
AO—A062 099 CARNE6IE MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC F/S 9/2 N
CIEAP PROCUCTION OF JAPANESE DOCUMENTS, AN EXPERIMENT IN PROGRA—ETCCU)
.fiJN 78 I KIMURA Ffl620—13— C—OOTh

IM CLASS IFIED CMU C5 78 130 AFOSR~ TR~ 1le95 pit.

‘I

END

DAl E
A P L M E O

3—79
____ “C

p

.0 ~ 2 8 ~~25

_ _ _
~ ~ 32 2.2

J o —

I ~ ~ 2.O

1 .25 IIIIU~ QIfl~
M P{ ’~ ~~ R~ ~(L U1lON I E S T

J’~~ -
~~~~~ ~‘j1 ,‘~~~\,/“ Ct1u-CS-78-138”

L”~ kata1 f ~~/J
~ios i - TR. 7 8 14 9 5  ( (~~J
Cheap Production of Japanese Documents,

an Experiment in Programming Methodology.

Izuml Kimurass

Carnegie-Mellon University
and

Tokyo Institute of Technolo~,y

June 30, 1978

D D C1
DEP ARTMENT ’
of
COMPUTER SCIENCE

rn
Carnegie -Mellon University

Approved for publie release ;

12. 04 dist~ib~tion uz~liait d. 

f~~~T~~~L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



,c
~ ~~J~~~~i~B /

Cheap Production of Japanese Documents, /
an Experiment in Programming Methodology*— ——

/ /  / Izumi/kimuraf*

Carnegie-Mellon University
- and

— Tokyo Institute of Technology
- - - — -- - - . . :~~~~~~

.- -

~~~~~~~~~~~~ 
June~3~ 4978

~~~~~~~~~~ t~~ 7 ~~~~~~~~~~ —

-d 
~ - -

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~~

/ ,~~~ ~~~

.

* This work was supported in part by the Advanced Research Projects Agency of
the Department of Defense under contracts DAHC 15-72-C-038 and

4r44620_73..C..0074 (which is monitored by the Air Force Off ice of Scientific
Research), and in part by National Science Foundation Grant OCR 74-04 187.

ceVisiting CMU from T.LT. Present address: Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pa. 15213. From September 1978 on:
Department of Information Science, Tokyo Institute of Technology, Ookayama,
Meguroku, Tokyo 152, Japan.

A1~ ~OTh~Z O~~~~’~
(~~‘ 1 T T ~’~~ RF.ST~A~~’H (AFSC)

N O T L~~I~ C~~
’ -

Thi s ~~ ‘

~ . l ’ , •
~~

• - . ~~ (7b)

I ~~~~~~~ — -

A. D
Tochuic ;. ~.. I ~~~. ~, ~~~~ .

~~~ 
. r .

