— — m— — I

D"MI&Z 099 CARNEGIE-HELLON UNIV PITTSBURGH PA DE-F;T OF COMPUTER =-=ETC F/G 9/2
CHEAP PRODUCTION OF JAPANESE DOCUMENTS, AN EXPERIMENT IN PROGRA=-ETC(U)

JUN 78 I KIMURA F44620- TS-C-OUTIl

UNCLASSIFIED CMU=CS5-78-130 AFOSR=TR=1495

END

DATE
FILMED

.-—78

Do

r——-ﬁ—ﬁ"_

"I“ | 0 e B2
= P

TR
=

122 It ne

/" CMU-CS-78-138"

| o)) &
oF | 5
O Cheap Production of Japanese Documents,
; o) an Experiment in Programming Methodologys
it
: c lzumi Kimurass
| <<
| Q) Carnegie-Melion University
} < ' and
Tokyo Institute of Technology
June 30, 1978
(o 18
o |
)
= DEPARTMENT
[
= Of
[

COMPUTER SCIENCE

Carnegie-Mellon University

Approved for public release; i

b] 2 Q_._4 1 3 6 distridbution unlimited,
i “mm~ua—.‘m&.w . TREv— . 'M%,m.&m»-«-:f-;;_ L i .1k 4 D s s 1l

e

/¢y CMU-CS-78-138

[_/ | Cheap Production of Japanese Documents,
an Experiment in Programming Methodologys—+——-

J e A Izunzi/‘(iir;uraft

Carnegie~Mellon University

and
: : == Tokyo Institute of Technology 2
g :)| = Junem;sw 7
v d - 8l s .
D/ /= - ’
/)
/£)17 '

- ——— —— — ——— - - - — - -

s This work was supported in part by the Advanced Research Projects Agency of
the Department of Defense under contracts DAHC 15-72-C-038 and
#44620-73-C-0074 (which is monitored by the Air Force Office of Scientific
Research), and in part by National Science Foundation Grant DCR 74-04187.

*xVisiting CMU from T.LT. Present address: Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pa. 15213. From September 1978 on:
Department of Information Science, Tokyo Institute of Technology, Ookayama,
Megurokuy, Tokyo 152, Japan.

AIR PORCE OFFICR OF QOAIENTIPIC RESFARCH (AFSC)
NOTICE OF T ; L IO DDC

This tect

approv

Distrii «

A. D. Bl

Techuicnl luaw oimation UII

3

is
12 (7b) s

Abstract

This paper describes a small experiment in programming methodology. The problem
is-to do something nice forsthe production of Japanese documents in a given
environment. The assumed environment is that of the Department of Computer
Science, Carnegie-Mellon University (CMU). The experiment is done by a one-man
team consisting of the author. The process involves four factors: (1) preparing data,
(2) finding the properties of the computing environment, (3) designing the user
interface, and (4) actually writing a program. —~All these proceeds in parallel, and
results in an inefficient but well-considered "mock-up", on which a more efficient
production version can be based. ;The program, written in Snobol 4, accepts a sort
of romanized Japanese. The output, printed on the Xerox Graphics Printer of CMU,
makes mixed use of the hirakana and the katakana characters, but the kanji (Chinese
characters) is excluded. At the focus of attention is how the general shape of the

software is determined, ie., requirement analysis in the broad sense. /We try to .

support the developer’s imagination. For this purpose we combine disciplined and
undisciplined life-styles. Relations to the works of Sandewall, Kernighan and
Plauger, and others are discussed. The first half of this paper also serves as a
user’s manual of. the product. -

Key Words and Phrases

Software engineering, programming methodology, requirement analysis, text

processing, Japanese documents, manpower limitation, Snobol, Xerox Graphics Printer, -

controlled sloppiness, left-corner construction.

Chapter 1. INTRODUCTION

1.1. AN OUTLINE

This paper describes a small experiment in programming methodology. Given a
rather fancy computing environment, and severely limited developer’s time, a small
system for producing Japanese documents is developed. We are interested in
programming in an exiremely broad sense. We expect at least four parts in it: (1)
preparing data; (2) finding the properties of the computing environment; (3)
designing the user interface; and (4) actually writing a program. Certainly, these
four parts are essential in any data processing system. We wish to see how these
factors interact, and how they can be controlled.

The computing environment assumed is that of the Computer Science Department,
Carnegie-Mellon University (CMU) with its big PDP-10 and a special on-line printer
called the Xerox Graphics Printer (XGP)[11 The time spent is about one half of four
months of the author (perhaps 400 man-hours), excepting the time for
documentation per se. The resulting system handles only phonetic characters in a
style often found in children’s books. The more standard, adult’s notation is found
by far too costly for us. The program, written in Snobol 4, is a mock-up. It is big
and slow, but such that you can actually use it to get experience. In writing the
program, language-specific tricks have been avoided as far as possible. The
program can be used, if desired, as a pattern for developing a more efficient
version later.

In this experiment, we are particularly concerned with the conception stage of
software development, i.e., requirement analysis (or requirement definition){2] in the
broad sense. Our focus of attention is to determine the general shape of software
in such a way that the usefulness of the final product is maximized within the given
environment.

The single most important criterion we choose for assessing our success or failure is
whether the effort is a fun for us. The reader is urged not to misunderstand. The
motive of this research is of course completely serious. The development of the
general shape of software requires the developer’s imagination. This is particularly
true when the subject matter is not fully understood yet. The process must be a
fun rather than a frustration, since otherwise the developer might subconsciously -
skip tiresome details.

The author’s method somewhat resembles the Lisp user’s life-style described by
Sandewall[3} In fact, experience indicates that their (in a sense) undisciplined
method does have considerable merits of its own. We believe that our approach
well compensates the drawbacks, which their method would have in a production
programming environment. Our method is also related to “left-corner construction®

of Kernighan and Plauger[4].

In the rest of this chapter, we shall say some more about our motivation (Section
1.2), the particular problem chosen for this case study (Sections 1.3 through 1.5),
the computing environment (Section 1.6), and the scope and the nature of our
solution (Section 1.7). Chapter 2 gives a manual-like description of our product.
Chapter 3 examines how we reached it. Chapter 4 makes some additional remarks.
The Appendix gives a short summary of this paper in Japanese.

This paper has been typeset by our system ilself. Some manual postprocessing
(numbering the pages and arranging the figures) has been necessary since our
system is a mock-up, and has a number of unimplemented features (Section 2.3).
There is a plan to fill these holes.

1.2. MOTIVATION

When "structured programming” and other modern programming ideas became widely
known, words of abhorrence came from those who were developing software for
their own research purposes in such areas as physics, chemistry, and automatic
programming. They claimed that in research, programming could not be preplanned,
and that imposing discipline would suppress freedom of thought. It was apparent
that some of them were just trying to justify sloppiness for sloppiness’ sake, but
looking back, considerable wisdom is found in what they said at that time.

They do prugramming as parts of their research, a process of discovery. The
results today could affect what they do tomorrow. I[f they are to wait until the
problem becomes so well-defined that, say, a predicale can be written for specifying
the product, they cannot start until their research is over. They program for
something unknown. They must start anyway.

We have a similar situation in the conception stage of software development. We
don’t know exactly what the product would look like eventually. We cannot wait
until everything becomes clear. We, too, must start anyway.

The question is, then: "How should we program for an unknown problem?” We will
find an answer to this question through a case study.

1.3. THE READABILITY AND NON-WRITABILITY OF JAPANESE

We now talk about the problem area considered.

Documents in Japanese are known for high readability. This is certainly true with

typeset documents. People can read very fast without special training for doing so.
There are no fast-reading courses in Japan. Well-educated adults can read fast
anyway. ‘

For example, the first two sentences of the preceding paragraph would read
BAREOXERRATTOL TN TS, EFTHATHZIEG. LUAITEILSJLh TS,

Keywords such as BA$% (the Japanese language) form compact units, and assist the
reader to grasp the meaning very quickly. No spaces are used. They are not
necessary. The boundaries of the words are apparent from the changes of the
fonts.

The Japanese written language has a large character set. There are three classes,
of characters: (1) the HIRAKANA: about 50 syfiabic characters for common use; (2)
the KATAKANA: about S50 corresponding syllabic characters used mainly for
representing imported Western words; and (3) the KANJI: more than 2,000
ideographic characters originally imported form ancient China. In technical articles,
(4) roman alphabetic characters and (5) mathematical symbols are also used. (By
KANA we mean both the hirakana and the katakana.)

In the usual practice, important concepts are represented by 'strings consisting
solely of, or at least starting with, either the katakana(2) or the kanji(3), with the
gaps filled by the hirakana(l) indicating grammatical relationships. (For example,
BAES of the above consists solely of the kanji characters.) Because of their origins,
the hirakana includes more curved strokes, while the katakana and the kanji
essentially consists of straight line segments. They can be distinguished at a glance.
Japanese documents are originally "underiined”, so to speak, for important concepts.

This story, however, has a dark side: writing in Japanese is a very tedious and
time-consuming job. The standard method is to write by hand on special sheets
with preprinted boxes, filling one box with one character, and have the document
typeset manually by a craftsman. Human labor involved is tremendous. Japanese
scientists often grieve that they are definitely inferior to their Western colleagues in
the quantity of pulp they are consuming. Their handicap is now becoming more
prominent due to the advent of computerized document preparation. As far as
technical articles are concerned, the author has less mental barrier when he writes
in English than in Japanese even though the former language is not native for him.
In English, he can do touch-typing, and edit the text within the computer.

In addition to scientific papers, letters cause difficulties. In writing a letter in
English, we can ask a secretary for help. No such help is available for a letter in
Japanese. Unless you are a V.1P, you are supposed to write yourself by hand. (If
you are one, trained secretaries will write very neatly, or type on a "Japanese”

typewriter, Section 153, for you.) The process is again tedious, and
time-consuming. Worse, there is a tradition in Japan that if you don't write neatly,
people tend to doubt your sincerity. The Japanese people, even businessmen, often
avoid letters, and prefer telephone calils.

In our case study, we shall try to do some nice things for helping the preparation
of Japanese documents. In particular, we wish to help researchers in their
everyday tasks.

The following two sections will give more information about the Japanese written
language. This material is for the non-Japanese reader. The Japanese reader may
wish to skip it.

1.4. THE HISTORICAL BACKGROUND

Originally, the Japanese language had no written representation. Characters were
imported from ancient China, and, besides for writing Chinese documents, used for
representing the Japanese language in phonetic approximations. The use culminated
in the sixth century in a monumental anthology "Man’yo Shu®, which recorded
creations of all classes of people_, from emperors to lowest-level soldiers, in that
form.

Later, from the nineth centry on, shorthand phonetic notations for the Japanese
syllables developed. There were two kinds, the hirakana and the katakana
mentioned earlier.

The hirakana was derived from very quickly written forms of Chinese characters,
and used mainly by women. One memorable event was that "The Tale of Genji" was
written by Lady Murasaki from the late tenth to the early eleventh century. This
great roman, known to the Western worid by a translation of Arthur Waley, was
written entirely in the hirakana.

The katakana, on the other hand, extracted some of the strokes from the Chinese
characters. Its main usage was for putting memos on Chinese documents for.
facilitating the reading. Among the typical users were Buddhist priests, who had to,
chant sutra (Buddhist scriptures) in services.

Since then, the hirakana and the katakana coexisted with the kanji (Chinese
characters). These three were mixed in various ways. The hirakana was held to be
a more emotional and less prestigious script. The katakana, on the other hand, was
used in more political and religious situations, usually in combination with the kanji,
and in that form tended to be a prestigious script.)

A A -

This situation has changed in the long run. The hirakana has become more standard.
As noted earlier, the present practice is to use the hirakana as a glue for
grammatically connecting important concepts represented mainly in the kanji and the
‘katakana.

1.5. PAST ATTEMPTS OF MECHANIZATION

We shall now examine the past attempts of mechanizing the production of Japanese
-documents[5]. There are five classes:

(1) Romanized Japanese on ordinary typewriters;
(2) Katakana typewriters;

(3) "Japanese” typewriters, and kanji teleprinters;
(4) Hirakana typewriters;

(5) Recent computer-based systems.

1.5.1. ROMANIZED JAPANESE

The first solution is an obvious one. Early attempts of romanizing Japanese date
back to the sixteenth century, when Catholic missionaries tried to record the
Japanese spoken language of that time in the roman alphabet. Later, in the
nineteenth century, an American missionary James Hepburn developed a system
based on the English pronunciation. His system, after some modifications, became a
standard. It is now called the Hepburn system of romanization.

Still later, other systems developed, namely, the "Japanese™ and the official systems.
Unlike the Hepburn system, which basically transcribed pronunciation, the Ilater
systems attempted to be more faithful to the grammatical structure of the Japanese
language. (This considerably sacrificed the fitness of the notation to the English
context.)

Romanized Japanese has the great advantage that ordinary typewriters can be used
almost unmodified. Unfortunately, this notation is very redundant, and hard to read.
One reason is that the words of Chinese origin, usually written in the kanji, often
degenerate. For example, there are at least nine distinct words which are read
"seisan". They are represented by different combinations of Chinese characters, and
have different meanings: a formal dinner, production, prospect, cyanic acid,
ghastliness, liquidation (of a company and the like), the age of an emperor, the Holy
Communion, and an exact calculation. The recent tendency is to use these
ambiguous words less and less. This big problem, however, is expected to remain
for a long time to come.

2 U4 109

— d

For these reasons, romanized Japanese has not been accepted socially as an
everyday tool. The editor of a scientific journal would never accept your paper if it
is written in this style.

There is another unfortunate fact. The birth of the later systems caused a political
controversy. There are differences of practice even within the Japanese
government. The Ministry of Foreign Affairs insists on the use of the Hepburn
system. Your name will be automatically spelled according to it in a passport. On
the other hand, the Ministry of Education sticks to the official system. The
employees of some of the research institutes belonging to the latter Ministry are
supposed to publish papers with their names spelled according to the official
system. (This has caused difficulties to the authors when they travel overseas.
People in foreign countries sometimes doubt their identities.) Under these
circumstances, it is safer to avoid writing letters in romanized Japanese. People
might guess that you are a fanatic adherent of that particular system you use.

r 1.5.2. KATAKANA TYPEWRITERS

| " This second solution has a history of more than 50 years. The katakana was
pushed into the ordinary typewriter. This solution requires spaces because withcut
them the word boundaries would be very difficult to detect. This is in conflict with
the standard practice. (Of course the romanized notation also requires spaces.)
Moreover, just as with romanized Japanese, imported Chinese words cause problems.

Despite these difficulties, it was adopted by some forward-looking businessmen.
This notation is at least better than the first one because it is less redundant, and
: the characters are native. Its typical use has long been in writing business slips.
After the advent of computers, people began to print mail addresses also in that
style. However, it is still rather redundant, and hard to read. It 1s acceptable only |
in in-house documents. Business letters are seldom written in the katakana. It
cannot be an everyday tool of a scientist. ;

1.5.3. "JAPANESE" TYPEWRITERS AND KANJI TELEPRINTERS

The third solution attacks the problem from the opposite side. A "Japanese”
typewriter has a matrix of types, including all classes of characters used in the
Japanese language. The characters are selected from the matrix by operating a
handle, and another handle is used to hit the type to cause the character to be
| printed. Even simplified models have thousands of entries in the matrix. Touch

typing is impossible. Heavy training is necessary. Typing speed is of the order of
‘ one character per second. The result is very neat, and comfortable to read. Legal

documents are often typed in this way. Recently, low-cost models became popular.

Some researchers are using them for preparing camera-ready versions of their
papers, but one short paper often costs them one full day. Editing is impossible
except by cumbersome means such as correction fluid and pasting over. Again, this
cannot be an everyday tool.

A related subject is the kanji teleprinters. Early users include newspaper
companies. In a typical system, two frames on a paper tape correspond to a
character, which is chosen from a rotating drum, and printed at about the same rate
as the “Japanese" typewriters are typed. Here, editing is possible, but the machine
is bulky, and very expensive.

1.5.4. HIRAKANA TYPEWRITERS

The fourth solution is a recent addition. It is based on the observation that, after
the invention of the katakana typewriter, the hirakana became much more common
than the katakana. Basically, the hirakana typewriter is same as the katakana
typewriter, but the types are replaced. The resuit is much easier to read.

The necessity of spaces and the degeneration of Chinese words are drawbacks
which this solution shares with the first and the second solutions. The most
uncomfortable aspect of this style lies in that the imported Western words must be

spelled in the hirakana. They should rather be spelled in the katakana. The'

Western words spelled in this way give the impression that the writer is fooling the
reader. (They are at least as unusual as "beethoven”, “texas”, or even "ibm".) Since
scientific papers use Western words very often, there is little hope for this style to
be tolerated by the editors of scientific journals. All in all, however, this is the
least offending style among those based on ordinary typewriters. In fact, children’s
books are now usually written in this style.

1.5.5. RECENT COMPUTER-BESED SYSTEMS

Finally, the fifth solution. The main commercial usage is found in printing mail
addresses. (Katakana addresses often cause errors in the post office, and are not
polite to the recipients.) Various high-speed printing devices are available.
Xerography, dot-printing, holography, and other technologies are used. The printers
are still very expensive, but, according to the common understanding, the bottleneck
is not in the output but in the input. A classical solution is to use the kanji
teleprinter input device (the third solution), but this requires roughly one second
per character. A special proprietary touch-typing method using an ordinary
typewriter keyboard has been developed, and is said to attain a 200 character per
minute rate, but the method requires a hard training. As many nonsense
combinations of key strokes as are the Japanese characters must be memorized,

10

though efforts have been made to assist the memory by associalion. Research is
also going on for automatic kana-to-kanji conversion. Although some success has
been reported, perfect conversion appears to be almost impossible. The biggest
reason is the degeneration of the words of Chinese origin (discussed earlier).
Remember that there are nine "seisan"s. Once more, this solution is, for now, far
from providing a cheap everyds tool which an average researcher can afford.

In passing we note that a Japanese Industrial Standard (JIS) has recently been
issued on the encoding of Japanese general characters including the kanji. In the
author’s opinion, this is one great step ahead.

1.6. THE COMPUTING ENVIRONMENT

This research began when the author found himself in a fancy computing
environment of Carnegie-Mellon University(CMU), Department of Computer Science.
In particular, there was a special printer called the Xerox Graphics Printer (XGP).
This device can print various fonts and figures. The author feit a strong incentive
toward doing something about Japanese document production using this device. We
now briefly describe the pertinent part of the environment.

