Al4

The verification condition is:
{A6 A A7 A A8i1A3AA10} F; while C do P {Al4} ,
where F represents the statements between A6-10 and the while

statement, C represents the predicate of the while statement

and P is the while loop body. The previous proofs of the ;
verification conditions for paths A6-10 to All, All to Al2-13, i
Al2-13 to All, and All to Al4 satisfy the requirements of the 1

rule of inference for while statements, and therefore the

verification condition for path A6-10 to Al4 is proven.

11. Path Al4 to A6-10

The verification condition after substituting c+l for

| —
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c in assertions A6-A9 (as requirgd by assignment rule applicable
to "for c:=1 step 1" which increments c). is:
 Al4 => [((ix-1)rem80=0 = c+1=((ix-1)div80)+1)
A O<=ix-1<=2 A (iic-1<1, == c+1<-n)l
A 1 ((ix-1)Tem80=0) => c+l=((ix-1)div80)+2
A (ix-1=¢ =» c+1>n) A ((ix-1)rem80=0 v ix-1=2) A Al0]

The proof of the verification condition is shown for each con-
sequent,

a. Al0 A 0<=ix-1<=f A ((ix-1)rem80=0 v ix-1=2):
these predicates are just a restatement of antecedents.

b. (ix-1)rem80=0 = c+1=((ix-1)div80)+1:
In addition to being a counter for the for loop, "c" is a
count of the number of data cards that have been read, because
there is exactly one readcard statement in the for loop body.
ca=ix-1l is the numb;r of characters that have been assigned
from the buffer into the array '"text"; each time the loop is
executed, 80 characters are assigned into '"'text'", except

that the last time the loop is executed, from 1 to 80 characters

may be assigned.
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If (ix-1)rem80=0, an even multiple (namely (ix-3)div80) of 80
characters have been assigned, and loop has Been executed that
number of times as control returns to A6-10; thus, c+1 (the
new value after the step) is then one more than that number, or
c+l=((ix-1)div80)+1. Therefore the consequent holds.

c. = ((ix-1)rem80=0) = c+1=((ix-1)div80)+2:
The proof for this consequent is similar to the preceding, ex-

cept that because (ik-l}remso is not equal to zero, less than
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80 characters have been read when control returns to A6-10, and
the loop has been executed one time more than in the case above.

Thus, c+1=((ix-1)div80)+2; q.e.d.

d. ix-1<% => c+l<=n:
If ix-1<2, then since
(ix-1=¢ v (ix-1)rem80=0) (proved above),
it must be that (ix-1’)@so-o.
Therefore, from the above proved conditional,
c+l=((ix-1)div80+1 is true,
and ix-1<f2 =% ix-1<=2-1,

so c+l<=((2-1)div80)+1.

Then because ((%£-1)div80)+1=n, c+l<=n.
e. ix-1=2 = c+l>n:

There are two possibilities.

First, assume —((ix-1)rem80=0.

Then c+1=((ix-~1)div80)+2Z,

and c+1>((ix-1)div80)+1.

If ix-1=¢, then ix-1>2-1 and

(2-1)div80 =(ix-1)div80;

therefore c+1>((2-1)div80)+1, thus c+1>n.
Second, assume (ix-1)rem80=0.

Then c+1=((ix-1)div80)+1,

and since 2=ix-1, £ rem 80=0

and (2-1)div80<¢ div 80.

Therefore c+1>((2-1)div80)+1, thus c+1>n.

In either case, c+1>n and the consequent is proved.
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12, Path A6-10 to AlS

The verification condition is:

A6 A A7 A A8 A A9 A Al0 A c>n =>

ix-1=2 A ca=f A 2<=£<=256 A gt=80
2<=£<=256 and 2t=80 are restatements of predicates contained
in the antecedent of the verification condition; the remaining
two predicates are verified as- follows:

a. ix-1=g:
ix-1<2 => c<=n is true (an antecedent), so the contrapositive
is also true:
c>n = (ix-1)>=¢,
Since ¢>n, ix-1>=%,
Also; 0<=ix-1<=2 (an antecedent), fherefore ix-1=2

b. ca=%:

ca=ix-1 A ix-1=2 = ca=4%.

13, Path A5 to Al5

The verification condition is:
AS for statement {AlS5}.
The previous proofs of the verification conditions for paths
AS to A6-10, A6-10 to Al4, Al4 to A6-10, and A6-10 to AlS satis-
fy the requirements of the for rule; therefore the verification

condition for this path is proved.

14, Input Assertion to Output Assertion

The proof of partial correctness for this procedure

is completed by concatenation of paths A4 to A5 and AS to AlS.
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15. Termination

During the preceding proof of partial correctness, the

— —

reader should have been convinced that the procedure terminates

by the relations among ix-1, c, and n, and by those among ix,

‘2, bp, and %t. If not, termination is assured because the program

has one entry and one exit and is a concatenation of assignment
statements and a for statement. The for statement terminates
if its loop body terminates; in this caée, the body terminates
provided the while loop eventually terminates.

The formality of well-ordering could be applied to show the
terﬁination of the while statement; however, termination is
evident since '"4t" is fixed at 80 and "bp" starts from 0 and is
incremented by one on each execution of the loop body (which
terminates as it has no loops). Thus "bp" must eventually exceed
"¢t" and the while statement must terminate (it may terminate

earlie: if ix=L).

H. PROCEDURE PALINDROME<«CHECK

Figure 5 contains the assertions for this procedure.

1. Input Assertion: Al7.

2. Output Assertion: A27-29.

3. Intermediate Assertions:

Al18 through A26. Verification conditions are provided
for all possible assertion-to-assertion paths in the following
paragraphs.

4, Path Al7 to Al8-22

The verification condition is:




AlT7:

Bg

procedure palindrome_check:
comment find all palindromes within given text string:
begin

( 2¢=1<=2856 A ca=l A Jx=1 )

comment scan text from left to right;
for 1x:32 step |

C 2¢21<=286 A ca=l A JO0 A 2=ix<(=1+1 )
( Ve[ (2¢=x<=ix~1 A text(x—1)3text(x)) =
Sy(y<Jix A 1<zbop(yI<ax-1 A x<(=eopl(y)<=1)] )}

€ Vx{(3<¢=x<=1x~1 A text(x—2)=text(x))=P

Jy(y<yx A 1<=bop(y)<=x=2 A x(Zeop(y)<=21)] I
C Vyl(0<y<yx A boply)>1 A B<eop(y)<]) -
~( text(bop(y)~1)=text(eop(y)+1))] )
CVyl (0<y<)x A ~(eop(y)=0)) =D
(string(bop(y) ,eop(y))3ok A bop(y)>*1 A eop(yl)<=l
AVzZ( (KZ<Jm A ~(z2y)) =P
(~(bop(z)=bop(y)) A (bop(z)<bop(y) => eop(z)<eop(y))} )1 J 1}

until length of_text do
begin
1f text(ix—-1) = text(ix) then continue_checking((ix—1).ix):

€ 2¢=21<=286 ~ ca=]l A g0 A 2¢(=ix{=1 A A20 A A21 A A22 )
( Y[ (2¢=x<=ix A text(x—1)=text(x))=>
Jy(y<Jx A 1<sbop(y)<(=x~1 A x<(zeopiy)<=1)]1 )

if ix ~= 2 then
if text(ix-2)=text(ix) themn continue_checking((ix-2).ix):

C A23 A A2¢4 N A21 A A22 )
( Vx[(3<=x<{31x A text(x—2)=text(x))=>

Ay Jx A 1<=bop(y)<3x~-2 A x{=eop(y)<=1)] )

end;

( 2¢=21<=286 A ca=l A jx>0 A A21 A A22 )
CVWxl(2¢=2x<=]1 A text(x—1)=text(x))=>

Sy(y<Jx A 1<=bop(yI<=x=1 A x(=e0p(yI<=1)] )
( vx((3<2x¢3]1 A text(x—~2)z3text(x))="

Iyl y<Jx A 1K=bop(y)<=x=2 A x<=eop(y)<=1)] )

end pelindrome_check;

FIGURE 5
PROCEDURE PALINDROME+«CHECK
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Al7 AN ix=2 => A18 A Al19 A AZ0 A A21 A A22

Proof is shown by considering the conssquents one at a time.

a, 2<=2<=256 A ca=% {from Al8}:
These two predicates are a restatement of part of the input
assertion. Their truth is not modified in this procedure, and
they are repeated in all intermediate assertions. They will
not be discussed in the discussion of the remaining verification

conditions for this procedure.

b. jx>0 {from A18}:
jx=1 = jx>0.

c. 2<=ix<=2+1 {from Al8}:

(ix=2 A 2<=0) =P 2<=jix<=2+1, ;

d. Al9:
No x can satisfy the antecedent 2<=x<=ix-1 because ix-1=1;
_therefore the conditional is true.

e. A20:
This consequent is similarly true.

P AL
No integer y can satisfy the antecedent 0O<y<jx because jx=1;
therefore the conditional is true.

g A22:
Similarly.

