AD=ADB2 176 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 6/4
A THREE VALUED TRUTH MAINTENANCE SYSTEM.(U)
MAY 78 D A MCALLESTER NOOO14=75=C=0643
UNCLASSIFIED AI=-M=8T73

s s

@

| M
o 32
2 i ..

Tl
L

s e

N
(S,]

I

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUKEAU GF STANDARDS 1964 A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

L
— ; READ INSTRUCTIONS

s
BEFORE COMPLETING FORM

! REPORT NUMBER

AIM 473

§

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle).o~
A .

-)
i bw '

' (J A Three Valued Truth Maintenance System,k {

N TYPE OF REPORT & PERIOD.COVERED
memorandum
‘1 -

> \

\
" {
- 4

6. PERFORMING ORG. REPORT NUMBER

AT e,
¥ X

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(e)

Arlington, Virginia 22209

N = D,
iy [Vo N azama—e - ora
/¢ 'David A./McAllester | ¥ ! ‘/Nﬂ6014-75-c-)“643/ 5
' YN pes?7=a7" 7
9. PERFORMING ORGANIZATION NAME AND ADDRESS #VF M - PROIJECT, TASK
Artificial Intelligence Laboratory.” ABEAS WATE VT SuE .
545 Technology Square «z/ //' ‘/
Cambridge, Massachusetts 02139 i Ele
11. CONTROLLING OFFICE NAME AND ADDRESS /"‘-ﬂ
Advanced Research Projects Agency / /B | May 19'78;
1400 Wilson Blvd “\E"ts. WUMBER OF PAGES 1

31

-

ADAOG62176

MONITORING AGENCY NAME & ADDRESS(!!f dilferent
Office of Naval Research
Information Systems

Arlington, Virginia 22217

18. SECURITY CLASS. thie Peporty = mem ==

UNCLASSIFIED

from Controlling Oflice)

15a, DICE ASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is

r—————y TR

unlimited.

D

- W v]

. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II different from Report)

D C

——

| R

iy
.

-y
¥ i | . s LR

{
i

DEC 14 1918 |

T

iRy L

DDC FILE cop¥

. SUPPLEMENTARY NOTES

None

G

. KEY WORDS (Continue on reverse side Il necesasary and Identily by block number)

systems. A truth maintenance syst
systems to maintain the logical re
manipulate. These relations are u
when premises are changes,
been present in earlier artificial
beliefs can also be used to direct

Artificial Intelligence Backtracking
Problem Solving Explanation
Truth Maintenance Hierarchy
Dependencies
Logic
O AR A (R TERan2 & Sy S £y MEVE bEEN H¥eY YA"YEE¥Rt1y developed problem solving

giving a more flexible context mechanism than has

failures, resulting in far more efficient backtracking.

em (TMS) is designed to be used by deductive
lations among the beliefs which those systems
sed to incrementally modify the belief structlre
intelligence systems. The re]ations among
1y trace the source of contradictions or

DD , 5n'ss 1473 eoimion oF 1 NOV 68 1S OmsoLETE
/N 0102-014- 6601 |
/
* =
2 PR S s .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dala Entered)

Vi

20.

In this paper a new approach is taken to truth maintenance algorithms.

Each belief, or proposition, can be in any one of three truth states,

true, false, or unknown. The relations among propositions are repre-

sented in disjunctive clauses. By representing an implication in a

clause the same algorithm that is used to deduce its consequent can be used to
deduce the negation of antecedents that would lead to contradictions. A
simple approach is also taken to the handling of assumptions and backtracking

which does ot involve the non-monotonic dependency structures present in
other truth maintenance systems.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.1. Memo 473 May 31, 1978
A Three Valued Truth Maintenance System
David A. McAllester

Abstract

Truth maintenance systems have been used in recently developed
problem solving systems. A truth maintenance system (TMS) is designed to
be used by deductive systems to maintain the logical relations among the
beliefs uhich those systems manipufate. These refations are used to
incremental ly modify the belief structure when premises are changed, giving
a more flexible context mechanism than has been present in earlier
artificial intelligence systems. The relations among beliefs can also be
used to directly trace the source of contradictions or failures, resulting
in far more efficient backtracking.

In this paper a neu approach is taken to truth maintenance
algorithms. Each belief, or proposition, can be in any one of three truth
states, true, false, or unknoun. The relations among propositions are
represented in disjunctive clauses. By representing an implication in a
clause the same algorithm that is used to deduce its consequent can be used
to deduce the negation of antecedents that would lead to contradictions. A
simple approach is also taken to the handling of assumptions and
backtracking which does not involve the non-monotonic dependency structures
present in other truth maintenance systems. y

This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory's artificial intelligence research was provided in part by the Ad-
vanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract NOGOI4-75-C-0643 and in part by the National
Science Foundation under grant MCS77-04828.

Acknowledgements

Jon Doyle and Gerald Sussman have provided encouragement and

indespensible criticism of this work. Johan de Kleer,
Houard Shrobe have also helped with fruitful discussions.

Table of Contents

Introduction
The Algorithm
Adding Clauses and Truth Values
Removing Truth Values
Contradictions
Default Values and Backtracking
Clause Values and Hierarchies of Assumptions
Comparison with Other Work
Appendix [, A User's Guide
Appendix 11, The Data Structures

Appendix 111, The code

Charles Rich, and

NN w

12

15
19
22
25

‘\-'h&"ﬁ"& o N

Introduction

Truth maintenance systems have been used in recently developed
problem solving systems [Stallman and Sussman 1976) [Doyle 1978al. A truth
maintenance system (TNS) is a domain independent system for maintaining the
consistency and uell foundedness of a set of beliefs. It is an inherenlty
propositional mechanism which is designed to be used by deductive systems
to maintain the logical relations between the propositions they generate.
The truth maintenance system also simulates the effects of those relations
to the extent that it can be used to incrementally modify the belief
structure and retract assumptions uhen they lead to contradictions. This
process can be used to realize substantial search efficiencies in that
contradictions, or failures, only result in backtracking over relevant
assumptions.

An example of the use of a TMS would be an algebraic manipulator
uhich is capable of using pieceuise approximations to functions. In such a
manipulator each equation is considered to be a proposition. When the
manipulation of some set of equations results in a new equation, the
equations used are recorded in the TMS as supporting the neuwly generated
equation. A pieceuise |inear approximation to a function can be
represented by an implication betueen equations such as (> x -.25) A (< x
.25) -+ (= (sin x) x). To use such an approximation of (sin x) the
manipulator might have to assume that x was in the required range. If at
some later time a value for x is found that is inconsistent uith the
assumptions, then the manipulator need simply announce to the TMS that the
tuo conflicting equations, the assumed inequallity and the found value, are
mutual ly contradictory. The TMS wuill then retract a relevant assumption.
In such cases the TMS might instead be made to state all the assumptions
upon uhich the contradiction depends and leave the choice of removal up to
the manipulator. The use of pieceunise linear approximations to the
behavior of transistors is one of the applications of truth maintenance
used by Stallman and Sussman in electronic circuit analysis (Staliman and
Sussman 1976].

In addition to the search efficiencies wuhich are gained in dependency
directed backtracking, the recorded relations betueen beliefs can be used
to justify or explain the beliefs of the deductive system. Such
explanations are useful in understanding and verifying the results of
problem solvers.

