
ilStl £CcTrTrn

I w

I __

I I

p 
-



I .



-~~~~~~~ ~~~~~~~~~
. —•—-—

~
— 

~~~~~~~~~ ~~~~~~~~~~~ 
. _

~~~~~
. —. —- -,9—

~~~~~
v1 

~~~~~~~ -~~~ .- .-.-----.

~~~~~~~2LEVEL~~~~

NAVA L. POSTGRAD UAT E SCHO OL
- Monterey, Califo rnia

~~ 

_ _ _ _ _ _ _ _ _ _ _

• 
_

.. 

THESIS/1
Experiments in Demonstrating the

Correc tness of Sof tware

by

Carl Warren Monk , Jr.

September 1978

Thesis Advisor: Norman Schneidewjnd

• — Approved for public release; distribution unlimited.

78 12 11 lii.
~~~~~~ ~~~~~ ~~~~~~~~~~ 

.... .. .. . ._ •-.—•————- •— —.
~
.—..—----

~~~
-—-



II. CONT~ OLUNG OFFICE NAME AND ADDRESs / ~1& P ’~~~~ ~~~I

Naval Postgraduate School (j
~ 

Sep~~~~~~~~~~78 
~

Mon terey , CA 93940 I L ;  ER OF RAG ES

4. NON•TOR$NO AGENCY NAME * AOOREU(II ~~~~~~~ 
- C s1,sIIS OM. ) IS. SECURITY CI.AU. (. ~~. .~~.nj

Naval Postgraduate School UNCLASSIFIED
Monterey , CA 93940 ~ ~~~~~~~ 51$CATIOsS/ DOSS.4NA0sNG

IS. DISTRISU fl ON STATEMENT (.1 liSs R~~srE)

Approved for ublic release; distribution unlimited.

17. DISIRIIUTION STATEM ENT (.1 • ~~.MSsI .mN~~~ Ia D s1k 3L II ~ ESs~~~ ~~~ R~~u.~)



r - — - ••• -

~ 

-.- . .. -. - - .

~ 
~~~ • r  -~ ~~ - --“ . ~~~~~~ 

. 
-

UNCLASSIFIED
~Ii~~U IYY CLASSIPICATIOM QF YW I$ ~ 4St(*I.~~ flu. 1.s. ~~~.

current literature concerning software testing and formal
proofs . of correctness, select a well-documented program of
intermediate size for experimentation, apply selected
verification methods to that pro~rain, and finally to compare
the results of the several experimental demonstrations of
correctness. The experiments conducted included a proof of
correctness and dynamic testing with test data cases selected
by a condition table method, by path analysis, and by
structural decomposition of the program.

S

NTIS - , :.e ~~tlon
DCC ~~

- -~~ ~ecUon

• Mu

DY _ _ _

~~~~~~~ UIOES
b~st ~~~L ~~ CIM.

DD ~orr~ 1473 UNCLASSIFIED
5/)~ O~~~~ O14 66O1 2 

S5euaItv Cs. A~~~,tCATION SF 11115 RAStI~~ .a Gal. IRl...4 )

____ -. 

. 

~~~~~~~ —- -~~~~~~~~~~ 

~~~~~ • .-



- 
- 

-~
-..—..,.—.-= .,- -,•---.-—,- .w •—,.-- • —~—~ - -

Approved for public release; distribution unlimited

EXPERIMENTS IN DEMONSTRATING THE
CORRECTNESS OF SOFTWARE

by

Carl Warren Monk, Jr.
Lieutenant Commander, United States Navy

Submitted in partial fulfillment of the
‘ - requirements for the degree of

MASTER OP SCIENCE IN COMPUTER SCIENCE

I
from the

• NAVAL POSTGRADUATE SCHOOL
September 1978

Author 
(2a~c1 ~1 ~~~~ ~42. ~

* 

Approved ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

Dean o formation Policy Sciences

• 1  
• 

. 783 12 11
S ~~~ ‘—~~~~~ 

- 
• • 

.• -______________________________ 
—

~ 

. .- -. 
‘I~~~~~

- 
~~~~~ 

~~~~-.~~- -~~~- 



F 

— -

~~

—- -.
-
~~ 

- . 

ABSTRACT

This thesis was undertaken to examine the post-development

process of verifying the correctness of software programs,

specifically to evaluate the effectiveness and practicality of

several proposed methods of verification Of interest were the

• degree to which utilization of a given methc’-d can be said to

demonstrate correctness and the feasibility for general use of

that method. The method of research was to study current

literature concerning software testing and formal proofs of

correctness, select a well-documented program of intermediate

size for experimentation, apply selected verification methods

to that program , and finally to compare the results of the

several experimental demonstrations of correctness. The

experiments conducted included a proof of correctness and

dynamic testing with test data cases selected by a condition

table method, by path analysis, and by structural decomposition

of the program .

i _ i .

I 
~~

- 

4

• •‘



F’”5’ - .__
~~~~~~~~

_ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
-
~~~~‘~ TJ •::T~ - ~~

-‘

~ 

— 

F 
-

TABLE OF CONTENTS

I. INTRODUCTION 10

A. THE SOFTWARE PREDICAMENT 10

1. Scope of Software Development 10

2. Problems in Software Development 10

B. SOFTWARE ENGINEERING 12

1. Current Trends 12

2. Need for Post-Development Testing 13

C. DEFINITIONS IN SOFTWARE TESTING 14

1. Correctness of Software 15

2. Debugging 15

• 3. Testing - -16

4. Verification and Validation 16

5. Scales of Testing 17

a. Unit Testing 17

b. Integration Testing 18

• • 

• 

c. Regression Testing 20

D. APPROACHES TO DEMONSTRATING CORRECTNESS 21

1. Static Analysis 21

a. Capabilities 21

b. Automated Aids 23

c. Limitations 2 3

2. Dynamic. Testing 24

a. Selecting Test Cases 24

b. Thoroughness of Tests 25

c. Automated Aids 26

4. Limitations - 29

-~~~~~ S 

--- - - - -

~~~~~~~~~~~~~~~ 
-~ •~~~~ -- ---~~~~~ 

•



1T ~~T

II. NATURE OF THE PROBLB!4  30

A. A THEORY OF TESTING 30

1. Types of Errors 30

2. Criteria for Test Case Selection 31

B. SATISFYING - ThE PREMISES OF THE THEORY 33

1. Formal Proofs of Correctness 33

2. Symbolic Execution - . 34

¶ 3. Test Data Execution 35

III. EXPERIMENTAL PROCEDURES 37

• A. THE PROGRAM AND INTUITIVE TEST DATA 37 -

1. Origin and Description 37

2. Program Listing 38

3. Program Graphs 43

4. Error Data 51

5. Intuitive Test Cases 51

B. PROOF OF CORRECTNESS 52

• C. DISTRIBUTED CORRECTNESS 54

D. PATH ANALYSIS 56

1. Basic Technique 56

2. Extended Technique 56

• E. INDEPENDENT SUB-STRUCTURES 57

IV. PRESENTATION OP RESULTS 59

A. STATIC ANALYSIS 59

B. PROOF OF CORRECTNESS 60

C. DISTRIBUTED CORRECTNESS 63

6 

-_ -
~~~~ —- — - - -  • - - - - - - ••:- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~-~~~~~ .--~~~~~~~~~~ - — — - --~~



• ~~~ - •~~!- *rW---,- ~ - - --~~~~~~~~~~ ~~~• 

D. PATH ANALYSIS 65

1. Basic Technique 65

• 
2. Extended Technique 66

E. INDEPENDENT SUB-STRUCTURES 68

F INTUITIVE TESTS 73

V. CONCLUSIONS AND RECOMMENDATIONS 75

A. COMPARISON OF METHODS 75

1. Level of Effor t  75

2. Thoroughness of Verification 79

B. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS 83

APPENDIX A 86

APPENDIX B - -  131

BIBLIOGRAPHY 156

INITIAL DISTRIBUTION LIST 159

• 

•

~~~~~~~~~~~~~~~ --.••- - .— b- -- 

-

_ ____ ___L _________________ 
_ _ __ __ _ __ __ __ _



“~~ ‘- -~~~-*.,.r• ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -~~ r - ’ -.. 
~~~~~~~~~~~~~~~~~~~~~~ r r w~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ r’ ’ ’- ~~~r- ’r•-

—- - -- --- -

TABLE OF SYMBOLS

,‘ .
~ Logical conjunction (“ and”)

V Logical disjunction (“or”)

Logical negation (“not”)

— Conditional connective (“implies”)

Biconditional connective (“if and only if”)

Universal quantifier (“for all x”)

Existential quantifier (“there exists an x such that”)

E.. Set membership connective (“belongs to”)

Proper subset connective (“is included in”)

8

_____________ .•~• • — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -—-



r~ ~~~~~~~~~~~~~~~~
-=

~~~~
- - - - -

~ ~
—-- 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —
~~

ACKNOWLEDGEMEN TS

The continued support and critical help provided by

thesis advisor Professor N. F. Schneidewind is gratefully

• 
. acknowledged. -

•

The preliminary text of this thesis was prepared using -

the excellent sof tware of the UNIX operating system , operating
- 

on a PDP-1l/50 of the Computer Science Laboratory. Software

ver ification experiments were conducted using the IBM Sys tem

• 360/67 of the Naval Postgraduate School’s W . R. Church Computer

I Center.

- 9

• 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~ _ -~~~- 
-

- _~
_

~=~~
:— •

I . INTRODUCTION

This first chapter reviews the environment in which software

verification methods are employed and presents generally accepted

definitions and descriptions of software testing.

A. THE SOFTWARE PREDICAMENT
- • 

. 1. Scope of Software Development

Ware Myers has characterized the current state of expanding -

programming applications as a serious software predicament (28).

The cost of computer hardware has declined significantly over

the last decade, making more and more applications feasible for

• 

• automation. In 1973 it was estimated that between $15 and $25

billion were being spent annually on sof tware development and

maintenance (3) . The Department of De fense spent about $3 bil l ion

in 1976 on computer sof tware (34) ,  and~has been doub ling the

number of functions performed by software every few years ,

primarily in converting weapons systems components from analog

to digital .

2. Problems in Sof tware Development

Unfortunately for the growing user communities , and

- despite the expectations raised with the advent of modern pro- -

gramming practices (MPP) , all is not we ll with sof tware

development. -

f 
~ 

a. Our ability to estimate time and re~ources required

for the design and development of software has not appreciably -

increased.

b. Most major software projects have required that

I ~1
10

_ _ _  -  _ _ _

~~~AL. - ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ _- •-_ 

~~-~~~~-



-
~~~~

. 
~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

— r~~ ~~~

special. support tools be developed , that new automated tes ting

aids be gene-rated, or that a new language capability be acquired;

in short, there is inadequate transfer of technology between

projects within single organizations, and even less among organi-

zations.

c. An unreasonable share of software effort has been

expended on maintenance of existing programs. Estimates of 75%

or more of a company’s programming effort being devoted to mainte-

nance have not been uncommon .

d. The rate of increase in programmer produ~tivity has

not kept pace with the int•roduction of improved management and

programming methodologies , let alone with the rapidly increas ing

hardware capabilities; in fact, we are still struggling to learn

to measure this productivity.

e. The quality of software has been less than desired.

• While there is no agreement on how to quantify the quality of

software , many shortcomings are apparent (4): software is still

difficult to read , unders tand and modify; programs are frequently

hard to use •prope rly and easy to misuse; they are often lacking
-: in sufficient generality to be used in several applications or

transported to different machines ; and program reliability has

been disappointing.

The applications planned for automation require bigger and

more complex systems than ever before . Dijkstra pointed out

that complex systems which are perhaps one thousand times larger

than existing system cannot be constructed with the same

techniques used to cou’pose the smaller systems ; order-of-magnitude

11

— 
— — •- -—-

~~
• p 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~•~



F-,—’.. — - ~~~ T~ ’~ 
‘
~~~~~

- 
-;‘~~ 

—, -• --,,—.‘ — 
~

-•— — . —  -
~~

••,•-—--.-.
• - - • ~~— ‘ r  - • - -

leaps in scale cannot be treated as gradual increases that can

be handled by simple induction (10). A systematic and scientific

method to accomplish functions of such magnitude is required.

Improvements in the reliability of software (the extent

. 

• . to which programs -can be expected to satisfactorily perform

their intended functions) are desired. without incurring the

staggering costs of totally exhaustive testing. That reliability

needs improvement seems obvious. The relative level of program-
• ming effort devoted to maintenance of existing programs bears

tes tament to the exis tence of errors in programs presumably

tested and certified correct prior to their release for use.
• Even diligent application of the modern programming practice s

by talented programmers has not necessarily produced reliable

- software. Gerhart and Yelowitz (15) identified errors in pro-

grams that were published to demonstrate these MPP, errors in

specifications , in cons truction, and in programs formally

“proven” correct!

B. SOFTWARE ENGINEERING

1. Current Trends

A discipline has arisen, referred to as software engi-

neering, which draws from es tablished principles of science

and engineering in attempting to formally define a systematic
• 

. approach to software development. While the goals of this

discipline are broad in scope , the application of sof tware

engineering toward attainment of correct software is of

• particular interest.

12

— —;- —



~~~~~~~~~~~ -- - - ___  - 
‘ - ~~~~~~ “ • .‘-~ -•---‘•~ —~•-.~~~• - • • — — ~.• ,~~~~~~~ -‘-.—- - - r - - - ~~~!

- -  - - - - • - ••• ‘ - - - • —  — -  -—

~~
• Recent trends in software engineering have emphasized the

‘. ‘rol.e of design and implementation in preventing errors over

the role of testing to detect errors for correction. These

techniques include:

a. More thorough analysis and definition of requirements :

The lack of adequate system specifications has been a major

cause of software shortcomings (12).

b. Modular design of programs.

c. Top-down design and implementation techniques.

d. Management practices such as the use of the team

concept (possibly including the chief programmer team concept),

project workbooks , formal documentation requirements , formal

and peer review, and structured walkthrough of code.

e. Structured programming : This concept is at the core

of modern programming practices. While many managers complain

that they encounter resistance in implementing structured pro-

gramming in their organization (5), there is growing data to

support the proposition that structured programming techniques

can produce more reliable and more cost effective software

systems (28)

2. Need for Post-Development Testing

The experience of the research reported in later chaptets

of this thesis confirmed the need for greater relative emphasis

on design and implementation techniques as compared to verifi-

-

• 
. cation techniques. Much of the process of constructing a formal

- - • proof of correctness of the sample program selected for experi-

mentation was clearly a duplication of the design and implementation

13

— —•-•- 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~’ ~~~ 
—

~~ 
—

~
‘.- —V ~~~~~~~~~~

- -
~~

—

effort; it was necessary to analyze the completeness and con-

sistency of the program specifications , verify the particular

modular design selected, justify the control flow of each pro-

cedure , and determine the reasoning behind the choice of

particular stopping criteria for program loops. To a somewhat

lesser extent the same was true of the most rigorous of the

dynamic testing strategies employed (Chapter III , Section C).

The -duplication of effort is simply not- cost effective.

The successful and widespread use of as yet undeveloped

techniques that will ensure deve lopment of correct software

programs lies many years ahead. For the foreseeable future,

programs under development will, need to be subjected to an

effective and practical ex post facto verification process.

Diligent application of existing program testing techniques has

been shown to enhance the software development process (1,2,6).

Significant efforts are required in applying the discipline of

• software engineering toward refinement or replacement of the

verification methods now in use.

r C. DEFINITIONS IN SOFTWARE TESTING

• Methods of testing or proving the correctness of software

have been developed until quite recently on an ad hoc basis, to

I ~ fill particular needs in the field rather than to build a

complete scientific model for the verifli ‘.tion process. The

terms used to describe the activities involved in demonstrating

correctness have likewise evolved sporadically. The following

definitions are widely but not universally accepted.

14



• 
- __________________________________________

- 

- 

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~ ~~~~~~~ - - --

~~~~~~~~~~ ---..----

1. Correctness of Software -

The central issue in software testing, verification,

validation, or similar terms is a demonstration that the software

at hand is correct; i.e., that the given software system produces

the intended results. The assertion that a program is correct

is in effect a statement that it performs precisely those func-

• . tions, and only those functions, called for in its specifications,

and furthermore that its specifications are an accurate repre-

sentation of a design suitable to satisfy the intended require-

ment. The term “correctness” has a connotation inclusive of and

stronger than the notion of reliability of software, which was

defined earlier as the extent to which programs can be expected

to satisfactorily perform their intended functions . A thorough

demonstration of correctness involves more than showing that a

• program satisfies some written specifications; it involves an

analysis of the completeness, clarity, and consistency of the -

specifications as well.

2. Debugging

This term has frequently been used synonymously with

testing , but should be distinguished in the following sense:

testing is a process to uncover errors, while debugging begins I
when an error has been detected and is the process of isolating

and correcting these known errors. A succinct statement of this

distinction is:

When debugging is completed the program definitely
solves some problem. Testing seeks to guarantee
that it is the problem that was intended . (l8).

15

—1~~~~~~~~~~~~~~ -M~•-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — -



_ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~T. T~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3. Testing

Testing has just been distinguished from debugging. In

Reference 24 five major activities in testing were defined ,- using -

the terms most commonly accepted in practice :

a. Verification is the process of establishing logical

correctness of a program (i.e., correspondence with formal require-

• ments) in a test environment. Verification is typically accom-

plished by actual program execution using selected test data.

This process of dynamic execution is the single activity mOst -

often intended by use of the general term testing.

b. Validation is the process of establishing logical

correctness in some given external environment , although not

necessarily in the operational environment.

• . c. Proving is the mathematical establishing of logical -

correctness without regard to the environment ; it does not

involve program execution.

• 
d. Certification is an organizational endorsement that

a program meets certain standards of correctness and effectiveness

in a useful environment.

e. Performance testing is the demonstration of non’

• logical properties, usually execution timing and throughput

capability.

4. Verification and Validation

Verification and validation is a currently popular term

used to describe the processes involved in testing software

prior to user acceptance; used as such the term actually encom-

passes to some degree all five of the above testing activities

16

___ • 

•

~~ 

~~~~~~
-
~~~~ r~

_
~j



• 
~-!~~ • ‘~~~~~ 

•‘• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- -~~~~ 

- -
~~~~ 

~~~~~~~~~~~ ~~~~~ _ —•. ~ -~.-_ 
~~~~~~~~~~~~ —-,-- — -•.----

~-—w - — •.,.__ ,., . —,~~- —‘
~~~~~~~

-- 
;—~~-- --- .... •

r- ~~~~~
-
~~~ --~ 

•-- ________

(with the frequent exception of proving).

~ I 

5. Scales of Testing

F During the development and operation of a software system ,

differing scales of testing must be performed. Traditional

scales of testing are unit testing , integration., testing, and

regression testing.

a. Unit Testing

Unit testing is the testing of the independent modules

comprising the functional decomposition of a large system. Testing

at the unit level involves examination of the internal logic of

the module to ensure that the module ’s effects on the larger 
-

program containing it are consistent with those effects required

by the specification, and verification of the assumptions made

within the module about the larger program. Because specifications 
-

are frequently ambiguous , unit testing often results in reexami-

nation of the unit specification .

L 
The two methods employed in unit testing are functional

I (black-box) tests , which are based on no knowledge of the inter-

nal structure of the program , and logical tests which are based

on program structure. Selection of test data which ar. appro-

priate for an ideal test (as described in Chapter II , Section A)

is difficult or impossible for black-box testing because it is

• 
• 

impossible to distinguish data that are treated similarly or

• differently internal to the black-box. Therefore program yen-

fication tests by the developer are nearly alway s b ased on pro-

gram structure. Acceptance testing by the user is generally

~~ 

- - • • . functional in nature of necessity .

V 

17



— -• - _ ‘•—,-‘. •_—~-
_ - - ---- . .——•- -—• - 

,.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~ _________ ~~~~~~~ ~‘-••--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -.— ~~~~~~~~~~~~~ -,_- _._..-_ — ~ !uIL _ I..

b. Integration Testir~.g

In tegration testing is conducted to determine the extent

to which a system meets its specifications in an environment

similar to its working environment. The focus of integration

testing is on module interaction as opposed to internal module

operations. When unit testing has been conducted thoroughly

beforehand, integration testing is primarily a verification that

modules do not modify those relationships in the environment

that the specification states must be preserved (e.g., that pro-

tected portions of memory have not been affected and that global

variables have not been modified in an undesirable or unantici-

ated manner), and a thorough test of the consistency of ,the -

specification itself. Were the techniques of Eormal definition

of requirements and automated verification of specifications

more developed, integration testing would be less than the

• crucial and expensive effort it so often has beéome .

The relationship between unit and integration tests is

formalized by the following theorem which is the basis for

demonstrating the correctness of software by testing or proving:

If it can be demonstrated that each module in
a system meets its specifications assuming only
that all submodules meet their specifications,
then the entire system is correct (16).

It should be noted that the demonstration required by the

above statement is essentially a verification that the inter-

actions of modules are consistent with the specifications.

There is controversy over the best strategy for sequencing

unit and integration tests. The classical strategy of bottom-up

testing proceeds from unit to integration tests as lower-level

• 18

IL - 
p —- 

_ 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-‘~ —~

—-—--



‘~ “‘ ~~‘ : — -‘— ...~- -—~~~‘f 
• 

~~~~~~~~~~~~~~~~~ 
•*!~“~“~~~~~ .VV’ 

~~~~~~~~~~~~~~~ 
_‘•

_ - — -p.— - .,~ 
- 

~~~~~~~~~~~~~~~~~

• modules are completed , and requires test program drivers to run

lower-level module tests until the calling modules are ready to

be incorporated. Common criticisms of this strategy are the

duplication of effort in writing driver programs, the cost in-

volved since execution of higher-level modules involves reexecu-

tion of the lower modules, and most severely the fact that inte-

• gration errors if present are discovered at a late stage in

development, thus inflating the cost of their correction.

The top-down testing strategy is much heralded as an integral 
-

part of the top-down design technique , but it is little practiced . -

Its benefits are purported to be the early detection of specifi-

cation errors relating to interfacing, since the high-level pro-

gram skeleton is coded and executed first, with simple dummy

programs required as sub-program stubs. These stubs are to be

replaced by the actual lower-level modules as they are writ ten ,

thus faci l i tat ing the check-out of new modules one at a time

while continually verifying the correctness of module interfaces. -

In introducing the concept of a built-in package of “test pro-

cedures” deliverable with a software product , Panzl contends

that neither of the above goals are well served by the top-down

- 

• 

strategy (30). He states that top-down testing discourages

thorough testing of lower-level modules because they are never

executed directly ; in fact, it is often difficult to find an

input data combination that will force execution of a desired

submodule.

In practice a mix of top-down and bottom-up strategies has

been used. Unfortunately, a common choice of strategies is to

19

_ _ _  

_ -
~~~~~~~

--
~~~

-- - — • _  _ • -
~~~~

--“
- ~~- i~~ •~ 

- -

~~

--..-—--•--



r ~~~~~‘ ‘ ‘~~~~~~~~ ~~‘ ‘ ~~
_ _  - •

~~~ ‘ - ..: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

defer all testing until the entire system can be tested. This

all-at-once strategy is costly in execution time because all

modules must always be present, and costly in effectiveness be-

cause the intellectual task of isolating errors is greatly magn i-

fied. when a systematic strategy is missing. However, it is the

most prevalent testing strategy today (30). In fact, the experi- 
-

ments in testing and proving which are reported in the following

chapters of this thesis were performed in an all-at-once fashion 
-

by virtue ef the fact that a program which had completed develop-

ment was the subject of the experiments . Even so , elemen ts of

bottom-up testing were apparent in several of the strategies used.

c. Regression Testing

Regression testing is the reverification and. revalidation

of software af ter  adding new capabili ties or af ter performing

maintenance to correct errors discovered in operation. Its

purpose is to verify that the desired modification and none other

has been made. Regression testing has until recently received

very little formal attention (12), which is puzzling in light

of the previously mentioned estimates of the percentage of

programming effort devoted to maintenance . A simple management

technique to enhance regression testing is to ensure that the

test cases produced during development testing are collected

and documented as a package, and maintained to be reexecuted

after maintenance. If extensive maintenance is performed, addi-

tional analysis of the thoroughness of test achieved with the

saved data should be conducted. While the test procedures

suggested by Panzl (30) add to the effort of development , their

20

L ~ 
— 

~~~~~~~~~~~~~~



~~
.. — --.------- ‘“—.- - ‘r’~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ‘—--

~~~ ‘~~~~~~~~~~~~~~~~~~
.—-—- ----

~~~
- • •  

- 

-—-~
_

~~~~~~~~~~ 
—---- ---—•--- - -  

~~~~~~~~~~

value at regression test time merits careful consideration of

the idea.

D. APPROACHES TO DEMONSTRATING CORRECTNESS

As suggested earlier, testing is a discipline that has been -

learned through application, with little formal basis until

very recently. The first major collection of testing concepts

resulted from a 1972 conference at the University of North

Carolina, the proceedings of which were pub lished in book form -

by W. C. Hetze]. (18). The first significant attempt to establish

a mathematically-based theory of program testing was a paper by

~ f John B. Goodenough and Susan L. Gerhart (17); this theory is

discussed in Chapter II.

In the development of testing methods , two complementary

approaches arose, static analysis and dynamic testing. Methods -

that have been employed in an attempt to show correctness have

ranged from purely static (e.g., formal proof of correctness)

to purely dynamic (e.g., execution of the programs with randomly

selected test data) ,  although usually a combination of the two

approaches has been used.

1. Static Analysis

a. Capabilities

Static analysis refers to a wide range of activities

that can be performed without program execution (although more

and more such activities involve automated analysis of source

programs by software tools). Quite often static analysis is

perfomred prior to live testing to help in test planning and

test data preparation. The technique can in itself detect errors

21 
F

- -  ~
•-

~~~~~~
‘
~~~

__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
__________



____  
- —

~~~~~~~

-- .•- - -•-- --- 

~-~~~r-~-~- 
~~~~~~~~~~~~~~~~~~~~~ • _-~~~~~~~~ -._,_,-- --__- ~~~~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ —-  •~~~~~~-

~~-
- 

~~~~~~~~~~~~~~ —.•-,---- - ---~-

in logic (such as uninit ial ized variables) and questionable

software practices (such as initialized but never referenced

variables). It can also be used as a me:ans of enforcing pro-

• gramming standards.

. 
The most familiar form of static analysis is program checking ,

or desk checking. While automated static analysis techniques

of significant capability are being developed , thorough desk

checking is still an efficient method for insuring software

correctness. When formalized by management in effective peer

review or structured walkthrough policies , program checking is

“very effective” in reducing errors (1). Program checking can

detect syntax errors , undeclared variables , unreachable program

segments, etc.

j  
. Directed graphs of program control flow and data flow are

~ • common tools of static analysis , and are the basis for the path

• 
analysis techniques of dynamic testing. Graphs of data flow

lend themselves to detection of errors in initialization and

referencing of data. Control flow graphs provide visual evidence

-

• 
- of program adherence to structured programming practices andj offer several measures of program complexity . Considerable study

of the relationship between program structure and complexity

and resultant error characteristics has been conducted at the

• Naval Postgraduate School (most recently reported in Ref. 33).

• A strong relationship has been found to exist between complexity

and errors , suggesting that complexity measures may be used to

establish programming standards (note that constructs of

1 -structured programming have lower complexity measures than

22



,~• • 
~~~

fl

•- • 

11~ ~~~_::~~~~
“TT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _

non-structured constructs) and to indicate how to allocate

[ 
- scarce testing resources.

— 
b. Automated Aids -

Particularly when dynamic testing is to be performed

with the number of paths tested as a criterion , static analysis

- 

techniques are used to aid in developing test cases, frequently

by automation. Fairley (12) suggests that static analysis

• algorithms (including cross-reference tables, numbers of

occurrence of statement types, number of subprogram . calls, graph

analysis , etc.) can and. should be included, in compilers .

Ramamoorthy et al. (32) discuss the techniques and problems

involved in automated generation of test data inputs selected

to sat isfy varying requirements for coverage of the branches

of a program graph , and describe a prototype genera-tar included

in their Fortran Automated Code Evaluation System (FACES).

c. Limitations

Whether test data is generated manually or by auto-

mated means , there is unfortunately no reliable way of automating

j the computing of the correct output. Needless to say , dynamic

testing presupposes a known (or at least bounded) output, and

- specifications must be available for each program tested. A

limitation in the degree of testing which is feasible is fre-

quently imposed by the difficulty of determining the desired

j ‘ output.

A serious limitation of static analysis , and particularly

of test case generators, is the decidability problem (12).