S. Path A18-22 to A27-29

The verification condition is:

Al18 A Al9 A A20 A A21 A A22 A ix>2 =DA27 A A28 A A29
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The consequents are all restatements of the antecedents except
A28 and A29; proofs of their validity follow:

a. A28:
ix<=g +1 A ix>2 => ix-1=2, °
Therefore assertion A28 is a restatement of Al9 with & replacing
ix-1 in the first predicate of the antecedent, and the assertion
holds.

b. A29:

This assertion. holds similarly.

6. Path A18-22 to A23-24, Case 1

Case 1 for this path is arrival of control at assertions
A23-24 after execution of the if statement with true predicates.
In this case, the verification condition is:
Al18 A Al9 A A20 A A21 A A22 A
ix<=8 A text(ix-1)=text(ix) = A23 A A24
The following condition, deducible from the antecedents of the
verification condition, becomes the input assertion to procedure
"continue«checking" whenever the actual parameters "ix-1" and
"ix" are replaced by the formal parameters "first' and "last':
2<=2<=256 A ca=L A jx>0 A 1<=ix-1<=L-1 A 2<=ix<={
A ix-1<ix A text(ix-1)=text(ix) A A21 A A22
The output specification of the procedure 'continue«checking,"
after replacing "current" by the value "current'" was assigned
at the procedure call in the proof of correctness of that pro-

cedure, namely the value "ix", is:
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A21 A A22 A 2<=0 <=256 A ca=f A jx>0 A

Ay(y<jx A l<=bop(y)<=ix-1 A ix<=eop(y)<=2)
Given that the procedure '"continue«checking' has been proven
correct (presen;ed in the next section of this appendix), all
requirements for the rule of inference for procedure calls have
been satisfied, and the output assertion of '"continue«checking,"
as rewritten above, can be used to show the truth of assertions
A23-24, 1In fact, assertion A23 is entirely a restatement of
either this output assertion or the antecedents of the verifi-
cation condition. Assertion 19 ensures the validity of assertion
A24 over the range of x from 2 to ix-1;
(text(ix-1)=text(ix) (an antecedent)
and 3yty<jx A 1l<=bop(y)<=ix-1 A ix<=eop(y)<=L)
(from the output assertion of '"continue checking'") together
extend the range of x to ix, and therefore assertion AZ4 holds.

Thus the verification condition for this case has been proved.

7. Path A18-22 to A23-24, Case 2

Case 2 is the case when the if statement preceding
A23-24 is executed with the predicates false; in this case, the
verification condition is:

Al8 A Al19 A A20 A A21 A A22 A

ix<=2 A = (text(ix-1l)=text(ix)) =>A23 A A24

All of the consequénts but A24 are a restatement of antecedents;
A24 is a restatement of Al9 with the range of x increased to
include x=ix, the ix-th value having been checked for compliance

with the assertion in the current iteration of the for loop.
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Since the antecedent of the conditional contained in assertion
- A24 is false in this case for x=ix, the conditional is true for

x=ix, and assertion A24 holds. Thus the verification condition

is proved.

8. .Path A23-24 to A25-26, Case 1

This first case occurs whenever ix=2, or

PERETT LETNENTAET . 28 S

when = (ix=2) and also — (text(ix-2)=text(ix));

in this case, no call is made to procedure 'continue«checking",

and the verification condition is: 1
A23 A A28 => A25 A A26 ‘

Assertion A25 is a restatement of antecedents, and assertion A26

s i s

is just assertion A20 with the range of x extended to include
x=ix., The conditions for this case ensure that for x=ix the ;
antecedent of the'conditional contained in A26 is false; either
ix=2 and 3<=x is false or

— (text(ix-2)=text(ix)). Therefore the conditional is true for

x=ix and thus assertion A26 holds; the verification condition 4

is proved. -

9., Path A23-24 to A25-26, Case 2

In this case the call to "continue«checking" is executed,
and the verification condition is:
A23 A A24 A —(ix=2) A text(ix-2)=text(ix)
= A25 A A26

Similarly to the proof for the previous path containing a call

to procedure "continue<«checking'", it may be shown that the

antecedents of the verification condition satisfy the procedure's
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input assertion and that the output assertion, together with
the antecedents, satisfy assertions A25-26. In assertion A26 §
the range for the universal quantifier x is extended to include

the case x=ix as before.

10. Path A25-26 to A18-22

The verification condition is (substituting ix+1 for
ix in A18-20 because of the assignment):
A25 A A26 = A21 A A22 A
2<=2<=256 A ca=% AN jx>0 A 2<=ix+1<=L+]
A VX[(2<=x<=ix A text(x-1)=text(x)) =>
‘ dy(y<jx A 1l<=bop(y)<=x-1 A x<=eop(y)<=2)]
A Vx[(3<=x<=iic A text(x-2)=text(x)) =
3y(y<jx » 1<=bop(y)<=x;2 A x<=eop(yl<=¢)]
All of the consequents but 2<=ix<=g+l are restatements of
antecedents;

and 2<=ix<=g => 3<=ix+1<=R+1, thus 2<=ix+1<=f+1 1is true and

the verification condition is proved.

11, Path Al7 to A27-29

The verification condition is:

{A17} for statement {A27-29}

The previous proofs of the verification conditions for paths

Al7 to A18-22, A18-22 to A23-24 to A25-26, A25-26 to Al8-22,

:
"
k
|
| ]

and A18-22 to A27-29 satisfy the requirements of the for rule;
therefore the verification condition for this path is proved,
thus completing the proof of partial correctness for this

procedure.

Vool lipd —raabiay
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12. Termination

J 3

The procedure has one entry and one exit, and the only
loop is a for statement, which have been shown to terminate.

Therefore the procedure terminates.

I. PROCEDURE CONTINUE«+CHECKING

Figure 6 contains the assertions for this procedure. A
constant "current” is introduced in the proof and the assertions;
this constant is given the value of "last" at the time of the
procedure call,

1. Input Assertion: A30-32.

2. Qutput Assertion: A38,

3. Intermediate Assertions:

A33 through A37. Verification conditions are provided
for all possible assertion-to-assertion paths in the following
paragraphs.

4., Path A30-32 to A33

NI AR i 5 S

The verification condition is:

A30 A A31 A A32 A p=true = A33
The consequent is a restatement of the antecedents with the
addition of the predicate "current=last," as mentioned above.

Thus proof of the verification condition is immediate.

5. Path A33 to A34

The terminology "string(first,last)=ok" used in these
assertions indicates that the substring from text(first) to
text(last) is a valid palindrome. The verification condition

-

for this path is:
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A36:

procedure comtinue_checking (integer value first, last);:

comment GCilven first and last as pointers to a palindrome
of size 2 or 3, this procedure checks whether or not thie
palindrome is included in a larger palindrome;

begin

( 2¢=1<3286 A cazl A 200 A 1<=firsti(z]l=-1 A 2¢(=2]laeti<=]1 A first<last
A text(first)=text(last) )
 Yyl(@<y<)x A bop(y)>1 A &eop(y)<1)=P

~( text(bop(y)=1)=atext(eop(y)+1))] )
C Wyl (Ky<yx A ~(eop(y)=0))=»

[string(bop(y) ,eop(y))3ok A bop(y)>31 A eop(y)<=l

A VYa( (K3{Yx A ~(z2y)) =D

(~(bop(z)sbop(y)) A (bop(z)<bop(y) => eop(z)<eop(y’}) 21 ] )}

logical palindrome:
palindrome:=true;

C A30 A A31 A A32 A pstrue A current=last )
while

C A0 A A31 A A32 A currenti{slast A string(first, last)=ok
A (psfalse = ~( text(first=1)=text(last+1))) )

((firet> 1, and (lastllength_of_text) end (palindrome=true)) do

begin
if text(first—1) = text(last+1) then
begin
comment larger palindrowme found;
first:sfirst-1;
last:=last+l;
C A34 )
end
e lee
begin
p.llndro-:’tfal-oz comment largest palindrome found:
( A34 )
ends
ends

C A30 A AS1 A A32 A currenti{zlast A string(firet,last)=ok
A(firstzl v lastsl V ~( text(first—1)=text(last+l))) )

record_palindrowme(firet, last);

C AB1 A AS2 A 2¢31<=286 A casl A x>0 )
Ady(y<yx A 1<z2hop(y)<=current-1 A currenti{zeop(y)<=l) )}

end continue_checking:

FIGURE 6
PROCEDURE CONTINUE«CHECKING
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A33 = A34

The consequents are considered one at a time.
a, A30 A~ A31 A A32:

these predicates are just a restatement of antecedents.

b. current<=last:

follows directly from current=last.

c. string(first,last)=ok:
static analysis of the program showed that, for all calls to
this procedure, either first=last-1 or first=last-2 (this
could have been a predicate of the input assertion), and this
fact and text(first)=text(last) ensures that string(first,last)

is a palindrome when control reaches assertion A34 from A33,

d. p=false => - (text(first-1)=text(last+l):
since p=true, the conditional is true regardless of the truth

of the consequent.

