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ABSTRACT

This report presents new and recently developed concepts which are useful
for obtaining and solving equations of motion of multibody mechanical systems
with translation between the respective bodies of the system. These concepts
are then applied in the study of human head/neck systems in high acceleration

configurations.

The developed concepts include the use of Euler parameters, Lagrange's
form of d'Alembert's principle, quasi-coordinates, relative coordinates, and
body connection arrays. This leads to the development of efficient computer
algorithms for the coefficients of the equations of motion. The developed
procedures are applicable to "chain-link" systems such as finite-segment cable

models, mechanisms, manipulators, robots, and human body models.

The application with human head/neck models consists of a 54 degree of
freedom, three-dimensional system representing the head, the vertebrae, and
the connecting discs, muscles, and ligaments. The computer results for the
system in a high acceleration configuration agree very closely with available

experimental data.
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INTRODUCTION

Recently there has been considerable interest in the development of
equations of motion for multi-body mechanical systems--that is, systems
containing many rigid bodies, There are two reasons for this interest:

First, many complicated mechanical systems and devices such as manipulators,
robots, and biosystems, can be effectively modelled by systems of rigid bodies;
and second, it has just recently been possible, with the aid of high-speed
digital computers, to obtain efficient numerical solutions of the governing
dynamical equations. The emphasis of researchers working with multi-body
systems has therefore been the formulation of equations of motion which can

easily be developed into numerical algorithms for computer codes.

Most of this recent research interest has been with multibody systems
consisting of linked rigid bodies - that is, systems of connected rigid bodies
such that adjacent bodies share at least one common point and such that no
closed loops or circuits are formed., Such systems are sometimes called
"general-chain", "open-chain", or "chain-1link" systems. Figure 1. depicts
such a system. General chain systems are useful for modelling chains, cables,

manipulators, teleoperators, antennas, and beams.

There are some systems, however, where the restriction to linked rigid
bodies precludes a satisfactory modelling., For example, with a human body
model it is frequently advantageous to simulate neck stretch during periods
of high acceleration such as in crash environments. Such a simulation is not

possible with a fully linked model, Therefore, it is of interest to generalize

et




the multibody models to include translation between the bodies. Figure 2.

depicts such a generalization of the system of Figure 1. 1.

This report presents the results of recent research efforts to develop
i efficient, computer-oriented algorithms for obtaining and solving the gover-
ning dynamical equations of motion for these generalized multibody systems. ;!

The report also contains a summary of results of the application of these

P o e

procedures with human head-neck systems in high acceleration configurations.

The balance of the report is divided into six parts with the first part

providing a summary of earlier efforts to model multibody systems. This is

o e AT A $T4 T

followed by two parts which contain the general geometrical and kinematical
background necessary for the development of the governing equations. The
governing equations themselves are developed in the next part, and an applica-
tion of the developed procedures in studying head-neck dynamics is presented
in the subsequent part. The final part contains a summary discussion and

suggestions for other applications of the developed procedures,
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PREVIOUS MULTIBODY SIMULATION EFFORTS

References [1-36]* provide a summary of approaches taken to obtain !i
efficient, computer-oriented formulation of the equations of motion of g;
multibody systems such as in Figure 1. In one of these approaches (19,29,33], |
it is shown that it is possible to obtain expressions for the governing
equations in a form where the coefficients are easily evaluated through
computer algorithms. This approach uses Lagrange's form of d'Alembert's
principle, as exposited by Kane and others [37,38,39], together with relative
orientation coordinates [40,41,42], to obtain the governing equations.

Although this principle is not as widely used as, for example, Newton's

laws or Lagrange's equations, it has the advantage of automatic elimination
of non-working internal constraint forces without the introduction of tedious
differentiation or other calculationms.

Recently, it has been suggested by Huston, et.al., [42,43], that further
efficiencies in the development and solution of the governing equations could
be obtained through the use of Euler parameters as described by Wittaker [44]
and Kane and Likins [45], together with the quasi-coordinates suggested by
Kane and Wang [46]. Specifically, it is claimed [42,43] that using Euler
parameters together with relative angular velocity components as generalized
coordinate derivatives allows for the avoidance of geometrical singularities
encountered with using Euler angles or dextral orientation angles to define
the relative orientation of bodies. (Recall that Euler angles may be defined
by aligning mutually perpendicular axes fixed in the bodies and then

successively rotating one body relative to the other about the third, first,

*Numbers in brackets refer to references at the end of the report. 4




and third axes, whereas dextral orientation angles may be defined by

successive rotations about the first, second, and third axes.)