Algorithms may be easily written to identify all syntactic

23

_ _  
———~~~~~: •~::::: •~~ •~li 

—— - — - —- 

•
~~~~

‘-- - —--— . • -
~~~~~~~ 

• - - -  ~~c---



______ 
—

~

- -

~~

—

~

-

~~~
--- -

~~
-
~~

-— --- - —~~~~—-~~~~~~~ --~~--~~~~~—--— —‘-..• ~~~~~~

paths of control flow in a program , but it is not possible to

algorithmically de termine the semantic paths (those syntactic

paths which can in fact be exe cuted for some set of input data) .

Therefore it is not possible for all programs to determine

whether some statements (includin g termination statements) can

be executed for any input data. In these cases dynamic testin g 
-

or the more difficult technique s of symbo lic exe cution or proofs

of correctness are often used to decide -the question .

2.  Dynamic Testing -
- -

• Dynamic testing is the process of actual program execu-

tion to provide evidence upon which some conclusion may be

reached as to the correctness of the software . Applications

of theoretically-based testing methods (as described in Chapte r

II? have not yet countered Di jks t ra ’s pronouncement that “Program

1’  testing can be used to show the presence of bugs , but never to

show the ir absence ” (10). Nonetheless , dynamic testing has

been and will remain the most commo n evidence pro ffer ed to show

program correctness or reliability .

a. Selecting Test Cases

The critical activity during dynamic testing is the

selection of test cases. Intuitively it is desirable to select

a se t of tes t cases wh ich are represen tative of the actual input

domain the program will have to contend with during operation. 
-

-

The principle guide in selecting test cases has been to test

j for the l ikely kinds of errors in the program , par ticularly in

the program modules deemed most critical to proper program

operation . Since it is not possible to anticipa te all the

24

_ _  

•
~~

•

~~~~~ 

- r



possible errors , it is unlikely that this principle alone can

be relied on to select a suitable set of test data. Selection

of a data set truly representative of the 
•
input domain is parti- -

cularly difficult without knowledge of the internal structure

of the program (i.e., when doing black-box testing), becaus e it

is then impossible to distinguish data that are treated similarly

internally . Knowledge of the program structure can be used to

identify the complex portions of the program which should be

• subjected to the most thorough testing, and to he lp identify

the group s of data tha t are handled similarl y and thus aid in

selecting those cases representative of certain subsets of the

input domain. However, use of this knowledge is of limited value

in that there is no certainty that the program structure is a

correct representation of the conditions required for correct

operation of the program (16).

b. Thoroughness of Tests

The thoroughness of test , or degree of test coverage ,

is intended to provide a measure of the reliability of the

testing process. The more thorough the test , the less probab le

that undetected errors remain . Unfortunately , no perfect quanti-

tative measure of test thoroughness has been recogn ized , although

it is clear tha t the cr iter ia used to selec t tes t cases wi ll

determine the thoroughness of test.

Typically, estimates of test thoroughness have been based

on a count of the source statemen ts execu ted or the program

control paths traversed. While a test which causes the execution -

of all program source statements may appear thorough , there are

— - - - .-

~~~~~

— 

25

I, - — -
~ 

—- •  
~~~~~~~~~~~~~ -“•- -‘ - •-~~~ --. - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -



,~~ 
,
~~~

- - - - — - ~-~~~~~~ ---------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~ -- --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- • numerous coun terexamples which demons tra te the actual lack of

thoroughness (for example , in Ref. 22). Since there are typically 
-

an infinite number of possible sequences of statement execution,

any finite tests which execute each program statement at least

once cannot be said to have tested all possible sequences, and

thus may - fail to reveal all program errors . The path analysis

strategy of dynamic testing involves execution of selected con-

trol flow paths in the program under test. Because the number

of control flow paths may be very large or infinite - (due to the

presence of loops) , practical path analysis strategies are

l imited to exe cution of some subset of the total paths . Huang

~defined. a “minimally thorough” test as one which caused at least

one traversal of every branch or arc in the program ’s control

flow graph (flowchart) (22); however , such a test cann ot assure

detection of all errors. In fact there is no agreement as to

what an adequate measure of thoroughness may be (traverse each

arc twice , traverse all possible arc pairs , etc.). Nonetheless ,

it has been shown that for many programs (65% of a small survey

of eleven programs conducted by Howden), path analysis criteria

are “almo st reliable” (21). Given the alternatives, testing

based on path analysis is today a sound choice, particularly

when accompanied by careful program checking and a structured

walk-through of the design itself.

• The discussion in Chapter II of a theory of testing further

examines the critical matter- of thoroughness of tests.

c. Automated Aids

Automated aids to support dynamic testing include

iii 26

-_ _ _ _ _ _ _ _ _ _ _ _ _

______________________ ~~~~~
— ——



the experimental test case generators discussed in the section

on static analysis , and programs which compute the degree of

coverage of the program graph according to the given path analysis

criterion. Pimont and Rault (31) describe an implementation of

such a technique, with a more ambitious coverage criterion than

most of the path analysis techniques.

• The insertion of software counters in the target branches,

a relatively simple form of program instrumentation for testing,

assists in test data selection by providing feedback as to the

coverage obtained from each set of input data (22, 23). A common

form of program instrumentation is the use of assertion statements

expressing the relationships among data wh ich should hold at

various nodes in the program. During execution the assertions

are evaluated to check their validity. Program instrumentation

• can also be used to perform data flow analysis by setting state

flags as variables are defined, referenced, and- undefined, and

noting any illegal state transitions. Program instrumentation

requires much of the information normally available in a compiler;

therefore it is becoming a feature of experimental test facilities

that program instrumentation be performed as a compiler option.

More extensive instrumentation of the source program is

involved in execution analysis or execution histogram systems.

Such systems have as a goal the creation of a data base of pro-

gram execution information that can be output in batch fashion

• 
. 

or remain available for interactive query . These systems facil~-

tate source language debugging , can provide con trol and data

-

• 

flow information, environmental information, assertion checking,

27

- 

- — 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 
- -.-.i

—
~~~~~~

-- 
~~~~~~~~~~~~ ~~~~ 

— 
-“ 

-

trace.backs , etc. The information can aid. s tat ic  analysis and

dynamic testing (path analysis or other). There are drawbacks

to these systems: very high cost, both in development and use,

lack of generality (machine and language dependent usually) ,

and the attendant problems of handling the large data bases that

can be created. Fairley describes an Interactive Semantic

Modeling System (ISMS) implemented experimentally for application

to Algol 60 prgrams (11). The Naval Sea Systems Command has

successfully used a software processor AUDIT to aid program

verification and to monitor adherence to structured programming

standards (71).

Program instrumentation in most cases involves modification

• of the source code , and generally incurs an unacceptable per-

~~ • formance penalty (as does the evaluation of assertions). There-

fore it is common to remove such instrumentation from production

programs , and to repeat dynamic testing with the optimal set of

test data to ensure that program performance remains correct.

— There are two simpler automated aids to dynamic testing

that should be mentioned. Generators of random test data are

not uncommon; although random data do not generally provide a
• 

thoro ugh tes t, they are easy to obtain. While automated compu-

tation of the expected results of tests is not feasible (because

such computation amounts to automa tion of the function of the

program under test and is the object of verification), automated

comparison of actual results with the expected results is practical,

and useful as a labor-saving aid. The expected results are

• typically computed by hand or determined from historical data,

28

Li — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~c~~~ —’ -.
~~

-- - -
~~~~~

or bounds defining reasonable results are established if compu-

• tation is overly difficult.

•d. Limitations.

Limitations to the effectiveness of dynamic testing

at ensuring the correctness of software were evident in the dis-

cussion of the difficulty of determining a reliable measure of

‘test thoroughness . An additional drawback to any form of dynamic

testing is the cost both in time and resources.

Testing or verification techniques include several indepen-

dent or even contradictory methods , due to the infancy of soft-

ware engineering and program testing theory. The rationalization

of this apparent inconsistency lies in the realization that,

given the presen t unders tanding of sof tware , nearly every soft-

ware development is a unique and individual design. Cerification

of such programs requires the testing team to be familiar with

a variety of testing methods and tools , and to judiciously apply

those which seem best suited to the task at hand.

t 
~~~~~~~~~~~

• 

29 j



- ~~~~ —— _w -~~~~~~~

-. 
-

- It .  NATURE OF THE PROBLEM

- 

A. A THEORY OF TESTING

As alluded to in the firs t chapter , a tentative theoretical

I basis for the testing of software has been formulated by Good-
- enough and Gerhart (17) . That theory is capsulized in this

section.

1. Types of Errors 
- •

Testing is a process of collecting and analyzing evidence

relating to the presence of errors.  To reach a meaningful con-

clusion as to the presence of errors , the nature of errors must 
-

F ~ be clear. On a logical basis, errors can result from failure -

in implementing the specification (construction errors), fa ilure

• of the specification to accurately reflect the design , failure

of the design to adequately solve the requirements that are under-

stood , or failure to identify the real requirements . Each of
- 

these logic errors will ul timately appear as an inappropria te

effect produced by the implementation , namely as:

a. missing control flow paths ,

b. inappropriate path selection, or

• c. inappropriate or missing . action on a path.

• 

• Recognizing the types of inappropriate effects that may be

caused by errors , the problem in testing is to select test cases

that can show that these errors do not arise. As mentioned ear-

• h e r , a common criterion for selecting test data is to choose

— data which will exercise each arc or branch in the directed graph

- • - representing the program at least once. Because logic errors,

• 1 
_____ 

30

• ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



particularly specification, design, and requirements errors , may

be manifested by missing paths, it should be obvious that this -
~

criterion alone cannot select test data that will thoroughly
- - 

test a program.

2.  Criteria for Test Case Selection

Goodenough and Gerhart defined an ideal test as one which

• succeeds only when a program contains no errors. They defined

two predicates about a criterion C for ielecting test cases that

if satisfied are sufficient to establish tha t any comple te test

is an ideal test (a complete test is one using the criterion C

- •: to select a set of test data T wh ich are subsequently used to -

dynamically test the program). These predicates , RELIABLE(C)

and VALID(C) , are defined as follows. A criterion is reliable

only if all comple te tes ts yield the same (no t necessarily

accurate) result;  that is , if one complete . test ±s successful

• (no program errors are revealed) , •then all complete tests must

be successful , and if one complete test reveals an error , all 
-

-

mus t reveal that error. Reliabili ty of criteria refers to con-

sistency ; using a reliable criterion , a second complete test is

redundant as it can provide no new information. A criterion is

valid only if for every error that can exist in a program there

is (at least) one complete test that can show the presence of

the error. -

The concept of reliability of a criterion for selecting test

cases is not to be confused with the earlier definition of soft-

ware reliability as a measure of the extent to which programs

satisfactorily perform their intended functions.

31

J ! T~I~L-~••  ~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  

---~~~~~~~~~ -. 
_____________



~~~~~~~~~~~~~~~~~~~~~~ ‘“ 
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-•- — -‘

- _ _

The fundamental theorem of testing that Goodenough and Gerhart

have suggested is simply that there exist some criterion C for

selecting test data and some subset T of a program’s input domain

D such that when it is shown that a test using test data T is

a complete test and that the criterion C is both reliable and

valid, then success of the test implies that the program is

correct.

Stated formally,  the theorem is:

(~ TcD) (3C) ((COMPLETE (T ,C),%RELIABLE (C)

r~VALID(C) ~ SUCCESS FUL (T) ) ~~ C~’dLD)OK(d)],

• where COMPLETE (T ,C) is a predicate indi cating that the test T

is complete according to the criterion C, and OK(d) is a pre-

dicate indicating that program execution with the element d

from the input domain D produces the results required by the

program specification.

• The theorem is not profound; its proof is simple and is

assured by the convenient definitions of reliable and valid

-
• criteria. If there is some complete test capable of revealing

any error (valid criterion) and. if all complete tests yield the

same resul t (re liable cri terion) , then clearly any comple te

~; ~ test based on a valid and reliable criterion must correctly

demonstrate the presence or absence of errors.

For the skeptic , a proof of the theorem may be written as

follows:

- As to the existence of such a T~~D and criterion C, either

the program is correct or it is not. If it is correct, then a

criterion C such that a complete test T is {d}, where d is any

32



- •  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-F ~~~~~~~ 

— — — —

~ 

—- 

~~

- - - --

element of D , will sat isfy the theorem . If the program is not

correct,• there is some element dE.D such that —,OK(d). Then a

criterion C such that T— {d} is a complete test. In- either case,

the required conditions are satisfied, and the criterion and

test set exist (the challenge for the program tester is to dis-

cover them).

• - As to the theorem ’s implication, assume the truth of the

hypotheses and assume (~dtD) -~~ OK(d); i.e., assume the theorem -
•

is false.

- Then VALID(C)*(3T~D) [COMPLETE (T ,C)i\ ‘ SUCCESSFUL (T)3.
- Then RELIABLE(C)~~ ”all complete tests fail.”
- But this contradicts an hypothesis of the theorem , namely

(3TSD)SUCCESSFUL(T). -

• - End of proof.

Use of the theorem is not an easy matter. A criterion for

selecting test data must be chosen and that criterion must be

proven reliable and valid . Techniques using dynamic testing to

“prove” software correctness will be practical only if the proofs

of criterion reliability and validity are simpler to construct

and at least as convincing as proofs of program correctness.

The experiments reported in this thesis examined some aspects

of applying the above theorem .

B. SATISFYING THE PREMISES OF THE THEORY

1. Formal Proofs of Correctness

A degenerate application of the above fundamental

theorem of testing is selection of a criterion C such that a

complete test is complete only if T is the null set; in this

33

LI -
~~~~~: 



-

case, no testing is done. The criterion C is clearly reliable

since there can be no tests. To show that C is valid (any

I ~ possible program error will be revealed -by at least one comnlete

test), it must be shown that the program has no errors at all.

Application of the theorem with such a criterion is therefore

equivalent to a proof of program correctness. Such a proof

was constructed for the sample prog~am of this thesis (chapter

IV, Section B).
- 

2. Symbolic Execution —

Symbolic execution is a technique whereby symbols are

used as input values rather than real data elements and the

program is symbolically executed by replacing all data operations

with symbolic operations . Intermediate results then are compu- 
-

. tational expressions of the input symbols rather than data

I - 

objects. In the case of conditional branching in the program, 
-

logical statements on the input symbols , called path conditions ,
• 

describe the conditions under which a given control path may be

traversed. Program correctness is shown by proving that at

termination the constraints of path conditions imply that the

computational expressions of input symbols are equivalent to
— - those required by the program output specification. That proof

- 

- 

and the required proof of similar intermediate theorems con-

stitute a general theorem-proving problem ; automated theorem-

proving capabilities are currently quite limited , and proving

-: . 
the theorems by hand is quite tedious. This drawback restricts

• the practical use of formal proofs of correctness as well. A

system for symbolic program execution is’ described in Ref. 8.

- 

~~~~~~~~~~ _
_--:---

~~~~~~~

- ..- 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ~~~~~~~~~~~~~~~~ -

~~ 
?nr~~

�_v~~~~rr, . —r~~~ 
- -

~~~~ 4L— - ,,‘r.r ”r h 
- -

~~~~~

- V 
•

Symbolic execution is related to the theorem of testing •in

that the criterion C is to choose input symbols satisfying the

program ’s input specification ; to show the reliability and

validity of C, it must be shown that the output specification
of the program can be expressed as a computational expression of

input symbols and that the intermediate expressions are valid

over the entire domain of values for input symbols.

The technique of sumbolic execution was not directly applied

in these experiments ; however, the experiment using test data

execution and the principle of distributed correctness (chapter

IV , Section C) relied on some of the ideas of symbolic execution.

3. Test Data Execution

Clearly one ideal tes t is execution of the program for

every member of the program’s input domain. Since most input

domains are infini te , this test is usually imposs ible and near ly -

always prohib itively cos tly, and can therefore hardly be called

ideal in any practical sense. Goodenough and Gerhart used in

Re ference 17 a “condition table method” to select test data for

program execution. -While they were not able to conclusively

prove the reliability or validity of this method as a selection

cri terion , they attempted to show that they did identify equiva-

lence classes covering the input domain of an example program

and choose a representative of each class which by induction

tested each member of that equivalence class. The condition

table method was incorporated in an experiment of this thesis

in conjunction with the distributed correctness principle.

I

1  

35

f. —•--- - -- 

~~~~~~~ —~~~~~ -- ~~~ “r~-s—--~~~-— — - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- 
-



T~ ~~~~

Test data selection techniques such as path analysis and

independent sub-structure analysis are also attempts to identify

equivalence classes in the input domain, while again only in-

formally trying to establish criterion reliability and validity.

These techniques were used in the experiment reported in chapter

IV, Sections D and B; in each case, however, it was not possible

to determine whether the equivalence classes identified actually

covered the input domain until contparisân with the results of

other experiments .

36 

- -
~~~~~~~~~~~~~~~~~~~~~

-
~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I I I .  EXPERIMENTAL PROCEDURE S

An example program was selected for experimentation , and

several verification methods were applied to demonstrate the

correctness of the example program The hours of effort required

for each method were recorded and qualitative assessments were
made about the degree of difficulty of using each method. The

example program and the methods employed are described in this -

chapter; the actual results and a comparison of the methods is -

presented in the next chapter.

A. THE PROGRAM AND INTUITIVE TEST DATA

1: 
1. Origin and Description

Reference ZO is a report of an experiment in software

error occurrence and detection conducted at the Naval Post-

graduate School. Four programming projects were undertaken and

data were recorded on the man-hours expended in each development

phase , time of detection and occurrence of errors , and man-hours

expended correcting errors . Errors were classified according

to the development phase in which they occurred and by descriptive

• types , and were analyzed with respect to development phase,

correction time, and program complexity . 
-

Project number one of Reference 20 was chosen as a program

-- - . 
• 

for experimental verification . The subject program reads and

processes a variable length string of text characters , recording

all occurrences of- palindromes (sub-strings which read the same

forward or backward), including overlapping palindromes and

• omitting palindromes entirely included wit,h another. The program

37

I ‘I  
____ 

____________________________________________________________hi - 

. - - 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—‘- — 

-



— 
— -‘, —-- —j —

~ 
—,.-

~
---—- ,- —,

~‘ 
w~~~~ —,,~~—~

---- ~~~~~~~~~ — ~~~~~~~ —..--~ .--w-— - - - —---,--—

— 
I ~~~~~~~~~~~~~~~~~~~~~~ • —--• - - — - - -

~~~~

I

was written in Algol-W to run unde r OS/MITT . It contains 141

source statements and consists of the main program and ten

procedures , five of which are significant to the palindrome -

finding algorithm; the remaining five are called to print the 
-

results. The original program development required 5.0 man-

- 
hours in the design phase, 7.0 in the coding phase , 4.0 in

debugging, and 5.8 hours in the original testing phase.

2. Program Listing 
- 

-

Figure 1 is a listing of the palindrome program .
-

• P

T

I

-

- 

I 

38

I. 
— 

~~~~~ - - -
~~~~~~~~~~ 

• 
-
~~~~~~~ 

—- - --— — 
~~~~~

— -
~~ 
-

— -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~ —~~~m



r ~~~~~~~~~~~~ 
— —---- ———----

~~

- 

~~~~~~~~~~~~~~~~~~ 

, —

~~~~~~~~~~

--- ----

~~

I 

- - - -- - ----- 0 -

begin
co snt Thi. prograu finds palindro ... within a chsr.et.r string

of ..xi I length 256 .
• M inimun string length 1. 2.

• A l l  input card . w i l l  be l i s ted .
The pro gra . w i l l  pr oduc. a l is t of only those p*llndro...
which are not entire ly inc l uded in a lar ger pa lindro me ;

• 
co ent data d.clars~~~ na;

— .tr ing( l) arr ay t ext (l : : 256) ; co ent contain . character
string ;

atring(8G ) c.rdbuffer ; co ent i~ o buffer for card. ;
integer arm y begin_ of_palindrome . en of_p .1Lndro.s( l~~~256);
integer c a r dl i t si t,  leng t h_o f~~t .xt , bu f fe rpos lt ion .  o.r4..,count.r ,

pal indroms_counter ;
integer ix , jz ; comeent index var iab les ;

comment I n i t i a l iz a t i o n ;

procedure in itialize ;
co mmnt initialize all variable ., read length .of_tez t ,  wr i t e  t ext i ;
begin

- t e x t i ;
jx~~ l;
palindro me_counter : 1;
card l imit :  280 ;
intf I. Ida ize :25;

re.d( leng t b...o f_ text);
if ((leng th_ of_ text < 2) or (lengtb.of_ t .xt > 256)) then

begin
write ( ‘Illega l i nput :’,

f 
length of input string is: • , Iength..of_tozt);

a..ert (falae);
t end ; 

-
‘

card buffer :~~~ 
U ;

• end initial ize ;

comment u t i l i t i e s ;

j procedure blank_lines ( integer value n) ;
comment write n blank line.;
begin
Integer I; comment loca l counter ;
assert (n>0) ; comment erafoty check:
for 1 :21 step I until n do wrl te(’ •);
end blank _ lines :

procedure texti;
begin
write ( ’Flnd all palindrome, within the follow ing atring ’);
blank_ilnes (2) ;
writ.( ‘Card Text’);
write ( ’liua,ber ’):
blank line .(l);
end tex ti ;

4 . FIGURE 1
Page l o f 4

PROGRAM LISTING

U 39

-• -- 

—--- - 
-- - -• - - - .p. .—~~~’ ~~~~~~~~ 

--
~~

--

~~~~~~~~

T - : ~~~~~~~~~:~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



—~~~-— - - —-~~~~~~ --- - - 0~~~ 0

procedure tezt2s
begin
blsnb._1Ime. (2);
writ . ( ’Th. fo l lowing pa l indrome. ha~’. been de tec ted :’);
bl ank...llae.( 1);
writ.(’Palipdrome Begin End’) ;
wri t e (  ‘Number Card Cha rac tir Curd Charac ter ’) ;
wrtte( ’ Number Position Number Posit Ion ’);
writ .(  ‘ —— ——~~~~~ — — — ~~~~~~~~~~~~~~~~~~~~

‘
~~ ;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
end t.xt2;

procedure t.zt3;
beg in
writ .( ’No palIndrome s found . End of run . ’) ;
end text3;

procedure read_and...wr i to_input_card. ;
Comment read Inpu t card. according to given lfngth_ of_ tezt s
begin
Integer nu.ber_o f_input_cards ;
nn.ber_of_lnput...oards~~ (leng th_ .Of~ teXt — I) divcar dli.i t + 1;
j gsa  1; comment rese t text index;
for card_counter 2l step I until number_ of_ input_ card , do

begin
un te(c.rd...counter);
writeoa ( ‘
r.adeard ( cardbuf for);
un teon (cardbuffer);

• bu f f e rp oe it t on 2l; comment rese t index;
whi le ( ( L x ( * leng t h_ of_ text )  and (bufferpo .ition<card l imit)) do

begin
text ( Ix) :sca rd b u ffer (bu fferposit ionl  1) ;
1 x 2  Ix+ l ;
bufferpo . I t ions 2bufforpos It ion+ 1;
end ; comment done for a l l  characters on a card ;

end ; comment done for a l l  card. ;
end read_and_un Ite_ Input_ cards ;

procedure write_ all_palindromes ;
comment list .11 pa l Indrome. being found s
begin
Integer l .j ;  comment local count er. ;
text2 ;
for 1 2 1  step I until jr— i do

begin
If end_of_pe l ludro.is(i) .2~~ then

begin
write (palindrome_ coanter ) ;

- 0 wr i t eon ( ’ ‘) ;
wrIteon (((begtn....o f_pal indrome (i)~~l) d lv  c a r d l l m i t )  + 1) ;
writeon ( ‘
If (begin_ o f...pellndrome (i) rem car d liml t 2 0) then

writeon(card l im it )
e i.e

wrlteon ((begin~of~ paLlndrome ( I) rem cardli m it )) ;
writeon ( ‘
wri tnon (((end_ of_ pallu drome (L )— 1) dlv ca rd llml t ) + 1);
wr i teon (  ‘ ‘)

FIGURE 1
Page 2 of 4

PROGRAM LISTING

40

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
— —-- - ——- — -

~~~~



- —~—— --
~~~~~

-
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

-
~~—~~~~~

-— 
~~-~~~~~~~~~~~~ ----- ~~~~~— -~ -~~~~~~~

if (end...of..p .li*droms (i) rem c.rdl lmit ‘0) then

t 
writeon (oardlii*it)

e lse
writeon ((end.. .of_paiindro .e (i) rem cardlimit )) ;

unit.(’ “I- ;
• for j:sbegin_o f_palindrome (i) step I

un t i l end...of_pallndroiss (i) do wniteon ( text (J)) ;
write ( ‘ —
wrI t.on( ‘~~~~~~~~— — ~~~~~~~ —— —— U )

b 1ank~ 1 ine.(l);
$ ‘pa l indrom._coanter+ 1;

end; comment end If;

• end ; comment don. for all palindr omes;
-
~ end wri te ...all_p . l lndromes ;

comment subro utines ;

prec.dure palIndrome_check ;
commsut f ind  a l l  pa lindromes wi thin give n text s t ring ;
begin

comment scan text from left to right ;
for ix :a2 •tep 1 until leugth_o f~ text do

begin
if text ( ir-l) 2 text ( ix) then continue ..checking (( iz—I), lx);
I f  ix d2 2 then

if text ( Ix—2)~~t.zt( ix) then coat inue_checklng( ( ix- 2) ix);
end ; -

end pal lndrome...c heck;

procedure continue_ c hecking (integer value firs t . la .t ) ;
commen t GI ven f i r s t and last as pointers to a palindrome

of s ize  2 or 3, this procedure check. whether  or not this
palindrome 1. inc luded in a larger palindrome;

begin
logical pal indrome ;
pallndrom . ’true ;
while ((first> 1) and (last< length_ of_ text ) and (p.lln dr ome tr ue)) do

begin
If text (tirst l) 2 text ( Ia• t+ l)  the n

begin
comment lar ger palindrome found ;

• f i r . t : *f l r . t - 1 ;

end
e lse

begin
palin d r o.e :Sfa lse ; comment larg est palindrome found ;
end ;

end ;
re cord _ pal indro m.(f lr . t ,  last);
end continue_ checking ;

- I
FIGURE 1

Page 3 of 4
PROGRAM LISTIIiG

41

- —



[F 
— —  

~~~~~~~~~~~~~

— -

~~~~~~~~~~~~~~

—

~~ 

-

procedure record_palindrome (integer va lue flrst,la.t);
co ent Becord only mex length palindrome.. Fla g previously

recorded palindrome. if they are included In the palind rome
specif led by first and last .
ji was I n i t i a l i z e d  to 1. Af ter  completion Jr points to the
next entry in begin_ of_palindrome and end_ of_palindrome;

beg in
integer I; comment loca l count er;
logical entry ;
entry ’ true;
for l:’l step 1 unt Il jr-I do

begin -

if ( (f i r . t )u begIa _ of_ p a l IP drom e(i))
and ( la.t<’.nd_o f~_pslindr ome( I ) ) )  then
begin
comment Pa l indrome i. entirel y included In a pre vious ly

recorded palindrome . No entr y r sqnlred ;
eatry ’ fa 1.. ;
end

o I.e
begin
if ((begin._of_palindreme (I) >‘ f irst)

and (end_of_pslindrome (i) (‘ last)) then
begin
end_of_pa l lndr ome( I ) :~~0;
co ent (lag smeller palindrome;
end ;

end ;
end; comment All previously recorded palindromes

• - compared with law t input ;
I f  entr y a true then

begin
comment large r than all previou. or overlapping or disjoint ;
begin_o f_palindrome (Jx) :‘first;
end_of...palindro me(J x) a last;
J x~~ jx+i;
end ;

end n.cord_pallndrome ;

Comm ent m m m i

0
• 

in i t ia l iz e ;
0 read _snd...wr I t ._input_card s ;

pal in4ro..~check;
if J x i  then t ext3
e lse un i te _ a l l_ pa l indromes ;
end .

FIGURE 1
Page — 4 of 4

0 PROGRAM LISTING

~

— --- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r — 
—

~ 

~~~~~~~~~~ - -

3. Program- Graphs
-
‘-

Figure 2 presents the control flow directed graph repro-

sentations of the significant procedures of the example program.

The graphs, originally presented in Reference 20, are annotated

with key-words indicating the structured programming constructs -

comprising the decision nodes, lower-case letters which label

• the arcs, upper-case letters representing the counters placed on

the individual decision-to-decision paths for path analysis, and

with complexity measures of the procedures. The complexity

measures shown are defined as follows: 
-

a. The number of statements is a count of the source

code statements in the procedure.

b . The number of nodes is a count of the nodes in the

control flow graph. Nodes are points of starting , stopping, 
0

branching, or merging of control flow; i.e., decision points.

c. The number of arcs is a count of the arcs in the

graph. Arcs are concatenations of zero or more program state-

• 
ments with no decisions except at the nodes.

d. The cyclomatic number of a strongly connected graph

is equal to the maximum number of linearly independent circuits

(27). A program control flow graph with one entry and -one exit

such that each node can be reached from the entry and such that

the exit can be reached from every node can be considered as a

F- -, 
- strongly connected graph with an imaginary arc from the exit

node back to the entry node. For such a control flow graph the

cyclomatic number can be variously interpreted as the maximum

number of independent paths, one more than the number of predicate

43 

~~~ • • .