6. Path A34 to A35S

If program control reaches assertion A35, then the
predicates of the while and if statements are true and the
verification condition for this path is (substituting first-1

and last+l for first and last in the consequent, due to the

assignment statements):
A34 A first>l A last<g A p=true
A text(first-1)=text(last+l) =
2<=%<=256 A ca=k A jx>0 A 1<=first-1<=2-1 A 2<=last+l<=%
A first-1<last+l A text(first-1)=text(last+l) A A3l A A32

A current<=last+l A string(first-1,last+l)=ok
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The consequents of this verification condition are considered

one at a time.

a. 2<=2<=256 A ca=2 A jx>0:

these predicates are just a restatement of antecedents; they 1 4
remain valid throughout this procedure and will not be discussed
during the proof of further verification conditions.
b. 1l<=first-1l<=g-1:
l<=first<=g-1 A first>1 => 1<= first-1l<=g-1.
C. 2<=last+l<=g: ’
2<=last<={ A last<f{ => 2<=last+1l<=¢,
d. first-1l<last+l:
follows directly from first<last. 3;
e. text(first-1)=text(last+l) ~ A3l A A32:
these predicates are just a restatement of antecedents.
f. current<=last+l:

follows directly from current<=last.

g. string(first-1,last+l)=ok:

string(first,last)=ok A text(first-1)=text(last+l)

=> string(first-1,last+1)=ok.

This concludes the proof of verification condition.

7. Path A34 to A36

If control reaches assertion A36 from A34, then the
predicate of the while statement is true, that of the if state-
ment false, and the verification condition is:

A34 A first>1 A last<i

A ﬂ(text(first-l)-teXt(last+1)) A p=false =>A34




The consequents are shown one at a time.

a. p=false = -«(tekt(first-l)stext(last+1)):
the antecedent and consequent of this conditional are both true
(antecedents of the verification condition); therefore, the
ccnditional is true:

b. the remainder of the consequents:

these prediéates are just a restatement of antecedents.

8. Paths A35 to A34 and A36 to A34

Since A35 and A36 are each identical to A34 and since

there are no program statements on these paths, the verification

condition is A34 = A34, which must be true.

9. Path A34 to A37

The verification condition is:

A34 A ~(first'l A last<® A p=true) => A37
The consequents are considered one at a time.

a. [first=1] v last=%

V T (text(first-1)=text(last+l))]:

from the antecedent = (first>1 A last<f A p=true),
DeMorgan' Rule gives:

first<=1 v last>=% VvV p=false.

Since also first>=f and last<=¢ , and

since p=false =) (text(first-1l)=text(last+l),

the above is equivalent to:

first=1 V last=f v -~ (text(first-1l)=text(last+l));

thus the consequent is shown..




b. the remainder of the consequents:

these predicates are just a restatement of antecedents.

10. Path A33 to A37

The verification condition is:
{A33} while statement ({A37}
The previous proofs of the verification conditions for paths
A33 to A34, A34 to A35, A34 to A36, A35 .to A34, A36 to A34,

and A34 to A37 are sufficient to show this verificatior condition.

11. Path A37 to A38

Assertion A37 satisfies the input assertion to proce-
dure "record«palindrome" (in this case the names first, last
and current retain the same connotations). Assertion A38 is
precisely the output assertion of '"record+~palindrome.”" Therefore
the verification condition for path A37 to A38 is verified by
the proof of correctness for the called procedure (in the next
section).

12. Input Assertion to Output Assertion

The proof of partial correctness for this procedure
is completed by concatenation of paths A30-32 to A33, A33 to
A37, and A37 to A38.

13, Termination

Procedure '"continue+~checking'" has one entry, one exit,
and but one loop, the while statement. Assuming "record+palin-
drome" terminates (proven elsewhere), this procedure terminates
if the loop terminates. Clearly the loop body terminates, so

loop execution will terminate if one of the three conditions:
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first>1l, last<f , or p=true

ever takes on a value of false. Since initially first>=1 and

"first" is decremented by 1 on each loop iteration for which "p”
is not set equal to false (in which case termination would be
assured), then the well-ordering principle of -the natural numbers ;

requires eventually first<=1 (unless the loop terminates sooner).

So the procedure terminates. é

J. PROCEDURE RECORD+PALINDROME
Figure 7 contains the assertions for this procedure.

1. Input Assertion: A39-41.

2. Output Assertion: AS1-52.

3. Intermediate Assertions:

A43 through A48, Verification conditions are provided
for all possible assertion-to-assertion paths in the following
E - | paragraphs.

4, Path A39-41 to A42-44

The verification condition is (substituting 1 for i

PR T

in assertions A42 and A44 because of the assignment to the
for loop counter):
A39 A A40 A A4l A entry=true =>
A39 A A40 A A4l A 1<=jx A Ad43 A
[ (enﬁry-true A ~(eop(0)=0)) => Yz[0<z<j=>
( ‘ﬂ(bop(z)-first) A (bop(z)<first =» eop(z)<last))] ]
The consequents are considered one at a time,
a. A39 A A40 A A4l:

these predicates are just a restatement of antecedents.’
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b. 1l<=jx:
folloﬁs directly from jx>0.
c. A43:
since entry=true, the antecedent of the conditional is false
and the conditional is true;
d. the remaining complex predicate:
since there is no integar z satisfying 0<z<i, the consequent
of the antecedent of this predicate is frue, and the conditional

is shown; thus, the final consequent of the verification con-

dition is proved.

5. Path A42-44 to A45-46

In the event control passes to assertion A45-46 from
A42-44, the predicate of the intervening if statement is true
and the verification condition is:

Ad2 A A43 A Ad4 A i<=jx-1 A first>=bop(i)

A last<=eop(i) A entry =false =>A45 A A46
Proof is by considering the consequents one at a time.

a. A39 A A40 A A4l {from A4S}:
these predicates are just a restatement of antecedents.

b. i<=jx-1 {from A45}:
this predicate is a restatement of the antecedent resulting from
the test on the loop counter.

c. entry=false = 3Jy(y<=jx A 1l<=bop(y)<=current-1

A curren£<-eop(y)<=z) {A43}:

entry=false is true; thus it must be shown that there exists

a value for y such that the predicates following the "existential"
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procedure record_palindrome (integer vailume first,last);

comment Record only max iength palindromes. Flag previously
recorded palindromes if they are included in the palindrome
specified by first and last.
Jx was initialized to 1. After completion )x points to the
next entry in begin_of_palindrowme and end_of_palindrome;

begin

AB9: € 2¢=1<2256 A ca*l A J0 A I<(=firetiz]l-1 A 2¢(=last<=1 A firstdlast
A current{=last A string(firet, last)=ok
A (firet=l Vv lastsl V ~(text(firet-1)3text(last+1))) 3
A40: ( ¥yl(8<y<Jx A bop(y)>1A @eop(y)<l)=>
~( text(bop(y)-1)stext(eop(y)+1))] ]
Ad1: € Vyl (< y<jx A ~(eop(y)=@))
(string(bop(y) ,eop(y))sok A bop(y)>=l A eopl(y)<=1
AYz( (K2 Ix A ~(z3y)) =D
(~(bop(z)=bop(y)) A (bop(z)<bop(y) ==y eop(z)<eop(y))) )1 1 ]

integer i comment local counter;
logical entry;

entry:strue;

for i:=1 step 1

A42: ( A39 A A40 A A%l A I<3yx )
A43: ( enmtry=false =DIy(y<(=jx A IK=zbop(y)<=curpent-1 A current =eop(y)<=1) )
A44: ( (entry=true A ~(eop(i-1)20)) =

Vzi0<z<1 > (~(bop(z)=first) A (bop(z)<first = ecp(z)<last))] ]}

until ygx-1 do
begin
if ((first>=begin_of_palindrome(i))
and (last{=zend_of_palindrome(i))) then
begin
comment Palindrome is entirely imcluded in a previously
recorded palindrome. No entry required:-
entry:=false;
C A39 A A0 A A4] A <3 x~1 A A43 )
( (entryetrue A ~(eop(1)=0)) =
Wzl0<z<=1 => (~(bop(z)=firet) A (bop(z)<first =) eopiz)<{iast))] 2

i

end
else

begin

if ((begin.of_palindrome(i) >= first)
and (end_of_palindrome(i) <= last)) then
begin
end.of_palindrome(i):29;
comment flag smaller palindrome;
end;

A47: ( A48 A A46 )
end;
A48: ( A48 A A46 )

end; comment All previously recorded palindiromes
compared with last input;

FIGURE 7
Page 1 of 2
PROCEDURE RECORD+PALINDROME
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A49: [ A39 A A40 A A4l A A43 )
A30: ( (entry=true N\ ~(eop(Jx)=0)) = :
Vz{0<z< Jx =>(~(bop(z)=first) A (bop(z)<first => eop(z)<last))] ) -

if entry * true then
begin
! comment larger than all previous or overlapping or disjoint;
; beginof_palindrome(jx):2first;
end_of_palindrome(jx):=last;
. Jxizgx+tls 1
4 end;

AS1: ( A40 N Ad41 A 2¢=21<(3286 A cazl A yx>0 )
A52: ( Ay(y<jx A 1{=bop(y)<=current-1 A currentl{zeop(y)<=1) )

——

end record_palindrome;

| :

i i

J,

FIGURE 7 _ q

5 Page 2 of 2 j
PROCEDURE RECORD<+PALINDROME
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quantifier hold.

It is proposed that y=i will satisfy those conditionms.
Since i<=jx-1, i<jx holds.

i<jx A A41 => bop(i)>=1;

current<=last A first<last => current-l<=first;

current-i<=first A bop(i)<=first => bop(i)<=current-1;

therefore 1l<=bop(i)<=current-1 holds.

current<=last A last<=eop(i) = current<=eop(i);

i<jx A A4l => eop(i)<=%;

so current<=eop(i) <=2 holds.