PRELIMINARY GEOMETRICAL CONSIDERATIONS

Body Connection Array

Consider a mechanical system such as depicted in Figure 1., To
develop an accounting routine for the system's geometry, arbitrarily
select one of the bodies as a reference body and call it Bl. Next,
number or label the other bodies of the system in ascending progression
away from Bl as shown in Figure 1. Now, although this numbering procedure
does not lead to a unique labeling of the bodies, it can nevertheless be
used to describe the chain structure or topology through the "body connection
array" as follows: Let L(k), k=l,...,N be an array of the adjoining
lower numbered body of body Bk' For example, for the system shown in

Figure 1., L(k) is:

L(x) = (0,1,1,3,1,5,6,7,6) 1)

where

k) - (1,2,3,4,5,6,7,8,9) (2)

and where 0 refers to an inertial reference frame R, It is not difficult

to see that, given L(k), one could readily describe the topology of the
system, That is, Figure 1. could be drawn by simply knowing L(k). It is
shown in the sequel that L(k) i{s useful in the development of expressions of

kinematical quantities needed for analysis of the system's dynamics.
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Transformation Matrices

Next, consider a typical pair of -djoining bodies such as Bj and Bm
as shown in Figure 3. The general orientation of Bk relative to Bj
may be defined in terms of the relative orientation of the dextral
orthogonal unit vector sets Eji and oy (i=1,2,3) fixed in Bj and BI:.
as shown in Figure 2, Specifically Ej i and n, ; are related to each

other as

By1 7 Syplnm Gl

where SJK is a 3 x 3 orthogonal transformation matrix defined as [47]:

SIRim ™ %31 ° Y Q]

(Regarding notation; the J and K in SJK and the first subscripts on the
unit vectors refer to bodies B.'l and Bk’ and repeated indices, such as the
m, in Equation (3) signify a sum over the range (eg. 1,...,3) of that
fndex. Thus, with acomputer SJK would be the array SJK(I,M).)

From Equation (3}, it is easily seen that with three bodies B 52 Bk’

B, , the transformation mat:r:ﬁ: obeys the following chain and identity rules:

SJL = SJK SKL 6)]
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and

SJJ = I = SJK SKJ = SJK SJK ©

(6)
where I is the identity matrix.

These expressions allow for the transformation of components of
vectors referred to one body of the system into components referred
to any other body of the system and, in particular, to the inertial

reference frame, R. For example, if a typical vector, V, is expressed

as
Lo ® (0
T=9 g TV 2y b
then
) _ (k)
v, SO, , 7, (8)

where 0 refers to the inertial frame, R.
Since these transformation matrices play a central role throughout
the analysis, it is helpful to also have an algorithm for their derivative,

especially the derivative of SOK. Using Equation (3), and noting that Dog

are fixed in R, the following is obtained:

S
d(s01<i )/dt = By * d Ekj/dt (9)

3
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where the R in Rd nkj/dt indicates that the derivative is computed in R,
However, since the"nkj are fixed in Bk’ their derivatives may be written
as u, X Ekj where Wy is the angular velocity of Bk in R. Equation (9)

may then be written as:

d(SOKij)/dt = =& n®a om | T (10)

or as
d(SOK)/dt = WOK SOK ' (11)

where WOK is a matrix defined as

WOKim = -e, O (12)

and where Wy are the components of fk referred to Eon and e m is the

standard permutation symbol [47,48]. (WOK is simply the matrix whose dual
vector [48] is wk.) Equation (11) thus shows that the transformation matrix

derivative may be computed by a simple matrix multiplicationm.

Euler Parameters

Finally, consider describing the relative orientation of Bj and Bk

by using the so-called Euler parameters as discussed by Whittaker [44] and

KRane and Likins {45]. It is well known [44] that Bk may be brought into any




general orientation relative to B, by means of a single rotation about an

b

appropriate axis. If A, is a unit vector along this axis and 1if 6, is the

k

rotation angle, the four Euler parameters describing the orientation of Bk

relative to Bj may be defined as:

€ . = A sin(ekIZ)

€2 = Akz sin(ek/Z)
(13)

€ . = A sin(eklz)

x4 - €OS (ek/2)

where the Aki (i=1,2,3) are the components of A referred to nji’ the unit

vector fixed in Bj. Clearly, the i (1i=1,2,3,4) are not independent since:
2 2 2 2

Kt Sk Yy t oy 1 (14)
These parameters may be related to angular velocity components by

using the trausformation matricies as follows: It is shown in [44,45] that

SJK may be expressed in terms of these parameters as:

RN e TIPS
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2 2 2 .2
SIK = | 2(ep 807 ea8s) St Sk ohe 2(6008y 370 ) as)
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Now, by solving Equations (11) and (12) for the angular velocity components,

one obtains:

Wy = SOK21 SOK31 + SOK22 SOK32 + SOK23 SOK33

W, = SOK31 SOK11 + sox<32 sox12 + SOK33 sox13 {16)