This paper introduces a neu approach to the concepts and mechanisms

of truth maintenance. The basic idea is to represent all logical relations
betueen proposition in disjunctive clauses. For example implications of
the form Pl A P2 A P3 ... = Quill be represented as =Pl v -P2 v -P3 ...

v O. Notice that in the clause representation the distinction betueen
antecedents and consequences disappears and therefore the negation of an
antecerdent in the implication can be as easily deduced as the consequent,
This feature of the representation eliminates much of the backtracking
mechanisms uhich are present in other truth maintenance systems [Stallman
and Sussman 1976] (Doyle 1978al. Another common relation among propositions

we uwish to be able to express is the notion that some set of them are
mutual ly contradictory, formally =(P1 A P2 A P3 ... A Pn). This relation
is transformed via DeMorgan's laus into the clause -P1 v -P2 v -P3 ... v
-Pn. This again eliminates the need for certain backtracking mechanisms
present in other systems.

The propositions in other systems have only tuo truth states called
"in" and "out", uwhich represent "knoun to be true" (a uell founded proof
exists) and "not knoun to be true" (not in) respectively. My system uses
the three more intuitive truth states of true, false, and unknoun (hence
the title of this paper). This eliminates the need of a separate entity to
represent the negation of a proposition,

The notion that the truth of some proposition is an assumption is
simply represented by appropriately tagging the proposition. When the
assumption is found to lead to a contradiction (a clause that cannot be
satisfied) the truth value is automatically retracted. | believe that this
mechanism has most of the non-monotonic pouer of Doyle's system, but in a
much simpler form (see [Doyle 1978a)l for a discussion of non-monotinicity).

At the end of the paper are a series of appendices which give the
details of the implementation and an overview of its use.

The Algorithm

The basic truth maintenance system (TMS) object types are literals
(TMS nodes), truth values, terms, and clauses. TMS nodes represent
assertions of the deductive system using the TMS. Such assertions might be
of the form (COLOR A RED) or (MODE TRANSISTOR-1 BETA-INFINITE), but their
TMS representation is simply a unique atom, i.e. a node. Nodes can have
three possible truth states, true, false, and unknoun. A truth value is a
true or false value of a node. Changing a node from an unknoun state to

either true or false uill be referred to as adding a truth value, since it
is conceptually adding information. Changing a node from true or false to
unknoun will be referred to as removing a truth value, as it is

conceptual ly removing information. A term is an association of a node uith
a value and is true uhen the node has that value, false when the node has
the opposite value, and unknoun otheruise.

The relations betueen the truth values of the nodes are represented
by propositional formulas in conjunctive normal form. This means that
there is a set of disjunctive clauses uhich must all be satisfied by the
values of the nodes. Each clause contains a set of terms, one of which
must be true.

Justifications for assertions are represented as clauses. For
example, if an assertion represented by the node C was implied by
assertions represented by A and B, then the clause would be ((A.false) or
(B. false) or (C.true)). The fact that some set of assertions are mutually
contradictory is also represented in a clause. For example, if assertions
represented by A,B, and C would lead to a contradiction, then the clause
vwould be ((A.false) or (B.false) or (C.false)).

Each clause can be given multiple interpretations. For example the
clause ((A.false) or (C.false) or (D.true)) might be thought of as (A and
C) -> D, or it could be thought of as (-0 and C) -> -A. This clause can
also be thought of expressing the fact that a contradiction results from A,

C. and -D all being true simultaneously. Even more bizarre
conceptualizations of the clause are possible, such as (A -> (-D -> -C)).
Interpretations of the last type are useful in understanding certain

backtracking techniques to be discussed later.

Adding Clauses and Truth Values

Clauses can be directly added to system at any time by a top level
procedure and are instantly checked for possible deductions. Truth values
can be added in tuo uays. The simplest is to add a truth value for a node
as a premise. In this case no other reason for believing the value is
needed. The second way is to deduce a truth value from a clause. Suppose
all the terms of a clause are knoun to be false with one exception, uwhich
is @ node uhose truth value is unknoun. In this case the one remaining
node can have the appropriate truth value added to satisfy the clause.
This is the only way truth values are deduced from the clauses in the TMS.
There are houever valid deductions uhich depend on more than one clause.
For example given the tuo clauses A -> B and -A -> B it is possible to

e ——— e ——

deduce B. Such deductions are only made indirectly uhen certain types of
contradictions arise (contradictions will be discussed in later sections).

When a truth value is added a check must be made to see if neun truth
values can be deduced from the added information. This is done by
examining clauses uhich contain the term whose truth value has been added.
Since clauses which contain the term uhich is made true are automatically
satisfied, the only clauses that must be checked for possible deductions
are those that contain the term which is made false. Since truth values
are added recursively, all truth values that can be deduced via chains of
such one-step clause deductions are added.

For reading the follouing code it will be useful to refer to Appendix
Il in which the data structures are explained. The code presented belou is
a slight simplification of the actual code used here only to formalize the
algorithm as described so far. It does not contain the mechanisms for
handling contradictions which uwill be explained later. The complete code
is given in Appendix l1].

(DEFUN SET-TRUTH (NODE VALUE SUPPORT)

;SUPPORT 1S EITHER THE ATOh 'PREMISE OR
3R CLAUSE WHICH IS BEING USED TO DEDUCE VALUE

(PROG ()
(COND ((NOT (EQ (GET NOOE ’TRUTH) 'UNKNOUN)))
(ERROR ’SET-TRUTH--VALUE-NOT-UNKNOWN NODE)))
(PUTPROP NODE VALUE ’TRUTH)
(PUTPROP NODE SUPPORT ’SUPPORT)

sFOR EACH CLAUSE WHICH CONTRINS THE TERM WHICH BECOMES FALSE
3SUBTRACT ONE FROM THE NUNMBER OF TERNS WHICH CAN POTENTIALLY SATISFY IT,

(MARPC (FUNCTION (LRMBOR (CLRUSE)
(PUTPROP CLAUSE (1- (GET CLAUSE ’'PSAT)) 'PSAT)))
(GET NODE (GET VALUE 'OP-CLAUSES)))

(MAPC (FUNCTION DEDUCE-CHECK)
(GET NOOE (GET VALUE ’'OP-CLAUSES)))))

(DEFUN DEDUCE-CHECK (CLAUSE)
(PROG (F)
(COND ((AND (= (GET CLAUSE 'PSAT) 1)
(SETQ F (PCONSEQ CLAUSE)))
(SET-TRUTH (CAR F) (COR F) CLAUSE)))))

;PCONSEQ FINDS A NOOE IN THE CLAUSE WHICH HAS A TRUTH STATE
3OF UNKNOWN AND RETURNS A OOTTED PAIR OF THE NOOE AND THE
3 VALUE WHICH THE NODE MUST HAVE TO SATISFY THE CLAUSE.

It would be possible to check for more complex deductions. Far
example if there are two clauses (P or Q) and (P or Q) it is valid to
deduce P. In general, arbitrary deductions could be done by deciding

T SRR Y . e SRR e

vuhether the addition of some truth value inevitably leads to a
contradiction. If this is indeed the case then the opposite truth
value could be deduced. The problem uith this seemingly
straightforuard approach is in deciding if something must lead to a
contradiction. A contradiction is inevitable when the set of clauses
can not be satisfied by any truth values for the nodes uwhich are
unknoun. Therefore in order to decide if a contradiction is inevitable
the system must decide if the set of clauses can be satisfied by the
remaining unknoun nodes. This is a standard problem of propositional
logic and is knoun to be NP complete. This means that there are strong
suspicions that it must require exponential time to solve. Therefore,
in order to avoid such a combhinatorial explosion | restrict myself to
one clause deductions. This still gives all of the intuitive deductive
pouwer of a clause uhile preserving computational expedience.

Removing Truth Values

Truth values can be removed as uell as added. This can happen
uhen the user of the TMS decides that a premise is no longer knoun, or
it can happen uhen assumptions are retracted in backtracking. When
this happens it is necessary to remove all truth values that critically
depend on the lost information. Truth values are used for deductions
only by clauses that contain the term they make false. Therefore
clauses uhich contain the term which uas previous.y false, but is nou
unknoun, are examined. If any of these clauses were used in the
original deduction of some truth value, then the value deduced is a
candidate for removal.