0 - -~ - • --~~- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--



—~-.——...,— .-~~~ ..—---_- - ~~~~~~~~~~~~~~~~ _ _ _ __~_~~~ _•_._._ ‘-___
•.—~,•

-,—--,——, —_,_ ---

- -me------ - ---- - - -

nodes (nodes with more than one path leaving), the number of

regions in the graph (plane graph with no arcs crossing), or
the number of arcs minus the number of nodes plus two (27).

The experimental method described in Section E of this chapter

makes use of the cyclomatic number. _ 
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-~~~~ - 

~~~~~~~~~~~~

—

~~

-

~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Procedure:
INITIALIZE

— Number of statements: 1L~
Number of nodes: 5
Number of arcs: 5 

- 
-

Cyclomatic number: 2

iT
• / 4,a

/ 1 .
-

• - I ( 2 )
A

L
I 

I

• 
A 4~b

-
. . \ 14T

1 -  \
\ C

5

FIGURE 2

Page lof 6

. 

PROGRAM GRAPHS

I

1 1

4-
- I  

_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _  ---- —--—- - - ---



_____

-~_~~~~_ _ _ _  
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~-- 

~~~~~~~ —-- -_- 
~~~-

- - - - -

Procedure:
READ AND WRITE
INPUT ~ c~ os - —

t Number or statements: 18
Number of nodes : 6
Number of arcs : 7
Cyclomatic Number: 3 -

.f
~
) -

/ wa _ - —

H /

I. for
I 2

A
b

B
wh ie

h’ f 3

~~~~~d c

i— . E

D

\
\

\ 

5

\

6

FIGURE 2

Page 2 of 6

PROGRAM GRAPHS

46

— —_—_—- —
~~~~~~~~

— ---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—



- — T -  —

Procedure : -

PALINDROME CHECK
Number of statements : 7
Number of nodes : 10

9 
Number of arcs : 13
Cyclomatic number: 5

LI

a1 \n

~~~ ~~~~~~~

7 l f c

-,

4% Gte~~~~~~)

T~~~~~-4~
-
~~~~~~ (6 F~~~~\ K J g

\ T J’f’k T7)

FIGURE 2

Page 3 of 6

PROGRAM GRAPHS

Ii
47 

-- 
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.
- - - ~~~~~~



r ~~~~~~~~~ ~
r_ : 
i

~
T

~

•

~~~: ~~~~~~~~~ 

— 

~~~

- . 
-

~~~~~~~~~~~~

Procedure:
- CONTINUE +CHE CKING

Number of statements : 15
Number of nodes : 8
Number of arcs: 9
Cyclomatic number : 3

• 

- 

1

• a
while

2

g
~~~~~~~~~~~~~~

3
if~~~~~~

h

1

~~

FIGURE 2

Page4of 6

- 
. PRO GRAM GRAPHS

I

48I l l  
_ _ _ _ _ _  

_ _ _ _ _ _  

-

- 
- —-  _____________________ - - 

~~~~~~~~~~~~~~



- - —fl----- — -
~~ —,,.~~~~~

-- -. - • _ ~~~~~~~~~ -
~~~~~~~~~~~~~~~~~~~~~~ , -: -~~ - r  - ‘ ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •__~~~ -• ~~~~~~~~ 

••

Procedure:
RECORD’~ PALINDROMENumber of statements: 2].

Number of nodes: 10
Number of arcs: 13
Cyclomatic number: 5

- Q

- ,-L~for\ 
-

T~~
Y I . \  \

,li  ~~~~~~~ \
I ( 3 ) ~~ \

I \
/ ek( \c \

if/  \ \ \

f 
~

— j
(6 T ’ ~’\ — ~~ h j~~~~~~

P I
/ 1
I

/
if,—~.

/

/• 
~~ S’~’~~\
A T  m ) ~.~) ,-I J~

FIGURE 2

Page Sof 6

PROGRAM GRAPHS

49 

— -—--- — —~• - ~ -• •~~-‘--—--~ - 
-.--=-—-— 

~~~~~~~~~— 
—_ —

~~
—-~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



- ~~~---~~~~~~
_
~ 

- -- 
~~~~~~~~

__
,~~~~~

-- .
~~

-
~~~~~~

_,-
~
— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-,- —---.-

Procedure :
I MAIN

-~ Number of statements : 6
Number of nodes : 6
Number of arcs-: 6

• Cyclomatic number: 2

• 
. -1

L
- -

FIGURE 2

- 
P a g e 6 o f 6

PRO GRAM GRAPHS

50



• Forty-four errors were detected during original program

development. Error descriptions by type are recorded in Reference

20. Table I presents the errors (using Hoffman’s original error

numbering) which could be directly related to a particular pro-

gram fragment.

TABLE I -

SELECTED ERRORS

Error
Number Procedure Description

1 read+and÷write... Need for 256-character variable
“text” in addition to an 80-

,J - 

- character buffer noted.
1 3 initialize Syntax error.

4 initialize Syntax error .
35 palindrome~ check Error in limits to counter of

for statement.
36 palindromei-check !~Tiising “if ix~—2” resulted inindexing error at run.
37 initialize “jx” not initialized; resulted

in indexing error.
42 initialize “jx” initialized to 0 vice 1.

5. Intuitive Test Cases
— After a first examination of the example program and

before commencing any of the verification experiments , a set of

test cases was selected by intuition which appeared to test the

program ’s handling of all conditions significant to proper

program operation. Those test cases are listed in Table II.

The intuitive test cases were used for conducting additional

dynamic testing after completion of the experiments using the

methods described in the remainder of this chapter.

51

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1

- - 
- - TABLE II

- 
- - INTUITIVE TEST CASES

Test String - String or
• Number Length String Descr~ption

1 2 “xx” - length 2 palindrome
2 3 “xyz ” - length 3 palindrome
3 1 

- 
Invalid string length

4 257 Invalid string length
5 256 A maximum length string containing palm-

dromes of length 10, 9, 6, and 12, of -

which the first included length 3 palm -
dromes at both ends , the second and third
overlapped , and the fourth was written
across an input card boundary.

6 15 String with no palindromes
7 100 Entire string one palindrome
8 256 One max imum length palindrome

B. PROOF OF CORRECTNESS 
_

A method of formal proof of correctness was used to verify

the logical correctness of the algorithm of the example program.

The method required the assumption that the environment in which

the program operates is also logically correct, most particularly

that the compiler and operating system ensure performance -of the

expected semantic actions for the program statements .

References 9,13,.19,25 and 26 were consulted to develop the

methodology for constructing the proof. The work of Floyd (13)

is considered the basis for mathematical program proofs; the
- I - paper by Manna and Waldinger (26) was particularly helpful in an

operational sense, and f-b are’s paper (19) was applicable to the

treatment of procedure calls.

The first step in constructing the proof was to formalize

the required result of the program in a logical statement called

the output assertion , and to describe the restrictions on input

• 52

-- -- • -



rr —_...
~~~~~~

--__--_--- -__—_--- 
• - 

~~~~~~~~~~~~ -

data as an input assertion. Translating the rather loosely

defined purpose of finding palindromes to an output assertion

required significant analysis of the requirements.

The proof itself was constructed using the method of in-

variant assertions- to show- partial correctness; i-se., that when the

t input data satisfied the ir~put. assertion , - the output assertion

was satisfied if the program terminated. Termination of the

program was proven separately by f inding for each loop a set

and an ordering relation on that set such that the set can have

no infinite decreasing sequences (well-founded ordering), and

defining a termination expression which is a member of that

set and which is decreased each time control passes
• 
through the

loop . The proofs of partial correctness and termination together

• 
- establish the “total correctness” (26) of the program.

The method of invariant assertion involved inserting appro-

priate intermediate assertions (also called Floyd assertions) at J
selected labels in the program such that they defined a condition

which would be logically true each time control passed through
- that label (hence the nam e invariant) . At least one intermediate

assertion was inserted on every loop . Corresponding to each

path between assertions a verif ication condition was written . A

verification condition is a theorem of the form <assertion 1>

and < semantic meaning of program statements on path > implies

< assertion 2> . Proving all verification conditions completed

the proof of partial correctness.

The construction of appropriate verification conditions was

aided by using the invariant deductive system described in 

~~~~ ~~~~~~~~~~~ 

— 

~~~~~~~~~~~~~~~~~~~~ 
___



r — — ~~~

- - --- -

Reference 26. The notation (P1 F {Q}, where P and Q are logical

I statements (assertions) and P is a program fragment , is used to

mean that if P holds before executing F and if F terminates , 
-

then Q holds after executing F. Thus the proof of program correct-

• ness is a proof of the invariant statement:
- (input assertion Y program (output assertion}.

Rules of inference were supplied in Reference 26 to provide sub-

goals for proving certain invariant statements; in particular

- there is one rule of inference for each statement type in the

programming language. For instance, the rule for conditional

statement ‘~if R then F else G” is written as:

- (P and RI F (Q}, (P and -‘RI G {Q}

(P 1 if R then F else G {Q}

The notation signifies that proof of the two invariant statements

in the nominator of the “fraction” is sufficient to infer the

-
~ invariant statement in the denominator .

The reference provided rules of inference for assignment

statements, conditional statements , while statements, and for

- 
the concatenation of statements. Additional rules were forinu-

lated for iterative for statements and procedure calls. The

rules are introduced as required in the presentation of the

proof (Appendix A).

C. DISTRIBUTED CORRE CTNESS

J Test cases for dynamic testing were selected using a criterion

j - based on the condition table method of Goodenough and Gerhart

(17) and the principle of distributed correctness described by

54
1 1



— •-•---•,—.-.-‘-• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-
~~~~~~~~

-,—•—-,‘.•—--•
~~

•• .
~
—,

~
-—- ~,—~.~-_.. .•-•__ ~

:-- ----— —‘---• ‘-— •— 
,•_____ — — ,.— -‘~-~~—.— —.———- - — —— - —- ---— • - - -•

~~~ -— -— •—

- ~~~~~~
— - - - —.--

~~~~~~~~~
--- -— - -- -

Geller (14). The criterion was not proven reliable and valid,

but an effort was made to show that the data selected were

representative of equivalence classes covering the input domain

of the program such that correct operation for all data in the 
-

domain could be induced from correct operation for the test data.

As in the proof of correctness, input and output assertions

were stated. At selected labels in the program -(fewer than in

the correctness proof), “synthesized assertions” (14) were in-

serted, similar to Floyd assertions but more general. The syn-

thesized assertions expressed invariant conditions of the program.

A condition table was constructed (if necessary) to analyze all

conditions affecting program . operation from the previous asser-

tion to the one under consideration. Test data were selected

— 
. for each class identified in the table (similar to the decision

rules of a limited-entry decision table), and a “test data

assertion” was stated, namely that execution of the program

fragment with the test data would satisfy the synthesized

assertion. The test data assertion was verified by dynamic

testing. At the same label , a generalization assertion was made

attempting to state the conditions for correct operation of the

program fragment, and where possible the synthesized assertion

was proven from the test data and generalization assertions. In

4 
several cases, however, a basis for verifying the generalization -

assertion could not be found and hence the verification method

could not be claimed to have proved program correctness through

testing . Certainly, however , an intuitive feeling of “high”

reliability and validity of the test case selection criterion

- 1  ~ 

- -

Iij 
- - 

55

— ~~~~~ ~~~~~~~~~~~~~~~~~~~



-,-

~~~

---v 

-

- - —,--

~~

:--
_ 
~:a• - ~~

- - -
~~~~ ~~~~~~~~~ 

— ____

was established.

The principle of distributed correctness was called upon to

infer program correctness from the correct operation of the

distributed program fragments verified by the synthesized

assertions.

0. PATH ANALYSIS

1. - Basic- Technique- -

Path analysis techniques are described in References 21,

22 , 23 , 31 and 32. For the example program , test data were

selected to force program traversal of each arc of the program

control flow graph. Execution of the arcs labeled with . upper-

case letters on the graphs of Figure 2 is sufficient to ensure

traversal of all arcs. Data were selected to satisfy path pre-

dicates for each such ~arc, predicates which describe constraints

on the inputs to ensure execution of the arc. The program was

instrumented with a counter on each labeled arc to count the

number of arc traversals, thus ensuring after testing that no

arcs had been missed.

More stringent criteria could have been applied, but execution

of all possible control paths was not possible since the program

has an infinite number of paths.

2. Extended Technique

The method of selecting test data as described above

was repeated with the additional criterion that each conditional

branching statement with more than one predicate be executed

with each possible combination of truth values of the predicates,

56

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~



r~ 
r i ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-•.-----.-

~

_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~

• - -

thus expanding the class of errors that might be detected by

the tests. Additional path predicates were considered and a

larger set of test data was selected.

E. INDEPENDENT SUB-STRUCTURES .

A method for selecting test cases which is similar to path

analysis has been suggested in References 27 and 33. As applied

herein, the technique was to decompose the control flow graph

of each procedure of a program into independent circuits corre-

sponding to language constructs and to use these sub-structures
— 

as an aid in identifying control flow paths for testing. The

cyclomatic number of a single-entry single-exit procedure is

the maximum number of such sub-structures; these independent

circuits can be identified by inspection for simple graphs or

more generally as follows:

A spanning tree (33) is a connected sub-graph consisting of

all nodes of a procedure ’s graph but containing no circuits. Its

I arcs are called branches. There is one independent circuit

corresponding to each arc of the parent graph not included in

the spanning tree; these arcs , including an imaginary arc from

the exit node back to the entry node, are called chords. As
- 

- 

each chord is added to the spanning tree, the corresponding in-

dependent circuit can be identified.

A matrix representation of the circuits was useful in gener-

ating control paths for dynamic testing from the sub-structures.

A fundamental circuit matrix (33) was constructed with rows

corresponding to arcs (chords and branches); its entries were

57

_ _ _ _ _ _ _ _ _ _ _ _  - -—~~~~~~~~ ----- -- - - - ~~~~~~~~~~~~~~~~~~~~~ 

- -~~-~ -~~~~- k— ~~~~~~~~~~~~~~~~



~~~~~

-
‘ 

0 for arcs not contained in a circuit, 1 for arcs oriented in

the direction of an assumed circuit flow , and -l for arcs

oriented against the assumed flow. Chords were listed on the

left of each row, forming a unit matrix because there is a one-

to-one correspondence between chords and circuits.

The usefulness of the fundamental circuit matrix was that

linear combinations of circuits (the rows) having at least one

arc in common generated control paths useful for testing. Selec-

— tion of paths in this manner satisfied a criterion more stringent

than traversal of each arc at least once, while considerably less

stringent than traversal of all possible paths.

In Section E of Chapter IV, the results of the application

of this technique are discussed. Following the generation of

the paths to be tested, test data were selected to satisfy the

path predicates and dynamic testing was conducted.

58

— — ~~~~~~~
- - -

~~~~~~~~~~ =.~z;— -~~-~~ - ~~~~ ~ ~~~~ I



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -
•
~~~~~~~- . --~~~~~~~~~~~~~~~~~~

- - _ -— - -~~~~~~~~ ,w~~~~~~~~— - -- -
~~

---

IV. PRESENTATION OF RESULTS

A. STATIC ANALYSIS -

Prior to the commencement of the experimental methods , 1.0

man-hours of effort were expended in static analysis of the

- example program. Code was read to check syntax and reachability 
-

of program fragments, and control flow graphs were examined to

check for adherence to structured programming constructs and

to learn- the general flow of the program. No exceptions were

noted in these areas.

j All global and local variables were examined to ensure

proper declarations and to check the transitions among the states

of being undefined, defined and not referenced, defined and

referenced, and an anomalous state (23). No illegal state

transitions were found ; however , two instances of questionable 
-

programming practice were noted. First , the string array variable

“cardbuffer ” is initialized to contain 80 blank characters in

the procedure “initialize” (state = defined and not referenced).

In a data flow sense, the next action performed on that variable

is to re -define it in the procedure “read~an d-~write~ input~-cards ,”

thus transitioning to the anomalous state. Since the variable

is re-defined before being referenced, the initializing of -

“cardbuffer” in the “initialize” procedure is superfluous.
Second, all iterative counters in for statements in the example

program are explicitly declared. Because the Algol-W compiler

implicitly declares such counters , the effect in the example

program is to explicitly declare several variables that are -

59

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --

~~~~~~~

-

~~~~~~

- -

~~~~~~~~~~~

--
~~~~~

-

subsequently not defined or referenced. Although this •is a

shortcoming in style , the superfluous declarations cause no

ill effects other than to waste a small amount of storage.

The verifications performed during static analysis were

required to ensure satisfaction of several assumptions for the

experiments in correctness demonstration, particularly that the

program has no significant data flow anomalies and that the

program is well structured and procedures do not contain

statements leading to unexpected side effects. The two in-

stances of style noted above were not corrected prior to ex-

perimentation. -

B. PROOF OF CORRECTNESS

The detailed proof of correctness for the example program

- is presented in Appendix A. The first step in constructing

the proof was to formalize the output specification of’the

program, a task requiring 0.8 man-hours of effort. It was

desired to prove that at program termination the arrays “begin~-

of~palindrome” and “end~of ~-palindrome ” would contain, correspon-

ding to indices starting from 1, integers representing the

‘beginning and ending characters in the string “text” for all

palindromes in the string , subject to the constraint that

palindromes fully contained within a larger palindrome would

not be recorded. A palindrome initially recorded in the arrays

and subsequently found to be included in a larger one would be

“deleted” by setting the “end+ofi-palindrome” entry to zero.

Overlapping palindromes would be recorded.

60



._~~~ 
----- 

—---——
~~~~~

- ---- _ _ _
i~~~~~~~~~~~ 

_______

The formal statements made for the specification are (“ &“

is an abbreviation for “1ength-.-of~text” ; “bop” and “cop” are

abbreviations for the beginning and ending entry arrays; “jx”

is a counter which is equal to one more than the number of entries

made in those arrays):

Q: Vx ((2<ax< R. A text(x-1)—text(x))~~
. 

-

3y(y<jxAlc.bop (y)<.x_1 
~. x< ieop (y)<~2)J

R: ~/ x ( ( 3 < — x < - L  A text(x-2)=text(x))— ~,

3y (y<jx A l<zbop (y)< sx_2 A x<*eop(y)<=L)]

S: ‘~y((0<y<jx A bop (y)>l A 0<eop(y)d) -~

(text(bop(y) -1)—text (cop (y)+l))]

\Jy~ (Ocycjx i~

(string(bop (y) ,eop(y))hu.ok A bop (y )> — l  A eop(y)<=L

‘~~z( ( 0<z < ~ x A ‘( z— y) ) =>

( —v (bop(z)~’bop(y) )

A (bop (z) -(bop (y) ~~ eop(z ) -<e op(y) ) )  ) ]

The asser tions Q and R require, respectively, that all

palindromes of length 2 and length 3 are included within some

entry in the arrays “bop” and “cop.” Due to the symmetry of

palindromes , all must contrain a paiindroc~ of length 2 or 3 at

the center; therefore, when conditions Q and R are satisfied,
all palindromes have a~ least been detected by the workings of

the algorithm, even if their total extent has not been recog-

nized. Condition S requires that any valid entry in the arrays

“bop” and “cop” represents as long a palindrome as can be

recognized starting from the length 2 or 3 palindrome at the

center; symmetry is again relied upon. Finally , condition T

61

— 

- - — 

— 

S



requires that all strings represented by valid entries (those

with non-zero “cop” entry) are in fact palindromes (the notation

“string(l,2)—ok” is used to indicate that the sub-string starting 
-

at position 1 in “text” and ending at position 2 is a palindr ome) ,

and that no entry in the arrays “bop” and “cop” is included

with another entry. -

Together the four assertions provided a formal statement

that could be proved from the semantics-of program statements

and the assumption that the input constraints (see Appendix A)

have been satisfied.

Given the output specification to be proven , five procedures

were determined during static analysis to have no bearing on the

program ’s performance of the desired process. Procedures “texti,”

L “text2 ,” and “text3 ,” merely print output labels ; “b lank-’-lines ”
- 

I inserts blank lines in the output. Procedure “write~al1-’-palin-

dromes,” while complex, serves only to print the strings corre-

sponding to the entries in the previously mentioned arrays. No

correctness proof other than for termination was supplied for

these procedures.

For the remaining significant procedures , Table III presents

the man-hours of effor t  expended in constructing their proofs .

As is discussed in Chapter V, there was a relationship between

procedure complexity and the time to construct a proof for the

procedure. The time required to prove procedure “read~and~-write~-

input~cards,” the first somewhat complex procedure proved, was

distorted by the presence of a significant learning curve.

62

Ij -~~~ - - 
- 
-- - 

-

~~
�--

~~
- - -- 

~~~~~~~~~~~~~~ 
— — -~~i--



r~ ~~~~~~~~~~~ 

- 

~~~

— — — -- ———‘---- ~~~— ----,-~~~ -~~~ ~~~~~ -~~—- --~~~~~~---~~ —~~~~~~~ -~~ ~~~~~~~~~~~~~~~~~ 
‘
~~~~~

—
~~~

---—-‘ — 

~~~~~~~~

-—-

TABLE III
- T INES TO CONSTRUCT PROOFS

Task Accomplished or
- Procedure Proved Man-Hours

Formalize output specification 0.8
- “initialize” - 0. 8

- - Show termination of 5 util i t ies 0. 6
“read~and~write÷input÷cards” 4-. 2

• “palindrome~check” - 1.6
“continue÷checking” 1.8

- “record÷palindrome” - 3.5
- 

“main” - 
- - 0. 2

Total 13.5

- C. DISTRIBUTED CORRECTNESS

The detailed demonstration of corre~tness of the example
F program using the condition table method and the principle of

distributed correctness (described in Chapter III) is presented

in Appendix B. As in the formal proof of correctness , this

method required formalization of the output specification as

a firs t step; the same output asser tions were established as

in the formal proof. The six significant procedures were tested

by choosing synthetic assertions , test data assertions, and

generalization assertions , and then executing test data to

verify the assertions. Table IV presents the man-hours of

effort expended in demonstrating correctness by this method.

63

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - -

— ‘--~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_________ — I — 
~~~~~~~~~~ 

—
~
-.—,.-

~ —-,-‘ -.,-.-—-
~~~~~

- 
~~~~ -—— —.~..- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—-—,-—----‘~~~~~~ - 

—
~~~----—-—--—---— .-.

TABLE IV
TIMES TO DEMONSTRATE CORRECTNESS

Task Accomplished or
Procedur e Shown Man-Hours

Formalize output specification 0.8
“initialize” 0.2
“read÷and- write÷input÷cards 0.7
“palindrome÷check” 0.9
“continue~checking” 1.3
“récord÷palindrome” 3.2
“main” - - - 0.4 -

Total 7.5

The test data elements used to verify the test data asser-

tions in the correc tness demonstration are consolidated in

Table V into one comprehens ive set of test cases ; the palindromes

which should be recorded for the given texts are indicated by

underscoring. The degree t , which these tes t cases satisfied

the requirements for an ideal test is discussed in a later section.

TABLE V
TEST CASES IDENTIFIED BY
CONDITION TABLE METHOD

Test Length Test Length
Number of text Text Number of text Text

1. 2 ab 13 4 aabc
2 2 aa 14 4 ~~ba
3 80 Note 1 15 4 abbc
4 81 Note 1 16 5 a~~ad5 160 Note 1 17 5 abbcd
6 240 Note 1 18 S aFE~cb7 256 Note 1 19 5 abccd
8 3 aba 20 6 abETha
9 3 21 6 abccbd
10 3 22 6 abccde
11 4 ab~ E 23 9 baiibaaab
12 4 aa~~

Note 1 - any text which includes overlapping palindromes

di
64

LL - - -  - - -  ~~~~~~~~~~ - ;~~~~~~ - - -
_________ - -----r—



-~~-— -- _~~- .  _ _ ~~~~ 

For purposes of comparison with later sets of test cases,

it is noted that execution of the above tests required 0.88

— 
seconds of CPU time.

D. PATH ANALYSIS

1. Basic Technique

Static analysis of the program identified 21 individual
- - decision-to-decision paths in the program control flow graph. - —

— The program was instrumented with integer counters placed in

added assignment statements to record the number of traversals

of each of these arcs (which are identified by upper-case letters

in Figure 2 , Chapter III). The analysis and instrumentation

required 0. 8 man-hours of e f for t .  -

Path predicates were established and test cases selected to

— force traversal of each arc at least once (0.3 man-hours required).

For the example program the path predicates were quite simple

to satisfy. Finally , the tes t data (shown in Tab le VI) were

used in dynamic testing of the program (0.2 man-hours). Table

VII lists the individual arcs and the number of traversals of —

each which were recorded. No program errors were detected. Each

arc was traversed at leas t once , and thus the selec ted data

provided at least a “minimally thorough” test of the program

(22) . The total effor t  involved in the application of this

method was 1.3 mm -hours . The tests required 0 .05 seconds of

CPU time . - 

- 

I

65



~~~ • ____  

—

_ _  
_ _ _  _

TABLE VI
TEST CASES IDENTIFIED

BY PATH ANALYSIS

Test - Length
Number of text Text

1 1 ——
2 2 xy
3 7 baaaaca

TABLE VII -

- ARC TRAVERSALS USING

PATH ANALYSIS DATA

_ _ _  
Arc: Z A B C B E F G H J K L M N P ~~~ R S T U V

Test i 1
Test 2 1 1 2 1 1  1 1 1

j  
Test 3 1 I 7 1 1 3 3 3 2 i 1 5 6 3 2 4 3 ~~~~~~i

Total 1 2 2 9 2 2 3 4 3 2 2 1 5 6 3 2 4 3 3 1 1

2. Extended Technique

Preceding the arcs labeled D, N , P and Q in Figure 2

are decision statements involving two or more predicates (e.g.,

“if (A and B) then”). The basic path analysis technique pro-

vided simply for traversal of each arc following such decisions

(i.e., “A and B” true, and “A and B” false). A more thorough

test of a bi-conditional decisipn would execute the decision

statement under the four truth combinations for the two predi- -- 
-

cates (A true and B false, A true and B true, A false and B

true , A false and B false) ; similarly a tn -conditional dec ision

could be executed under the eight truth combinations for the

66

— 
— — — 

—=-
— - — 

~~
—

~~~~~
- —~ —~~ a- .~~~~~~~~



~~~~~~~~~~~~~ ~~ ‘~~‘~~~~~~ T~~~~~ U ~~~~~~~~~~~~~~ ~~~~~~
— — --- --— - - - -  ~~~~~~~~~~ - -~~~~- —-- - ---.~~~~ - -—-~~~~~~--~~~~~~~~-

three predicates.

Analysis of the appropriate path predicates identified

four additional test cases (Table VIII) which, when added to

the three cases selected by the basic technique , ensure execution

of multi-condition decision statements under all (possible)

combinations of truth values for the decision predicates . Table

Ix presents the arc traversals recorded for the additional tests.

No program errors were detected. The total additional

effort to select the additional cases was 0.9 man-hours ;

therefore , the total time to apply the extended path analysis

method was 2.2 hours. The additional tests required 0.18

seconds of CPU time , for a total CPU time of 0.23 seconds for

the extended method.

TABLE VIII - 

-

TEST CASES IDENTIFIED BY

EXTENDED PATH ANALYSIS

Test Length
Number of Text Text

4 257 -- H
5 3 aaa -

6 5 baaab
7 160 *

*Any string of 160
.haracters 

I 

~~~~~~~~ _____



-~~~~~~~~~~~~ --- —~~~~~~~~~~~~~~~~~ - -
- - —..~w~--.---_--_-_ -

__ 
~~~~~~~~~~~~~~~~~~~~~ ~~ —V—--. _________

TABLE IX
ARC TRAVERSALS USING

EXTENDED PATH ANALYSIS DATA

— ~j Arc: Z D 

Test 4 1
Test S - 1  1 3 1 1 2 1
Test 6 1 1 5 1 1 2 2 1 2
Test 7 1 2- 160 2 1 1 158 158 -

Total,
Tests 1—7 2 5 6 177 6 5 8 164 5 162

___; Arc : IC 
—

Test 4
Test S 1 3 2 1 . 3 1
Test 6 1 1 2 3 2 1 3 1
Test 7 1 3 1 1 1 1

Total,
Tests l-7: 5 5 8 1 3  3 6 6 1 0  3 1 4

E. INDEPENDENT SUB-STRUCTURES

The techniques described in Chapter III , Sec tion E , were

applied to the six significant procedures of the example program

to identify control paths for testing based on the independent

language constructs of the procedures. A spanning tree (consis-

ting of all nodes but containing no circuits) was constructed

corresponding to each procedure control flow graph presented in

Figure 2 (chap ter III); the arcs of the spanning tree were

considered as branches. The remaining arcs of the parent graphs

j were considered to be chords, with a single independent circuit

or language construct corresponding to each. The ±undamental

- I ~ 

_ _ _ _  ___________ 

68 

_____________________



- 
~~~~~~~~~~~~~~~~ :=~

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

matrices for the six procedures are presented below; the rows

are labeled with the language construct names of the fundamental

circuits; the columns are headed with the arc (branches and

chords) labels. If a fundamental matrix has n rows, the first

n column labels from the left are the chords and the remaining

column labels are the branches. The matrix entries have the

meanings described earlier.