Wiy = SOK11 SOK21 + SOK12 SOK.22 + SOK13 SOK23

where the dot designates time differentiation. By using Equation (15),
these expressions may be used to express the nji components of the angular

velocity of B, relative to B, in terms of the Euler parameters as:

k h |
Wy = 2(e, €4 = €3 S0 i €3 T S Exs)

e = 2 g + Gy S~ T Ga T G Gy an

Wy = 208 &g + By Eo &y fg ~ g &)
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(Regarding notation, in the sequel "hats" refer to relative angular
velocity vectors or their components. That is,the W, Trepresent the
angular velocity of Bk in R and &k represent the angular velocity of

Bk telative to B,, its adjoining lower numbered body.) Equation (17)

j’
may now be solved for the Eki (1=1,...,4) in terms of the aki’ leading

to the expressions:
1 = ey Gy ¥ €y Gy = £y Gy y)
€pp = M€y g F e, Wy + gy wg)
(18)
€3 = MlEp Uy = € Wy + g G g)
o " M0 G T Spp W T Sy Wey)

This solution is quickly obtained by observing that if Equation (14) is
differentiated and placed with Equation (17), the resulting set of equationms

could be written in the matrix form:

[~ T - - = -
‘?’u x4 k3 k2 "% ékl
:’kz k3 &% 1 T2 o
-2 (19)
Y3 “%x2 %1 %6 %3 k3
::’kl; €1 €2 €3 €4 51:4
L _ _ 4 L .




12

where Bs is equal to the derivative of Equation (14) and has the value
zero. The square matrix in Equation (19) is seen to be orthogonal
(ie. the inverse is the transpose) and hence, Equations (18) follow

immediately from (19) upon letting w,, be zero,

kb4
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KINEMATICS

Coordinates

A multibody system of N bodies, with translation permitted between
the bodies will, in general, have 6N degrees of freedom. Let these be
described by 6N generalized coordinates x, (=1,...,6N) and let the first
3N of these be divided into N triplets describing the relative
orientation of the successive bodies of the system. Let the
remaining 3N x, also be divided into N triplets representing the relative
displacement of the successive bodies of the system. As begore, let Bk
be a typical body of the system and let Bj be its adjacent lower numbered
body, as in Figure 3. The angular velocitf of Bk relative to Bj (that is,

the relative rate of change of orientation) may then be written as:

Ye T U 341 T Yo Yo F Y3 Uy (20)

where nji (j-l,...,N& i=1,2,3) are mutually perpendicular dextral unit

vectors fixed in Bj' Next, let these bodies be displaced relative to
each other with the displacement measured by the vector Ek as shown in
Figure 4., where 0j and 0k are arbitrarily selected reference points of

B, and B,. 0,, which is fixed in Bj’ is the connection point or "origin"

h ] k k

of Bk. Then Ek may be written in the form:

- T

- r——
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In genersl, Equations (23) are non-integrable. That is, they cannot
be integrated to obtain generalized orientation coordinates Xqp.g
X1 * T3 * Thus, explicit parameters Xapo9t F3p-1? and Xax do not
in general exist--hence, the name 'quasi-coordinates', However, since
parameters are needed to relate the relative orientation of the bodies
to the respective relative angular velocitieg, let the Euler parameters
introduced in the foregoing section be used for this purpose. Hence, if the
orientation of a typical body Bk relative to Bj is described by the four
parameters &d (i=1,...,4) ,the geometry and kinematics of the entire system
may be expressed in terms of the 4N Euler parameters €1 (k=1,...,N; i=1,...,4),
the 3N relative angular velocity components aki (k=1,..,,N; 1=1,2,3), and the

3N displacement components Eki (k=1,..,,N; 1i=1,2,3).

Angular Velocity

The angular velocity of a typical body Bk in the inertial frame R 1is

readily obtained by the addition formula as [38]:
gk-w +...+mk (25)

where the relative angular velocities on the right side of this expression
are each with respect to the respective adjacent lower numbered bodies and
where the sum 1s taken over the bodies of the chain from Bl outward through
the branch containing Bk’ The L(k) array introduced in the foregoing section
can be useful in computing this sum: Consider for example, the system shown

in Figure 1. The angular velocity of 39 is:

. ——— e w
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A ~ ~ ~
We =W *wg +uw +uw,

The subscript indices (ie. 9,6,5,1) may be obtained from L(k) as

follows: Consider L(k) as a function mapping the (k) array (See Equation (2))
into the L(k) array. Then, using the notation that Lo(k) = (k),

ttao = 1w, 12 = talw), ..., o = Ladtw), 1t 1s seen

(see Equation (1)) that:

19(9) = 9, L1(9) = 6, 129 = 5, 139 = 1 @7)
Therefore, wy may be written asa:
- o , q=LP@9) (28)

Hence, in general, the angular velocity of Bk may be written as:

r .
w = 20 g Q- LP (k) (29)
p-

where r 1is the index such that LT(k) = 1 and it is obtained by comparing
Lp(k) to 1. The index r represents the number of bodies from Bl to Bk in
that branch of the chain system Bk. For example, for the system of Figure 1.,

if k=9, r=3, Equation (29) {s thus an algorithm for determining w, once ak

and L(k) are known.
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B = S %91 &0 g2 * 43 0y 1)

Following Kane and Wang [46], introduce 6N parameters ) (2=1,...,6N)

defined as:
Vo =X L= 1,..., 68 (22)

where the first 3N of these are

A

Y3k-2 = Ya
T3k-1 = Y2 (23)
v T3 T s

and the remaining 3N are:

Y32 = S

Y3awmi)-1 = 52 (24)

Vi) T ox3
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By examining Equations (20, (23), and (25) it is seen that w, TaY be

written in the form

(30)

“k " “kim Y2 Zom
where there is a sum over the repeated indices and where wklm (k=l,...,N;
f=1,...,3N; m=1,2,3) form a block array of coefficients needed to express
Qk in terms of -3 In view of Equatioms (3), (16), (20), and (23),
it 1s seen that the elements of the Nkzm array may be obtained from the SOK
transformation matrices. Moreover, it can be shown that the matching between

the elements of the wklm and SOK arrays is solely dependent upon the body

connection array L(k).

To see this, consider for example the angular velocity of B4 of the
system of Figure 1: From Equatiom (25), 94 is
W o=w O W (31)

~ ~

where from Equations (3), (20), and (23) 91, 93, and 94 may be written as:

W) = Y18 * Y3 %oz * V3 %3 7 ¥y Sy Zon (32)

W3 ¥y B33 + Y3 % ¥ Vg B3 " Yoy SOlpp Bom 33
W, = Y10 B33 * Y11 832 * Y12 B33 " Youy 503y Zom (34)
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Hence, the w are:

4%m

§ L =1,2,3

nl

0 £ =4,5,6

mklm = 501m£-9 L = 7,8,9 m=1,2,3 (35)
SO3ml-9 2 = 10,11,12
0  £>12
where Gij are the identity matrix components [47,48]. ;

Next, consider that the results such as Equation (35) may be obtained for
the entire system of Figure 1. or Figure 2. from a table such as Table 1., ﬁ
where the "m" entries of the W gp aTTAYy are the column of the transformation
matrices, Finally, note that the non-zero entries in a typical row,

say the kth row of Table 1. are obtained as follows: Let P = L(k).

Then SOP is placed in the kth column of triplets of ;2’ Next, let Q=L(P).

The SOQ is placed in the Pth

column to triplets of ;2’ etc. That is, SOM
is placad in column Lj-l(k) where M = Lj(k), j=1l,...,r+l with r determined
from LT (k) = 1. : 1

Finally, it is interesting to note that the elements of the mklm array !

(and hence, the transformation matrix columns of Table 1l.) are components

of the "partial rate of change of orientation vectors" as originally defined

by Kane [37].

8
7




Angular Acceleration

The angular acceleration of Bk in R may be obtained by differentiating

Equation (30). Noting that the o, 3% constant, this leads to:

L
gk = (mklm y + wkkm yl) Rom (36) ?

— emes s SN A BB

A table containing the &klm can be constructed directly form the corresponding

table for the W om® For example, for the system of Figure 1., such a

table is shown in Table 2.

: i Mass Center Velocities

The velocity and acceleration of the mass center Gk of a typical body
Bk (k=l,...,N) may be obtained as follows: Let T locate Gk relative 0k

as shown in Figure 4. Since 0, is located relative to Qk by Ek and if Qk is

k
F lccated relative to 0j by the vector % (See Figure 4,), then by continuing
this procedure, Gk may ultimately be located relative to a fixed point O in

R, the inertial reference frame. For example, for Body B8 of Figure 2., the

position vector P, of G8 relative to 0 1is:

Pg =8y tqgt &5t qgtEgtq, vt qgtitrg (37)

In general, for Body Bk’ the position vector Pk of Bk relative to 0 is:




u

h Tkn ¥ qEO S0Sh (Agh *+ &n) 1201 (38)

gk = [SOKi
where s = L3(k), S = LI} (k), and u is the {ndex such that L%(k) = 1,
and where 9, is 0. By differentiating, the velocity of Gk in R is obtained

u
Y = 150Ky Typ =0 (8051 (agn * Eqp)

+ SOS } (39)