In order to determine whether a clause was the one originally
used to deduce a truth value, each node has associated uwith it a
support. The support is only used uhen the node has a knoun truth
value, and is either a premise marker or the clause which was used in
the original deduction of the truth value. Since the support is aluays
assigned wuhen a truth value is added, the truth values ot the other
nodes in the support can in no way depznd on the supported value. This
means that the support is uell founded and the set of premises that a
truth value is deduced from can aluays be determined by tracing
suppor ts without fear of loops.

Care must be taken that values are not removed that can be
deduced in other uays. One attempt at solving this problem is to check
all clauses that contain the node uhose value is being considered for
removal to see if any can be used to deduce the value. Houever the
follouwing example demonstrates the problem with this approach.
Consider the clauses:

e

A ->B
B ->C
C->8B

Suppose that A nas added as a premise and then later removed.
Nou uhen A i.s removed there is still a clause, C -> B, that can be used
to deduce B. The problem with using this clause to support the truth of
B is that, since C depend on B, B uould be used to support itself. The
solution to this problem is to first recursively remove all candidates
for removal (therefore removing all truth values that critically depend
on them). After this has been done clauses uhich contain the terms
vwhose values have been removed can be checked for deductions. If
contradictions are present in the system, then it is possible that uhen
a truth value is removed its opposite value can then be deduced
(contradictions nill be discussed in more detail a little later).
Whenever a clause is used to deduce a truth value, the clause becomes
the support for the value. Again since the support is found before the
truth value is added, it must be well founded. An important point is
that if a premise is removed by the TNS user, but the removed truth
value can be deduced from other premises in the system, then the truth
value remains, uith a clause as its support instead of the premise
marker.

In reading the follouing code it will again be helpful to refer
to Appendix Il in which the data structures are expiained. The code
presented here is a simplification of the actual code used only to
formalize the algorithm as discussed so far, i.e. it does not deal uith
contradictions and assumptions uwhich uwill be discugssed later. The
complete code is presented in Appendix III].

T

(DEFUN REMOVE-TRUTH (NODE)
(PROG (VALUE)
(SETQ VALUE (GET NODE ’TRUTH))
(COND ((EQ VALUE 'UNKNOUN)
(ERROR 'REMOVE-TRUTH--VALUE-NOT-PRESENT NODE)))
(PUTPROP NODE ’UNKNOWN 'TRUTH)
(PUTPROP NODE NIL ’'SUPPORT)

;FOR EACH CLAUSE WHICH CONTAINS THE TERM WHICH WAS FALSE
;ADD ONE TO THE NUMBER OF TERHS WHICH CAN POTENTIALLY SATISFY 1T

(MAPC (FUNCTION (LANMBDA (CLAUSE)
(PUTPROP CLRUSE ’PSRT (14 (GET CLRUSE ’'PSAT)))))
(GET NODE (GET VALUE 'OP-CLAUSES)))

;REMOVE TRUTH VALUES WHICH THESE CLAUSES HAD BEEN USED TO DEDUCE

(MAPC (FUNCTION (LAMBDA (CLAUSE)
(PROG (F)
(COND ((AND (> (GET CLAUSE 'PSAT) 1)
(SETQ F (CAR (CONSEQ CLRUSE)))
;CONSEQ FINGS R NODE WHICH SATISFIES THE CLRUSE.
(EQ CLAUSE (GET F ’SUPPORT)))
(REMOVE-TRUTH F))))))
(GET NODE (GET VALUE 'OP-CLAUSES)))

;CHECK FOR ANY POSSIBLE DEDUCTIONS OF VALUES FOR THE
3NODE WHOSE VALUE WAS REMOVED

(MAPC (FUNCTION DEDUCE-CHECK) (GET NODE 'POS-CLAUSES))
(MAPC (FUNCTION DEDUCE-CHECK) (GET NOOE ’NEG-CLAUSES))))

Contradictions

Consider a case in uhich a clause is added that contains only
terms wuhich are false. The clause is in contradiction with the rest of
the data base and is therefore referred to as a contradiction. Since a
clause is a contradiction only when all of the terms in it are false, a
contradiction is said to depend on the truth values of the terms in it.
It is conceivable that a THMS data base could contain several such
contradictions.

The addition of clauses is not the only way that contradictions
can occur. Consider the two implications (P - Q) and (P - Q). 1If no
truth values are knoun for P or O, then no deductions are made since
each clause has tuo ways in which it might be satisfied. [f a true
value for P is determined, then one of the above clauses would be used
to deduce a truth value for Q, uhile the other clause would become a
contradiction. It is important to realize that in cases where both a

- IS ani i : PN, R

10

truth value and its negation can be proven, one of the truth values s
chosen and all clauses uhich could have implied its negation become
contradictions. UWhen addino a truth value leads to a contradiction, it
is possible to add neu clauses that allou deductions based upon this
fact. In the above example the clause (-P) can be deduced from the
tuo original clauses. To get a better feel for the general case
consider the example:

clause interpretation
{(A. true) (B. falsel) (C. true}) (-A n B) » C
((C. false) (D. false) (E. truel) {CaB)} -E
((A.true) (F. false) (E. false)) (~A n F) » -E

knoun values

B true
0 true
F true

Now in this case if a false value for A is added the first clause
can be used to deduce C. Then the second clause can be used to deduce
E. At this point houever the third clause has become a contradiction.

The relationship betueen the three clauses is shoun in figure one. In
the figure each clause is represented by a pair of right angled
implication pointers which should be interpreted as B » (-A 4 C). The

neu clause uhich can be added in this situation is (B AD A F) » A

To see hou neu clauses can be constructed from the appearance of
contradictions in general it is necessary to closely examine hou
contradictions result from the addition of truth values. At some point
a truth value is added uhich removes the last chance of satisfying some
clause, say Cl. The term that became true uhen this value uas added
uill be called F1 (E in the above example). At the instant before this
truth value is added Cl could have been used to deduce the opposite
value. In a quiescent data base no such clause can exist since all
possible one step deductions are made. This means that a false truth
value uas added for some term in Cl (A in the above example), but that
Cl became a contradiction before it could be checked for deductions.
This second term will be called F2. All possible deductiors from the
addition of any truth value are made uhen the value is added, and Cl
could potentially have been used to deduce -Fl1 upon the addition of
2. Therefore the truth value of Fl, uhich caused Cl to be a
contradiction, must aiso be a deduction from -F2. This situation is
pictured in figure tuo.

In the figure each pair of right angled implication pointers
represents a clause. The clauses should be interpreted as (lFCll A

FCIZ A ves) =3 (<F2 =5 =F1)). Now it all the involved clsuses

t

D

v =
g o]
i
XY %
B “F
A
(BADAF)—=>A

Figure 1.
An example of clause formation as a result of a contradiction. The
addition of-A causes C3 to become a contradiction

o
Fh
¢’ (FCAAFCAA—“)
(F~FR e
Fl
~aFl

C/
CEA TN)

|

((EDED) n (ERET) A oot) = FR

Figure 2.
The general case of clause formation resulting from a
contradiction. This is the general case in which the addition of+F2 causes
Cl to become a contradiction,

12

contained only tuo terms, then the clause (F2) could be added.
However, in the general case the contradiction results only uhen the

peripheral terms are true. In other uords (FCll n FClz bt F 1N
C2
o

added. The clause is formed during the unrolling of the recursive
calls to the procedure for adding truth values.