I
( I

/ — -

________  - 
-

~~~~~ . -_____


—~~~~~~~~~~~~-~.‘— —~ - .- - .

2

Abstract

This paper describes a small experiment in programming methodology. The problem
is—1~~ do something ni~e Iôr .~the production of Japanese documents in a given
environment. The assumed environment is that of the Department of Computer
Science, Carnegie-Mellon University (CMU). The experiment is done by a one-man
team consis ting of the author. The process involves four factors: (1) preparing data ,
(2) finding the properties of the computing environment , (3) designing the user
interface , and (4) actual ly writing a program. —Al l these proceeds in parallel , and
results in an inefficient but well-considered Nmock_up~, on which a more efficient
production version can be based. t~The program, wri tten in Snobol 4, accepts a sort
of romanized Japanese. The output, printed on the Xerox Graphics Printer of CMU,
makes mixed use of the hirakana and the katakana characters , but the kanji (Chinese

-
characters) is excluded. At the focus of attention is how the general shape of the
sof tware is determined, i.e., requirement analysis in the broad sense. We try to
suppor t the developer ’s imagination. For this purpose we combine disciplined and
undisciplined life-styles. Relations to the works of Sandewall, Kernighan and
Plauger , and others are discussed. ~-Nhe first half of this paper also serves as a
user’s manual of- the product.

Key Words and Phrases

Software engineering, programming methodology, requirement analysis, text
processing, Japanese documents, manpower limitation, Sriobol, Xerox Graphics Printer ,~controlled sloppiness, left-corner construction.

3

Chapter 1. INTRODUCTION

1.1. AN OUTLINE

This paper describes a small experiment in programming methodology. Given a
rather fancy computing environment, and severely limited developer ’s t ime, a small
system for producing Japanese documents is developed. We are interested in
programming in an ex tremely broad sense. We expect at least four parts in it: (1)
prepar ing data; (2) finding the properties of the computing environment; (3)
designing the user interface; and (4) actually writing a program. Certainly, these
four parts are essential in any data processing system. We wish to see how these
fac tors interact, and how they can be controlled.

The computing environment assumed is that of the Computer Science Department ,
Carnegie-Mellon University (CMU) with its big PDP-10 and a special on-line printer
called the Xerox Graphics Printer (XGP)(I). The time spent is about one half of four
months of the author (perhaps 400 man-hours), excep ting the time for
documentation per se. The resulting system handles only phonetic characters in a
sty le often found in children’s books. The more standard, adult’s notation is found
by far too costly for us; The program, written in Snobot 4, is a mock-up. It is big
and slow, but such that you can actually use it to get experience. In writing the

program, language-specific tricks have been avoided as far as possible. The

program can be used, if desired, as a pattern for developing a more efficient
version later.

In this experiment , we are par t icularly concerned with the conception stage of
software development, i.e., requirement analysis (or requirement definition)(2) in the
broad sense. Our focus of attention is to determine the general shape of software
in such a way that the usefulness of the final product is maximized within the given
environment.

The s~ngle most important criterion we choose for assessing our success or failure is
whether the effort is a fun for us. The reader is urged not to misunderstand. The
motive of this research is of course completely serious. The development of the
general shape of software requires the developer’s imagination. This is particularly
true when the subject matter is not fully understood yet. The process must be a
fun rather than a frustration, since otherwise the developer might subconsciously
skip tiresome details.

The author ’s method somewhat resembles the Lisp user’s life-style described by
$andewall(3]. In fact , experience indicates that their (in a sense) undisciplined
method does have considerable merits of its own. We believe that our approach
well compensates the drawbacks , which their method would have in a production
programming environment. Our method is also related to left-corner constructions

of Kernighan and Plauger(4).

In the res t of this chapter , we shall say some more about our motivation (Section
1.2), the par ticular problem chosen for this case study (Sections 1.3 through 1.5),
the computing environment (Section 1.6), and the scope and the nature of our
solution (Section 1.7>. Chapter 2 gives a manual-like descri ption of our product.
Chapter 3 examines how we reached it. Chapter 4 makes some additional remarks.
The Appendix gives a shor t summary of this paper in Japanese.

This paper has been typeset by our system itself. Some manual postprocessing
(number ing the pages and arranging the figures) has been necessary since our
sys tem is a mock-up, and has a number of unimplemented features (Section 2.3).
There is a plan to fill these holes.

1.2. MOTIVATION

When “structured programming N and other modern programming ideas became widely
kn own, w ords of abhorrence came from those who were developing sof tware for
their own research purposes in such areas as physics, chemistry, and automatic
programming. They claimed that in research, programming could not be preplanned,
and that imposing discipline would suppress freedom of thought. It was apparent
tha t some of them were just trying to justify sloppiness for sloppiness’ sake, but

looking back, considerable wisdom is found in what they said at that time.

They do pr~igramming as parts of their research, a process of discovery. The
results t oday could affect what they do tomorrow. If they are to wait until the
pr oblem becomes so well-defined that , say, a predicate can be written for specifying
the product, they cannot start until their research is over. They program for
some thing unknown. They must start anyway.

We have a similar situation in the conception stage of software development. We
don’t know exact ly what the product would look like eventually. We cannot wait
until everything becomes clear. We, too, must start anyway.

The quest ion is, then: “How should we program for an unknown problem?” We will
find an answer to this question through a case study.

1.3. THE READABILITY AND NON-WRITABILITY OF JAPANESE

We now talk about the problem area considered.

Documents in Japanese are known for high readability. This is certainly true with

- - ~~~~~~~~~~~ -~~~~- - - - — ‘ - ‘ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5

typeset documents. People can read very fast without special training for doing so.
There are no fast-reading courses in Japan. Well-educated adults can read fast
anyway.

For example, the first two sentences of the preceding paragraph would read

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ /~~~l:~~~L~3 ~~~~~~
Keywords such as ~~~ (the Japanese language) form compact units, and assis t the
reader to grasp the meaning very quickly. No spaces are used. They are not
necessary. The boundaries of the words are apparent from the changes of the
fonts.

The Japanese written language has a large character set. There are three classes 1
of characters: (1) the HIRAKANA: about 50 syllabic characters for common use; (2)
the KATAKANA: about 50 corresponding syllabic characte rs used mainly for

representing imported Western words; and (3) the KANJI: more than 2,000
ideographic characters originally imported form ancient China. In technical articles,
(4) roman alphabetic characters and (5) mathematical symbols are also used. (By
KANA we mean both the hirakana and the katakana.)

In the usual practice, important concepts are represented by strings consisting
solely of, or at least starting with, either the katakana(2) or the lcanji(3), with the

gaps filled by the hirakana(1) indicating grammatical relationships. (For examp le,
B1~~ of the above consists solely of the kanji characters.) Because of their origins,
the hirakana includes more curved strokes , w hile the katakana and the kanj i
essentially consists of strai ght lir~e segments. They can be distinguished at a glance.
Japanese documents are originally “under ined”, so to speak, f or important concepts.

This st ory, however, has a dark side: writing in Japanese is a very tedious and
time-consuming job. The standard method is to write by hand on special sheets
with preprinted boxes, filling one box with one character , and have the document
typeset manually by a craftsman. Human labor involved is tremendous. Japanese
scientists often grieve that they are definitely inferior to their Western colleagues in
the quantity of pulp they are consuming. Their handicap is now becoming more
prominent due to the advent of computerized document preparation. As far as
technical articles are concerned, the author has less mental barrier when he writes
in English than in Japanese even though the former language is not native for him.
In English, he can do touch-typing, and edit the text within the computer.

In addition to scientific papers, letters cause difficulties. In writing a letter in
English, we can ask a secretary for help. No such help is available for a letter in
Japanese. Unless you are a V.I.P., you are supposed to write yourself by hand. (If
you are one, trained secretaries will write very neatly, or type on a japanese



6

typewriter , Section 1.5.3, for you.) The process is again tedious, and
time-consuming. Worse , there is a tradi tion in Japan that if you don’t wr ite neatly,
people tend to doubt your sincerity. The Japanese people, even businessmen, often
avoid lette rs, and prefer telep hone calls.

In our case study, we shall try to do some nice t hings for helping the preparation
of Japanese documents. In particular, we wish to help researchers in their
everyday tasks.

The following two sections will give more information about the Japanese written
language. This material is for the non-Japanese reader. The Japanese reader may
wish to skip it.

1.4. THE HISTORICAL BACKGROUND

Originally, the Japanese language had no written representation. Characters were
imported from ancient China, and, besides for writing Chinese documents, used for
representing the Japanese language in phonetic approximations. The use culminated
in the sixth century in a monumental anthology “Man’yo Shu”, which recorded
crea tions of all classes of people, from emperors to lowest-level soldiers , in tha t
form.

Later , from the nineth centry on, shorthand phonetic notations for the Japanese
syllables developed. There were two kinds, the hirakana and the katakana
mentioned earlier.

The hirakana was derived from very quickly written forms of Chinese characters ,
and used mainly by women. One memorable event was that “The Tale of Genj i was
written by Lady Murasak i from the late tenth to the early eleventh century. This
great roman, known to the Western world by a translation of Arthur Waley, was
written entirely in the hiralcana.

The kat akana, on the other hand, extracted some of the strokes from the Chinese
characters. Its main usage was for putting memos on Chinese documents for
faci litating the reading. Among the typ ical users were Buddhist priests , who had to .
chant sutra (Buddhist scriptures) in services.

Since then, the hirakana and the Icatalcana coex isted with the kanji (Chinese
characters ). These three were mixed in various ways. The hiratcana was held to be
a more emotional and less prestig ious script. The katakana , on the other hand, was

used in more political and religious situations, usually in combination wi th the Icanj i ,
and in that f orm tended to be a prestigious script. 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _44


7

This situation has changed in the long run. The hirakana has become more standard.
As noted earlier , the present practice Is to use the hiralcana as a glue for
gramma ticall y connecting impor tant concepts represented mainly in the kanji and the
katakana.

1.5. PAST ATTEMPTS OF MECHANIZATION

We shall now examine the past attempts of mechanizing the production of Japanese
documents(5]. There are five classes:

(1) Romanized Japanese on ordinary typewr iters;
(2) Katatcana typewriters;
(3) “Japanese” typewriters, and kanji teleprinters;
(4) 1-lirakana typewriters;
(5) Recent computer-based systems.

1.5.1. ROMANIZED JAPANESE

The first solution is an obvious one. Early attempts of romanizing Japanese date
back to the sixteenth century, when Catholic missionaries tried to record the
Japanese spoken language of that time in the roman alphabet. Later , in the
nineteenth century, an American missionary James Hepburn developed a system H
based on the English pronunciation. His system, after some modifications, became a
s~an~~rd. It is now called the Hepburn system of romanization.

Still later, other systems developed, namely, the Japanese” and the official systems.
Unlike the Hepburn system, w hich basically transcribed pronunciation, the later

systems attempted to be more faithful to the grammatical structure of the Japanese
language. (This considerably sacrificed the fitness of the notation to the English
contex t.)

Romanized Japanese has the great advantage that ordinary typewriters can be used
almost unmodified. Unfortunately, this notation is very redundant, and hard to read.
One reason is that the words of Chinese origin, usually written in the Icanji , often
degenerate. For example , there are at least nine distinct words which are read
“seisan”. They are represented by different combinations of Chinese characters , and
have different meanings: a formal dinner, production, prospect, cyanic acid,
ghastliness, liquidation (of a company and the like), the age of an emperor , the Holy
Communion, and an exact calculation. The recent tendency is to use these
ambiguous words less and less. This big prob lem, however, is expected to remain
for a long time to come.

WI

r~r -

8

For these reasons, romanized Japanese has not been accep ted socially as an
everyday tool. The editor of a scientific journal would never accept your paper if it
is writ ten in this sty le.

There is another unfortunate fact. The birth of the later systems caused a political
controversy. There are differences of practice even wi thin the Japanese
government. The Ministry of Foreign Affairs insists on the use of the Hepburn
sys tem. Your name wilt be automaticall y spelled according to it in a passport. On
the other hand, the Ministry of Education sticks to the official system. The
employees of some of the researc h institutes belonging to the latter Minis try are
supposed to publish papers with their names spelled according to the official
sys tem. (This has caused difficulties to the authors when they travel overseas.
People in foreign countries sometimes doubt their identities.) Under these
circumstances , it is safer to avoid writing letters in romanized Japanese. People
might guess that you are a fanatic adherent of that particular system you use.

1.5.2. KATAKANA TYPEWRITERS

-

This second solut ion has a history of more than 50 years. The katakar i a was
pushed into the ordinary typewriter. This solution requires spaces because without
them the word boundaries would be very difficult to detect. This is in conflict with
the standard practice. (Of course the romanized notation also requires spaces.)
Moreover , just as w ith romariized Japanese, imported Chinese words cause problems.

Despite these difficulties , it was adopted by some forward-l ooking busiriessrnr~ .
This notation is at least better than the first one because it is less redundant , arid
the characters are native. Its typical use has long been in writing business sli ps.
After the advent of computers , peop le began to print mail addresses also in that
style. However, it is stil l rather redundant, and hard to read. It is acceptable only
in in-house documents. Business letters are seldom written in the Icat alcana. It
cannot be an everyday toot of a scientist.

1.5.3. “JAPANESE” TYPEWRITERS AND KANJI TELEPRINTERS

The third solution attacks the problem from the opposite side. A “Japanese ”
typewriter has a matrix of types , including all classes of characters used in the
Japanese language. The characters are selected from the matrix by operating a
handle, and another handle is used to hit the type to cause the character to be
printed. Even simplified models have thousands of entries in the matrix. Touch
typing is impossible. Heavy training is necessary. Typing speed is of the order of
one character per second. The result is very neat , and comfortable to read. Legal
documents are often typed in this way. Recently, low-cost models became popular.

9

Some researchers are using them for preparing camera-ready versions of their
papers, but one shor t paper often costs them one full day. Editing is impossible
except by cumbersome means such as correc tion fluid and pasting over. Aga in, this
cannot be an everyday tool.

A related subject is the lcanj i teleprinters. Early users include newspaper
companies. In a typical system, two frames on a paper tape correspond to a
character , which is chosen from a rotating drum, and printed at about the same rate
as t he “Japanese” typewriters are typed. Here, edi ting is possible, but the machine
is bulky, and very expensive.

1.5.4. HIRAKANA TYPEWRITERS

The f ourth solution is a recent addition. It is based on the observation that , after
the invention of the katakana typewriter, the hirakana became much more common
than the katakana. Basically, the hirakana typewriter is same as the lcatakana
typewrit er, but the types are replaced. The result is much easier to read.

The necessity of spaces and the degeneration of Chinese words ~re draw backs
which this solution shares with the first and the second solutions. The most
uncomfortable aspec t of this style lies in that the imported Western words must be
spelled in t he hirakana. They should rather be spelled in the katakana. The
Western words spelled in this way give the impression that the writer is footing the
reader. (They are at least as unusual as “beethoven”, “texas ”, or even “ibm”.) Since
scient ific papers use Western words very often, there is little hope for this sty le to
be tolerated by the editors of scientific journals. All in alt, however , this is the

leas t offending sty le among those based on ordinary typewriters. In fact , children’s
books are now usually written in this style.

1.5.5. RECENT COMPUTER-BESED SYSTEMS

Finally, the fifth solution. The main commercial usage is found in printing mail
addresses. (Katalcana addresses often cause errors in the post off ice , and are not
polite to the recipients.) Various high-speed printing devices are available.
Xerography, dot-printing, holography, arid other technologies are used. The printers
are still very expensive, but, acco rding to the common understanding, the bottleneck
is not in the output but in the input. A classical solution is to use the kanji
teleprinter input device (the third solution), but this requires roughly one second
per charac ter. A special proprietary touch-typing method using an ordinary
typewriter keyboard has been developed, and is said to at tain a 200 character per
minute rate , but the method requires a hard training. As many nonsense
combina tions of key strokes as are the Japanese characters must be memorized,

10

though efforts have been made to assis t the memory by association. Research is
also going on for automatic kana-to-kariji conversion. Al though some success has
been repor ted, perfec t conversion appears to be almost impossible. The biggest
reason is the degeneration of the words of Chinese origin (discussed earlier) .
Remember that there are nine “seisan”s. Once more , this solution is, for now, far
from providing a cheap everyc~~’ tool which an average researcher can afford.

In passing we note that a Japanese Industrial Standard (JIS) has recentl y been
issued on the encoding of Japanese general characters including the kanji. In the
author ’s opinion, this is one great step ahead.

1.6. THE COMPUTING ENVIRONMENT

This research began when the author found himself in a fancy computing
environment of Carnegie-Mellon University(CMU), Departmen t of Computer Scie rice.
In particular , there was a special printer called the Xerox Graphics Printer (XGP).
This device can print various fonts and figures. The author felt a strong incen tive
toward doing something about Japanese document production using this device. We
now briefly describe the pertinent part of the environmen t.

The XGP of CMU[1) (the printer itself) is , in a grossly oversimp lified description,
something like an ordinary Xerox cop ier in which images created by a
computer-controlled cathode-ray tube is used in place of the reflection from an
original document. It has a printing drum rotating at a cons tant speed. Dots are
deposited on it typically wi th the density of 183 dots per inch, both lengthwise and
breadthwise. The printer uses a 8.5 inch-wide roll of ordinary paper , which

advances at the rate of about 1 inch per second. A computer-controlled paper
cutter can be used to cut the paper at , say, every 11 inches.

The printer is controlled by a dedicated DEC POP-i 1/45. In our mode of usage, thc
bit table area for storing font information has the capacity of approximatel y 15K
words (1 word = 16 bits). (The core has 28K words in all.) Usually, the font
information is first stored in a 256K fixed-head disk, arid is loaded to the core as
required. The number of dots which must be handled is so large that even with this
powerful dedicated machine the limitation of its power of ten causes frustration.

The POP-li computer is in turn coupled to a general-purpose PDP-1O (a KI-lO).
The user operates the XGP by feeding commands to a program called LOOK(la)
runing on the POP-b . In the application of this paper, the commands might look
like

.r look
edo ship hira3O/538

11

edo ship kata3O/539
etext .xgo

The first line activates LOOK. The second and the third lines instruct that font
informa tion for the hirakana and the katakana be sent from the files “hira30” and
“kata3O of the POP-b to the internal disk of 1he POP-I I as fonts Nos.538 and
539, respectively. The fourth line instructs to send the text file “texf.xgo ” from the
POP-b to the POP- li.

There are much more details. For example , the POP- lO connected to the POP-I 1,
called the B—system, is not for the general use. It is primarily for artificial
intelligence research (and in particular , Speech and Vision research). Accordingly,
the non-Al users must first log in to another POP-b (the A-system, a KL—1O), and
gain access to the B-system by a special trick called cross-patching. We shall avoid
to enter into installation—specific details by sometimes telling a lie.

Due to the limitation of the POP-i l’s main storage , LOOK can simultaneousl y handle
only two fonts, each of which can contain no more than 127 characters. The
characters belonging to the two fonts may be freely mixed. If more var ’ ,tion is
desired, the f onts must be swapped with others in the disk. The proc ess requires
some time, during which the printing drum of the XGP advances. For thic reason, a
line can contain only those characters belonging to the two currently loaded pair of
fonts. The two in—core fonts are called the A- and B-fonts.

LOOK interprets control codes embedded in the text file, and performs various
functions such as choosing one of the two fonts, swapp ing the fonts , underlining,
and overprinting.

More particularly, the rubout code (octal 177) serves as an escape code. The next
character (code character) determines the action. For examp le, a Carriage Return
code (octal 15) causes the B-font to be used. Currently, octal 0 through 71 are
used for code characters. A number of characters that follow sometimes act as a
parame ter to the control code.

In the normal usage, the user does not generate a LOOK-readable text file directly.
Instead, he uses a text edit or to generate a mixture of the printed text and certain
commands. It is then converted by a suitable se~ .‘ice program into a LOOK-readable
f orm. When this project was begun, a program called PU8(6] was standard for the
conversion, but it was rather hard to use, poorly documented, and very slow (partly
because it was based on macro processing). Later , a much f as t er and cleaner

conversion program called SCRIBE was announced by Brian Reid(7], but was riot
available when we started.

Our project involved the task of developing Japanese fonts. Fortunately, this could


~~~III~

12

be done rather pleasantly wi th the help of a graphic display and a font editor cal led
BILOS(8).

1.7. A PREVIEW OF THE SOLUTION - MIXED KANA-ENGLISH DOCUMENTS

We very much wished to build a system which produces the standard mixed
kanji-kana documents, but its impossibility was almos t apparent f rom the outset.
What we built was, so to speak, a combination of all the previous solutions based on
ordinary typewriters (Solutions 1, 2, and 4 of Section 1.5.) In our notation, the

sample sentences of Section 1.3 talking about the readability of the Japanese
wr itten language read

l i~h.~ 0) i~~~’~ ~~ ~ U~~t~ ~~~. ~~ L ~ ~~~~~~

Here, we made a change in the choice of words in order to demonstrate the mixed
use of the hirakana and the katakana. The English word “document”, previously
translated into a word of Chinese origin, has now been translated into a phone t ic
transcription (in the katakana) of the Western word, t houg h some people hate these
“ka takariized” terms (just as Frenchmen are famous for hating imported American
words). Words of Chinese origin are preferred. (Ironically, they are also imported
words.)

