
AD AO b2 176 MASSACHUSLTTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE”ETC F~S 6.h
A THREE VALUtO TRUTH MAINTENANCE STSTEM.(U)
MAY 7$ 0 A MCAU.LSTCR N0001N—75 C—0fl3

UNCLAS$IFILD AZ N 173 ML

a; ___
I I__rn I

_ I

I 0 I_ 28 ~ 25

________ ~ ~ 2.2
L II~

=

I.’ ~
I
~

_ IOII~°
I~lJ±

I

~ DUI~ oo~
~ I (I~(U ’ J I Y I~I~~~t Ij I f l) N II~~i (J~A I~I

hII I’~~AII I ~A I’4I,AI ’ (,

- .

UNCLASSIFIED
SEC U R I T Y C L A S S I F I C A T I O N OF T HIS PAGE (W~ .n Dat. £nt.r.d) (./~~~ READ INSTRUCTIONSREPORT DOCUMENTATION PAGE

BEFORE_COMPLETIN G_FORM
I REPORT NUMBER

AIM 473 1~
~~~~~~~~ ACCESSION NO. 3. REC IPIENT S CATALOG N U M B E R

4. T I T L E  (and S~.btjt1cJ —“ —-~~~~~
..-

~
-. - ~~~ TYPE or RCP9B1.& PERIOO~COVEREO

(
~ ) 

A Three Valued Truth Maintenance Systems (5 
,~ memorandum
- I~~ I

-;, . 
i t~~~ô~biING ORG. REPORT NUMBER

7. AUTP4OR(.) S. CONTRACT OR GRANT NUMBER (.)
—\ -

~ (( ,
‘
~avid A./ McAllester / .

~ ~~~~~~~~~

9. PERFORM ING O R G A N I Z A T I O N  NAME AND ADDRESS PROGRAM FLEUENT.P~ OJECYrTASK
Artificia l Intelli gence Laboratory ’ A REA S BORIC UNIT NUMBERS

545 Technol ogy Square
Cambrid ge, Massachusetts 02139 ‘ 

/ ~:
I I .  CONTROLLING OFFICE NAME AND ADDRESS ( 42~~~*ErsnT SJ~.TB

Advanced Research Projects Agency ) May ~~78 /1400 Wilson Blvd 
~
.. .: It NuMBER OF PAGE$ .

4 MONITORING AGENCY NAME S AOORES$ (SI dtf(.,.nI fr om Control lln~ OllSc.) $5. SECURITY CLA SS.~~~~~~~.

Arlington , Virginia 22209 31 ; -

Office of Naval Research UNCLASS IFIED
Information Systems ____________________________
Arlington , Virg inia 2221 7 5.. DECLASSIFICATION/DOWNGRADING

SCHEDULE

t. ~~~~ $6. DISTRIBUTION STATEMENT (of thi .  R.port)

D Is t r i bu t ion  of this documen t is un l imited .j i c - )

‘ -J
I L.LJ f l r) C

$7. DISTRIBUTION STATEMENT (of Ii. .b.tr.ct .nt.,.d In Block 20. U dlff.rwt from R.port) •~~ ~~~~
C.~ 

DEC 1 4  ~91~’

~IS. SUPPLEME NTARY NOTES

None

IS. KEY WORDS (Contlnu. on ,Iv.r.. .Id. If n.c•.aary ond Id.nUIy by block nsonb.r)

Artificial Intelligence Backtracking
Problem Solving Explanation
Truth Maintenance Hierarchy
Dependencies
Logic

20 A BST RACT jContlnu. on r.var•Truth maintenance sy~~~
b
ed&~ ~ ~~~~~~~~~~~~~~~ ilflck1~~~ rf~t1y developed problem solving

systems. A truth maintenance system (TMS) Is designed to be used by deductive
systems to maintain the logical relations among the beliefs which those systems
manipulate. These relations are used to Incrementally modify the belief struc ire
when premises are changes , giving a more flexible context mechanism than has
been present In earlier artificial Intelligence systems. The relations among
beliefs can also be used to directly trace the source of contradictions or
failures, resulting in far more efficient backtracking.

— FORMDii I JAN ~~ ~ 73 EDITION O F t  NOV SI II OBSOLETE UNCLASSIFIED
S/N 0 $ 0 2 • 0 14 -  1160 1 I

SiCURITY CLASIIPICATION *~ T Ill S Ps*~~t (*?ron B.t. Int.,.d )

_
., .;~~~ ~~ -.. - 

S. -



20. In this paper a new approach is taken to truth maintenance algorithms .
Each bel ief, or proposition , can be in any one of three truth states,
true, false, or unknown. The relations among propositions are repre-
sented In disjunctive clauses . By representing an implication in a
clause the same algorithm that is used to deduce its consequent can be used to
deduce the negation of antecedents that would lead to contradictions. A
simple approach -is also taken to the handling of assumptions and backtracking
which does ot involve the non-monotonic dependency structures present in
other truth maintenance systems.

1

S

I 
\\~ -

~ .5 —S---~~ -
S ~ .~ . 5 - ~~~~~~~~~~~



I

MASSAC h USETTS INST ITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORA TORY

A. 1 . Memo 473 May 31. 1978

A Three Valued Truth Maintenance System

David A. McAiiester

Abstract

‘4lruth maintenance systems have been used in recently developed
problem solving systems. A truth maintenance system (TMS) is designed to

be used by deductive systems to maintain the log ical  re la t ions among the
S b eliefs which those systems manipulate. These re lations are used to S

incrementall y modify the belief structure when premises are changed, g iving 
S

a more f l e x i b l e  context mechanism than has been present in earlie r
artificial int e l l i gence systems. The relations among beliefs can also be
used to directl y trace the source of contradictions or failures, resulting
in far more eff i c i e n t  backtrack i ng.

In this paper a new approach is taken to truth ma intenance
algor i thms. Each belief , or proposition , can be in any one of three truth
states , true, false , or unknown. The relations among propositions are
represented in disjunctive clauses. By representing . an implication in a
clause the same algorithm that is used to deduce its consequent can be used
to deduce the negation of antecedents that would l ead to contradictions. A S

simp le approach i s also taken to the handling of assumptions and
S 

backtrack i ng which does not i nvolv e the non-monotonic dependency structures
present in other truth maintenance systems. ~

This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory ’s ar tificial intelli gence research was provided in part by the Ad-
vanced Research Projects Agency of the Department of Defense under Of f i ce
of Nava l Research contract N00014-75-C-0643 and in part by the National
Science Foundation Under grant MCS 77-OLe828.

-

- 
. — 

. .  S 

~~~~~~ 
5

- -

2

Acknowledgements

Jon Doy le and G e r a l d Suss man have p rov ided encouragement and
i ndespensible criticism of this work. Johan de Kleer , Charles Rich , and
Howard Shrohe have also hel ped w ith fruit ful diacueeions.

Table of Content s

Introduction 3

The Al gor i thm 5
Add i ng Clauses and Truth Values S
Remov i ng Truth Values 7
Contradictions 9
Default Values and Backtrack i ng 12
Clau8e Values and Hierarchies of Assumptions 13

Compar i son with Other Work 15

Appendix 1 , A User ’s Gu i de 19
S

Appendix II , The Data Structures 22

Appendix III , The code 25

• -- •- S ~~ S —-S --~~-_ _- - - S --~~~~~~~~ -

- — — S S —- 5 •

I

3.

Introduction

Truth maintenance systems have been used in recent l y developed
prob l em solving systems (Stal lean and Sussman 1976] (Doy l e 1978a1 . A truth
maintenance system UF1S) is a domain independent system for maintain ing the
consistency and i - iel l foundedness of a set of beliefs. It is an i nheren lty
propositiona l mechanism which is desi gned to be used by deductive systems
to maintain the log ical relations between the propositions they generate.
The truth maintenance system also simulates the effects of those relations
to the extent that it can be used to incrementall y mod if y the bel i e f
st ruc ture and retract assumptions when they lead to con tradictions. Th is
process can be used to realize sub stantial search efficiencies in that
contradictions , or fai l u r e s , onl y result in backtracking over relevant
assumptions.

An example of the use of a IllS would be an al gebraic manipulator
wh i ch is capable of using p i ecewise approximations to functions. In such a
manipulator each equat ion is considered to be a proposition. Uhen the
man i p u l a t i o n of some set of equa tions results in a new equation , the
equations used are recorded in the IllS as supporting the new l y generated
equation. A piecewise l inear appro xim ation to a function can be
represented by an im p l i c a t i o n between equations such as (> x — .25) A (< x

.25) -. (= (sin x) x) . To use such an approximation of (sin x) the
man i pulator mi ght have to assume that x was in the required range. If at
some later t i m e a value for x is found that is inconsistent w i t h the
assumptions , then the man i pulator need simp l y announce to the TI1S that the
two conflicting equations , the assumed i n equa ll ity and the found va l ue , are
mu t u a l l y cont radic tory. The TMS w i l l then retrac t a relevant assumption.
I n such cases the TMS mi ght instead be made to state all the assumptions
upon wh ich the contradiction depends and leave the choice of remova l UP to
the manipulato r. The use of pi ece w ise linear appro ximations to the
behav i or of transistors is one of the applications of truth maintenance
used by Stailman and Sussman in electronic circuit ana l ysis (Stalima n and
Sussman 1976].