Procedure “initialize”:

f e a b c d
1 0 1 1 1 0 main—lin e
0 1 0 -1 0 1 if—then

Procedure “read+and~write~-input-~-cards”:

I h d f a b c e g
1 0 0 0 0 0 0 1 main-line

0 1 0 0 0 1 0 0 while—do

0 0 1 0 1 0 1 0 for

Procedure “palindrome~-check” :
n f l j m a b c d e g h i k
1 0 0 0 0 1 1 0 0 0 0 0 0 0 main-line
0 1 0 0 0 0 0 0  1 - 1 0 0 0 0  if-then

0 0  1 0  0 0 0 0 0 0- 1  1 0 1 if-then

0 0 0 1 0 0 0 0 0 0 0 0 1 - 1  if- then
0 0 0 0 1 0 0 1 0 1 1 0 0 0 for

Procedure “continue÷checking”:
j f g a b c d e h i
1 0 0 1 0 0 0 0 1 1 main—line
0 1 0 0 0 -l 1 -l 0 0 if-then-else

O O i O l l O l O O w h i l e - d o

69

r ~

~‘L 
—-— - _

~~~~~~~~~_ - - - --. - -- 
-

_____________________________ — - — - —— - ———w - - --— —~•--—~~ ~~
— —



Procedure “record.palindrome”: -

n d h i m a b c e f g j k l
l 0 0 0 0 l 0 0 0 0 0 l l O m a i n - l i n e
0 1 0  0 0 0 0 1 -1  0 - 1 0 0 0 if-then-else
o 0 1 0  0 0 0  0 0 1 - 1 0 0 0 i f- then
0 0 0 1 0 0 1 0 1 0 1 0 0 0 for
0 0 0 0  1 0  0 0  0 0  0 0 - l l if-then

Procedure “main”:

g e a b c d f
1 0 1 1 0 1 1 main-line 

-0 1 0 -l 1 -l 0 if-then-else

— The control paths for testing were selected by using the rows

(fundamental circuits) and all linear combinations of rows having

one or more branches in common to identify sequences- of arcs which

should be tested. The paths for each procedure that were selected

in this manner are presented below ; paths are identified here in

a node-to-node format (node numbers correspond to those in Figure

2 ) .

Procedure “init ial ize” :

1-2-3
- 

- 
1-2-4-S

Procedure “read+and÷write-~-input-’-cards ” :

1-2- 3-5-2-6 
*

1-2- 3-4-3-5-2-6

Pro cedure “palindrome-’-check” :

- - - - 1-2-10 *

1-2-3-4-5-9-2-10
1—2-3-5-2-9-1 0
1-2- 3-5-6-7-8-9-2-10
1-2-3-5-6- 8-9-2-10

7°
______________________________________ 

_ _ _ _

~~~ - -  J~~~ — — ---- — --j- —



- - - --—-——--—~ 
- -- ---—-,---- ~~‘_ .#——- --—-—--- -----—- - - —

- - ~~- - __4_ - ______— --—---- - - - — - -

Procedure “continued-checking”:

1-2-7-8
F- 1-2-3-4-6-2-7-8

1-2-3-5-6-2-7-8 -

Procedure “record~palindrome”:

1-2-8-9-10 
‘
*

1-2-8-10
4 1-2-3-5-7-2-8-10

1-2-3-4— 6-7-2-8-9- 10
1-2- 3-4-7-2-8-9—10 -

Procedure “main”:

1-2- 3-5-6
1-2- 4-5-6

Path predicates were established for the control paths 4

listed above and test cases were selected to force their

traversal. The paths above followed by “*“ have path predicates

which cannot be satisfied by any input data; the given execution

sequence is impossible for any allowable input. The minimal set -
~

of test cases selected to satisfy the path predicates is presented

in Table X. Dynamic testing with these test cases revealed no

progra~a errors ; 0.12 seconds of CPU time were required for the

tests. Table XI describes the allocation of the 2.2 man-hours

of effort expended in the application of this method.



- —--—— --—-—— -~ -——— -~~~~~~~~~ -~~~~  
- -

TABLE X

t 
TEST CASES IDENTIFIED BY

INDEPENDENT SUB-STRUCTURES METHOD

Tes t Length
Number of text Text

1 1 --
2 2 xy 4

3 2 aa
— 4 3 aba

.5 3 abc
6 7 aabbbba

TABLE XI

TIMES TO APPLY METHOD OF
- INDEPENDENT SUBSTRUCTURES -

Task Accomplished or - 

-

Procedure Shown Man-Hours
- - 

j  “initialize” 0.1
“read.and+write~ input~ cards ” 0. 2

- - “palindrome-’-check” 0.6
“continue-’-check ing” 0 .3
“record~pa 1indrome” 0. 7
“main ” 0.1
Conduct dynamic tests 0 .2

Total 2.2

For purposes of comparison of the degree of arc coverage of

tests conducted by this method with that of the path analysis

tests , the instrumented version of the example program was

J executed with the test cases from Table X; the results are

given in Table XII.

I 

- 

72 
- 

-

- ----- - - ---- -
~~~~~~~~

-- ---—--- - -- _ _ _



- - 

~ ~~~~~~~~~~~~~ r ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - ~~~~~ -- —__ - .  
~~~~~~~~~~~~~~

*

TABLE XII
ARC TRAVERSALS USING

INDEPENDENT SUB-STRUCTURES DATA

j  Arc: Z A B C D E F G H J K L M N P ~~~R S T U V

Test l 1
Test 2  1 1 2 1 1  1 1 1 -

Test 3 1 1 2 1 1 1  1 1 1 1
Test 4  1 1 3 1 1  2 1  1 1 1 1
Test S 1 1 3 1 1  2 1 1  1
Test 6 1 1 7 1 1 4 2 2 3 1 2 4 6 3 2 7 3 3  1

— Total 1 5 5 1 7 5 5 5 7 3 4 5 2 4 8 3 2 7 5 3 2 3

F. INTUITIVE TESTS

The intuitive test data selected prior to conduct of the

previous experimental demonstrations of correctness were used

for dynamic testing. No program errors were revealed. For

purposes of comparison of the degree of coverage with other

methods, Table XIII presents the results of execution of the

instrumented program- with the intuitive test data listed in

Table II (Chapter III , Section A). The selection and testing

of these data required 0.7 man-hours of effort; the tests

consumed 0.44 seconds of CPU time.
- -

~~ 
$

~ 1-

73

_ _ _ _

- ~~
‘—; i_

—~~~~~~~~~~~ 1~~ . -  ~~~~~~~~~~~ — --- - ---~~~~-~ — —s-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
—,--

~~~~
- - ~~~~- - - -

TABLE XIII
ARC TRAVERSALS USING

INTUITIVE DATA

j Arc: 1 A B C D E F 5 H J

Test l 1 1 2 1 1. 1
Test 2 1 1 3 1 1 2 1
Test 3 1
Test 4 1
Test 5 1 4 256 4 1 3 252 3 251
Test 6 1 1 15 1 1 14 13 —

Test 7 1 2 100 2 1 1 98 98
Test 8 1 4 256 4 1 1 254 254

Total,
Tests 1-8 2 6 13 632 13 6 6 620 4 616

• ~ Arc: K L N N P ~~~ R S T U V

Test l  - l  1 1 1
Test 2  1 1 1 1 —

Tes t 3
Test 4 -

Test S 1 1 4  6 6 1 1 1 0  5 1 1
Test 6 1 1
Test 7 1 4 9  1 1- 1
Test S  1 127 1 1 1

Total ,
Tests 1-8 6 190 6 10 1 1 10 9 1 1 5

11 
__________________________ 

____________________________________
_____________________________________ 

--— ~~~~~~~~~~~ :- - - -- -



-, ~ —4———.. .—-—,,‘---- — —. --.
~
--

~ 
-
~ 

- _________ 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
-

V. CONCLUSIONS AND RECOMMENDATIONS

A. COMPARISON OF METHODS

1. Level of Effort

Table XIV is a summary of the man-hours of effort required

for each method of demonstrating the correctness of the example

program, broken down by procedure for those methods where pro-

cedures were examined individually. The cyclomatic number and

number of statements for each procedure are included in the table

as measures of procedure complexity. The times to apply the

verification techniques are to be compared with one another and

with original program development times of 3.0 hours to design,

7.0 hours to code , 4.0 hours to debug, and 5.8 hours to test (21.8

hours total).

75 .

_ -
~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~ --S- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~



— ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,, ,- -, - ~~~~~~~~~~~~~~ — ,— -.- — - ,  -,
- — - - - 

~~~ —.--—, -- - - — 
~~~~~~~~~~~~~~~~~~~ UUUU~~~~

r - 
~~~— 

- 
~~

TABLE XIV

SUMMARY OF TIMES

TO DEMONSTRATE CORRECTNESS
— 

ft

Cyc].omatic Time (Man-Hours) Per
Task or- Number and Method
Procedure No of Strnts A B C D E

Formalize output
Specification -- - 0.8 0.8 -- - -

“initialize” 2 ; 14 0.8 0.2 -- - 0.1
Show termination

of utilities - 0.6 - - - -
“read+and’-write .-..” 3 ; 18. 4.2 0.7 - - 0.2
“palindrome+check” 5 ; 7 1.6 0.9 - - 0.6
“continue.checking” 3 ; 15 1.8 1.3 - - 0.3
“record~palindrome” 5 ; 21 3.5 3.2 - - 0.7
“main” 2 ; 6 0.2 0.4 -- - 0.1 -

Conduct dynamic
testing - - * - - 0 .2

Total 13.-S 7.5 1.3 2 . 2  2 . 2

Methods :
A - Formal proof
B - Condition table/distr ibuted correctness
C - Basic path analysis
D - Extended path analysis -

E - Independent sub-structures
* - Test time included in times for procedures .

Quite expectedly the two more formalized verification tech-

niques (proof and condition table method) required considerably

more effort  than any of the other methods , and in fact required

more hours of effort than were involved in program design (time

to construct the proof exceeded even the time to design and code).

As the subsequent discussion of the thoroughness of each method

indicates, these two methods provide higher confidence in program

76



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:1

correctness than the other simpler and more mechanical methods.

The question becomes whether the increased return from formal

methodology is worth the cost . The complexity and importance of

the sof tware , budget constraints , and several other factors come

to bear on the decision, and the decision should be made separately

for each software project. -

From a philosophical standpoint at least, cx post facto

proof of correctness is inefficient because of a great deal of

duplication of effort. The logical process of constructing the

proof , in the case of this experiment and in general, requires

at least as thorough an understanding of the application and of

the program control structure and data flow as does the design

and implementation effort. The logical techniques of proof can

give excellent evidence as to the correctness of programs (but

not conclusive; see Ref. 15 and others) and are clearly desirable 
-

for use , but a higher cost effectiveness than that suggested from

this experiment is required. Possibilities include attempts to

automate cx post facto proving of correctness or to introduce the

lgocal techniques in the- design and implementation of software.

These alternatives are major areas of research ; brief mention

is made here.

Structured programming concepts, advanced language design,

and formal definition of requirements are examples of software

engineering efforts to emphasize the use of logical methods in

the design and implementation of provable programs. Mann has 
-

discussed the feasibility of using logic techniques to generate

programs guaranteed to satisfy the output specifications, thus

—_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~~~~~~~ 
- — 

~~
- 

~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~- -- ~~~~~~ --— -
~~~~~~~~~ ~~~~~~~~~~ -~~ —u- ~~~~~

~‘ -~~ ‘—~~~-- -

obviating the need for cx post facto verification (26). It is

in this area that the greatest promise for correct software is

to be found. -

Several aspects of the formal proof process may be subject

to automation. Manna discussed briefly in Reference 26 (pp. 203-

204) progress that has been made in systems to automatically

• generate invariant assertions and verification conditions and

systems (theorem provers) to prove the verification conditions.

Both tasks are formidable and it is unlikely that full automation

can be achieved; yet, partial solutions would be extremely help-

ful in reducing the tedium involved in the process of formal

proof. The limitations on automation of the process are succinctly

— 
stated by Dijks tra (9) :

• The distorting spell of speed still seems to 
- 

-

take its victims . We see automatic theorem
provers proving toy theorems , we see automatic

• program verifiers verifying toy programs and
one observes the honest expectation that with
fas ter machines with lots of concurrent processing ,
the life-size problems will come within reach as
well. But, honest as these expectations may be ,
are they justified? I sometimes wonder...

The level of effort required to apply the condition table

method of selecting test data in a fashion as nearly reliable

- - and valid as possible (according to the theory of testing dis-

cussed in Chapter II) compares more favorably with the original

program design effort. If similar relationships exist for large-

scale applications , the method is likely to be effective at

reducing the life cycle cost of software as the method appeared

in these experiments to offer a greater ability to locate errors

¶ than less formal methods , thus reducing maintenance costs.

78

— —----~~- -~~-— - a . Q~4 . a a s . L~~ ~~~~~ ____ — - ___  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :kr~~~ a-r-~~~~~~~~~~~~~ ----~~~~- s r-



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—---

~~
—

~~~
-‘——‘- - - -- ---—-- 

~~~~~~~~~
— --- -

~~~~
-

~ —~~=~~.--. -

Evidence of the cost effectiveness of this or similar formalized

test case selection criteria is required from large-scale appli-

cations in a commercial environment to be conclusive.

it is interesting to relate the effort required to apply

to individual procedures the methods A, B, and E (Table XIV) with

the complexity measures of these procedures . While the sample

size of the data collected here is too small for statistical
- significance and the data are distorted by the presence of learning

curves (e.g. , procedur e “read~and÷write~ input~cards” was the

first procedure with loops proven correct, and several false

starts were included in the 4 .2 hours of effort), there did appear

to be a relationship between complexity and ef for t  to demonstrate

correctness. Although the level of e f fo r t  did not linearly

; 
relate to the magnitude of either of the measures of complexity

shown in Table XIV, effort appeared to increase with increasing

complexity, and the cyclomatic number appeared to be a better

predictor of effort than did the number of statements .

2. Thoroughness of Verification

As discussed in Section B of Chapter II , the requirement

for an ideal test according to the theory of testing presented

in that chapter may be satisfied in several ways. Selecting no

test data and proving that the program is correct (i.e., contains

no errors) clearly satisfies the criteria for an ideal test.

Accordingly , on the basis of the proof of correctness constructed

as part of this experiment it can be stated that the example

program is correct as written, provided the proof contains no

- 

79 

_ _ _ _ _ _ _ _ _ _ _ _  

-

-I-- 

_ _ _ _ _ _ _



~
‘- ~~~~~~~~~~~ - - —- --  - - -— - -,- - 

~~~~~~~~~~~~~~~~~~~~~~ 
--- -- - - 

~~~~~~~ -~~~‘ -•-~~---.- -,—~,-
-,-- - -—-~ 

- 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ ‘ !  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~

errors and no unwarranted assumptions. That proviso is not easily

ignored; Reference 15 is only one source of examples of programs

“proven” correct which in fact contain errors. Nonetheless , the

proof provides a high degree of confidence in the correctness of

the example program.

- 

- 
- The several path analysis s trategies , including the identi- 

-

fication of paths for tes ting by decomposi tion into independent

sub-structures, did not include any attempt to show the reliability

and validity of the test cases selected. Consideration of possible

errors in the program, particularly in the statements controlling

control flow , revealed several potential errors that would be

detected using the test cases of the extended path analysis tech-

nique (multi-conditions emphasized) but not by one or both of

the other two path analysis methods.

For example; if the statement -

while ((ix<—length÷of-~-text) and

(bufferposi tion<card limit)) do

in the procedure “read÷and÷write~-input~cards” had the incorrect

relational operator “bufferposition< ” vice “(“ , none of the tes t

cases seiected by the basic path analysis technique or by sub-

structure analysis would reveal the error (no string sufficiently

long) , but test 7 (length 160) of the extended path analysis

method would reveal the error through a run-time indexing error

on assigning the 81st character to “text. ” Similarly,  if in

procedure “record~-pa1indrome” the statement
if ( ( f i r s t > begini-of+palindrome(i)) and

(last<—end+of÷palindrome(i)))  then

80

~IlLj - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -



—-4 ~~~~~~~ —~ 
_—-4-_

omitted the “or equal” test from the “>~~~ “ and “<a ” operators ,

the basic and extended path analysis test case 3 (“baaaaca ”)

would reveal the error by- recording three palindromes (baaaaca,

baaaaca , and baaaaca) which are included in the larger palindrome

(baaaaca) and should be ignored. The error would not be revealed

by the test data selected from independent circuit considerations.

Because there exist potential errors that would not be

revealed by the path analysis test sets 
- 

(including the extended

method se t, as will be shown in the next paragraph), the criteria

as applied in these experiments were not valid and reliable in

the meaning of testing theory. While the particular errors

revealed or not revealed ~n these experiments are peculiar to

the program under test, se lec tion of tes t data by any means of

path analysis other than exhaustive path testing cannot he ex-

pected to detect all program errors.

The test cases selected by condition tables were capable of

revealing all of t-he errors considered above , including the two

specific errors mentioned (test cases 4, 5, 6 and -7 for the

first, test 23 for the second). Additionally , there were po-

tential errors which could be detected through dynamic testing

only by the test cases selected by this method.- These results

are peculiar to the specific program under test but are consid-

ered representative of the capabilities of the several methods.

(It is not suggested that the condition table method is in

general capable of revealing all e~-rors.)

-

- For example , if in procedure “con t inue-’-checking” the

81



- 

- 

- — ----—--- -- ------- —-~~- --~~ - --4- - - 

~~~~~~~~~~~~~~~~ - -  

- 

~~~ ~~
-

statement
while ( ( f i i s t> l )  and (last<lengthi-of.text)

- 

and (palindrome— true)) do

mistakenly contained “last<x” vice “last< ,” test case 3 (“baaaaca ’)
of the path analysis techniques and test 6 (‘t aabbbba ”) of the in-

dependent circui t method would both erroneously cause traversal

of the arc “N” (see Figure 2; arc “M” sets palindrome” equal to

the value “false”) during the calls to the procedure with string

(firs t,last) being the underscored palindrome , but there would

be no external effect noticeable to the tester and the error

(which has potential to cause an indexing error) would go wide-

tected. However , the condi~ ion table for assertion B 17-18 (para-

graph E . l .  of Appendix B) would caus e the error to be noticed when

examining the predicates of the assertion as required by the method

during execution of test element “abb .”

This localization of test effort afforded by using the prin-

‘~ t - ciple of distributed correctness is one of the most powerful

aspects of the method as used in this experiment. While the

localization added to the effort required (full knowledge of the

program ’s internal structure was required), it was the localization

of analysis that enabled some positive statements to be made re-

garding the validity and reliability of the selected test data.

• While in several cases it was not possible to prove the generali-

zation assertion for the selec ted tes t data asser tion, in each

case a high degree of confidence was established that the test

data did in fact part i t ion the input domain for the program frag-

mant under consideration into equivalence classes with respect

to program operation.

82

- — - -— — — -~~~~~~~ — ~~~~ - - -  
—

~~ —- — .—_ 
~~~~~~~~~ ~~~~~~~ 

- --~~~ - -~~ ~~-~~~~~ —-~ -L I — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~



_ _ _ _  — 
—

~~~~~~~~~~~
- - —  -

~~ 
-_------ — -

~~~~~~~~~
----

~~~~~~~

--

~~~~~
--

~~~~~~~~~~~~ ~~

— -

From this confidence and the - fact that no input data were

excluded from selec tion, it was concluded that the criterion

for selecting test data as applied to this program was valid

and “almost reliable.” Additional work in identifying theorems

which can be used in generalizing from specific test data to

: 
the entire input domain is needed and offers an opportunity for

a highly reliable testing methodology . 
-

The error data provided in Table I , from the original program

development process , was not useful for discriminating among

the methods applied in verifying the program . Each method

would detect the presence of the errors described in Table I.

It is interesting that the set of intuitive test data (Table

* II) selected prior to thorough analysis of the example program

is capable of revealing all of the errors considered , including

the “ l as t<— ” vice “last< ” error in “continue~-checkin g” (a run -

time indexing error would occur for “text(last+l)” for test case

8 as a result of that error). However , the method of casual

or intuitive selection of test data is not in any way desirable;

the error detection capability in this case is due only to luck

and the relative simplicity of the program function , and the

cost-effectiveness penalty in terms of CPU time expended on

test cases which are in fact not distinguishable can be severe.

B. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

• This section presents a summary of the conclusions drawn in

the main text of this thesis.

83

- -~
3- 

~
* 4

______________  

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



-4- — ~~~~~~~~~~~~~~~~~ -*-~~~~ ~1—.— ~~~~~~~~~~~~~~~~~~~~~~ .---—~~~~~~~ ~~~~~~~~~ 
— 

~~~~~~~~~ 
— — ‘W~~WP~

- - 
~~— — ________________

1. The need exists for greater relative emphasis on design

and implementation techniques as compared to verification tech-

niques (pages 13 and 77-78).

2. Significant efforts are required in applying the disci-

pline of software engineering toward refinement or replacem.’it

of the verification methods now in use (page 14) .

3. The formal proof of correctness and the application of

the condition table method based on distributed correctness

req~iired significantly more effort than the path analysis stra-

tegies (page 76).

4. There are serious limitati-~ns on the feasibility of auto-

mating the process of formally proving program correctness (page

78).

5. There was some positive correlation of the level of

effor t  required to demonstrate correctness with the complexity

of procedures as represented by the cyclomatic number (page 79).

6. The proof of correctness of the example program provides

a high degree of confidence in the correctness of the program

(page 80).

7. The path analysis strategies as applied in these experi-

ments did not provide reliable and valid criteria for selecting

test cases. Selection of test data by any means of path analysis

other than exhaustive path testing cannot be expected to detect

all program errors (page 81).

8. The condition table method using the principle of dis-

tributed correctness afforded a valid and “almost reliable”

criterion for test case selection (page 83).

84

_ 
_ _ _ _  

_  
-  

-
_ _ _  

_ _

_______ —~~~ 
_
~~

_ _ _ _ _
_

_~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T_.J - ~—---—-—~~—-.-- —‘-
~~~~~

-‘ •~~~~~~-~-.- -~~~



-~~~ 9. Additional work in identifying theorems which can be

used in generalizing from specific test- data to the entire

- input domain is needed and offers an opportunity for a highly

- 
reliable testing methodology (page 83).

10. Casual or intuitive selection of test data is not in

any way desirable (page 83).

k

- - - 

85 

-_ 
- -

1



P 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ______________________________________________* ---

~~~~~~~
,—,- -

~~~~~ 

- _

~~
-— ,—- 

~~~~~

__-4

~~~

_ 

— - ~~.
-
~~~~~~~~~~ 

------—

APPENDIX A

- FORMAL PROOF

A. ASSUMPTIONS, ABBREVIATIONS, AND NOTATION

Several assumptions ;about the example program were made in

addition to those verified by static analysis and those mentioned

in Section B of Chapter IV. It was assumed that the host environ-

ment of the program (compiler and operating system) was error--

free. All input data read by the program were assumed type corn- -
•

patible with variables - integers for integer variables , valid

printable characters (including blanks) for string variables. It

was assumed that the number of characters following the integer

stating the length of the input character string was equal to

- that integer. The domain of the numerical values in all predi- —

cate formulae in the proof was assumed to be the integers only,

and only interger division was intended; the operators dlv and

rem were used to represent the integer quotient and remainder ,
E~* j  - -

respectively.

Because several of the program variable names are verbose ,

the abbreviations listed below were used in the assertions and

formulae of the proof:

-L length of text
cardlimit

-cb -- cardbuffer
-n number~-of~-input-~-cards-c card-’-counter
-bp bufferposit ion
-bop begin+of÷palindrome
-cop endi-of.palindrorne
-p palindrome

86 

-—---- --—-
~~~~~

-- —- - -—
~~~~

-
~~

-
~~~~~~~~

. -



— — ---——-
~~~~~~ -- ~~ ~~~~~~~~ 

— —
~~~~~~

---
~

-- ‘ r~~ 
~~‘~‘ 4 -~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -4- - --- --- - — - --4—

Figures 3 through 8, shown in the following pages, are

listings of six program procedures with labeled invariant asser-

tions inserted for purposes of the proof. Assertions AO and A58-

are the program input and output assertions. Assertions are con-

— 

- 

- 
tam ed within braces “{ }, “ and in Figures 3 through 8 wherever

successive labeled assertions follow a program statement , the
intermediate assertion to be proved at that point is a conjunction -

of those assertions. Frequently assertions contain within the 
-

braces the names (labels) of earlier assertions ; the meaning im-

plied is a literal replacement of the label with its earlier

expansion. In the terminology of Section B of chapter III, the

• proof presented in this appendix is a proof of the invarient

statement:

{AO } program (A58}

This terminology and that for rules of inference (see t)ie same

section) are used throughout this appendix. 
*

B. ADDITIONAL RULES OF INFERENCE

As mentioned in Chapter III , rules of inference similar to

those in Reference 26 were formulated for iterative for state-

ments and procedure calls. Those rules are presented here:

1. Iterative Rule -

The statement for C:—E step 1 until L do F is logically

equivalent to the program fragment:

{P} /1 an assertion
C:-E //C a.counter, E an expression
LIMIT: -L IlL an expression
(I) I/an assertion

more : if C>LIMIT then goto fini -

~

• 

7/loop body

87



-
_ .  ~~~~~~~~~~~~~~~~~~ —

— - 
-

- ‘,--~ -4-— - - --- - - : ~~~~~ 4---4 — —

C:—C+l
goto more

* fini:
{q} f/an assertion

Corresponding to this form of the statement, the rule of infer-

ence is:

P 2 I,. {I A C<aLIMIT}, F { I-}, I i~ C>LIMIT. ~~ Q
- 

- 
{P} for statement {Q}

2. Call Rule

All procedures in the example program pass parameters by

value, so that operations on the formal parameters within the
-

• 

procedure body do not affect the actual parameters. Global

variables may however be modified in the procedures. The nota-

tion p(f,g) represents a procedure p with some formal parameters 
- -

£ which operates on some global parameters g; the procedure has

a body F and input and output assertions Q and P.. A call to

the procedure with actual parameters a is denoted by call p(a).

S(a:~1f) and T(a:=f) are the assertions in the calling program

located before and af ter the call , with formal parameter names

substituted for actual. The rule of inference is:

S(a:=f) ~~ 
Q, R =~~T(a: f) , {Q} F ~R}

- {S} call p(a) {T} *

The rule is essentially a statement that a procedure call is

proved when an in-line substitution of the procedure body is 
*

shown to be valid. In showing that R ~~ T(a:-f), the prover

must verify that global variables referenced in T but not in

R are not modified by execution of the procedure body.

88
I 

- 
_ __ _ _  ~~~~~~~~~~~~~~~~ 

- - :--- - - - —
~
--—------ —----- - -



F— ~~9y~ ~~~~~~~~~~~~~~~~ 
I.—-— - -

r

C. PROCEDURES TEXT1,2,3

Because these procedures do not contribute to the essential

— program performance (as was determined during static analysis),

- - only a superficial proof of correctness was performed. It was, 
-

however , necessary to show termination in order to verify that

program execution would not endlessly loop in one of these non-

• essential procedures.

1. Input Assertion: {true} i.e., no restriction.

2. Output Assertion: {true}; i.e., no restriction.

-

• 

- 3. Verification Condition:

{true} procedure {true}, or true ~ null ~~~true, where

null is a notation for program statements having no significant

effect. Proof of the verification condition -is immediate.

4. Termination

The procedure has only one entry and one exit and con-

tains no loops; therefore, it terminates.

D. PROCEDURE BLANK*~LINES; TERMINATION OF FOR STATEMENTS

Similarly , only a superficial proof of this non-essential

procedure was performed.

1. Input Assertion: {ivto }

2. Output Assertion: {true } ; i.e., no restriction.

3. Verification Condition: {n>0} procedure {true}.

4. Proof

Regardless of the value of the antecedent , the consequent

remains the logical value true ; therefore, the implication

holds.