Therefore, the necessary predicates are all true when y is

chosen equal to i; this consequent of the verification condition

is proved. %
d. A46: |

since entry=false is an antecedent of the verification condition, ;

.entry=true is false and the conditional which is assertion A46

is true.

6. Path A42-44 to A47, Case 1

Control can pass to assertion A47 from A42-44 either by

executing the compound statement with the comment '"flag smaller

palindrome" or by failing to execute that compound statement

when the predicate of the preceding if is false. For case 1,
the case where the predicate is false, the verification condition
is:
Ad2 N A43 A A4 A i<=jx-1 A
= (first>=bop(i) A 1last<=eop(i)) A

= (bop(i)>=£first A eop(i)<=last)
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= A47
All of the consequents contained in A47= A45 A {A46} except
A46 are restatemenfs of the antecedents.

a. (entry=true A ﬂ(eop(i)-O))'-D
Yz [0<z<=i => ( —(bop(z)=first) A
(bop(z)<first => eop(z)<last))] {aAd461} :

If entry=false, the conditional is true without further proof.
If entry=true A —(eop(i)=0), the antecedent of the verification
condition provides that the generalization on z is true for
0<z<i; if if is shown to hold for z=i, then it is true for
0<z<=i and this consequent of the verification condition is
proved.
Either bop(i)=first or bop(i)<first.
Suppose bop(i)=first;
then either eop(i)<=last or last<=eop(i),
and then one of first>=bop(i) A 1last<=eop(i),
or bop(i)>=first A eop(i)<=last, must be true.
But the antecedent of this verification
condition indicates both are false;
therefore = (bop(i)=first.
Now suppose bop(i)<first;
then first>=bop(i) is true, and
from —(first>=bop(i) AN 1last<=eop(i)),
it is shown that last<=eop(i) must be false.
Thus bop(i)<first =2 eop(i)<last, and
the generalization on z holds for 0<z<=i;

therefore this consequent is true.
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7. Path A42-44 to A47, Case 2

For case 2, the case where the predicate of the if

statement immediately preceding A47 is true, the verification
condition is:

Ad2 AN A43 A A44 A i<c=jx-1 A
bop(i)>=first A eop(i)=0+>A47
All of the consequents contained in A47= {A45 A A46} excépt
A46 are restatements of the antecedents.
a. (entry=true A — (eop(i)=0))=

Vz[0<z<=i = ( - (bop(z)=first) A

(bop(z)<first => eop(z)<last))] { Ad46 }:
since eop(i)=0, the antecedent of this conditional is false,
and the conditional is true; this completes the proof of the'

verification condition for this path.

8. Path A45-46 to A48 and Path A47 to A48

There are no program fragments on these paths, so the
verification conditions are trivially true; they are:

A45 A Ad6 =D A4S A Ad6

9. Path A48 to A42-44

The verification condition is:
A48 =D A39 A A40 A A4l A i+l<=jx
A A43 A (entry=true A = (eop(i)=0))=>
Vz[0<z<=i+1l => ( = (bop(z)=first)
A (bop(z)<first => eop(z)<last))]

Proof is shown by considering the consequents one at a time.
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: a. A39 A A40 A A4l:
; these predicates are just a restatement of antecedents:
b. 'i+1<-jif
| i<=jx-1 =p i+l<=jx,
4 e c. A43:
( ~ this predicate is just a restatement of an antecedent.
| | ; d. (entry=true A "~ (eop(i)=0))=>
Vz[0<z<=i+]l = (;'ﬂ(bop(z)=first)
; A (bop(z)<first => eop(z)<last))]
frdm A46 it is known that the generalization on z is valid
4 ' over the range 0<z<=i, which is equivalent to the range in this
‘ consequent, namely 0<z<i+l; therefore this consequent holds.

Thus, the verification condition for this path is proved.

10. Path A42-44 to A-49-50

The verification condition is:
Ad2 A A43 A Ad4 A i>jx-1 =P A49 A ASO
The consequents are considered one at a time.
a. A49:
This predicate is a restatement of antecedents of the verifi-
cation condition and thus is true.
b. (entry=true A -\(eop(jx)-O))@
¥z [0<z<=jx => ( = (bop(z)=first) A
(bop(z)<first => eop(z)<last))] {AS50}

i>jx-1 A i<=jx =5 i=jx,

Therefore, this consequent is just a restatement of an antece-

dent with jx=i replacing i.
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11, Path A39-41 to A49-50

The verification condition is:
{A39-41} for statement {A49-50}
The previous proofs of the verification conditions for paths
A39-40 to A42-44, A42-44 to A45-46 to A48, A42-44 to A47 to A48,
A48 to A42-44, and A42-44 to A48 satisfy the requirements of
the for rule; therefore, the verification condition for this

path is proved.

12, Path A49-50 to A51-52, Case 1

Case 1 is the case where entry=false and the compound
statement intervening is not executed. The verification con-
dition in this case is:

A49 A AS50 A entry=false => A51 A AS52
Consider the consequents one at a time.

a, AS1:

The predicates of this consequent are restatements of given
predicates.

b, AS2:
entry=false A A43 =>A52 (A43 is one of the predicates con-

tained in assertion A49).

13. Path A49-50 to AS1-52, Case 2

In this case, entry=true and the compound statement
intervening is executed. The verification condition (with

jx+1 replacing jx in AS51-52) is:
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A49 A AS0 A entry=true A bop(jx)=first
A eop(jx)=last =>
{ 2<=2<=256 A ca=t A jx+1>0 A
Vy[(0<y<jx+1 A bop(y)>1 A 0<eop(y)<t) =
- (text(bop(y)-1)=text(eop(y)+1l))] A
Vy[ (0<y<jx+1 A - (eop(y)=0))=>
[string(bop(y), eop(y))=ok A bop(y)>=1] A eop(y)<=2
AVz( (0<z<jx+1l A ﬂ(z'y)j
= ( T (bop(z)=bop(y)) A
(bop(z)<bop(y) => eop(z)<eop(y))) )] 1A
Jy(y<jx+1 A 1<=bop(y)<=current-1l A current<=eop(y)<=% ) }
The consequents of this verification condition are considered
one at a time,
a. 2<=R<=256 A ca=2 A jx+1>0:
these predicates are just a restatement of antecedents.
b. Ny[(0<y<jx+1 A bop(y)>1 A O<eop(y)<t)=>
1 (text(bop(y)-1)=text(eop(y)+1))]:
the antecedent A40 (contained within assertion A49) establishes
the generalization on y for (O<y<jx. If the statement is true
for y=jx as well, then this consequent is proved. The ante-
cedents of the verification condition allow the generalization
statement for y=jx to be written as:
(first>1 A 0O<last<g) => — (text(first-1)=text(last+l));
from the input assertion of this procedure it is known that
(first=1 Vv last= & v = (text(first-1)=text(last+l)));

the generalization statement for y=jx has an antecedent which
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negates the first two predicates of this disjunction; there-

fore the third predicate, which is also the consequent of the

‘generalization statement for y=jx, must be true. Thus this

consedfuent of the verification condition is proved.
c. Vyl[ (0<y<jx+1 A —(eop(y)=0))=>
[string(bop(y),eop(y))=ok A bop(y)>=1
A eop(y)<=L A Yz( (0<z<jk+1 A ~(z=y))
=> (— (bop(z)=bop(y)) <

A (bop(z)<bop(y) => eop(z)<eop(y))) )] ]
The antecedent A41 (contained within A49) establishes the
generalization on y for O<y<jx. If the generalization statement
is demonstrated true for y=jx, then this consequent holds. For
the case y=jx, the conditional which must be proved is:

—(last=0) => [string(first,last)=ok A first>=1
A last<= £ A ¥Yz( (0<z<jx+l1 A =(z=jx)) => (~ (bop(z)=first)
A (bop(z)<first => eop(z)<last)) )]

The antecedent of the above conditional is clearly true; if
the several consequential predicates are true, then the veri-
fication condition consequent in question is proved. The first
3 predicates follow from the input assertion. The fourth
predicate, the generalization on z, has already been shown to
be true for the range 0<z<jx
(from entry=true A — (eop(jx)=0) A ASO);
further,'if z=jx then ™ (z=jx) is false and the conditional
which is the fourth predicate is true.