I n addition to the search efficiencies which are gained in dependency
di rected backtrackin g, the recorded relations between beliefs can be used
to j u s t i f y or e x p l a i n t he b e l i e f s of the dedUctive system. Such
expla nations are useful in under standing and verify ing the r e s u l t s of
problem solvers.

This paper introduces a new approach to the concepts and mechan i sms
of truth maintenance. The basic idea is to represent all log ical relations
between proposi t ion in disjunctive clauses. For example impl ications of
the form P1 A P2 A P3 ... -, 0 w il l be represented as -P1 v —‘P2 v —P3
v 0. Notice t hat in the clause representation the distinction between
antecedents and consequences disappears and therefore the negation of an
antecedent in the imp lication can be as easily deduced as the consequent.
This feature of the representation eliminates much of the backtrack ing

(mechan i sms which are present in other truth maintenance systems [Stailman
and Sussman 1976) (Ooy le 1978a). Another common relation among propositions

5 ,- -.- -5— 5 - — S _ - — — p

S - - ~~~~~~~~~~~~~~~~~ -
-

4

we wish to be able to express is the notion that some set of them are
mutuall y contradictory, formall y — (P1 A P2 A P3 ... A Pc). This relat ion
is transformed via Dellorgan’s laws into the clause -‘P1 v —‘P2 v -‘P3 ... v
—“Pc. This again eliminates the need for certain backtrack i ng mechan i sms
present in other systems.

The propositions in other systems have onl y two truth states called
“in ” and “out” , which represent “known to be true ” (a wel l founded proo f
exists) and “not known to he true ” (no t in) respective l y, fly system uses
the three more intuitive truth states of true , false , and unknown (hence
the t i t l e of this paper), This eliminates the need of a separate entity to
represent the negation of a proposition.

The notion that the truth of some proposition is an assumpt ion is 4

s i mpl y represented by appropriately tagg ing the proposition. When the
assumpt ion is found to lead to a contradi ction (a clause that cannot he
satisfied) the trut h value is automatic all y ret racted. I believe that this
mechan i sm has most of the non-monotonic power of Doyle ’s system , but in a
much simple r form (see (Doy le 1978a) for a discussion of non -mono tinicity) . S

At the end of the paper are a series of appendices which g ive the
details of the imp l em entation and an overv iew of its Use.

- —_- -—- — — - -— 5— — — -— ~~~~~~~~~ S -~~~~—-— — —— —5-——— — p

S ~ 5
5 ~~_ —- — -

S

‘

The Al gorithm

The basic truth maintenance system (IllS) objec t types are lite rals
(IllS nodes), t rut h va lues , te rms , and clauses. TMS nodes represent
asser t ions of the deductive system using the IllS. Such assertions mi gh t be
of the form (COLOR A RED) or (I100E TRANSISTOR-I BETA-INFINITE) , but their
IllS representation is simpl y a uni que atom , i.e. a node. Nodes can have
three possible truth states , t rue , fa lse , and unknown. A trut h va l ue is a
true or false value of a node. Chang ing a node from an unknown state to
eit her true or false w i l l he referred to as add i ng a truth va l ue, since it
is conceptuall y adding information , Chang i ng a node from true or false to
un known i-i l I I be referred to a9 removing a truth value , as i t is
conceptua l ly remov inq information. A term is an associatio n of a node with
a value and is true when the node has that value, false when the node has
t he oppos i t e value , and unknown otherwise ,

The relations beti.ieen the truth values of the nodes are represented
by propositiona l formulas in conjunctive normal form. This means that
there is a set of disjunctive clauses which must all be satisfied by the
values of the nodes. Each clause contains a set of terms , one of which
must he true.

Justifications for assertions are represented as clauses. For
examp le , if an assertion represented by the node C was impl i e d by
assertions represented by A and B, then the clause would be ((A.false) or S

(B .false) or (C.true)). The fact that some set of assertions are mutually
cont radictor y is also represented in a clause. For example, if asser t i ons
represented by A ,B, and C would lead to a contradiction , then the clause
would be ((A. false) or (B.false) or (C.false)).

Each clause can he g ive n mul t i p l e interpretations. For example the
clause ((A.false) or (C.false) or (D.true)) mi ght be though t of as (A and S

C) -> D. or it could be thought of as (-‘0 and C) -> —A. This clause can
also be though t of expressing the fact that a contradiction results from A ,
C, and — ‘0 a l l b e i n g true s i m u l t a n e o u s l y . Even more b i z a r r e
conceptualizations of the clause are possible , such as (A — > (-‘0 -> —C)).

S Interpretations of the las t type are useful in understanding certain
backtrack i ng techn i ques to be discussed later.

Adding Clauses and Truth Values

Clauses can be directl y added to system at any time by a top l eve l
procedure and are instantl y checked for possible deductions. Truth values
can he added in two ways. The simpl est is to add a truth va l ue for a node
as a premise. In t h i s case no other reason for believing the value is
needed. The second way is to deduce a truth value from a clause. Suppose
all the terms of a clause are known to be false with one exception , which
is a node whose truth value is unknown, In this case the one remaining
node can have the appropriate truth value added to satisf y the clause.
This is the onl y way truth values are deduced from the clauses in the IllS.

(There are however v ali d deductions which depend on more than one clause.
For example g iven the two clauses A -> B and —A -> B it is possible to

— —
5 - - — - 5 - 5, -.

-~~
•-.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~

-

6

deduce B. Such deductions are only made indirectly when certain types of
contradictions ar i se (contradictions w i l l be discussed in later sections).

Uhen a truth value is added a check must be made to see if new truth
values can be deduced from the added info rmation. This is done by
examining clauses which contain the term whose truth value has been added.
Since clauses which contain the term wh i ch is made true are automaticall y
satisf ied , the onl y clauses that must be checked for possible deductions S

are those that contain the term which is made false. Since truth va l ues
are add ed recursive l y, all t ruth values that can be d educed via chains of
such one-step clause deductions are added.

For read i ng the following code it w i l l be useful to refer to Appendix
II in which the data structures are explained. The code presented be l ow is
a slight simplification of the actual code used here onl y to formalize the
al gorithm as descr i bed so far. i t does not contain the mechan i sms for
handling contradictions which w i l l be explained later. The complete code
is given in Appendix III.

S (DEFUN SET-TRUTH (NODE VALUE SUPPORT)

;SUPPORT IS EITHER THE ATO ll ‘PRE MISE OR
j A CLAUSE WHICH IS BEING USED TO DEDUCE VALUE

(PROC ()
(COND ((NO T (EQ (CCI NODE ‘ TRUTH) ‘UN KNOW N))

-

(ERROR ‘S LT -T RUTH --VALUE—NOT — UN K NOMN NODE)))
(PUIPROP NODE VALUE ‘ TRUTH)
(PUIPROP NODE SUPPORT ‘SUPPORT)

;FOR EACH CLAUSE WHICH CONTA i NS THE TERM WHICH BECOMES FALSE
;SUBTR A CT ONE FROII THE NUMBER OF TERMS W HICH CAN POIENIIA ILY SATISFY IT .

(IIRPC (FUNCTION (LA11BOR (CLAUSE)
(PUTPROP CLAUSE (1- (GET CLAUSE ‘PSAT)) ‘PSAT)))

(GET NODE (GET VALUE ‘OP-CLAUSES)))

(IIAPC (FUNCTION DEDUCE-CHECK)
(GET NODE (GET VALUE ‘OP-CLAUSES)))))

(DEFUN DEDUCE-CHECK (CLAUSE)
(PROC (F)

(COND ((AND (. (GET CLAUSE ‘PSAT) 1)
(SETO F (PCONSEQ CLAUSE)))

(SET-~RUTH (CA R F) (COR F) CLAUSE)))))

;PCONSEO FINDS A NODE IN THE CLAUSE WHICH HAS A TRUTH STATE
;OF UNKNOWN AND RETURNS A OOTT(O PAIR OF THE NODE RHO THE
(VALUE WHICH THE NODE MUST HAVE TO SATISFY THE CLAUSE.