Hopefully the added clause will allou the deduction of the
negation of the truth value that lead to the contrdiction, -F2 above,
in those cases uhen it would again lead to the same contradiction.
While the added clause is aluways valid, it does not aluays produce this
desired result. The reason for this is that some of the peripheral
truth values might also be deductions from the added value. In this

A veed) => F2. This implication then is the clause uhich is

case uhen the added value (call it -F2 as above) is retracted, some of
the peripheral values uill also disappear and its negation uill not be
deducible. Houever if -F2 is again added then the clause generated
above uwill become a contradiction at the point at uhich all the
peripheral values become true. This uill lead to the generation of yet
another clause. If F2 is still not deducible upon the retraction of
-F2, then further additions of -F2 wuill generate still more clauses.

It is aluays possible to force the system to deduce the negation of a
truth value that leads to a contradiction by such "pulsing" of that
value. | uwould like to emphasize that it would require a quite complex
structure to require more than one or two such "pulses".

Default Values and Backtracking

In many problem solving situations it is necessary to make
assumptions that have no solid reason for belief. |f such assumptions
lead to contradictions then they should be retracted. Assumptions are
represented as a subset of the premise values called default values and
are marked in the implementation by having the atom 'default as their
support. Whenever a node is given a default support the value
suppor ted is placed under a default property of the node. This value
is then added whenever no other truth value for the node can be
deduced.

When a contradiction is present in the data base an attempt is
made to remove it by removing default truth values. This involves
tracina the dependency relations (via the supports associated with
nodes) to find the premises upon uhich the contradiction depends and is
therefore called dependency directed backtracking. MWhen a default
value is found upon uhich the contradiction depends, it is removed.
Hopeful ly the contradiction becomes an implication and can then be used
to deduce the opposite of the default value removed. [f the opposite
of the default is not deduced, then the default value is added back.
At this point, since the contradiction must reappear, the backtracking
repeats and again the default value is removed. [Due to the neu clauses
generated each time the contradiction appears, the negation of the
default value must become deducible, and the backtracking halts uhen

13

either no contradictions are left, or the contradictions that are
present do not depend on any default values.

Clause Values and Hierarchies of Assumptions

So far there has been no mention of the removal of clauses from
the data base. UWhile the physical removal of clauses does not occur,
there is a mechanism for making them impotent. This is done by adding
a node to each clause uhich represents its validity. For example the
clause (A or B) might become (-C1 or A or B) where Cl represents the
validity of the clause. Nouw as long as Cl is true the clause acts as
expected, but if the truth value Cl is removed, then the clause is
effectively removed. Each time a clause is added, some reason is given
for believing it. This reason is used as the support for the truth of
the node uhich represents the clause. This is usually useful only as a
device for keeping track of the source of clauses for the TMS user.
Houever it has one very important use in allouwing assumptions to have
antecedents.

Suppose that in reasoning about animais it is first assumed that
they are mammals. Furthermore suppose that in reasoning about mammals
it is assumed that they are dogs. The assumption that some animal is a
dog might depend on the assumption that it is a mammal. In general
then assumptions must bhe.able to take antecedents, some of which might
be other assumptions. 0DOependencies of this form can be represented in
the TMS by a clause uhose clause node has a default support. In the
example let the mammal assumption be represented by Al and the dog
assumption by A2. Nou Al can be assumed (given a true default value).
Once this has been done A2 can be added by adding the clause (Al -> A2)
and giving the clause node a true default value. The clause allous the
deduction of A2 only if Al is believed, also A2 can be removed as an
assumption during backtracking by removing the default truth value of
the added clause,

Since clause nodes are no different than any other nodes, removal
of their default truth values could be taken care of by the
backtracking algorithm already described. Houever, in backtracking it
is desirable to remove first assumptions upon which no other
assumptions depend. In chess for example one normally considers
several responses to a ‘riven move before going on to the next move.
This helps prevent the thrashing involved in removing and adding many
assumptions at once.

A minor modification to the backtracking algorithm allous this
selection of the default values. The number of supporting clauses that
must be traced back from the contradiction to find a premise are
counted. There may be several! paths of supports that lead to a given
premise, and in this case the maximum distance is used. Now if some
default value implies some other assumption, then it will aluays appear
at a greater distance from the contradiction than the assumption it

e ——— . ————— — - S —

14

implies. This is because it will aluays appear in the support chains
beneath the implied assumption., In view of this fact, our goal is
achieved by choosing for removal the defauit value with the minimum
maximum distance from the contradiction.

15

Comparison with Other Work

There are several systems uhich use explicit justifications for
beliefs. The work uhich is most closely related to the TMNS presented
here is that of Stallman and Sussman [Stallman and Sussman 1976] and
Doyle [Doyle 1978a)l. The basic difference betueen these systems and my
TMS is in the mechanisms used for dependency directed backtracking. In
both of these systems each assertion has only tuo truth states,
believed and unknoun, called “in" and "out" respectively. Since no
assertion can be false in such a system, additional mechanisms are
needed to prevent the belief of sets of assumptions knoun to be
contradictory. In Stallman and Sussman's ARS system the assumptions
underlying a contradiction are placed in a NOGOOD assertion. This is
used by additional mechanisms uhich prevent the set of assumptions from
being believed.

Jon Doyle has completed a master's thesis on the implementation
of "a general purpose truth maintenance system (TMS) (Doyle 1978al. His
TMS employs the notions of “in" and “cut" to represent the truth values
of assertions. [f an assertion is believed by the system then its THMS
node is "in". If the assertion is not believed, i.e. either knoun to
be false or simply unknoun, then its TMS node is "out". To make a
distinction betueen simply not knowing something's truth value and
knouing that it is false, tuo TMS nodes are required, one for the
assertion and one for its negation. If the assertion has an unknoun
truth value, then both nodes are "out". If the truth value is knoun
then one of the nodes is "in" and the other is "out". An important
point is that in Doyles system the notion of a contradiction is
completely seperate from the justifications. A node must be created
uhich is declared to be a contradiction and then a justification of
this contradiction node is installed for each set of nodes which are
mutaully contradictory. Specifically a contrdiction node must be
implied by each pair of nodes representing an assertion and its
negation. If this is not done then the system will have no problem
with keeping both of these nodes in, in other uords believing both an
assertion and its negation.

In Doyle's system a mechanism of major importance in backtracking
is conditional proof. A conditional proof can be thought of as a THS
node uwhich is true uhenever a certain implication among other THMS nodes
is true. Therefore a conditional proof is defined in terms of the
implication it represents, in other uords as a set of antecedents and a
consequent. To take an example suppose that the implication AABAC - D
is present in some TMS., A conditional proof node of D with respect to
A and B uwould represent the truth of the implication AAB + D. Nou if C
vwere knoun to be true then the implication represented by the
conditional proof would be true and therefore also the "CP" node. This
can be stated more formally as C +» (AAB - D).

Doyle's TNS uses unidirectional justifications to keep track af
consequences and antecedents of beliefs. To achieve dependency
directed backtracking in such systems it is necessary to trace the
antecedents of a failure (or contradiction) and then to blame the

16

contradiction on some set of assumpticns. Once this is done it is also
necessary to add implications for the negations of each assumption to
prevent the set of assumptions from being again believed at some later
time.

Doyle’s THS also uses a non-monotonic dependency structure. This
means that truth of a node can depend on another node being unknoun.
In such cases uhenever the unknoun, i.e. "out", node becomes knoun,
i.e."in", the dependant node becomes "out". Whenever an assumption is
made, an node representing its negation is created. The assumption is
then made to depend on its negation being unknoun. This can be
understood as expressing the notion "I will befieve it to be true as
long as | cannot prove that it is false". When a contradiction is
found uhich depends on some set of assumptions a conditional proof is
constructed for each assumption representing the implication of the
contradiction by the assumption. This conditional proof is then used
to imply the negation of each assumption uhen that assumption would
lead to the contradiction. Since an assumption depends on its negation
being “out”, when the negation becomes "in".the assumption becomes
“out". :

The implementation of the conditional proof mechanism is houever
not complete. Jf the antecedants of the implication a conditional
proof represents are not "in", then it is extremely difficult and
computational expensive to check the actual truth value of the
conditional proof. ODoyle's TNS "CP" nodes are "in" in only a subset of
the cases in uhich they could actualiy be shoun true. For example the
conditional proofs wuhich result from a contradiction are each
associated uwith the set of assumptions upon uhich that contradiction
was blamed. The negation of one of these assumptions is only justified
uhen all the other assumptions in that specific set are believed.
Therefore the conditional proof will not justify the negation of an
assumption when the assumption can combine wuith other information to
give the contradiction. Neu assumptions uhich lead to old
contradictions are also not prevented from being believed. By using
the contradiction itself as an active deductive agent, my NS can make
such deductions and avoid backtracking entirely in many such
situations.