We trus t that even the non-Japanese reader will recognize the word in question. It
is i.~t .J I. Its non-Western counterpart

can also be spelled in the hirakana as ~~~~~ although this latter notation does not
stand out , and appears somew hat childish for a Japanese eye. Thus, still another
(childish) sty le we can produce by our system is

0) ~I
’LL~ l~ ~ ‘tt~ ~~ ~~~

‘ 

~~~~ ( iL  ~~~L t~
l~~

More detailed discussion of our product will be made in the next chapter.

-

~~~~~~

13

Chapter 2. A DESCRIPTION OF THE PRODUCT

In this chapter , we describe our product. Section 2.1 gives an overview. Section
2.2 gives a more complete user ’s view of the sys tem. Possible enhancements are
discussed in Section 2.3. We emphasize that what we describe here is a half
product, i.e., a mock-up. The central issue of this paper is how to determine the
general shape of the software. The present form is sufficient for this purpose, but
for arriving at a production quality software we must do more.

2.1. A QUICK INTRODUCTION TO THE USER’S VIEW

Let us first give a brief , heip-message-like description of our system. We note that ,
in the operating system we use, the uppercase ~~~ the lowercase characters have
the same meanings as far as the monitor commands are concerned.

The user prepares his text in a sort of romanized Japanese. See FIG.1 for a samp le
input. This is a hypothetical letter from the author to his Japanese friends. The
format basicall y follows the Hepburn system, but whenever possible, other systems
are also accepted. The user is requested to keep the kana representation in mind.
Thus, he should t ype “ha” for the case-defining particle spelled “wa” in the standard
systems of romanization, and “wo” for that one spelled “o”. Also type “ookii” (big),
and “oyakoukou” (being kind to one’s parents). Other somewhat unusual examp les
are:

tsudzuki for ~~~ (continuation)
Be-to-yen for ‘~

— )
~—‘i~~

) (Beethoven)
sofutowwea for ~~~~~~~ (software)

Thus, elongation of the vowels is represented by a minus sign. The user must type
“wwe” in “sof t ware” because we wish to reserve “we” for the spec ial character I
used in the classics. In fact , some Japanese linguists actually pronounce I as “we ”
in order to distinguish it from usual .k (“e”). The conversion from the romanized to
the Icana representation (heretofore termed ROMAN-KANA CONVERSION) is driven by
a table of a self-explanat ory forma t. The user may wish to change it.

A “<“ forces that part of the word following it to be printed in the katakana. A “7”
forces the printing in roman alphabetic characters. A “>“ forces the use of the
hirakana. These “shift codes” are effec tive only up to the next shift code, a space,
or the end of a line. However , a double occurrence of these shift codes, like “<‘~“,

acts as a global shift code, and forces everything up to the next shift code to be
printed (whenever possible) in the designated case.

The user may omit some of the shift codes. A syllable is printed in the hirakana

h~J ~~~~~~~~~~~ -~~~~ .- “  
-



-~~~~ 
~

14

1978nen Sgatsu 3Bnichi

Nihon no mina sama ,

Gobusata i tashimathita. Kotosh i no Nihon rettou ha karatsuyu
no yosh i , okauar i no gozaimasen ka.

CF1U no XGP iso tsukatte goal satsu moush i agemasu. Ima ha
ro—ma>ji de utte imasuga , ro-ma>ji ha ro-ma>ji demo Icore ha henna
ro—ma> j i de, tatoeba %tsuzuk i to utsu to teuzuk i ni natte sh i mau
node, %tsudzuk i de naito ikena i noga tsurai tokoro desu.

Gokenkou iso i nor i masu.

Pittsuba—gu rite
Kimura Izum i

Fig.1: A sample input.

08108 (boll (a, 5381 fb ,5391 (bjon) (j u ,1898) (pad,8l (ccl)
00200 (t ,716) (uaI~ -..._H] .6 (bak ,81 1’B (JcFA
00300
00480 FN] I PE;O$
00508
88600 (t ,47) : (bak ,81It (bak ,8) 1~;c 2c<0.ce ! :0< 1 FN) Z/03 J 6t.JBU I V

<S 56\X S : fbak ,81t; (bak ,8J t20>J 6!
00708
80808 (pad ,10981 tt , 47) fub) cmu lua) I fub) xgp {ua) & B6/C Ibak ,8) I12:

B S349{bak ,81 1’O— ! 20 J tub) (OO fua) < {bak ,8)I C ibak ,Sl I 3/C 2
0-6 (bak , 81 IS tub) (80 fuel < fbak , 8) I

80908 J tub) (80 (ua} .dbak,8)~ C tbak ,8)~ S x Z J tilE tub) 100 {ual c {bak ,8
II C lbak ,811S eO4J {bak,8} I tsuzuk i 0 3B 0 B- lbak,8)I7 F E/C
03 IC(bak ,8) 1S

01008 fpad,8) tsudzuk i C fbak ,8) I E20 29E2 )Slbak ,81I B142 O:( C tbak ,8
II— !

01188
01200 (t ,47): (bak ,8)I9):3 & 21X0- !
01380
01400 t t ,  716) tub) K fbak , 8) .-/BJ Ibak , 8) 108 lbak,8) 1 fuel FC
01500 tt ,779) 70W 2_ tbak,811P

Fig.2: An intermediate result (a JPN-f lie) corresponding to Fig.1.



I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—. -~~~~:~‘r. .~
-- -‘-

~~
—

~
—

~ ~~
- -

~~~~
-—---

~~~~~~ ~~~~
— 

~~~~~~

- •- — - - —‘— - —-

~~

-- -
“I,

15

unless there is a reason otherwise. However, “Pittsuba-gu” for “Pittsburgh”,
printed in the Icatakana , requires no shif t code. The rule is that those sy llables
containing, in the conver ted form, one of the small “a”, “i”, “u , “c”, “0” (“~ 4~ It~”),
or, in the original romanized form, ei ther an elongation sign (-) or a “p” not
preceded by another p” or n” (or “m”), are pr inted in the katakana unless
otherwise forced by a shift code. Thus, “Pittsuba-gu” contains an elongation (-I, and
begins with a “p”. Those words, w hich are impossible to interpret as romanized
Japanese words (such as “CMU”), are printed in the roman alphabets. The ASCII
symbols are always printed as such. The exceptions are single quotes, double

quotes, periods, commas, and minus signs. If they are in the Japanese context , they

are suit.ably replaced by Japanese punctuation symbols or otherwise used during the
conversion.

The user should type his text in such a way that its general shape indicates the

• format in which he wishes the final output to appear. The system makes guesses
based on the assumption that you are typing for a 69-character line. On the basis
of these guesses it attempts to translate the text paragraphs into right-justif ied t sxt
paragraphs, and the title lines into suitably indented title lines. Again , the

69-character assumption can be changed easily.

Presently, the conversion is done by a Snobol program. Although th progr.r~ can

be renamed in any arbitrary way, let us assume that the progr am is in the f i le
“MATOME.SNO”. (Matome means “summing up’ in Japanese.) Th. user typ.s

.r sitbal
*matome

The dot and the sta r are prompts from the system (DEC System-tO Monitor and the
SITBOL system, respectively). Since our program is big, and the Snobol dialect
SITBOL assumed here is not very fas t, there will be some time before you get a
prompt

Input filename or [CR] or ? :

You give the name of the fife containing the romanized text (followed by a Carriage
Return). Assume that the name of the file is “TEXT”. Then our program creates two
files for you: TEMP:TEXT.JPN, and TEMP:TEXT.XGO. The former (called a JPN-fi le)
contains an int ermediate result, w hich you can inspect if you wish. See Fig.2 for a
sample JPN-f lIe corresponding to Fig.1. The JPN-files have long If nes. “00 100”,
“00200’, ... are line numbers added manually to show the beginnings of the lines.
This figure contains some non-ASCII symbols. They correspond to additional
characters with code values less than octal 40 (Section 2.2.10).

The latter (called an XGO-file) can be sent to the XGP. Since our program is

16

Sriobol-based, and since no serious effort for speeding-up has been made, the
process usually takes a long time. It prints a “a” for every ten lines of the input
processed. Assuming that the file TEXT has 50 lines, the printout on your terminal
might be

• from TEXT to TEMP:TEXT.JPN...~ au*a
from TEMP:TEXT.JPN to TEMP:TEXT XGO...*aa*

(The second half of the processing usually gives fewer a’s because the fil ling of the
text paragraphs usually results in less output lines.) The system then returns with
another prompt

Input filename or [CR) or ?

You may repeat the process as often as you wish. You may wish to type “?“
(followed by a CR) to get a help message. When you are through , just hit CR, wh ich
terminates the execution of the Snobol program. The computer returns to the
SITBOL system, and prompts you by a star. You will usually respond by a control-C
to return to the monitor, but you may alternatively activate another Snobol program.

You can now print the converted result by sending it to the XGP. Let us assume
for simplicity that you are on the B-system (see Section 1.6). You invoice LOOK by
telling the monitor as follows:

.r look

The system will answer you as

LOOK: Version
Type HELP for help
*

First you must load the Japanese fonts to the PDP-l l’s disk (if It is not ~aIready
loaded). You answer to the prompt(*) as

• *~ cmd (c3OOik4O]

Here, we assume tha t a special user having the account number C3001K40 on the
B—system has a special file called CMD, which contains commands for causing
necessary font informa tion to be ‘shipped” to the POP-I 1. (CMD contains something
like the second and the third lines of the samp le command sequence of Section 1.6.)
After the intended action is finished, you are told

asc end of command file’
*

LA


~~~~~~~~~ l7

Sometimes the system hangs up during the transmission of the font information for
some reasons unknown to t he author. In that case escape to the monitor state , and
retry from the activation of LOOK on. In the second time, already-shipped font files
are skipped without transmission. Assuming that you successfully reached the end
of the command file, you type the name(s) of the file(s) you wish to print:

*text.xgo

(If you have more than one file, delimit the names by commas, or repeat the process
for another t” from the computer .) You will get a printout on the XGP. A samp le

output corresponding t o Figs.1 and 2 is given in Fig.3. When you are through,
answer to ‘*‘ with a control-C, to return to the monitor.

Implementation—specific remarks.

• 1. Since our system involves the use of TEMP, the user is recommended to
declare this fac t to the monitor in advance as follows:

.mount temp

2. TEMP files are automatically purged if they remain unused for about two
weeks. In the assumed environment , it is customary to put derived data such
as a compiled program in the temp area (structure).

2.1.1. NOTE - THç A-SYSTEM USER’S VIEW

This subsection is only for a CMU user. Other readers should skip it.

If you are on the A-system, you must invoke a program called BOOK, a special LOOK
invoker, as follows:

.r book

You are prompted as

Type /14 for help
Files:

You answer by typing the names of the files you wish to print, wi th the ‘ex tension”
of the form “.xgo’ implied, Zn this case you should just type “text”, and hit CR.



- ‘ —“-— ‘~~~~~~~~~~ 

— 
~~~~~~~~~~~ 

-

~
~~~~~~~~~~~~~~~~~~~~~

18

l978t~A. 6*~ 3Ol.~~
lZl~/. 0) jr ~~~5.

:~l~~1~ L bStAi~. Z~~IJ 0) lzl~b *t,~~ I~ th~~ * 0) .tL,~ ~~ 4~t) 
~ ~~‘I~~t±I. ‘~‘.

CMU 0) XGP ~ ‘D*~~ ~~ t~~ D ~5t~~1ft t. ~~ ~ a—vt. i~’ ~,t t~~t4~ D—v1
t~ O—V L ~ t ~*t t~ \ /W~~~ 0—VL 1~. I~~.tIf tsuzulci ~ Ii~~~ øt ~’.tsucfzuki ~ ~~~ ~~~ 1~t.

~ 
(
~0)f)~ t.

~uj ’~) l %—~f l:~

Fig.3: An XGP printout corresponding to Fig.1.