It would be possib le to check for more comp lex deductio ns. For
example if there are two clauses (P or 0) and (P or -.0) i t is valid to
deduce P. in general , arbi trary deductions could be done by deciding

- 5 _5_5~~~_ __ — - -—- - --- — —-- p
- S

— -. 5-- -
~~~~~~~~~~~~~~~~~~~



‘
I

7

whether the a u d i t i o n  of some trut h value i n e v i t a b l y leads to a
cont r adiction . I f thi s is indeed the case then the opposite trut h
v a l u e  c o u l d  be (leduced. The p r o b l e m  w i t h  t h i s  s e em i n g l y
strai ghtforward approach is in deciding i f something must lead to a
contradiction. A contradiction is inevitable when the set of clauses
can not he s at i s f i e d  by any truth values for the nodes which are
unknown . Therefore in order to dec~de if a contradiction is inev itable
the sy5te m must dec i de if the 5et of clauses can be satisfied by the
remaining unknown nodes. This is a standard prob l em of prop ositional
log ic and is known to be NP complete This means that there are strong
suspicions t hat it must requi re exponential time to so l ve. Therefore ,
i n order to avoid such a combinatoria l explosion I restrict myself to
one clause deductions. This s t i l l  g ives al l  of the intuitive deductive
power of a clause whi l e preserving computationa l expedience.

Removing Truth Values

Truth values can he removed as well as added. This can happen 
S

when the user of the IllS decides that a prem i se is no longer known , or
i t  can happen when assumptions are retracted in backtracking. I4hen
t h i s  happens i t  is necessary to remove al l  truth values that c r i t i c a l l y
depend on the lost information. Truth values are used for deductions
onl y by clauses that contain the term they make false. Therefo re
clauses wh ich contain the term which was previous.y false, but is  now
unknow n , are examined. If any of these clauses were used in the
or i g inal dedu ction of some truth value , then the value deduced is a
cand i date for removal.

In order to determine whether a clause was the one ori ginally
used to deduce a t ruth value , each node has associated wi t h  it  a
support, The support is onl y used when the node has a known truth
va l ue, and is ci~ither a premise marker or the clause which was used in
t he ori g i nal deduction of the truth value , Since the suppor t is always
assig ned when a truth value is added , the truth values ~ t the other
nodes in t he suppor t can in no way depend on the supported value. This
means that the suppor t is we ll f ounded arid the set of prem i ses that a
truth value is deduced from can always be determined by t rac ing
supports withou t fear of l oops.

Care must be taken that values are not removed that can be
deduced in other ways. One attempt at solving this prob l em is to check
all  clauses that contain the node whose va l ue is be i ng considered for
removal to see if any can he used to deduce the va l ue. However the
f o l l o w i n g  example demonstrates the problem w i t h  this approach.
Cons i der the clauses:

(

- -- - -5~~ m ‘ , ‘ ‘ ‘

S - 
- . - . - . - 

- 
-



8

A -> B

B - > C

C - > B

Suppose t hat A was added as a premise and then later removed.
Now when A i.e r emoved there is s t i l l  a clause , C -, B , that can be used
to deduce B. The prob l em wi t h using this clause to suppor t the truth of
B is that , since C depend on B, B would he used to suppor t i t s e l f .  The
solution to th is problem is to first recursive l y remove al t  candidates
for removal (therefore removing al l  truth values that c.r i t i c a t l y  (iPI)Cfl(I
on them). Af ter this has been done clauses which contdi nl the term s
whose values have been removed can be checked for deductions. I f
contradict ions are present in the system , then it is po ssibl e that iihen
a truth value is removed its opposite value can then he deduced
(contradictions w i l l  he discussed in more det a i l  a l i t t l e  l ;iter).

S Whenever a clause is used to deduce a truth va l ue , the clause becomes
the suppor t for the value. A gain since the suppor t is found befor e the
truth va l ue is adried, i t must be well founded. An i mportan t point is
that if a premise is removed by the IllS user , but the removed t rut h
value can be deduced from other prem i ses in the system , then the truth
value rema ins , w i t h a clause as its suppor t instead of the premi se
marker .

In read i ng the follow i ng code it w i l l  again be helpful to refer
to Append i x II in which the data structures are explained. The code
presented here is a s i m p l i f i c a t i o n  of the actua l code used onl y to
formalize the al gor i thm as discussed so far . i.e. it does not deal wit h
contradictions arid assumptions which w i l l  be discussed late r. The
complete code is presented in Appendix III.

. 5  -~~~~~~~ — —— .— —— 5  p
- - . • 

- 5  - - - ~~ ~~~~~~~~~~~~~~~~~~ ~~~~



9

(DEFUN REMOVE—TRUTH (NODE)

(PROC (VALUE )
(SETO VALUE (GE T NODE ‘TRUTH))

(CONO ((EQ VALUE ‘UNKNOWN)

(ERROR ‘REMOVE-TRUTH—-VALUE-NOT-PRESENT NODE)))

(PUTPROP NODE ‘UNKNOWN ‘TRUTH)

(PUTPROP NODE NIL ‘SUPPORT)

;FOR EACH CLAUSE WHICH CONTAINS THE TERM WHICH WAS FALSE
;AOD ONE TO THE NUMBER OF TERMS WHICH CAN POTENTIALLY SATISFY IT

(IIAPC (FUNCTION (LA 11BOR (CLAUSE)

(PUTPROP CLAUSE ‘PSAT (1. (GET CLAUSE ‘PSAT))) ))
(GET NODE (GET VALUE ‘OP—CLAUSES) ))

;REMOV E TRUTH VALUES WHICH THESE CLAUSES HAD BEEN USEO TO DEDUCE

(MRPC (FUNCTION (LAMBDA (CLAUSE)

(PROC (F)

(CONO ((AND (> (GET CLAUSE ‘PSAT) 1)

(SETO F (CAP (CONSIO CLAUSE)))

;CONSEQ FiNDS A NODE WHICH SATISFIES THE CLAUSE.
(E Q CLAUSE (GET F ‘SUPPORT)))

(REMOVE—TRUTH F ) ) ) ) ) )
(GET NODE (GET VALUE ‘OP—CLAUSES )))

;CHEC K FOR ANY POSSIBLE DEDUCTIONS OF VALUES FOR THE

;NODE WHOSE VALUE WAS REMOVED

(MAPC (FUNCTION DEDUCE-CHECK) (GET NODE ‘POS—CLAUSES ))

(MRPC (FUNCTION OCOUCE—CHECK ) (GET HOOf ‘NEC—CLAUSES)) ))

Contradictions

Consider a case in which a clause is added that contains onl y
terms which are false , The clause is in contradiction with the rest of
the data base and is therefore referred to as a contradiction. Since a
clause is a contradiction only when all of the terms in it are false, a
contradiction is said to depend on the truth va l ues of the terms in it.
It is conceivable that a TMS data base could contain several such
contradict ions.

The addition of clauses is not the onl y way tha t contradiction s
can occur , Consider the two imp lications (P -. 0) and (P -. -.0). If no

S trut h values are known for P or 0, then no deductions are made since
each clause has two ways in whi ch i t mi ght be satisfied. If a t r ue

value f or P is determined , then one of the above clauses would be used
to deduce a truth va l ue for 0, ~ i ile the other clause would become a
contradiction. It is i mportan t to realize that in cases where both a

- - - -5 — 
-

‘ - 5 
-~ — ~~~~~~~~~~~~~~



10

tru th value ~nd i t ~ nega tion can be proven , one of the tr u th valu es rj

chosen and a l l  r.laIjses which cou ld have impl ed ts n -u ;at ion become

contradictions. Llhen addin ri a truth value leads to a c o ntr ari i rt ion , it
is possible to arId) new c auscs that allow deducti rics ased upon t lr i ’ j
fact. In the above example the clause ( —P ) can be deduced from the
two or i g inal cl a ’ i ’ .es. To get a better feel for the general case
consider the examp l e :

clause interpretation

((A. tru el (8.false) (C. tr ue)) (—.A A B) • C

((C. f a l s e )  (B. false } (E. true)) (C A U) -
~ E

((A. true ) (F.false) (E .false)~ (-‘A A F) -s

known values

B true

C true

F t rue

Now in this case if a false value for A is added the first  clause
can he used to deduce C. Then the second clause can be used to deduce
E. At this point however the third clause has become a contradiction .
The relationship between the three clauses is shown in fi gur e one. In
the fi gure each clause is r epresented by a pair of ri ght ang led
implication pointers which should he interpreted as B -s (—A C). ihe
new clause wh i ch can he added in thi s situation is (B  A 0 A F )  -s A

To see how new clauses can be constructed from the appearance of
• contradictions in general i t  is  necessa ry  to  closel y examine how

contradictions result from the addition of truth values. At some point
a truth value is added which removes the last chance of satisfy ing some
clause , say Cl. The term that became true when thi s  value was added
w i l l  be call ed Fl fE in the above example). At the instan t befor e this
truth value is adrled Cl could have been used to deduce the opposite
value. In a quiescent data base no such clause can e xis t  since -~ l I
possible one step deductions are made. This means that a false truth
value was added for sonic term in Cl (A in the above example ) , hut tha t
Cl became a contradiction before it could be checked for deduction s .
This second term w i l l  he ca l le d F2. All possible deducti n ’ from the
a d d i t i o n  of any truth value are made when the value is addea , and Cl
cou ld potentiall y have been used to deduce -‘F l upon the addition of
-‘F2. Therefore t he truth value of Fl, which caused Cl to he a
contradiction , must also be a deduction from —F2. This s i t u a t i o n  i s
p ic tured in f igure  two.

In the fi gure each pair of ri ght ang led imp lication pointers
represents a clause. The clauses should be interpreted as ((F~~~1 A

A . , , )  — >  ( —‘F2 -> — F l ) ) .  Now if a l l  the involved clauses

-~~~ - -  - S- . 
5-- 5 -



I,

f)

C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fi gure 1.
S

A n example of clause formation as a result of a contradiction. The
adclit ion of-’A causes C3 to become a contradiction

F
F
,

• F 1t

5 ~~~~~~~~~~
F3

• ,FI

~~~~~~~~~~~~~~~ /~
cl A ,:

ci
~

• ‘F2

( (,~“~i;’Ji.. (p
CA

p
C2 

.. 
~ ) ~~—.