In my TMS a contradiction is only a clause uhich cannot be
satisfied. Therefore, if a truth value of one of the nodes in the
clause is removed, the clause will be used to deduce the opposite truth
value for this node. This allous the direct deduction of false values
for assumptions uhich would lead to contradictions. The main advantage
of this system is the tremendous conceptual and programming simplicity
achieved. Houever it is more than just a simplified implementation of
the previous systems. Because no specific set of assumptions 1s chosen
upon uhich to blame a contradiction, neu assumptions which would lead
to the contradiction can also be proven false. Houever the difference
this makes in the number of contradictions encountered is small
compared to the savings given by any form of dependency directed
backtracking.

I have not implemented any conditional proof mechanism for the

— ——

ol & . 2 \.&‘Qﬂ} 2

17

simple reason that | did not have any application to justify its
existence. Doyle's TMS uses conditional proof to implement a mechanism
for levels of abstraction. This is useful in condensing explanations
of beliefs. The exploration of such uses of conditional proof and its
relation to the algorithms presented here would be an interesting topic
for further research. Also there are probably uses for the nor-
monotonic dependency structure present in Doyle’'s TMS other than the
identification of assumptions. The incorporatfon of such mechanisms
into this algorithm and the investigation of more sophisticated
applications would also be worthuhile.

18

Bibliography

(de Kleer,Doyle,Rich,Steele and Sussman 1377]

Johan de Kleer, Jon Doyle, Charles Rich, Guy L. STeele Jr., Gerald J.
Sussman, "AMORD A Oeductive Procedure System,” MIT Al Lab, Memo 43S,
September 1977.

[de Kleer,Doyle,Steele and Sussman 1977]
Johan de Kieer, Jon Doyle, Guy L. STeele Jr., Gerald J. Sussman,
"Explicit Control of Reasoning," MIT Al Lab, Memo 427, June 1377.

[Doyle 1978a) Jon Doyle, "Truth Maintenance Systems for Problem
Solving," MIT Al Lab, TR-419, January 1978.

{Doyle 1978b)
Jon Doyle, "A Glimpse of Truth Maintenance," MIT Al Lab, Memo 461,
February 1978.

[McDermott 1976)
Drew V. McDermott,"Flexibility and Efficiency in a Computer System for
Designing Circuits," MIT Al Lab, TR-482,June 1977.

[McDermott and Sussman 1974)
Dreu V. Mcdermott and Gerald Sussman, "The CONNIVER Reference Manual,"
MIT Al Lab, Memo 259a, January 1974.

[Stal Iman and Sussman 1976]

Richard Stallman and Gerald Sussman, "Foruward Reasoning and Dependency
Directed Backtracking in a System for Computer Aided Circuit Analysis,"”
MIT Al Lab Memo 388, September 1376.

(Sussman 1977]
Gerald Sussman, "Slices: At the Boundry Betueen Analysis and
Synthesis," MIT Al Lab, Memo 433, July 1977.

19

Appendix | -- A User’s Guide

This is a summary of the top level procedures which can be used
to interface the TMS uith any deductive system. The procedures
descibed here can be loaded into lisp on MIT-Al by evaluating (FASLOAD
TMS FASL DSK DAM).

(TMS-INIT)
This procedure initializes the TMS data structures.

(MAKE -DEPENDENCY-NODE <assertion> <uhen-true> <uhen-false> <uhen-unknoun>)
This procedure creates and returns a new THS node to represent
the assertion uhich is passed as an argument. The node returned is an
atom which has the assertion placed on its 'ASSERTION property. <uhen-
true> is a function to be applied to the assertion uhen the node
becomes true. <uhen-false> and <when-unknoun> are similarly functions
to be used uwhen the node becomes false and unknoun respectively. Any
of the three function arguments can also be nil in which case no action

is taken upon the correspoding transition of truth state.

The truth state of the node is available as its 'TRUTH property
uhich is either 'TRUE, 'FALSE, or 'UNKNOWN. The node is initially
assumed unknoun and must be forced true via either SET-TRUTH or the
addition of a clause uhich causes its deduction. <uhen-true> will be
applied when this happens. The node can never go directly from being
true to being false, or vice-versa, it must first pass through a state
of being unknoun and therefore an application of <uhen-unknoun>.

(SET-TRUTH <node> <value> <reason>)

This procedure adds truth values. The first argument must be a
TMS node and the value must be either 'true or 'false. An error
results if the node does not have an initial truth state of unknoun.
<reason> should be a representation of the reason for believing the
truth value and, except for the special atom 'ODEFAULT described belou,
is not used by the TMS other than placing it on the 'EXPLANATION
property of the node for the convienience of the TMS user. All truth
values uhich are given via an external call to this procedure are
considered premises by the TMS and their 'SUPPORT property is the atom
‘PREMISE.

An internal form of this procedure is used to add truth values
deduced from clauses. In this case the support is a clause. All truth
values that can be deduced in one step clause deductions from any added
truth values are also added. If a contradiction results from the
addition of a truth value, a neu clause is generated and added as
described in the section on contradictions

- — T e —— ———— e r—

B

DEFAULTS

20

(ADD-CLAUSE <clause> <reason>)

This procedure adds a clause to the TMS data base. The clause
argument must be a list of dotted pairs. Each pair is a TNS node
dotted with either 'true or 'false to represent the node or its
negation respectively. For example:

(SETQ A (MAKE-DEPENDENCY-NODE "HUMAN-TURING nil nil nil))
(SETQ B (MAKE-DEPENDENCY-NODE *FALLABLE-TURING nil nil nil))

(ADD-CLAUSE (list (cons A 'faise) {cons B 'true)) 'HUMAN-FALLABILLITY)

Would add the clause:
(-CLAUSE-N or -HUMAN-TURING or FALLIBLE-TURING)

Which can be more intuitively understood as (HUMAN=FALLABILLITY -
(HUMAN-TURING - FALLABLE-TURING}). Ctause-n represents the TNS node
generated to represent the truth value of the clause and is given a
true valus as a premise With an explanation property of <reason> as in
SET-TRUTH. The clause node is usefull both in generating explanations
and in removing clauses uhen desired (making the clause node false
effectively removes the clause)l. The clause node is returned as the
value of ADD=CLAUSE.

The use of the atom 'OEFAULT as the reason argument in either
SET-TRUTH or ADD-CLAUSE has a special meaning. It is the way in uhich

assumptions are announced to the TMS. A node or clause given a reason .

of 'DEFAULT is said to have a default truth value. Such nodes and
clauses act just |like any other untill contradictions appear. I|f any
contradiction can ever be traced to a node with a default value, then
the value for that node will he automatically retracted by the THS.
Similarly if a contradiction can be traced to a deduction from a clause
uith a default value, then the clause uwill be invalidated and the
deduction retracted. This is the way in which this THS handies the
non-monotonic functions performed in Doyte's TMS [Doyle 1978al.