This completes the proof for this consequent of the verification

condition.
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d. Jy(y<jx+l1 A 1<=bop(y)<=current-1
" A current<=eop(y)<=L):
It is proposed that y=jx will satisfy this existential statement.
jx<jx+l;
bop(jx)=first A 1<-first<-$-1 A first<last
A current<=last A last<=L =>

l<=bop(jx)<=current-1;
eop(jx)=last A current<=last A last<=g =
current<=eop(jx)<=2%;
so y=jx satisfies the existential statement, and this last

consequent of the verification condition is shown. The veri-

- fication conditions for both cases on path A49-50 to A51-52

have been proved.

14. Input Assertion ‘to Output Assertion

The proof of partial correctness for this procedure
is completed by concatenation of paths A39-41 to A49-50 and
A49-50 to AS51-52,

15. Termination

The procedure has one entry and one exit, the only

loop is a for statement; therefore, the procedure terminates. i

.o AL g

K. PROCEDURE MAIN
Figure 8 contains the assertions for the main body of the

example program,

o Ll o e s L g S el St ey 0

1. Input Assertion: Aol

3
A
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A9:

| : A16:

3 8

Pl

comment main;

€ 2¢=input(1)<=286 A cas0 )

initialize;

( 2¢21<=2256 A ca%8® A Jx*1 A 1t280 A cbsblank )
read_and_write_input_carde;

( 2¢=21<2256 A ca=l A\ yx=1 )

palindrome_check:

( 2¢=21<2286 A ca=l A x>0 )
( ¥x((2¢=x<=2] A text(x—1)=text(x)) =>
Ay Jx A 1<z=bop(y)<=x—=1 A x(=eop(¥)<=1)] )
( V[ (3¢3x{=2] A text(x—2)=text(x))=p
Iy(y<Jx A 1<=bop(y)<(=x-2 A x{=eop(y)<=1)] )
C Vyl(0<y<yx A bop(y)>1 A @eop(yI<])=>
~( text(bop(y)—1)stext(eop(y)+1))] 3
( Yyl (Ky<yx A ~(eop(y)=0))=>
[string(bop(y) .eop(y) )20k A bop(y)>3l A eop(yi<=1]
AVZ( (0¢z<Jx A ~(zay)) =D
(~(bop(z)=bop(y)) A (bop(z)<bop(y) = eop(z)<eop(y))) )] 1 )

if Jx=1 then text3
else write_all_palindromest

C AS3 A ABe A AB8 N AS6 \ AST )
end. .

FIGURE 8
PROCEDURE MAIN
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2. Output Assertion: A58,

3o Inter@ediate-ASSertions:
1 The intermediate assertions are assertions A3, Al6, and
i A53-57. They are precisely the input and/or output assertions
of the procedure calls they precede and/or follow, The veri-
fication condition path for assertion A0 to A53-57 is proved
by repeated application of the rule of inference for procedure
calls, and then by concatenation. The Qerification condition
for path A53-57 to AS8 is simply:

{A53-57} non-significant statement {AS3-57} ,
g because the intervening if statement merely prints the results

which have already been proven correct; its proof is immediate.

4, Termination

All of the procedures called from this main body have |

been shown to terminate; this program has one entry, one exit
and no loops; therefore, it terminates. This completes the

proof of total correctness of the example program.
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APPENDIX B

'APPLICATION OF DISTRIBUTED
CORRECTNESS TECHNIQUES

A. ASSUMPTIONS, ABBREVIATIONS, AND NOTATION

In addition to the assumptions about the example program
verified by static analysis (Chapter IV, Section A), it was
further assumed that all input data read by the program were
type compatible with variables and that the correct number of
input characters were present in the‘in;ut data stream. Integer
arithmetic was also assumed. Because actual dynamic testing
was involved, assumptions that the operating system and compiler
operated correctly were at least partialiy verified during
testing.

Because several of the program variable names are verbose,
the abbreviaiions listed below were used in presenting the

assertions and their verification:

-2 length«of«text

-2t cardlimit

-cb cardbuffer

-n number+of+«input+cards
-c card+«counter

-bp bufferposition

-bop begin~of+«palindrome
-eop end+of+palindrome

-p palindrome

Figures 9 through 12 are listings of four program procedures
with labeled synthetic assertions inserted to aid the discussion
of the correctness demonstration. Assertions B0 and B29-33 are
the input and output specifications, respectively. Assertions

are contained within braces " { }," and in Figures 9 through 12
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wherever successive labeled assertions follow a program state-
ment, the intended synthetic assertion for that point is a con-
junction of those assertions. Frequently assertions contain
within the braces the names (labels) of other assertions; the
meaning implied is a literal replacement of the label with its
expansion.

Condition tables in the following sections list on their
left the several predicates which were considered to partition
the input domain of the given program fragments. The columns
to the right of the predicates list the conceivable combinations
of truth values for the several predicates, Corresponding to
each column, a test data element was selected to verify program
operation for each composite predicate (conjunction of the truth
value entries in each column). The following entries were used

in the columns:

y s Yes, or true.

n : No, or false.

- - Don't care; either true or false.

(y) : Required to be true by the value for
another entry in the same column.

(n) ¢ Similar to (y), except false.

B. UTILITY PROCEDURES

The procedures '"textl,'" "text2," "text3," '"blank«lines,"
and "write«all«palindromes'" do not affect program performance
of the output specification. (They effect the neat printing
of the results obtained in the significant procedures.) As in
the presentation of the formal proof for the example program,
these procedures will not be examined here. However, it should

be noted that because the method reported in this appendix

132

3
i
k
E
g
é
?\



involved actual program execution, a side effect of the tests
performed was to verify the performance of these non-essential

procedures.

C. PROCEDURE MAIN

The methodologf using the principle of distributed correct-
ness and the condition table method for selecting test data
(where needed) was first applied to the main body of the example
program; procedure calls were treated either as an in-line ex-
pansion of code or as program statements whose semantic meaning
was defined by the input and output assertions of the called pro-
cedure. It was assumed that the input assertion B0 is satisfied
when program execution begins., Figure 9 contains the synthesized
assertions for this procedure.

1. Synthesized Assertion Bl:

2<=2<=256 A jx=1 A 2t=80 A cb=blank

a. Test Data Assertion and Verification
The test data assertion is that for 2=2 and for any
corresponding character string (of length 2), the synthesized
assertion is valid. Verification was obtained by executing the
program statement "initialize;" preceeding assertion Bl with
input data =2,
b. Generalization Assertion and Verification
The generalization assertion is that for any input
data satisfying the input assertion B0, the same result as above
will be obtained. Verification is made by static analysis of

procedure "initialize" - the assignments satisfying Bl are
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comment maing

BO: ( 2¢=1<=286 )
initlalize;

Bl: ( 2¢=1<=286 A Jx=1 A 1t280 A cb=blank )
read_and_write_input_cards;

BS: € 2¢21<=2856 A ca=l A yx=1 )}

palindrome_check;
if yx=1 then text3
else write_all_palindromes;

b { B29: ( 2¢<=1<=236 A ca=l A x>0 )
} B30: ( Yx((2¢{=x<=1 A text(x—-1)=text(x))=>
; Fy(y<yx A 1<zbop(y)<zx=1 A xZeop(y)<=1)] )
B31: ( Vx[(3<=x<=]1 A text(x—-2)=text(x))=D>
Sy(y<ix A 1<=bop(y)<zx~2 A x(Zeop(yl<=1)1] )
B32: ( Vyl(8<y<Jx A bop(y)>1 A @Ceop(y)<1)=>
~( text(bop(y)—1)3text(eop(y)+1))] )
B33: ( Yyl (8<y<Jx A ~(eop(y)=0))=>
i [string(bop(y),eop(y))zok A bop(y)>sl A eop(y)<=1l
| AVZ( (0<zZ<Jx A ~(z2y))=>
2 ‘ (~(bop(zZ)2bop(y)) A (bop(z)<bop(y) =p eop(z)<eopiy))) )1 1 1}

end.

FIGURE 9

PROCEDURE MAIN
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executed unconditionally.
c. Proof of Synthesized Assertion
The synthesized assertion follows directly from
the test data and generalization assertions. Note that the
procedure call "initialize;" was treated as an in-line sub-
stitution of code. The proof of Bl amounted to a demonstration
of correctness of the procedure "initialize."

2., Synthesized Assertion BS:

2<=2<=256 A ca=2% A jx=1

The control path from assertion Bl to B5S contains oniy
a procedure call to '"read«and«write«input«cards’; assertion BS
is proved by showing that it is equivalent to the output speci-
fication of the procedure.