1h %sh] o1
By using Equations (11), (12), and (30), v, may be written in the form:

Y% = Viem Y2 Yom (40)

where Vitm (k=l,..0,N; 2=1,...,6N; m=1,2,3) form a block array of coefficients

needed to express v, in terms of none In view of Equation (39), the non-zero

Vitm

are:

“kea © "ahe Tkn * I WSang Con * 9gn)
(k-lgnoo,N; 2/-1,000,3N; m-l,2,3) (41)
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where WKhh is defined as:
BWOKm
WKmhR, - — T2 SOKph - -empi mkli SOKph 42)
BZyz
|
and
vk(3N+2)m = Wom (k=1,...,N; 2=1,...,3N; ==1,2,3) . (43)

Mass Center Accelerations

Similarly, by differentiation of Equations (40), the acceleration

of Gk in R is

Ek - (vklm 4 + Vkim yl)gom (44)

where the non-zero ;klm are, by Equations (41) to (43),

* L] u-l L 3
Vieom ™ "Eong Ten * qzo (WS 10 Gan (k=1,...,N; 2=1,...,3N, @=1,2,3)
+q, + wsmhz Esh] (45)

i where wimhz is:

- WKmh!. = -empi (wkli SOKph + Weed SOKph) (46)

T - = i At ot st el Snead 2 s Bk AR s s P g e e ] 3
- D aCen v




v G = Gy (e, NG 2=1,.000,3N, w=1,2,3)
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EQUATIONS OF MOTION

Congider again a general chain system such as shown in Figure 2., and

imagine the system to be subjected to an externally applied force field.

Let the force field on a typical body Bk’ be replaced by an equivalent
force field cousisting of a single force Fk’ passing through Gk together
with a couple with torque Mk. Then Lagrange's form of d'Alembert's principle

leads to governing dynamical equations of motion of the form [38]:

Fy+ Fgt =0 L=1,...,6N (48)

F2 (%=1,...,6N) 1s called the generalized active force and is given

by:

Fy = Vet Fim ¥ Y%pn M (49)

where there is a sum from 1 to N on k and from 1 to 3 on m, and where ka
and Ekm are the components of Ek and Ei with respect to 0 * Fz*

(2=1,...,6N) is called the generalized inertia force and is given by:

B 7 Vet P ¥ Yitn M (50)




24

where the indices follow the same rules as in Equation (48), and where

* & *
ka and Mkm are oom components of inertia forces, Ek , and inertia torques,

yk*, given by [38]:

gk* = -n a (no sum) (51)

and

E-ik* = -zk . Ek - (:)k x (-I.k . (i)k) (no sum) (52)

where m is the mass of Bk and I, is the inertia dyadic of Bk

relative to Gk (k=1l,...,N). (F*, with line of action passing through

Gk together with M: are equivalent to the inertia forces on Bk 1381.) -

Through use of the shifter transformation matrices, I may be written

k
in the form:

-]:k = Iknm Eom EOD. (53)

By substituting Equations (36) and (44) into Equatioms (51) and (52)

and ultimately into Equation (47), the equations of motion may be written

in the form:




alp yp = fl (2=1,...,6N) (54)

where there is a sum from 1 to 6N on p and where alp and f2 are

given by:

alp = mk vkpm Vkim + Ikmn wkpm mk.?.u (35)

and
fl - (FZ + e Vktm vkqm yq + Ikmn “eom mkqn yq

+ ®amh Ikmr wkqn Ysr “kla yq ys) (36)

where there is a sum from 1 to N on k, from 1 to 6N on q and s, and from
1 to 3 on the other repeated indices,

Recall that the first 3N yp are relative angular velocity components.
These may be related to the Euler parameters by N sets of first order
equations of the form of Equations (18).

Equ#cions (54), (20), and the 4N equatiouns of the form of Equations
(18) form a set of 13N simultaneous first-order differential equations for
the 6N yp, the 3N Eki’ and the 4N Euler parameters €t (h=1,...,N;
i=l,...,4). Since the coefficients 3 and fl in Equations (54) are
algebraic functions of the physical parameters and the four block arrays