Notice hou default clauses can be used to structure assumptions.
Suppose for example that you want to assume that grocery stores have
peas. This assumption can be captured in a clause which represents the
implication grogery-store » has-peas. The clause would be given a
default support to announce that it is an assumption. This is
described in more detail in the section on default truth values and
hierarchies of assumptions.

If it is desired not to have the TMS do automatic backtracking
then the assumptions simply need not be announced to the THS.

21

(REMOVE-TRUTH <node>)

This procedure removes the truth vaiue of the node uhich is
passed as an argument. An error results of the node already has an
unknown truth state. All truth values uhich critically depend on the
removed value are also automatically removed. At the end of the
removal process nodes uwhoes truth values were removed, but uhich have
default values, have there default values added via SET-TRUTH. 1[It is
impor tant to realize that truth values which can be duduced from other
knouledge in the TMS will not be removed. Such truth values can only
be removed by removing the premises or clauses from uhich it can be
deduced. Clauses are removed by removing the truth value of their THS
nodes.

(UWHY <object>) b

<object> may be either a node or a clause (more specifically a
contradiction, which is a clause uhich cannot be satisfied). I will
first consider the case uhere <object> is a node. In this case the
procedure returns the justification for the belief in the truth value
of the node. lf the node has truth state of unknoun then nil is
returned. If the value of the node is a.premise, then the atom
'PREMISE is returned. Otheruise it returns a list of the nodes wuhoes
truth values were used to deduce the truth vaue of <node>. The clause
node of the supporting clause will appear first on the list. Because
of the internally generated clauses uhich result from the
contradictions it is possible that other nodes on (his list are clause
nodes. Clause nodes can be identified in that there 'ASSERTION
property is the atom °'CLAUSE.

If <object> is a clause then 'lhy returns a list of the nodes
contained in it. The clause node com:s first. It is important to note
the distinction hetween a clause and a clause node. The former
represents the actual clauses used by the TNS and it is these uhich
appear on the list of contradictions described belouw. Clause nodes on
the other hand represent the vallidity of @ clause and are used for the
recording the reasons for belief in clauses and for removing clauses as
described above.

WHY can be used to do dependency directed backtracking outside of
the TMS in cases uhere more controle over the choice of assumption
removal is desired.

All contradictions that occur in the TMS are placed on a list wuhich is the
value of the global atom CONTRA-LIST. |f there are no contradictions then
the CONTRA-LIST will have value nil. A contradiction is simply a clause
which cannot be satisfied.

~——

22

Appendix Il -- The Data Structures

Nodes
Nodes represent assertions or any logical items that take on
truth values. Nodes are represented by atoms with the follouwing
properties: J

TRUTH
This properties can have three values, 'true,’'false, and
'unknouwn, uwhich represent the truth state of the node.

SUPPORT
This property gives the support for a truth value of the
node. It is either the atom 'premise or a clause if the node has a
truth value, and is nil if the node has a truth property of
*unknoun,

POS-CLAUSES
This is the list of clauses which contain the node.]

NEG-CLAUSES
This is a list of clauses which contain the negation of the
node.

MAKE-TRUE
MAKE-FALSE
MAKE -UNK
These are optional properties which give functions to be 3
applied to the ASSERTION property when the node undergoes the
appropriate transition of truth state.

DEFAULT
This applies only to nodes that have default truth values and
is either 'TRUE or 'FALSE.

ASSERTION
This is the assertion external to the TMS that the node is
representing.

EXPLANATION
This is the reason for believing a node which is a premise,

e.g. a node uhich uas set true or false for reasons external to the
TMS.

True and False
'True and 'false are atoms wWwith the following properties.

TRUE
OPPOSITE => 'FALSE

23

CLAUSES => 'POS-CLAUSES
OP-CLAUSES => 'NEG-CLAUSES
EFFECT => 'MAKE-TRUE

FALSE
OPPOSITE. => ' TRUE
CLAUSES => "NEG-CLAUSES
OP-CLAUSES => 'POS-CLAUSES
EFFECT => "MAKE-FALSE

Clauses

Clauses are atoms with the following properties

CLAUSE-LIST
This is the list structure uwhich contains the nodes and
associated truth values which make up the clause. [t is a list of
dotted pairs each of which is a node dotted with the truth value it
has in the clause.

PSAT
This is the number of nodes uwhich either satisfy the clause
or could potentially do so. If this number is 1, and there is a
node uith an unknoun truth value in the clause, then the clause can
be used to deduce a truth value for the node. I|f this number is O
then the clause is a contradiction.

Global Variables

CONTRA-LIST
This is a list of all the clauses which are contradictions.

The following variables are global to certain procedures in the THS.

CONTRA-CLAUSE '
This is used to construct the new clause resulting from the

appearance of contradictions. It is global to the internal version
of SET-TRUTH.

CONTRA-SOURCE
This is the contradiction which initialized the construction
of a new clause. [t is used by the internal version of SET-TRUTH
to terminate the construction of the new clause.

REMOVED-LIST
This is used by REMOVE-TRUTH to keep track of nodes whose
truth values have been removed.

24
! ASSUM-LIST
. This is used in FINOD-ASSUM for accumulating an alist of the
assumptions underiying a contradiction associated wuith their
maximum distance from the contradiction. The distance to the
contradiction is the number of clauses in the |ink betueen the
contradiction and the assumption. .
]
]
[
3

25

Appendix lll -~ The Code

001 ; INITIALIZATION ROUTINES APPNDX 3 Page |
0082
083 (DECLARE (SPECIAL CONTRA-LIST NODE-COUNT CTRACE VPRINT ACCUM
884 CONTRA-SOURCE CONTRA-CLAUSE REMOVED-LIST ASSUN-LIST))
005
006 (DEFUN THS-INIT O
097 (PROG O
088 (PUTPROP ’TRUE ’FALSE 'OPPOSITE)
009 (PUTPROP ’TRUE ’POS-CLAUSES ’'CLAUSES)
el1e (PUTPROP ' TRUE ’NEG-CLAUSES ’'OP-CLAUSES)
u 811 (PUTPROP 'TRUE "HAFE-TRUE 'EFFECT)
812 (PUTPROP 'FALSE 'TRUE ’OPPOSITE)
813 (PUTPROP 'FALSE ’NCG-CLAUSES 'CLAUSES)
814 (PUTPROP ’FALSE 'POS-CLAUSES '0P-CLAUSES)
215 (PUTPROP 'FALSE 'HAKE-FALSE 'EFFECT)
016 (SETQ CONTRA-LIST NIL)
817 (SETQ CTRACE NIL)
a18 (SETA VPRINT NIL)))
819
020
021 (DEFUN MAKE-DEPENDENCY-NOOE (ASSERTION WHEN-TRUE WHEN-FALSE WHEN-UNKNOWN)
822 (PROG (NODE)
823 (GENSYR 'N)
824 (SETQ NODE (GENSYH))
0825 C(INTERN NODE)
0826 (PUTPROP NODE ’UNYNOUN °'TRUTH)
827 (PUTPROP NODE NIL 'SUPPORT)
828 (PUTPROP NODE RSSERTION *ASSERTION)
829 (PUTPROP NODE WHEN-TRUE *HMRKE-TRUE)
830 (PUTPROP NOOE HHEN-FALSE ’HMAKE-FALSE)
831 (PUTPROP NODE WHEN-UNKNOWN ’HRKE-UNK)
832 (RETURN NODE)))

el
802
803
LY
0es
886
807
nes
009
010
011
812
013
014
81S
816
817
818
019
829
821
822
023
024
825
0826
827
028
829
039
831
832
833
034
835
836
837
838
839
840
841
0842
043
0844
0845
0846
847
0848
849
050
051

APPNDX 3 Page 2
;CLAUSE ADDITION ROUTINES

(DEFUN ADD-CLAUSE (CLAUSE-LIST REASON)
(ADD-2 CLAUSE-LIST REASON)
(BRCKTRRCK))