Let assertion B2 be identical to'Bl, and let it be the
input assertion for procedure "read«and«write«input«cards'" (see
Figure 4 in Appendix A); clearly B2 holds since Bl precede the
procedure call and has been shown true. Examination of the
procedure reveals that the predicates 2<=2<=256 and jx=1 are
not modified in its execution; only the predicate ca=2 (which

as before means that "&" characters have been properly read

from the input stream and assigned to the string variable "text"

in the proper position) remains to be shown. This will be

done by verification of the output assertion for the procedure

called.
a. Synthesized Assertion B3:

Let B3 be an assertion inserted following the

first statement in '"read«and+write+«input«cards"
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(n:=((2-1)div 2t)+1;). The assertion is that:
"n" is the correct number of
input cards for the characters

in a string of length "%."

The test data assertion for B3 was determined using the
following condition table to divide the input domain into

equivalence classes:

Predicate
2<=4<= 80 ¥ {n) (n) (n)
81<=2<=160 (A (n) (n)
161<=2<=240 (n) (n) y (n)
241<=2<=256 (n) (n) (n) y
Test data (%) 2 81 240 256
Correct value (n) 1 2 3 4

The test data assertiom (i.e., that the program will execute
properly for the test data elements identified in the preceding
table) was verified by execution of the program to assertion

B3 with the four test data values of "%" and checking for the
assiénment of the correct value to '"n".

The generalization assertion at B3 is that n is totally
determined by the four predicates on "&" given in the condition
table; from the program statement "n:=((2-1)div 2t)+1" and the
predicate 2t=80 it is apparent that this is so.

The proof of the synthesized assertion B3 follows directly
from the test data and generalization assertions and Theorem 2.1
of Reference 14 (the theorem states that if two functions on

the same domain D are totally determined by the same predicates,




then those predicates partition D into equivalence classes for
testing purposes). Theorem 2.1 applies in this case as the
program performance (first function) and the assignment algorithm
(second function) are both totally determined by the four pre-
dicates on "L."
b. Synthesized Assertion B4:

Let B4 be inserted following the last statement in
procedure '"read+and+write+input«cards" (i.e., the output
assertion for the procedure). The assertion is:

ix=8+1 A ca=2

L The test data assertion for B4 was determined using
the following condition table to divide the input domain into

equivalence classes:

(? Predicate §
1 2<=2<80 y R |
? 2<=£<=256 A £ rem80=0 (n) y y n |
3 80<2<=256 (n) n y (y) |
,‘ n=1 (y]  {y) €n) (n) |
;’ n>1 () (@) (y) ) |
i’ |
| Test data (Q* 2 80 160 81

Correct value (ix) 3 81 161 82

*An input string of "&" characters must
also be provided.

N —— N T~

The predicates listed above are those which were presumed to |

have all possible bearing on program operation; note that the

two predicates on '"n" were actually unnecessary since '"n" is

totally determined by "%."
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The test data assertion is that the correct results will be
obtained for the four test data elements identified in the con-
dition table;‘verification was successfully performed by program
execution, -

The generalization assertion at B4 is that ix is totally
determined by the three predicates on "2'" listed in the condition
table (and "ca" is one less than ix). This was verified by in-
spection of the program statements betwéen assertions B3 and B4.

The proof of the synthesized assertion B4 follows directly

from test data and generalization assertions and Theorem 2.1 (14).

c. Proof of Synthesized Assertion BS
It has been shown that assertion Bl preceding the

call to procedure ''read«and«write«input«cards'" satisfies the

input assertion for the procedure, and that the procedure
correctly assures the validity of its output assertion (B4).
Since B4 requires that ca=%, synthesized assertion BS is shown
by the distributed correctness of the called procedure.

3. Synthesized Assertion B29-33

The assertions B29-33 are the output specification for !
the cxample program. The only significant program statement
intervening between asserfion BS and B29-33 in the main program
is a call to procedure '"palindrome+check" (Figure 10 is a listing
of the procedure). Note that assertion B5 satisfies the input
assertion (B6-8) to the procedure (because B6 is a restatement ;
of B5 and the conditionals which constitute assertions B7 and B8

have antecedents which are necessarily false when jx=2%; therefore




A

the conditionals are true) and that the output assertion of the
procedure (B12) is identical to assertion B29-33. Therefore,

if the distributed correctness of procedure 'palindrome+check"

is shown separately and if the procedure call statement is exe-
cuted for the test cases identified in the verification of the
procedure, then the synthesized assertion B29-33 is demonstrated
to be true, and the verification of the main program is complete.
The correctness of the called procedure'is demonstrated in the

next section.

D. PROCEDURE PALINDROME CHECK

Figure 10 contains the synthesized assertions for this pro-
cedure. Similar fo the way correctness of the main program.was
verified by relying on the distributed correctness of this pro-
cedure, this procedure will be verified by relying on the dis-
tributed correctness of the procedure which it calls, namely
"continue checking."

1. Synthesized Assertion B6-8:

B6: 2<=2<=256 A jx=1 A ca=%
B7: ¥ y[(0<y<jx a bop(y)>1 A 0<eop(y)<s) =>
—(text(bop(y)-1)=text(eop(y)+1))]
BS: Vy[ (0<y<jx A =(eop(y)=0)) =S
[string(bop(y),eop(y))=ok A bop(y)>=1] A eop(y)<=%
AVz( (0<z<jx A T (z=y)) =>
(™ (bop(z)=bop(y))
A (bop(z)<bop(y) => eop(z)<eop(y))) )] }
Synthesized assertion B6-8 is the input assertion for the

procedure. Static analysis of the program reveals that the

S Sy




Y procedure palindrome.check;
comment find all palindromes within given text etring:
begin

comment escan text from left to right;

TR ¢ 21<=286 A Jx=1 A ca=1 )
3 s B7: ( Yyl(@<y<jx A bop(y)>1 A &eop(y)<1)=P
~( text(bop(y)-1)stext(eop(y)+1))] )
B8: ( Vyl (Ky<jx A ~(eop(y)=20))>=>
(etring(bop(y) ,eopl(y))sok A bop(y)>=l A eopl(yli<=l
_ AVE( (KKZ(Jx A ~(Z2y)) = ]
- (~(bop(=z)2bop(y)) A (bop(z)<bop(y) = eop(z)<eop(y))) )1 1 ]

for ix:=2 step 1 until length of_text do
begin
if text(ix~1) = text(ix) then

B9: ( 2¢=1<=286 A Jx>0 A cazl A B? A B8 )
B10: ( text(ix—~1)=text(ix) A etart=ix-1 A finish=ix
Astring(ix=1,ix)%ok A 1<(zix~1 A ix(=1 )

continue_checking((ix—-1),ix);
if ix ~= 2 then
if text(ix—-2)=text(ix) themn

Bll: ( B9 A text(ix=2)=text(ix) A start=ix-2A finish=ix
A string(1x-2, ix) %ok A I<3ix-2 A ix<=1 )

continue_checking((ix-2),ix)
end:

B12: ( 2¢=21<{=286 A ca=1l A Ji)OA B36 A B31 A B32 A B33 )
end palindrome_check;

|
%
i
%
i.
E
|
|
;

FIGURE 10
PROCEDURE PALINDROME+CHECK
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only call to procedure '"palindrome+«check" is the call in "main"
following assertion BS; assertion B5 is identical to B6, there-
fore B6 holds at the time of the procedure call. BS ensures
that jx=1, and because there is no integer y such that 0<y<1,
the antecedents of the conditionals which constitute B7 and B8
are necessarily false at the time of the procedure call. There-
fore the conditionals must be true at this point, and the input

assertion to the procedure is satisfied whenever it is called.

2. Synthesized Assertion B9-10:

B9: 2<=2<=256 A jx>0 A ca=2A B7 A B8
B10: text(ix-1)=text(ix) A start=ix-1 A finish=ix

A string(ix-1,ix)=ok A 1<=ix-1 A ix<=4%

The assertion B9-10 is inserted to state that the input
specification is satisfied for the procedure "continue«checking,"
which 1is called immediately following the assertion. All pre-
predicates of B9-10 are a restatement of the input assertion
B6-10 (and have not been modified by the intervening program
statements) except:

a. text(ix-1l)=text(ix):
this predicate is assured since control reaches
B9-10 only if it is satisfied (precedihg if statement).
b. start=ix-1 A finish=ix:
these predicates are true by definition; '"start"
and "finish" are constants, initialized to the values with wh;ch

"continue«checking'" will be called, which are used in the

proofs of synthesized assertions.
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c. string(ix-1,ix)=ok:
follows immediately from text(ix-1)=text(ix).
d. jx>0 A B7 A BS:
these predicates hold on the first loop iteration
because of the input assertion;.they hold on subsequent itera-
tions due to the distributed correctness of "continue checking"
(they are contained within the procedure's output assertion).
The preceding discussion reveals that the synthesized
assertion B9-10 is always valid; thus no test data and generali-

zation assertions are required.

3. Synthesized Assertion Bll:

Bll: B9 A text(ix-2)=text(ix) A start=ix-2 A finish=ix
A string(ix-2,ix)=ok A 1<=ix-2 A ix<=Q
The assertion Bll is inserted to state that the input
specification is satisfied for the procedure '"continue«checking,"
which is called immediately following the assertion. In a
fashion similar to that discussed above, it may be verified that
assertion Bll always holds, and no test data and generalization

assertions are required.