______ ~~~~~~~~ w =  
~~~~~~~~~~~~~~~~~~~~~ 

-~~~—~—~
—--.

‘9

This causes a trick called cross-patch ing to take you temporarily to the B-system, in
which you will be prompted eventually as

*<You are now cross-patched.>
*

You can now behave as though you are using LOOK on the B-system, with the
ex tension “.xgo” assumed in some cases. Type

s~vcmd(c3OQik4O]

After proper response is received from the system, give the name(s) of your file(s),
w ith “.xgo” implied , as

*text

When everything is finished, type control-C to return to the controller of BOOK, and
tell it “q” for “quit’ to return to the A-system. (If a hung-up occurs during the
transmission of the fonts, type control-C, and tell the controller “r” for “res tart’.)

- ~~~~--~~~~~~~~~~~~ -~~~~~ -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•

20

2.2. A MORE COMPLETE GUIDE

We believe that the above brief explanation is enough for enabling the user to
begin experimenting with our system, but it is certainty incomplete. He may raise
numerous questions. For example, he might ask about the meaning of the following
(mysterious) sentence: “The user should type his text in such a way that its
general shape indicates the format in which he wishes the final output to appear .”
In this section, we give more information so that the user can answer these
questions himself.

2.2.1. THE CONCEPTUAL SYSTEM STRUCTURE

Our conversion program conceptually forms a chain of data-transformi ng modules.
These are

a. Discriminator which looks at the general shape of the text , and locates text
paragraphs and independent title lines. The input is taken from the
user—supp lied input file, and is a sequence of tex t lines possibly mixed with
page marks (dividing the input file into logical pages). The output of this
module is a sequence of TEXT BLOCKs, each of which may be an independent
title line, a paragraph (consisting of glued text lines), or a page mark
(dividing the output into pages).

b. Roman-Kana Converter which extracts syllables from the text blocks. Unless
instructed otherwise by a shift code, and if the syllable is sensible as a
romanizeci Japanese, it is converted into a kana representation. The output
is CONVERTED TEXT BLOCKs.

c. Paragraph Cutter which calculates the widths of the characters , and arrange
the paragraph lines to include just as many number of words that can be
accommodated within a line. This module also arranges independent title
lines. Right-justification is done by LOOK. Necessary control codes are
supplied by this module.

d. Assembler , w hich converts the symbolic control codes into a LOOK-readable
form.

Section 2.2.2 describes the Discriminator. The mystery mentioned above is cleared.
Section 2.2.3 through 2.2.5 describe the Romari-Kana Converter. Sections 2.2.6 and
2.2.7 describe the Paragraph Cutter and the Assembler, respec tively. Sections 2.2.8
through 2.2.10 provide some more information.

21

Remarks.

1. The above reflects a simplified mock-up as of this writing. As noted earlier ,
some additions are expected. For example, between (c) and (d), we expect a

paginator module.

2. In the actual Snobol program, the modules (a)-(c) have been implemented by
nested calls of functions. They are combined indivisibly. However , the
output from the Paragraph Cutter is given explicitly in a file. The user can
monitor it, or even modify it if he wishes. An example of this intermediate
result has been given in F’ig.2.

2.2.2. THE DISCRIMINATOR

• The design of this module is an extension of a series of designs given in (10] and
(11]. It attempts to save the user from the tedium of typing, as in (6],

.fitl; adjust; indent 10,10,5;

or, as in (7],

~enter(example ,group)

It infers the user’s intention from the general shape of the input text , and formats
the output accordingly. It cannot do very fancy things, but can do most of those
serv ices a researcher would riced in his daily business. (His publisher will need
fancier formatters, but it is another matter.)

The module reads input lines from a file, locates text paragraphs by an algorithm
described below, glues the lines of each text paragraph to form a block, and sends
these blocks to the output. The input may also contain independent title lines and
page marks. They are sent to the output with no modification. Each paragraph
block sent to the output contains a text string and an integer LEFIMAR. In the
following description of the algorithm, we assume that the end-of-file condition and
the page marks are received from the input file as though they are special kinds of
input lines.

In our algorithm, we look at the pairs of adjacent lines (call them CURRENT and
NEXT). The trailing spaces of the (ordinary text) lines are TRiMmed before b e g
processed.

If CURRENT is an EOF, the processing ends. If CURRENT is a page mark, it is sent to

22

the output , the old NEXT replaces CURRENT, and a new NEXT is obtained from the
input file.

Otherwise let the numbers of leading spaces of CURRENT and NEXT be CMAR and
NMAR, respectively. (If the line is empty, assume that it has 99999 leading spaces.)
We check whether

1. NEXT exists in the same page. (That is, CURRENT is not the last line in
the file, and there is no form feed between CURRENT and NEXT.)

2. Either CURRENT or NEXT has at least 40 (blank or nonblank) characters.
3. If CMAR ? NMAR, then

NMAR ~ REFCOL + 4, and
CMAR ~ NMAR + 11.

4. If CMAR < NMAR, then
CMAR ~ REFCOL + 4, and
NMAR ~ CMAR + 7.

Condition 3 corresponds to a normal indented paragraph (including the blocked form
paragraph as a special case), and Condition 4 corresponds to a hanging paragraph.
The numbers 40, 4, 11, and 7 are tentative. We expect that the user wilt wish to
change t hem. REFCOL is a control variable , se t initially to 0. See Fig.4(a).

We distinguish two cases.

CASE A.

If all these conditions hold, we start a paragraph. REFCOL is set equal to the
smaller of CMAR and NMAR. Besides, a control variable LEFTMAR is set equal
to NMAR. The subsequent lines SUBSEQ are checked for the following
condition:

SUBSEQ ex ists in the same page, and
either SMAR - 0 or ~SMAR - LEFTMAR~ ~ 2.

Here, SMA R is the number of leading spaces of SUBSEQ. Again, 99999 is
assumed for an empty line. (The condition SMAR — 0 is a trick for saving
the labor of the user when he is typing an indented paragraph. This is
again tentative.)

All the subsequent lines up to the last one satisf ying this condition are glued
together to form a long text string containing all the material of the
paragraph. (See Fig.4(b).) In gluing the lines, the leading spaces of the
second and later lines in the paragraph are stripped off. Between the glued
lines are inserted two spaces if the preceding line ends either with a period,


~~~~~~~~

.•—••.- •
~~;~~~

‘___ __ _‘ • 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~
•-.-. —.-——-•--.- • •- —- —----

~

• 23

I REFCOL

/
Active area

New REFCOL (a)
•

‘

Col.O
LEETMAR

LEFTMAR

LTI4j~
2

(b)

Fig.4: The discrimination algorithm for text paragraphs arid independent
lines: (a) Starting a new text paragraph, (b) ending a paragraph.

____________________________ . • ~~

24

a question mark, or an exclamation mark possibly f ollowed by one or more
right parentheses and/or double quotes. Otherwise , one space ~s inserted.
The resulting string and the value of LEFTMAR represents the paragraph,
which is sent to the output.

The scanning resumes with the first SUBSEQ violating the above condition.
This SUBSEQ serves as CURRENT, and NEXT is supplied from the input file.

CASE B.

If any one of the conditions (1)-(4) fails , CURRENT is regarded to give an
independent line, and immediately sent to the output as a text block. The
content of ,the block is the text string CURRENT. The old NEXT replaces
CURR ENT, a new NEXT is obtained from the input, and the process repea ts.

Fig.5 illustrates some extreme uses of this part of the system. Fig.5(a) is read as
input, and Fig.5(b) is printed.

2.2.3. THE ROMAN-KANA CONVERTER (1) - WORDS AND SYLLABLES

The text strings received by this module is regarded as a (possibly null) sequence
of WORDs surrounded by (possibly null) PADDINGs. Thus, text string (of either
independent title line or paragraph block) is of the form

<padding> <word> <padding> <word> ... <word> <padding>

A padding is a (mixed) sequence of (1) spaces , (2) shift codes (<>7.), and (3)
sym bolically represented LOOK commands (such as {ua}, Section 2.2.7). A word is a
sequence of characters that contains none of the above. (A word cart contain
spaces and other special c haracters if they are escaped, Section 2.2.7.)

A word consists of one or more SYLLABLEs. An escaped character (Section 2.2.7)
always f orms a syllable , by itself. It is not subjected to roman-kana conversion
(Section 2.2.5). A span of non-alphabetic characters also forms a syllable. Again, it
is not subjected to roman-kana conversion. A non-null span of unescaped alphabetic
characters is an ALPHABETIC SYLLABLE. It is subjected to possible roman-kana
conversiOn.

We regard double quotes , single quotes , commas, minus signs , and pe riods as
alphabetic.

The words are converted to corresponding sequence of (variable-width) characters.

- ~~~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

25

%%Th is k a test data for showing how the Discr iminator
module of t1ATOIIE works. A paragraph w i l l end when the le f t
marg in moves for more than two characters. In
th is connection we assume that an empty l ine has 93999 leading
spaces.

1. For example , this terminates the preceding paragraph,
and s tar ts a new one. A t~jp ica l use of th is f a c i l it q

is in numbered paragraphs.
2. Here , the l e f t marg in moved for more than two characters.

Therefore , a new paragraph was begun.
Let ’s return to the or i gina l style . This is an

i ndented paragraph.
Thia is not. This is a block of i ndependent titl e
lines , because the second line of the b I.ock has been
i ndented too deeply.
Also note that the third line in the numbered paragraph

1 has no l eading spaces. This is a tr i ck for mak i ng the typing
eas i er.

(a)

This is a test data for showing how the Discriminator module of MATOME
works. A paragraph wilt end when the lef t margin moves for more than two
charac ters. In this connection we assume that an empty line has 99999 leading
spaces.

1. For examp le, this terminates the preceding paragraph, and st ar ts a new
one. A typical use of this facility is in numbered par agra phs.

2. Here, the left margin moved for more than two characters. Therefore, a
new paragraph was begun.

Let’s return to the original style. This is an indented paragraph.
This is not. This is a block of independent title
lines, because the second line of the block has been
indented too deeply.
Also note that the third line in the numbered paragraph I has no leading

spaces. This is a trick for making the typing easier.

(b)

Fig.5: Extreme uses of the discrimination algorithm:
(a) input; (b) output.

26

The blanks within the paddings are likewise transformed into as many blanks, which

is later expanded by the LOOK right-justification feature (cf. Section 2.2.7).
Resulting sequences of words and paddings are sent to the Paragraph Cutter
(Section 2.2.6).

Remark.

• The above definition has some drawback in that , if the unit of the filling and
t he ri ght justification of text lines are taken to be the words in the above
sense (a natural choice), then a word containing both the katakana and the
hirakana characters could be cut over the lines. For example, o—vG~(romanized Japanese) may be cut into 0—V and t.. It is perhaps more
natural to introduce one additional level in our definition, defining our words
to be delimited by either spaces or tine boundaries, and allow them to
contain shift codes. Our present definition is given unmodified because much
more experimentat ion seems necessary before we can decisively tell the
gains and losses of these definitions. It may be tha t we should rather
change the filling procedure.

2.2.4. THE ROMAN-KANA CONVERSION (2) - CASE SHiFTING

This part of the module is used as a subroutine by the main part described in the
preceding subsection.

The case shifting is controlled by three variables: GLORSH1FT, LOCSHWT, and
VERDICT. The possible values of these variables are:

GLOBSHIFT: empty, “<“, 5”, and “i” ;
LOCSHIFT : empty, “<“, 5”, and ‘T’ ;
VERDICT : “<“, or ‘>“

.

In a left to right scan of the input text , the occurrences of “c<~, “>> “, and ~7.Z” set
GLOBSHIFT to “<“, 5~, and “Z” , respectivel y. They set LOCSHWT to empty.

Similarly, the occurrences of “‘c”, 5”, and “Z” set LOCSHIFT to ~c”, 5 , and ~~~~~~~

respectively. They set CURSHWT to empty.

Just before a padding is scanned, LOCSHWT is set to empty. GLOBSHIFT is set to
empty at the beginning of a new input file.