The XGP of CMU[1] (the printer itself) is, in a grossly oversimplified description,
something like an ordinary Xerox copier in which images created by a
computer-controlled cathode-ray tube is used in place of the reflection from an
original document. It has a printing drum rotating at a constant speed. Dots are
deposited on it typically with the density of 183 dots per inch, both lengthwise and
breadthwise. The printer uses a 85 inch-wide roll of ordinary paper, which
advances at the rate of about | inch per second. A computer-controlied paper
cutter can be used to cut the paper at, say, every 11 inches.

The printer is controlled by a dedicated DEC PDP-11/45. In our mode of usage, the
bit table area for storing font information has the capacity of approximately 15K
words (1 word = 16 bits). (The core has 28K words in all.) Usually, the font
information is first stored in a 256K fixed-head disk, and is loaded to the core as
required. The number of dots which must be handled is so large that even with this
powerful dedicated machine the limitation of its power often causes frustration.

The PDP-11 computer is in turn coupled to a general-purpose PDP-10 (a KI-10).
The user operates the XGP by feeding commands to a program called LOOK[1a]
runing on the PDP-10. In the application of this paper, the commands might look
like

.r look
sdo ship hira30/538

11

xdo ship kata30/539
stext.xgo

The first line activates LOOK. The second and the third lines instruct that font
information for the hirakana and the katakana be sent from the files "hira30" and
"kata30" of the PDP-10 to the internal disk of the PDP-11 as fonls Nos.538 and
539, respectively. The fourth line instructs to send the text file “text.xgo" from the
PDP-10 to the POP-11.

There are much more details. For example, the PDP-10 connected to the PDP-11,
called the B-system, is not for the general use. It is primarily for artificial
intelligence research (and in particular, Speech and Vision research). Accordingly,
the non-Al users must first log in to another PDP-10 (the A-system, a KL-10), and
gain access o the B-system by a special trick called cross-patching. We shall avoid
to enter into installation-specific details by sometimes telling a lie. :

Due to the limitation of the PDP-11’s main storage, LOOK can simultaneously handle
only two fonts, each of which can contain no more than 127 characters. The
characters belonging to the two fonts may be freely mixed. If more variation is
desired, the fonts must be swapped with others in the disk. The processs 7equires
some time, during which the printing drum of the XGP advances. For this reason, a
line can contain only those characters belonging to the two currently loaded pair of
fonts. The two in-core fonts are called the A- and B-fonts.

LOOK interprets control codes embedded in the text file, and performs various
functions such as choosing one of the two fonts, swapping the fonts, underlining,
and overprinting.

More particularly, the rubout code (octal 177) serves as an escape code. The next
character (code character) determines the action. For example, a Carriage Return
code (octal 15) causes the B-font to be used. Currently, octal O through 71 are
used for code characters. A number of characters that follow sometimes act as a
parameter to the control code.

In the normal usage, the user does not generate a LOOK-readable text file directly.
Instead, he uses ‘a text editor to generate a mixture of the printed text and certain
commands. It is then converted by a suitabie se:vice program into a LOOK-readable
form. When this project was begun, a program called PUB(6] was standard for the
conversion, but it was rather hard to use, poorly documented, and very slow (partly
because it was based on macro processing). Later, a much faster and cleaner
conversion program called SCRIBE was announced by Brian Reid(7], but was not
available when we started.

Our project involved the task of developing Japanese fonts. Fortunately, this could

L l - - . .

be done rather pleasantly with the help of a graphic display and a font editor called
BILOS[8].

1.7. A PREVIEW OF THE SOLUTION - MIXED KANA-ENGLISH DOCUMENTS

We very much wished to build a system which produces the standard mixed
kanji-kana documents, but its impossibility was aimost apparent from the outset.
What we built was, so to speak, a combination of all the previous solutions based on
ordinary typewriters (Solutions 1, 2, and 4 of Section 15.) In our notation, the
sample sentences of Section 1.3 talking about the readability of the Japanese
written language read

IZIEAS O FEZAVE I E&PTO 2¥ T UBHT 03, hoU T <AT &3 &L, kLD
12 #3005 2% b DEB. ;

Here, we made a change in the choice of words in order to demonstrate the mixed
use of the hirakana and the katakana. The English word "document”, previously
translated into a word of Chinese origin, has now been translated into a phonetic
transcription (in the katakana) of the Western word, though some peopie hate these
"katakanized” terms (just as Frenchmen are famous for hating imported American
words). Words of Chinese origin are preferred. (Ironically, they are alsa imported
words.)

We trust that even the non-Japanese reéder will recognize the word in question. It
is F¥2AUb. Its non-Western counterpart

x¥

can also be spelled in the hirakana as BAULZ, although this latter notation does not
stand out, and appears somewhat childish for a Japanese eye. Thus, still another
(childish) style we can produce by our system is

2EAS O awkbe [E&ETO 22 T UAHT 13, $IU T <AT &3 &0, £Uh <
%3505 2¢ # LS.

More detailed discussion of our product will be made in the next chapter.

T T

g Ny —————

Chapter 2. A DESCRIPTION OF THE PRODUCT

In this chapter, we describe our product. Section 2.1 gives an overview. Section
2.2 gives a more complete user’s view of the system. Possible enhancements are
discussed in Section 2.3. We emphasize that what we describe here is a half
product, i.e., a mock-up. The central issue of this paper is how to determine the
general shape of the software. The present form is sufficient for this purpose, but
for arriving at a production quality software we must do more.

2.1. A QUICK INTRODUCTION TO THE USER'S VIEW

Let us first give a brief, help-message-like.description of our system. We note that,
in the operating system we use, the uppercase 'and the lowercase characters have
the same meanings as far as the monitor commands are concerned.

The user prepares his text in a sort of romanized Japanese. See FIG.1 for a sample
input. This is a hypothetical letter from the author to his Japanese friends. The
format basically follows the Hepburn system, but whenever possible, other systems

"are also accepted. The user is requested to keep the kana representation in mind.

Thus, he should type "ha" for the case-defining particle spelled "wa" in the standard
systems of romanization, and "wo" for that one spelled "0". Also type “ookii" (big),
and "oyakoukou” (being kind to one’s parents). Other somewhat unusual examples
are:

tsudzuki for 97¥ (continuation)
Be-to-ven for N—=bF="1 (Beethoven)
sofutowwea for Y72+217P (software)

Thus, elongation of the vowels is represented by a minus sign. The user must type
"wwe" in "software” because we wish to reserve "we" for the special character &
used in the classics. In fact, some Japanese linguists actually pronounce X as "we"
in order to distinguish it from usual X ("e"). The conversion from the romanized to
the kana representation (heretofore termed ROMAN-KANA CONVERSION) is driven by
a table of a self-explanatory format. The user may wish to change it.

A "<" forces that part of the word following it to be printed in the katakana. A "7"
forces the printing in roman alphabetic characters. A ">" forces the use of the
hirakana. These "shift codes” are effective only up to the next shift code, a space,
or the end of a line. However, a double occurrence of these shift codes, like “<<",
acts as a global shift code, and forces everything up to the next shift code to be
printed (whenever possible) in the designated case.

The user may omit some of the shift codes. A syllable is printed in the hirakana

e e —————————— it SSe

T ——

14

1978nen Bgatsu 3Bnichi

Nihon no minasama,

Gobusata itashimashita. Kotoshi no Nihon rettou ha karatsuyu
no yoshi, okawari mo gozaimasen ka.

CMU no XGP wo tsukatte goaisatsu moushiagemasu. Ima ha
ro-ma>ji de utte imasuga, ro-ma>ji ha ro-ma>ji demo kore ha henna
ro-ma>ji de, tatoeba %¥tsuzuki to utsu to tsuzuki ni natte shimau
node, %tsudzuki de naito ikenai noga tsurai tokoro desu.

Gokenkou wo inorimasu.

Pittsuba-gu nite
Kimura Izumi

Fig.1: A sample input.

g8e1ea8 {bcl} {2,538} {b,533] (bjon} {ju,1838] {pad, B} {ecl}

882088 {t, 716} {ual >»e»_H] e6 {bak,8! 1B UcFA

88300

88588 FNI1 1 PE;Q$8

088584

080608 {t,471: {bak,8] T {bak, 8! *;@ 2e<0<e! :0< I FN] Z/03 J 6WBU I V
— <8$ 56\X S : {bak,8} *; (bak,8} 120>} 6!

~ gosaa {pad, 18398} {t,47) lublcmu {uall {ublxgp {ual8 BB/C : {bak,8!112;

B S3<19{bak,8} 10=! 20 J {ub) [80 fual < {bak,8) % Cibak,81% 3/C 2
0«6 {bak, 8118 {ubl (80 (ua} < Ibak, 8} *

883988 J {ubl (80 {ual <{bak,8! % Clbak,8}1S 1Z J MIE f{ub) [BO {ual < {bak,8
1* Cibak,8! 18 a@D4J{bak,8}* tsuzuki D 3B D B=i{bak,81%7 F E/C <
03 IC{bak,81 18

81808 {pad, 8} tsudzuki C{bak,8} % E2D 29E2 16{bak,8}* BW2 D: [Cibak,8

)t
g11e8
021200 {t,47): (bak, 8} 19):3 & 2IX0=!
81388

81400 {t,716) {ub)K Ibak,8) «/BJ{bak, 8} 188 {bak,81 1 {ualFC
a150e {t,779) 70U 2= {bak, 8} 1P

Fig.2: An intermediate result (a JPN-file) corresponding to Fig.l.

unless there is a reason otherwise. However, "Pittsuba-gu” for "Pittsburgh”,
printed in the katakana, requires no shift code. The rule is that those syllables
containing, in the converted form, one of the small "a®, "i", "u®, "e", "o" ("P43I4"),
or, in the original romanized form, either an elongation sign (-) or a "p" not
preceded by another “p" or "n" (or "m"), are printed in the katakana unless
otherwise forced by a shift code. Thus, "Pittsuba-gu” contains an elongation (-), and
begins with a "p". Those words, which are impossible to interpret as romanized
Japanese words (such as "CMU"), are printed in the roman alphabets. The ASCII
symbols are always printed as such. The exceptions are single quotes, double
quotes, periods, commas, and minus signs. If they are in the Japanese context, they
are suitably replaced by Japanese punctuation symbols or otherwise used during the
conversion.

The user should type his text in such a way that its general shape indicates the
format in which he wishes the final output to appear. The system makes guesses
based on the assumption that you are typing for a 69-character line. On the basis
of these guesses it attempts to transiate the text paragraphs into right-justified text
paragraphs, and the title lines into suitably indented title lines. Again, the
69-character assumption can be changed easily.

Presently, the conversion is done by a Snobol program. Although the prograrm can
be renamed in any arbitrary way, let us assume that the program is in the file
"MATOME.SNO". (Matome means "summing up” in Japanese.) The user types

.r sitbol
tmatome

The dot and the star are prompts from the system (DEC System-10 Monitor and the
SITBOL system, respectively). Since our program is big, and the Snobol dialect
SITBOL assumed here is not very fast, there will be some time before you get a
prompt

Input filename or [CR] or ?:

* You give the name of the file containing the romanized text (followed by a Carriage
Return). Assume that the name of the file is "TEXT". Then our program creates two
files for you: TEMP:TEXT.JPN, and TEMP:TEXT.XGO. The former (called a JPN-file)
contains an intermediate resull, which you can inspect if you wish. See Fig.2 for a
sample JPN-file corresponding to Fig.l. The JPN-files have long lines. "00100",
"00200", .. are line numbers added manually to show the beginnings of the lines.
This figure contains some non-ASCII symbols. They correspond to additional
characters with code values less than octal 40 (Section 2.2.10).

The latter (called an XGO-file) can be sent to the XGP. Since our program is

16

Snobol-based, and since no serious effort for speeding-up has been made, the
process usually takes a long time. It prints a "#" for every ten lines of the input
processed. Assuming that the file TEXT has 50 lines, the printout on your terminal
might be

from TEXT to TEMP:TEXT.JPN..#ssus
from TEMP:TEXT.JPN to TEMP:TEXT.XGO...##%2

(The second half of the processing usually gives fewer #’s because the filling of the
text paragraphs usually results in less output lines.) The system then returns with
another prompt

Input filename or [CR] or ?:

You may repeat the process as often as you wish. You may wish to type "7
(followed by a CR) to get a help message. When you are through, just hit CR, which
terminates the execution of the Snobol program. The computer returns to the
SITBOL system, and prompts you by a star. You will usually respond by a control-C
to return to the monitor, but you may alternatively activate another Snobol program.

You can now print the converted result by sending it to the XGP. Let us assume
for simplicity that you are on the B-system (see Section 1.6). You invoke LOOK by
telling the monitor as follows:

.r look
The system will answer you as
LOOK: Version ...

Type HELP for help
x

First you must load the Japanese fonts to the PDP-11’s disk (if it is not -already
loaded). You answer to the prompt(s) as

+cmd([c300ik40]

Here, we assume that a special user having the account number C300IK40 on the

B-system has a special file called CMD, which contains commands for causing

necessary font information to be "shipped® to the PDP-11. (CMD contains something

like the second and the third lines of the sample command sequence of Section 1.6.):

After the intended action is finished, you are told

*2<end of command file>
%

iz

Sometimes the system hangs up during the transmission of the font information for
some reasons unknown to the author. In that case escape to the monitor state, and
retry from the activation of LOOK on. In the second time, already-shipped font files
are skipped without transmission. Assuming that you successfully reached the end
of the command file, you type the name(s) of the file(s) you wish to print:
stext.xgo

(If you have more than one file, delimit the names by commas, or repeat the process
for another "+" from the computer.) You will get a printout on the XGP. A sample
output corresponding to Figs.l and 2 is given in Fig.3. When you are through,
answer to "+" with a control-C, to return tc the monitor.

Implementation-specific remarks.

1. Since our system involves the use of TEMP, the user is recommended to
declare this fact to the monitor in advance as follows:

.mount temp
2. TEMP files are automatically purged if they remain unused for about two
weeks. In the assumed environment, it is customary to put derived data such
as a compiled program in the temp area (structure).
2.1.1. NOTE - THE A-SYSTEM USER’S VIEW

This subsection is only for a CMU user. Other readers should skip it.

If you are on the A-system, you must invoke a program called BOOK, a special LOOK
invoker, as follows:

.r book
You are prompted as

Type /H for help
Files:

You answer by typing the names of the files you wish to print, with the "extension”
of the form ".xgo" implied. In this case you should just type “text", and hit CR.

18

1978RA 64D 30iz8
ISIEA O A%ZEE.
ShEE VELELR. 22U 0 ZFA #o25 F D329 @) L. Ehbh § SFOERA h,
CMU O XGP & oH5T J&LED $3UL&FET. L B 0-9U “(_531 LWETH, 0-vU
X 0-9U T8 241 13 AA% O0-vU T, £eadf tsuzuki ¥ 32 ¥ oF¥ I2 25T LES o7,
tsudzuki T 2002 LE%ZL OF D50 223 TF.
JHASS ® LO0ET,

Eyn-4 1zt
55 OTH

Fig.3: An XGP printout corresponding to Fig.l.

This causes a trick called cross-patching to take you temporarily to the B-system, in
which you will be prompted eventually as '

s<You are now cross-patched.>
%

You can now behave as though you are using LOOK on the B-system, with the
extension ".xgo" assumed in some cases. Type

x@cmd(c300ik40]

After proper response is received from the system, give the name(s) of your file(s),
with ".xgo" implied, as

stext

When everything is finished, type control-C to return to the controller of BOOK, and
tell it "q" for "quit” to return to the A-system. (If a hung-up occurs during the
transmission of the fonts, type controi-C, and tell the controiler "r" for “restart®)

2.2. A MORE COMPLETE GUIDE

We believe that the above brief explanation is enough for enabling the user to
begin experimenting with our system, but it is certainly incomplete. He may raise
numerous questions. For example, he might ask about the meaning of the following
(mysterious) sentence: "The user should type his text in such a way that its
general shape indicates the format in which he wishes the final output to appear.”
In this section, we give more information so that the user can answer these
questions himself. :

2.2.1. THE CONCEPTUAL SYSTEM STRUCTURE

Our conversion program conceptually forms a chain of data-transforming modules.
These are

a. Discriminator which looks at the general shape of the text, and locates text
paragraphs and independent title lines. The input is taken from the
user-supplied input file, and is a sequence of text lines possibly mixed with
page marks (dividing the input file into logical pages). The output of this
module is a sequence of TEXT BLOCKs, each of which may be an independent
title line, a paragraph (consisting of glued text lines), or a page mark
(dividing the output into pages).

b. Roman-Kana Converter which extracts syllables from the text blocks. Unless
instructed otherwise by a shift code, and if the syllable is sensible as a
romanized Japanese, it is converted into a kana representation. The output
is CONVERTED TEXT BLOCKs.

c. Paragraph Cutter which calculates the widths of the characters, and arrange
the paragraph lines to include just as many number of words that can be
accommodated within a line. This module also arranges independent title
lines. Right-justification is done by LOOK. Necessary control codes are
supplied by this module.

d. Assembler, which converts the symbolic control codes into a LOOK-readable
form.

Section 2.2.2 describes the Discriminator. The mystery mentioned above is cleared.
Section 2.2.3 through 2.2.5 describe the Roman-Kana Converter. Sections 2.2.6 and
2.2.7 describe the Paragraph Cutter and the Assembler, respectively. Sections 2.2.8
through 2.2.10 provide some more information.

Remarks.

1. The above reflects a simplified mock-up as of this writing. As noted earlier,
some additions are expected. For example, between (c) and (d), we expect a
paginator module.

2. In the actual Snobol program, the modules (a)~(c) have been implemented by
nested calls of functions. They are combined indivisibly. However, the
output from the Paragraph Cutter is given explicitly in a file. The user can
monitor it, or even modify it if he wishes. An example of this inlermediate
result has been given in Fig.2.

2.2.2. THE DISCRIMINATOR

The design of this module is an extension of a series of designs given in [10] and
[11] It attempts to save the user from the tedium of typing, as in [6],

fill; adjust; indent 10,10,5;
or, as in [7],
@enter(example,group)

It infers the user’s intention from the general shape of the input text, and formats
the output accordingly. It cannot do very fancy things, but can do most of those
services a researcher would need in his daily business. (His publisher will need
fancier formatters, but it is another matter.)

The module reads input lines from a file, locates text paragraphs by an algorithm
described below, glues the lines of each text paragraph to form a block, and sends
these blocks to the output. The input may also contain independent title lines and
page marks. They are sent to the output with no modification. Each paragraph
block sent to the output contains a text string and an integer LEFTMAR. In the
following description of the algorithm, we assume that the end-of-file condition and
the page marks are received from the input file as though they are special kinds of
input lines. '

In our algorithm, we look at the pairs of adjacent lines (call them CURRENT and
NEXT). The trailing spaces of the (ordinary text) lines are TRIMmed before beiig

processed.