89

4— —~~-4-*~~~•.*-~~ — 4*4 -~ —_ ____*_,_~~ -_ — 
4-~~•~, i— -~~~~ - — —



I -~~~~~. —.. -~* -. -—- .- ‘ r. . ..-,•~ -—.——.--~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -*—-~
- •—•.-

~—— --.-.-
~~

——-—*—•,-——•— -* ~~~~~~~~~~~~~~~~~~~~ ____~
__

~-.__~~~ .,—.— -- —.—---.— - ___________________________

_ __ _  -4 ~~~

-

~~~~~

-

5. Termination

Termination is assured if the error exit at the state- -

* 

- ment “assert(n>O)” is not taken, and if the for -loop following

terminates. The error exit is- taken when n<~0. The input

assertion guarantees n 0; therefore, the error exit is not taken.

The for statement loop terminates whenever the value of the

loop counter exceeds some pre-defined limit. Informally it is

clear that, given a finite starting value and finite limit for

the counter and given that the ioop body itself terminates (as

- - I 
- it does in this case - no nested loops) either the loop body is -

not executed at all (starting value exceeds limit) or eventually

the counter must exceed the limit (since it is incremently by 1

following each 1oop execution, by virtue of the “step 1” portion

of the statement, and no other assignments are made to the counter

in the loop body) , and the loop will terminate.

More formally , let EXP~LIMIT+l-COUNTER be a termination

expression , let N be the set of natural numbers , and let > be

the usual greater-than relation. Note that N is well-ordered

by > . In all implementations of a for statement of the type

described in the iterative rule of inference , if the initial

value of EXP is zero or not contained in N (i.e., negative),

then the loop body is not executed and termination is assured.

Likewise , if the initial value of EXP>—l , the loop body is
— 

- executed, COUNTER is incremented, and the subsequent value of

— 
: 

- 
EXP is (EXP-1)E N. Since an infinite decreasing sequence of

values of EXP E N is not possible (N is well ordered), the loop

must terminate (EXP—0).

90

- —.-- -~~~~ —~--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

- 
- 

-

An important conclusion can be reached from the above proof

of termination of the for statement in procedure “blank lines”:

every occurrence of a statement of the type for C:-E step 1 until

L do F terminates provided the program fragment F terminates.

E. PROCEDURE WRITE4-ALL-~-PALINDROMES -

- 
As in the preceding cases, only a superficial proof was

required for this non-essential procedure (non-essential in terms

of the palindrome search problem).

1. Input Assertion: {true}.

2. Output Assertion: {true}.

3. Verification Condition: 
-

{true} procedure {true}. The proof is immediate.

4. Termination

The procedure has only one entry and one exit. It con-

tains no loops other than for statements (which have been shown

to terminate) ; therefore the procedure terminates.

F. PRO CEDURE INITIAL I ZE

Figure 3 is a listing of procedure “initialize” with the

necessary assertions included. The notation “input(L)” refers

to the data value in the input stream which will be assigned

to the program variable “L” .

1. Input Assertion: Assertion Al.

2. Output Assertion: Assertion A2.

3. Verification CondItion: {Al} procedure ~A2 } .

4. Proof.

The proof of this verification condition follows directly

9].

~~~

.

~~~

-_
-

_
-
_ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ 

- -



~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

- ——---4—- - -- - -

procedure ln it is l izs~ -

co .nt lui t ia l ina a l l  var iable., read l.ngtb...of.. t.zt , wr i t e  t en t h
begin

Al :  C 2( ’1nput(l)<~~256 A OSCC
tenth ;
JXFII;

* 
pal t r o~~_Count.r:’ 1;c.rdhi.it:$80,
lntfle ld.ise;z5;
re.4( length.. . f...t .zt) ;
if ((1.ng t b...of...t.xt < 2) or ( l.ngth...of...t .zt > 256)) theii

begin
wri t .( 111eg 1 tnputs .

length of input •tr *ng I.: , l.ngth...o f....t ezt) ;
- au .rt (fal..) ,

end;
cnrdb *ff.r : ’ :

*2: C 2<a l<s266 A ~~~~~ A Jz2 1 A~ l t~ 8e i\ cbzb lank )
end in i t ia l i ze ;

-

~

FIGURE 3

PROCEDURE INITIALIZE

92
~

- ¶ 1
Li 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

from the semantic meaning of the assignment statements and read - -

statement. Each predicate of the output assertion is just an

expression of an assignment made in the procedure body , except

the term “ca~0”, which is just a restatement of an input asser-

tion predicate . The proof variable “ca” is discussed in the

proof of the next procedure. A series of intermediate assertions

could have been made, one following each assignment statement ,

to more formally indicate the method of proof. In particular,

the if statement has been ignored in the preceding simple

proof; it is discussed in the termination proof.

Note that in Algol-W the meaning of an assignment of a

single character value to a string of length greater than one

is to pad out the string variable on the right with blanks ; thus

- 

- 

the predicate “cb=bl ank”, following the assignment statement

“cardbuffer:=” “ ,“ means that “cb” initially contains 80 blanks

(“cb” is an abbreviation for “cardbuffer ”, a string array of 80

characters).

5. Termination 
-

The procedure is a concatenation of assignment statements ,

a read statement, a call to procedure “texti” , and an if state-

ment containing a potential error exit (the assert statement).

Because “texti” terminates , “ ini t ia l ize” will  terminate at the

output assertion provided the error exit is not taken. Since

assertion Al ensures that 2<~~<~ 256 , the compound statement

forming the consequent of the if statement cannot be executed;

thus the error exit cannot be taken, and the procedure does

terminate . *

93 



~ 
~~~~~~~~~~~~ ~ I~ f’~~~~~~~ -~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~“~~~~ 

- .*~-w-----~~’- -— 
-

- - 
--4-- - - 

- 

--

-~~~ I

G. PROCEDURE4-READ÷AND4-WRITE.INPUT÷CARDS

Figure 4 contains the assertions for this procedure ; several

of the assertions use abbreviations listed earlier in this -

appendix. A proof variable “ca’-’, a variable that is not an

actual program variable, was used in this proof to represent
- 

- the characters assigned, or the number of charac ters that had

f . been read from the input stream and transferred into the string

array “text”.

1. Input Asser tion: A4

2. Output Assertion: AlS

3. Intermediate Asser tions :

AS through A14. Verification conditions are provided

for all possible assertion-to-assertion paths in the following

paragraphs.

4. Path A4 to AS

The verification condition is:

2<
~
2<a256 A ca~0 A 2.t=80 A cb=blank

A n= ((L-l)div ~t)+l A ix=l ~~
2< 9< 256 A caO A ~t8O A ixl

A n>=l A n ((Z-l)div8O)+l

Given the truth of the antecedents , the consequents are shown

true as follows :

a. 2<~ 2<a2S6 A cacO A Lt=80 A ix— l :

these predicates are just a restatement of antecedents which

have not been affected by the intervening program statements.

* 

94

_ _ _ _  

- - -* -
- -_ ------4 - - -- -- —------ -- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ -
.--

~ ---- --4— *- - - —  ~~~~~~~~~~~~~ 4*__~*_ ~
__ _



w-, ——— ---
~ 

..—.——.-—-——-— —,.-
~~

-— — 4——-—

3 
~~~~~,‘ 

__•_
~*_~~~~—**-.-4- - _•__ ——---4 --4.. ._‘—**4---- ~- -4--•-—--_,*•—.—- —--— — —.-- ~_- ~~~~~~~~~~

:1 
- 4-— - --—4- -

procedure read..aud~wr I te..input..card.;co snt read input card. accordi ng to give n leag t h...of_t oxt :
begin

A4~ C 2<.t(a256 A ca~0A 1t280 A cb~ bl.nk )

Integ.r nunb.r...of..lnput..carda ;
nn ber _of_lnpnt_,ca r d. :1( leag t h_o f ...text — 1) d lv  c.rd l l.it
lx:°l; co~~ ent reset tent Index;

AS: C 2<.1<~ 2S6 I\ caaO A. lt ~ 80 A. iz~~l A .  n)~~l A  nS(( 1- 1)d ivSO) +l )

for card_c.uut.r:~~l a top 1

A6: C (ir..l)rem80U0~~~~eS ((ln 1)dIv80)+l I 
*

Al’: C O .zIx—l<~~L A (ix—l< l c<’n) )
~~~~: ( ‘-41 ir l)rem80~ø) ~~ c~~~( h x—1)d 1v80)+2 )
A~ : C (ix~ l*L~~~~ c>n) A ( ( l x ~~1)re 80Z~~ V Ix— 1~~l)

Ale : C 2 < z l < 266 A cn~~ix—h A lt ~~80A  n)~~lA  n ( ( L — l ) d i v O O ) + l  I

unti l nu b.r_o f...inpat _card e do
begin
wri t .(card _coun ter ) ;
write ouC ’ ) ;
readcsrd (o.rdb uf for ) ;
wr i t .oa~car db uffer ) ;
bufferpo.ltion :~ 0; co~~~eut  rece t Index;
-whi le

All : C <~ bp< .lt 0< 2 ix~ 1 < 1  ( ix—1—bp )remBS ae Ale
- 

cb2 .trtng of next 80 or fewer charactera I

((lx<slength_ .of_text ) and (bnf ferpo. ltion<cardllnit }) do
beg in
t ent ( Ix) t~~cnr4bnf fe r ( b u f f e r p o . I t I on I  1) ;

A 12: C 2<~~l< *256- A 1t ~ 80 i’ ~ >~~l a’--~ n~ ( ( l— l) d l v e e ) + l
~¼ cbs.tring of 80 ch rsc ter• I

£13: C ca’IX A 0~~bp< l t A  l< $ Ix< z 1 i~~ (lx—1—bp )re 80 0, )

1x:—lz + 1s
bufferpo. it  Ion : buf ferpo. It  ion+ I ;

£14: C A12 A 0< z Ix..-1<~~1 A c~ x j r-i A ( ( b p 80 A ( I x 1)re.8e*e) V ix— 1~~l)  I

end ; coiament done for a l l  charac ter. o~ i card:
end ; comment done for a ll  card.;

A15 : C lx— l~~l ~ ea~~1 A 2<~~1<~ 2S6 A 11:80 )

end read...and ...wrl te inpu t ...card . ;

FIGURE 4

PROCEDURE READ-4--AND-4-WRITE4-INPUT-4-CARDS

95 

— -- 

4- - 

-
~ _ _ _ _ _ _ _ _a- —--- ~~~~~ -— -~~~~~~~~- — ~~~~~~~~~~~~~~~~~ -44- ~ ,~~~~~~~ —- ~~~~-~ -~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~



I -~~‘ A0 A062 19” NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/s 9/2
EXPERIMENTS IN DO IONSTRATING TIlE CORRECTNESS oc SOFTWARE. (U)

~Ep y5 CWNONI (
ho W l £cc TrTrn NL

I U

____ 
Ii

r

p



_ _ _  ~~3.6

11111 ‘• ‘ I

fj I.25 1.4 tt .o~l1~_____ —~ IIIII~~~

MICROCOPY RESOLUTION TEST Ct4T
NAT I ONAL RIJREAU O~ STA~DAR~~~i963~~.

- -



— ~— —

b. n.((L~l)div8O)+l:

follows front n.((L-l’)div tt)+l A 9.t—80.

C. n> 1:

n— ((L-l)div8O)+l;

L>—~ t-l>—].;

L-l —1 ~~ (t-l’)div8O>—O ;

therefore n> 1.

5. Path A5 to A6-lO

The verification condition is:

AS A c-i -~~ A6 A A7 A A8 A A9 A AlO

The verification condition is proved by considering the conse-

quents one at a time:

a. (ix-i)rem8Q O ~~ c— ((ix-l)div8O)+l tA6}:

from AS , ix—l ;
ixl ~~ ((ix-l)div8O)+1 0*l 1;

because c has been set equal to 1, the consequent of the above

conditional is true, and the conditional is true regardless of

the truth of the antecedent.

b. O<—ix4< 9. (from A7} :

ixisi ~~ ix-1 0, and £> 2.

c. ix-l<9. ~ c< n {from A7}:

c—i and n>-l, therefore c<~n, and the conditional must hold.

d. —‘ ((ix-l)rem8O—O) ~~ c— ((ix-i)div8O)+2 {A8} :
ix~]. ~~ ix-1 0; thus (ix-l)rem8O O is true;

so -~~((ix-l)~~~8O O) is false,

96



‘
~~~~
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and the conditional is true.

e. (ix-l”9. ~~~c>n) “ ((ix-l)rem8O—O V jx-l—t) {A9}

ix-l—O and L>—2 , so ix-l-L is false, and the conditional is true,

and (ix-l)rem8O O is true, and therefore the disjunction is true;

= thus, A9 must hold.

f. ca ix-l (from AlO}:

ca—O and ix— l is sufficient for ca-ix-l.

g. the remainder of assertion AlO:

these predicates are just a restatement of antecedents which

have not been affected by the intervening statement.

6. Path A6-i0 to All

The verification condition is:

A6 A Al A A8 A A9 A AlO A C < fl A bp-0

‘s cb-string of next 80 or fewer characters —~ All

Again the consequents (predicates of All) are considered one at

a time.

a. 0<—bp<—Lt:

this follows from bp O  and Lt—80.

b. (ix-l-bp) rem80 0:

c<n ~
(c>n) A (ix-1 L ~~ c>n) ~~ ‘ (ix-l”2.);

‘ (ix-1 &) A ((ix-l)rem8O O v ix-l—i.) (ix-l)rem8O O;

finally, (ix-l)rem8O O A bp—O~~~ (ix-l-bp)rem8O O ,

which is that which was to be proved.

c. The remainder of the predicates :

these predicates are just a restatement of antecedents which

have not been affected by the interveining statements.

97

________ ~ .~~~~~~~~~A y ark. — - ~~~~~’



F,- ~~~~~~~~~ -~~ —~---——~ 
- -

~~
-—-

~
- - — —~~~~~~~~—- .—,w 

~-~~~~~~~ _ ~ -~—---- ~—-- - _____

- - -
~~

7. Path All to Al2-l3

The verification condition is:

Au A jX< L A bp<tt A text(ix)—cb(bp~l) ~~~Al2 A A13

The consequents of the verification condition are considered

one at a time.

a. ca-ix (from A13}:

ca—ix-l A text(ix)-cb(bp~l) is sufficient for ca—ix to be true.

text(ix) is the ix-th character, and it is assigned a value in

this program fragment (that it is the proper value is shown

shortly). If ix-l characters have been previously correctly

assigned to text, and one more character is assigned, then ix

characters have been assigned when control reaches assertion Al3.

In Algol-W, the string indexed by bp Il is a string of length 1

(i.e., a character) at position bp in the larger string (cb) ;

the first position is 0, and the 80th is 79. 0<-bp<Lt guarantees

that bp is in range ; “cb=string of next 80 or fewer characters”

ensures that the proper characters are in the buffer, and

(ix-l-bp)rem8O O mean s that ix and bp+l (the next character to

be assigned in text and the next character in the buffer avail-

able for assignment) always differ by a multiple of 80, which is

correct when an 80-character buffer is used. So the proper
1~
. I 

~ character is being assigned on this control flow path.

b. O< bp<Lt (from A13}:

0c—bp<—tt A bp<Lt ~~ 0< bp< Lt.

c. l< ix<•L (from A].3}:

O<aix-l<—t A ix< 9. ~~ l<”ix<—L.

98

~~~~~



—“-.-
~
-,_— 

. • ‘ - —~- —r-..-.~~~~ -—-• -
~
-•

i v—’-. 
-~ — _______ ______

C. l<—ix<—L (from Al3}:

0c—ix-l< t A ix<—t. ~~~1<—ix< R .

d. A12 and remaining predicate of Al3:

these predicates are just a restatement of antecedents.

8. Path A12-]3 to. All return to start of loop)

The verification condition is:

A12 A A13 ix:—ix+1; bp:—bp+l {All}

The verification condition as expressed above is rewritten as

follows, replacing ix and bp by ix+l and bp+1 in assertion All

(as the assignment rule of inference requires):

A l 2A A 1 3~~~~
(0<~bp+l<*tt ‘~~ 0<—ix<—2. A (ix-bp-1)rem8O—O A 2<—Lc— 256

t~ ca—ix A Lt— 80 A n>—l A n—((L-1)div80)+l

i\ cb-string of next 80 or fewer characters]

The verification condition is once more proved by considering

the consequents one at a time .

a. 0< bp+l<=Lt:

= O< bp ~~ 0<—bp+l; and since only integer arithmetic is permitted ,

bp<Lt -~~~bp+l<—2.t.

b. the remainder of the consequents:

restatements of predicates of A12 and A13.

9. Path All to A14

The verification condition is:

All A ‘(ixc—t A bp<&t) ~~ A14

The proof is constructed by showing the consequents of the yen-

fication condition one at a time.

99



a. ((bp—80 A (ix-l)rem80—0) ‘1 ix-ist]:

—
~ (ix<.t A bpctt) means that either ix>L or bp>—tt, or both.

Consider ix>i as case 1;

ix>t A Oc— ix-lc—t ~~ L<ix<.t+l,

so ix t+l and ix-l—t , in which case the consequent is true.

Consider bp>—tt as case 2;

bp>—tt A O<—bpc—tt ~~ bp tt;

£t—80 A bp—tt ~~~bp—80;

bp—80 ~p (ix-1-bp)rem8O.(ix-1)rem80;

since (ix-l-bp)rem8O O , then(ix-1)rem8O-80,

and the consequent is true,

So in either case the disjunctive consequent holds,

b. the remainder of the predicates:

these predicates are just a restatement of antecedents.

10. Path A6-10 to Al4

The verification condition is:

{A6 ‘P.. A7 A A8AA9AA 1O} F; while C do P (A14 } ,

where F represents the statements between A6-10 and the while

statement, C represents the predicate of the while statement

and P is the while loop body. The previous proofs of the

verification conditions for paths A6-lO to All, All to A12-13,

A12-13 to All, and All to Al4 satisfy the requirements of the

rule of inference for while statements, and therefore the

verification condition for path A6-lO to A14 is proven.

11. Path A14 to A -10

The verification condition after substituting c’-l for

I 

. 

100

- • — .., — . — -----—,—.—~-—~~ --—.—- -—- •—- — —~~-
---



~
i!

~ _______

c in assertions A6-A9 (as required by assignment rule applicable

to “for c:-l’ ste~p 1” which increments c). is:

A14 ~ [((ix-l)rern8O—O ~~~c’-l— ((ix-l)div80)+l)

A 0< ix-l< t i’.. (ix-1cL ~~ c+l<—n)

A_’(CiX_1’)~!~gO~O)~~~ c+l—((ix-l)div8O)+2
• A (ix-.l•t ~~ c+l>n) ‘~~ ((ix-l)rem80—O V ix-l—t) A. AlO]

The proof of the verification condition is shown for each con-

sequent.

a. AlO A 0< ix-1<—R A ((ix-1)rem8o—0 v ix-l—&):

these predicates are just a restatement of antecedents.

b. (ix-I)rem80—0 ~~ c+l=((ix-l)div8O)+l:

In addition to being a counter for the for loop , “c” is a

count of the number of data cards that have been read , because

there is exactly one readcard statement in the for loop body .

ca ix-1 is the number of characters that have been assigned
L from the buffe r into the array “text”; each time the loop is

executed , 80 characters are assigned into “text” , except

that the last time the loop is executed , from 1 to 80 characters

may be assigned.

= If (ix -l)r em80— 0 , an even multiple (name ly (ix -l)div80) of 80

characters have been assigned , and loop, has been executed that

number of times as control returns to A6-l0; thus, c+l (the

new value after the step) is then one more than that number, or

c+ 1—((ix -1)div8O)+l . Th erefore the consequent holds .

c. —~~~ix-1)rem80—0) —> c+ 1—((ix -1)div 80)+2 :

The proof for this consequent is similar to the preceding , ex-
• cept that because (ix-1)’rem80 is not equal to zero , less than

101

L ~~~~ ~~~~~ 
—.

~~

-- —- ——• -

~
~.



- .
-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -—---- ——-- .—

~—-—“--.---- .-. —--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-------- -

80 characters have been read when control returns to A6-l0 , and

the loop has been executed one time more than in the case above .

• Thus , c+ l— ( ( ix- I ) div8O) +2; q .e.d.

d. ix-l<t~~~ c+l<— n :

If ix-l<~., then since

(ix-1 2. ~-‘ (ix-I)rem 8O O) (proved above) ,
• it must be that (ix-1)rem8O O.

Therefore , from the above proved conditional ,

c+ 1—((ix-1)div80+l is t rue ,

and ix-1<L —~ ix_ I< ~ L_ l ,

so c+ l< .( (L_ l) d iv 8O)+1 .
Then because ((L-1)div80)+l ’~n , c+l< n.

e. ix-1 2. ~~‘c+1>n :
Ther e are two possibilities.

First , assume —v (( ix -1)rem 8O O.

Then c+ l— (( ix- l )d iv80) +2 ,

and c+1~ ((i x-l)div80)+l .

If ix- l —2 , then ix- l>2 - l  and

(t-l)div80 — (ix-l)div8O ;

therefore c+1> ((t-1)div8O)+l, thus c+1>n.

Second , assume (ix-l)rem 8O O.

Then c+l ((ix-l)~~~~80)+1 ,

and since t— ix-l , t rem 80— 0

and (L-l)div80<L dlv 80.

Therefore c+l>((L-l)div80)+l, thus c+l)n.

• In either case, c+1>n and the consequent is proved.

102

~ T , _ _ _  

~ ~~~~~~~~~~~~~~ -



— r -

- . ,. ., .- __________--. ---

12. Path A6-l0 to’ AlS

The verification condition is:

A6 ~ A7 ‘.. A8 A A9 A AlO A c>n ~~
ix-1—t A ca— I. A 2 c - t< —2 5 6 A 2.t—80

2 <— L <— 2S6 and £t— 80 are restatements of predicates contained

in the anteceden t of the verification condition; the remaining

two predicates are verified as- follows :

a. ix-1—t:

ix-l<t ~~~c<—n is true (an antecedent), so the contrapositive

is also true:

c>n ~~ (ix-l)>—t.

Since c>n, ix-l> t.

Also , 0< a ix -1<—& (an antecedent) , therefore ix-1—2.

b. ca=I. :

ca—ix- 1 A ix-1-9. ~~ ca—2. .

13. Path AS to A15

The verification condition is:

AS for statement {A15}.

The previous proofs of the verification conditions for paths

AS to A6- 10 , A6-l0 t o Al4 , A14 to A6-10 , and A6-lO to AlS satis-

fy the requirements of the for rule ; therefore the verification

condition for this path is proved.

14 . Input Assertion to Output Assertion

The proof of partial correctness for this procedure

is completed by concatenation of paths A4 to AS and AS to AlS.

103
I



-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- ~~~~~~~~ -~~~fl’,wr~~~~~—-. - ‘qw~~ —— ~~~~~~‘-~~~~ - . -~ - “ - -~ r ,r r - - - - ‘~~~~~~~ 
‘~“ ~~~~~~~‘ - -.

_ __________
15. Termination

During the preceding proof of partial correctness, the

reader should have been convinced that the procedure terminates

by the relations among i’x-l , c , and n , and by those among ix ,

&, bp, and Lt. If not , termination is assured becaus e the program

has one entry and one exit and is a concatenation of assignment

statements- and a for statement . The for statement terminates

if its loop body terminates ; in this cas e , the body termina tes

provided the while loop eventually terminates .

The formality of well-ordering could be applied to show the

termination of the while statement; however , termination is

evident since “I.t” is fi xed at 80 and “bp ” star ts from 0 and is

incremented by one on each execution of the loop body (which

terminates as it has no loops) . Thus “bp ” mus t eventually exceed

“Lt ” and the while statement mus t terminate (it may terminate

earlier if ix L)

H. PROCEDURE PALINDRO ME~-cHEC 1C

Figure 5 contains the assertions for this procedure.

1. Input Assertion : A 17.

2. Output Assertion : A27 -29.

3. Intermediate Assertions:

• I Al8 through A26 . Verification conditions are provided
- 

, for all possible assertion-to-assertion paths in the following

paragraphs .

• 4. Path A17 to A 18-22

The verification condition is:

104

________ __________________________L —U- 

-

_ _ _ _ _ _  ___



pro cedure pal ladro.e_ch.ck;
co snt fIn d  .11 p.ltnd rones with in give n text string ;
beg in

Al? : ( 2<2 1<225 6 A c . 1  A jull )

co sat scan text fro l e f t  to ri ght;
for j x:e2 atop 1

A18: C 2< 2 1<225 6 A ca~~l A jx) O A 2C~~lx<h 1+ 1 )
• A19* C ~4xC ( 2<2x(*1x l .~~ t ext tx—•l )~~t ext (x) ) ~

3y(y<j z i  l<Sbo p( y) < * x 1 A  X<200p ( Y ) < h I ) )  )
420 : - C  YxL ( 3< 2x<llx. . 1 A text (z 2) 1t ext (z) )~~~ 

-

3y( y<j x A l<lbo p (y)<2Z -.2 ~ x<leop( Y ) < 2 I ) ]  )
*21: C q .y(( < y<J ~~ A b o p ( y ) > I A  I~<.op ( y) < 1 ) ~~~~..( te xt (bop( y) 1) l t eZt ( C O P ( Y ) + l ) ) ]  :~
*22: ( VyC (S< y< J ~~~A~~~(eop (Y) 0) )~~~~t str t ng ( bop( y) . eop( y) ) 0k A bop( y) > * 1  A •op ( y ) < $ t

/~~~z( (0<z<J z A~~~( z y) )
( ‘ ( bop(~~) b.p(y) )A  (bop ( z )< bo p (y) ~~~~.op( z)<eop ( y ) ) )  Fl 3 )

unt i l  length_ of .t ext  do
begin
if tezt (  t x — i )  ‘ text ( ix) then cont inu e_ohecklng( (  t x - I ) .  Ix)

*23: C 2<2 1< 1256 A cn~~l A jz>~ ~ 2<~~Ix~~~1~~ *20 ~ *21 A *22 )
*24: C V x ( (2 < 2 Z < 2 1 z  A t ext (x_ 1) 1t eXt ( I ) )~~~

~~y(y<jx A l<lb op ( y) <2 x . . l  A x<200p ( y) ( S I F I  3

if ix 2 then
if text ( 1z~2)2 t ext (  Ix) then cont Inne _cbecklng( (  iz—2) . ix) :

£25: C *23A A 2 4 A A 2 1 A A 2 2 )
*26 : C YxE ( 3< 2 x(11x A t e xt (z 2 ) 2 t eXt (Z) )~~~~

3y( y C J Z A  I< *bop( y ) < l r 2 A  z< eop( y ) < 2 I ) ]  3

end ;

*27: C 2< 11<2256 ~
.. c.~~l A j x> 0 A *21 A *22 1

*28: C ’ ~ zC (2 < x < 2 1 A  t ext (x~~1) 2 t e xt (x) )~~~~
3y( y< jz~~~ 1<lbop( y ) < 2 x . 1 A Z < b e o P (Y ) < h l ) ]  3

*29: C ~~ ( ( 3 (1x<2 1 A t ezt (x~ 2) 2 t ext (x) )~~~~
A 1<lbop( y) < x—2 A x<l eop( y) < l l) ]  3

end p.-llndro.s _chsck;

FIGURE 5

PROCEDURE PAL INDROME ÷CHECK

i

-

~~~~~~ 105

~~~
—
~~~ - - 

,
~~~~> I

———-“•.-~~- —-- —-——--—--——-- -—.-~~~~~ ---—-.--—-- ,
~~~~~ —-—“- -i- . - ~~~~~~~~~~~~ ~~~~~~ , ~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~ 
- T’-

A17 ~ ix-2 ~~~Al8 A Al9 A A20 A A2l A A22

Proof is shown by cons idering the cons equents one at a time ,

a . 2< — .t< — 2 5 6 A ca— I. (from A18}:

These two predicates are a restatement of part of the input

assertion. Their truth is not modified in this procedure , and

they are repeated in all intermediate assertions . They will

not be discussed in the discussion of the remaining verification

conditions for this procedure .

b. jx>0 {from A 18}:

jx — 1 ~~ jx>0 .

c. 2 <— ix< L+l 
- 

(from A 18}:

(ix 2 A 2< a L)  .‘~~ 2< —j x < — L+ 1.

d. Al9:

No x can satisfy the antecedent 2<~ x<=ix -1 because ix-1 1;

- 
therefore the conditional is true .

e. A20:

This consequent is similarly true .

No integer y can satisfy the antecedent 0 <y <jx  because jx -l ;

therefore the conditional is true .

g. A22:

Similarly.

5, Path Al8-2’2 to A27-29

• The verification condition is:

Al8 ~ A19 A A20 A A2 1 A A22 A ix>L ‘~~‘A2 7 A A28 A A29

I