4, Synthesized Assertion Bl2:

2<=2<=256 A ca=f A jx>0 A B30 A B31 A B32 A B33
Assertion B12 is the output assertion for procedure
"palindrome«check'"; the expansions for assertions B30 through

B33, which are predicates of assertion Bl2, are given below:
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B30: Vx[(2<-x<-2 A text(x-1l)=text(x))=
Jy(y<jx A 1<=bep(y)<=x-1 A x<=eop(y)<=2)]
B31: ¥x[(3<=x<=L A text(x-2)=text(x))=> "
3y(y<jx A l<=bop(y)<=x-2 A x<=eop(y)<=2)]
B32: Ny[(0<y<xj A bop(y)>1 A 0<eop(y)<i) =>
—(text(bop(y)-1)=text(eop(y)+1))]
B33: Yy[ (0<y<jx A - (eop(y)=0))=>
[string(bop(y) ,eop(y))=ok A bop(y)>=1 A eop(y)<=
ANz(  (0<z<jx A ﬁ(z=y))=>
(—(bop(z)=bop(y)) A (bop(z)<bop(y) =>eop(z)<eop(y))) )] 1

The truth of assertion Bl2 may be verified partially-through
logical techniques and partially through dynamic testing. By
static analysis it is noted that if during execution of the
procedure no statements which call "continue«checking” are
actually executed, then all the predicates of assertion B1l2 are
merely restatements of the input assertion B6-8 and are not
modified by program execution (no positive processing takes
place).

If calls to "continue+checking" are executed, then from the
output assertion of that procedure and the principle of distri-
buted correctness (the demonstration of correctness and a listing,
Figure 11, of that procedure are presented subsequently), the
following predicates remain unchanged by execution of the pro-
cedure:

2<=0<=256 A ca=f A jx>0 A B32 A B33
The predicates B30 and B31 will be demonstrated through

testing in the folldwing manner. If "continue«checking" is
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called with actual parameters "start'" and "finish", then its
output assertion verifies that:
Jy(0<y<jx A 1l<=bop(y)<=start A finish<=eop(y)<=L)
Predicates B30 and B3l are verified, and thus so is the syn-
thesized assertion Bl2, if it is shown that:
Ux(2<=x<=L A text(x-1)=text(x) =>
"continue+checking" is called,
with start=x-1 and finish=x; and
Vx(3<=x<=2 A text(x-.2)=text(x)=>
"continue+checking'" is called,

with start=x-2 and finish=x,.

a. Test Data Assertion and Verification
It was presumed from static analysis of this proced-

dure that if procedure calls are correctly mode to ''continue«

checking" for the first three characters of a text string,

they will be correctly made for all characters. (Only the
character patterns over a sub-string of leugth three are examined
by the statements which determine whether and when to call
"continue«checking'".) Thus test data were selected to consider
all possible conditions arising in the first three characters.

A condition table was prepared as follows:




Y T

Predicate

=2 A 1ix=1 Yy 'n n n n. n =n n n n n

L=2 A ix=2 Yoy il RRE SN OR SRR

2=3 A ix=1 (n) o) () 'y ‘B ‘B ®wA n n

223 A ix=2 fa) )l (n} G0) ¥ ¥y -8 A 8 ®n %

=3 A jix=3 (n) (M) () () () () ¥ vy vy y vy
text(1l)=text(2) -- Yy n - | e ey SR REkl APAE ek |
text(l)=text(3) - - - - - - Yy n oo
text(2)=text(3) = - R - - - . (y) ) (n) n y

Test Data: (&) * 2 f * . 3 3 3 3 3
(text) bb ab bbb aba bbb bba aba abe abb

*These compound predicates cannot be satisfied
for any input data values.

The preceding condition table identifies seven unique test
data elements which were input to the program for dynamic testing.
Correct results were obtained for all elements; the correct re-
sults were defined as being the recording in the arrays '"bop"
and "eop" of entries which included those character positions
correspon&ing to all truth values of "y" in the three rows of

predicates on '"text".

b. Generalization Assertion and Verification
The generalization assertion is that the preceding
predicates totally determine the procedure calls made to
"continue+checking'", and thus the results recorded in the arrays
"bop" and "eop". Verification of this assertion was not
formally stated; verification relies on the thoroughness with

which the applicable condition table was prepared.

c. Proof of Synthesized Assertion
The synthesized assertion follows from the

discussion preceding the presentation of the applicable
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condition table and from the test data and generalization
assertions. Sufficiently general theorems to formally state
a proof of the assertion were not available or forthcoming
from this effort; however, the careful analysis of predicates

built a high confidence that the program fragment is correct.

E. PROCEDURE CONTINUE+CHECKING

Figure 11 contains the synthesized assertions for this pro-
cedure. The input assertion is B13-16; since it was verified
in the preceeding section that this assertion was satisfied for
all calls to this procedure, it will be assumed that this
assertion is satisfied at the time of invocation of this pro-

cedure.

1. Synthesized Assertion B17-18:

BL7: B13 A Bl4 A B1S
B18: text(first)=text(last) A 1<=first<=start
A finish<=last<=% A string(first, last)=ok
A (finish=start+l V finiéh-start+2) A

(first=1 v last=f V " \(text(first-1)=text(last+l)))

a., Test Data Assertion and Verification

Test data were selected using the condition table
method to consider all predicates which were considered to
have a bearing on program processing with respect to assertion
B17-18., The applicable condition table is presented below, in

two sections.
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B13:
Bl4:

B16:

B17:
B18:

B19:
B20:

procedure continue_checking (integer value first, last);

comment GCiven first and last as pointers to a palindrome

of size 2 or 3, this procedure checks whether or not this
palindrome is included in a larger palindrome;

begin :

( 2¢21<=266 A cazl A x>0 )
( WYyl{0<y<)x A bop(y)>1 A @Keop(y)<l)=>

~( text(bop(y)—=1)=text(eop(y)+1))] )
( ¥yl (&K y<yx A ~(eop(y)=0))=p

[string(bop(y),.eop(y))=ok A bop(y)>31 A eop(y)<=1

AVZ( (KzZ{Jx A ~(z2y)) =
(~(bop(z)=bop(y)) A (bop(z)<bop(y) =9 eop(z)<eopiv))) )] ] )

( text(first)=text(last) N gtart=first A finish=last

A string(first, last)=ok A j<(=gtart A finish<=1

A (finishsstart+l VvV finishzstart+2) )

logical palindrome;
palindrome:=trues
vhllob((flr-ﬁl) and (last length_of_text) and (palindrome=true)) do
egin
if text(first—1) = text(last+l) then
begin
comment larger palindrome found
first:=firet—-1; :
last:=last+1; :
end
else
begin
p:(:lndro-o:*fal-o: coument [argest palindrome found:
end; .
end;

¢ B13 A Bi4 A B18 )

 text(first)=text(last) A 1<=first{=start A finsih<{=lasti=1
A string(first,last)zok A (finish=start+l V finishz=start+2)
A (firstz]l Vv lasts]l VvV ~(text(first-1)=text(last+1))) )

record_palindrome(first, last);

( B13 A Bl4 A B1S )
( 3y(0<y<yx A 1<=bop(y)<=etart A finieh<=eop(y)<=1) )

end continue_checking:;

FIGURE 11
PROCEDURE CONTINUE+«CHECKING
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Predicate

start+l=finish
start+2=finish
start=1
start=2
start>2
finish=2
finish=2-1
finish<t-1
text(start-1)=
text(finish+1)
text(start-2)=
text(finish+2)

Test Data: (%)
(text)

RO RN S gaie LR MR RN
n (n) (m) () - (M) (n) (n)
- b4 y b4 - n n n
- ) (8] (B) =~ "% ¥ iy
- () () () ~ (@) (n) (m)
- y n n n y n n
- HRY RS g B VARY Y Y
= (@) () y n (n) (n) (n)
- - - - - - y n
NSE GRNe Td TE SER WE CRE

aa aab aabc

abb abba abbc

*These compound predicates cannot be satisfied
for any input data values,

Predicate

‘start+l=finish

start+2=finish
start=1
start=2
start>2
finish=2
finish=2-1
finish<%-1
text(start-1)=
text(finish+1)
text(start-2)=
text(finish+2)

Test Data: (%)

(text)
A: abbad
E: abccd

The preceding condition table identifies fourteen test

IS e e e g, SR SR )
(n) (n) (n) (n) (n) (@) (n) (n)
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- - - - - y n -
5 S 4 5 5 6 6 6
A B C D E F G H

abbcd C: abcc D: abcch

abccba G: abccbd H: abccde

data elements; these were used as input to the program for
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dynamic testing. Correct results were verified for all ele-
ments by printing variable values following assertion B17-18
and verifying that the predicates of the assertion were satis-
fied. During presentation of the preceding condition table,
no columns with an "n" entry for the first predicate and a "y"
entry for the second were added because no new insights to tﬁe

procedure's operation would have been gained.

b. Generalization Assertion an& Verification
The generalization assertion is that the satisfaction
of the synthetic assertion B17-18 is totally determined by the
predicates of the condition table; the only verification was
the analysis which served as a basis for the preparation of the

table.

c. Proof of Synthesized Assertion
The synthesized assertion follows from the test
data and generalization assertions. No formal proof could be

offered.