If CURRENT is an EOF, the processing ends. If CURRENT is a page mark, it is sent to

22

the output, the old NEXT replaces CURRENT, and a new NEXT is obtained from the
input file.

Otherwise let the numbers of leading spaces of CURRENT and NEXT be CMAR and
NMAR, respectively. (If the line is empty, assume that it has 99999 leading spaces.)
We check whether

1. NEXT exists in the same page. (That is, CURRENT is not the last line in
the file, and there is no form feed between CURRENT and NEXT.)
2. Either CURRENT or NEXT has at least 40 (blank or nonblank) characters.
3. If CMAR > NMAR, then
NMAR < REFCOL + 4, and
CMAR < NMAR + 11.
4, If CMAR < NMAR, then
CMAR < REFCOL + 4, and
NMAR < CMAR + 7.

Condition 3 corresponds to a normal indented paragraph (including the blocked form
paragraph as a special case), and Condition 4 corresponds to a hanging paragraph.
The numbers 40, 4, 11, and 7 are tentative. We expect that the user will wish to
change them. REFCOL is a control variable, set initially to 0. See Fig.4(a).

We distinguish two cases.
CASE A,

If all these conditions hold, we start a paragraph. REFCOL is set equal to the
smaller of CMAR and NMAR. Besides, a control variable LEFTMAR is set equal
to NMAR. The subsequent lines SUBSEQ are checked for the following
condition:

SUBSEQ exists in the same page, and
either SMAR = 0 or |SMAR - LEFTMAR| < 2.

Here, SMAR is the number of leading spaces of SUBSEQ. Again, 99999 is
assumed for an empty line. (The condition SMAR = O is a trick for saving
the labor of the user when he is typing an indented paragraph. This is
again tentative.)

All the subsequent lines up to the last one satisfying this condition are glued
together to form a long text string containing all the material of the
paragraph. (See Fig.A(b).) In gluing the lines, the leading spaces of the
second and later lines in the paragraph are stripped off. Between the glued
lines are inserted two spaces if the preceding line ends either with a period,

T T

REFCOL
L 4

7 acs 11
Active area il #
b<7
P
|’_'_|
New REFCOL (a)
Col. _
e l LEFTMAR
S
oo < s
LEFTMAR
(b)
'—QQ—‘ ------------
! 2

Fig.4: The discrimination algorithm for text paragraphs and independent
lines: (a) Starting a new text paragraph, (b) ending a paragraph.

24

a question mark, or an exclamation mark possibly followed by one or more
right parentheses and/or double quotes. Otherwise, one space is inserted.
The resulting string and the value of LEFTMAR represents the paragraph,
which is sent to the output.

The scanning resumes with the first SUBSEQ violating the above condition.
This SUBSEQ serves as CURRENT, and NEXT is supplied from the input file.

CASE B.

If any one of the conditions (1)-(4) fails, CURRENT is regarded to give an
independent line, and immediately sent to the output as a text block. The
content of the block is the text string CURRENT. The old NEXT replaces
CURRENT, a new NEXT is obtained from the input, and the process repeats.

Fig.5 illustrates some extreme uses of this part of the system. Fig.5(a) is read as
input, and Fig.5(b) is printed.

2.2.3. THE ROMAN-KANA CONVERTER (1) - WORDS AND SYLLABLES

The text strings received by this module is regarded as a (possibly null) sequence
of WORDs surrounded by (possibly nuil) PADDINGs. Thus, text string (of either
independent title line or paragraph block) is of the form

<padding> <word> <padding> <word> .. <word> <padding>

A padding is a (mixed) sequence of (1) spaces, (2) shift codes (<>7), and (3)
symbolically represented LOOK commands (such as {ua}, Section 2.2.7). A word is a
sequence of characters that contains none of the above. (A word can contain
spaces and other special characters if they are escaped, Section 2.2.7.)

A word consists of one or more SYLLABLEs. An escaped character (Section 2.2.7)
always forms a syllable by itself. 1t is not subjected to roman-kana conversion
(Section 2.25). A span of non-alphabetic characters also forms a syllable. Again, it
is not subjected to roman-kana conversion. A non-null span of unescaped alphabetic
characters is an ALPHABETIC SYLLABLE. It is subjected to possible roman-kana
conversion.

We regard double qudtes, single quotes, commas, minus signs, and periods as
alphabetic.

The words are converted to corresponding sequence of (variable-width) characters.

25

%%This is a test data for showing how the Discriminator
module of MATOME works. A paragraph uWill end when the left
margin moves for more than tuo characters. In

this connection we assume that an empty |line has 393393 leading
spaces.
1. For example, this terminates the preceding paragraph,
and starts a neu one. A typical use of this facility
is in numbered paragraphs.
2. Here, the left margin moved for more than two characters.
Therefore, a new paragraph was begun.

Let’'s return to the original style. This is an
indented paragraph.

This is not. This is a block of independent title
lines, because the second line of the block has been
indented too deeply.

Aiso note that the third line in the numbered paragraph
1 has no leading spaces. This is a trick for making the tuping
easier.

(a)

This is a test data for showing how the Discriminator module of MATOME

works. A paragraph will end when the left margin moves for more than two
characters. In this connection we assume that an empty line has 99999 leading
spaces.

1. For example, this terminates the preceding paragraph, and starts a new
one. A typical use of this facility is in numbered paragraphs.
2. Here, the left margin moved for more than two characters.
new paragraph was begun.
Let’s return to the original style. This is an indented paragraph.
This is not. This is a block of independent title

lines, because the second line of the block has been
indented too deeply.

Therefore, a

Also note that the third line in the numbered paragraph 1 has no leading
spaces. This is a trick for making the typing easier.

(b)

Fig.5: Extreme uses of the discrimination algorithm:
(a) input; (b) output.

26

The blanks within the paddings are likewise transformed into as many blanks, which
is later expanded by the LOOK right-justification feature (cf. Section 2.2.7).
Resulting sequences of words and paddings are sent to the Paragraph Cutter
(Section 2.2.6).

Remark.

The above definition has some drawback in that, if the unit of the filling and
the right justification of text lines are taken to be the words in the above
sense (a natural choice), then a word containing both the katakana and the
hirakana characters could be cut over the lines. For example, o-vU
(romanized Japanese) may be cut into O-V and U. It is perhaps more
natural to introduce one additional level in our definition, defining our words
to be delimited by either spaces or line boundaries, and allow them to
contain shift codes. Qur present definition is given unmodified because much
more experimentation seems necessary before we can decisively tell the
gains and losses of these definitions. It may be that we should rather
change the filling procedure.

2.2.4. THE ROMAN-KANA CONVERSION (2) - CASE SHIFTING

This part of the module is used as a subroutine by the main part described in the
preceding subsection.

The case shifting is controlled by three variables: GLOBSHIFT, LOCSHIFT, and
VERDICT. The possible values of these variables are:

GLOBSHIFT: empty, "<", ™", and "7" ;
LOCSHIFT : empty, "<", ™% and "7%" ;
VERDICT : "<, or ™"

In a left to right scan of the input text, the cccurrences of "<<", ">>", and "77" set
GLOBSHIFT to "<", "™>", and "%", respectively. They set LOCSHIFT to empty.

Similarly, the occurrences of "<", ">" and "72" set LOCSHIFT to "<, ">, and "7",
respectively. They set CURSHIFT to empty.

Just before a padding is scanned, LOCSHIFT is set to empty. GLOBSHIFT is set to
empty at the beginning of a new input file.

An alphabetic syilable is regarded to be a syilable in English (no conversion) if

27

LOCSHIFT followed by GLOBSHIFT

starts with a "2". Otherwise, a roman-kana conversion (Section 2.2.5) is attempted.
If the conversion is unsuccessful, then the syllable is again regarded as a syllable in
English. If the conversion is successful, a “katakanization™ condition (discussed
shortly) is checked. I[f the condition holds, the VERDICT is given the value "<". If it
does not, the value of VERDICT is ™" The first character in the concatenation

LOCSHIFT followed by
GLOBSHIFT followed by VERDICT

determines the case. If it is ">", the syllable is printed in the hirakana. If it is "<",
the syllable is printed in the katakana.

The katakanization condition currently used has been described In Section 3.1. In
the Snobol code, it reads as follows:

KATAPAT = ANY("()++0")

+ | 31
+ | ((POS(0) | NOTANY('}/*)
+ ('.r ' ’K' ' ‘L‘ ' 1M’ I ON’) i-')

From the single quote to the plus sign in the first line corresponds to the small
"PAILA", "0" to the elongation sign, 31" to "4" from "J" through "N" to "\EJAK",
which are converted into “/\EIAAR" by "_" (corresponding to the circle accent sign).
")/" corresponds to "n" (A) and the small “"tsu” (5). This Snobol pattern may be
changed if desired.

In the above explanation, the "occurrences” of ">", ">>%, and the like more precisely
mean the following. A span of "<", ™", and "I" is extracted and examined. If it is
of length more than 1, and if the last two characters are equal, then these two
characters are read as "<<", ">>% or "77°. Otherwise, the last character indicates
e e] i

Remark.

In the above, LOCSHIFT is set to empty if "<<%, ">>" or "Z7" is encountered.
However, this is not necessary if our current definition of the word is sticked
to. LOCSHIFT is set to empty anyway before one of these code combinations
is processed. We require the above, and have actually coded to that effect,
since we anticipate changes in the definitions as discussed in the Remark of
the preceding section.

28

2.2.5. THE ROMAN-KANA CONVERTER (3) - THE CONVERSION ALGORITHM

This part is another subroutine for the main part (Section 2.2.3).

The conversion

from

the

romanized

form into kana characters (roman-kana

conversion) is governed by a table. An edited form of the table looks as follows:

P

Ana»s_b:'N'Ul"Q('

ke: I
ko: 2
sa: &
shi: U
si: L
su: 7
se: ¢
so: ¥
ta: =
chi: 3
ti: Tu
tsu: 2
tu: ¥3
te: T
to: ¥
na: ¥
ni: i<
nu: 8
ne: R
no: M
ha: I
hi: ¥
fu: &
hu: &
he: A
ho: |1E
ma: ¥

S mi: & myu: & ja: Le
mu: & myo: &x zya: LUe
me: & rya: D ju: Ug
mo: & ryu: D zyu: Un
ya: ¥ ryo: D& jo: Uk
yu: ¥ ga: i zyo: Uk

yo: & gi: ¥ bya: U
ra: 5 gu: < byu: Uy
ri: O ge: If byo: Uk
ru: 3 go: > pya: tfo
re:t za: ¥ pyu: Uw

ro: 3 jir U pyo:

wa: D zi: U dzi: ¥
kya: $¢ zu: ¥ dzu: D
kyu: ¥w ze: f je: Lz

kyo: ¥z z0: ¥ wir &

sha: Le da: £ we: 2

sya: Le di: Tu wo: ¥
shu: Uy du: ¥3 wwa: &
syu: L cdyu: T wwi: Su
sho: L de: T wwe: 3%

syo: Ly do: ¥ wwo: S%

cha: 50 ba: f fa: &

tya: B¢ bi: € fi: da
chu: v bu: & fe: dhx
tyu: 51 be: A fo: &

cho: 3¢ bo: ¥ va: 5%

tyo: ¢ pa: If vi: 34

nya: ke pi: vu: 5

nyu: 12 pur & ve: 52

nyo: K& pe: N vo: 3%

hya: 0¢ po: i tsa: D&

hyu: D gya: e tsi: Du

hyo: B gyu: ¥% tse: Jx
mya: &0 gyo: §x tso: Dk

The original form as coded in Snobol 4 is shown in Section 3.1, Step 2.

29

In a roman-kana conversion, the given syllable is firs. checked for initial occurrences
double quotes(®). If there are any, they are stripped and converted into

of

Japanese opening brackets ().

1.

The syllable is checked for an initial occurrence of one of the strings
preceding colons in the above table. If there is a match, that part of the
syllable is stripped, and converted into the corresponding combination of the

Then, the following is repeated unti! all characters
of the syllable is stripped and converted, or a failure of the conversion is signalled.

kana characters that follows the colon. In the present implementation,

uppercase and lowercase roman alphabets are assumed to have the same
meanings. (However, see Section 2.3.)

. If the above check fails, the syllable is checked against the following Snobol

pattern:

SOKUPAT = POS(0) (kk’ | *ss’ | 'tt" | “tch’ | "hh’ |
+ !dd' l ’pp! ' thl)

If this test succeeds, the first character of the syllable is stripped, and
converted into the small "tsu” (o).

. If the above still fails, the first character of the syllable is stripped anyway.

It determines the action in the following way:

3a. Double quote (") .. If what follows within the syllable contains nothing
other than double quotes, periods, and commas, a closing bracket (4) is
given. Otherwise, conversion fails.

3b. Single quote (') ... Just ignored.

3c. Period () .. If what follows within the syllable contains nothing other
than double quotes and commas, the Japanese circle punctuation mark (o)
is given. Otherwise, a midpoint (*) is given.

3d. Comma (,) .. If what follows within the syllable contains nothing other
than double quotes and periods, a Japanese dot punctuation mark (.) is
given. Otherwise, the conversion fails.

3e. Minus sign (-) ... An elongation sign (=) is given.

3f. 'm’ or 'n’ .. Corresponding Japanese character(A) is given.

30

EXAMPLES.

kana (the hirakana or the katakana) .. undergoes two applications of the
rule 1, becomes h¥%.

"kan’a" (a crow in mid-winter, enclosed in brackets) .. after the first
double quote is stripped and converted, undergoes applications of
the rules 1, 3f, 3b, 1, and 3a, and becomes hAd..

ka-negi-.meron (Carnegie-Mellon) .. processed by rules 1, 3e, 1, 1, 3e, 3,
1, 1, and 3f, and becomes h—H&¥—-+¥HZA, which is automatically
katakanized into H—%¥-+ AQV.

. gurafikkusu (graphics) .. processed by rules 1, 1, 1, 2, 1, and 1, becomes
<Bhuo<T, and is katakanized into 57492

2.2.6. THE PARAGRAPH CUTTER

This module receives the converted fext blocks from Roman-Kana Converter, and
arranges them into output lines.

Let OLL (or OUTLINELENGTH) be the maximum number of XGP dots allowed in an
output line. Let ILL (or INLINELENGTH) be the maximum number of characters.
ordinarily expected in an input line. Our standard setting is

OLL = 1098 (6 inches), and
ILL = 69.

Page marks are simply passed to the Assembler. The converted text string of a
paragraph block is treated in the following way.

The first line of the output paragraph is given a leading indentation of

(CMAR’ ¢ OLL) / ILL dots,
where CMAR’® represents the number of leading blanks of the text string, i.e., those
of the first input line of the paragraph. We define CMAR’ to be zero if the string is
empty, though this never occurs here. The subsequent output lines of the
paragraph are given a leading indentation of

(LEFTMAR = OLL) / ILL dots.

All the output lines within the paragraph are given a right margin at

31

OLL - ((LEFTMAR 2 OLL) / 2) / ILL dots.

Right justification within these limits is instructed to LOOK by a combination of
symbolically represented LOOK commands (Section 2.2.7). The factor 2 is also
tentative. The user may wish to change it.

The filling of the lines are done by keeping track of the total widths of blank and
nonblank characters. The lines are cut at the end of the last accommodatable word.

The text strings of converted independent title lines are treated as follows. First,
the leading spaces. are counted to give CMAR’ as above. (Here, CMAR’ may be zero
as a result of an empty title line.) It is used to determine the amount of the
indentation in the corresponding-output line. -Namely, a leading indentation of

(CMAR’ # OLL) / ILL points

is provided. If the line thus indented turns out to be too long for being
accommodated within the output line, the rest of the material is moved to a next
output line as though it is in a text paragraph with

LEFTMAR = CMAR’,

but no right justification is attempted.

Remarks.

1. If the output line is so short that it cannot accommodate the first word in the
converted material, the word is printed there anyway disregarding the right
margin restriction. That part of the word exceeding the righthand-side limit
of the paper roll will be lost. ‘

2. In text paragraphs, it is convenient if excess spaces between the words are
removed automatically. This is particularly true . under automatic
discrimination of text paragraphs (see Section 2.2.2 and [10]). This has not
been done here because we are yet not very sure whether kana documents
do not need various numbers of spaces in order to indicate grammatical
relationships between adjacent words.

2.2.7. THE ASSEMBLER

An unescaped occurrence of “{" starts a command for the Assembler (Section 2.2.1,

el TR,

32

Item (d)). The command is closed by a "}", which must be in the same line. The
command syntax is

<command> == ‘{* <comname>
(') <paral> ['} <para2>). '}

EXAMPLES:

{ua} Use A-font.

{2,538} Load font No.538 in the A-font area.
{bak,8} Backspace 8 points.

{und/0} Stop underlining.

The following string (extracted from the original Snobol program) gives all possible
comnames. For example "eof” and "vs" are possible comnames, but "-" is not. The
uppercase and lowercase characters have the same meanings in the comnames.

CODENAME = ’eof vs Im tm bm lin cut nocut °*
’ak bk - - ua ub jw pad’
’s image - If ff ecl bel cutim °
't - bjon bjoff quot ovr - -°
’sup sub dcap vec sl il pag -°
’- - blk und set exec bak imfl ’
'vefi a b fmt rvec rvfl hnum fent °
’break use ’

+ + + + + + +

Paral must be a nonnegative decimal integer less than 128. Para2 must be a
nonnegative decimal integer less than 16384, Camname is transformed into two
characters, whose respective code values equal octal 177 (escape character for
LOOK) and that value given by the position in the above code table: O for "eof", 1
for "vs", and so on. Paral is transformed into one ASCIl character with a code
value as specified. Para2 becomes a binary representation packed into two 7-bit
characters. For example, {3,538} becomes

octal 177 followed by
octal 61 followed by
octal 4 followed by
octal 32.

If no closing "}" exists in the same line, or if the comname is not found in the above
string, or if paral or para2 exceeds the respective limit, the whole material, either
up to the closing "}" or to the end of the line, is passed unmodified.

m J

33

For the significance of the individual LOOK codes, see [1a}

The earlier stages ((a) through {¢) of Section 2.2.1) simply pass these control codes.
More precisely, that part of the input line from an unescaped "{" up to whichever
occurring earlier of the corresponding "} and an end of line is treated as a
component of a padding.

Remarks.

1. This should perhaps be changed somewhat if our definition of the word is
changed according to the note of Section 2.2.3. Control codes should be
more transparent to the earlier stages so that it will not cause a switching
from a word to a padding.