Fi gure 2.
The general case of c lause formation resulti ng from a

con t r .adl,ction . This is (Pie general case in which the addit ion of” F2 caucos
S Cl to become a contra dict ion.

(

— — --- -- - - —5-q- ____  - . . — - -—- -. — —

— 

. 
. -. .—‘~- 

.
— - — ~~~~~~~~~~~~~~~~~~~~~~~ 5•~



12

conta ined onl y two  te rm s , then the clause I F2 ) could be added.
However , in the general case the contradiction r e s i l t s  oni y when the

peripheral terms are true. In other words (FU1 A FCI
2 A ... A

FC2
2 A . . . . )  -> F2. Ihis i m p l i c a t i o n  then is the clause which is

added. The clause is formed during the un r o l l i n g  of the v r ’cursive
calls to the procedure for adding truth values.

Hopeful Ig the ac)deci clause i-u I I  a l l o w  the deduct ion of the
negation of the truth value that lead to the contrd li ct ion . —f2 above ,
in those cases when it would again lead to the same contradiction.
Whi l e  the added clause is always valid , it does not always produce th is
desired result. The reason for this is that some of the peripheral
trut h values mi ght also be deductions from the added value. In th is
case when the added value (call it -.F2 as above) is retracted , sonic of
the per i pheral values w i l l  also disappear and its riegat ion w i l l  not be
deducib le. However if -.F2 is again added then the clause generated
above w i l l  become a contradiction at the p o i n t  at which al I the
per ipheral values hecome true. This w i l l  l ead to the generation of yet
another clause. If F2 is s t i l l  not deducible upon the retraction of
—F2, then further additions of — ‘F2 w i l l  generate s t i l l  more clauses.
It is always possible to force the system to deduce the negation of a
truth value that leads to a contradiction by such pulsing ” of that
va l ue, )S wou l d like to emphasize that it would require a quite complex
structure to require more than one or two such “pu lses ” .

Defaul t Va lues and Backtrac king
In many problem solving situations it is necessary to make

assumptions that have no solid reason for belief. If such assumptions
lead to contra dictions then they should be retracted. Assumptions are
represented as a subset of the premise va l ues called default value s and -

are marked in the implementation by having the atom ‘default as their
support. Whenever a node is g iven a default suppor t the value
supported is placed under a default property of the node. This value
is then added whenever no other truth value for the node can he
cleckiced.

When a contradiction is present in the data base an attempt is
made to remove it by removing defau lt truth values. This invo l ves
trac i ng the dependency relations (via the supports associated with
nodes) to find the premises upon which the contradiction depends arid is
therefore called dependency directed backtracking. When a default

S 
va l ue is found upon which the contradiction depends, it is removed.
Hopefull y the contradiction becomes an implication and can then be used
to deduce the opposite of the default value removed. If the opposite
of the default is not deduced , then the default value is added back.
At this point , since the contra diction must reappear , the backtrack i ng
repeats and again the default va l ue is removed, Due to the new clauses
generated each time the contradiction appear s, the negation of the
default va l ue must become deducible , and the backtracking halts when

- ‘ --— -~~~~~~~~~~ - ~~~~~~~~~~~~ — — -— - —~~~~~~- - - — -  ___ - I

- S 
- 

. -._ —S _ 5-~_ —5— S ‘ _
~i5 — 

- 
~~~~~~~~~~~~~ •~


13

either no contradictions are l eft , or the contradictions that are
presen t do not depend on any default values.

Clause Values and Hierarchies of Assumptions

So far there has been no mention of the remova l of clauses from
the data base. While the physical removal of clauses does not occur ,
there is a mechan i sm for mak i ng them i mpotent. This is done by add i ng
a nod e to each clause which represents its validity. For example the
clause (A or B) migh t become (-‘Cl or A or B) where Cl represents the
v a l i d i t y of the clause. Now as l ong as Cl is true the clause acts as
expec ted , but if the truth value Cl is removed , then the clause is
e f f e c t i ve l y removed. Each time a clause is added, some reason is g i ven
fo r be l i e v i ng it. This reason is used as the suppor t for the truth of
the node which represents the clause. This is usually useful onl y a” a
device for keeping track of the source of clauses for the TMS user.
However it has one very i mportant use in allowing assumptions to have
antecedents.

Suppose that in reason i ng about an i mals it is first assumed that
S they are mammals, Furthermore suppose that in reason i ng abou t mammals

it is assumed that they are dogs. The assumption that some an i ma l is a
clog mi ght depend on the assumption that it is a mammal. In general
then assumptions niust he .ahle to take antecrdents, some of wh i ch mi ght
he other assumption s, Dependencies of this form can be represented in
the IllS by a clause whose clause node has a default support. In the
example let t he mamma l assumption be represented by Al and the dog
assumption by A2. Now Al can he assumed (g iven a true default va l ue).
Once t his has been done A2 can be added by add i ng the clause (Al -> A2)
and g iving the clause node a true default value. The clause allows the
deduction of A2 onl y i f Al is be lieved , also A2 can be removed as an
assumpti on dur i ng backtrack i ng by removing the default truth value of
the added clause.

Since clause nodes are no different than any other nodes, removal
of their defau l t tru th values could be taken care of by the
backtracking al gor i thm already descr i bed. However , in backtrack i ng it
is desira ble to remove fir s t assumptions upon which no other
assumpt i ons depen d . In chess for example one normally considers
several responses to a ‘iven move before going on to the next move.
This helps prevent the thrashing i nvo l ved in remov i ng and add i ng many
assumptions at once,

A mino r modification to the backtrack i ng algorithm allows this
se l ection of the default values. The number of supporting clauses that
must be traced back from the contradiction to find a premise are
counted. There may be severa l paths of supports that lead to a given
premise , anti in this case the max i mum distance is used. Now if some
default va l ue imp lies some other assumption , then it w i l l always appear
at a greater distance from the contradiction than the assumption it

— -- - — -5 - - — - —- _ _ _ _ _ _ _

‘ .
~~~~~~~~~~~

-
- -~~ 5- - ~~~~~~~~~~~~~



- -

14

implies. This is because it w i l l  always appear in the suppor t chains
beneath the imp lied assumption. In view of this fact , our goa l is
achieved by choosing for remova l the default value with the mini m u m
max i mum distance from the contradiction.

•

— 

- “ - . 5 - - —-5 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 5



15

Comparison with Other Work

There are several systems which use exp lic i t  justifications for
b eliefs. The work ui hich is most close l y related to the IllS presented

S here is that of l- t~~l ln i ~ n and Sussman (Stallman and Sussman 1976) and
Doy le (Doyle l97~ 3), The basic difference between these systems and my
IllS is in the mechan i sms used for dependency directed backtrack i ng . in
bot h of these systems each assertion has onl y two truth states ,

S 
believed and unkno uin , ca l led “ in ” and “out”  re s p e c t i v e l y. Since no
assertion can he fals e in such a system , additiona l mechanisms are
needed to prevent the b e l i e f  of sets of assumptions known to he
contradictory. In Stal lman and Sussman ’s ARS system the assumptions

5 under l y ing a contradiction are placed in a NOG000 assertion. This is
used by add itiona l mechan i sms whi ch prevent the set of assumptions from
be i ng believed.

Jon Doyle has completed a master ’s t hes i s  on the i m p l e m e n t a t i on
of a general purpose truth maint enance system (IllS) (Doy le 1978a1 . H is
TMS emp loys the notions of “in ” and “out” to represen t the truth values
of assertions. If an assertion is believed by the system then its IllS
node i s  “in ”. i f the assertion is not believed , i.e. either known to
be false or simp l y unknown , then its 1119 node is “out” . Io make a
d i s t i nc t i o n be tw e e n s i m p l y not k n o w i n g  s o m e t h i n g ’s truth value and
knowing that it is false , two IllS nodes are requ ired , one for the
assertion and one for its negation. If the assertion has an unknown
truth value , then both nodes are “out ’. If the truth value is known
the n one of t he nodes is “in ” and the other is “out” . An impo rtant
point is that i n Doy le s system t he notion of a contradiction is
c o m p l e t e l y seperate from the justifications. A node must be created

S 
which is dec l ared to be a con tradiction and then a justification of
this contra d ictio n node is ins talled for each set of nodes which are
m u t a u l l y contradictory. Specifically a contrdiction node must be
impl i e d  by each p air of no des r e p r e s e n t i n g  an a s s e r t i o n  and i t s
negation. If t his is not done then the system w i l l  have no problem
with keeping both of these nodes in , in other words believ i ng both an
assertion and it s negation ,

I n Doy le ’s sqsteni a mechanism of major i mportance in backtracking
S is conditional proof. A conditional proof can be thought of as a illS

node which is true whenever a certain im p li cat ion among other IllS nodes
i s  true. Therefore a conditi ona l proof i s  de f i ned i n  te rms of t he
implication i t  represents, in other words as a s e t  of  an teceden ts  and a
consequent. To take an example suppose that the implication AABAC -. D
is present in some TMS. A conditiona l proo f node of D w i t h  respect to

S 
A and B would represent the truth of the implication AAB -. 0. Now if C

S were known to he true then the i m p l i c a t i o n  represented by the
conditiona l proof would be true and therefore also the “CP” node. This

S 
can be stated more formall y as C -. (AAB ~ D).