An alphabetic syllable is regarded to be a syllable in English (no conversion) if

27

LOCSHIFT followed by GLOBSH1FT

starts with a “7.”. Otherwise, a roman-kana conversion (Section 2.2.5) is attempted.
If the conversion is unsuccessful , then the syllable is again regarded as a syllable in

F English. If the conversion is successful , a “katakanizati on” condition (discussed
shortly) is checked. If the condition holds, the VERDICT is given the value “ <“

. if it
does not, the value of VERDICT is 5 . The first character in the concatenation

LOCSI-IIFT followed by
GLOBSHIFT followed by VERDICT

determines the case. If it is ~~~~
“
, the sy llable is printed in the hirakana. If it is “<“,

the syllable is printed in the Icatakana.

The katakanization condition currently used has been described In Section 3.1. In
• the Snobol code, it reads as follows:

KATAPAT - ANYC”Os+O”)
+ I ‘3t’
+ I ((POS(O) NOTANY(’)/’))
+ (‘J’ I ‘K’ I ‘I..’ I ‘U’ I ‘N’) ‘ ‘)

From the single quote to the plus sign in the first tine corresponds to the small
• “P4~’It”, “0” to the elongation sign, ‘3t” to “~7’”, fr om “J” through N to “I\~~~~’\,t ~”,

• w hich are converted into “i~’J ’ ~t~” by ~~~~
“ (corresponding to the circle accent sign).

“3/” corresponds to “n” (A.) and the small “tsu” (,). This Snobol pattern may be
changed if desired.

In the above explanation, the “occurrences ” of 5”, 5>~, and the like more precisel y
mean t he following. A span of <“, 5”, and “7.” is extracte d and examined. If it is
of length more than 1, and if the last two chara cters are equal, then these two
characters are read as ‘<<“, 5>”, or “7.2”. Otherwise, the last character indicates
“<“, “>“

, or “7.”.

Remark.

In the above, LOCSHWT is set to empty if “<<“, 5’”, or “‘ZZ” is encountered.
However , this is not necessary if our current definition of the word is sticlced
to. LOCSHIFT is set to empty anyway before one of these code combinations
is processed. We require the above, and have actually coded to that effect ,
since we anticipate changes in the definitions as discussed in the Remark of
the preceding section.

1~~

28

2.2.5. THE ROMAN-KANA CONVERTER (3) - THE CONVERSION ALGORITHM

This part is another subroutine for the main part (Section 2.2.3).

The conversion from the romanized form into kana characters (rornan-kana
conversion) is governed by a table. An edited form of the table looks as follows:

• a: • mi: ~I myu: i* j a : 1~’
• i: t~ mu: t3 myO: L~~ Zya: Li’

u: me: W rya: 0t’ ju : t *
e: .t mo: t ryu: ~)* zyu:
0: ya: ~‘ ryo: ~~ jO: i.Zt~
ka: ~ yu: ~t’ ga: ‘~ zyo: ~~
ki: ~ yo: ~~ gi: ~~

“ bya: tJ’t’
ku: < ra: ~ gu: ~

‘
byu: t~i*

ke: it ri: ~ ge: Pf byo: tc.~ko: ~ ru: ~ go: ~ pya: tft’
sa: re: It za: ~ pyu: flip
shi: U ro: ~ ji: U” pyo:
si: l.~ Wa : 1 zi: t. dzi: ~~

“

su: 1” kya: ~~~‘ zu: 1 dzu: ~
se: ~ lcyu: ~* ze: if je:
so: ~t icyo: ~~ zo: it? Wi: ~‘a
ta: I~ sha: l,i’ da: 1~ we: I
chi: t sya: Li’t’ di: ~(u wo: ~
ti: ~u shu: t,,p du: ~ wwa: ~a
tsu: 2 syu: Ue~ dyu: ~~i* wwi: ~u
tu: ~~ sho: 1,.~ de: ~

(wwe:
te: 1 syo: L~ do: ~ ww o: ~~
to: ‘

~~ cha: t~’ ba: if f a: ,i~
na: ~ tya: t~’ bi: fi fi: ii~ ;

ni: t chu: tip bu: ,i fe: ~~~
nu: ~ tyu: tip be: \ fo: .~~~
ne: I~ cho: t~ bo: l~ Va:
no: 0 tyo: t~ pa: tl vi: ~u
ha: It nya: l~ ’ pi: tf vu:
hi: t) nyu: t~* pu: ye:
fu: .i nyo: l~~ pe: \‘ vo:
hu: .1 hya: Vt ’ p0: it tsa: ~
he: \ hyu: V* gya: 5?,t~ tsi: ~u
ho: l~ hyo: t}~ gyu: (p tse: “)

~~
ma: ~ mya: ~i’t’ gyo: ~Z tso:)~

The original form as coded in Snobol 4 is shown in Section 3.1, Step 2.

29

In a roman-kana conversion, the given syllable is firs checked for initial occurrences
of double quotes(”). If there are any, they are stri pped and converted into
Japanese opening brackets (r). Then, the following is repeated until all characters
of the sy llable is stripped and converted, or a failure of the conversion is signalled.

1. The syllable is checked for an initial occurrence of one of the strings
preceding colons in the above table. If there is a match, that part of the

• syllable is stripped, and converted into the corresponding combination of the
kana characters that follows the colon, In the present implementation,
uppercase and lowercase roman alphabets are assumed to have the same
meanings. (However, see Section 2.3.)

2. If the above check fails , the syllable is checked against the following Snobol

• pattern:

SOKUPAT — P09(0) (‘kk’ I ‘ss’ ‘tt’ I ‘tch’ I ‘hh’ I
+ ‘dd’ I ‘pp’ I “t’l

If this test succeeds, the first character of the sy llable is stripped, and
converted into the small “tsu” (a).

3. If the above still fails, the first character of the syllable is stripped anyway.

• It determines the action in the following way:

3a. Double quote C) ... If what follows within the syllable contains nothing
other than double quotes, periods, and commas, a closing bracket Cs) is
given. Otherwise, conversion fails.

3b. Single quote C) ... Just ignored.

3c. Period (.) ... If what follows within the syllable contains nothing other
than double quotes and commas, the Japanese circle punctuation mark (.)
is given. Otherwise, a midpoint (•) is given.

3d. Comma (,) ... If what follows within the syllable contains nothing other
than double quotes and periods, a Japanese dot punctuation mark C) is

given. Otherwise, the conversion fails.

3e. Minus sign (-) ... An elongation sign (—) is given.

3f. ‘m’ or ‘n’ ... Corresponding Japanese character(/..) is given.

30

EXAMPLES.

kana (the hirakana or the katakana) ... undergoes two applications of the
rule 1, becomes ~~~~~~~

“kan’a” (a crow in mid—winter , enclosed in brackets) ... after the first
double quote is stri pped and conver ted, undergoes applications of
the rules 1, 3f , 3b, 1, and 3a, and becomes ~~~~~~~~~~

ka-negi-.meron (Carnegie-Mellon) ... processed by rules 1, 3e, 1, 1, 3e, 3c,
1, 1, and 3f , and becomes th—t~(—•~~~A,, which is automaticall y
katakanized into h—*~ — • .~0.1.

gurafikkusu (grap hics) ._ processed by rules 1, 1, 1, 2, 1, and 1, becomes
?~,i~u,<t, and is katakanized into ‘~p’~7Z..

2.2.6. THE PARAGRAPH CUTTER

This module receives the converted text blocks from Roman-Kana Converter , and
arranges them into output lines.

Let OLL (or OUTLINELENGTH) be the maximum number of XGP dots allowed in an
output line. Let ILL (or INLINELENGTH) be the maximum number of characters .
ordinarily expected in an input line. Our standard setting is

OLL — 1098 (6 inches), and
ILL — 69.

Page marks are simply passed to the Assembler. The converted text string of a
paragraph block is treated in the following way.

The first line of the output paragraph is given a leading indentation of

(CMAR’ * OLL) / ILL dots,

where CMAR’ represents the number of leading blanks of the text string, i.e., those
of the first input line of the paragraph. We define CMAR’ to be zero if the string is
empty, though this never occurs here. The subsequent output tines of the
paragraph are given a leading indentation of

(LEFTUAR * OLL) / ILL dots.

All the output lines within the paragraph are given a right marg in at

31

OIL - ((LEFTMAR * OIL) / 2) / ILL dots.

Right justification within these limits is instructed to LOOK by a combination of
symbolically represented LOOK commands (Section 2.2.7). The factor 2 is also
tentative. The user may wish to change it.

The filling of the lines are done by keep ing track of the total widths of blank and
nonblank characters. The lines are cut at the end of the last accommodatab le word.

The text strings of converted independent title lines are treated as follows. First,
the leading- spaces. are counted to give CMAR’ as above. (Here, CMAR’ may be zero
as a result of an empty title line.) it is used to determine the amount of the
indentation in the corresponding output line. - Namely, a leading indentation of

(CMAR’ * OLL) / ILL points

is prov ided. It the line thus indented turns out to be too long t or being
accommodated within the output line, the rest of the material is moved to a next
output line as though it is in a text paragraph with

LEFTMAR — CMAR’,

but no r ight justification is attempted.

Remarks. -

1. If the output tine is so short that it cannot accommodate the first word in the
converted material, the word is printed there anyway disregarding the right
margin restriction. That part of the word exceeding the righthand-side limit
of the paper roll will be lost. -

2. In text paragraphs, it is convenient if excess spaces between the words are
removed automatically. This is particularly true . under automatic
discrimination of text paragrap hs (see Section 2.2.2 and (10]). This has not
been done here because we are yet not very sure whether kana documents
do not need various numbers of spaces in order to indicate grammat ical
relationships between adjacent words.

2.2.7. THE ASSEMBLER

An unescaped occurrence of “(“ starts a command for the Assembler (Section 2.2.1,

-

32

Item (d)). The command is closed by a “)“, which mus t be in the same line. The
command syntax is

<command> —— ‘(‘ <comname>
(‘I’ <para l> / ‘

,
‘ <para2> 3... ‘)

EXAMPLES:

- (ua} Use A-font.
(a,538) Load font No.538 in the A-font area.
{bak,8) Backspace 8 points.
(und/0) Stop underlining.

The following string (extracted from the original Snobol program) gives all possible
cornnames. For example eof ” and “vs ” are possible comnarnes, but “ -“ is not. The
uppercas e arid lowercase characters have the same meanings in the comnames.

CODENAME — ‘eof vs lm tm bm lin cut nocut
+ ‘ak bk - - ua ub jw pad
+ ‘s image — If ff ccl bcl cutim
+ ‘t - bjon bjoff quot ovr - -
+ ‘sup sub dcap vec sl ii pag -

+ ‘- - blk und set exec bak imfl
+ ‘vcf t a b f ml rvec rvff hnurn fcnt
+ ‘break use

Paral must be a nonnegative decimal integer less than 128. Para2 must be a
nonnegative decimal integer less than 16384. Comriame is transformed into two
characters, whose respective code values equal octa l 177 (escape character for
LOOK) and that value given by the position in the above code table: 0 for “eof”, 1
for “vs”, and so on. Paral is transformed into one ASCII character with a c.ode
value as specified. Para2 becomes a binary representation packed into two 7-bit
char acters. For example, {a,538J becomes

octal 177 followed by
octal 61 followed by .

octal 4 followed by
octal 32.

If no closing “3” exis ts in the same line, or if the comname is not found in the above
string, or if paral or para2 exceeds the respective tirnit , the whole material , either
up to the closing “3” or to the end of t he line, is passed unmodified.

33

For the significance of the individual LOOK codes, see (la].

The earlier stages ((a) through (c) of Section 2.2.1) simply pass these control codes.
More precisely, that part of the input line from an unescaped

~
{“ up to whichever

occurr ing earlier of the corresponding “3” and an end of line is treated as a
component of a paddIng.

Remarks.

1. This should perhaps be changed somewhat if our definition of the word is
changed according to the note of Section 2.2.3. Control codes should be
more transparent to the earlier - stages so that it will not cause a switching
from a word to a padding.