2. Although the user can write his own "{ .. }" to instruct the Assembler, the
main usage of this feature is internal. The previous stages creates many of
them. For example, the Japanese double-dot and the circle accent symbols
are overprinted by "{bak,8]" (backspace 8 points) created within the
Roman-Kana Converter (b, Section 2.2.1). '

THE ESCAPE CONVENTION.. The French grave accent sign (°) is used as the escape
character. (Again, this can be easily changed.) It causes the immediately following
character to be handled as an English syllable. Thus, "™ means the grave symbol
itself, ™{" means the left brace, and so on. If the escape character is at the end of
a line, it means a space.

2.2.8. THE MAIN LOOP

The man-machine interaction was outlined in Section 2.1. This subsection adds some
more details. The main points are:

(1) The user of our system, if he so chooses, can edit a JPN-file, or otherwise
create a new file having a name of the form "xxxxxx.jpn", and feed it to our
program. If the file name is of the above form, the conceptual modules (a)
through (c) are skipped, and the file is processed directly by the Assembler.
If the input file name is of the form "xxxxxx.xgo", nothing occurs.

(2) If one gives an input file in his own permanent file area, and explicitly
specifies the name of the area (the structure name), then the output files (JPN-
and XGO-files) are created in the same permanent file area. Otherwise, the
output files are created in the user’s temporary file area.

34

More particularly, the main loop of the processing of our program proceeds as
described below. (This description assumes a cursory familiarity with the file naming
convention of the System-10 Monitor operating system. Those readers unfamiliar
with it may wish to skip it.)

When activated, our program prompts the user as &
Input filename or [CR) or ? : (*)

The user types something and hits CR. Spaces are removed, and lowercase
characters are converted into uppercase characters. Then, the following occurs:
1. If the material is empty, the execution of our program is terminated, and the
user is taken to the SITBOL system.

2. If the material is a question mark(?), the contents of a help file is shown to the
user. The system then returns to ().

3. In other cases, the material typed is assumed to be a file name. It must
specify a single file existing in the file system. The structure name and the
project programmer number (PPN) is optional. If a structure name is explicitly
given (e.g., as "dskb:"), and PPN is not, then the JPN- and the XGO-files are
created (possibly overwriting existing ones) within that structure. Otherwise
“"temp:" is used as the default structure name of the output files. In particular,
if a PPN is given, the input is taken as specified, and the JPN- or the XGO-files
are created (or overwrite) in the user’s own “temp:" structure regardless of
the structure from which the input is taken. After the completion of this
processing, the system returns to (¢). i

If, however, the extension of the input filename is ".jpn", then the content of @
the file is assumed to be in a format suitable to the Assembler (Section 2.2.7). :
An XGO-iile is created, but no JPN-file is. The system then returns to (#). If

the extension of the input filename is “xgo", the system returns to (%)

immediately.

If the syntax of the file name is incorrect, or if the input file is not found, an
error message

Usage: single-filename

is given, and the system returns to the prompt (s).

L ey

2.2.9. ERROR MESSAGES
Only error message expected at the user terminal in addition to the one described
in the preceding subsection concerning file names is the following:

Bad code in line xxx changed into space..
CYY e ¥ >

xxx gives the input line count, and yy .. y displays the line in question in the
original form. OQur system does not expect ASCII codes O through 37 and 177 (in
octal) within input lines (except in line terminators). These codes are changed into

spaces, and the above warning is given.

In addition, an error message of the following form is possible if a help file has not
been properly set up.

Sorry. Help information unavailable in zzzzzz
22222z gives a file name.

The following error messages might appear only if you change the program to cause
a coding conflict:

Warning: Empty para to CRTABLE -
emply sequence returned..

Warning: Missing entries in CRTABLE...
Warning; Unpaired entries in CRTABLE...
Warning: ASCIISEQ includes separator as item...

Warning: ASCII sequence xxx - yyy
requested - empty sequence returned...

..More than expecfed calls to GETLINE after EQF
..GETPADDING coding conflict

..GETWORD coding conflict

Unprintable character in English syllable..

36

2.2.10. CHARACTER CODES AND THE COMMAND FILE

This subject is basically an implementation issue, but it affects the user if he wishes
to edit a JPN-file.

Fig.6 shows the code tables of our kana fonts. These apply to both of the fonts of
height both 30 and 35. This is based on a Japanese Industrial Standard (JIS).

The canned commands assumed in Section 2.1 to be in the file "cmd[c300ik40]"
instruct LOOK to load

the hirakana font of height 30 * in font area 538,
the katakana font of height 30 in font area 539,
the hirakana font of height 35 in font area 540, and
the katakana font of height 35 in font area 541.

The JPN-file loads the hirakana and the katakana fonts of height 30 to the A and
B-font area of the core, respectively, and suitably switches between them.

‘The strange numbers 538, 539, .. were chosen at random to avoid conflicts with
other people’s fonts.

The font switching codes {ua} and {ub} are issued only if necessary. However, the
system assumes that any appearance of user-written_LOOK commands may change
the choice of the fonts.

Remark.

1. As discussed in Section 2.3, our mock-up have certain unimplemented features.
One example is the use of the larger fonts. The fonts Nos.540 and 541, as
noted above, cannot be used unless the user writes his own (symbolic) LOOK
commands. This can be easily remedied, but this paper had to be written
before we do so due to time constraints.

2. Since this paper includes a small number of Chinese characters, a special font
was developed for this purpose. It is basically the katakana font of height
30, but a few katakana characters were replaced by Chinese characters.
This feature is not described here since it is for one-time use.

37

$ 7 &

2 3 4 5 8 7
s

1
*

Low
8
sp
sSp

High
g8g
81
82
B3
84

2 3 4 5 6 7

2 3 45 6 7

1
@
1

Low
8
(o}
sp
u

High
ae
21
82
a3
84
85
86

T L T 8 %

f)

g

a7

v
E
L]

* 2 B E T AR

11
12
13

g %

A
L)

3 1 3 b A

>
"

T o

5 2 T XY
& » & ¥

R O
&
0

-

18
11

A * 2 ¥ 12 3

m >

0o

12
13

A1 1

(
The columns

(b)
" The rows correspond to two

P Q RS T Uy
17 X Y 2

(a) the hirakana; (b) the katakana.

correspond to the lowermost octal digit.

higher-order digits.

Fig.6: Code tables:

38

2.3. MISSING COMPONENTS

As noted previously, our program is an incompleie mock-up. Besides being big and
slow, it has certain missing components. Some of these are

. Pagination (including footnoting);

. Centering and right-justification;

. Switching between the fonts of heights 30 and 35;

. Underlining, superscripting, subscripting;

Macro processing (including a DATE macro);

. INCLUDOE facility, especially for combining XGO- and JPN-files;

. Facilities for changing system variables (such as output line length);
. Refinement of the roman-kana conversion procedure;

. Adding some error messages;

10. Expansion of tab codes into sequences of spaces.

WEONOOUBWN—

In the present implementation, pagination(1) is relegated to LOOK. Whenever a page
becomes full, LOOK puts a bottom margin, operates the paper cutter, puts a top
margin, and proceeds to the next line. This is often insufficient. For example, we
may wish that the titles be not divorced from the text lines immediately following
them. This cannot be enforced in the present organization.

As for (2), our proportional expansion of leading spaces (Section 2.2.2) works nicely
for, e.g., aligning the date with "Sincerely” in a letter, but works poorly for centered
or right-justified material. Here, we would need some control codes.

For now, the user can do (3) and (4) only if he writes his own LOOK codes. These,
and macro processing(5) could be done by incorporating one more preprocessing
step in the sequence of Section 2.2.1. .

To introduce an INCLUDE facility(6), we could slightly modify the main loop (Sectiov
2.2.8). The design anticipates this addition. This has been left unimplemented
simply because we had no time to experiment with it to determine the user
interface. :

One reasonable way to make the control variables changeable(6) will be to add a
new option in the prompt "Input Filename or [CR] or ? : " (Section 2.2.8).

Our conversion algorithm(8) could be improved in various ways. For one thing, we
could reject those syllables containing too many uppercase characters such as
"USA”. In the present version this becomes 3&, but we prefer it to be handled as
a syllable in English. Our katakanization condition could include more. It could
cover such patently foreign words as 7293V (manshon -- mansion), ¥UX} (kirisuto
-- Christ), and £0vy7X (zerokkusu -- Xerox).

" 4

Error messages(9) should be given if a very long word results in a truncation at the
end of the paper roll. (See Remark 1, Section 2.2.6.) Similarly, the Discriminator
should issue a warning if paragraphs are cut or continued in an unusual way. (For
example, the sample text of Fig.5 should generate several warnings.)

Finally, we have another small thing (10). In the present version, a tab code in the
input file, among .other codes with octal code values O through 37 or 177, causes an
error message to be issued, and is replaced by a space for further processing. We
could rationalize this design by citing Kernighan and Plauger[4], and claiming that tab
codes should be treated in separate filters. We could require the user to filter a
file containing tabs through Kernighan's "detab™ to expand the tabs inio spaces.
This is perhaps the. only way to go if. we were using UNIX. For one thing, tab
codes assume a tab setting. To have separate "entab” and "detab” filters would
bring more flexibility by enabling changes of tab positions. In our environment,
however, our standard text editor SOS sometimes introduces tab codes automatically
assuming a certain tab setting. Besides, the Monitor does not support pipelines. We
therefore plan, though with a low priority, to add code to our program to expand
tabs into spaces. The tab settings will be fixed to columns 0, 8, 16, ... according to
the system-wide assumption of the manufacturer.

We shall return to the subject of filling these holes in Section 3.6.

40

Chapter 3. THE PROCESS OF THE DEVELOPMENT

In Section 3.1, we review the sequence of events which led to the present design.
In Section 3.2, we try to enumerate the good things in our life-style. Section 3.3
compares it with other people’s life-styles. Section 3.4 talks about pitfalls which

our method could have. Sections 3.5 describes the compromising considerations -

done in the very early stage of the design, and finaily, Section 3.6 extrapolates the
chronicle of Section 3.1 to the future.

3.1. A CHRONICLE

We now briefly review what we have done. The following description has been
simplified. Events occurring in parallel are described as though they occurred
sequentially, and some (mostly unsuccessful) trial-and-error processes for
circumventing the environmental difficulties (such as high CPU-time consumption) are
not mentioned. Small adjustments (changing the format of the prompt, etc.) have
been done almost daily, but these are not documented separately.

0. After a study of the environment, the vague idea of building a system for
kana-English documents was reached. I[deas were aiso emerging slowly for
the input format and the choice of the language. The latter ideas became
clear much later. '

1. A tentative hirakana font was developed with the help of BILOS{8] An
ordinary ASCII font file (called PEL25) with fixed-width characters was used
as a basis. We added some blank spaces on the top of each character to
increase the height from 25 to 30, and then overwrote the ASCII symbols
and the uppercase roman characters with the hirakana characters copying
that portion of the standard code table given by a Japanese Industrial
Standard (JIS). The lowercase roman characters remained in the standard
position. A sample text file was printed on the XGP. Since only one font
was involved, and since the hirakana characters replaced ASCII printable
codes, the sample text could be readily created by hand. All the possible
combinations of the characters with the accent signs were also included. In
this step, accent signs were printed separately without overprinting. They
occupied some small width.

We note that our code table (Fig.6) was a result of a second thought. First
we tried another code table induced by standard kana keyboard (for which
there was another JIS). For example, we replaced "q" with "ta" (z) because
in the kana keyboard "ta" was the leftmost key on the second row. We soon
discarded this idea because the combination was too capricious to memorize,
and we had to overwrite randomly chosen uppercase and lowercase

AT

-

Py

RN

e P

characters. (For a related subject, see Section 3.5.2.)

This font was periodically reviewed and retouched. We will not give the
details of the process here. One major change was that the font PEL25 used

as a basis was later replaced by more standard variable-width font called
NGR25.

2. A syllable table of the following form was produced. (This is the original form

of the table discussed in Section 2.25.)

TABLE = 'a i u e 0 ka ki ku ke ko sa shi si su se so’
*ta chi ti tsu tu te to na ni nu ne no’
ha hi fu hu he ho ma mi mu me mo ya yu yo '
rarirure ro wa'’
kya kyu kyo sha sya shu syu sho syo’
cha tya chu tyu cho tyo nya nyu nyo '’
’hya hyu hyo mya myu myo rya ryu rye ’
'ga gi gu ge go 2a ji 2i z2u ze z0
*da di du dyu de do ba bi bu be bo pa pi pu pe pa’
'gya gyu gyo ja zya ju 2yu jo zyo '
'bya byu byo pya pyu pyo’
*dzi dzu je wi we wo wwa wwi wwe wwo ’
*fa fi fe fo va vi vu ve vo tsa tsi tse tso ’
ENTRY =°1 23456789 :;<<=>17"
' AC(BD)CDEFGHI"®
JKLLMNOPQRSTUV?
wXxXyYz [\’
7, 7- 7. %, €, <= <= £, < *
A, A, A- A- AL A F,F-F.°
K, K- K. P, P- P. X, X- X.°
6T 71 81 91 :F ;T <t <T =T >T 77 °
'@t CT(D) Cf- CT DT Jt KT LT MT NT J_ K_ L. M_ N_°
7T, 71- 71, <1, <1, <T- <f- <1, <1.°
KT, KT- KT K_, K- K.’
AT Bf <¥s* ASCII(1) ' * ASCIN(2)
& "3 (3 3+ "
“L* L(Ls L+ 31" 37(37 31+ 31+ B' B(Bs B+ "

+ + + + + + + + + + + +

+ + + + + + + + + + + + +

For example, "ge" in the eighth line of TABLE corresponds to "91° of the
eighth line of ENTRY. The ASCII code position for "9" is in fact occupied by
the syllabic character "ke” (it), and that for "t" is occupied by the double dot
accent (dakuten), which converts "ke” into "ge” (ff). The table was proofread
by writing a simple Snobol program, which generated something like the
edited form of Section 2.25. This could be done easily because the

41

42

lowercase roman alphabet remained in the font.

In fact, the above table includes later additions. (The same applies to other
tables shown in this section.) For example, two characters used only in
Japanese classics were added and corresponded to ASCII code positions 1
and 2, since we wished to take some of our sample texts from celebrated
sources. The calls to the SITBOL built-in function ASCII in the above reflect
this fact.

3. A corresponding katakana font (of height 30) was created and tested using
the same set of test data as in Steps 1 and 2. The code tables had the
identical shapes. (E.g., both the hirakana and the katakana forms (i+ and %)
of the syllable "ke" replaced "9") This contributed considerably to the ease
of testing. The same test data could be used unmodified.

It is interesting to note that, while the hirakana font required several sittings
before it reached a tolerable level, the katakana font reached about the same
level in three or four hours. The katakana is a much easier font to develop.

4. Now a strong incentive was felt toward printing a sample text containing both
the hirakana and the katakana. The test data of Step 1 actually contained
some imported Western words. Attempts were made in vain to include
necessary LOOK control codes by the standard text editor SOS. A few
sittings were wasted exploring the properties of the environment.

Actually, this was the most frustrating part of the project. Some of the code
combinations required by LOOK (Section 1.6) were in fact the worst
conceivable ones. The lext editor SOS allowed us to manually construct a
code combination that instructed LOOK to switch to font A, but unfortunately,
we could not first go to font B. To do so, it was necessary to give a code
combination '

octal 177 followed by octal 15.

But octal 15 happéned to be the carriage return. SOS defied the author’s
efforts to produce this code combination. As soon as it was given a carriage
return code it added a line feed code to finish a line.

This difficulty could have been solved in several ways. For example, we
could write a small program in the assembler language (of PDP-10), or in
some other system implementation language such as Bliss or SAIL, and try to
link it to the rest of the program. In view of the nature of the processing
expected, however, the best way to proceed seemed to use a local Snobol
dialect SITBOL, which had a special feature for writing binary files of the

5.

type we desired. This resulted in a slow system, but the penalty seemes to
be cheap enough. Using Snobol, we could smoothly package the whole
processing.

It was now decided to write an “assembler” for converting symbolically
represented LOOK codes into binary forms. Thus, if we face a naked
computer, the first thing we would do is to write an assembler in order to
hide some of the dirtiest aspects of the machine from the eyes of ourselves.
Here we were facing a dirty interface of a (fancy) printer. Hence, we wrote
an "assembler”, i.e., a simple program that enables one to write LOOK control
codes in a symbolic notation, and translates them into funny code
combinations required by LOOK. First of all, a table of mnemonic codes were
created as a long string maned COMNAME, as shown in Section 2.2.7.

The "mnemonic codes” were first developed from the prose description of
[1], but afterwards we learned that a program called TYPER written by Joe
Newcomer was available for the reverse conversion (printing a symbolic
representation of LOOK-oriented file). The code table was changed to reflect
the TYPER names of the codes.

This process required several sittings because some typos in the Snobol
program were masked from the author’s eyes by the mental pressure of
attempting an unusual use of the SITBOL system.

The test data of Step 1 augmented with symbolic control codes {ua} and {ub}
finally gave a mixed printing of the hirakana and the katakana.

It is important to note that, although at this tirve we needed only a few of
these mnemonics, we included all of them. To do what can be done now
often smoothes our later efforts.

6. In parailel to Step 5, the table of Step 2 was used for writing a separate

conversion program. In the first step, the shifting between the hirakana and
the katakana was simply not done, and improbable appearance of a consonant
in a romanized text was converted invariably to the small "tsu" (5), because
it often gave the right answer. In short, the easiest handling of the
exceptional cases were made for minimizing the investment of the labor
needed to give the first visible result. The conversion routine was tested
with a hirakana-only text (a classic poem). No filling of the lines was done,
but this did no harm (except that the result was less beautiful). For, a
roman kana conversion always caused the lines to shrink.

The shift codes (for forcing the katakana or the hirakana) were now
introduced into the program of Step 6. We planned to provide both local

43

10.

11.

and global shifts, but here we restricted ourselves to the latter. Actually,
the codes "<" and ™" were translated directly into "{ub}" and "{ua}”, which
instructed LOOK to switch to the A- and the B-fonts. The first section of the
Appendix was now written and used for a test.

Note that the material includes roman alphabetic characters and other ASCII
symbols. At this stage, they were printed in the hirakana as nonsense
phrases. This gave a strong incentive for improvement.

8. The programs of Steps 5 and 7 were now combined to enable a conversion

by one stroke. However, the intermediate resuit (the output of Step 7) was
also made available for inspection. Our JPN- and XGO-files thus emerged.