W om? Weoom® Viitm and ;klm’ computer algorithms can be written for the

numerical development of these governing equations. Moreover, once these




arrays are developed, the system of equations consisting of Equations (54),
(20), and 4N equations of the form of Equations (18), may also be solved

numerically by using one of the standard numerical integration routines

] and a linear equation solver. wi
§ : The development of these computer algorithms and the numerical development

of Equations (54) might proceed as follows: First, let the body connection

array L(k) (See Equation (1)) together with the geometrical and physical ';
parameters T, Ek’ }k’ and n (See Equations (38), (51), and (52).) and

the applied forces and moments F, and M (See Equation (48).) be read into §@

the computer. (Let ) Ska

terms of nki') Next, from assumed initial values of ¢

Ek and, if desired, Ek and Ek be expressed in
xi form the

transformation matrix arrays SOK using Equations (15) and (5). Use these

arrays to express Ek’ gk’ Ek and possibly gk and yk in terms of LR Next,

using L(k) and SOK write an algorithm, with Tables 1. and 2. as a guide, to

form wkln and &kln . For example, to obtain the non-zero wklm’ observe that

if L(k) = p, then Yeom ™ SOP-L (m=1,2,3; &=3p+l, 3p+2, 3p+3). Then, if

L(p) = q, Lz(k) = q and @eom = son (m=1,2,3; 2=3q+l, 3q+2, 3q+3).

This assignment procedure is continued until unity is reached or r times f
wvhere r is given by Lr(k) = 1 (See the remark following Equation (29).).
v and v may then be obtained using Equations (40) to (47). Finally,

kim km
numerical values of the coefficients alp and fl of the governing differential

equations (54) may then be obtained from Equations (55) and (56). These

equations may then be integrated numerically to obtain incremental values to the

initial values of the parameters yp, eki' and xq (p=1l,...,3N+3; k=1,,..,,N; 1=1,2,3,4;

and q=1,2,3), at the end of a time interval, say tl. New values of the
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transformation matrix arrays SOK may then be obtained and the entire process
repeated until a history of the configuration and motion of the system is
determined.

Specific computer algorithms following this general procedure have

been written and validated., A listing together with a tape copy (or card

deck) are available at reproduction cost from the authors.,




APPLICATION WITH HEAD-NECK SYSTEMS

Previous Simulation Efforts

Recently, there has been considerable interest in using the foregoing
procedures in the modelling of blodynamic systems. Specifically, there has
been interest in modelling the human body - and particularly, head-neck systems -
during periods of high acceleration, as experienced in vehicle accidents. This
interest stems from the fact that accident injuries, including both direct and
indirect (for example, "whiplash") impact, are basically mechanical phenomena.
The emphasis on modelling the head-neck system is stimulated by the belief
that as many as 60 -~ 707 of vehicle related accident fatalities are a direct

result of injuries to the head~neck system.

There are a number of head-neck simulation models discussed in the tech-
nical literature. Specifically, in 1971, Orne and Liu [60] developed a discrete-
parameter spine model which simultaneously accounts for axial, shear, and
bending deformation of the discs, for the variable size and mass of the vertebrae
and discs, and for the natural curvature of the spine., They also present an
extensive literature review of spine models prior to 1970. Later in 1971,
McKenzie and Williams [61] used the Orne-Liu model to develop a two-dimensional
discrete-parameter head-neck-torso model for "whiplash" investigation. A two-
dimensional mechanical linkage model simulating head-neck response to frontal
impact has been presented by Becker [62]. This model allows for elongation of

the neck. It concentrates the mass at the head mass center. Springs and

dampers are used to control the elongation of the model. A three-dimensional




neck-torso linkage vehicle-occupant model has been developed by Bowman and

Robbins [63]. The model has two ball-and-socket joints and the neck can

elongate with the motion limited by joint stopping moments.

In addition to these computer models, there have also been developed a
number of anthropometric dummy models. (These are currently used extensively
by the automotive industry.) In 1972, Melvin, et.,al. [64] presented a mech-
anical neck for authropometric dummies. The neck consists of three steel uni-~
versal joints pinned into aluminum discs with shaped rubber discs around the
joints. The joints allow the neck to move in flexion, extension, and lateral
flexion but do not allow for either rotation or elongation. A mechanical neck
has also been presented by Culver, et.al. [65]. It consists of four ball-joint
segments and one pin-connected "nodding" segment. Viscoelastic resistive
elements inserted between the segments provide for bending resistance and
energy dissipation with the primary objective being to model flexion and ex-

tension responses.

In this part of the report, there is presented, as an application of the
foregoing procedures, a comprehensive, three-dimensional, head-neck computer
model which has 54 degrees of freedom and includes the effects of discs,
muscles, and ligaments. The model is developed by considering the skull and
vertebrae as a chain system of rigid bodies which may translate relative to
one another. The soft tissue effects of the discs, muscles, and ligaments
are modelled by nonlinear springs and dampers between the bodies. The model

is based primarily on the research of J., Huston and Advani [55,56,57].




The balance of this part of the report contains a description of the

modelling itself and the development of the governing dynamical equations of
motion. This is followed by a comparison of results from numerical integration

of these equations, with available experimental data.