2. Synthesized Assertion B19-20:

B19: B13 A Bl14 A BI1S
B20: Dy(0<y<jx A 1l<=bop(y)<=start A finish<=ecp(y)<=¢)
Assertion B19-20 is the output assertion for this procedure.
Inspection of Figure 12, the listing and assertions for proce-
dure '"record+«palindrome'" reveals that assertion B17-18, which
precedes the only call to that procedure, which call in turn
precedes assertion B19-20, satisfies the input assertion to

"record+palindrome’”, and further that the output assertion of
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"record+palindrome" satisfies assertion B19-20., Therefore syn-
thesized assertion B19-20 is verified by the correctness of
"record+palindfome" (which is shown in the next section), and

test data and generalization assertions are not required here.

F. PROCEDURE RECORD«+PALINDROME

Figure 12 contains the synthesized assertions for this pro-
cedure. The input assertion is B21-24; since it was verified
in the preceding section that this assertion is satisfied when-
ever the procedure is called, the input aéseftion is assumed

to hold at procedure invocaticn.

1. -Synthesized Assertion B25:

B21 A B22 A B23 A B24 A entry=true
a. Proof of Synthesized Assertion

The test data and generalization assertions are
simply the observation that any and all input data will cause
the execution of the statement assigning '"entry'" equal to true;
the rest of the assertion is a restatement of the input asser-
tion, none of which has been modified. Verification was post-
poned until the verification of the test data assertion for
synthesized assertion B26. The proof of synthesized assertion

B25 follows directly from this observation.

2. Synthesized Assertion B26:
(entry=false A B27 A B28) Vv
[entry=true A B21 A B22 A B23 A B24
ANz (0<z<jx = (" (bop(z)=first
A (bop(z)<first =>eop(z)<last))]
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procedure record._palindrowme (integer value first,lasst):
comment Record only max length palindromes. Flag previously
recorded palindrowes if they sre included in the palimdrome
specified by firet and last.
Jx was initialized to 1. After completion Jx points to the
Lo next entry in begin_of_palindrome and end_of_palindrome;
gin

; B21: ( 2¢=1<=236 A cazl A 0 )
' B22: ( Vyl(8<y<jx A bop(y)>1 A @eop(y)<])=D
é ~( text(bop(y)—-1)atext(eop(y)+1))] )
B23: ( Yyl (K y<jx A ~(eop(y)=0))
(string(bop(y) ,eop(y))sok A bop(y)>=21 A eoply)<sl
AVYZ( (Kz<Jx A ~(z2y)) =
(~(bop(z)2bop(y)) A (bop(z)<bop(y) =P eop(z)leopiy))) )1 1)

: | 5 B24: ( text(first)stext(last) A 1<(=*first<sptart A finsih{=last<=]
; A string(first, last)=ok A start{finish
A(firstzl V last=]l v ~(text(first~1)=text(last+l))) )

integer i: comment local counter;
logical entry:;
entry:=true;

B28: ( B21 A B22 A B23 A B24 A entry=true )

for 1:=]1 step | umtil yx—1 do
begin
it ((first)=begin.of_palindrome(1i))
snd (last{zend_of-palindrowe(i))) then
begin
comment Palindrome is entirely included in a previously
recorded palindrome. No entry required;
entry:=false; ]
3 end
elme i
begin :
if ((beginof_palindrome(i) >= firet)
and (end_of_palindrome(i) <= last)) then
begin
end_of_palindrome(1i):20;
co“—ont flag smaller palindrome;
ends

end;
end; comment All previously recorded palindromes
compared with last input;

B26: ( (entry=false A B27 AB28) V

[entry=true A B21 A B22 A B23 A B24 ;
AVZ(9<z<Jx = (~(bop(z)=first) ;
A bop(z)<first => eop(z)<last)] ) ,

hapci o i 1l e s =iy

Ay

if entry = true then
begin
comment larger than all previous or overlapping or disjeints
begin of.palindrome(yx):=2first;
end_of_palindrome(jx)t=last;
Jxisyx+ly
end;

£y

( 2¢=21<=2286 A cazl A Jx>0 A B22 A B23 )
( Sy(0<y<yx A 1<sbop(y)<zgtart A linish(=eop(y)<=]) )

end record_palindrome:
' 3 FIGURE 12
- PROCEDURE RECORD+PALINDROME




This assertion is a statement that either entry=false and one
set of predicates apply, or that enfry-true and another set
apply. If entry=false, no further action will be taken in the
procedure, and the output assertion is valid at this point. If
entry=true, the input assertion is still valid, and the entry
for the current palindrome, which will be the jx-th entry in
"bop" and "eop'", will only be disjoint or overlapping to all
previous entries in those arrays for which the "eop'" entry is

not zero.

a. Test Data Assertion and Verfication
Test data were selected using the condition table
method to consider all predicates which were considered to
bear on the program processing with respect to assertion B26.

The applicable condition table is presented below.

152




Predicate

eop(i)=0 A KSR SRl e Seel SE uy Wt RS o
first>bop (i) yooloy % TR R R R R Y R
first=bop(i) () m) ) ¥ ¥y ¥y = n #n () 7y =
last<eop (i) ¥y ® # 'y =B 8.y @& -8 'ta)in) n)
last=eop(i) () y n (m y n (m) y n (n) (n) (n)

test data: ¥
first 55 e TN il o AT Mol SReE TIo GEaty .
last st Mo TSR Semt SR 2 R R e
i ek Ty SRR - - ey A gl |
bop (i) sl hos 1 B TaE ik T - Sl | 2
eop(i) 9 9 3 4 3 ) 3 3 3 0 0 0
text O, - S Tt Sk SR SR = B 8 & B
jx L Eers Hy 3 - 4 - - . R R TRy |

correct

action: ) G - T ek | - | D Z yA -

*These compound predicates cannot be
satisfied for any input data values.

aaaa B: baaabaaab

Set entry = false A
Set eop(i) = zero.

None required, but program resets eop(i) = zero,

which is permissable (eop(i) is already zero).

- As an action, means no action performed; entry

remains true and a new entry will be made.

N <

The preceding condition table identifies two input strings
which were used as input data to the program; intermediate values

of program values were inspected on each iteration of the for loop

in procedure ''record+palindrome' to determine when the compound
§ predicates from the condition table were satisfied so that veri-
fication of the correct action as specified in the table could

be made. The correct action was observed for each test data

element.
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b. Generalization Assertion and Verification
The generalization assertion is that the actions
performed by the procedure are totally determined by the five
predicates in the condition taBle; if execution of the for loop
body performs properly for the identified test data elements,
it performs properly for all data satisfying the same conjunctions
of the five predicates. The verification offered is the analysis

forming the basis for the condition table entries.

c. Proof of Synthesized Assertion

Since predicate B23 of the procedure input specifi-
cation is valid at the entry to the for loop, it cannot happen
that the current palindrome (string (first, last)) both includes
a previous entry and is included by a different previous entry.
Since program action (either entry:=false or eop(i):=0) is taken
only when one of these conditions exists, repeated execution
from "i'" equal 1 to jx-1 of the loop body cannot cause an unde-
sirable result such as setting "entry" to false and also setting
eop(i) to zero for some "i",. Thﬁs the synthesized assertion
follows from the test data and generalization assertions, al-

though a formal proof cannot be offered.

3; Synthesized Assertion B27-28:

B27: 2<=0<=256 A ca=2 A jx>0 A B22 A B23
B28: Jy(0<y<jx A 1l<=bop(y)<=start A finish<=eop(y)<=2)

Assertion B27-28 is the output assertion for this procedure.

a. Test Assertion and Verification

The test data assertion is that if the test data
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elements identified in the first and sixth columns of the con-
dition table used for assertion B26 are executed to the proce-
dure's termination, the output specification will hold. The
correct results were observed, namely that for the column-one
element no new entries were made to the arrays '"bop" and "eop",
and that for the column-six element the proper (fourth) entry
was made in the arrrays; in both cases the output specification

was observed to hold.

b. Generalization Assertion and Verification
The generalization'assertion is that the variable
"entry" divides input to the procedure into two equivalence
classes and that proper execution of one element of each class
(as observed in the verification of the test data assertion)

ensures proper execution for the entire class.

c. Proof of Synthesized Assertion
The synthesized assertion follows from the test data
and generalization assertions; however, no theorem is available
to formally prove the sets of input data identified are in
fact equivalence classes.

This verification of synthesized assertion B27-28 completes
the demonstration of correctness of procedure '"record«palindrome".
The principle of distributed correctness has been applied to
show the correctness of the main program from the correctness

of the called procedures.
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