9. The program now looked rather lengthy and complex. (It now occupied three

line printer pages.) Therefore, a clean-up was done. Functions were defined
for each of the data converting steps, and were given filenames as
parameters. This step, though added nothing new, made the program much
easier to understand, and at the same time inoperative! The reason later
turned out to be that, if we type

DEFINE(’JPNXGO(JPNFILE, XGOFILE)")
instead of
DEFINE(JPNXGO(JPNFILE XGOFILE)")

the SITBOL system says nothing at the compile time, and does some
mysterious things during the interpretation. This caused several hours to be
wasted.

Meanwhile, the hirakana and the. katakana fonts of height 35 were developed.
The motivation came from the frustration while trying to push the curved
strokes of the hirakana into the limited number of dots available in a
character in the smaller font (of height 30). Here, the size adjustment
command of BILOS helped greately.

In the simplified form of the "assembler® as implemented in Step 5, no
facilities were provided for attaching numerical parameters to the LOOK
control codes. The codes for switching between the A- and B-fonts don’t
require such numerical parameters, but those for instructing to swap the
fonts must be accompanied with a numerical parameter designating the font
serial number within the disk of the PDP-11. The use of parameters were
now supported by extending the grammar of the symbolic control codes. Our
use of slashes and commas thus emerged.

44

12.

13

14.

18.

16.

17.

18.

19.

An attempt was now made to make a mixed use of the fonts of the heights
30 and 35. The system, however, rejected the effort giving a mysterious
reason: "CORE FULL". (A trick to circumvent this difficulty was discovered
later.)

The lock-unlock (global/local) mechanism for the shift codes "<", “>", and "7"
was now implemented.

An opening sequence of LOOK commands was now introduced which
automatically loaded the A- and the B-fonts from the disk. (Prior to this, the
fonts had to be explicitly loaded to the PDP-11's core by LOOK commands.)

The roman alphabets and the ASCII symbois were now made printable. The
symbols (including the digits) were pushed into unused positions of the code
table. This slightly violated our philosophy of making things visible. (See 3,
Section 3.2)) Automatic discrimination of the katakana syllables
(katakanization) was also supported here. (As discussed later, this chunk was
definitely too large. It caused many troublies.)

As the program grew bigger, the system grew siower and slower. Even the
initial compilation and the definition of functions now spent considerable time.
To ease experimentation, we now changed the program so as to process two
or more files within the same Snobol run. (The clean-up of Step 9 was done
partly because this was anticipated.)

The symbol "{", which the Assembler always interpreted as the beginning of
a control code, was now made printable in terms of an escape convention.
This change affected both the Assembler and the Roman-Kana Converter.

The overprinting of the double-dot and the circle accents was now
implemented. This was first tested by writing a simple Snobol program,
which converted an intermediate output (JPN-file) into a form including LOOK
commands for overprinting, and by processing the result by the Assembler to
form a LOOK-readable file. After we were sure that the result was pleasing
to the eye, this change was incorporated in the program.

The katakanization algorithm was now slightly improved. The user was now
allowed to drop the shift code "<" in such words as "puroguramu® for
"program”.

By this time, the program became painfuily siow. To caim the user down, he
was now given an indication of the progress by the “s™s on the terminal.
This was done by first defining an encapsulated input module, and then

45

20.

21

22.

23.

24.

modifying the result so as to count the lines behind the scenes. We discuss
this in Section 3.2.1.

Until this time, the assembler was using the "U"-mode ("undefined" mode) of
SITBOL input/output[9] It was discovered that the simpler "T"-mode
("teletype™ mode) worked equally well. The system was changed accordingly.

As a preparation for right-justification of the text, a set of tables of the
character widths was introduced into the program. The tables were
prepared for each of the hirakana and the katakana fonts of the heights 30
and 35. They were extracted directly from the font files by means of BILOS
and a Snobol program. The table for the hirakana font of the height 30
looked like

WHIRA30 ='-202016--~----=-=~=-=-~ 2

'16 16 16 16 16 16 16 16 16 16 76 14 16 14 11 °
121220201220 2018181818 18181818 18"
'20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20’
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20’
'20 20 20 20 20 20 20 20 20 20 2020 20200 0°
71416 13151510151579147 2015 15°

'16 1512 1310151521 1416 14117 {1 16°

+ + + + + + +

Corresponding TABLEs (Snobol data objects) were created within the core,
but no further processing was done at this step. (Surprisingly, this caused
the later stages of the program to run almost twice as slower than before.
For a discussion, see Section 3.3.3.)

A piece of code was now added for counting the total widths of the words,
and writing the results on a file. The results were inspected. The widlhs
were indeed calculated correctly.

Further pieces of code were added so that, if the total width of the
(converted) characters within a line exceeded a certain limit given by a
symbolic constant, the line was cut apart at the end of that word, of which
the next word caused an overflow., This was tested by first creating a file
containing very long lines by hand. A second test was then done by writing
a separate Snobol program which automatically pasted the lines of a text
paragraph to form a very long output line.

The separate Snobol program of Step 23 was incorporated into the system.
The leading spaces of the lines were now transiated into suitable tabulation
codes for LOOK.

46

A i,

i c———

e e e T T T T T —— e —

47

25. The discrimination technique for text paragraphs generally followed [10]
The more sophisticated method described in Section 2.2.2 was now
introduced.

26. Those paragraphs having indented left margins were now made to have
indented right margins, too.

27. Page marks in the input file were neglected up to this point. They were
now supported as described in Section 2.2.2. (This required considerable
experimentation on the SITBOL input/output.)

The work (excluding Step 0) began in late December of 1377. Most of the program
writing was done in March and April of 1978. We began writing this paper in early
April. May and June were spent mostly for the paper, though programming activity
was still going on slowly. Due to the author’s absence from CMU, three weeks and
one week were lost from mid-January to early February and in May, respectively.
In the average, the author worked half-time. The effective span of the development
excluding documentation was about four months (from January to May, subtracting
four weeks).

Step 1 through 5 were done in December, January, and February. Steps 6 through
16 was done in March, Steps 17 through 22 in April, Steps 23 through 25 in May,
and Steps 26 and 27 in June.

Although the exact man-hours have not been recorded, a crude estimate might be
one half of 200 hours per month for four months, i.e., 400 hours. This includes
clerical tasks such as text editing, waiting for an access to the XGP in front of a

terminal, and so on. Very often one activity addressed different facets

simultaneously, but we would venture to say that 100-150 hours were spent over
the development of the fonts, and 100 hours for studying the properties of the
environment. The rest (150-200 hours) was spent for thinking about the user
interface and for actually writing the program. The latter two activities are hard to
distinguish because they interacted so closely.

Could we finish this work within two months if we did it as a full-time job? Perhaps
not. For one thing, thinking about the user interface required some time span. We
often picked up good ideas over a cup of coffee, scanning new issues of journals,
and so on.

Was it a fun? Yes, very. Why was it a fun? Perhaps because aimost always we
felt we were progressing sieadily. We knew how to proceed even when we got
stuck.

T ——— . ‘

St A

3.2. ANALYSIS OF OUR LIFE-STYLE

We shall now try to see why we could proceed so smoathly.

One basic fact is that our program is small. It has only about 600 Snobol
statements even in the final form. It occupies only about 25 pages in a line-printer
listing. Moreover, about 130 out of the 600 are labels written as independent
statements. The choice of the programming language played an important role.

Another basic fact is that we worked in a fancy interactive environment. Except for
the accesses to the XGP and the graphic displays, computing resources were more
than abundant. Minor changes and experiments were quite easy. If we were
working in a card-based batch environment, we would have to proceed differently.

Programming languages and operating systems are most commonly imposed on the
programmer. It is not always meaningful to talk about the choice of them. We shall
set them aside for now, and try to enumerate other factors which possibly
contributed to our success. Some of the following points are closely related to the
works of Sandewall, Kernighan and Planger, and others. We shall discuss about
these works in Section 3.3. We have- eleven items.

1. SMALL CHUNKS FOR USABLE HALF-PRODUCTS.. The development was done in
small chunks, so small that one chunk usually required only one sitting. The
half product was actually used for practical purposes. For example, it was
used for writing the shortened Japanese version of this paper given in the
Appendix. This provided nice motivation, and enabled us to detect blunders
early.

2. USE OF TABLES.. Whenever possible, a table was used. We attempted to
make our tables as commonplace as possibie. For example, the code table of
TYPER was copied almost in verbatim (Step 5, Section 3.1). The machine time
spent for converting these tables into more easily processed forms was just
ignored. (The subject becomes of a real concern only after we complete our
mock-up, collect experiences with it, and become so sure about the validity
of our design that we decide to build a commercial product. We might then
use, e.g., macros for preprocessing the tables.)

3. MAKING THINGS VISIBLE.. The concepts were given printed forms. We tried
to make everything visible. Sometimes we did need invisible things, but,
even then, we built corresponding monitor apparatus (routines) as a part of
the initial design. (However, we should not spend too much time over the
construction of monitors. We should use off-the-shelf monitors such as a
manufacturer-supplied dump routine whenever available. In our case, TYPER
was used as one of the monitor apparatus.)

4. PURITY OF THE PHASES.. Each of the components of our data transforming

chain was made to do just what was necessary to do. For example, one
phase passed commands for later phases unprocessed. This helped in
experimentation. '

5. WRITING PROGRAMS TWICE.. For major chunks, we wrote the program twice.

6.

Thus, we first jotted down a brief description of what we were to build,
possibly with diagrams. We then wrote a corresponding program. We tried
to relax. We didn't strain to save paper. Once the piece of program was
completed, we rewrote it carefully and neatly. (Very often we discovered an
oversight in the process.) Text editing of the program file was done over a
listing marked with corrections and carrying indications of the location for
inserting the new material. Free-hand changes were avoided. We sometimes
used two copies of listings. The corrections were first written into one of
them, and then copied neatly onto another. The editing was done with the
(second) copy at hand. The verbal description (with diagrams), the rewritten
copy of the program, and the second listing were kept for the record. The
first copies were discarded. (It must be discarded immediately in order not
to mess up your desk.)

COOLING PERIOD.. For major chunks, we introduced a cooling period.
Corrected files were not run immediately. Another listing was taken, and
reread. Very often further corrections were found necessary at this stage.
Here, corrections were made at leisure. The listings used were kept only for
two or three weeks, and then discarded. If we were not sure about the
correctness of our text editing, we often waited until next morning.

7. CLEAN-UPS.. As soon as the program became lengthy and complicated, a

clean-up was performed. For example, we collected data elements, and
encapsulated them into a collection of (Snobol) functions. If necessary, the
order of the function definitions was modified. The names of the variables
were adjusted. Comments were added. This was done PERIODICALLY. In a
production programming environment, the preferred practice is to formulate a
coding standard in advance. However, such a disciplined practice often
interferes with flexibility necessary in the development of a mock-up.

A more detailed illustration of a clean-up is given in Section 3.2.1.

These clean-ups tended to give poor results if done simultaneously with
other enhancements.

8. REVIEWING THE HISTORY.. As is customary, a history of the development was

kept as a comment at the beginning of the program, and was updated on the

49

i it——il

spot. We made a casual scan of these records periodically in order to make
it sure that we were on the right track.

9. SHOWING TO OTHERS.. The intermediate results were shown to any willing

10.

11.

colleagues, and their opinions were solicited. One good point of our casual
way of life is that the half product can be shown to people in a visible form.
This helps to get good opinions. Moreover, it is well~-known that by trying

to explain to others we tend to discover our own oversight, even if the

audience does not understand at all!

WISE RETREAT.. We stopped early. We knew that we were developing a
mock-up. Qur object was the design, not the program itself. Just as safety
in moutaineering depends on wise retreat, our success required that ambition
be controlled. We reviewed while we had enough time, and before we got
tired. For one thing, we wrote this paper! If an incentive for improvement
is felt at this stage, we should better redesign a new program, using the old
one as a pattern.

HEALTH CONTROL.. We were careful about our health, though this may
sound irrelevant. We tried to keep regular time. Whenever we felt tired, we
didn't hesitate to take a rest. It is of no use to be in a hurry when our
heaith declines. In such cases, we should limit ourselves to a mechanical
clean-up or a review, at the most. (Even these should better be postponed.)

3.2.1. AN ILLUSTRATION OF CLEAN-UP

For a simpie example, consider Step 19, Section 3.1. In the originally written code,

the initial input (text file) was read by in-line reference to an input-associated

variable. Thus, we first executed the SITBOL library call

INPUT(CROM’, INFILENAME)

and then referenced the variable ROM directly.

The variable ROM was now hidden in a set of Snobol functions. Two functions were
defined: INITGETR(FILENAME) for executing the INPUT library call; and GETR() for
getting a line from the input file by referencing ROM as follows:

E
*..... MODULE: GET ROMANIZED JAPANESE ...

x
DEFINE('GETR()")
{ENDGETR).
GETR
GETR = ROM {F(FRETURN)
{(RETURN)
ENDGETR
t
DEFINE(CINITGETR(INFILENAME)")
{ENDINITGETR)
INITGETR
INPUT(CROM’, INFILENAME)
{RETURN)
ENDGETR

The readers familiar with Snobol 4 will see how this crazy way of coding helps later
changes. After this clean-up, it was a simple matter to add code to GETR for
counting the number of lines and writing #’s for each ten lines. The count was
initialized in INITGETR. This sequence of events is typical in what we have done.
In this way, we introduce some amount of inefficiency, but it does not really matter
in a mock-up.

We note that this portion of the program was further changed. Fbr example, in
Step 24, GETR was made o return amalgamated paragraph lines, and to INITGETR
was added certain code for doing some more initialization.

3.3. DISCUSSION:

3.3.1. THE CONTROLLED SLOPPINESS

Our "sloppiness” has undoubtedly shocked some readers. They might object that
what we have done is nothing but the long-despised bottom-up design. We now try
to defend our way of life. Our thesis is that sloppiness is essential in the

conception stage, and that our sloppiness is in fact controlled.

People often talk about the need of precisely formalized specifications. Many things
has been said about the form which these specifications ought to take, and thier

52

possible uses in the development of large software. Little has been said, however,
about how we can get to them. Before we can formalize, we must have a clear
picture of what is formalized. The mental process involved has not been analyzed
fully.

What we did here is a case study for exploring this mental process. We were
guided by our own intuition. People say that a program must be preceded by a
formal specification. This is a reasonable requirement for a marketed program
product. In our case, however, a program must precede a specification. We
program for developing the latter. Qur program is a mock-up, to be thrown away
once a satisfactory formal specification is obtained. ;

A review of the steps of Section 3.1 reveals that the succession of events has been
‘governed by logical necessily. For example, we could not determine whether the
fonts of height 30 resulted in enough legibility until we experimented with it. This
knowledge, however, could influence the program structure. 1f we got a negative
result in this respect, the basic approach in the use of the XGP would have been
different. We therefore developed the fonts first, and tested them. To test the
fonts we needed sample data. Therefore we wrote a converter (Step 6, Section 3.1)
before we began to design other parts of the program.

As noted in Section 2.2.3, our previous definition of words later turned out to be
defective. This, however, was not until we came to the subject of lime filling and
right justification. In fact, more accurate statement is that the definition turned out
to be incompatible with the later extension. In a moralistic view of programming,
the author may be accused for the sin of sioppy near-sightedness, but he is not
ashamed at all.

While we are addressing a rudimentary part of the system, we should not be
distracted by more advanced topics. When we developed the notation for case
shifting, our central concern was to reach a reasonably uniform notation comfortable
for the user. The question of line filling was just ignored. We arbitrarily picked
one possible definition of words, experimented with it, were generally satisfied with
it, and decided to proceed.

The author feels that there is nothing wrong with this approach, even though the
particular definition did not fill the needs of one of the later stages of the design.
We cannot address many things at the same time. We must proceed step by step.
We must pick a solution anyway if we are to go one step forward. The ultimate
inadequacy of the particular solution does not matter. It is more important that the
solution is formulated in a flexible way, so that we can smoothly modify it later.

Could we avoid the later modifications by thinking about line filling in the first

53

place? Yes, of course we could. Doing so, however, would have traded real
experimentation for a mental exercise. In this particular problem, this would have
done no great harm, but in general, experimentation cannot be dispensed with
without losing something.

3.3.2. RELATION TO OTHER WORKS

It is not surprising that the Lisp users’ life-style recently descritted by Sandewall[3]
is quite similar to ours. They program for unknown problen{s. Sandewall gives a
small sample showing how a typical Lisp user might develop software. A program,
which finds suitable meeting hours from a list of schedules of people, and updates
the schedules, is described. The method, called STRUCTURED GROWTH by Sandewall,
starts from a very modest fragments of the program the developer has vaguely in
mind, and extends them by an alternation of writing a small increment and testing it
by actually running it for a small sample data. The sample data is a part of what is
developed by structured growth.

Our use of small chunks for usable half-products amounts roughly to the same thing.
Our policy of making things visible also has a counterpart in Sandewall’s description.
He claims that the Lisp programming system is helpful to the user because every
piece of data or code is an S-expression, and hence printable as such.

However, there are differences. In Sandewall’s case, the product is an object in
itself. Unlike in our case, he need not extract a specification from the program.
This difference makes his method insufficient for our purposes. We must crystailize
our ideas in the process of developing a program. We need more.

It is nevertheless reassuring that the life-style of experienced researchers in doing
research-oriented programming partly coincides with ours. A similar line of thought
is found in Teitleman(12]

Another related idea is found in left-corner construction philosophy of Kernighan
an”! Planger{4] They develop software involving man-machine interaction in chunks.
For example, a file archiving program is developed in this way. The idea is "to
nibble off a small manageable corner of the program -- a part that does something
useful -- and make that work. Once it does, more and more pieces are added until
the whole thing is done” (page 86, [4]). This is exactly what we have done (in 1,
Section 3.2).

The use of tables (2, Section 3.2) has been recommended by Kernighan and
Plauger(13] The purity of the phases(4) has been practiced by Kernighan and
Cherry[14] Writing programs twice(5) and having a cooling period(6) are corollaries
of the author’s previous thoughts[15]. Showing to the others(9) has been advocated

54

by Wada[16]. Perhaps new is the explicit mention of clean-ups(7), reviewing the
history(8), wise reteat(10), and health control(12). We feel that the most important
among them is clean-ups.

3.4. PITFALLS

Our project was a fun for the most part, but in a few places it was not. Whenever -

the author lost control of himself, the process became frustration. The worst of

such events occurred when the author tried to do the development in the usual

pace under the mental pressure of trying an unusual use of the SITBOL system
(Section 3.4.1), and when he impatiently tried to do a big chunk (Section 3.4.2).