2. Although the user can write his own “(. 3” to instruct the Assembler , the
main usage of this feature is internal. The previous stages creates many of
them. For example, the Japanese double-dot and the circle accent symbols
are overprinted by “~bak,8)” (backspace 8 points) created within the
Roman-Kana Converter (b, Section 2.2.1).

THE ESCAPE CONVENTION... The French grave accent sign C) is used as t he escape

character . (Again, this can be easily changed.) It causes the immediately following
character to be handled as an English sy llable. Thus, “ ‘“ means the grave symbol
itself, “‘i” means the lef t brace, and so on. if the escape character is at the end of
a line, it means a space.

2.2.8. THE MAIN LOOP

The man-machine interaction was outlined in Section 2.1. This subsection adds some
more details. The main points are:

(1) The user of our system, if he so chooses, can edit a JPN—file, or otherwise
crea te a new file having a name of the form “xxxxxx.jpn ”, and feed it to our
program. If the file name is of the above form, the conceptual modules (a)
t hrough (c) are skipped, and the file is processed directly by the Assembler.
If the input file name is of the form “xxxxxx .xgo”, nothing occurs.

(2) If one gives an input file in his own permanent file area, and explicitly

specifies the name of the area (the structure name), then the output files (JPN-
and XGO—files) are created in the same permanent file area. Otherwise, the
output files are created in the user’s temporary file area.

~44


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

34

More par ticularly, the main loop of the processing of our program proceeds as
described below. (This descrip tion assumes a cursory familiari ty with the file naming
convention of the System- I0 Monitor operating system. Those readers unfamiliar
with it may wish to skip it.)

When activated, our program prompts the user as

Input filename or [CR) or ? : (*)

The user types something and hits CR. Spaces are removed, and lowercase
characters are converted into uppercase characters. Then, the following occurs:

1. If the material is empty, the execution of our program is terminated, and the
user is taken to the SITBOL system.

2. if the material is a question mark(?), the contents of a help file is shown to the
user. The system then returns to (s).

3. In other cases, the material typed is assumed to be a file name. It must
specify a single file existing in the file system. The structure name and the
projec t programmer number (PPN) is optional. if a structure name is explicitly
given (e.g., as “dskb:”), and PPN is not, then the JPN— and the XGO-files are
created (possibly overwriting existing ones) within that structure. Otherwise
“temp:” is used as the default structure name of the output files. In particular,
if a PPN is given, the input is taken as specified, and the JPN- or the XGO-fiies
are created (or overwrite) in the user’s own “temp:” structure regardless of
the structure from which the input is taken. After the completion of this -

processing, the system returns to (a).

If , however , the extension of the input filename Is “.jpn”, then the content of
the file is assumed to be in a format suitable to the Assembler (Section 2.2.7).
An XGO- ile is created, but no JPN-file is. The system then returns to (a). if
the ex tension of the input filename is “.xgo”, the system returns to (a)
immediately.

If the syntax of the file name is incorrect , or if the input file is not found, an
error message

Usage: single-filename

is given, and the system returns to the prompt (a).

~

-. -— --

~

. ~~~~~~~~~-



TT~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ 
_____

35

2.2.9. ERROR MESSAGES

Only error message expected at the user terminal in addition to the one described
in the preceding subsection concerning file names is the following:

Bad code in line xxx changed into space...

H
xxx gives the input line count, and yy ... y displays the tine in question in the
original form. Our system does not expect ASCII codes 0 through 37 and 177 (in - 

-

oc tal) within input lines (except in line terminators). These codes are changed into H
spaces , -an d- the above warning is given.

In addition, an error message of the following form is possibl e if a help file has not
been properly set up.

Sorry. Help information unavailable in zzzzzz

zzzzzz gives a fi le name.

The following error messages might appear only if you change the program to cause
a coding conflict:

Warning: Empty para to CRTABLE -
empty sequence returned...

Warning: Missing entries in CRIABLE...

Warning; Unpaired entries in CRTABLE...

Warning: ASCIISEQ includes separator as item...

Warning: ASCII sequence xxx - yyy
requested - empty sequence returned...

...More than expected caffs to GETLINE after EOF

...GETPADDINQ coding conflict

...GETWORD coding conflict

Unprintable character in English syllable...

.

~

. .



‘l

2.2.10. CHARACTER CODES AND THE COMMAND FILE

This subjec t is basically an implementation issue, but it affects the user if he wishes
to edit a JPN—file.

Fig.6 shows the code tables of our kana fonts. These apply to both of the fonts of
height both 30 and 35. This is based on a Japanese Industrial Standard (JIS).

The canned commands assumed in Section 2.1 to be in the file “cmd(c300ik4O)”
instruct LOOK to toad

the hirakana font of height 30 in font area 538,
the katakana font of height 30 in font area 539,
the hirakana font of height 35 in font area 540, and
the katalcana font of height 35 in font area 541.

The JPN-file loads the hirakana and the katakana fonts of height 30 to the A and
B-font area of the core, respectively, and suitably switches between them.

The strange numbers 538, 539, ... were chosen at random to avoid conflicts with
other people’s fonts.

The font switching codes (ua) and (ub) are issued only if necessary. However , the
system assumes that any appearance of user-written LOOK commands may change
the choice of the fonts.

Remark.

1. As discussed in Section 2.3, our mock-up have cer tain unimplemented features.
One example is the use of the larger fonts. The fonts Nos.540 and 541, as

noted above, cannot be used unless the user writes his own (symbolic) LOOK
commands. This can be easily remedied, but this paper had to be written
before we do so due to time constraints.

2. Since this paper includes a small number of Chinese characters , a special font
was developed f or this purpose. it is basically the katalcana font of height
30, but a few katakana characters were rep laced by Chinese characters.
This feature is not described here since it is for one-time use.

.

~ 

- -



_ _ _ _  ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

--
~
. ___ .-

~~
—

~~
-—----

~
.....—

37

Low Low

Hi gh 8 1 2 3 4 5 6 7 High 8 1 2 3 4 5 6 7

08 00
81
82 0 1 2 3 4 5 6 7 82 s p ! N

83 8 9 : ; < — > ? 83 () a + , - . /
~4 r • ~4 ~~~~~

r
~

•

85 t i . t~~~~~~~~~~~~~~~~~~~~~ *~~~~~~~
05 4 ~

06 ~~~~~~~~~~~~~~~~~~~~~~~ 86 —~~~~~4~~~~~I * i J~~~
87 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 87 ~~~~~~~~~~~~~~~~~~~~~~~
10 ~~~~~~~~~~~~~~~~~~~~~~~