(DEFUN ADD-2 (CLAUSE-LIST REASON)
(PROG (CLAUSE CLAUSE-NODE COUNT)

(SETQ COUNT 8)

(SETQ CLAUSE-NODE (MAFE-DEPENDENCY-NODE 'CLAUSE NIL NIL NIL))
(PUTPROP CLRUSE-NODE ’TRUE ’TRUTH)
(PUTPROP CLAUSE-NODE *PREMISE ’SUPPORT)
(PUTPROP CLAUSE-NODE RERSON 'EXPLANATION)
(COND ((EQ REASON 'DEFAULT)
(PUTPROP CLAUSE-NODE ’TRUE ’DEFAULT)))

(GENSYH *C)
(SETQ CLAUSE (GENSYM))
CINTERN CLAUSE)
(COND (CTRACE
(PRINT * |[NEH-CLAUSE |)
(PRINC CLAUSE)
(PRINC *|)
(PRINC REASON) ;
(PRINT (MAPCAR (FUNCTION (LAMBOR (F)
(CONS (GET (CAR F) *RSSERTION) (COR F))))
CLAUSE-LIST))))

(SETQ CLAUSE-LIST (CON5 (CONS CLAUSE-NODE 'FALSE) CLAUSE-LIST))
(PUTPROP CLAUSE CLAUSE-LIST *CLAUSE-LIST)
(MAPC (FUNCTION (LAMBDA (NODE)
(COND ((NOT (EQ (GET (COR NODE) *OPPOSITE)
(GET (CAR NODE) ’TRUTH)))
(SETQ COUNT (1+ COUNT))))))
CLAUSE-LIST)
(PUTPROP CLAUSE COUNT 'PSAT)

(MAPC (FUNCTION (LANBDA (NODE)
(PUTPROP (CAR NODE)
(CONS CLAUSE
(GET (CAR NODE) (GET (COR NODE) °'CLAUSES)))
(GET (COR NODE) ’CLAUSES))))
CLAUSE-LIST)

(COND ((= COUNT 8)
(SETQ CONTRA-LIST (CONS CLAUSE CONTRA-LIST))))

(PROG (CONTRA-SOURCE CONTRA-CLAUSE)

(DEOUCE-CHECK CLAUSE))
(RETURN CLAUSE-NODE)))

e —

PRI . R, S S

aL"

gy

-

001
0882
083
894
005
006
007
008
009
010
011
812
813
014
815
816
817
818
819
820
021
822
023
024
02S
026
827
828
029
0830
831
832
833
034
83s
836
037
838
839
040
041
842
0843
044
045
0846
047
848
049
050
651
852
053
854
855
056
057
058
059
068
061
0862
063
064
065
066
067
068
069
a7e
871
872
073
074

APPNDX 3 Page 3
s+ TRUTH VALUE ADDITION ROUTINES

(DEFUN SET-TRUTH (NODE VALUE EXPLAN)
(PROG (CONTRA-SOURCE CONTRA-CLAUSE)
(PUTPROP NODE EXPLAN 'EXPLANATION)
(COND ((EQ EXPLAN 'DEFAULT) (PUTPROP NODE VALUE ’DEFAULT)))
(SET-2 NODE VALUE ’PRENISE)
(BACK TRACK)))

(DEFUN SET-2 (NODE VALUE SUPPORT)
(PROG (TRACE F)
(COND (VPRINT (PRINT ' |SET TRUTH|) (PRINC NODE) (PRINC VALUE) (PRINC SUPPORT)))

3 TRACE IS TRUE IF A CONTRADICTION HAS RESULTED FROM THIS SET, EITHER DIRECTLY
;OR AS A CONSEQUENCE OF RESULTING RECURSIVE DEDUCTIONS !

(SETQ TRACE NIL)
(COND ((NOT (EQ (GET NODE 'TRUTH) *UNKNOWN))
(ERROR *SET-TRUTH--VALUE-NOT-UNVFNOWUN NODE)))
(PUTPROP NODE VALUE 'TRUTH)
(PUTPROP NODE SUPPORT 'SUPPORT)
(MAPC (FUNCTION ((LAMBOA (CLAUSE) (PROG ()
(PUTPROP CLAUSE (1- (GET CLAUSE 'PSAT)) 'PSAT)
(COND ((= (GET CLAUSE 'PSAT) @)
(SETQ CONTRR -LIST (CONS CLAUSE CONTRA-LIST))
(COND (CTRACE
(PRINT *CONTRADICTION)
(PRINC (GET CLAUSE 'CLAUSE-LIST)INIMNI)
(GET NODE (GET VALUE 'OP-CLAUSES)))
(COND ((GET NODE (GET VALUE 'EFFECT))
(APPLY (GET NODE (GET VALUE 'EFFECT)) (LIST (GET NODE °ASSERTION)))))

(NAPC (FUNCTION (LAMBDA (CLAUSE)
(COND ((AND TRACE -
(EQ CLAUSE CONTRA-SOURCE)
(AD0-2 CONTRA-CLAUSE ’CLAUSE-RESOLUTION)
(SETQ CONTRA-SOURCE NIL)
(SETQ TRACE NIL))
((AND (= (GET CLRUSE 'PSAT) @)
(NULL CONTRA-SOURCE))

(SETQ
(SETQ
(SETQ
((SETQ
(SETO
(SETQ

(GET NODE (GET VALUE
(RETURN TRACE)))

(DEFUN DEDUCE-CHECK (CLAUSE) ;THE FACT
(PROG (F)
(COND ((AND (= (GET CLAUSE

CONTRA-SOURCE CLAUSE)

CONTRA-CLAUSE (MERGE CLAUSE NIL NODE NIL))
TRACE ' TRUE))

F (DEDUCE-CHECK CLAUSE))

TRACE ' TRUE)

CONTRA-CLAUSE

(MERGE CLAUSE CONTRA-CLAUSE NODE (CAR F)))))))
*OP-CLAUSES)))

DEDUCED IS RETURNED ONLY IF A CONTRADICTION RESULTED.

'PSAT) 1)

(SETQ F (PCONSEQ CLRAUSE))

(SET-2 (CAR F)
(RETURN F))
(T (RETURN NIL)))))

(DEFUN PCONSEQ (CLAUSE)

(COR F) CLAUSE))

(00 CLIST (GET CLAUSE 'CLAUSE-LIST) (COR CLIST) -

(NULL CLIST)
(COND ((EQ (GET (CAAR CLIST)

' TRUTH) *UNKNOKN)

(RETURN (CAR CLIST))))))

(DEFUN MERGE (CLAUSE ACCUN EXCEPTI EXCEPT2)

(PROG ()
(MAPC (FUNCTION (LAMBDA (NODE)

(COND ((NOT (OR (EQ (CAR NODE) EXCEPTI)
(EQ (CAR NODE) EXCEPT2)
(HENBER NODE ACCUM)))

(SETQ ACCUN
(GET CLAUSE ’CLAUSE-LIST))
(RETURN ACCUM)))

(CONS NODE ACCUM))))))

B3

gal

002
003
004

808S
866
087
008
009
ele
a1l
812
813
814
015
816
817
818
019
0280
821
022
823
824
0925
826
827
0828
029
838
831
832
833
834
83S
836
837
838
839
040
841

042
043
044
0845
846
847
048
049
850
851

0852
0853
054
05S
856
057
858
859
8680
061

060

063

064

065

APPNDX 3 Page 4

; TRUTH VALUE REMOVAL ROUTINES

(DEFUN REMOVE-TRUTH (NODE)
(PROG (RENOVED-LIST)
(RENOVE-2 NODE)