3.4.1. UNUSUAL USE OF THE PROGRAMMING SYSTEM

The first loss of control was experienced in Step 5, Section 3.1, when we tried to
write an "assembler” using the "U"-format input/output of SITBOL. This format
allowed us to write machine words onto an external medium. The step aimed at
developing a stand-alone program, which read a text containing symbolic
representations of LOOK commands, and converted it to a corresponding file suitable
for sending to LOOK. Here, we concentrated on the switching between already
loaded in-core fonts A and B. It was not necessary here to handle parameters in
LOOK commands.

As mentioned earlier, the listings and other working documents excepting temporary
memos were kept throughout this project. This Step generated seven listings. The

author really hates to say this, but an analysis of these reveals that he was.

singularly amateurish in this particular Step.
During the process we had to address the following tasks:

1. To find how a binary file containing LOOK commands can be written by a
SITBOL program;

2. To determine the command names for symbolically repr.esenting LOOK
commands; -

3. To determine the format of the symbolic commands;
4. To implement the code table for the "assembler®;

5. To decide what to do if a wrong mnemonic code is given; and

i g i et

SN il

s

55

6. To develop the man-machine interface for the user to activate the program.

Tasks 2 and 6 were handled succéssfully, As for the former, the mneracnic codes
were changed once, from the author’s own version to an in-verbatim copy of TYPER
codes. This was done smoothly because we were using a table. As for the latter,
the first version did not allow the user to type file names in the lowercase. This
restriction was later relaxed. A facility to output help messages was added. In the
initial form, the prompt was followed by a New Line. This was corrected. The

user’s response was made to appear in the same line as the prompt. All these went
smoothly in a controlled, conventional way.

Task 4 went somewhat less smoothly. At first, the table was kept in dynamically
created names. We used, in the Snobol notation, §(’@ COMNAME) and the like. We
then somehow felt that the practice was distasteful, and decided to use Snobol
TABLEs instead. Perhaps this should have been postponed, since the subject was
basically an implementation issue.

Less smooth but still satisfactory was Task 3. Here, we changed the format several
times. The changes accounted for our increased awargness of the necessity to
incorporate parameters later.

In the initial attempt for Task 5, we just ignored the wrong codes, and sent them to
the output as though they were portions of the text. We made bad typos here, and
could not find them soon. Tasks 1 and 5 impeded each other. :

In Task 1, we first tried the default mode of the SITBOL output. This caused some
parts of the output lines to be mysteriously lost. We then learned about the
“U"-format, tried it, and was griped by the system for committing the crime of
overflow. A sequence of guesses based on rather cursory description in [9] made
us gradually approach the right solution, but a few sittings were wasted before we
fixed the typos relating to Task 5. We were not completely sure. We changed
impertinent parts of the program. We were distracted by the mental pressure.

The moral is clear. Don’t do other things when you are experimenting with an
unknown programming system. Proceed conservatively when you are doing a
dangerous job.

3.4.2. DOING TOO MUCH AT A TIME

Another confession relates to Step 14, Section 3.1. When our system succeeded in

producing a mixture of the hirakana and the katakana, the author felt a very strong
incentive toward making roman alphabets and digits printable (especially the latter).

PO

56

He became impatient looking at "£01Lx3" (Chapter 1) printed as "EL&LES"
(Chapter #), and "CMU M XGP" (the XGP of CMU) as ">& @ 553" (a nonsense
phrase). The author could not resist the temptation to sit down for three times
longer than the usual, and design and implement all of the retated part of the
system. He rewrote the program three times, and very carefully proofread each
time. Nevertheless, this gave rise to bugs, which lasted more than one day. All
were typical careless errors, such as leaving out POS(0) when a pattern was to be
stripped from the beginning of a string. The process involved a pain, rather than a
fun. It is frustrating to end one day’s work when you know that there is a

remaining bug.

57

3.5. DISCUSSION OF STEP O

Some more remarks are in order concerning Step O of Section 3.1. The question is:
how did we choose the particular combination of (1) the input format, (2) the
processing program, and (3) the output format? This involved a complicated set of
compromises. We now sketch some of our thoughts. We begin with (3), proceed to
(2), and then come to (i) since the earlier topics in this sequence had decisive
influences over the later ones.

3.5.1. THE QUTPUT FORNMAT
Basically, our problem calls for doing some nice things using the XGP in the
production of Japanese documents. With this broadness, our thoughts resembled a

negotiation between a prospective customer and a developer.

The customer desires a fully general system handling the kanji. Indeed, the XGP
itself, if properly controlled, can print any graphic pattern. He knows this from, say,

[1], points out that the kanji characters are special cases of graphic patterns, and

demands that the possibility be pursued.

However, the implementor knows that this is infeasible. The mode of usage of LOOK
explained in Section 1.6 is called the text mode. In it, a pattern corresponding to a
given character is picked from one of the in-core fonts A and B. This achneves a
great compression of information.

Unfortunately, we have more than. 2,000 kanji characters, and the in-core fonts are
restricted to at most 254 kinds of characters. If we are to print the kanji, we
cannot use the text mode. Instead, we must prepare a huge bit table (image file)
representing the completed document as a collection of dots. This must be created
on the PDP-10, and transmitted to the PDP-11. The size of data we must handle
would be at least ten times larger. This would necessarily result in cumbersome
handling and slow processing. Besides, the development of the kanji font alone
would require a man-year effort, and, as discussed in Section 1.5.5, the development
of input technique for the standard Japanese documents is one of the unsettled
problems of the Japanese text processing. The customer, no matter how ambitious
he may be, will eventually agree with the implementor that the general approach
should be dropped for now.

The developer, on the other hand, might propose a cheap solution based on
romanized Japanese. In this sclution, he has many things already available in the
computer system: text editors, formatters such as PUB(6], a large collection of fancy
font files, and so on. Basically, his job would be to enhance the environment. For
example, he could write a simple program for editing the input in order to facilitate

-

overscoring used in the standard systems of romanization for representing elongated
vowels. He could also tailor the text editor in such a way that the changes can be
made for syllables rather than individual characters. He might write a utility
program for detecting and correcting impossible combinations of characters in the
input file.

However, the customer would undoubtedly feel that this solution is unduly cheap,
and does not deserve any investment. It is ail too clear that the resulting system
cannot be used for writing a scientific paper or a letter. The parties would
eventually reach the agreement that our kana-English approach be pursued. The
customer will probably insist that the decision be tentative, and that after a more
feasibility study, the project may be dropped.

3.5.2. THE INPUT FORMAT

One obvious solution from the customer’s viewpoint is to base our representation on
one of the established systems of romanization. We do not have a katakana
keyboard in the particular environment. We must use an ordinary ASCII keyboard.
Under these circumstances, this solution is certainly natural.

Unfortunately, this "obvious” solution was not at all obvious for the implementor.
First, the standard methods of romanization are such that no mechanical procedure
for transliteration into a kana representation is possible unless we go into the
meanings. For example, the case-designating particle "ha" which (usually) follows
the subject of a sentence is pronounced "wa", and therefore written "wa" in the
standard systems. But It is definitely "ha" (i) in the kana notation. Can we
automatically change "wa" into "ha"™ No, because the syllable "wa" (H) as a noun
means a ring! Roman-kana conversion taken literally is one of the very difficult
unsolved problems in Japanese text processing essentially equivalent to
kana-to-kanji conversion (Section 1.5.5). Hence, our own system of romanization.

There is another, entirely different approach: we could ask the user to use the
ordinary ASCIl keyboard as though it were a kana keyboard. Thus, he is to type
"qQ" if he actually wishes to type "ta” (%). He types "p" for a double-dot accent
(dakuten). He types "c" for "tsu” (D), and "C" for small "tsu” (5). One big merit of
this method is that, if you are a perfect touch typist of the katakana keyboard, you
can save almost one half of your keystrokes.

The second method, however, has the drawback that it is almost impossible to

proofread the file without printing it on the XGP. The correspondence has been
governed by historical reasons, and is almost as capricious as "qwertyuiop”.

If this project had been done in Japan, this second method would have been the

————l

e ——— ey,

59

first choice, since character displays and typewriters in Japan often inciudes
katakana characters. (This sacrifices the lowercase alphabet.) Since we were in
CMU, this was simply impossible.

3.5.3. THE PROCESSING PROGRAM

Qur program was written in Snobol, but we could alternatively write it in, say, the
assembler language. Another possibility was to use PUB (Section 1.6) perhaps as a
postprocessor.

The basic characleristics of this project indicated that as high-level a language as
possible be chosen. We were developing a mock-up. We anticipated frequent
changes. We didn’t have much man-power. The absolute amount of the code should
have been restricted. The assembler language was therefore out of question. Bliss,
Fortran, and Sail were also considered, but Bliss was found to be too low-level,
especially in input and output. The available Fortran processor had bad
idiosyncrasies in the A-format READs and WRITEs. Sail might have been a sensible
alternative, but Snobol was preferred because it was of a much higher level in
string manipulation.

Why didnt we use PUB? To put it bluntly, because the author did not like it. When
he first used PUB, he was puzzled by unexpected appearances and disappearances
of empty lines. The fact was, the conventions differed in the "no-fill® and the "fiil"
modes. He fell, perhaps for no good reason, that PUB was one of those mysterious
software which was suitable only to a novice or an addict. Unless you are willing to
restrict yourself to canned usages, you must diligently decipher the manual to
discover unwritten assumptions. To say this might not be doing justice to PUB.
Apparently, one source of the difficulty is LOOK underlying it. But if this is the

case, it is much easier to address ourselves directly to LOOK than to try to control
1LOOK through PUB.

3.6. HOW TO PROCEED

This section is a crmntérpart to Section 2.3. We estimate the labor involved in
proceeding further.

The first thing to do is another clean-up. The present degree of organization of
our program happens to be just fit to the present level of sophistication. To
proceed further, we must identify more structures, since otherwise the process
would be a pain. For example, the code for case shifting in the present form is
scattered in a number of modules (for the processing of the words and the
paddings). This should be identified, separated, and encapsulated.

60

The second step will be to fill the holes listed in Section 2.3. If the clean-ups
mentioned above is first done, each of the refinements except for pagination(1) will
require at most one sitting. Pagination, however, will need several sittings because
a new level of structure must be incorporated. We expect no more than five new

pages in the line printer listing. The slow system will become slower perhaps for
20 per cent.

The third step might be a big clean-up. We should review the entire system, and
try to separate and hide our design decisions into modules in Parnas’s sense(17] A
crucial question might be: "Can we nicely form a subset of our system which
efficiently handle texts in English?® The idea of automatically discriminating the text
paragraphs from the title lines is not restricted to Japanese document production.
The calculation of the widths of the characters, and the filling of the text lines are
also not specific to Japanese documents. We should organize our design decisions
nicely so that we can delete impertinent portions of our program to get an efficient
subset for English texts. '

Another crucial question about subsetting arises if we assume the use of a kana
keyboard. In that case, the bulk of the material about roman-kana conversion will
become unnecessary, but we must still think about katakanization, since ordinary
kana keyboards have only the katakana characters. In addition, we would have to
think about the discrimination between the uppercase and the lowercase alphabetic
characters, since most of the currently available kana keyboards do not have
lowercase characters.

Clearly, we would have had a hard time if we had set the subsettability requirement
as one of the starting requirements of the project. Once a runnable mock-up is
completed, and good intuition is collected, this task becomes an enjoyable exercise.
At least the author feels that way.

Once this step is completed, it will be a relatively easy job to build a more practical
system, e.g., with a dot printer and a microprocessor. We could alternatively build
our system on PUB[6] or SCRIBE[7] Now that the problem has been well
understood, we would have much less difficuity in addressing ourselves to them.

—

61

4. ADDITIONAL REMARKS

4.1. USEFULNESS OF THE PRODUCT

In this paper, we have been mainly concerned with the methodclogy of designing
programs. The program itself has been a by-product. This by-product, however, is
of some interest in itself. We now discuss how it helps a Japanese user. The
crucial questions are:

(1) Is the output sufficiently readable?

(2) Is the output socially acceptabie?

(3) Is the input sufficiently easy to prepare?
(4) 1Is the design marketable?

The first three questions are difficult to answer subjectively, especially for the
author. He naturally has an emotional attachment to what he created. He wishes to
answer "yes" if he can. The Japanese reader is requested to do their own
objective judgment, and communicate it to the author. At least the first two
questions could be answered by looking at the sampie output of the Appendix. The
author’s own tentative answers to these three questions are: yes, maybe, and yes.

The output is certainly very readable. It cannot beat lypeset standard-form
documents, but in the author’s personal judgment, it is much better than his own
handwriting. It is compact, and the strokes are accurate. The mixture of the
katakana and the roman alphabetic characters has enhanced readability al least as
expected. The use of spaces narrower than other Japanese characters has also
helped to make the result pleasing to the eye. The author is willing to read other
people’s papers written in this form.

He is sure that his fellow researchers in the computer field will enjoy receiving his
letters in this form. He is not sure whether this system can be safely used in
writing a letter to elderly people who dont know much about his profession. Many

of them believe that handwriting talks about the personality of the writer. They

might feel that the author is trying to evade their judgment. The biggest single
difficulty in this connection comes from the custom of writing people’s names in
Chinese characters. The author would hesitate to represent the names of
prestigious people in the phonetic notation. Even if we ignore the question of
prestige, legal significance of phonetically represented names of persons and
companies is yet to be explored. The answer is therefore "maybe®.

To answer the third question, a number of comparisons could be made. Suppose
that you have a handwritten draft, and wish to put the text into the computer. In
that case, it is much easier if the text is in English. OQur form of the input is

62

basically a romanized Japanese, and therefore requires numerous strokes. Your
ideas goes much faster than you can type. This is particularly true if, as we have
done in the Appendix, the case-defining particles (such as "ha" and "wo") are
separated from the preceding nouns. Even in this situation, however, the task would
be much easier than to write by hand if the result must be neat enough to be sent
to a conference for offset printing.

Next suppose that we have our text in mind, and wish to type it directly. The
author’s personal experience has been that it is much easier to write in Japanese
than in English. One reason seems to be that the author wishes to make corrections
more offen in English than in Japanese, his native language. The text editor he is
using is not necessarily kind when he is making corrections. This gives a positive
bias to the native language even though it requires much more strokes.

As an aside we note that it is very hard to prcoiread the romanized text. Typos
can be found much more easily in the output tt . the input, even if the latter is
also printed neatly on the XGP.

The question of marketability is definitely beyond the judgment of the author.
However, he would be happy if he could buy a comparable system cheaply. The
central question seems to be how many people are willing to invest how much
money. For example, dot printers could be used for developing a low-cost version,
provided that sufficiently many people are interested.

Efforts are going on to develop dot-printer-based systems for the production of
Japanese documents in the standard form. Our system could not compete once
these systems are made available at a comparable price, but there will be some time
before this occurs because they require a number of technical breakthroughs. In
our case, virtually no breakthrough is necessary.

A few additional comments follow. In trying to use our product, the author feit
some strange pressure from it. For one thing, he suddenly became aware that he
was unduly relying on the words of Chinese origin. (For the Japanese reader: he
first wrote ¥»3%< T3. This should have been ¥¥&.) Our system will be useful in
a course on Japanese technical writing!

We left many interesting problems behind. For example, we could have explored the
possibility of abolishing spaces by mixing bigger and smaller hirakana fonts to
indicate the segmentation of the sentences. (In fact, Lady Murasaki did not use
spaces in writing The Tales of Genji, see Section 1.4. Instead, she used the sizes of
the characters and the feeding of ink to her brush for indicating the semantic
breaks.) We prohibited ourselves to indulge in this fascinating problem.

As noted earlier, in our sample texts we put spaces between nouns and

(. . ‘

63

case-defining particles such as "ha". (We did this o make the nouns stand out as

independent units.) However, children’s books usually do not leave such spaces.-

They simply attach particies to nouns. If this is to be done, our katakanization
procedure must be refined.

We did a simple experiment for evalualing our katakanization procedure. We
arbitrarily picked a paperback (on technical matters) and checked the words spelled
in the katakana. About 130 kinds of katakanized words were covered .by our
procedure. Nearly 100 kinds of katakanized words required a shift code. In
addition, there were about 70 kinds of words, which are usually spelled in the
hirakana but were katakanized by the author of the paperback.

4.2. DISCUSSION OF THE ENVIRONMENT

We now discuss how the programming environment affected our efforts. In fact, the
author feels 90 per cent of gratitude, and 10 per cent of dissatisfaction toward the
software-hardware complex he used. The following should not be taken as a
criticism. Rather, it is an implicit proposal for the future improvements, and an
attempt to give hints to those who wish to do similar things.

4.2.1. THE XGP AND LOOK

LOOK is a fancy program. It can even right-justify itself. (We used this feature,
and saved considerable man-hours.) The main problem is that it is poorly
documented, and sometimes behaves mysteriously. . Often we had to rely on
experimentation to find the properties ot the LOOK/XGP compiex.

We discussed earlier (Section 3.1, Step 4) how the choice of the control codes by
the designer of LOOK interfered adversely with our efforts. Had it used printable
characters for the codes (excepting the escape code, octal 177), we would have
been able to produce our mixed hirakana-katakana sample printout before we
developed an assembler.

4.2.2. BILOS

This was perhaps the most helpful part of the environment. Without this software,
and the graphic display, the fonts could have not been completed in the short
period.

However, the hindsight indicates that, if BILOS were better, we would have saved
several tens of hours. First, the characters to be chosen for modification had to be

designated by their octal codes. We could alternatively use the character itself for
the designation, but in our case this forced us to memorize that the syllable "ta”
was in fact "@", "chi® was "A®, and so on,

Another problem was that BILOS could display only one character at a time. One of
the most difficult aspect of the development of a character set is the balance
between the characters. In particular, the balance is quite subtle in the hirakana.
This is perhaps because the character set has its origin in connectable handwritten
forms. To check the balance, we had to go to the XGP. Since the access to it had
to be competed for with other users, we often waited until late at night before we
could get a feedback for a modification of the font. If BILOS had been designed in
such a way that all the characters in the font were shown on the screen, and could
be chosen by a pointing device, we could have saved more than thirty hours. If, in
addition, it could have shown an arbitrary text composed in the font, we could have
saved twenty more hours. Since the total time spent over the fonts has been
somewhere between 100 and 150 hours, these savings would have amounted to
30-50 per cent of the total time.

It is quite conceivable that these suggested improvements are impossible by the
limitation of the hardware. Even if possible, they may well require hundreds of
man-hours. We had no choice other than fitting ourselves to the limitation of BILOS,
but if we wish to build many more character sets in the future, we should first
assess the gains and losses of using BILOS unmodified.