10 ~~~~~~~~~~~~~~~~~~~~~~~
11 ~~~~~~~~~~~~~~~~~~~~~~~

11 ~~~

12 ~~~~~~~~~~~~~~~~~~~~~~~ 12 ~~~~~~~~~~~~~~~~~~~~~~~
13 (

~~~~~~ti~~~~~ b b  • 13 Y ) U Li O~~~~~~’
14 ‘ , a b c d e f g 14 ~~~~ B C D E F G
15 h i  j k I  m n o  15 H I  J K L M N O
iS p q r  s t  u v w  16 P Q R S T U V W
17 x y z f l  } -  17 X Y Z ( \ ) 1 ~

(b)
(a)

Fig.6: Code tables: (a) the hirakana; (b) the katakana. The columns
correspond to the lowermost octal digit. The rows correspond to two
higher-order digits.

- - ~~~~~~~~~-~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-l’~~



38

2.3. MISSING COMPONENTS

As noted previously, our program is an incomp lete mock-up. Besides being big and
slow , it has certain missing components. Some of these are

1. Paginat ion (including footnoting);
2. Centering and right-justification;
3. Switching between the fonts of heights 30 and 35;
4. Underlining, superscri pting, subscri pting;
5. Macro processing (including a DATE macro);
6. INCLUDE facility, especiall y for combining XGO- and JPN-files;
7. Facilities for changing system variables (such as output line length~
8. Refinement of the roman-kana conversion procedure;
9. Adding some error messages;
10. Expansion of tab codes into sequences of spaces.

In the present implementation, paginotion(1) is relegated to LOOK. Whenever a page
becomes full, LOOK puts a bottom marg in, operates the paper cutter, puts a top

margin, and proceeds to t he next line. This is often insufficient. For example , we

may wish that the titles be not divorced from the tex t lines immediately following
them. This cannot be enforced in the present organization.

As for (2), our proportional expansion of leading spaces (Section 2.2.2) works nicely
for, e.g., aligning the da te with “Sincerely” in a letter , but works poorly for centered
or right-justified material. Here, we w ould need some control codes.

For now, the user can do (3) and (4) only if he writes his own LOOK codes. These,
and macro processing(5) could be done by incorporating one more preprocessing
step in the sequence of Section 2.2.1.

To introduce an INCLUDE facility(6), we could slightly modify the main loop (Sectio~
2.2.8). The design antici pates this addition. This has been left unimplemented
simp ly because we had no time to experiment with it to determine the user
interface.

One reasonable way to make the control variables changeable(6) will be to add a
new option in the prompt “Input Filename or (CR) or ? : - (Section 2.2.8).

Our conversion algorithm(8) could be improved in various ways. For one thing, we

could reject those syllables containing too many uppercase characte rs such as
“USA”. In the present version this becomes 3~ , but we prefer it to be handled as
a syllable in English. Our katakanizat ion condition could include more. It could
cover such patently foreign words as )~i~~) (manshon -- mansion), #‘J~~I’ (kirisuto
-- Christ), and tiO~~7Z (ze rokkusu -- Xerox).



- . -
~~— — . .-.--—---

39

Error messages(9) should be given if a very long w ord results in a truncation at the
end of the paper roll. (See Remark 1, Section 2.2.6.) Similarly, the Discriminator
should issue a warning if paragrap hs are cut or continued in an unusual way. (For
example , the sample text of Fig.5 should generate several warnings.)

Finally, we have another small thing (10). In the present vers ion, a tab code in the
input file, among .other codes with octa l code values 0 through 37 or 177, causes an
error message to be issued, and is replaced by a space for further processing. We

could rationalize this design by citing Kernighan and Plauger (4), and claiming that tab
codes should be treated in separ ate filters. We could require the user to filter a
file containing tabs through Kernighan’s “detab ” to expand the tabs into spaces.
This is- perhaps the - only way to go if. we were using UNIX. For one thing, tab
codes assume a tab setting. To have separate “entab ” and “detab” filters would
bring more flexibility by enabling changes of tab positions. In our environment ,

— however, our standard text editor SOS sometimes introduces tab codes automatically
assuming a cer tain tab setting. Besides, the Monitor does not support pipelines. We
therefore plan, though with a low priority, to add code to our program to expand
tabs into spaces. The tab settings will be fixed to columns 0, 8, 16, . according to
the system-wide assumption of the manufacturer.

We shall return to the subject of filling these holes in Section 3.6.

--



-...-—--.
~~
-

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —..----.
~
---- - 

~‘1

40

Chapter 3. THE PROCESS OF THE DEVELOPMENT

In Section 3.1, we review the sequence of events which ted to the present design.
In Section 3.2, we try to enumerate the good things in our life-s ty le. Section 3.3
com pares it with other people’s life-sty les. Section 3.4 talks about pitfalls which
our method could have. Sections 3.5 describes the compromising considerations~
done in the very early stage of the design, and finally, Section 3.6 extrapolates the
chronicle of Section 3.1 to the future.

3.1. A CHRONICLE

We now briefly review wha t we have done. The following description has been
simplified. Events occurring in parallel are described as though they occurred
sequentially, and some (mostly unsuccessful) trial-and—error processes for
circumventing the environmental diff iculties (such as high CPU-time consumption) are
not mentioned. Small adjustments (changing the format of the prompt , etc.) have
been done almos t daily, but these are not documented separatel y.

0. After a study of the environment , the vague idea of building a system for
kana-English documents was reached. Ideas were also emerg ing slowly for
the input format and the choice of the language. The latter ideas became
clear much later.

1. A tentative hirakana font was developed with the help of BILOSE8). An
ordinary ASCII font file (called PEL25) with fixed-width characters was used
as a basis. We added some blank spaces on the top of each character to . 

-

increase the height from 25 to 30, and then overwrote the ASCII symbols
and the uppercase roman characters with the hirakana characters copy ing 

- 
-

that portion of the standard code table given by a Japanese Industrial
Standard (JIS). The lowercase roman characters remained in the standard
position. A sample text file was printed on the XGP. Since only one font
was involved, and since the hiralcana characters replaced ASCII printable
codes, the sample text could be readily created by hand. All the possible
combinations of the characters with the accent signs were also included. In
this step, accent signs were printed separately wi thout overprinting. They
occupied some small width.

We note that our code table (Fig.6) was a resul t of a second thought. First —

we tried another code table induced by standard k.ana keyboard (for which
there was another JIS). For example, we rep laced “q” wi th “ta ” (1~

) because
in the Icana keyboard “ta ” was the leftmost key on the second row. We soon
discarded this idea because the combination was too capricious to memorize ,
and we had to overwri te randomly chosen uppercase and lowercase



41

charac ters. (For a related subject , see Section 3.5.2.)

This font was periodically reviewed and retouched. We will not give the
details of the process here. One major change was that the font PEL25 used
as a basis was later rep laced by more standard variabte-width font called
NGR2S.

2. A syllable table of the following form was produced. (This is the original f orm

of the table discussed in Section 2.2.5.)

TABLE ~~‘a i u e  o Ica ki ku ke ko sa shi si su se so
+ ‘ta chi t i tsu tu te to na ni nu ne no
+ ‘ha hi fu hu he ho ma mi mu me mo ya yu yo
+ ‘ra ri ru re ro wa
+ ‘kya kyu kyo sha sya shu syu sho syo ‘
+ ‘cha tya chu tyu cho tyo nya nyu nyo
+ ‘hya hyu hyo mya rnyu myo rya ryu rye ’
+ ‘ga gi gu ge go za ji zi zu ze zo ’
+ ‘da di du dyu de do ba bi bu be bo pa ~f Pu pe p0
+ ‘gya gyu gyo ja zya ju zyu jo zyo
+ ‘bya byu byo pya pyu pyo ’
+ . ‘dzi dzu je wi we wo wwa wwi wwe ww o
+ ‘f a f i fe fo va vi vu ye ye tsa tsi tse tso

ENTRY — ’ 1 2 3 4 5 6 7 8 9 : ; < < — > ? ’
+ ‘øA C ( B D ) C D E F G H I ’
+ ‘ J K L L M N O P Q R S T U V ’
+ ‘ w X Y z  [ \ ‘
+

+ ‘A,A,A- A- A. A. F,F- F. ’
+ ‘K, K- K. P, P- P. X , X- X. ’
+ ‘61 71 81 9f :f ;f <t <t 1>t ?t ’
+ ‘~ t Ct( Dt) Cl- CI Dl Jt Ki’ LI Mt NI J_ K_ 1.. M_ N_
+ it, 71- 71. <1, <I, <1— <1- <1. <1.
+ ‘Kt, Kt- Kt. K.., K_- K_.’
+ ‘Al BI ~t* ‘ ASCIIU) ‘ ‘ ASCII(2)
+ 

- 
‘& ‘ “3 ’ 3( 3s 3+ ”

+ “I’ 14 1* L+ 31’ 3t( 31 31. 314 B’ B( B. B’

For example, “ge” in the eighth tine of TABLE corresponds to “91” of the
eighth line of ENTRY. The ASCII code position for “9” is in fact occupied by
the sy llabic character “Ice” (It), and that for ‘1” is occupied by the double dot
accent (dakuten), which converts “Ice” into “ge” (ti). The table was proofread
by writing a simple Snobol program, which generated something like the

edited form of Section 2.2.5. This could be done easily because the



42

lowercase roman alphabet remained in the font.

In fact , the above ta ble includes later additions. (The same applies to other
tables shown in this section.) For example , two characters used only in
Japanese classics were added and corresponded to ASCII code positions 1
and 2, since we wished to take some of our sample texts from celebrated
sources. The calls to the SITBOL built-in function ASCII in the above reflect
this fact.

3. A corresponding Icatakana font (of height 30) was created and tested using
the same set of test data as in Steps 1 and 2. The code tables had the
identical shapes. (E.g., both the hirakana and the katakana forms (It and ‘Y)
of the syllable “Ice” replaced “9”.) This contributed considerably to the ease
of testing. The same test data could be used unmodified.

It is interesting to note that, while the hirakana font required several sittings
before it reached a tolerable level, the katakana font reached about the same
level in three or four hours. The katakana is a much easier font to develop.

4. Now a strong incentive was felt toward printing a sample text containing both
the hirakana and the katakana. The test data of Step I actually contained
some imported Western words. Attempts were made in vain to include
necessary LOOK control codes by the standard text editor SOS. A few
sittings were wasted exploring the properties of the environment.

Actually, this was the most frustrating part of the project. Some of the code
combinations required by LOOK (Section 1.6) were in fact the worst
conceivable ones. The text editor SOS allowed us to manually cons truct a
code combination that instructed LOOK to switch to font A, but unfortunately,
we could not first go to font B. To do so, it was necessary to give a code
combination

octal 177 followed by octal 15.

But octal 15 happened to be the carriage return. SOS defied the author’s
eff orts to produce this code combination. As soon as it was given a carriage
re turn code it added a line feed code to finish a tine.

This difficulty could have been solved in several ways. For example, we
could write a small program in the assembler language (of PDP—1O), or in
some other system implementation language such as Bliss or SAIL, and try to
link it to the rest of the program. In view of the nature of the processing
expected, however , the best way t o proceed seemed to use a local Snobol
dialect SITSOL, which had a special feature for writing binary files of the



43

type we desired. This resulted in a slow system, but the penalty seemes to
be cheap enough. Using Snobol, we could smoothly package the whole
processing.

5. It was now decided to write an “assembler ” for converting symbolically
represen ted LOOK codes into binary forms. Thus, if we face a naked
computer , the first thing we would do is to write an assembler in order to
hide some of the dirtiest aspects of the machine from the eyes of ourselves.
Here we were facing a dirty interface of a (fancy) printer. Hence, we wrote
an “assembler ”, i.e., a simple program that enables one to write LOOK con t rol
codes in a symbolic notation, and translates them into funny code
combinat ions required by LOOK. First of all, a table of mnemonic codes were
created as a long string maned COMNAME, as shown in Section 2.2.7.

The “mnemonic codes” were first developed fr om the prose descri ption of
(1], but afterwards we learned that a program called TYPER written by Joe
Newcomer was available for the reverse conversion (printing a symbolic
representati on of LOOK-oriented file). The code table was changed to reflect
the TYPER names of the codes.

This process required several sittings because some typos in the Snobot
program were masked from the author’s eyes by the mental pressure of
attempting an unusual use of the SITBOL system.

The test data of Step 1 augmented with symbolic control codes (ua} and tub)
finall y gave a mixed printing of the hirakana and the katalcana.

It is important to note that, although at this tirne we needed only a few of
these mnemonics, we included all of them. To do what can be done now
often smoothes our later efforts.

6. In parallel to Step 5, the table of Step 2 was used for writing a separate
conversion program. In the first step, the shifting between the hirakana and
the lca takana was simply not done, and improbable appearance of a consonant
in a romanized text was converted invariably to the small “tsu’ (

~ ), because
it often gave the right answer. In short, the easiest handling of the
excep tional cases were made for minimizing the investment of the labor
needed to give the first visible result. The conversion routine was tested
with a hirakana—only text (a classic poem). No filling of the lines was done,
but this did no harm (except that the result was less beautiful). For, a
roman kana conversion always caused the lines to shrink.

7. The shift codes (for forcing the katakana or the hirakana) were now
introduced into the program of Step 6. We planned to provide both local



— — —-
~
--,--———- -—..- ‘.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _ ‘