Doyle ’s 1115 uses unidirectiona l justifications to keep track o(
consequences and antecedents of beliefs. To achieve dependency
directed backtracking in such systems it is necessary to trace the
antecedents of a failure (or contradiction ) and then to blame the

—— —  ~~~~~~~~ -- - -~~~~~~~~—S - 5 ~~~ — — -  — p

——-5-—---- - - -  5 - 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~


16

contradict ion on sonic set of assumptions. Once this is done i t is also
necessary to add im p l ications for the negations of each assumption to
prevent the set of assumptions from be i ng again beli eved at some later
time.

Doyle ’s 1115 also uses a non—monotoriic dependency structure . Th is
means that truth of a node can depend on another node be i ng unknown.
In such cases whenever the unknown , i.e. “ou t ” , node becomes known .
i.e.”i n ” , t he dependant node becomes “out” . Whenever an assumpt ion is
made , an node representing its negation is created. Ihe assumption is
then made to depend on its negation being un kno iin . This can be
understood as expressing the notion “I w i l t believe it to he true as
l ong as I cannot prove that it is false ” , When a c o n t r a d i c t i o n is
found which depends on some set of assumptions a con d itional proof is
constructed for each assuml)t ion representing the i n i p l i r a t ion of the
contradiction by the assumption. This conditional l , t oot i~ then used
to imp l y the negation of each assumption when that a ssumption would
lead to the contradiction. Since an assumption depends on its negation
be i ng “out” , when the negation becomes “in ” -the assumption becomes

ou t ”
The implementat ion of the conditiona l proof mechanism is however

not complete. I f the antecedants of the imp l ic a t ion a condi t in nal
proof represents are not “in ” , then it is extremel y d i f f i c u l t and
computational expe nsive to check the actual t r u t h value of the
condit i ona l proof. Doyle ’s 1115 “CP” nodes are ‘in ” in onl y a subset of
the cases in which they could actually be shown true. For examp le the
conditional proofs which result from a c o n t r a d i c t i o n are each

S associated with the set of assumptions upon which that contradiction
was blamed. The negation of one of these assumptions is onl y jus t i f i e d
when a l l the other assumptions in that speci ~ic set are bel icver i .

S Therefore the condit iona l proo f w i l l not ju s t i fy the neqation of an
assumption when the assumption can comb i ne with other information to

S
give t he c o n t r a d i c t i o n . New assumptions w h i c h leatl to o l d
contradict ions are also not prevented from be i ng h ’ - l i e v e d. F~i~ l a c i ng

the contradiction itself as an active deductive arjc’nt, my i llS can make
such deductions and avoid oacktrack in g e n t i r e l y i n ma nu i such
s i t u a t i o n s .

• in my Ill S a contradiction is only a clause whi ch ca n n o t be
I

- satisfied. Therefore , if a truth value of one of the nodes in the
S clause is removed, the clause w i l l be used to deduce the opposite truth

value for this node. This allo ws the direct deduction of fal se values
for assumptions which would lead to contradictions. The main advan t age

S
‘ of this system is the tremendous conceptua l and programm i ng simp l i c i t y

S S ach i eved. However it is more than just a si m p l i f i e d imp l ementation of
the previous systems. Because no specific set of assump t ions a s chosen
upon which to blame a contradiction , new assump t ions which would lead
to the contrad iction can also be proven false. However the difference
this makes in the number of contradictions encountered is s m a l l
compared to the savings g iven by any f o r m o f dependency d i r e c t e d
hack track i ng.

I have not implemented any conditiona l proo f mechan i sm for the

- 5 5~
- .

~~~~~ • 5- _5-~ -5- 
5 

• s



17

I

simple reason that I did not have any application to justi fy i t s
existence. Doy le ’s IllS uses conditional proof to imp l ement a mechan i sm
for levels of abstraction. This is useful in condensing explanatio ns
of bel i efs, The exp lo ration of such uses of conditiona l proof and its
relation to the al gorithms presented here would be an interesting topic
for further research. Also there are probab l y uses for the non —
monotonic dependency structure present in Doy le ’s IllS other than the
i dentification of assumptions. The i ncorporation of such mechan i sms
into this al gorithm and the investi gation of more sophisticated
app l ications would also be worthwhile.

4-

-
~~~
- — -5 5

~~~~~~~~~~ ---- ‘- — 5 -- - ------ 5 -- - — —-

.555_ s .5 _S.~~~ _ Ss. - 5_ 5- 5 5 5555 -5 -5 
- . -~ -5 - -5 ~~~- -5 - -  ~~~~~~~~~~~~~~~~~~



18 

—

Bibliography

ide Kleer ,Ooyle ,Ric h,Steele and Sussman 19771
Johan de Kleer , Jon Doy le , Charles Rich , Guy L. STeele Jr., Gerald J.
Sussman. “AMORO A Deductive Procedure System ,” MIT Al Lab, Memo 435,
September 1977.

ide Kleer ,00yle.Stee le and Sussman 19771
Johan de Kleer , Jon Doy le, Guy L. STeele  Jr., Gerald J. Sussman, S

“Ex p l i c i t  Control of Reason ing, ” MIT Al Lab , Memo 427 , June 1977.

[Doy le  1978a] Jon Doy le . “Tru th  Main tenance Sys tems  for P rob lem
Solving. ” M IT Al Lab, TR-419, January 1978.

(Doyle 1978b)
Jon Doy le, “A G l impse  of Truth Main tenance , ” lilT Al Lab , Memo 461.
February 1978.

[McDermott 1976)
Orew V . McOermott ,”F lex i b i l i - t y  and Ef f i c iency  in a Computer System for
Desi gning C i rcu i t s ,” MIT Al Lab, TR—402 ,June 1977.

[McDermott and Sussman 1974)
Drew V . Mcdermott and Gerald Suseman, “The CONNIVER Reference Manua l ,”

S MIT Al Lab, Memo 259a, January 1974 .

(Sta l lman and Sussinan 1976)
Richard Sta l iman and Gerald Sussman, “Forward Reason ing and Dependency S

Oirected Backtrack ing in a System for Computer Aided Circui t  Analys is ,”
lilT Al Lab Memo 380, September 1976.

(Suesman 1977) 5

Gera ld  Suesman , “ S l i c e s :  A t  the Boundry Be tween  Anal y s i s  and
Synthesis ,” MIT Al Lab, Memo 433, Jul y 1977.

-5)

- . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5
~~~’1-5 -. - _ _ _ - I

-~ ~~~~~ s: ’~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~— -

19

Appendix I -- A User’s Guide

This is a summary of the top leve l procedures wh i ch can be used
to interface t he TMS wi t h any deductive system. The procedures
desc i bed here can be loaded into lisp on MI T-Al by evaluating (FASLOAD
TMS FASL DSK DAN).

(TMS— IN IT)
This procedure i n i t i a l i z e s the 1(15 data structures.

(MAKE-DEPENDENCY-NODE ~asser t ion> <when-true> <when-fa lse> <when-unknown>)
This procedure creates and returns a new TMS node to represent

the assertion which is passed as an argument. The node returned is an
atom which has the assertion placed on its ‘ASSERTION property. <when-
true> is a function to be applied to the assertion when the node

S
becomes true . <when-false> and <when-unknown> are s im i l a r ly f unctions
to be used when the node becomes false and unknown respective l y. Any
of the three function arguments can also be nil in wh i ch case no action
is taken upon the correspod ing t rans i t ion of truth s ta te .

S The truth s ta te of the node i s available as i t s ‘TRUTH property
which is either ‘TRUE , ‘FALSE , or ‘UNKNOWN. The node is i n i t i a l l y
assumed unknown and must he forced true via eithe r SET—TRUTH or the
addition of a clause which causes its deduction. <when- true> w i l l be
applied when this happens, The node can never go directly from be i ng
true to be ing fa lse , or vice-versa , it must first pass through a state S
of be i ng unknown and the re fo re an app licat ion of <when-unknown>.

(SET-TRUTH <node> <value> <reason>)
This procedure adds truth values. The f i r s t argument must be a

IllS node and the value must be e i ther ‘ t rue or ‘ f a l s e . An error
resul ts i f the node does not have an initial truth state of unknown .
<reason> should be a representa t ion of the reason for b e l i e v i n g the
truth value and, except for the special atom ‘DEFAULT descr i bed be l ow.
i s not used by the T MS other than p lac ing i t on the ‘EXPLANATION
proper t y of the node for the conv ienience of the IMS user . A l l truth S

va lues which are g iven vi a an externa l c a l l to th is procedure are
considered prem i ses by the TMS and their ‘SUPPORT property is the atom
‘PREMISE.