Head-Neck Modelling

A comprehensive presentation of the head-neck anatomy may be found in
references [66-73], The anatomy is conveniently divided into two categories:
bones and soft tissue.,

Bones

The largest and heaviest is the skull which consists of a large cranial

cavity (enclosing the brain) and smaller bones of the face and jaw. The skull
is actually composed of 21 closely fitted bones. The other bones of the head-
neck system are seven cervical vertebrae (C1-C7) which support and provide
mobility to the head. The first of these Cl, called the "atlas", supports the
skull. The second C2, called the "ax1is", is distinctive because of its adontoid
process (or axis) which rises perpendicularly to the vertebrae. The five
remaining cervical vertebrae are roughly annular in shape and are similar to

each other with a slight increase in size going down from C3 to C7.
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Soft Tissue

The soft tissue 1s composed primarily of the discs, the muscles, the

N e e

ligaments, and the brain., The discs provide the cushioning or separation for




the vertebrae. They are annular in shape. The ligaments connect the cervical

vertebrae to each other and thus allow for the gross and fine movement of the
head and neck. The muscles control the movement of the head and neck which may
be classified grossly as: flexion, extension, and rotation. The muscles
originate on the various cervical vertebrae, the skull, the spine, and the
shoulder bones. The brain tissue is basically four mass volumes composed of
two cerebral hemispheres in the upper half of the skull, the triangular shaped

cerebellum in the lower posterior and the brain stem in the center of the skull.
Modelling

The head-neck system is modelled by a system of 9 rigid bodies representing
the skull, vertebrae, and torso as shown in Figure 5. and springs and dampers
representing the discs, ligaments, and muscles, The masses, inertia matrices,
and overall geometry of the rigid bodies are adjusted to match the actual
human values [70]. Each body has 6 degrees of freedom and hence, the entire

system has a total of 54 degrees of freedom.

Following Orne and Liu [60] the discs are modelled in the axial direction
as two-parameter viscoelastic solids with the uniaxial force-displacement

relationship being:
F = (A/h)(d;6 + d,8) (57)

In bending and shear the discs are modelled as linear elastic solids. Using

the principles of strength of materials theory [70], the following force and

moment equations are developed:




where Pl and P2 are:

and

where as shown in Figure 5.,

Y is to the left.

Z
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6E11 26x
(h—z) (+ - ey)/Pl (58)
6EI2 EEX
( 7z ) (= + 6)/p, (59)
(&) @ 5 +4,8) (60)
h 1 "2 272
(—2) [ = + (P#3) 6_ ] (61)
EIl -66x
(-hP—l) [T + (P1+3) By ] (62)
JGo, /h (63)
12EIlkx
1+ 3 (64)
GAh
12EIlk
1+ —-—2—1 (65)
GAh

is in the axial (up direction, X is forward and
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The ligaments are modelled as non-linear elastic bands capable of exerting

force only in tension. The force-displacement relation is taken as:
F=26+ 24 (66)
1 2

The muscles are modelled as two-parameter, visco-elastic solids, which,
like the ligaments, only exert force when in tension. The force-displacement

relation 1is taken as:

F = mlG + m26 (67)

The joint constraints (limiting the relative motion of the bodies) are
modelled as one-way dampers. The force-displacement and moment-rotation relation

are taken as:

-cd for &0
F=
0 for &0
and (68)
-c§ for 6>0
M= !

0 for 6<0

where the damping constant is

C° + Cl(X—Xmax) for X > Xmax

C = C° for Xmin < X < Xmax (69)

Co + Cl(X-Xmin) for X < Xmin




where X,Xmax, and Xmin are the values of the displacement or rotations variable

and its corresponding maximum and minimum values.

The values of these various constants for the discs, ligaments, muscles,
and joints for the various directions and motion are difficult to specify pre-
cisely due to a lack of experimental data. However, the values for the discs

may be obtained from Markold and Steidal [74], Orne and Liu [60], and McKenzie

and Williams [6]]. The ligament and muscle attach points may be obtained from
Francis [75], Lanier [76], and Todd and Lindala [77], with the spring and vis-

coelastic constants obtained from Nunley [78] and Close [79].

Governing Equations

The procedures developed in the foregoing parts of the report are directly é
applicable to the model of Figure 5. including the simulated disc, muscle, and &
ligament forces. Specifically, as noted earlier, the model has 54 degrees of ‘
freedom (27 translation and 27 rotation). This leads to a system of 117 simul-
taneous first-order differential equations of the form of Equations (18), (20),
and (54), The disc, muscle, and ligament forces are included in the generalized

active forces Fy of Equation (56).