~~~~i

106

________ ________________ ________

111 -__~~-~ -~ -._- ~ -~
_ —j- .

~~~~ ~~~~~~~~~~~~~~
_..



~~ ‘ ‘ ‘~~~~ ‘ ‘ I ’ ~~~~~~ ~~‘ “•“~~~~~ ,~

-~ --‘--~- 
•

~~

-

• -—-- ____,!-,-. ,..--_,_, --—- -—------ -- ___  _ _ _ _

The consequents are all restatements of the antecedents except

A28 and A29; proofs of their validity follow:

a. A28:

ix<—L +1 A ix>R. =~~ ix-l—&.

Therefore assertion A28 is a restatement of Al9 with £ replacing

ix-l in the f irst  predicate of the antecedent , and the assertion

• holds . -

b. A29:

This assertion holds s imilar ly .

6. Path A18’-22 ’  to A23-24 ’,  Case 1

Cas e 1 for this path is arrival of contro l at assertions

A2 3-24 a f te r  execut ion of the if statement with true predicates .

In this case , the verif ication condition is:

A18 A19 A A20 ~. A2 1 A A22 A

4 
- 

ix<~ 2. A text ( ix-l )=t ext ( ix) —~ A23 A A24

The following condition , deducible from the antecedents of the

verification condition , becomes the input assertion to procedure

“continue+checking” whenever the actual parameters “ ix-l” and

“ix ” are replaced by the formal parameters “ f i rs t”  and “last” :

2 < — L < = 2 5 6  A ca—I A j x > 0 A 1<=ix_ l< ~ L- l  A 2<=ix<=2.

A ix- l<ix A t e xt ( i x- l )— t e x t ( i x )  A A2l A A22 
-

The output specification of the procedure “continue~ checking, ”

after replacing “current ” by the value “current” was assigned

at the procedure call in the proof of correctness of that pro-

cedure , namely the value “ix ” , is:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~‘—

•r 

-

_ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _  _ _ _ _

A2l ~ A22 A 2<.L <~256 i~~ ca—I. A jx> 0 A

3y(y<jx A 1<-bop (y)< ix-1 A ix<—eop (y)< —& )

Given that the procedure “contirtue~-checking” has been proven

correct (presented in the next section of this appendix), all

requirements for the rule of inference for procedure calls have

been satisfied , and the output assertion of “continue~checking,”

• 
as rewritten above , can be used. to show the truth of assertions

A23-24. In fact , assertion A23 is entirely a restatement of

either this output assertion or the antecedents of the verifi-

cation condition. Assertion 19 ensures the validity of assertion

A24 over the range of x from 2 to ix-l;

(text(ix-1)—text(ix) (an antecedent)

and 3y(y<jx A 1<-bop(y)< ix-1 A ix<—eop (y)<—L)

(from the output assertion of “continue checking”) together

extend the range of x to ix, and therefore assertion A24 holds.

Thus the verification condition for this case has been proved.

7. Path Al8-22 to A2 3-2’4, Case 2

Case 2 is the case when the ~~ statement preceding

A23-24 is executed with the predicates false;  in this case , the

verification condition, is:

A18 /\ A19 “~ A20 A A2l A A22 A

ix< t A — ‘( tex t ( ix - 1)— tex t ( ix) )  ~~~ A23 A A24

All of the consequents but A24 are a restatement of antecedents ;

A24 is a restatement of Al9 with the range of x increased to

include x-ix, the ix-th value having been checked for compliance

with the assertion in the current iteration of the ~~ 
loop.

11 
108

iLL - ~ _ _



~~~~~~~~~~~~~~

—--- .- — 

~~~~~~~~~~~~ 

--
~
--——-—-- 

~~T’T~ 
-
~ r - -  

~~~~~~~~~~~
-
~~
---

~
‘
~~
- —

~~~~

Since the antecedent of the conditional contained in assertton

- 
A24 is false in. this case for x—ix, the conditional is true for

x-ix, and assertion A24 holds. Thus the verification condition

is proved.

8. Path A23- 24 ’ to A25-26 ’,’ Case’ 1

This first case occurs whenever ix—2 , or

when —e (ix— 2) and also —t (text(ix-2) text(ix));

in this case , no call is made to procedure “continue-i-checking” ,

and the verification condition is:

A23 ‘-‘ A24 ~~ A25 
A A26 

-

Assertion A25 is a restatement of antecedents, and assertion A26

is jus t assertion A20 with the range of x extended to include

x—ix. The conditions for this case ensure that for x—ix the

antecedent of the conditional contained in A26 is false; either

- ix~2 and 3< x is-false or

—i (text (ix-2)-text(ix)). Therefore the conditional is true for

xix and thus assertion A26 holds; the verification condition

is proved.

9. Path A23-24 to A25-26, Case 2

In this case the call to “continue~—checking” is executed,

and the verification condition is:

A23 A- A24 A — ‘(ix—2) A text(ix-2)—text(ix)

• 
~~~A25 “ A26

- Similarly to the proof for the previous path containing a call

to procedure “continue+checking”, it may be shown that the

antecedents of the verification condition satisfy the procedure’s

I
109



~-..———————- ~~~~ —
~~

——-—-
~~, 

—

-. _— __—_ - - —- ~~~~~~~~~ _~~~~~~~~~ _ . _  ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘—

~~~~

input assertion and that the output assertion, together with

the antecedents, satisfy assertions A25-26. In assertion A26

the range for the universal quantifier x is extended to include

the case x—ix as before.

10. Path A25-2’6’ to Al’8--22 
- - -

The verification condition is (substituting ix+l for

ix in A18-20 because of the assignment):

A25 A A26 ~~ A21 ~ A22 A

2< t<~ 2S6 A ca—I. A jx>0 A 2< ix+1<.L+1

A~~x((2<~X<—ix A text(x-1)—text(x)) —~~

~y(y<jx A l< bop(y)< x-l A x<—eop (y)<”L)]

A !x [(3<—x<—ix A text(x-2)—text(x))~~~
3y(y<j x  A l< bop(y)< x-2 A x<—eop (y)<—t)]

All of the consequents but 2<*ix<*L+l are restatements of

antecedents ;

- 

- 

and 2< ix<~~ =~~~ 3< ix+l< &+1, thus 2< ix+l< L+l is true and

the verification condition is proved.

11. Path A17 to A2 7-29

The verification condition is:

{A17} for statement {A27 -29 }

The previous proofs of the verification conditions for paths

Al7 to A 18-22 , A 18-22 to A23 -24 to A2 5-26 , A25 -26 to A 18-22 ,
• and A18-22 to A27-29 satisfy the requirements of the for rule;

therefore the verification condition for this path is proved,

thus completing the proof of partial correctness for this

procedure.

110

- _ _ _



- ~~~~~~~~~~—-‘- 

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

12. Termination

The procedure has one entry and one exit, and the only

loop is a ~~~ statement, which have been shown to terminate.

Therefore the procedure terminates.

• I. PROCEDURE CONTINUE~ CHECKING

Figure 6 contains the assertions for this procedure. -A

constant “current” is introduced in the proof and the assertions;

this constant is given the value of “last” at the time of the

procedure call.

1. Ii~put Assertion : A30-32.

2. Output Assertion: A38.

3. Intermediate Assertions :

A33 through A37. Verification conditions are provided

for all possible assertion-to-assertion paths in the following

paragraphs.

4. Path A30-32 to A33 
-

The verification condition is:

— 
A30 A A3l ~A A32 A~ p-true ~~ A33

The consequent is a restatement of the antecedents with the

addition of the predicate “current—last ,” as mentioned above.

Thus pràof of the verification condition is immediate.

5. Path- A33 to A34

The terminology “string(first,last) ok” used in these

assertions indicates that the substring from text(first) to

text(last) is a valid palindrome. The verification condition

for this path is:

~~~~~~~~~~~~~~~~~~~ - -- - 

. 

--~~~~~ __- - —  

111 

-



________ -- 
- - - - ------ - —

~~~~~

pr. e.dur e oontinn...chee klag ( int.gsr vain.  f i r s t ,  la s t ) ;
co~~~ nt Givan firs t and las t as pointers to a ps $ indron.

of s ine 2 or 3. this procedure ch.ok. whe t her or not ta le
palindrome I. ino ladsd in a Iar g.r palindro me ;

begin

ASS: C 3(sl<.256 I. ca~ 1 A j x>l A 1 < 1f i r s t (2 l .~1 A 2 (sla .t< $i A fir.t (lsst
A t .z t (fl rs t )•t ezt (  last) 3

*31: C YyC ( I($j * A bop( y )> l  A S<sop(y ) < I)~~~.( t.zt (bop( y)- 1) ’text (.op( y ) + l ) ) ]  3
*32: C 

~vC (S($j x A
Ia tr iag( bop( y),eop( y)) lok A bop( y) )~~1 A eop( y ) < s i

A Y ~ ( (0( a(J x A~~ (a~ y))~~~~(~~( b.p(z)~~bop( y) ) A ( bop (n)<bop ( y) —~~ 
.ep (n)<.op( y ) ) )  Fl I )

logica l p.lindro .s
psllndr .me:ltrn.; 

-

*33i C *31 A *31 A *32 A pst rue A curr.nt~~1as t 3

whi le

*34: C ISSA A3l A *32 A eurr.n t( l l.st A .t r in g(fi r a t . laa t ) sok
A (pa fal.e ~~~~w(t.xt(firs t—I )*text ( ia.t+I))) 3

((f lrst>L a and (la.t< l.ngth..of_ tezt) sad (p . i indro e~~tru .))  do
b.~ 1n
if text (firs t—1 ) I t.zt(la.t+t) then

begin
cemesut larger pal indr oas found ;
f irst:lfiret 1, -

ln.t:slast+1;

*35: ( 434 )

end
.1.. -

begin
p.lindro.s:Ifal..* cowat larg es t pal indrome found :

*36: ( *34 )

end;
end s

437: C A31P A ASIA *32- A ourr.nt< 1a .tA •tr1ng (f1r.t . 1ast)~ ok
.~. (fi r s t~~1 v la.t~~1 f 4 t oxt (f i r s t l) l t e x t ( l a a t + 1 ) ) )  3

— rseor d_.psliadr e s(f ir . t , la st ) ;  
—

— *38: C 42-i A *32 A 2<11(2256 A ca~~I A ji), 3
A ~ y (y(jx A 1< ’bop (y)<~ cnrrent—1 A Ourrent<100p (y )<2l ) I

end coat tnn....chscklng ;

FIGURE 6

PROCEDURE CONT INUE~CHECKING

-

- 

- 

1 112

- 

- --•- —



~~-. —-~~ - - -~~~~~~~~~~ --- -

-
~ ~~~~~~~~~~~ —v-- ~~

- 
~~~~~~~~~~~~~~~~~~~~~ — _ _ _ _ _ _ _ _  

- -  - -  -
~~~ 

— —~~~~~~*~~~~~~~~~~~~~ —~--Jj

A33~~ A34

The consequents are considered one at a time.

a. A30 A A31 A A32:

these predicates are just a restatement of antecedents.

b. current< iast:

follows directly from current—last.

c. s-t r ing(fir s t ,last) ok: -

static analysis of the program showed that, for all calls to

this procedure, either first—last-i or first last-2 (this

could have been a predicate of the input assertion), and this

fact and text(first)”text(last) ensures that string(first ,last)

is a palindrome when control reaches assertion A34 from A33.

d. p— false -
~~~~~~~ -~(text (first-l)*text(1ast4l) :

since p true, the conditional is true regardless of the truth

of the consequent.

6. Path A34 to A35

- If program control reaches assertion A35, then the

predicates of the while and if statements are true and the

verification condition for this path is (substituting first-i

and last+l for first and last in the consequent, due to the

assignment statements):

A34 A first>1 A last<t A p—true

A text(first-1) text(last+1) ~~

• 2< t< 256 A c a L  A jx>0 A 1(afirst_1<.’L_l A 2<nlast+l< L

A first-l<last+l A text(firs’t-l) text(laSt’l) A A31 A A32

A current< 1ast+1 A. string(first-1 ,last+l) 0k

113

L _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~ 
- 

~~
• -~~~~ ~~~~~~~~~~~~~~~ 

- .~~~



— -•-w .. 
----‘- --.,---

~~
.-•-- w— ------ -- ---~~~~~~~ --~~~~ -~

-- - ~~~~~~~~~ -~~ -~ ,— -~~~~ -

~ 
- -

~~~~~

—-- - - — - -~~~~~

The consequents of this verification condition are considered

one at a time. -

a. 2c—tc— 256 A ca—I. A jx>0:

these predicates are jus t a restatement of antecedents ; they

remain valid throughout this procedure and will ~ot be discussed

during the proof of further verification conditions.

b. l<—first-lc~L-1:

l<—first<—I.-l A first>l ~~ 1<— firs t_ l < uu I.~~l.

c. 2<—last+1<—L :

2<—las-t<—R,. A last<I ~~ 2 <— las t + l <— & .

d. firs-t- 1<last+l:

follows directly from ’ first<last.

e. text(first-l) text(last-’-l) ‘- A31 A A32 :

• these predicates are just a restatement of antecedents.

• f. current< last+1:

• follows directly from current<—last.

g. string(first-l,last+l) ok:

s-tring(firs-t ,las-t)—ok A text(first—1)-text(iast+l)

—) s t r ing(f i rs t-1 ,last+l) ok.

This concludes the proof of verification condition.

7. Path A34 to A36
‘
~~~ ! If control reaches assertion A36 from A34, then the

predicate of the while statement is true, that of the if state-

ment false, and the verification condition is:

• A34 A first>1 A last<I.

A — ‘(text(first-l) text(last+l)) ‘~~ p—false —~~A34

114 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘ ‘ ‘ T



The consequents are shown one at a time.

a. p—false ~~ —i(-text(first-1)—text(]ast+l)):

the antecedent and consequent of this conditional are both true

(antecedents of the verification condition); therefore, the

conditional is true.

b. the remainder of the consequents:

• 

- 

these predicates are just a restatement of antecedents.

8. Paths A35 to A3’4’ and A3’6’ to A34

Since A35 and A36 are each identical to A34 and s ince

there are no program statements on these paths , the verification

condition is A34 ~~ A34 , which must be true.

9. Path A34 to A37

• The verification condition is:

A34 A — ‘(first~l A last<& A p-true) ~~ A37

The consequents are considered one at a time.

a. (f i r s t— i  v last—I

V i(text (first-1)ntext(last+1))]:

from the antecedent ~~(f
’irst>1 A last<2. A p—true),

DeMorgan’ Rule gives :

f i r s t<—l  ~1 l a s t > —L V p—false.

Since also first>—I. and las t<nL , and

since p—false =) (text(first-l)—text(last+l) ,
• the above is equivalent to:

f i r s t— i  V last—I.  ‘.1 -~(tex-t (first-l)”text(iast+l));

thus the consequent is shown..

115

________  - 
•~~~ - - .‘ ~~~~~~~~~~~~~~~~~~~~~________________________________ - 

-



-~~~~~ 
— 

~——- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—- -
~~

--
~~~~~~~~~~~

-
~

—‘--
~

----- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 

~~~~~~~~~~~ -.-•--- - - - - - - - - - — ~-~ - -—~~~~~~~~~

b. the remainder of the consequents:

these predicates are just a restatement of antecedents.

— 10. Path A33 to A3-7-

The verification condition is:

{A33} while statement {A37}

The previous proofs of the verification conditions for paths

A33 to A34, A34 to A35 , A34 to A36, A35 -to A34, A36 to A34,

and A34 to A37 are sufficient to show this verification condition.

11. Path A37 to A38

Assertion A37 satisfies the input assertion to proce-

dure “record~palindroine” (in this case the names first, last

and current retain the same connotations). Assertion A38 is

precisely the output assertion of “record+palindrome.” Therefore

the verification condition for path A37 to A38 is verified by

the proof of correctness for the called procedure (in the next

section).

12. Input Assertion to Output Assertion

The proof of partial correctness for this procedure

is completed by concatenation of paths A30-32 to A33, A33 to

A37 , and A37 to A38.

13. Termination -

Procedure “continue~-checking” has one entry, one exit,

and but one loop, the while statement. Assuming “record÷palin-

drome” terminates (proven elsewhere), this procedure terminates

if the loop terminates. Clearly the loop body terminates, so

loop execution will terminate if one of the three conditions:

116
F 

____________________________________________________________



— —,--------- —•~
,,-- — — ---— —.--

~~
--—--•.-.-,•. —— 

~
—---- —-—

first>l, last’<L , or p— true

ever takes on a value of false. Since initially first’>—l and

“first” is decremented by 1 on each loop iteration for which “p”

is not set equal to false (in which case termination would be

assured), then the well-ordering principle of -the natural numbers

requires eventually first<-l (unless the loop terminates sooner).

• So the procedure terminates.

J. PROCEDURE RECORD~-PALINDROME

Figure 7 contains the assertions for this procedure.

1. Input Assertion: A39-41.

2. Output Assertion : A5 1-52.

3. Intermediate Assertions:

A43 through A48. Verification conditions are provided

for all possible assertion-to-assertion paths in the following

• paragraphs. —

4. Path A39-4l to A42’-44

The verification condition is (substituting 1 for i

in assertions A42 and A44 because of the assignment to the

for loop counter) :

- 
- 

A39 ~ A40 A A41 A entry-true ~~~
A39 ~ A40 A A41 A 1<—jx A A43 A

[ (entr~~true A ‘(eop(O) O)) 
-

-

~ 1z(0<z<j~~~
• C — t ( b o p ( z )—f i r s t )  A (bop(z)-<first ~~ eop(z)-clast))] •]

The consequents are considered one at a time .

a. A39 A A40 A A41:

these preti~ates are jus t a restatement of antecedents.’

117

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —

~~~~~~~~~
- ‘ - 

~~~~~~~~~~~~~~~~



— - ~~~~~ ,— -- __•_•_“••~~“ ,.-•,-—w--’ - —w --—’-—~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~ - —- - •... 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

b. l<—jx:

follows directly from jx>0.

c. A43:

since entry true, the antecedent of the conditional is false

• and the conditional is true.

d. the remaining complex predicate:

• since there is no integar z satisfying O<zci , the consequent

of the antecedent of this predicate is true , and the conditional

is shown; thus, the final consequent of the verification con-

dition is proved.

5. Path A42-44’ to A4’5’-46

In the event control passes to assertion A45-46 from

• A42-44, the predicate of the intervening ~j statement is true

and the verification condition is :

• A42 A A43 A A44 A i<=jx-l A first>=bop(i)

/‘. last< eop(i) A entry- -false =)A45 A A46

Proof is by considering the consequents one at a time .

a. A39 A MO A A41. {from A45 } :

— 
- these predicates are just a restatement of antecedents.

b. i< jx-1 {from A45}:

this predicate is a restatement of the antecedent resulting from —

the test on the loop counter.

c. entry—false ~y(y< jx A 1<-bop(y)<-current-l

A current<”eop(y)-<”t) . {A43}:

entry—false is true; thus it must be shown that there exists

a value for y such that the predicates following the “existential”

118

p 
- - — --- ‘

—•—- -



r - - - 
~~~~~~~- -~~~~~~~‘~~~~~~~‘ 

- --- -~~ —••~ — — rw ~~~ -~~~~~~~~~~--w — —
~

— - - —_________ - - - -~~_______ _______

procedure r.cord...p.lindrsas (integer vain. f i r s t . l a a t ) ;
co snt Record only men length palindromes Flag previously

recorded palindromes If they are included in the palindrome
specified by first and last.
jx w s  Initia l ised to 1. After eo p let lon j x po in ts  to the
next entr y in begin_of_pal indrome sad end ._o f._pa ltndrome ;

begin

439: C 2<21(2254 A cas t A jz)S A l < s f l r s t < 1 l — 1  A 2<lla.t<:1 A fir .t< last
A onrr. nt( las t -A string (f l r s t , lne t ) ok
A ( f  Irs t~ 1 V laa t~ I V ~( toxt ( f lr .t *) St ext (  I a a t + l ) ) )  3

• Ml; ( Yy((I<y<jx A bop( y) > l ’ A  I(e.p(y) C l)~~~.( text ( bop( y) i) t.*t(e.P( y ) * l ) ) I  3
A41: C ~yf (S( y (J xA ’ ( .op ( y) l))

~~~(.trln$bop(y ) ,eop ( y ))bok - A bep( y ) > 2 IA  •op ( -y ) < 1 l
A~ ts ( (S(z<Jz A ..($Uy )) U~~~

• ( ‘~(bsp(s)~~bop( v) ) A (bop (s)<bop ( y) ~ eop (z) <eop (yfl ) Fl 3 3

In teger is  comment iocal counte r;
log ica l entr y;
entry 1 true ;
for i :z1 step I

A42: C 439 ~ 445 A *41 A i<~ Jx I
443: C eat ry sfalse —4ay( y<*Jz A 1<~~bop( y)<’cnrSen t—I A curr ont( z eo p (y ) < 2 l )  3
444: C (.ntry trneA ‘(eop (i l)’S))~~~

‘,alS(z< i + ( .( b o p (z ) I f i r st )  A ( b o p (z ) < f t r . t  I.p eop (z) < l a e t ) ) 1  I

unt il jr-i do
- begin

- If ( (f l r . t)a beg in_ of_ pallu d r oa. (1))
and ( last <I end_ of_p alI nd r ome( 1 ) ) )  then
begin
comment Palindrome I. entirely included in a previously

recorded psllnd ro me . No entry re qutrmd -.

j eat ry :Sfa iae ;

• *45: ( 4 3 9 A A 4 5t A A 4 1 A 1 <Sj 2 1 A 4 4 3 )
*46: C (entr ys tr us A ..(eop(l)zS))~~~

• CS< z < h 1 (~~( boP (z)1fi r .t ) ,~. ( b o p (z ) < f i r s t  .~~~eop~ z ) ( l n s t ) ) 1  3

end
-

, e lse
begin
if ((begln_of ._p .llndrome ( I) > 1  fIrst )

and (end ..of_pallndrome (1) <~ last )) then
begin
ea4_o f_ pa1Iu d r o.e( i) ’~~;
co ent f lag smaller palindrome ;
end ;

A47: C A45A446)

- end s

*48: C A45 ’\A46 )

end .; comment A ll previousiy recorded p.1In4ro.et~
compared with las t input;

FIGURE 7

Page 1 of 2

PROCEDURE R.ECORD~-PALINDROME

-
~~~

I 

~ 
- --—

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 
~~~~~~~~~~~~~~~~ 

—-- -
•
,..-

~
--‘.----•—

~~~
- - 

~~
—- -— ---

~~~_- ‘
~~
-------,-- --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 
- - - —

• 

-

.

449: ( 4 39A4 4 5 A A 4 1 A 4 4 3 )
t *5,: C (eatrys trno ‘~ 4eop(J z)2l) )~~~~

~s[S< z<j x ~~~.(..( b op (z) *f i r st ) A ( bop ( s) < f i r st ~~~~~e o p (z ) ( 1 a s t ) ) 3  I

if entry ~ tr ue then
begin
Comment lar ger than all previous or o verlapping or disjoint ;
b.gin .of_ pallndro.e(Jz) :sfirst;
end_of_pallndrome (Jx)~~~laSt ;
jz:~~jz+1;
end ;

*51: C 441 A £41 A 2(2 1<2256 .‘~... o a l  A jx>Ø I
*52: C ~ -3r( -p <jx A l<lbop( y)<Icurrent l A cur r ent<R eOp( y ) < h t )  I

end record palindrome ; 

- . -  -

• 

-

FIGURE 7

Page 2of 2

• PROCEDURE RECORD4-PALINDROME

120

Li -
~~

-- ‘- -
~
-
~

-
~~~~~~ ~

-
~~~

--- - 
~, _____  _____



-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

— - - - ;  ,w.•.._•-.--•_ - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —

quantifier hold. -

It is proposed that y—i will satisfy those conditions.

Since i<—jx-1 , icjx holds.

i< j X Ps A4l ~~ bop (i)>”l; 
-

• current<—last A first<last ~> current-l< first;

current-1<=first A bop(i)< first ~~ bop(i)<—current-i;

• therefore 1<-bop(i)<=current-l holds. 
-

current<=iast A last<=eop(i) ~4~’ current<=eop(i);

~ <j X  A.. A41 =4~ eop(i)< ’t;

so -curren-t-<=eop(i)<=9. holds.

Therefore , the necessary predicates are all true when y is

chosen equal to i; this consequent of the verification condition

is proved.

d. A46:

since entry—false is an antecedent of the verification condition ,

entry—true is false and the conditional which is assertion A46

is true.

6. Path A42-44 to A47, Case 1

• Control can pass -to assertion A47 from A42-44 either by

executing the compound statement with the comment “flag smaller

palindrome” or by failing to execute that compound statement

when the predicate of the preceding if is false.  For cas e 1,

the case where the predicate is false , the verif ication condition

is:

A42 A A43 A A44 A i <—j x - 1  A

—‘ ( f i r s t>—bop( i )  s-. last< eop(i)) A

-‘(bop(i)>—first A eop(i)< last)

•

121

--—-

~

----

~

-

~

- - -



-
_- 

- - - - - - - - - - - - ~~— ---~~~~~~~~~-—~~~~~~~~~~~~~~ - - - - 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~7 A47

All of the consequents contained in A47 A45 ‘A {A46) except

A46 are restatements of the antecedents.

a. (entry—true ~ ~~ ( e o p ( i ) — 0 ) ) ~~~

• 
‘~ z ( 0< z < n i  ~~ C -- (bop(z )—fir s t )  A

(bop(z)-<fir s t  ~~~eop(z) -< las t) ) ]  {A46}

If entryafalse , the conditional is true without further proof.

If entry true A ‘‘(eop(i)—O) , the antecedent of the verification

condition provides that the generalization on z is true for

0<z<i ; if it is shown to hold for z i , then it is true for

0< z <— i and this consequent of the verification condition is

proved.

Either bop(i)=first or bop(i)<first.

Suppose bop(i)—first;

then either eop(i)<—last or last<—eop(i),

and then one of first>—bop(i) ~~~ last<—eop(i) ,

or bop(i)>—first /‘ eop(i )< last , mus t be true .

But the antecedent of this verification

condition indicates both are false;

therefore —s (bop (i)—first.
Now suppose bop(i)<first;

then first’—bop(i) is true, and

from ‘(first> bop(i) A last<—eop(i)),

it is shown that last<—eop(i) must be false.

Thus bop(i) -<first ~~~eop(i)<las t , and

the generalization on z holds for 0<z< 1; -

therefore this consequent is true.

122

- 

___

i - - 
~~~~~~ ~~~~~~~~~

~ .



W!~~~~~~~~~ 

~T’~~~~~::—~~~ 
—

7. Path A42-44 to- A47 , Case 2

For case 2, the case where the predicate of the if

statement immediately preceding A47 is true, the verification

condition is:

A42 A A43 A A44 A i<-jx-1 A

bop( i )>—f i r s t A e o p ( i )— O ’*A4 7

All of the consequents contained in A47 {A4 5 A A46} except

A46 are restatements of the antecedents .

a. (entry—true A ‘ ( e o p ( i ) = O) ) -~~

~ z ( 0 < z < — i  =~~ 
( ~ (bop(z)=firs t) A

(bop(z)-<firs t ~~ eop(z)-<last))] { A46 }:

since eop(i)—0, the antecedent of this conditional is false,

and the conditional is true ; this completes the proof of the

verification condition for this path.

8. Path A45-46 to A48 and P-ath A47 to A48

There are no program fragments on these paths, so the

verification conditions are trivially true; they are :

A45 A A46 ”*A45 A A46

9. Path A48 to A42-44

The verification condition is:

~

_

I 
A48~~~~A39 A A40 A A4l A i+1<—jx

A A43 A (entry—true A -~~(eop(i)-0))~~~
• Vz(0<z<u.i+l ) ( ‘ ( b o p ( z ) — f i r s t )

A (bop(z)-<first ~~ eop(z)-<last))]

Proof is shown by considering the consequents one at a time.

123

- -- -- — -
-~~~~—-—~~~~~~ —-- 

,
~~~~~~



- ~~~~~~~~~ —
-
~~

--- --
~~~

- - -
~~~~~~~~ - -~~~~~~~~-- - — -- — -___ -. -

a. A39 A A40 A A41:

these predicates are just a restatement of antecedents~
b. i+l< j x :

i c—j x-l ~~~~~~~ i+1<ajx.

c. A43:

this predicate is just a restatement of an antecedent.

d. (entry—true A ‘(eop(i)-0))~~
Yz[0cz<—i+1 -

~~ ( ‘(bop(z )— fi r st )

A (bop(z)-cfirst ~~ eop(z )< las t) ) ]  :
from A46 it is known that the generalization on z is valid

over the range 0<zc—i , which is equivalent to the range in this

consequent , namely 0<z c i+ l ;  therefore this consequent holds .

Thus , the verification condition for this path is proved.

10. Path A42-44 to A-49-5 0

The verification condi tion is:

A42 A A43 A A44 A i>jx-l ~~~A49 A A50

The consequents are considered one at a time .

a. A49:

This predicate is a restatement of antecedents of the verifi-

cation condition and thus is true.

b. (entry—true A ‘(eop (jx)—O))~~~

~iz(0<z<=jx ~~~~ 
( -

~‘ (bop(z)—first) A

(bop(z)-<firs t ~~ eop(z) < las t ) )]  (A50 }

i>jx-l A i< j X ~~ ia jx .