An interna l form of this procedure is used to add truth values
deduced from clauses. In this case the suppor t is a clause. A l l truth
values that can be deduced in one step clause deductions from any added
truth values are also added. If a contradiction results from the
addition of a truth value , a new clause is generated and added as
descr i bed in the section on contradictions

(

5-— —‘-5 — — ~~~~— -5 — ,- ._
~ - 5 — --

—5- —-—-5- - -5
5

-
-

-

20

(A DO-CLAUSE <c lause> <reason>)
This procedure adds a clause to the 1(15 data base. The clause

argument must be a l is t of dotted pairs. Each pair is a IllS node
d o t t e d w i t h e i t h e r ‘ t r u e or ‘ false to represent the node or i t ~
negation respective l y. For example:

(SE TQ A (MAKE-DEPENDENCY-NODE ‘HUMAN-TURING nil nil nil))
(SETQ B (MAKE-DEPENDENCY-NODE ‘FALLABLE-TUR ING nil n i l n il))

(A DO-CLAUSE (l i s t (cons A ‘false) (cons B ‘true)) ‘HUIIAN-FALLABILLITY)

S Would add the clause:

(— ‘CLAUSE--N or -.HLJIIAN-TURING or FALL I BLE-TURING)
S

Which can be more int u i t i v e l y understood as (HUI1AN=FALLABILLITY -.
(HUMAN-TUR ING -

~ FALLABLE-TURING)). Clause-n represents the IllS node
generated to represent the t ruth value of the clause and is g i v e n a
true valus as a premise with an explanation property of <reason> as in
SET-TRUTH. The clause node is usefull both in generating exp l anation s
and in removing clauses when desired (mak i ng the clause node false
effect ive l y removes the clause). The clause node is returned as the
value of AOO~CLAUSE.

DEFAULTS -
The use of t he atom ‘DEFAULT as the reason argument in either

SET-TRUTH or ADO-CLAUSE has a special mean i ng. It i s the way in which
assumptions are announced to the IllS. A node or clause g i ven a reason
of ‘DEFAUL T is said to have a default truth value. Such nodes and
clauses act just like any other until l contradictions appear . If any
contradiction can ever he traced to a node w i t h a defau l t value , then
the value for that node w i l l be a u t o m a t i c a l l y retracted by the IllS.
Sim ilar l y if a con tradiction can be traced to a deduction from a clause

-
- with a default value, then the clause w i l l be invalidated and the

S deduction retracted. This i5 the way in wh i ch this IllS h a n d l e s t he
non—monotonic functions performed in Doy l e ’s IMS (Doyle 1978a).

Notice hoia default clauses can be used to structure assumptions.
Suppose for example that you want to assume that grocery stores have
peas. This assumption can be captured in a clause which represents the
implication grogery-store -~ has-peas. The clause would be given a
default suppor t to announce that it is an assumption. Th is i s
de8cribed in more d e t a i l in the sec t ion on de fau l t t ruth values and
hierarchies of assumptions.

If it is desired not to have the TMS do automatic backtrack i ng
then the assumptions simply need not be announced to the TMS.

- - 5
)

5- .
—

-—-5----~~~~~~~ — ——-- ———-5 5
~~~1 - - —-

~~
-———-—--____ - --—

~~~~~~
-—_____

-
_ - -i- .

-
~ - 5 -

21

(REMO VE-TRUTH <node>)
This procedure removes the truth value of the node which is

passed as an argument. An error r e s u l t s of the node already has an S

unknown truth state. A l l truth va l ues wh i ch c riticall y depend on the
removed value are also automaticall y removed. At the end of the
removal process nodes whoes truth values were removed , but which have
default values , have there default values added via SET—TRUTH. It is
i mportant to realize that truth values wh i ch can be duduced from other
know l edge in the TMS wi l l not be removed, Such truth values can only
be removed by removing the premises or clauses from which it can be
deduced. Clauses are removed by removing the truth va l ue of their IllS
nodes.

(WHY <object>) - -

<object> may be either a node or a clause (more specifically a
contradiction , which is a clause which canno t be satisfied) . I w i l l
first consider the case where <object> is a node. In this case the
procedure returns the justification for the belief in the truth value
of the node. If the node has truth state of unknown then ni l is
returned. I f the value of the node is a premise , then the atom
‘PREMISE is returned. Otherwise it returns a list of the nodes whoes
truth values were used to deduce the truth vaue of <node>. The clause
node of the support ing clause wi l l appear first on the list, Because
of the i n t e r n a l l y generated clauses which r esult from the
contradictions it is possible that other nodes on hi s list are clause
nodes. Clause nodes can he Ide n t i f i e d in that there ‘ASSERTION
proper ty is the atom •CLAUSE.

If <object> is a clause then ‘Jhy returns a list -of the nodes
contained in it , The clause node cow,~s first. It is i mportant to note
the dist i n c t i o n between a clause and a clause node. The former
represents the actual clauses used by the TMS and it i -s these which
appear on the l i s t of contradictions descr ibed be low, Clause nodes on
the other hand represent the v alli dity of a clause and are used for the
recording the reasons for bel ie f in clauses and for remov ing clauses as
descr i bed above.

WHY can be used to do dependency directed backtracking outside of
the IllS in cases where more controle over the cho i ce of assumption

5 - remova l is desired,

A l l contradict ions that occur in the TMS are placed on a list wh i ch is the
va l ue of the global atom CONTRA-LIST. If there are no contradictions then
the CONTRA-LIST wi l l have va lue nil. A contradiction is simply a clause S
which cannot be satisfied.

4-

S - 5 — - --- -5- ~~~~~~~ 5- S-~~~~~~~~~~~~ -- 5 - - -- - 5----— _

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
_,-t___

~~ -

22

Appendix II -- The Data Structures

Nodes
Nodes represent assertions or any log ical items that take on

truth values. Nodes are represented by atoms with the following
properties:

IRUTH
This properties can have three values , ‘true ,’false , and

‘unknown, wh i ch represent the truth state of the node.

SUPPOR T
This property g ives the support for a t ruth value of the

node. It is either the atom ‘prem ise or a clause if the node has a
truth value , and i s n i l if the node has a truth property of

S ‘unknown.

POS-CLAUSES
This is the list of clauses which contain the node,

NEC-CLAUSES
This is a list of clauses wh i ch contain the negation of the

node.

MAKE-TRUE
MAKE-FALSE
MAKE -UNK

These are optiona l properties which g ive functions to be
applied to the ASSERTION property when the node undergoes the
appropriate tr ansi t ion of truth state.

DEFAULT
This applies onl y to nodes that have default truth values and

is either ‘TRUE or ‘FALSE.

ASSERTION
This is the assertion externa l to the TMS that the node is

r e p r e s e n t i n g,

EXPLANATION
This is the reason for believing a node which is a prem i se,

e.g. a node wh i ch was set true or false for reasons externa l to the
S IllS.

True and False

‘True and ‘ fa lse are atoms with the fo l lowing properties .

TRUE
OPPOSITE a> ‘FALSE

- - -5 —-— - 5 - ——- —5—- 5 - S — - — —5 ___ — -

-
- . -

— — - 5—
5

—

23

CLAUSES ~~> ‘POS-CLA(JSES
OP-CLAUSES => ‘NEC-CLAUSES
EFFECT ~~> ‘MAKE-TRUE

FALSE
OPPOSI TE. ~~> ‘TRUE
CLAUSES => ‘NEC-CLAUSES
OP-CLAUSES ~~> ‘POS-CLAUSES
EFFECT ~~> ‘MAKE-FALSE

Clauses
-

Clauses are atoms with the follow i ng properties

CLAUSE-L I ST
This is the list structure which contains the nodes and

associated truth values wh i ch make up the clause. It is a list of
dotted pairs each of which is a node dotted with the truth value it
has in the clause.

PSAT
This is the number of nodes wh i ch either satisfy the clause

or could potentially do so. If this number is 1, and there is a
node with an unknown truth va l ue in the clause, then the clause can
be used to (leduce a truth va l ue for the node. If this number is 0
then the clause is a contradiction.

Globa l Var i ables

CONTRA-LIST
This is a list of all the clauses wh i ch are contradictions.

The follow i ng var i ables are globa l to certain procedures in the TMS.

CONTRA -CLAUSE
This is used to construct the new clause resulting from the

O appearance of contradictions. It i s g lobal to the interna l version
of SET-TRUTH.

CONTRA-SOURCE
This is the contradic tion wh i ch initialized the construction

of a new clause. It is used by the internal version of SET—TRUTH
S

to terminate the construction of the new clause.

REMOVED-LIST
This is used by REMOVE-TRUTH to keep track of nodes whose

truth va l ues have been removed.

I_
~~~~~~~~

- - -_-~~~~~~~~~
_

~~~~~~~- - - -  5- -~~~~~~—5 -5 -5~~~~~~~~~~~~~~~ 5

-5 - - ~~~~~~~~~~~~~~~~ -. ~~~---- ..— -

24

ASSUI1-L 1ST
• This is used in FIND-ASSUt1 for accumulating an a li st of the

assumpt ions under l y ing a contradiction associated w i t h their
maximum distance from the contradiction. The distance to the
contradiction is the number of clauses in the link between the
cont radiction and the assumption.

2S

Appendix III -- The Code

I

- p
- ._~~~~ -_‘, ~-A - .