(MAPC (FUNCTION (LAMBDA (DOT)
(PROG (NODE)
(SETQ NODE (CAR DOT))
(COND ((NOT (EQ (GET NODE *TRUTH) 'UNKNOWN)) (RETURN T)))

(NODE -DEDUCE -CHECK NODE '’ YRUE)
(NODE -DEDUCE -CHECK NODE ’FALSE))))
REMOVED-LIST)

(MAPC (FUNCTION (LRNBDA (DOT)
(PROG (NODE)
(SETQ NODE (CAR DOT))
(COND ((NOT (EQ (GET NODE ’TRUTH) ’UNKNOWN)) (RETURN T)))

(COND ((GET NODE ’DEFAULT)
(PROG (CONTRA-SOURCE CONTRA-CLAUSE)
(PUTPROP NODE ’'DEFAULT ’EXPLANATION)
(SET-2 NODE (GET NODE 'DEFAULT) ’PRENISE)))))))
REMOVED-LIST)))

(DEFUN REMOVE-2 (NODE)
(PROG (VALUE)

(COND (VPRINT (PRINT ’ |REMOVE-VALUE |)

(PRINC NODE)))
(SETQ VALUE (GET NODE ’TRUTH))
(COND ((EQ VALUE 'UNKNOLIN)

(ERROR 'REMOVE-VALUE-~VALUE-NOT-PRESENT NOOE)))

(PUTPROP NODE ’UNKNOIIN *TRUTH)
(PUTPROP NODE NIL 'SUPPORT)
(SETQ REMOVED-LIST (CONS (CONS NODE VALUE) REMOVED-LIST))
(MAPC (FUNCTION (LAMBDA (CLAUSE) (PROG ()

(PUTPROP CLAUSE (1+ (GET CLAUSE 'PSAT)) °'PSAT)

(COND ((= (GET CLAUSE ’PSAT) 1)

(SETQ CONTRA-LIST (DELO CLAUSE CONTRA-LIST)))))))
(GET NODE (GET VALUE ’OP-CLRUSES)))

(COND ((GET NODE ’HAFE-UNK)
(APPLY (GET NODE ’*HMAKE-UNK) (LIST (GET NODE ’ASSERTION)))))

(MAPC (FUNCTION (LAMBOA (CLAUSE) (PROG (F)
(COND ((AND (> (GET CLAUSE 'PSAT) 1)
(SETQ F (CAR (CONSEQ CLAUSE)))
(EQ CLAUSE (GET F ’SUPPORT)))
(REMOVE-2 F))))))
(GET NODE (GET VALUE ’'OP-CLAUSES)))))

(DEFUN CONSEQ (CLAUSE)
(DO CLIST (GET CLAUSE 'CLAUSE-LIST) (COR CLIST)
(NULL CLIST)
(COND ((EQ (GET (CAAR CLIST) 'TRUTH) (CDAR CLIST))
(RETURN (CAR CLIST))))))

(DEFUN NODE-DEDUCE-CHECK (NODE VALUE)
(PROG (CONTRA-SOURCE CONTRA-CLAUSE)
(DO C-LIST (GET NODE (GET VALUE ’CLAUSES)) (COR C-LIST)
(OR (NULL C-LIST)
(EQ (GET NODE ’TRUTH) VALUE))
(DEDUCE-CHECK (CAR C-LIST)))))

001
002

203

004

005

006

007

808

009

810

o011

) 812
013

814

815

816

017

e18

819

820

021

022

023

824

025

026

027

028

829

830

831

032

033

034

835

| 036
837
038
‘ 839
| 040
a4l

042

843

044

245

846

‘047

848

849

050

051

852

053

854

‘955

056

057

L 058
859

060

061

262

263

APPNDX 3 Page S
;EXPLANATION AND BACKTRACK ING ROUTINES

(DEFUN WHY (OBJECT)
(PROG (SUPPORT CLIST WHY-LIST)
(COND ((SETQ CLIST (GLT OBJECT 'CLAUSE-LIST))
(RETURN (MAPCAR (FUNCTION (LAMBDA (F) (CAR F))) CLIST)))
(a
(SETQ SUPPORT (GET OBJECT *'SUPPORT))
(COND ((EQ SUPPORT 'PREMISE) (RETURN 'PREMISE))
(T (DO CLIST (GET SUPPORT °'CLAUSE-LIST) (COR CLIST)
(NULL CLIST)
(COND ((NOT (EQ (CARAR CLIST) OBJECT))
(SETQ WHY-LIST (CONS (CAAR CLIST) WHY-LIST)))))
(RETURN WHY-LIST)))))))

(DEFUN BACKTRACK ()
(PROG (ASSUNPTION ASSUM-LIST)
(SETQ ASSUMPTION NIL)
(SETQ ASSUN-LIST NIL)
(COND ((NULL CONTRA-LIST)
(RETURN T1)))

(DO CONTRA CONTRA-LIST (COR CONTRR)
(OR (NOT (NULL ASSUN-LIST))
(NULL CONTRRA))

(MAPC (FUNCTION (LAMBDA (NODE) (FIND-ASSUN NODE 1)))
(HHY (CAR CONTRRA))))

(D0 ((DO-ASSUM ASSUM-LIST (COR DO-ASSUM))
(MIND 10898 RIND))
((NULL DO-ASSUM))
(COND ((< (CDAR DO-ASSUN) MIND)
(SETQ MIND (COAR DO-RASSUM))
(SETQ ASSUNPTION (CAAR DO-ASSUM)))))

(COND ((NULL RSSUHPTION)
(PRINT ' |CONTRADICTION DEPENDS ON NO RSSUNPTIONS|)
(RETURN NIL))
(T (RENOVE-TRUTH ASSUNPTION)))

(BACK.TRACK)))

(DEFUN FIND-ASSUM (NODE LEVEL)
(PROG (SUPPORT RSSC)
(SETQ SUPPORT (GET NODE ’SUPPORT))
(COND ((EQ SUPPORT 'PREMISE)
(COND ((EQ (GET NODE ’EXPLANRTION) ’DEFAULT)
(COND ((SETQ RSSC (ASSOC NODE ASSUN-LIST))
(RPLACD ASSC (MAX LEVEL (COR RSSC))))
(T (SETQ ASSUNM-LIST (CONS (CONS NODE LEVEL) ASSUM-LIST)))))))
(T (MAPC (FUNCTION (LANBDA (NODE) (FIND-ASSUN NODE (1+ LEVEL))))
(WHY NODE))))))

(DEFUN SATISFY (NODES)
(MAPC (FUNCTION (LAMBDA (NODE)
(COND ((NOT (EQ (GET NODE ’TRUTH) ’UNKNOWN))
(PUTPROP NODE ’TRUE °'DEFAULT))
(T (SET-TRUTH NODE ’TRUE °*DEFAULT)))))
NODES))

(THS-INIT)

Symbo! Table for:

RBD-2 . ciesvenaveess EXPR 002 8068 FIND-ASSUM EXPR 005 845 PCONSEQ ve... EXPR 003 060
ADD-CLAUSE EXPR 002 804 MNAKE-DEPENDENCY-NOOE EXPR 0681 621 REMOVE-2 EXPR 084 028
BRACKTRACK EXPR 005 817 MERGE EXPR 083 866 REMOVE-TRUTH EXPR 004 004
CONSED . .ocoveovoss . EXPR 084 856 NODE-DEOUCE-CHECK .. EXPR 004 068 SATISFY EXPR 005 856
DEDUCE-CHECK EXPR 803 852 SET-2 v.... EXPR 003 811 SET-TRUTH EXPR 0883 004
THS-INIT EXPR 801 886 MWHY EXPR 0805 804
N
i
“»
—— — A — — Em— ») -
v i o TP S e
i " ol — EPTR Ce T, SR, ST Sy il

DAN; APPNDX 3

5/31/78 Page |