Another possible area for improving BILOS is the size-adjusting command. It helped
greately when we developed the bigger fonts (of height 35) on the basis of the
smaller ones (height 30). However, the magnification algorithm of BILOS resulted in
rugged stroke boundaries, and considerable subsequent retouching was necessary
for smoothing them. Our eyes are quite sensitive to the changes of curvature.
Curved strokes must be carefully composed from gradual changes of regular steps.
BILOS in the present form doesn’t know this.

4.3.3. SITBOL AND THE DEC SYSTEM-10 MONITOR

We have organized our system as one single Snobol program which does everything.
Conceptually, however, what the system does may be cleanly divided into data
transforming steps, each of which does useful things separately. We did not arrange
these as a collection of software tools[4] simply because our operating system did
not support a pipeline. Pipelines are nice because the components are independent
in a guaranteed way. Some clean-ups would have been saved if we could have
used pipelines. ,Should someone attempt to reimplement our design for UNIX, he
should arrange the modules in that way.

T —————

65

The slowness of the resulting system was disappointing. The author at first secretly

" hoped that SITBOL would give a reasonably fast system. The fact was that the

conversion of a two-page document required a CPU time of the order of 40 seconds
(on a KL-10").# One interesting experience was that, when the tables of font widths
were incorporated into the program, the program as a whole run twice as slower,
even though the tables had nothing to do with the workings of the program at that
stage except simply to occupy the storage (Step 21, Section 3.1). Apparently, the
culprit is the storage manipulator.

Basically, our system is a mock-up, and therefore a siow program is quite all right.
But forty seconds are too much. The slowness influenced the design. It was
intolerable to wail in front of a terminal for the 40 seconds (which in the real time
often amounted to five minutes or more). We could have done much more if
SITBOL were faster. Many things were left unimplemented in our mock-up, because
to attack them clearly required more battles against the limitation of the
environment, avoidance of which was one of the central facets of our life-style.

It is a pity that the histogram feature of SITBOL was somehow disabled in the
particular installation used here. It is frustrating to have a slow system with no
instrumentation facilities.

In spite of all these difficulties, however, it should be gratefully acknowledged that,
in the long run, SITBOL and the System-10 Monitor helped us a lot. If, eg, we
were fo program in an assembler language of a mini, we would have had to throw
out many more good things. In particular, the file handling facilities of SITBOL were
very helpful. ‘

- - - - -~ - - - - -

s+ A Note Added after the Formatting: The CPU time spent for formatting this
paper excepting the Appendix and the figures was 19 min 34.7 sec. The
Appendix, again excepting the figure, required 3 min 51.3 sec. These figures
include the time for a set up, which, in one experiment, required 9.9 seconds.
The measurements were done late at night when the computer was being used
by from 7 to 10 users.

66

4.2.4. THE SNOBOL 4 LANGUAGE

Our program was not small enough for the various known drawbacks of the language
to be completely harmless. Thus, the monolithic rule of naming objects considerably
slowed down the the programming process by the fear of collisions. Often the
author had to go to his terminal, and check whether a new name was indeed new.
The names grew longer and longer, making the listing clumsier and clumsier.

The spaces which had to surround binary operators made the program bulkier, and
harder to read. (In order to indicate the relations between the patterns clearly, we
had to use double spaces for concatenations.)

It was troublesome that patterns directly written into pattern matching statements
‘often resulted in a terrible loss of speed. Again, this made the program bulkier.

The expression became indirect and obscure.

In summary, almost every known drawback of the language did some harm in our

project. Neveriheless, in the long run, the Snoboi language helped us a lot, just as .

SITBOL and the System-10 Monitor did. It is absolutely great that our program
could be confined in some twenty-five pages of sparsely printed line-printer
outputs.

4.2.5. THE HUMAN ENVIRONMENT

It may sound strange if we include this subject here, but the lively reactions with
the computing community of the Computer Science Department of CMU was more
than essential for this work. This was an integral part of our environment. Many
curious people talked to the author while he was developing the "funny” fonts. The
first XGP printing was accepted by a great enthusiasm. People’s interest gave the
author precious incentive, and opened the way to communication in which the author
could get information quickly.

—

67

Acknowledgment

The following persons provided useful information about our hardware/software
environment: Siang Wun Song, Brian Reid, Andy Hisgen, Sten Andler, and Joe
Newcomer. Thanks are due to Bill Wulf for discussions. Many members, too
numerous to mention, of the computing community in which this work was done
contributed by showing interest. To name but a few, the author is indebted to
Yuichiro Anzai for his suffering as a brave user of the earlier versions of this
system, and Anita Jones for acting as our first non-Japanese user.

e e

R

References

1 R. Reddy, W. Broadley, L. Erman, R. Johnsson, J. Newcomer, G. Robertson and J.
Wright: XCRIBL -- a Hardcopy Scan Line - Graphics System for Document
Generation, Information Processing Letters, Vol.l (1972), pp.246-251. Also la.
Mark Faust, George Robertson, and Harold Van Zoeren: CMU XGP System,
unpublished on-line documentation, Carnegie-Mellon University, Department of
Computer Science, April 13, 1978.

2. Douglas T. Ross, Ed: special issue on requirements, IEEE Transactions on
Software Engineering, Vol.SE-3, No.l, January 1977, pp.2-84.

3. Erik Sandewall: Programming in an Interactive Environment: the "Lisp”
Experience, Computing Surveys, Vol.10, No.1 (March, 1978), pp.35-71.

4. Brian W. Kernighan and P. J. Plauger: Software Tools, Addison-Wesley, Reading,
Mass., 1976.

5. Tadao Umesao: Techniques of Intellectual Production (Chiteki Seisan no Gijutsu,
or 5T¥ HLXA O FUwD, in Japanese), Iwanami Shoten, Tokyo, 1969.

6. Larry Tesler: PUB - The Document Compiler, Stanford Artificial Intelligence
Project Operating Note 70, Carnegie-Mellon Univ. Comp. Sci. Dept. Edition, May
1973, unpublished.

7. Brian K. Reid: SCRIBE Introductory User’s Manual, First Edition, June 26, 1978,
unpublished.

8. Lee Erman and Ron Tugender: BILOS, A Program for Editing Character Sets, an
unpublished on-line document, Carnegie-Mellon University.

9. James F. Gimpel: SITBOL -- Version 74B, SITBOL Project, Stevens Institute of
Technology, Hoboken, N.J, 1976.

10. Izumi Kimura: On Teaching the Art of Compromising in the Development of
External Specifications, Journal of Information Processing, Vol.l, No.l (May, 1978),

pp.33-41.

11. lzumi Kimura: Pieces-of-Paper Approach in the Overall Design of Software,
Department of Computer Science, Carnegie-Mellon University, to be published.

12. Warren Teitleman: A Display Oriented Programmer’s Assistant, Proc. Sth. 1JCAI,
Voi.2, M.LT., Cambridge, Mass., August 22-25, 1977, pp.905-915.

Lpuni

13. Brian W. Kernighan and P. J. Plauger: The Elements of Programming Style,
McGraw-Hill, New York, 1974 and 1978.

14. Brian W. Kernighan and Llorinda L. Cherry: A System for Typesetting
Mathematics, Comm. ACM, Vol.18, No.3 (March 1975), pp.151-157.

15. lzumi Kimura: On Proofreader’s Programming, Research Reports on Information
Sciences, No.C-14, Department of Information Science, Tokyo Institute of
Technology, August 1977.

16. Eiiti Wada: informal discussion recorded in Proc. of a Symposium on Structured
Programming and Experiences With It (Kozoteki Puroguramingu to Sono Keiken
Shinpojumu Hokokushu, or 23¥3T#% JOY53V¥ Y 0 HOHA YURY1-A4
1E52<ULw3, in Japanese), Tsukuba, Ibaraki, July 1975, Programming Symposium
Committee, Info. Proc. Society of Japan, Tokyo.

17. For example, David L. Parnas: Designing Software for Ease of Extension and
Contraction, Proc. of 3rd International Confer. on Software Engineering, May
10-12, 1978, Atlanta, Ga., pp.264-277.

70

i APPENDIX. A JAPANESE VERSION.

EOYIZ 554v92 TUUS IS
ICIEAS & &Lxf 1%L

85 OWTk

FXhE

Vole £ $oh EUFUBES 0 H-k¥F-: 40V EOFC (CMU) HUTAE hidh I,
EOWIZ 737492Z FUVH (XGP) ¥ Led3T3 $0 B &7, %O UBS 12, Lhs %O O
FPE (IN-Y T5083) T, H<ln ® Uk, TH0 £ DAZD T3 2¢ © T3, WAL I,
LHIB3 EOYYZ H<LeF 12 EOT, FAT H30D FALEDS O hhh 1. HLEAE T gLEy
TN TSHUDA 12EB ZOES £ OhS E5i2 Uk 80 £, ¢ LS.

IVBAL O Thé& I OLx 12 947 & £O% 2X & TE3L. & 20 XGP £ IhoT I<3 2¢
t TEBOIC. IZEAHT O KEAS O hé I3, AR%Z U T h¥ 12 883 £ 2%0 0T ROAL
Eo<3E. RAYD LWL ¥ 1S ¥3#% A5, 20 XGP 2 KIEAS O JALx ® I<¥L ¥
TIEDET &S, ¢ HdLkok,

$5¢% 20 LY . BASU £ WHT $OETY. Y38 (£ 5204 Ah%ZL BULD £ $5T
W3e Cole M CMU ELEL | hi'h 1hA O ET0 TED. 0 HUE £ 0L 22X I3 +3
EY &0, 20 B%ZU 12 E43 UhA If U<B § Zhok 0T, 5% 0 E5LA ¥ LT, LbIE
KE= ¥ UT ##3 LLxd @ 2¢ IF L2O &512 LES, ¥ < BoLA L. ¥< 2. CMU
M XGP . BOEFLES @ POP-11 A B0&E0 ¥ 103 2¥ & &HoT. D30x< 12 HAY & &0,
¥ HAY £ 280K 12 5T OOJXED ¥ T3 ¥, Y30E O =5 A $7ET H3< %3 2
I 8 12 AXT0E OT, N=FHZP O AP K #5LT 52384 T, ¥ S50EESE,.

LEfoT RBUS 65, HAU £ Y0#IH3 ¢ 1B &0 T, "hhsnE 05Hh% H¥hT
XIVTEUODBAS X Lok &R0 K $F 1F §0 A T $33 ¥ SbHE., ¥ MAPIT A%
B0 £ I<oRM E SHOHN LR, $534 20 BANA . 40 TER 0 £ 25T Ak
OT&H3. (FRB. 1 £ 2<K0 Z2Hh5 Ak, ¥ Lok ED & 28 Buh TE3,)

20 %L IS B35 h 3 ¥ THIE, 1 it oF 0 274 T #33.

1. KIEADA £ DEDT $£13 056% O LSIESER & o, £EL bhshs ¥ 3 oY
IS E5T #5h3, O3 TNEA B &hU hd £<EA &3[1] B, ¥h< Faz<h ¥
US0T, H&w3 L% E5TH3. 7 & 3% £ USLE B4 T 0l 12 LT &kS
Y0 TWY r<BLET<, %3h £ £BHUT 43 2¢ b sk,

71

2. HATU ULSIHA £ &< DABAT, &0 & 7. T&FD E< VYIFHIIP £ 2<53 22 0
EOEDE B, UEEUIE YHHT 0B (Realf [2). %11 £ 20O CMU O XGP, 18AMA.
RE- 0 BAL, YOS (&3 L& T hzh FELL) PAELD O ¢ T *5T AT,
FOIFA £ 3% 2¢ H TEt.

xS 20 EO2TA 12 DUTH. H0dED 2 SE<0ok £53% # f LTWS.

2F O EUILES U CMU D XGP O hAkA% B80, £02Le3 M 24k 30 ¥
20 B #2801, £13LrS Tt BAHDL & LBLED. %& $o¢ <hLL 2¥ £ 2wk T
2795k YR~} £ 30T, SEr5& O &3 b B IHA LEEFEV[3)

1. ¥10gxS

CMU @ XGP (FUUY 1ZALN) i2. DT @ i2%E THAUTA T3 FSA O 31 12 £TES M<
LA4VF&ED 1832) Hhd) T A £ vEOFT W<ESIc TET 3. &5U X B 854 UF
O O-WN=-11= (»23L) T. 003 14F 0 hodn T <OEINB. ££ UYSHyy- h
20T VT, 3L & LY 20T 114UF S 2 #3 ¢ A (3.

FUVE EAERO IE BAES O POP-11/45 12 &5 UEr THB3. 20 3AHA O DHUHE
T, 7200 & &30T EvbF-T0 0 £3055 R, #< 15kT (13 = 16E9H) T &3. 20
POP-11 B AD i BAE3 @ F¢X7 & $5T &h. 72VMLe3E5 B 0YET 20 7427 I
OO, DD&3 I H3UT POP-11 O Lo#b< I SUEENS J¥ & FA%K ¥ 3. 20
E3IT #:302< % FLEAFYIFA & BAES LTUB 28 dphHET, XOEINS TA O »T
h EDHT HBLO £, ¥ OI0x< 12 W< £ MAUS EBA B, H5LT T<%L 2,

T L3, 20 POP-11 IX BAES @ POP-10 KI-10 Hk) ko #2< &HT &0, 2-¥ IF
D POP-10#%h his, XGP #0¥rdS FOYSA LOOK 12 LHL & &3 2Y 12 £5T. XGP
£ 0ES 3. 20 3A0A T 5523 V2. ealf oF O £3% LAL &, RAED S
&3 ¢ K %%

.r look

*do ship hira30/538
=do ship kata30/539
stext.xgo

1¥238 13 LOOK 0 (UL LA, $ 2-3%:58 X 05h%ES KU H¥HTES O T2V
Ux31E3 & PDP-10 ® 774/ hira30, kata30 5 POP-11 @ RUAF4XY 12 J2V b
EOS38EA. BEU EUS39EA ¥ LT H<H28. ¥ 13 L& £ $D. AFE3% T LAXD
TAE F¥XMULSES & <& 7710 textxgo ¥ FOP-10 h5 POP-11 I &<3 ¢ ¥
LHO T3 80 T &0, 20 textxgo O %h I, 538If4 H&EU 539K O T2V PUL3ES &
PAEL BE, ¥ LHD T3 J=-F 6 JW<EHT 113,

<hLL 2% & DOET 2. UD 12 POP-11 I 9%255T 113 POP-10 (B-YZF4L ¥ &HH3) i

72

<hLLY JY & DLET Y. UD 13 POP-11 12 2%H5>T 13 PDP-10 (B-YZFL ¥ &Ifn3) ¥
UalfAEd @ 9274 T %<, UASS 305 HAER3ES O #AESYZFA T &, LA
2-% B AD 0 POP-10 (KL-10#7f:. A-YZFhL ¥ &IfH3) & oM £TEX I2 %-T L3
DT, ¥<AD O EEFUZO A 0083 T &3 %27, L303 ¥oh % ¢ K &3 A, 22 T8
<o

ET LOOK 1. Lu#s< O HONALLS. Y3U (ZIF ¥#¥# T0OED 1272 O ULy h5 %23
2V W<& EFE Y0EONS. SHE O TaUb 12 ¥<T3 U 1T UBS 12 LOFEUST
H5HNT &0 ¥H LUXS O NSIF¢— h 02&S5 % &L K2, SHE O T2V PUESIES
B, F4XY U2 &3 AD D F+VMULSIED ¥ TEYS 12 WHAXT IHS J¥ 12 %3h. *0
&0 IS, 7290 O FOhX IS 2LES UhA B hhh, #0) HOE 12 XGP O LEDHNSL 7
TIU EH5T LES 0T 0XD O F1:5 0 %5 12 L3D3 0O 0 & LHEFS ¥ L5 2¢ it
TE%Z0e YSU 12 Ln#Es< 12 EUEIHS LWED O TaUb 2. $HEH A-T2Ub &0 B-
TJ4Ub ¥ EIEHB. LOOK IE FHZIULSIES @ %h 12 S&2EHE I-F O LT 12 55U,
SHE O TV D YBES £ OhSh £ FHEH. LTHA O T2V & F4XT 2 $3 AD O
J2UM IZ BEPILD TIEN, PUT-54Y & 0< Yh, hERIB € T3 vh USES% 3hLF
t T3

Bovs LolfAZ-Y 3. LOOK I= XEH3 T TETS FFIMIPpAM & 5x<¥D <3 0 Ut
%<, FEIP IF0Y & 30T 350 30 ¥ UL O LT *0EHM h $U0ESE 0 %
K0, ¥ & THLSZ Y-EX FAYIAL £ <HHT LOOKEE I AADA TH3, ¥ 115 Oh
ETEX T #3. 20 70Uy ¥ ZUSE Y# Sl PUB ¥ 13 23X O AADA JOYS4L #
V&3UnA ¥ 23T LE h, 2hUhE £ Zhkh HTSHLL, $£2 vI0LED 2 D¥A LTINS
B HoT. BEBELL 5¥<. 0x3A i &< %hofze O3 12 SCRIBE ¥ Le>T3 51
FU% 80 A Brian Reid K &5T Bo0sd &k A 2H 12 20 LIy & HUSE ¥ T ££
Zhokze HthH O YZFL £ PUBLE O T-§ £ 2<KOET £&% 0 $xL:0TOYSL ¥ 1S
MES 12 2380 T3 2 § Upddhk DAKISAR A, PUB M #ULD % B&H< T3 £ I
<HNB BS50p< B EHETELS 1T HEhH, Ho%p< ¥5 [Ukhok.

£ 20 Jayryb At AZEU VATIES O 7aUF UrdiEd & 2<KDET 02&3 &
Horh. TOHL ¥D TFrS X CMU ® 557497 F4xTUS ¥ 200 AALwS JOJSA
BILOS ¥ DhoT, OM<TE 5< I 2% 2 h Tk,

2. 24>k 0

1-4 h5 Az XE, Dbt O YXFA N YA%Z H3 12 #X3h £ #o80 LES. HASS '
T1 12 LT &5% Lol ® O0-9U & 2HhoT 9<3. (SH IF 20 2404 O 2L:3> O
EbO 55 3LEd O BUS 12 AT O WbA TH3.) D-7U ¥ Lo, SH B ©% 12 &3
V3% £ &3 12 50k 0-9U T £exif TOI9%, IF tsudzuki ¥ h<e <, >, 7 . %0
Br<I 0 1YST £ £:580THF I HHFH HIPF. 054%, 20U T 233 2¢ & &aht
VIPI-F THB. HED MERT <<, >>, 17 O &5 h<Y. OvIYI 12 %3. Ovy It
Oy7LE T 200 7p0-F & TXEE 223 T AU 13, T1 HE hh3 &S, 025%
O £0b X, &3 Y UYSTE £ 622013 T1 0 &53% TP O Busk 7940 &
MATOME ¥ '3 %Z#X O Snobol FOYSL 12 <h¥3 ¥ LOOK &% O F-¥7940 &

73

Izure ni seyo, kono ikken henteko na haushiki ha, tsukatte miruto
igai ni kimochiyoku tsukaeru. Soshite,

souiu "igai ni tsukaiyoi mono" wo mitsukeru niha, mushiro sukoshi
daraketa yarikata no hou ga yoinodeha naika, to iunoga,

kono hanashi no hitotsu no ganmoku de aru.