081 ; IN IT IR L IZRTI ON ROUTINES PPPNOX 3 Pag. 1
002
003 (DECLARE (SPECIAL CONTRA-LIST NODE-COUNT CTRAC (VPRINT ACCUfl
004 CONTRA-SOuRCE CONTRA-CLAUSE REflOVED-LIST ASSUfl-LIST))
005
006 (DEFUN TM S -INI T ()
007 (PROC (I
008 PUTPROP ‘TRUE ‘FALSE ‘OPPOSITE)
009 (PUTPROP ‘TRUE ‘POS-CLAUSES ‘CLAUSES)
010 (PUTPROP ‘TRU E ‘NEC-CLAUSES ‘OP-CLAUSES)
011 (PUIPROP ‘TRUE ‘flAr E-TRUE ‘EFFECT)
012 (PUTPROP ‘FALSE ‘TRUE ‘OPPOSITE)
013 PUTPROP ‘FA LSE ‘NEC-CLAUSES ‘CLAUSES)
014 (PUTPROP ‘FA LSE ‘P05-CLAUSES ‘OP-CLAUSES)
815 (PUTPROP ‘FALSE ‘flAKE—FALSE ‘EFFECT)
816 (SETO CONTRA—LIST NIL)
017 (SETO CIRACE NIL)
018 (SETO VPRINT NIL)))
019
020
021 (DEFUN MAKE-DEPENDENCY -NODE (ASSERTION WHEN-TRUE WHEN-FALSE WHEN-UNKNOWN)
022 (PROC (NODE)
823 (CENSYM ‘N)
824 (SETO NODE (CENSY1I))
825 (INTERN NODE) 5

026 PUTPROP NODE ‘UNrNDWN ‘TRUTH)
027 (PUTPROP NODE NIL ‘SUPPORT)
828 (PUTPROP NODE ASSERTION ‘ASSERTION)
029 (PUIPROP NODE WHEN-TRUE ‘MAKE-TRUE)
030 (PUTPROP NODE IIHEN-FRLSE ‘MA K E—FALSE)
031 (PUTPROP NODE WHEN-UNKNOWN ‘IlAKE—UNK)
032 (RETURN NODE)))

S

_- - _ _ _ _ _ __ _ -5 —-~~~
--5 — - - —-5 —— -5— — — _ _ _ _ _ _

- ,;-~
‘. — ~~

- ‘v_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -

eel APPNOX 3 P.g. 2
002 ;CLAUSE ADDITION ROUT INES
803
004 (DEFUN ADO-CLAUSE (CLAUSE-LIST REASON)
085 (ADO-2 CLAUSE-L IST REASON)
006 (BACKTRACK))
007
008 (DEFUN P00-2 (CLAUSE—LIST REASON)
009 (PROC (CLAUSE CLAUSE-NODE COUNT)
010 (SETO COUNT 0)
011
812 (SETO CLAUSE-NODE U1AP E -OEPENDENCY-NODE ‘CLAUSE NiL NIL NIL))
013 (PUTPROP CLAUSE-NODE ‘TRUE ‘TRUTH)
014 (PUTPROP CLAUSE -NODE ‘PREMISE ‘SUPPORT)
015 (PUTPROP CLAUSE-NODE REASON ‘EXPLANATION)
016 (COND ((EQ- REASON ‘DEFAULT)
017 (PUTPROP CLAUSE-NODE ‘TRUE ‘DEFAULT)))
018
019 (GENSYM ‘C)
020 (SET O CLAUSE (CENSYM))
021 (INTERN CLAUSE)
022 (CON D (CTRRCE
023 (PRINT ‘INEM-CLAUSE l~024 (PRINC CLAUSE)
025 (PRINC ‘I I)
826 (PRINt REASON 5

027 (PRINT (tIRPCAR (FUNCTION (LAMBDA (F)
028 (CONS (GET (CAR F) ‘ASSERTION) (COR F))))
929 CLAUSE—LIST))))
030
031 (SETO CLAUSE-LIST (CONS (CONS CLAUSE-NODE ‘FALSE) CLAUSE—LIST))
832 (PUIPROP CLAUSE CLAUSE-LIST ‘CLAUSE-LIST)
033 (MRPC (FUNCTION (LAt1BOA (NODE)
034 COND ((NOT (EQ (GET (COR NODE) ‘OPPOSITE)
035 (GET (CAR NODE) ‘TRUTH)))
036 (SE 70 COUNT 11. COUNT))))))
837 CLAUSE -LIST)
038 (PUTPROP CLAUSE COUNT ‘PSAT)
839
048 (MAPC (FUNCTION (LAI100A (NODE)
841 CPUTPROP (CAR NODE)
042 (CONS CLAUSE
043 (GET (CAR NODE) (GET (CUR NODE) ‘CLRUSES)))
044 (GET (CDR NODE) ‘CLAUSES))))
045 CLAUSE-LIST)
846
047 (CONO ((~ COUNT 0)
848 (SETO CONTRA -LIST (CONS CLAUSE CONTRA—LIST))))
049 (PROC (CONTRA—SOURCE CONTRA-CLAUS E)
058 (OCOUCE—CHECK CLAUSE))
851 (RETURN CLAUS(-NOOE)))

- - ~ 5 5 - S~~5-5555~~ ‘ _~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -

001 APPNDX 3 Pag. 3
082 ;TRUTH VALUE AOOIT ION ROUTIN ES
083
004 (DEFUN SET-TRUTH (NODE VA LUE EXP I AN)
005 (PROC (CONTRA-SOURCE CONTRA-CL A US E)
006 (PUTPROP NODE EXPIAN ‘IXPLANAT ION)
007 (COND ((EQ EXPLAN ‘DIrAULT) (PUTPROP NODE VALUE ‘DE FA ULT)))
008 (SET-? NODE VALUE ‘PREMISE)
009 (BACK TRACK)))
010
011 (DEFUN SET-2 (NODE VALUE SUPPORT)
812 (PROC (TRACE F)
813 (CONO (VPRINT (PRINT ‘15(1 TRUTH I) (PRINC NODE) (PRINC VALUE) (PRINC SUPPORT)))
014
015 ; T RA CE IS TRUE IF A CONTRADICTION HAS RESULTED FROM THIS SET , EITHER DIRECTLY
816 ;OR AS A CONSEQUENCE OF RESULTING RECURSIVE DEDUCTIONS
817
018 (SE TO TRACE NIL)
019 (CO ND ((NOT (10 (GET NODE ‘IRUTH) ‘UNKNOWN))
020 (ERROR ‘SE T-TRUTH- -VA LUE -NOT-UN KNOWN NODE)))
821 (PUIPROP NODE VALUE ‘TRUTH)
822 (PUTPROP NODE SUPPORT ‘ SUPPORT) 5

023 (MARC (FUNC TION L AN8OR (CLAUSE) (PROC ()
824 fl’UTPROP CLAUSE (1- (GET CLAUSE ‘PSAT)) PSAT)
025 (COND (((GET CL AUSE ‘PSAT) 0)
026 (SETO CONTRA LIST (CONS CLAUSE CONTRA —LIST))
827 (COND (C TRACE
028 (PRINT ‘CONTRADICTION)
029 (PRINC (GET CLAUSE ‘CLAUSE-LIST)))))))))
030 (GET NODE (GET VALUE ‘OP-CLAUSES)))
031 (COND ((GET NODE (GET VALUE ‘(FEICT))
932 (APPLY (GET NODE (GE T VAL UE ‘EFFECT)) (LIST (GET NODE ‘ASSERTION)))))
033
034 (MARC (FUNCTION (LAMBDA (CLAUSE)
835 (COND ((AND TRACE -

036 (EQ ClAUSE CONTRA -SOURCE))
037 (ROO-2 CONTRA-CLAUSE ‘CLRUSE—RESOLUTION)
038 (S ET O CONTRA-SOURCE NIL)
039 (S(TO TRACE NIL))
040 ((AND (~ (G ET CLAUSE ‘PSAT) I)
041 (NULL CONTRA-SOURCE))
042 (SETO CONTRA -SOURCE CLAUSE)
043 (S ET O CONTRA-CLAUSE (MERGE CLAUSE NIL NODE NIL))
844 (SETQ TRACE ‘TRUE))
045 ((S ET O F (DEDUCE—CHECK CLAUSE))
046 (SET O TRAC E ‘TRUE)
047 (SETO CONTRA —CL AUSE
848 (MERGE CLAUS E CONTRA—CLAUSE NODE (CAR F)))))))
049 (GET NODE (GET VALUE ‘OP— CLAUSES)))
050 (RETURN TRACE)))
051
852 (DEFUN DEDUCE -CHECK (CLAUSE) ;TIIE FACT DEDU CED IS RETURNED ONLY IF A CONTRADICTION RESULTED.
053 (PROC (F)

• 854 - (COND ((ANO (. (GET CLAUSE ‘PSAT) 1)
055 (SETO F (PCONSEO CLA USE))
056 (SET-2 (CAR F) (COP F) CLAUSE))
057 (RETURN F))
058 (T (RET URN N I L)))))
059
060 (DEFUN PCONSEO (CLAUSE)
061 (00 CLIST (GET CLAUSE ‘CLAUSE-LIST) (COR CLIST)
862 (NULL CL 1ST)
063 (COND ((EQ (GET (CAA R CLIST) ‘TRUTH) ‘UNKNOWN)
964 (RETURN (CAR C L I S T))))))
865
066 (DEFUN MERGE (ClAUSE ACCUM EXCEPT I EXCEPT2)
067 (PROC C)
068 (IIAPC (FUNCTION (LAMBDA (NODE)
069 (COND ((NOT (OR (EQ (CAR NODE) EXCEPT D
h i ((0 (CAR NODE) EXCEPT2)q (MEMBER NODE ACCUM)))
072 (SETO ACCUM (CONS NODE ACCurn~~~)873 (GET CLAUSE ‘CLAUSE-LIST))
074 (RETURN ACCUM)))