• Therefore, this consequent is just a restatement of an antece-

dent with j x -i replacing i.

124 -

~~~~~~~~~ 

-—-- - -  - - - - - -

~~~

-- -——--——-— - -  
- - _ _



r “
~~‘ ~~~~

- 

~

—.•—-

~~~~~ 

-

~~~~~~~~~~~~~~~~~~~
—.- ------ - —- - _ _ _ _ _ _  - - -

11. Path ‘A39-41’ to A49 -50 -

The verification condition is:

{A39-4l} for statement {A49-50}

The previous proofs of the verification conditions for paths

A39-40 to A42-44, A42-44 to A45-46 to A48, A42-44 to A47 to A48,

A48 to A42-44 , and A42-44 to A48 satisfy the requirements of

• 
the for rule; therefore, the verification condition for this

path is proved .

12. Path A49- 5O to A5l-52 ’, Case 1

— 
Case 1 is the case where entry—false and the compound

statement intervening is not executed. The verification con-

dition in this case is:

A49 A A50 A entry—false ~~~ A51 A A52

Consider the cons equents one at a time .

a. A51: 
-

The predicates of this consequent are restatements of given

predicates.

b. A52:

entry—false A A43 ~~~A52 (A43 is one of the predicates con-

tam ed in assertion A49).

13. Path A49-5O to A51-52, Case 2

In this case, entry—true and. the compound statement

intervening is executed. The verification condition (with

jx+l replacing jx in A51-52) is:

125

L. ~~~~~~~~ - ~~. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— — _ ~~~~~~~ —-—~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
- --- ‘—- —~~~~~~—~~ — ----- ~~~~~~— — —~~~~-

A49 A ASO A entry-true A bop(jx)-first

A eop(jx) a 1ast -=~,

{ 2<—L (—256 A ca—S. A jx+l’O A -

V y[(0<y<jx +l  A bop(y)>l .“.. O<eop (y)<9.)~~~
-~(text(bop(y)-1)-text (eop(y)+l))] A

— 

“I y [  (0<y<jx+1 A. ‘(eop(y)—O))~~~

(string(bop(y) , eop(y))—ok A bop(y)>.l A eop(y)<-L

t~U’z( (0<z<jx+1 A

.
~~~~ 

( ‘(bop(z)-bop (y) ) A

(bop(z)<bop(y)~~~ eop(z)<eop(y))) )] ] A -

3y(ycjx+ l  A l<—bop (y) < current-i A currentc-eop(y)<—t ) }
The consequents of this verification condition are considered

one at a time.

a. 2<—S.<—256 A ca S. A j x + l> O :

these predicates are just a restatement of antecedents.

b. ~ y((0<y<jx+l A bop (y)>l A O<eop(y)<L)~~~

—s (text(bop(y)-1)—text(eop(y)+l))]:

the antecedent A40 (contained within assertion A49) establishes
-

. the generalization on y for O cy<jx. If the statemen t is true

for yjx as well , then this consequent is proved. The ante-

cedents of the verification condition allow the generalization

statement for y—jx to be written as:

(first>l A 0<iastct) ~~ ‘ (text(first-l) text(last+l));

from the input assertion of this procedure it is known that

( f i r s t—i  ‘/ last— S. V —s (text(first-l)”text(last+i)));

the generalization statement for y-jx has an antecedent which

- 

i26

- —~~~~~~~~~~~ -



_ _ _  

_ _  —

~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _  _ _ _ _ _ _ _ _ _

negates the first two predicates of this disjunction; there-

fore the third predicate, which is also the consequent of the

- generalization statement for y j x , must be true. Thus this

consetfuent of the verification condition is proved.

c. q’y( (0<y<jx+l A ‘(eop(y)—0))~~
(string(bop(y),eop(y))-ok A bop(y)>-l

- A eop (y)< & A ‘~
‘z( (O< z<jx+1 A ‘(zny))

.~~~~~~~~ ( ‘(bop (z)”bop (y) ) 
-

A (bop(z)<bop(y) ~~ eop(z)<eop(y))) )]

The antecedent A41 (con-tam ed within A49) establishes the

generalization on y for 0<y<jx .  If the generalization statement

is demonstrated true for y—jx , then this consequent holds . For

the case y-jx , the conditional which mus t be proved is:

‘(last—O) ~~ (string(first,last)-ok A first>—l

A last<= 2. ‘~z( (Q<z<jx+i A -s(z—jx)) -~~~(-s (bop(z)—first)

A (bop(z)<first ~~ eop(z)<last)) )]

The antecedent of the above conditional is clearly true ; if

the several consequential predicates are true, then the veri-

fication condition consequent in question is proved. The first

3 predicates follow from the input assertion. The fourth

predicate, the generalization on z, has already been shown to

be true for the range 0czcjx

(from entry—true ‘~ (eop(jx)-O) A A50) ;

further, if z—jx then ‘ (z—jx) is false and the conditional

which is the fourth predicate is true.

This completes the proof for this consequent of the verification

J 

condition.

127

- — ______________________________



- ---- ~~~~~~~~~~~~ —---- -— ~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ rn~~wr -n __-__--,-______-_ _ _ — -— - - --

- —- _______,-_w____,. n- ‘- - - -

d. 3y(ycjx+ l A l<.bop(y)< current-l
- 

,
~ current<seop(y)< L):

It is proposed that y —jx will satisfy this existential statement.

jx.çjx+1;

• bop(jx)-first A l<— fir st -c— L-l  A first<last

A current<—las t A lastc—t ~~
l<—bop(jx)<—current--1; - 

-

eop(j x )— las t  A current< last A last<—& ~~

current<—eop(jx)<-t;

~: ~ so y—jx  satisfies the existential statement, and this last

consequent of the verification condition is shown. The veri-

fication conditions for both cases on path A49-50 to AS1-52

have been proved.

14. Input Assertion ~to Output Assertion

The proof of partial correctness for this procedure

is completed by concatenation of paths A39-41 to A49-50 and

A49-50 to A5l-52.

15. Termination

The procedure has one entry and one exit , the only

loop is a for statement ; therefore, the procedure terminates.

- 

- 

IC. PROCEDURE MAIN

Figure 8 contains the assertions for the main body of the

example program.

1. Input Assertion : A0. 
-

i28
- ‘ 1  

__________________________________________________L - - - ~~— - -  -~~~~~ r —
~~~~~~:~~~~~~~~~~~~~~~~~~~~~~ ---- -



____________ 
~~-—~~~~~ - -- - --~~ -~~~~~.

_ _ _  r- ~~~~~ -- -  - --- - — — — - -

co~~~~nt meln i

*5: C 2 <w l np u t ( l ) < • 2 56 A caBS 3

lai tia llse :

43: C 2<1l<1256 A c510 A j x l  A lt ~ 8SA cbsbiank ~

,eud. ...ant .wr I te_Inpnt ...card .s - 
-

A16: C 2(11( 2256 A ca s l A  jza I 3

pal lndro.....oh.ok;

453: C 2<al (2254- A ea~~i A  jz)5 )
*54: C VrU 2(~~z(~~l A t ezt (z—l)~~ter t (z) )~~~3y( y<jz  .‘~ l(.bop( y I ( zr -1  ‘. z<aeop( y ) ( z 1) ]  )
455 ; ( ~~ ((3( .~~(s~ p. tezt(x-.2)ltezt(z))2*

3y(y(jz #‘. l (sbop (y)<1r-2 A x<:eop( y ) < 1 l ) J  I
*56: C YyC ( 5<$jz A. bop( y ) > 1  A S( eop (y) < l)~~~

~( t.zt( bop( y) l)2t ent ( eop( y )+ 1) ) ]  I
*57: C ‘~‘y( ( l(y(jz A (eop( y) 0) )

(s t r ing( bop( y) ..op( -y))u ok A bop( yFl~~ 1 A .op(y) C~~l
A V s( (S(s< j z~~ ~(z.y) )~~~~( .( bep(z)lbop( -y) ) A (bop (z) (bop ( y) liiiip eop (z ) < e o p ( y ) ) )  Fl ] I

- - - 
I f j z 1  then tezt3
a le. ‘surlte..a l Lp.lLndrons.:

A58~ ( A53 A *54 A *SS A *56A*57 )

end . -

FIGURE 8

PROCEDURE MAIN

129

— — - - - - -  — - ----- —-— - - -  _ _ _

— 
—•.~ —L ~~~~~~~~~~~~~~~~~~~ 

•.—
~~~~~-



F’. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

2. Output Assertion: A58. 3
3. Intermediate- Assertions:

The intermediate assertions are assertions A3, A16, and

A53-57. They are precisely the input and/or output assertions

of the procedure calls they precede and/or follow. The yen -

— fication condition path for assertion A0 to A53-57 is proved

by repeated application of the rule of inference for procedure

calls, and then by concatenation. The verification condition

for path A53-57 to A58 is simply:

{A53-57} non-significant statement CAS3-57}

because the intervening if statemen t merely prin ts the resul ts

which have alrt-ady been proven correct; its proof is immediate.

4. Termination

All of the procedures called from this main body have

been shown to terminate; this program has one entry, one exit

and no loops ; therefore , it terminates. This completes the

proof of total correctness of the example program. 

130 

_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_____



‘“~~~~Iv 

___ •._‘__

____ •‘w____ ’

.- ,.---- -.-——.-_,- -~-----.-.,--—.-~-- .———•—_---

APPENDIX B

APPLICATION OF DISTRIBUTED

- 
- CORRECTNESS TE CHNIQUE S

A. ASSUMPTIONS , ABBREVIAT IONS , AND NOTATION

In addition to the assumptions about the example program

verified by static analysis (ch apter IV , Section A), it was

further assumed that all input data read by the program were

type compatible with variables and that the correct number of

input characters were present in the in;ut data stream. Integer

arithmetic was also assumed. Because actual dynamic testing

was involved, assumptions that the operating system and compilir

operated correctly were at least partially verified during

testing.

Because several of the program variable names are verbose,

the abbreviations listed below were used in presenting the

assertions and their verification:

-L length÷of-’-text
-L t cardlimit
-cb cardbuffer - -~

-n number~of~-input~cards
- c card~-counter-bp bufferposition
-bop begin4-of~palindrome-eop end÷of’.-palindrome
-p palindrome

Figures 9 through 12 are listings of four program procedures

with labeled synthetic assertions inserted to aid the discussion

• of the correctness demonstration. Assertions BO and B29-33 are

the input and output specifiáations, respectively. Assertions

are contained within braces “ C },“ and in Figures 9 through 12

• - i31
f I ’

- _ 

~~~~~
•
~~~

-
~~~~~~_



—,----- ~~~~~~~~~~~~
-
~~~ —~~- --~w.~ ..-v-, ~~.- ..- ~~~~~~. - ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.‘-‘--.

~ 
-
~~~

-
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~ - -- ---_ •- — -_ _ — - - —

wherever successive labeled assertions follow a program state-

ment, the intended synthetic assertion for that point is a con-

junction of those assertions. Frequently assertions contain

within the braces the names (labels) of other assertions; the

meaning implied is a literal replacement of the label with its

expansion. -

• Condition tables in the following sections list on their

left the several predicates which were considered to partition

the input domain of the given program fragments. The columns

to the right of the predicates list the conceivable combinations

of truth values for the several predicates. Corresponding to

each column , a test data element was selected to verify program

operation for each composi te predicate (conjunction of the truth

value entries in each column). The following entries were used

in the columns:

y : Yes, or true.
n : No , or false.
- : Don ’t care; either true or false.

(y) : Required to be true by the value for
another entry in the same column.

(n) : Similar to (y) , except false .
-
~~

- 
1 B. UTILITY PROCEDURES

The procedures “texti,” “text2,” “text3,” “blank-~-lines,”

and “wnite÷al F’-palindromes” do not affect  program performance

of the output specification. (They effect the neat printing

of the results ob’tained in the significant procedures.) As in

the presentation of the formal proof for the example program ,

these procedures will not be examined here . However , it should

be noted that because the method reported in this appendix

I ?

i32

~~~~L L



~~~- ~~~ — -----~~~~-~ ~~~~~ ~~~~~~~~~~~ ~~~~ — - —.~~~— -~ _______________________________________________ _____

t
involved actual program execution, a side effe ct of the tests

performed was to verify the performance of these non-essential

procedures.

C. PROCEDURE MAIN

The methodology using the principle of distributed correct- 
-

ness and the cond ition table method for selecting - test data

(where needed) was first applied to the - main body of the example

program; procedure calls were treated either as an in-line cx-

pans ion of code or as program statements whose semantic meaning

was defined by the input and output assertions of the called pro-

cedure. It was assumed that the input assertion BO is satisfied

when program execution begins . Figure 9 contains the synthesized

assertions for this procedure.

1. Synthesized Assertion Bi:

• 2<—2.<— 2 5 6  A jx= l A Lt—80 A cb—blank

a. Test Data Assertion and Verification

The test data assertion is that for 2—2 and for any

corresponding character string (of length 2 ) ,  the synthesized

assertion is valid. Verification was obtained by executing the

program statement “initialize;” preceeding assertion Bl wi th

input data t2.

b. Generalization Assertion and Verification

• The generalization assertion is that for any input

data satisfying the input assertion BO , the same result as above

will be obtained. Verification is made by static analysis of

procedure “initialize” - the assignments satisfying Bl are -

I
133

~ —i 
- _- :

• - 
— -——_______ — --

- - — ----~- .—-—~~~~— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
~~~~ ~~~~~~~ -~~~~~ —---—~~~~~~~~~~~~~~~= ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

oo n t ~~~in:

35: C 2< 21 <2256 3

I - 
InitIali se ;

I BI :  C 2<2 1(2256 A ~za l A 1t280 A cb bl.uk I

- 
reaL .and... wr l te.. Inpu t~.card.

35: C 2<~ l(’256 A cal l A j z l  I

pelIndro.e~ check;
• If J z~~l then t .nt3

else w r lte ..alI... pa lindromes ;

• 939 : C 2 (21<2256 A cal l A j z> 0 I
• 830: C ~~zC C 2< x <3 1  ‘~ t .zt (z - 1)z t e st (x) )~~~

A l<~~bop (y)<~ z 1  A x < l e o p ( 7 ) < 1 1) J  3
831: C ‘t’zC ( 5<1x< * 1 A t ex t ( r 2) 2 text (x) )~~~3y( y<jz A l< bop( -y)<2x.--2 A x(~ eop (y)<~~l)J )
332: C (0< y(j x A bop( y) > 1  A

‘..( t .zt (bop( y ) — l) ~~t.~~t ( . op ( i ) 4 1) f l  I
853: C ~ y( (S< y<j z  A

t .t r ins( bop( v) , eop( y)) a ok A bop( -y)>s1 A •op( y) < ’l
• 

.~~~~z( (G< z<J z. A A(z 1y) )~~~
(- (b op (z)~~bop( -t ) )  A ( bop (z)<bop ( y) ~~ eop (z)<eep 4 -y))) Fl 1 3

.nd .

— FIGURE 9

PROCEDU RE MAIN

I I

_ _ _  - •• 
- - 

-- -- 
- 

134

Li — ~~~~~~~~~~~~~~~ 
-

~~
—- - —

~~~~~~
- 

~~~~~~~~~~~



— 
-••“— 

~
__ •—I--- 

~~~ 
—j  — - ------- ----_—~~~—,-

executed unconditionally.

c. Proof of Synthesized Asser tion

The synthesized assertion follows directly from

the test data and generalization assertions. Note that the

procedure call “initialize;” was treated as an in-line sub-

stitution of code. The proof of Bi amounted to a demonstration

of correctness of the procedur e “initialize.”

2. Synthesized Assertion B5: 
-

2< L< 256 A ca=Z A jX=l

The control path from assertion Bi to BS contains only

a procedure call to “read+and÷write-4-inputi-cards”; assertion BS

is proved by showing that it is equivalent to the output speci-

fi cation of the procedure.

Let assertion B2 be identical to Bi , and let it be the

input assertion for procedure “readi-and~wri te~-input÷cards” (see

Figure 4 in Appendix A); clearly B2 holds since Bi precede the

procedure call and has been shown true. Examination of the

procedure reveals that the predicates 2<nL<~ 256 and pc—i are

— 

not modified in its execution ; only the predicate ca=2 (which

as before means tha t “S.” characters have been properly read

from the input stream and assigned to the string variable “text”

in the proper position) remains to be shown . This will be

done by verification of the output assertion for the procedure

called.

a. Synthesized Assertion B3:

Let 33 be an assertion inserted following the

first statement in “read+and~write.-input.cards”

135 - 

-

~ 

— —_—  

_-_- 
_________ —-—-- -



.?•,~•,, 
- 

- - 
________________ ~~ -~~~~~~LJ~~T

(n~—((L-l)div Lt)-+1;). The assertion is that:

- 

- -  
- 

- “n” is the correct number of

input cards for the characters

in a string of length “2..”

The test data assertion for B3 was determined using the

- - following condition table to divide the input domain into
- equivalence classes : - -

Predicate 
____ ____

2 <—2. <= 80 y (n) (n) (n)
8 1<— & <—1 60 (n) y (n) (n)
161<—2<—240 (n) (n) y (n)
2 4 l < — L < — 2 5 6  (n) (n) (n) y

- 

Tes t data (2.) 
- 

2 81 240 256

- 
- 

• Correct value (n) 1 2 3 4

The test data assertion (i.e., that the program will execute

properly. for the test data elements- identified in the preceding

table) was verified by execution of the program to assertion

B3 with the four test data values of “2.” and checking for the

- 
assignment of the correct value to “n”.

I The generalization assertion at 33 is that n is totally

determined by the four predicates on “2.” given in the condition

table; from the program statement “n:-((L-l)div Lt)+ 1” and the

predicate Lt-80 it is apparent that this is so.

The proof of the synthesized assertion B3 follows directly

from the test data and generalization assertions and Theorem 2.1

of Reference 14 (the theorem states that if two functions on

the same domain D are totally determined by the same predicates ,

13b

Lt ________________________________________ ~~~~~~~~~~~~~~

—

-
-
-_ 

- -

~~~~~~~~~~~~~~

- - -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••~~
-
~~~

-
~
-——



—~ -~~~ --- ~~~~~~~~~~~~~~~ ~~_““ ~ 
— 

~~~~‘“— —-~-
- -~

- ---- -
~ —.--~~--- - ~.-,- — - _

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-=-

~~~~~

then those predicates partition D into equivalence classes for

testing purposes). Theorem 2.1 applies in this case as the

program performance (first function) and the assignment algorithm

(second function) are both totally determined by the four pre-

dicates on “2. “

b. Synthesized Assertion B4: -

• Let B4 be inser ted following the last statement in

procedure “read÷and÷write’-input~ cards ” (i. e. ,  the output

assertion for the procedure). The assertion is:

ix— 9.+1 A ca—2.

The test data assertion for B4 was determined us ing

the following condition table to divide the input domain into

equivalence classes:

Predicate

2<n 9.<80 fl fl Ti
2<~ L c — 2 5 6  A 2 rem8O O (11) y y n

80 <L c— 256 (n) n y (y)
n—i (y) (y) (n) (n)
n>l (n) (n) (y) (y)

Test data (~ J* 2 80 160 81

Correct value (ix) 3 81 161 82

*~~j~ input string of “2.” characters must
also be provided.

The predicates listed above are those which were presumed to

have all possible bearing on program operation; note that the

-: - 
two predicates on “n” were actually unnecessary since “n” is

totally determined by “2..”

j -

I

I • .

~~~~~

- 

•
~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J 

-



___ 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

- _ _

The test data assertion is that the correct results will be

obtained for the four test- data elements identified in the con-

dition table; verification was successfully performed by program

execution.

The generalization assertion at B4 is that ix is totally

determined by the three predicates on “2.” listed in the condition

table (and “Ca” is one less than ix). This was verified by in-

spection of the program statements between assertions B3 and B4.

The proof of the synthesized assertion B4 follows directly

from test data and generalization assertions and Theorem 2.1 (14).

c. Proof of Synthesized Assertion B5

It has been shown that assertion Bl preceding the

- 
- call to procedure “read÷andi-write÷input÷cards” satisfies the

I 
- 

input assertion for the procedure, and that the procedure

• correctly assures the validity of its output assertion (B4).

Since B4 requires that ca-z, synthesized assertion B5 is shown

by the distributed correctness of the called procedure.

3. Synthesized Assertion B29-33

The assertions 329-33 are the output specification for

the oxample program. The only significant program statement

intervening between assertion B5 and B29-33 in the main program

is a call to procedure “palindromei-check” (Figure 10 is a listing

of the procedure). Note that assertion 35 satisfies the input

assertion (B6-8) to the procedure (because B6 is a restatement

• of BS and the conditionals which constitute assertions -B7 and B8

have antecedents which are necessarily false when ix-?.; therefore

138

~~~~~~~~



!~~ ‘~~~
‘——— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

- 

the conditionals are true) and that the output assertion of the

procedure (Bl2) is identical to assertion B29-33. Therefore,

if the distributed correctness of procedure “palindrome~check”

is shown separately and if the procedure cal]. statement is cxc -

cuted for the test cases identified- in the verification of the

procedure , then the synthesized assertion B29-33 is demonstrated

to be true , and the verification of the main program is complete.

The correctness of the called procedure is demonstrated in the

next section.

D. PROCEDURE PALINDROME CHECK

Figure 10 contains the synthesized assertions for this pro-

cedure. Similar to the way correctness of the main program was

verified by relying on the distributed correctness of this pro-

cedure, this procedure will be verified by relying on the dis-

• tributed correctness of the procedur e which it calls , namely

“continue checking.”

1.. Synthesized Assertion B6-8:

B6 : 2 < — &<— 2 5 6 A jx—l A ca—S.
- 

- 
B7: ~~

‘ y((0<y<jx ‘~. bop (y )>1  A 0<eop (y)<L) ~~
—~(t ext (bop (y) - l )—t ext (eop (y)+ 1) ) J

- 

I 

B8: ~
‘y[ (0cycjx A ‘(eop(y)—O)) ~~~~~~~~~ 

-

4 
• (string(bop (y),eop(y))ok A bop (y)>—1 A eop (y ) <— 2.

A 
~
‘z( (0<z<jx A ~( zny) )~~~

( ‘  (bop (z)”bop (y) )

A (bop(z)cbop (y) -i.i> eop(z )< eop (y) ) )  ) ]  }

Synthesized assertion B6-8 is the input assertion for the

procedure . Static analysis of the program reveals - that the

139

~ I I  
_____________ ________ 

_____

-
- ~~~~~~~~~~~~~~~~~~~~ ~~~~~

-
~~~~~~ -



__

- A- pro cedur e pal indro ..check;
co nt find a l l  palindrome, within given text stri ng ,
begin

co nt scan text fro . lef t  to right ;

86: C ~< e l ( l2 5 6A J x U 1 A  cal l I
878 C ‘~yC ( < y< J x A  bop( y ) > l  A e< .op( v ) < l)

.4t.~~t ( b.p( y)- 1) t .xt (.op( y ) + l ) ) 3  I
88: (~~ 7( ( ($J z A ’ ( e o p ( y)~

0))
(strt .g( bop( y) oop( y) ) *ok A bop(y) ) 1 ‘ , ..p(y) (~~l
A ’~ s( (0( s<Jz A .4zuy) ) -

(.4 bop( ~ ) ~bop( y ) )  A ( bop( a) < b.p( -p-) ~~~ eop( a) <eop( y ) ) )  ) I I

for 1x 22 step 1 u nt I l  lengtb ...of.. text do
begin
if tezt ( 1r 1) • t.xt ( Ix) then

39: C 2(~~l<.256 A jx>O A caR lA BTA 88 1
310: C t ent ( iz-1)~~t.xt( ix) ‘~~ start 2 Ix— l A finlsha Ix

r...tring (Ix l,1x)~ o kA  1<~~ix-1 A ix<~~i I

coat inue ..cbecklng( ( ix 1) . i x ) ;
If Ix w 2 then

if t ext ( ix—2)~~tezt ( Lx) then

311 : C 89 ,.t.xt( iz—2)s text (ix)A .t.rt~~ir 2A  finishlix
A.tr ing( Iz—2, ix) ok A 1< 1z- 2 A I x <s l  I

— oon.t iuue..checkleg( C Lx -2) , ix) ;
ends

312: C 2( R l<2256 A celiA  j x> OA  33~~~A B3I A 932 A 833 3

end pal iMre....check;

—

FIGURE 10

PROCEDURE PALINDROME-4-CHECK

140

_ _ _ _ _  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

•- 

~



-~~~~~ --- --
~~-‘- ~~~~~~~~~~~~~~~ 

____  

~~~
—

~~~~~
-
~~~
- ~~~~~~~~~~~~~~~~~

only call to procódure “palindrome÷check” is the call in “main”

following assertion B5; assertion B5 is identical to B6 , there-

fore B6 holds at the t ime of the procedure call. 35 ensures

that jx—1, and because there is no integer y such that 0<y<1,

the antecedents of the conditionals which constitute B7 and B8

are necessarily false at the time of the procedure call. There-

fore the conditionals must be true at this point, and the input

assertion to the procedure is satisfied whenever it is called.

• 2. Synthesized Assertion B9-10:
— B9: 2 < — 2. <— 2 56 ~ j x>0 A ca— L A B7 A 38

BlO : text(ix-1)-text(ix) ‘~ start—ix-l “~ finish—ix

‘~ string(ix-],ix)-ok A 1<=ix-1 A ix<—?.

The assertion B9-10 is inserted to state that the input

specification is satisfied for the procedur e “continue-~-checkiiig ,”

which is called immediately following the assertion. All pre-

predicates of B9-10 are a restatement of the input assertion

B6-10 (and have not been modified by the intervening program

statements) except:

a. text(ix-1) ’text(ix):

this predicate is assured since control reaches

-
• 

B9-lO only if it is satisfied (preceding j~ statement).

b, start ix-1 A finish—ix : -

these predicates are true by definition; “start”

and “finish” are constants, initialized to the values with which

“continue~checking” will be called, which are used in the

proofs of synthesized assertions.

-~

— — — —J~~~
_
~•~ ~~~~~~~~~~~~~~~~~~ ~ •__ ~ i -



— -•—.-,- ~
—--

~
-- --- 1TJ~- -~~ 

- 
~~~~~

— - -
~~

-—
~ ~

— — — . • —  •——-- --—- - -, ••--•-- -,--- —
~
-
~~~~~~~

.-
~—-- -•-- ww •- -—‘--•—---

~---=•~
----

~ ~~~~— — —.--- - —•-
~~~

-- -
~~

c. string(ix-l,ix) ok:

follows immediately from text(ix-1)—text (ix).

d. j x>0 A B7 ~ B8:

these predicates hold on the first loop iteration

because of the input assertion ; they hold on subsequent itera-

tions due to the distributed correctness of “continue checking”

(they are contained within the procedure ’s output assertion).

The preceding discussion reveals that the synthesized
- - assertion 39-10 is alway s valid; thus no test data and generali-

zation assertions are required.

3. Synthesized Assertion Bil:

Bil: B9 A text(ix-2)—text(ix) A start—ix-2 A finish— ix

,

~~ 
string(ix-2 ,ix)—ok A 1<—ix-2 A ix<=2.

The assertion Bil is inserted to state that the input

specification is satisfied for the procedure “continue÷checking,”

which is called immediately following the assertion. In a

fashion similar to that discussed above, it may be ver i f ied that

assertion Bli always holds , and no test data and generalization

assertions are required.

4. Synthesized Assertion B12:

2< 2.< 256 A. ca— ?. A jx>0 A B30 A B31 A B32 A B33

Assertion Bl2 is the output assertion for procedure

“palindrome÷ check” ; the expansions for assertions B30 through

B33, which are predicates of assertion B12, are given below:

a

142



- 
~‘~~~~ - ~~ -—-•‘~~~ ~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

C - ______ - - - —~~~~~~~~~ ,•-~~~~---------- -———-,~‘— - - —

B30: ~x((2<—x< L A text(x-l)—text (x))~~

~y(y<jx A l<-bop (y)<-x-l A x<—eop(y)<—L)1

B31: ~I x( ( 3 < u x < 2 2. A t ex t (x -2 )— -t ex t (x ) )~~~ -

3y(y<jx  A 1<—bop(y)-<—x-2 A x< eop ( y ) < — L ) ]

B32: ‘4y((0<y<xj A bop (y)>l  A 0<eop (y)<L) ~~ >

~~(text(bop(y) -1)—text (cop (y) +1))]

B33: “y( (0<y<jx A ‘ (eop(y) — 0))  ~~
(string(bop(y) ,eop(y))-ok A bop (y) >~’1 A eop(y)< £

“‘c~z( (0<z<jx A

(s(bop(z)—bop(y)) A (bop(z)<bop (y)=,~eop(z)<eop(y))) )] I
- - The truth of assertion 312 may be verified partially-- through

logical techniques and partially through dynamic testing. By

static analysis it is noted that if during execution of the

procedur e no statements which call “continue÷ checking” are

actually executed , then all the predicates of assertion B12 are

merely restatements of the input assertion B6-8 and are not

modified by program execution (no positive processing takes

pl ace) .

If calls to “continue+-checking ” are executed , then from the

output assertion of that procedure and the principle of distri-

buted correctness (the demonstration of correctness and a listing,

Figure ii , of that procedure are presented subsequently), the

following predicates remain unchanged by execution of the pro-
• 

cedure:
— 

. 2 < —t < ’ 256 A Ca—?. A jx>O A B32 A 333

The predicates B30 and 331 will be demonstrated through

testing in the following manner. If “continue~checking” is

~~~• I 143

— i~ .___ - ••~— - ——--~------—-- - -
-— —~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ I_~ -~—

•• - 
~~~~ ~~~~~~~~~~~~~~~~~ —- -—•- -•

~
•• —



-~~~~~~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~

—
~~~~~~~~~~~~

-
~~ 

-

called with actual parameters “start” and “finish”, then its

output assertion verifies that:

3y(0<y<jx A l<— bop (y) <— sta r t  ‘~-% finish<—eop (y)<—t)

Predicates 830 and B3l are verified, and thus so is the syn-

thesized assertion Bl2 , if it is shown tha t:

cix (2<_x < *9.  A t ex -t (x - I )—t ext (x )  ~~~
“continue~ checking” is called ,

with start-x-1 and finish-x; and

Vx(3< x< L A t ex t(x -2) text(x) -~~
“continue-i-checking” is called,

4 • wi th start—x-2 and finish—x .

a. Test Data Assertion and Verification

It was presumed from static analysis of this proced-

dure that if procedure calls are correctly mode to “continue-~-

checking” for the fiist three characters of a text string,

they will be correctly made for all characters. (Only the

character patterns over a sub-string of le~igth three are examined

by the statements which determine whether and when to call

“continue~ checking ” .) Thus test data were selected to consider

all possible conditions arising in the first three characters.