%43. Hansei naishi Jiman

Sokode tsugi niha, dono you na yarikata de kono puroguramu
Wo tsukuttaka shirusou.

Kernighan>ra no meicho Software Toois (4]

niha, "Hidari uesumi kouseihou" (left-corner construction)

to iu chotto kimyouna yougo ga detekuru. Kore ha, choudo kokode
yatta youni, shiyou sekkei Wo <puroguramu sakusei to douji ni
susumete yuku baai ni shutoshite iwareru koto de, kihonteki na
uasashii bubun kara junjun ni tsukuri, dekita tokoro wo ijitte
yousu wo tashikame nagara, shidai ni zentai ni oyonde yuku to iu
kangaekata wo iu. Hareware no hanashi ha, oomune sono suji ni
nottotte iru. HMousukoshi kuuwashiku, donna koto ga tokuchou ka to
kangaete miruto, soreha tsugino youni matomerareru to omou.

(1) Sukoshizutsu tsukuri, tsukutta
mono ha, tsukaeru han’i de jissai ni riyou shiteitta koto.
(Hayai hanashi, kono ronbun ha, wareware no <shisutemu
wo tsukatte kaita wake
dearu.) Sono you ni suru to, shinriteki na hariai ga dekiru
hoka, mazui tokoro Wo hayame ni mitsukedasu koto ga dekiru.

(2) Hyou ni dekiru tokoro ha, tetteiteki ni hyou ni shita koto.
Hyou ha narubeku minareta katachi ni suru noga yoi. JIS

kikaku nado areba, arigataku itadaite sonomama tsukau. Souiu mono

Wo keisanki shori ni tekisuru katachi ni tsukurikaeru tame ni
kuuareru keisan jikan ha, ki ni shinai. (Zutto ato ni natte,
shouhin to shite uru tame no mono Wo tsukuru dan ni demo nareba,
<makuro uWo tsukatte maeshori Wo suru, to iu youna koto mo
hitsuyou ni narou ga, sore ha sashiatari ninotsugi sannotsugi de
aru.) y

F1: Epd30x< O HOULE, (20 ZAd4 O UBLe)

74

MATOME ¥ 03 %3%X @ Snobol 70754 1z <htt3 ¥ LOOK &¥ O F-¥7940 H
ILEHB ¥ U3 Uit T &3, Cr3EL $0IEh [$HEU< 55T <Y, 5< BAEL LT
TEYLS 2 HOIMT <HB &5 £ %5703 <hLL 2hObE 1E [3] 12 LBLE S, TALLS
D SX. FYIX B S5 H0 2hoTHT LEEEEN,

BUS 1= LBLE &3 120 SH I 3< hESHE Ubk T 2<ok 80 T &3, (DA $<4nif-
I2 b, UDYS UbA B 5%5< 400UMA TUY. 20 %h IS, F—9 9<0. YIFL O
BOULD & USAS 2%, 2-4 4U¥-71~2 @ -0 h3 Usxhy 0 JoFS5LhE 7%
M<Le) ULESST £YE ZE-F & &FES ¥ 05 £53% %LU 12 § £ 2hoT0\3 0% 1
IFYAY %Zhor, * 22T 2<of 30 . Eh5 Tuled tL0A T %2<. HL3 LHW3
mock-up T @57 #0 K535 F &3 ¥ THIE $o1£5 AOa UES 0 #o00 D) 1ES (2 &3,
¥ MABISHS,.

JOUSL ® #F I, Snobol 4 O FA O AT I LT <600, REL 3% £<130 [ZME
Eiihs 23 SAh Td3. SAUTVUY &5U 12 35 ¥ 35T 258-Y £57F T. I< A<z
020 T HAD THFI. 5% 2 B TOIA 5¥<T, KL-100k O POP-10 T 20 344 O
FINE WA EHE AADA TEDIZ, CPUUMA I2 LT 40ULS IEY hh3.. (5o¢% %D 53
D PO O 2dA IE EybPyT O £SO Ubk 20T, $52 55F0 FE1AiUr T2 UUES
VLSS FU 12 23.) Mock-up £EhdS ¥1TE LLUe 2Ok, ¥ LSOH Osbe O LLEA T
&3. Uodu, S ¢ kedf PEYIS HAZ T AT LS, T 400UMA T Tk wit
bz,

Eolf) A &% £ ¥ Ook DB YAZ Hol() € Lkh, ¥0 &34 £ hhoT OREL k& (=,
O-VU & 05h% ¥ H9hF I $0DHS $%15 12 DT PhEA I2 LB%5. o0 B BUS
Br3BA =1, BLEN TRPAITA,. FRE MY B A< O30 I HYHF. %O Eh i
V55h%, ¥ 13 1ESVLA K &5T &3 2X 2 LT UWke LD X 2HET 0 22 € Y 7ha-F
< ® 02&3 ¥ T3 HBA I 3< b¥'h 12 25T LEsk A, 8580 ¥ LT 70554,
rFuvy, %Y A O2&nk, :

ST ¥e5 ¥ 58123 % DE31E3 A<E 230 B AYHF X VS 2¢ Ik Lke 2 T
RYXf 947545, %Y & BN~ $1B J¥ IS %oke Eo%< FZP LT ARE. Thoify A
"'J'ylh IS 29T 25T LSk

ST, SAY B, TAs 3 Tos O OF AL) 223 I H €25 0 sU H TT %5
BFHF, L 05 22X 1T LT &ke UD U2 20 v# &, BUD 825 & X F39 12 %oT
U5<0 LEO LRA, 3 0 <50 I Uhk &350,

EO0wP2, FUXM, 7993V %Y H OS&HE A, 5T B &0 HA £ 0oT03 OV 20k ¥
83, SHT YO <50 33< B<h ¥ LSY, LY hbEr U35 Bz THo%31E3, 5
DEHIRE O Y E 0357 ABY. ¥ 55 0 ¥<I30L30 k£ 0T B 3F< wE,
100Un30 £AT I 2T FASL HhIrE 1o TAF 2vif € 302 < b 0085 € &0,
¥OIED 70 DO 2323 %5 0848% T h< 0O 5 HVHF 1K %oT0T. %Ok 12 < ©
V2&3 12 %3 80 H &of (NSNS, I, TXEY. IUEY 2Y). Fo< 2> H 0945 ¢
%3 HO X UT . TiEs200 A 8IS DUk,

75

HU3D BAUF . Undihc 55<0 50 2 2=5— T, 2 0D YThI-F © 02&5H &
2-¥ 12 ¥oT Yo¥ 12 BAEA TE3 T0Y 12 #4< © hAkA T &3 2 T &3. £O0vIX.

YZb, 9YVIY %Y H OS&HE A, ET I AZD EO BA E LT LB O T ZUh ¥,
5535, SO O Tw¥Zy. by, TYIVS E HB. XY X OS ES 1T 0T wHIEE, L0

TE3 30 0 AT IE U<KATE APEES £h. #4505 2¢ & &30 3 ¢ Jokx h 2-4 0

B Iz AxIs<W 0 ¢ %3 Of 23 va3 T &3.

W3ETE %<, 05H% ¥ DT O DAL % E0hT I, L& I RE0S%L hEH TEZL,
Rexif SA%Z HONA B PARISNS. TED AFL X EAES £ #57E3 0T hE B
liiao.l

OTFH 12 BE. 20 LsHA ALTS % ESULE IX. 2hoT &3Y LAL T EFE5X< Ohx3.
FLT. #3503 TOAD 12 2ALEL $0s & AOHS I8, LB TIL ESHE vonk 0 1E3
$ 00T ZOh, ¥ LSOR, 20 BZL O 0D O PAE< T &3.

3. ITABL ZOL US4
¥27T OF 121, YO &5 % ohr T 20 F0T54 & 2<kH L3S,

Kernighand O #\)5k Software Tools [4) KKIt, TOED Sx¥& 25#0IESS (left-corner
construction) ¥ LS Bro¥ #&r3% £33 TT<B. H 3. 3x5Y 22T vok &30,
LES Bt 2 FOUSA <BO ¥ ¥5U Kk $T6T < &0 12 LpzLT b3 2¢ T
EIATE 2 PALL WhA S UnAUnk 12 240, T#Er ¥23 £ LWUST &5T & EUAY
w#hs. LEO 12 HARL 12 5EAT B< ¥ 13 MARIAE E 1S, hith#t O 2L 3.
Bhbhh ¥O TU I2 Do%aT LBe $3T2L <hU<L. YAZ 2 # 2<5r5 H ¥ HARXT
A3Y. M 2FD Z5IC FLHEND ¥ BES.

(1) T2LFD 2<0. <ok $0 1. oHhx3 BAL T Us¥h 12 0E3 LTk 2.
(PO (22U, 20 3AaA I DD © YIFL £ DHh-T HLk HiF T3S t0 &5
2 3 Y. UADTE % 200 5 TE3 Fh, $T0 223 £ BYS K AOHET 2X K
TE35.

(2) 0r> Iz TE3 Y23 I3, ToTOTE 12 025 L LE 2% 0:3 B %3A< A%k
whs 12 13 OB F0e JIS #h< %Y &HE. H0AR< LEELT t0OFE Ohd.
¥3003 BN £ FOITAE Leh IS TETS M3 12 2<NHAB LB I <HAS BLEA
UMA 2. ¥ 12 UZ0 (For &Y 12 %27 LE30A X LT 33 £ O 80 & O<3
A 12 TH 2nf, v70 & 2hoT FxLeh & $3. 2 L3 &3%2 J¥ & 0243 K
%3S f, ¥4 1§ TUERD 202¥ TA0IE T &3)

(3) LBdFoh & %3AK & (2 AXB &5 2 2<ok 2% & 12 &% O ¥ OHS
0983 5 LeSURS, %1 £ 8 IS X3 &5 2 T3 £ 0. 29— 20 (W-FV) &
YU Iz 9<=T £<e EEL To¥- B, #8004 (Xl Y274 *22080 0 U7
L=Fy 2Y) B &1 23A< WALT Ih0, 20 Th T &30 PAES%0 D A 0 T

76

#3533,

() H< I1~Z 1T $HEH UdbA O DX3HA £ E80, &P % J¥¢ & 5% &5 £
<ok 2%, R OF O 7z-X I LTS LAL 1k, 22 0 7r-X ¥ T30 ¥3
&31c 9<3 %Y,

(5) #3 T LWUr> Eb%% 2Y & T3 v# &, JOUSL £ 2Y H< &3512 LE 2X.
$F ¥oBLIA. #200T € 9<3. JOTSA IF BUB I Fu4y 0 260 T HEILL
% E4HT 5< 12 HE. LEL 2T Uok5d hAEA 12 BULE £ T3. ($0 EADO T
hEELL B AOhB 2% # &B0.) (K &EALL ek JOTSA £ 8 0 FOTSL O
Y2 12 B8 . $0EN YAZ LndSHO & T30 B, YZF«VT I h&E2k, SHE D
0 % A%PS. LudBL0 £¥x5> £ 3. €%r5 i fA¥< ¥ 1 T 7U-nub U
o%h%0e Y<IT BEEZ LpdH0 & 7328 B, UXF¢UT $ 24 2<0. UsY &Y
hESH £ LIPS, T8k LEAE T A%P5 $508Y TOHhL K H& & L%EL.
Uo&L) @ X¥r5 IS, 25Le £ 2Hh3 OF &0, $ULT. #2804 H280T O 1Eh,
Ur3Lx Uk 3 O ¥A2S ¥ UZF4UY £ O2LT <Y &, LerE o 0 it
< TTT &0, (BUB TR 1ED £ &0)

(6) TP4N £ LpdHL UES, (I 508%2 LedSHL O v¥ Ik A2 £, Laif4 K1) 7<
FUASET A%Z0T. LpdE0 T& O Tp4l 2 20T UXF4VT & ¥, &&HAT &35 <
UE 2%, %2 T & LeSH0 # T3 2Y . U3 ¥5¥A ¥ hAF 2R ES A &0,
227 0 LS80 IE #5< 12 #5T &0 Yol UZF4UT X 2.3UndhA LES TT3.
nE. Usxl 12 Tk 80 £ HUAES £x 1. &3 0uHA &<, ¥ L300, Y<K
EOOES O LedE0 & Uk £5% ¥ I, ROAL $323T &ok.

(7) ZHEELL ¥23. ShIEUE Y23 TETEL YE I 286 K MOt & 73 &30
Lz 2% F=5 23%3 & MATS O HDF0 0 2h I2 L83 &3 12 <3 & ¥3.
%0 1Eh. DATS O TOF UsAlUr £ LHAIEO, AATIHO & BLO ULEO,
Ep3Le< £ DHELED T3, oft I TUETE £ ¥3. %0 Lw O 2¢ . I-F«U5F
ZHUF-F TE 2<oT. BOle Hd HUALSTE £ 3 S H FAH<KTE ¥ THT
WBH. 22 T o703 £53%, mock-upI<h ® %h T #3505 J¥ & +3Y¢, ¥Hh<
#olF A 235x<h LETO 0T 550 T3, 2&E. 20 DRI X, Eh O AOOES ¥
Vol 2 #3535 ¥ 3%, Hoh i <%0,

(8) oM 1 &LaaME B%2U £h, %Izh T3 17 2. E<HO §3< & 3p5Le< ¥ LT
JOI5L O FE O Sk £ 20 T IHTHL &5 U, CEYE ¥R & HHTL
(U5 % U< f £< 3 2¢ £5) I#4YD ¥ TUBA & DAKS &51C Lk ¥

(9) My &3 ¥ 12 Rich = £37 £ @%2UT. PAYS & #< &3 12 Lk 2%, TIUTO
94T B< Y. ¥BpSHoh £ JEOTE 12 AES ¥ 13 ¢ h T#3 0T, &L LHA
T OFEL 0. $£ 0% 12 12T X, UbA T Uk O &52L K 834, ¥ L3O 1,
&< OhHTOS 2 TH3.

(10) EYIEY @ ¥23 T T & 3ok 2% ¥8¥d 2<>7 U3 OIF mock-up ZOEHS,

77

PAIEOTET A2EL B SU%->TUL ZAIKE 25%0, 300 0 Y& ¥5%4 ¥ <
| rth O 223% ¥ £%U . £ Ubh. 20U ELOEK £ 05T 03 5% £ LE1- &
' T3, EYf 20 ZAGA O 3% 0 £ AT &3, *2 T £k HO0ES B *0EL
%ored, ¥T I T2k 80 & 38 C &%hs, $5UL 2<0 26T ¥ 030 & &E%>
Iz EEh#NS.

} (11) AA%Z It%U Eh, ol 12 & £ Dk 2%, $¥< EELL BUhD & 223407,

Br30 B <THT $£5 LWEFES ¥Th, ¥503 ¥% 25 ¥ ¥ T, 3< 2 2 it
20 DT, 3 ¥ LTE. $HOTEF % BU) $¥25 H LE2- 12 YYBHS. (LD ¥1 &
520 ES B &)

VWU ® 3% 2¢ T, LY & ROAL ZL-X 1T TT83 2¢ © TEk. %IL3 Y%
EOUSSR. SHIE £OEI% JY Y B83. ¥ L3O, 23T ok JX I 373 AL
LES 3<0 T, 23 YAZ 80 & 2<oi5 fuh ££ &< bhE%L Lrd3kL A5 LeoidD
. UT. YIrIZP O Thk & #HT W< 533 T &3, +0) ¥ U T%:5 h UndShAa
EOLL ZOY. #oiLe 12 20 55<512 %27 $T. 23M Y33 £ k< AARATIC
Bo2lfUT ULES &% B $3. 2otk 55 ¥ LT T< 12 ¥0 TAE K H3L Hoh
SAT <#Z\ hd 2F3.

Bovd. 22Ty Té #5357 &3 &5i2. LL2YIL<® ¥ 1S bt 2lF Lh%hsk 22 $ LUD
T &3, T2U BEALO f, ¥552< 12 ULB%3. &3T3 12, E<EoT JADHS ¥ &<%0,
$0 VYD O #L IF 2F O &3% 30 T &oke 0SH%Z, H¥HF 5 T3 E3iC 25T Ak,
: UL, 75U (2< 12 250L0) £ B¥< EURL Zoke TELILESS B TEL&ULED, 12, ER
: FCMU @ XGPs # Todi @ 595 2 KT TTLS 0F T3 53, YA% I2 UWTE kol
DAAZL FEB 2 Zokh B TH3¥S HAXB ¥ BE5. *2T 20, %0 HdbA O Eoily,
BUEL £, WEA O 3DLIA {BL ZHD J¥ KX M FX K THaTl LoF I 5T Lok,
3Y #ULE £ L. %0 U 12 &< E&%ELE DA, & FOULSS E35, %Y ¥ &8-R01
For< HE<. LU A TT 100 U YHOEAT. ¥D S5 D VO R >F D >¥ 0 ¢ 7
520k SUHD O &kF H5 WATO £ BAT 230 T POS(0) & A&EhTH O, *0 lEh,
TAFOTE % HPUIIZ Ehh T &ok B, HohTE KB #2525 <BULAE. &L 020 &
HhoT LWT LBIZE O LY & 35%3 Ok, L % 80 T &3.

ER4.)

CMU M XGP £ 2HsT 05h% H9hF XOIEUOIA £ SBET Kb O YZFL £. hESHE
Uk ¥ 330p< T 24T Ake 5< 12 EOULL <o O UsA T &3. bhibit O
POSE X, UIFIIP O B LES IO O THBNE ¥ LT TU O tkor 0 T
&B3E512 BEONS,

78

DA A
1. SH&EE LES: 5TF #LEA O ¥FUsD, Lh%é& LeTA, X3%13, 1969,

2. Brian W. Kernighan and P.J. Plauger: The Elements of Programming Style, Second
Edition, McGraw-Hill, New York, 1974 and 1978.

L 3. lzumi Kimura: Cheap production of Japanese documents, an experiment in
programming methodology, Carnegie-Mellon University, Department of Computer
Science, June 1978.

4. Brian W. Kernighan and P. J. Plauger: Software tools, Addison-Wesley,