—,_ — 5 — - —
~~

. --5- -

- ‘ . ., 5 • - ~~~~~~~~~~~~~
‘

881 R!!NDX 3~~ Peg. 4
802 ;TRUTH VALUE REMOVAL ROUTINES
003
004 (OEFUN REMOVE-TRUTH (NODE)
805 (PROC (REMOVED—LIST)
006 (REMOVE-2 NODE)
087
008 (IIAPC (FUNCTION (LAM BDA (DOT)
009 (PROC (NODE)
ole (SETQ NODE (CAR DOT))
011 (COND ((NOT (EQ (GET NODE ‘TRUTH) ‘UNKNOWN)) (RETURN T)))
012
013 (NODE-DEDUCE—CHECK NODE ‘TRUE)
814 (NODE-DEDUCE-CHECK NODE ‘FALSE))))
015 REMOVED -LIS T)
016
017 (MAPC (FUNCTION (LA MBDA (DOT)
018 (PROC (NODE)
819 (SETO NODE (CAR DOT))
028 (CONO ((NOT (EQ (GET NODE ‘TRUTH) ‘UNKNOWN)) (RETURN TI))
021
022 (COND ((GET NODE ‘DEFAULT)
023 (PROC (CONTRA-SOURCE CONTRA—CLAUS E)
024 (PUTPROP NODE ‘DEFAULT ‘EXPLANATION)
025 (SET—2 NODE (GET NODE ‘DEFAULT) ‘PREIIISE)))))))
026 REMOVED-LIST)))
027
028 (DEFUN REMOVE-2 (NODE)
029 (PROC (VALUE)
830 (COND (VPR INT (PRINT ‘lR (MOVE-VRLUE I)
031 (PRINC NODE)))
032 (SET O VALUE (GET NODE ‘TRUTH))
033 (COND ((EQ VALUE ‘UN) NOUN)
834 (ERROR ‘REMOVE -VALUE —-VALUE-NOT-PRESENT NODE)))
035 (PUTPROP NODE ‘UN KNOIIN ‘TRUTH)
036 (PUTPROP NODE NIL ‘SUPPORT)
837 (SETO REMOVED-LIST (CONS (CONS NODE VALUE) REMOVED—LIST))
038 (MAPC (FUNCTION (LAMBDA (CLAUSE) (PROC ()
039 (PUTPROP CLAUSE (1. (GET CLAUSE ‘PSAT)) ‘PSAT)
040 (COND ((~ (GET CLAUSE ‘PSAT) 1)041 (SETO CONTRA—LIST (DELO CL AUSE CONTRR—LIST)))))))
042 (GET NODE (GET VALUE ‘OP-CLAUSES)))
043
044 (COND ((GET NODE ‘M A K E—UNK)

• 045 (APPLY (GET NODE ‘MArE—UNK (LIST (GET NODE ‘ASSERTION)))))
046
047 (MAPC (FUNCTION (LAMBDA (CLAUSE) (PROC (F)
048 (COND ((AND ((GET CLAUSE ‘PSAT) 1)
049 (SETO F (CAR (CONSEG CLAUSE)))
050 ((0 CLAUSE (GET F ‘SUPPORT)))
051 (REMOVE—? F))))))
052 (GET NODE (GET VALUE ‘OP—CLAUS(S)))))
053
054 (OEFUN CONSEG (CLAUSE)
055 (DO CLIST (CE? CLAUSE ‘CLAUSE-LIST) (CDR CLIST)
056 (NULL CL. 1ST)
05? (COND ((EQ (GET (CARP CLIST) ‘TRUTH) (CDAR CLIST))
058 (RETURN (CAR CLIST))))))
059
868 (DEFUN NODE—DEDUCE-CHECK (NODE VALUE)
061 (PROC (CONTRA—SOURCE CONTRA-CLAUSE)
06. (00 C—LIST (GET NODE (GET VALUE ‘CLAUSES)) (COR C—LIS T)
06) (OR (NULL C—LIST)
064 ((0 (GET NODE ‘TRUTH) VALUE))

(DEDUCE—C HECK (CAR C—L IST)))))

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - . _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L . — ‘. • - - -
- ~~~‘~~~~~~~~~~~~~~~~~~~ ‘ •

001 - RPPNDX 3 P.g. S
002 ~EX P L A N A T I O N AND BAC KTRACK ING ROUT INES
003
004 (DEFUN WHY (OBJECT)
005 (PROC (SUPPORT CLIST WHY-LIST)
006 (COND ((SETQ CLIST (GE T OBJECT ‘CLAUSE—LIST))
007 (RETURN (IIAPC RR (FUNCTION (LAMBDA (F) (CAR F))) CLIST)))
008 CT
009 (SETO SUPPORT (GET OBJECT ‘SUPPORT))
010 (COND (((0 SUPPORT ‘PREMISE) (RETURN ‘PREMISE))
011 CT (DO CLI S T (GET SUPPORT ‘CLAUSE—LIST) (COP CLIST)
012 (NULL CU SP
813 (COND ((NOT (EQ (CRAP CLIST) OBJECT))
814 (SETO WHY—LIST (CONS (CRAR CLIST) WHY—LIST)))))
015 (RETURN WHY—LIS P))))))
016
017 (O (FUN BACKTRACK ()
018 (PROC (ASSUMPTION ASSU (1-L IST)
019 (SETO ASSUMPTION NIL)
020 (SETO ASSUM-LIST NIL)
021 CONO ((NULL CONTRA -LIST)
022 (RETURN TI))
023
024 (00 CONTRA CONIR A -L IST (COR CONTRA)
025 (DR (NOT (NULL ASSUM-LIST))
026 (NULL CONTR A))
027
028 (MAPC (FUNCT ION (LAMBDA (NODE) (FIND—ASSUM NODE 1)))
029 (WHY (CAR CONTRA))))
030
031 (DO ((DO-ASSU M A S SUM -LIST (COP DO -ASSUM))
032 (MIND 1000 MIND))
033 ((NULL DO-ASSUM)) -
034 (CONO ((. (COAR DO-ASSU M) MIND)
035 (SETO MIND (CORP DO-A5SUM))
836 (SETO ASSUMPTION (CARP DO-ASSUM)))))
037
038 (CON D ((NULL ASSUMPTION)
039 (PRINT ‘ICONTRAD ICTION DEPENDS ON NO ASSUMPTIONS I)
040 (RETURN NIL))
041 (T (REMOVE—TRUTH ASSUMPTION)))
042
043 (BACKTRACK)))
044
045 (DEFUN FIND -ASSUM (NODE LEVEL)
046 (PROC (SUPPORT ASSC)
047 (SETQ SUPPORT (GET NODE ‘SUPPORT))
848 (CDND ((EQ SUPPORT ‘PREMISE)
049 (COND ((EQ (GET NODE ‘EXPLANATION) ‘DEFAULT)
050 (CONO ((SETO RSSC (ASSOC NODE ASSUM—LIST))
051 (RPLACD ASSC (MAX LEVEL (CDR RSSC))))
052 (T (SETO ASSUM—LIST (CONS (CONS NODE LEVEL) ASSUM—IIST)))))))
053 (T (MAPC (FUNCTION (LAM BDA (NODE) (FIND—ASSU M NODE (1. LEVEl))))
054 (WHY NODE))))))
055
056 (DEFUN SATISFY (NOD(S)
057 (MRPC (FUNCTION (LAMBDA (NODE)

O 058 (COND ((NOT (EQ (GET NODE ‘TRUTH) ‘UNKNOWN))
059 (PUTPROP NODE ‘TRUE ‘DEFAULT))
060 (T (SET—TRUTH NODE ‘TRUE ‘DEFAULT)))))
061 NODES))
062
063 (TIIS—IN IT)

(-

S

- - 5. - — — —

~~~~

- —

~~~~

—- • -

~~~~~~~~~~~~ 

-5— - — — —~~~~~~~~~~ 
p

- 
- ,v_ - ~~~~~~~~~~~~~~~~~~~~~~~



Symbol Tab), fort DRM ;APP NDX 3 OS/31/ 78 Pay . I

ADO—2 EXPR 002 808 F IND-ASSUM EXPR OQS 045 PCONSEO FXPR 083 060
ADO—CLAUSE E XPR 082 004 MAKE-D (P (NDENCY-NOOE (XPR 001 021 REMOVE-? EXPR 004 028
BAC) TRA C EXPR 005 017 MERGE EXPR 803 066 REMDVE — TRUTN EXPR 004 004
CONSEQ EXPR 004 054 NODE-DEDUCE-CHECK  EXPR 004 060 SATISFY EXPR 005 056
DEOUCE—C I ECK EXPR 003 052 SET-2 (XPR 003 011 SET-TRUTH ,....,,,., EXPR 003 804
TN S— IN IT (NRA 801 806 WHY (XPR 00S 004

- — . 

-

--5— - - — — 
.
— 

. •. 

— ‘-‘-—-‘,- •• S—~~- ~~~~~~~~~~~~~~~ ,~~~~~~~ -~~-—----- -- • ,, —- P
-S -- — 

-s--- ~__ . ‘ ~ • - - ~~ 
~~~.~~~~~~~~~8~~i-’T ~ - -