Comparison with Experimental Data

It is difficult to obtain experimental data which is suitable for checking
the model. This is due to the expense and impracticality of using dummies,

cadavers, or animal surrogates and due to the limited experimental range with

human volunteers, However, several experiments have been conducted which may
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be used to obtain a validation of the model. In one of these, a seated cadaver
was subjected to head impacts by a rigid pendulum., Accelerometers were used t¢
measure the resultant frontal and occipital head impact forces and accelerations.
Using the impact force data as input, the acceleration was calculated using

the computer model. A comparison of the results for two of the/frontal impact

experiments, 6-2 and 6-5 is shown in Figures 6.-9.

In the same set of experiments, high-speed cameras were used to measure
the acceleration, velocity, and displacement of the mass center. A comparison
of the results with those predicted by the computer model for experiments 6-1

and 6-~2 are shown in Figure 10.

Finally, the model was checked against live human Jdata generated by Ewing
and Thomas [33] using elaborate testing facilities. A comparison of the results
for the head angular acceleration, angular velocity, and angular displacement

is shown in Figures 11., 12., and 13.
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DISCUSSION AND CONCLUSIONS

The results of using the modelling procedures outlined herein and numerically
integrating the resulting governing differential equations (54) for a number
of other physical systems (in addition to head-neck systems) are reported and

discussed in References [40,41,49,50,51,52,53].

i _ The application of Equations (54) with these systems, however, is based

on the use of relative orientation angles between the respective bodies of the
system as the generalized coordinates (xz) as opposed to the use of Euler
parameters and quasi-coordinates as outlined in the foregoing sections. A
problem which arises in the numerical solution of Equations (54) where orienta-
tion angles are used is that there always exists values of the angles and hence,
configurations of the system, for which the determinant of ) is zero. A
numerical solution will, of course, fail to converge at these singular configura-
tions of the system, and convergence is very slow for configurations in the
vicinity of a singularity. This problem 1s avoided by using Euler parameters

to relate the orientation geometry to the angular velocity.

The advantages of using Lagrange's form of d'Alembert's principle to
obtain the governing equations of motion for multi-body mechanical systems
has been exposited in detail in References [29] and [39]. Basically, this
principle has the advantages of Lagrange's equations or of virtual work in
that non-working internal constraint forces, between the bodies of the system,
are automatically eliminated from the analysis, and may therefore be ignored
in the formulation of the governing equations. The principle, however, has
the additional advantage of avoiding the differentiation of scalar energy

functiong, Indeed, the differentiation required to obtain velocities and




accelerations are performed by vector cross products and multiplication algor-
ithms -- procedures which are ideally suited for numerical computation. As
with Lagrange's equations, Lagrange's form of d'Alembert's principle requires
the use of generalized coordinates to define the system geometry. The use of
Euler parameters to avoid problems with singularities, as discussed above,
leads naturally to the use of relative angular velocity components as the
generalized coordinate derivatives. This in turn leads to additional compu-
tational advantages as observed by Kane and Wang [46] and Likins [54]. Speci~
fically, by using relative angular velocity components as the principle para-
meters of the amnalysis, the coefficient matrices in the governing equations
can be obtained directly from the body connection array L(k) (See Tables 1,

and 2.).

The use of "relative" coordinates, that is, angular velocity components
of the bodies with respect to their adjoining bodies, as opposed to "absolute"
coordinates, that 1s, angular velocity components in inertial space, also con-
tributes to the computational advantage. In applications with specific geo~
metrical configurations [40,41,49-53], it is seen that the geometry is more

easily described in terms of relative coordinates.

Finally, the generalization to allow translation between the bodies of
the system makes the analysis applicable to a much broader class of problems
than was possible with those previous analyses which are restricted to linked
multibody systems. For example, with the head-neck system, the use of trans-
lation variables between the vertebrae is necessary to obtain a satisfactory
model of the system. Moreover, this generalization to include translation is

a natural extension of the analyses of [33,42,49,50,51].
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Regarding the application to the head-neck system, Figures 7. - 13. show
there is agreement between the experimental results and rhose predicted by the
computer model, This is indeed encouraging and it suggests that this head-neck
model represents one of the most sophisticated models available. However, more
testing and refining needs to be done. Specifically, the three-dimensional

features of the model need to be further checked with experimental data. Also,

better experimental values for the soft tissue mechanical properties need to
be obtained. Finally, the effect of muscle time delay needs to be incorporated

into the model.

Beyond this, as injury criteria becomes better established, the model can
serve as an effective and economical tool for predicting injury in a variety
of high-acceleration/high-accident configuration environments. It could then

be used for the development and design of safety and restraining devices.

Finally, the entire analysis and the procedures outlined in this report
are developed with the intent of obtaining efficiencies in a computer or numeri-
cally oriented development and solution of the governing dynamical equations of
large multibody systems. As such, its most productive application is likely

to be with systems such as finite-segment biodynamic models, chains, cables,

robots, manipulators, teleoperators, etc.
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' Figure 5. The Head-Neck Model
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