A condition table was prepared as follows :

f

‘ I

Li- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~
- —-

________ ‘1



- —-- •-~~— —-~~~~~~~~~

1~~ ~~~~~~~~~~~~~~~~~~~~ ____________

~2_ 
~ -

y - - n n it Ti- n - n it n n n
£-2 A ix- 2 Cu) y y it it n it Ti Ti it ii
2-3 ~ ix-1 (n) (n) (n) y n it it Ti Ti it it

I - 
£ 3  A i x 2  (n) (n) (n) Cm) y y n n it n it

• 
&3 “ ix— 3 (n) (it) (n) (n) (it) (Ti) y y y y y

text(1)-text(2) -- y n - y n y y n it Ti
text( 1)—text(3)  - - - - - - y n y ii Ti
text(2) —text(3) - - - - - - - - - (-y)- (n)- (n) it y

Test Data: (S.) * 2 2 * 3 3 3 3 3 3 3
(text) bb ab bbb aba bbb bba aba abe abb

*These compound predicates cannot be satisfied
for any input data values.

The preceding condition table identifies seven unique test

data elements which were input to the program for dynamic testing.

Correct results were obtained for all elements; the correct re- —

suits were defined as being the recording in the arrays “b op”

and “cop” of entries which included those character positions

corresponding to all truth values of “y” in the three rows of

predicates on “text” . -

b Generalization Assertion and Verification

The generalization assertion is that the preceding

predicates totally determine the procedure calls made to

“continue~checking”, and thus the results recorded in the arrays

“bop” and “cop” . Verification of this assertion was not

formally stated; verification relies on the thoroughness with

j which the applicable condition table was prepared.

c. Proof of Synthesized Assertion

The synthesized assertion follows from the

discussion preceding the presentation of the applicable

145



- --•---.-- —
— — - 

-

condition table and from the test data and generalization

assertions . Sufficiently general theorems to formally state
- - a proof of the assertion were not available or forthcoming

from this effort; however, the careful analysis of predicates

• built a high confidence that the program fragment is correct.

E. PROCEDURE CONTINUE~cHECKING

Figure 11 contains the synthesized assertions for this pro -

cedure. The input assertion is Bl3-l6; since it was verified

in the preceeding section that this assertion was satisfied for

all calls to this procedure, it will, be assumed that this

assertion is satisfied at the time of invocation of this pro-

cedure.

1. Synthesized Assertion Bl7- l 8:

317: B13 A 314 A 315

Bl8: text(first) text(last) A l<—first<—start

A finish<—last< 2. A string(first , last) o k

‘~ (flnish start+l V finish—start-’-2) A

(firs t l “ last— S. V ‘( tex t ( f i r s t- l) l ltex t(las t+l) ) )

- 
- a. Test Data Assertion and Verification

Test data were selected using the condition table

- method to consider all predicates which were considered to

have a bearing on program processing with respect to assertion

B17-i8. The applicable condition table is presented below, in

two sections.

- 146
-

-
- ---• 

- 

— - - - --- - -

~~~

---- —-———-•. —— --- -- -

- - - - 
~~ - __________________________—---—--—-—- — - --——-—-- — -- - —



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

- procedure cont inu. ._ch.cklng ( intege r value fir s t l a st ) ;
c o s nt Given f i rs t and last a. pointer , to a palindrome

of s In . 2 or 3, thi. proced ur. checks whether or not this
palIndrome 1. included in a larger psiiud roje e ;

- beg in

- 
- 813: C 2<2 1<5256 A ccc l A jx)O I

814: C Vy( ( G( y Cj x  A bop( y) )- 1 A I< e op (y) < l) ~~~
~( text (bop (y) 1)2 text (eop (-y)+1))) I

815: C WC y( (0< y<j x  A
(.tr Ing( bop ( y) , eop( y) ) 20k A bop( y)>  I A cop-C y) < 2  1

A~~Vs ( (0<a<J x A ( z 2y) )~~~• (—( bop( z) bop( y) ) A ( bop (z)<bop Cy) eop (z)<eop : -y ) ) )  ) ]  I I
816: C t ez t ( f l r s t ) t .xt ( last )  A .t a r t fl r st  A fInL . h ~~l..t

A .t r ing (f i r . t , 1a.t ) ok A l< start  A fLni .h < 1
A C f  Iai.h s ta rt+ 1 -~ 1 f ini.h• . tar t+2) I

logica l palin d rome ;
palindrome : = trne ;
while ((flrut>1 ) and (Ia.t< 1.agth...of_text) and (pa 1 Lndro.e~~true)) do

• begin
If text (fir .t—l) * tex ,tClawt+1) then

begin
co eut lar ger palindrome found ;
f i r . t : *f l r . t — l ;  -

las t :* 1.. t+ I ;
end

e I.e
b.gln

j p .lindrome: fal.e ; coiiment larges t palindrome found :
j end ; -

end ;

817: C 813 A 314 A 515 3
818: C text(fir .t) text ( last ) A 1<z f i r , t < sta rt A fin . I h < l a . t < 2 1

A .t r lng(fir st i.at ) ok A ( f l n I . h ~.tar t+ 1 V flnl.hz.tart+2)
A (fir .t 1 V l..t21 V 4 t .xt (f l r s t~~l) t ex t ( ls. t + 1 > ) )  I

r evord _pallnd ro e( f l r s t , I a st ) ;

B19: C 813 A 814 A 815 3
820: C 3y( 0< y<j x A 1(*bop (y)< start A fln i .h(*eop (y)” l)  I

- - - end cent lnue...cheoklng;

FIGURE 11

PROCEDURE CONTINUE÷CHECK ING

H 

-

_ 
_ _ _ _________________________________________________ — 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - 
-

- - -

Predicate -

start+l-finish it y y y
~ 

- - y y y
start+2—finish it (a) -(it) (it) - (it) Cm) (n)

start-l - y Y Y fl Ti U
star t— 2 - (n) (n) (it) - y y y
start>2 - (i t)  (a) (a) - (a) (a) (a)
finish-S. - y a a a y it a
finish t-i - (it) y a n (n) y y
finish<L-1 - - (n) (n) y it (n) (a) (u)

text(s tart_i):
text(finish+1) - - - - - - y-- it

text(start-2)
text(finish+2) - - - - - - - -

Test Data: (l) * 2 3 4 * 3 4 4
(text) aa aab aab c abb abba abbc

*These comp ound predicates cannot be satisfied
for any input data values.

Predicate -

start+l~ finish y y y y y y y y
start+2*finish (n) (it) (it) (it) (n) (n) (a) (a)

-
~~~~~~~~ start:l it n n it n it it it-

starta2 y y ~ ~ ~ ~
start>2 (n) (n) y y y y y y
finishaS. ~ y y~ ~ y~ ~

finish-&- 1 n n (n) y y it n it
finish<L-1 y y (n) (n) (n) y y y

text (start-i)
text(finish+l) y n - y a y y n

text (start-2)-
text(finish+2) - - - - - y n -

Test Data: (L) 5 5 4 5 5 6 6 6
(text) A B C D E F C H

A: abbad B: abbcd C: abcc D: abccb
E: abccd F: abccba G: abccbd H: abccde

The preceding condition table identifies fourteen test

data elements ; these were used as input to the program for

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i4~

_ _  -



‘!~ 
—-——

~
.•-,. “,•-— — — 

~~~~~~~~
.— 

~~—~~~~~~~-‘----- ~~-—---—--- ,.- ,—,--- -•-2.
~~~~~ 

—

— — 

—-
~

dynamic testing. Correct results were verified for all ele-

men ts by printing variable values following assertion 317-18-

and verifying that the predicates of the assertion were satis-
- fied. During presentation of the preceding condition table,

no columns with an “n” entry for the first predicate and a “y”

entry for the second were added because no new insights to the

procedure s operation would have been gained.

b. Generalization Assertion and Verification

The generalization assertion i3 that the satisfaction

of the synthetic assertion B17-18 is totally determined by the

predicates of the condition table; the only verification was

the analysis wh ich served as a basis for the prep aration of the

table.

• c. Proof of Synthesized Assertion

- 
- 

The synthesized assertion follows from the test

data and generalization assertions. No formal proof could be

offered. 
- 

-

2. Synthesized Assertion B19-20:

- f B 19: Bl3 ,~ B14 A B15

B20: 3y(O<y<jx A 1<—bop(y)< start A finish<—ecp (y)<-L)

Assertion B 19-20 is the output assertion for this procedure.

Inspection -of Figure 12, the listing and assertions for proce-

dure “recordi-palindrome” reveals that assertion B17-18, which

precedes the only call to that procedure, which call in turn

precedes assertion B19-20, satisfies the input assertion to

“record ~palindrome”, and fur ther that the output assertion of

i i
149

__________________ - ~~- - - :.— ~~~~~~~ ~~~_.-- ~~



r’ —~ - 
———

~ 
—

~

---- - —“.-

~~~~~~~~~ 

- -

“record-k-palindrome” satisfies assertion Bl9-20. Therefore syn-

thesized assertion B19-20 is verified by the correctness of

“record~palindrome” (which is shown in the next section) , and

test data and generalization assertions are not required here.

F. PROCEDURE RECORD~-PALINDROME
- 

Figure 12 contains the synthesized assertions for this pro-

cedure. The input assertion is B2l-24; since it was verified

in the preceding section that this assertion is satisfied when-

ever the procedure is called, the input assertion is assumed

to hold at procedure invocation.

1. -Synthesized Assertion B25:

B2l A B22 A B23 A B24 A entry—true

a. Proof of Synthesized Assertion

The test data and generalization assertions are

simply the observation that any and all input data will cause

the execution of the statement assigning “entry” equal to true;

the rest of the assertion is a restatement of the input asser-

tion , none of which has been modified. Verification was post-

poned until the verification of the test data assertion for

synthesized assertion B26. The proof of synthesized assertion

B25 follows directly from this observation.

2. Synthesized Assertion B26:

(entry—false A B27 A B28)  V

[entry-true A B21 A B22 A 323 A B24

A ”~Iz (O<z< jx  ~~ (— ‘ (bo p ( z )— f i r s t

A (bop(z)<first —’~’eop(z)<last))]

150

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .. ~~ ‘• — - - ‘- - - -- . - - ~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



___________________ - ~~~~~~~~~~~~~~~~

proced ur e record ...pallndro .e ( Intege r va in, f irs t ,  la st ) ;
comeent Record oaiy men length palindromes . Flag pr.vloi,aly

recorded palindro mes If t hey are Included in the p al in drome
specified by fi rs t and last .
jx ~~s i n I t I a l Ised to 1. After comp let ion j x p olnt .  to tb.
next entry in b.glu...of_p.iindro me and ead_of....pallndroe j e ;

begin

821: C 2C 1< 256 A c a I  I~ jx>6 I
322: C ~ y( ( e< y< j z A bop( y ) ) 1  ..i. (eop( y ) < l ) ~~~

• .( tezt (bop( y )—l ) ~~t . xt ( e o p (y ) + i) ) I  I
523: C ~yf (0($js  ~~.(eop (y)s~ ) )~~~

C.tr ing( b.p( y).eop( y) ) o k A bop (y )>R IA eop(y )Cu i
A ’~~%( ( <z<jz A

(“( bop(z) ’bop(y) ) 
“ (bo p(n) C bop( y) ~~~ eop (z)(e,p(y))) )J  I I

824: C t .xt (flr . t ) t .zt ( last) A l< f i r , t < s tar tA,  f i u s l h < a l . st < * 1
A . t r ia g(f ir .t ,isat )a ok A .t a rt< f InI.b
A (f l r .t 1 V ia.t l ( t e x t ( f i r . t — l ) t ext f l s st + l) ) )  I

integer Li co~~~~nt local counter ;
logical entry ; -

entr ys trnc ;

820: C 321A522A 523AB24 A e*tr y tru e I

for I~~c1 etep I u n t i l  jz—1 do
begin
if ((first ) *b .gin.. . .of_ pelindrome (I))

and (l..t< end...of_p .llndrome( 1))) then
begin
comeent Palindrome I. entire ly Inc luded In a p revlou a ly

recorded palindrome . N. entry required ;
entry: 2 false;
end

e lse
begIn -

If ((beg-in...of_palindro e (i) >* f irst)
and Cend...of. .pa l ln d r ome(I )  < last)) then
begin

- .nd....of..palindrome( l) :*0;
co ent f lag  smeller palIndrome ;
end ;

end *end ; co ent Al l previously recorded palindrome ai
compared wi th last Input ;

826: C (.ntr ysfal.. A 827 A 328) V
(entry true ,~ 821 A 822 A~ 323 A 324• A~~ 2( 0<u<J x ~~~~( ‘ ( bop (z) f1r st )
A b op (s)<fir,t ~~~eop(z)(1a.t)J 7

if entry true then
begin
comeent larger then all previous or overlapping or disjoint;
b.gln...of p.I Indrome (Jz) :*fir .t;
sad.... f ...p. 1 Iadrome ( ix) .1.. t i
j z :ajx+I s
end ;

527~
: C 2~~ l< 256 ~~ c a I  A ,jx> 0 A 322 A 823 3

820: C 3y(0(-y<jx A l( bop( y)( sts rt ~ flni .h< ue.p( y ) < a I )  I

end record _pa l Indr ome ;

- - FIGURE 12
-
~ 

- 

PROCEDURE RECORD~-PALtNDROME

— 151

—

~~~~~
, -;-- T-~~~~

--: -~~~~
— — — —

~~
- ~~~~~~~~~~~~~~~ - -~~ —~ --- . -“~~



r ‘
~~~ 

— —‘ - — -‘——
~
‘-- — - ———

~~ 
— 

~~~~~~~ ,—.-- -—-.—.. _---.----. —.-----—
~ 

— —j--- — 
~
—.-----—--- 

~
— --—---

~~
..

~~
-
~
.- — — — ________________________

This assertion is a statement , that either entry— false and one

set of predicates apply, or that entry’.true and another set

apply. If entry-false, no further action will be taken in the

procedure, and the output assertion is valid at this point. If

entry-true, the input assertion is still valid, and the entry

for the current palindrome, which will be the jx-th entry in

“bop” and “eop” , will only be disjoint or overlapp ing to all

previous entries in those array s for which the “cop” entry is

not zero.

a. Test Data Assertion and Verfication
- Test data were selected using the condition table

method to consider all predicates which were considered to

bear on the program processing with respect to assertion B26.

The applicable condition table is presented below.

;
; 

~
152

J~~~~~~~~~~~~~~~ L . 

- _
~~~

- ::T Ii: I



- _
~_w-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -~— ,— ——- —~——~-- ~~— —-- —,---

_ _ _  — - -~~~~ - _ _ _ _ _ _--— - - -  -

Predicate

eop(i)-0 n n it a n n n it it y y y
first>bop(i) y y y a n it n a n  

~~~~~~~~first-bop(i) (a) (a) (n) y y y n n it (n) y n
lastceop(i) y it n y it n y n a (a) (a) (n)
last-eop(i) (n) 

- 
y 

- 
a (it) y a (n) 

- 
y n (n) (a) (it)

-: test data: - 
-

f i rst 6 5 3 1 2 1 1 1 1 6 1 1
last 7 9 4 3 3 9 2 3 5 7 3 9
i 4 4 1 2 - 3 - - - 1 1 1 1

bop(i ) 1 1 2 1 2 1 2 2 2 2 1 2
eop(i) 9 9 3 4 3 5 3 3 3 0 0 0
text B B B A * B * * B B A B

jx  5 5 2 3 - 4 - - 3 5 3 4
correct

action: X X - X X Y - Y Y Z Z -
*These compound predicates cannot be
satisfied for any input data values.

A: aaaa B: baaabaaab
X: Set entry false
Y: Set -eop(i) ~ zero .
Z: None required, but program resets eop(i) - zero,

• which is permissabie (eop(i) is already zero) .
- As an action , means no action performed; entry

remains true and a new entry will be made.

The preceding condition table identifies two input strings

which were used as input data to the program; intermediate values

of program value s were inspected on each iteration of the for loop

in procedure “record~palindrome” to determine when the compound

predicates from the condition table were satisfied so that yen-

fication of the correct action as specified in the table could

be made . The correct action was observed for each test data

element.

153

~

- - ~~~~~~~~~~~~~~~~~~~~~~~~ , — - - _____ - . 
- 

.. . ~~~~~~~~~~~~~ . 
- ~~~~~~ ~~~~~~~~



r ~~~~~~~~~~~~ 

— 

~~~~~~~~

—

~

- —

~~~ 

— _ _ _ _ _ _ _ _ _ _ _ _ _ _

b. Generalization Assertion and Verification

The generalization assertion is that the actions

performed by the procedure are totally determined by the five

predicates in the condition table; if execution of the for loop

body performs properly for the identified test data elements,

it perform s properly for all data satisfying the same conjunctions

of the five predicates. The verification offered is the analysis

forming the basis for the condition table entries.

c. Proof of Synthesized Assertion

Since predicate B23 of the procedure input specifi-

cation is valid at the entry to the for loop , it cannot happen

that the current palindrome (string (first, last)) both includes

a previous entry and is included by a different previous entry .

Since program action (either entry:=false or eop(i):-O) is taken

only when one of these conditions exists, repeated execution

from “i” equal 1 to jx -1 of the loop body cannot cause an unde-

sirable result such as setting “entry” to false and also setting

eop(i) to zero for some “i”. Thus the synthesized assertion

follows from the test data and generalization assertions , al-

though a formal proof cannot be offered.

3. Synthesized Assertion 327-28:

B27: 2<—L<—256 A ca—I A j x >0 A B22 A 323

• 328: ~ y ( 0<y<j x  A 1<—bop (y)< start A finish< eop(y)< 1)

Assertion B27-28 is the output assertion for this procedure.

a. Test Assertion and Verification

The test data assertion is that if the test data

154
. -- - -

~~~~~~~~~~~~~~~~~ 
. - 

- . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~



—,“--, ,.-,-- - — - ,,#--- ~---,--—.w — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________r -T
— --- --—~~~~~~~~~~ -

elements identified in the first and sixth columns of the con-

di tion table used for assórtion B26 are executed to the proce-

dure’s termination, the output specification will hold. The

correct results were observed, namely that for the column-one

- element no new entries were made to the arrays “bop” and “eop”,

and that for the column-six element the proper (fourth) entry

- was made in the arrrays ; in both cases the output specification

was observed to hold. 
-

b. Generalization Assertion and Verification

The generalization assertion is that the variable

“entry” divides input to the procedure into two equivalence

classes and that proper execution of one element of each class

(as observed in the verification of the test data assertion)

j ensures proper execution for the entire class.

• 
- 

c. Proof of Synthesized Assertion

The synthesized assertion follows from the test data

and generalization assertions ; however, no theorem is available

to formally prove the sets of input data identified are in

fact equivalence classes.

This verification of synthesized assertion 327-28 completes

At  the demonstration of correctness of procedure “record÷palindrome” .

The principle of dis tributed correctness has been applied to

• 
show the correctness of the main program from the correctness

of the called procedures.

I

— 155
. 

—;-------—-—- - - - - -- —--— - - - -  — ~~-



~~~~~~~~ 
—
~—-~~~~ - -~ --,~,-.,.n - ~-—--—r -nr. ’ r—,-.-- —r~ ~~ - W ~~~fl~’ ~~~ —~—,-----.~~~ c- -. --— P’ ~~~~~—‘-- n%--. —.. .. -- — -

~~‘ ~~~~~~~~~~~~ 
--

BIBLIOGRAPHY

1. Belford, P.C., J. D. Donahoo, and W. J. Heard, “An Evaluation —

of the Effectiveness of Software Engineering Techniques,”
IEEE C’ompcon , Fall 1977 , pp 259-67.

2. Black, Rachel , “Effects of Modern Programming Practices on
• Software Development Costs,” IEEE Compcon, Fall 1977,

pp 250-53.

3. Boehm, Barry W., “Software and Its Impact: A Quantitative
Assessment ,” flatamation, May 1973 , pp 48-59.

4. Boehm, B.W., J. R. Brown , and M. Lipow, “Quantitative Eval-
uation of Software Quality,” Proceedings of the 2nd

- 
International Confe rence on Software Engineering, October
1976 , pp 592-605 .

S. Brooks , Frederick P. ,  The Mythical Man-Month , Addison-
We sley , 1975.

6. Brown , John R. ,  “Modern Programming Practices in Large Scale
Software Development ,” IEEE Compcon, Fall 1977 , pp 2 54-58.

7. Culpepper, L. M., “A System for Reliable Software,” IEEE Trans-
actions on Software Engineering, June l97S ,.pp 174-T8 .

— 8. Darringer , John A. ,  and James C. King , “Aiplications of
• Symbolic Execution,” Computer, April 1978, pp 51-60.

9. Dijkstra, Edsger W., “Correctness Concerns and, Among Other
Things, Why They are Resented ,” Proceedings of the Inter-
national Conference on Reliable Software, ACM SIGP LAN ,
April 1975, pp 546-50.

10. Dijkstra, Edsger W., “Notes ~n Structured Programming,” inStructured Programm i~~ (0.3. Dalil, E.W. Dijkstra, and
C.A.R. Hoare), Academic Press, 1972.

— 11. Fairley , Richard E.,”An Experimental Program-Testing Facility,”
- - 

IEEE Transactions on Software Engineering, December 1975 ,
pp 350-57.

12. Fairley , Richard E . ,  “Tutorial : Static Analysis and Dynamic
Testing of Computer Software,” Computer, April 1978,
pp 14-23.

13. Floyd , Rober t W., “Assigning Meaning to Programs,” Proceedings
of Symposia of Applied Mathematics, American Mathematical
S~ciety, 1967, pp 19-3Z.

156

—, - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
1 - -~- . ~~~—. ~~~~~~~~~~~~~



______ -

14 . Galler , Matthew , “Test Data as an Aid in Proving Program
Correctness,” Communications of the ACM, May 1978,
pp 368-75. -

15. Gerhart, Susan L., and L. Yelowitz, “Observations of
Fallibility in Applications of Modern Programm ing Metho -
dologies ,” - IEEE Transactions on Software Engineering,
September 1976, pp 195-207.

16. Goodenoügh , John B. ,  et al . ,  “MAIDS Information Dynamics
Technology Requirements Study,” Final Report, Software
Technology Company, April 1973.

17. Goodenough , John B. ,  and Susan L. Qerhart, “Toward a Theory
o-f Test Data Selection,’t IEEE Transactions on Software
Engineering, June 1975 , pp 156-73.

18. Hetzel, W.C., ed., Program Test Methods, Prentice-Hall , 1973.

19. Hoare , C.A .R. , “Procedures and Parameters : An Axiomatic
Approach ,” in “Symposium on Semantics of Algorithmic Lam -
guages ,” Lecture Notes in Mathematics , Vol. 188 , Springer-
Verlag , i~~7T, pp 102-16.

20. Hoffman, Heinz-Michael, “An Experiment in Software Error
Occurrence and Detection,” Master’s Thesis, Naval Post-
graduate School, June 1977.

21. Howden , W . E . ,  “Reliability of the Path Analysis Testing
Strategy ,” IEEE Transactions on Software Engineering,
September 1976, pp Z08-15. -

22. Huang, J.C., “An Approach to Program Testing ,” Computing
Surveys, September 1975, pp 113-28.

23. Huang , J.C., “Program Instrumentation and Software Testing,”
Computer, April 1978, pp 25- 32.

24. IBM Corporation, “Validation and Verification Study ,”
Structured Programming Series, Vol. XV, Gaithersburg ,
Maryland , July 1974 (Contract F30602-74-C-0186).

25. London, R.L., “A View of Program Verification,” Proceedinjs
of the International Conference on Reliable Softwar e,
ACM SIGNP LAN , April 1975, pp 534-45.

26. Manna, Z . ,  and R. Waldinger , “The Logic of Computer
Programming ,” IEEE Transactions on Software Eng ineering,
May 1978 , pp 199-ZZ9.

27. McCabe, Thomas J., “A Complexity Measure,” IEEE Transactions
on Software Engineering, December 1976, pp 308-20.

157

~~~~~~~~~

- - - - -  
~~ :~~~~~~~~~~

- —

‘— - 
- 

—- -
~ 

-- — - ~~— 
- - — 

~~~~~~~~~~~~~~~~~~~~ 
—
~~~~~~~

-
~~~~~~~~~~~

--



—,—
~-

-——- ~~~~~-,-—-w — ---‘-—-—~--.~~~~ - ~~~~~
- — ,—,,._w•--_--,,,-. —— ~~~~~~ — — ________________________________________________________________________________

• 
~~~~~~~~~~~ *~~~~

__ 
—- 

- -

~~~~~ ~~1

28. Myers, Ware , “The Need for Software Engineering ,” Computer,
February 1978, pp 12-26.

29. Panzl, David J., “Automatic Software Test Drivers,” Corn--
- pute-r, April 1978, pp 44-50.

30. Panzl , David J . ,  “Test Procedures : A New Approach to Soft-
ware Verification,” Proceeding of the 2nd International
Conference on Software Engineering, October 19Th, pp 477-85.

1 31. Pimont, Simone, and Jean-Claude Rault, “A Software Reliabil-
- 

. ity Assessment Based on Structural and Behavorial Analysis
- 

of Programs ,” - Proceedings of the 2nd International Con-
ference on Software Engineering , October 1976 , pp 486-91.

• 32. Ramamoorthy , C.V., S. F. Ho , and W-.T. Chen, “On the Auto -
-
- mated Generation of Program Tes t Data,” IEEE Transactions

- on Software Engineering, December 1976, pp 293-300.

- 
33. Schneidewind , N.F. and H. M. Hoffman, “An Experiment in

Software Error Data Collection and Analysis,” Proceedings
of the 6th Texas Conference on Computing Systems, November
1977, pp 4A1-4A1Z.

34. Whitaker, W.A., “A Defense View of Software Engineering ,”
I Proceedin gs of the 2nd International Conference on Soft-

ware Engineering, October 1976, pp 358-64.

a

I

158 -

-- -- --  —



,— 
- - -

~~~~~~~~~~

- - -—

~~

--
.
~

- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
- -
~~~

--‘
~~

------ _ _ _ _ _

INITIAL DISTRIBUTION LIST

- No. Copies

1. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library , Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Departmeat chairman, Code 52 - 1
Department of Computer- Science
Naval Postgraduate School
Monterey, California 93940

4. Professor Norman F. Schneidewind, Code 52 Ss 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Professor Donald P. Gayer, Code 55 Gv 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

6. LCDR Carl W . Monk , Jr . ,  USN 1
5355 Gainsborough Drive
Fairfax , Virginia 22030

I

159

_ _ _ _  ~~~~~~

- - - - -
- 

-
~~;

_

~~~~~~~~~~~~~~~ _ ~~~~~~~

______ - ~ —zi i-