~~~~~~~~~~

_

~~~~~~~~~~~

and global shifts , but here we restricted ourselves to the latter. Actually,
the codes “<“ and “>“ were translated directl y into “{ub)” and “{ua}”, which
instructed LOOK to switch to the A- and the B-fonts. The first section of the
Appendix was now written and used for a test.

Note that the material includes roman alphabetic characters and other ASCII
symbols. At this stage, they were printed in the hirakana as nonsense
phrases. This gave a strong incentive for improvement.

8. The programs of Steps 5 and 7 were now combined to enable a conversion
by one stroke. However, the intermediate result (the output of Step 7) was
also made available for inspection. Our JPN- and XGO-files thus emerged.

9. The program now looked rather lengthy and complex. (It now occupied three
line printer pages.) Therefore , a c lean-up was done. Functions were defined
for each of the data converting steps , and were given filenames as
parameters. This step, though added nothing new, made the program much
easier to unders tand, and at the same time inoperative! The reason later
turned out to be that , if we type

DEFUcJE(’JPNXGO(JPNFlLE, XGOFILE)’)

instead of

DEFINE(’JPNXGO(JPNFILE,XGOFILE)’)

the SITBOL system says nothing at the comp ile t ime, and does some
mysterious things during the interpretation. This caused several hours to be
was ted.

10. Meanwhile, the hirakana and the katakana fonts of height 35 were developed.
The motivation came from the frustration while try ing to push the curved
strokes of the hirakana into the limited number of dots available in a
character in the smaller font (of height 30). Here, the size adjustment
command of BILOS helped grealely.

11. In the simplified form of the “assembler ” as implemented in Step 5, no
facilities were provided for attaching numerical parameters to the LOOK
contro l codes. The codes for switching between the A- and B-fonts don’t
require such numerical parameters , but those for instructing to swap the
fonts must be accompanied with a numerical parameter designating the font
serial number wi thin the disk of the PDP-11. The use of parameters were
now supported by extending the grammar of the symbolic control codes. Our
use of slashes and commas thus emerged.

- -

~

- .

- -

45

An attempt was now made to make a mixed use of the fonts of the heights
30 and 35. The system, however , rejec ted the effort giving a mysterious
reason: “CORE FULL”. (A trick to circumvent this difficulty was discovered
later.)

12. The lock-unlock (global/ local) mechanism for the shift codes “c”, ‘>“
, and “1.”

was now implemented. -

13. An opening sequence of LOOK commands was now introduced which
automatically loaded the A- and the B-fonts from the disk. (Prior to this, the
fonts had to be explicitly loaded to the POP-Il’s core by LOOK commands.)

14. The roman alphabets and the ASCII symbols were now made printable. The
symbols (including the digits) were pushed into unused positions of the code
table. This slightly violated our philosophy of making things visible. (See 3,
Section 3.2.) Automatic discrimination of the Icatakana sy llables
(katakaniza tion) was also supported here. (As discussed later , this chunk was
definitely too large. It caused many troubles.)

15. As the program grew bigger, the system grew slower and slower . Even the
initial compilation and the definition of functions now spent considerable time.
To ease experimentation, we now changed the program so as to process two
or more files within the same Snobol run. (The clean-up of Step 9 was done
par tly because this was anticipated.)

16. The symbol “(“, which the Assembler always interpreted as the beginning of
a control code, was now made printable in terms of an escape convention.
This change affected both the Assembler and the Roman-Kana Converter.

17. The overprinting of the double-dot and the circle accents was now
implemented. This was first tested by writing a simple Snobol program,
which converted an intermediate output (JPN-file) into a form including LOOK
commands for overprinting, and by processing the result by the Assembler to
form a LOOK-readable file. After we were sure that the result was pleasing
to the eye, this change was incorporated in the program.

18. The katakanization algorithm was now slightly improved. The user was now
allowed to drop the shift code “c” in such words as “puroguramu” for
“program”.

19. By this time, the program became painfully slow. To calm the user down, he
was now g iven an indication of the progress by the “e”’s on the terminal.
This was done by first delining an encapsulated input module, and then

-
- - -

- .— - .—- -----.—--.

~

,— -— .

46

modify ing the result so as to count the lines behind the scenes. We discuss
this in Section 3.2.1.

20. Until this time, the assembler was using the “U”-rnode (“undefined” mode) of
SITBOL input/outpul(9]. It was discovered that the simp ler “T”-mode
(“teletype ” mode) worked equally well. The system was changed according ly.

21. As a prepara tion for rigl,t—justi f ication of the text , a set of tables of the
charac ter widths was introduced into the program. The tables were
prepared for eac h of the hirakana and the katakana fonts of the heights 30
and 35. They were extracted directly from the font files by means of BILOS
and a Snobol program. The table for the hirakana font of the height 30
looked like

W.HIRA3O — ‘- 20 20 16
+ ‘16 16 16 16 16 16 16 16 16 1 6 7 6 14 16 14 11
+ ‘12 12 20 20 12 20 20 18 18 18 18 18 18 18 18 18
+ ‘20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
+ ‘20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
+ ‘20 20 20 20 20 20 20 20 20 20 20 20 20 2 0 0 0 ’
+ ‘7 1 4 16 13 15 15 10 15 1 5 7 9 1 4 7 20 15 15 ’
+ ‘16 15 12 13 10 15 15 21 14 16 14 11 7 11 16

Corresponding TA BLEs (Snobol data objects) were created within the core,
but no further processing was done at this step. (Surprisingly, this caused
the later stages of the program to run almost twice as slower than before.
For a discussion, see Section 3.3.3.)

22. A piece of code was now added for counting the total widths of the words,
and wr iting the results on a file. The results were inspected. The widths
were indeed calcula ted correctly.

23. Further pieces of code were added so that , if the total width of the
(c onverted) characters within a line exceeded a certain limit given by a
symbolic constant , the line was cut apart at the end of that word, of whic h
the next word caused an oven low. This was tested by first creating a f ile
containing very tong lines by hand. A second test was then done by writing
a separate Snobol program which automatically pas ted the lines of a text
paragraph to form a very tong output line.

24. The separate Snobol program of Step 23 was incorporated into the system.
The leading spaces of the lines were now translated into suitable tabulation
codes for LOOK.

- -

47

25. The discrimination technique for text paragraphs generally followed (10).
The more sophisticated method described in Section 2.2.2 was now
introduced.

26. Those paragraphs having indented left marg ins were now made to have
indented right margins, too.

27. Page marks in the input file were neglected up to this point. They were
now supported as described in Section 2.2.2. (This required considerable
experimentation on the SITBOL inputfoutput.)

The work (excluding Step 0) began in tate December of 1977. Most of the program
writing was done in March and April of 1978. We began writing this paper In early
April. May and June we re spent mostly for the paper, though programming activity
was still going on slowly. Due to the author ’s absence from CUU, three weeks and
one week were lost from mid-January to early February and in May, respec tively.
In the average , the author worked half- time. The effective span of the development
excluding documentation was about four months (from January to May, subtrac ting
four weeks).

Step 1 through 5 were done in December, January, and February. Steps 6 through
16 was done in March, Steps 17 through 22 in April, Steps 23 through 25 in May,
and Steps 26 and 27 in June.

A lt hough the exact man-hours have not been recorded, a crude es timate might be
one half of 200 hours per month for four months, i.e., 400 hours. This includes
cle rical tasks such as text editing, waiting for an access to the XGP in front of a
terminal, and so on. Very often one activity addressed different facets
simultaneously, but we would venture to say that 100-150 hours were spent over
the development of the fonts, and 100 hours for studying the properties of the
environment. The rest (150-200 hours) was spent for thinking about the user
interface and for actually writing the program. The latter two activities are hard to
distinguish because they interacted so closely.

Could we finish this work within two months if we did it as a full-time job? Perhaps
not. For one thing, thinking about the user interface required some time span. We
often picked up good ideas over a cup of coffee, scanning new issues of journals,
and so on.

Was it a fun? Yes, very. Why was it a fun? Perhaps because almost always we
fel t we were progressing steadily. We knew how to proceed even when we got
stuck.

48

3.2. ANALYSIS OF OUR LIFE-STYLE

We shalt now try to see why we could proceed so smoothly.

One basic fact is that our program is small. It has only about 600 Snobol
sta tements even in the final form. It occup ies only about 25 pages in a line-printer
listing. Moreover , about 130 out of the 600 are labels written as independent
sta tements. The choice of the programming language played an important role.

Another basic fact is that we worked in a fancy interactive environment. Except for
the accesses to the XGP and the graphic displays, computing resources were more
than abundant. Minor changes and experiments were quite easy. If we were
work ing in a car d-based batch environment, we would have to proceed differentl y.

Programming languages and operating systems are most commonly imposed on the
programmer. It is not always meaningful to talk about the choice of them. We shall
se t them aside for now, and try to enumera te other factors which possibly
contributed to our success. Some of the following points are closely rela ted to the
works of Sandewalt , Kernighan and Planger, and others. We shall discuss about
these works in Section 3.3. We have eleven items.

1. SMALL CHUNKS FOR USABLE HALF-PRODUCTS... The development was done in
sma ll chunks, so small that one chunk usually required only one siLting. The

half product was actually used for practical purposes. For example, it was

used for writing the shortened Japanese version of this paper given in the
Appendix. This provided nice motivation, and enabled us to detect blunders
early.

2. USE OF TABLES... Whenever possible, a ta ble was used. We attempted to
make our tables as commonplace as possible. For example, the code table of
TYPER was cop ied almost in verbatim (Step 5, Section 3.1). The machine time
spent for converting these tables into more easily processed forms was just
ignored. (The subject becomes of a real concern only after we complete our 4
mock-up, collec t experiences with it, and become so sure about the validity
of our design that we decide to build a commercial product. We might then
use, e.g., macros for preprocessing the tables.)

3. MAKING THINGS VISIBLE... The concepts were given printed forms. We tried
to make every thing visible. Sometimes we did need invisible things, but ,
even then, we built corresponding monitor apparatus (routines) as a part of
t he initial design. (However , we should not spend too much time over the
construction of monitors. We should use off-the-shelf monitors such as a
manufac turer-supplied dump routine whenever available. In our case , TYPER
was used as one of the monitor apparatus.)

49

4. PURITY OF THE PHASES... Each of the components of our data transforming
chain was made to do just what was necessary to do. For examp le, one
phase passed commands for later phases unprocessed. This helped in
experimenta tion.

5. WRITING PROGRAMS TWiCE... For major chunks, we wrote the program twice.
Thus, we firs t jotted down a brief description of what we were to build,
poss ibly with diagrams. We then wrot e a corresponding program. We tried
to relax. We didn’t strain to save paper. Once the piece of program was
completed, we rewr ote it carefully and neatly. (Very often we discovered an
oversight in the process.) Text editing of the program file was done over a
listing marked with corrections and carrying indications of the location for
inserting the new material. Free-hand changes were avoided. We sometimes
used two copies of listings. The corrections were first written into one of
them, and then copied neatly onto another. The editing was done with the
(second) copy at hand. The verbal description (with diagrams), the rewritten
copy of the program, and the second listing were kept for the record. The
f irst copies were discarded. (It must be discarded immediately in order not
to mess up your desk.)

6. COOLING PERIOD... For major chunks, we introduced a cooling period.
Corrected files were not run immediately. Another listing was taken, and
reread. Very often further corrections were found necessary at this stage.
Here, corrections were made at leisure. The listings used were kept only for
two or three weeks, and then discarded. If we were not sure about the
correctness of our tex t editing, we often waited until next morning.

7. CLEAN-UPS... As soon as the program became lengthy and complicated, a
clean-up was performed. For example, we collected data elements, and
encapsulated them into a collection of (Snobol) functions. If necessary, the
order of the function definitions was modified. The names of the variables
were adjusted. Comments were added. This was done PERIODICALLY. In a
production programming environment, the preferred practice is to formulate a
coding standard in advance. However , such a disciplined prac tice often
interferes with flexibil ity necessary in the development of a mock-up.

A more detailed illustration of a clean-up is given in Section 3.2.1.

These clean-ups tended to give poor results if done simultaneously with
other enhancements.

-

8. REVIEWING THE HISTORY_. As is customary, a history of the development was
kept as a comment at the beginning of the program, and was updated on the


~~~~~~~~~~~~~~~~~~~~~~ 

so

spot. We made a casual scan of these records periodically in order to make
it sure that we were on the right track.

9. SHOWING TO OTHERS... The intermediate results were shown to any willing
colleagues, and their opinions were solicited. One good point of our casual
way of life is that the half product can be shown to people in a visible form.
This helps to get good opinions. Moreover, it is well-known that by try ing
to explain to others we tend to discover our own oversight , even if the
audience does not understand at all!

10. WISE RETREAT... W e stopped early. We knew that we were developing a
mock-up. Our object was the design, not t he program itself . Just as safety
in moutaineering depends on wise retreat , our success required tha t ambition
be controlled. We reviewed while we had enough t ime, and before we got
tired. For one thing, we wrote this paper! If an incentive for improvement
is felt at this stage, we should better redesign a new program, using the old
one as a pattern.

11. HEALTH CONTROL... We were careful about our health, though this may
sound irrelevant. We tried to keep regular time. Whenever we felt tired, we
didn’t hesitate to take a rest. It is of no use to be in a hurry when our
health declines. in such cases, we should limit ourselves to a mechanical
clean-up or a review, at the most. (Even these should better be postponed.)

3.2.1. AN ILLUSTRATION OF CLEAN-UP

For a simple example, consider Step 19, Section 3.1. In the originally written code,
the initial input (text file) was read by in-line reference to an input-associated
variable. Thus, we first executed the SITBOL library call

INPUT(’ROM’, INFILENAME)

and then referenced the variable ROM directly.



- -

51

The variable ROM was now hidden in a set of Snobol functions. Two functions were
def ined: INITGETR(FILENAME) for executing the INPUT library call; and GETR() for
get ting a tine from the input file by referencing RUM as follows:

*
*...... MODULE: GET ROMANIZED JAPANESE
$

DEFINE(’GETRO’)
:(ENDGETR).

GETR
GETR — ROM :F(FRETURN)

(RETURN)
ENDGETR -

*

DEFINE(’INITGETR(INFILENAME)’)
(ENOLNITGETR)

INITGETR
INPUTCROM’, INFILENAME)

:(RETURN)
ENDGETR

The readers familiar wi th Snobol 4 will see how this crazy way of coding helps later
changes. Af ter this clean-up, it was a simple matter to add code to GETR for
counting the number of lines and writing c’s for eac h ten lines. The count was
initialized in INITGETP. This sequence of events is typical in what we have done.
In this way, we introduce some amount of inefficiency, but it does not really matter
in a mock-up. -

We note that this portion of the program was further changed. For example , in

Step 24, GETR was made to return amalgamated paragraph lines, and to INITGETR
was added cer tain code for doing some more initialization.

3.3. DISCUSSION

3.3.1. THE CONTROLLED SLOPPINESS

Our sloppiness has undoubtedly shocked same readers. They might object that
w hat we have done is nothing but the long-despised bottom-up design. We now try
to defend our way of life. Our thesis is that sloppiness is essential in the
conception stage, and that our sloppiness is in fact controlled.

People often talk about the need of precisely formal ized specifications. Many things
has been said about the form which these specifications ought to take , and thier

~

- - -

~

- - -  -
~~~~~ 

- - - -
~~~~~~~~



— -~~--- .,- - -~~ -‘I,’

52

possible uses in the development of large software. Little has been said, however ,
about how we can get to them. Before we can formalize, we must have a clear
pic ture of what is formalized. The mental process involved has not been analyzed
fully.

Wha t we did here is a case study for exploring this mental process. We were
guided by our own intuition. People say that a program must be preceded by a
formal specification. This is a reasonable requirement for a marketed program
product. In our case, however , a program must precede a specification. We
program for developing the latter. Our program is a mock-up, to be thrown away
once a sat i sfactory for m al speci f icat ion is obtained.

A review of the steps of Section 3.1 reveals that the succession of events has been
governed by logical necessity. For example, we could not determine whether the
fonts of height 30 resulted in enough leg ibility until we experimented with it. This
knowledge, however , could influence the program structure. It we got a negative
result in this respect , the basic approach in the use of the XGP would have been
different. We therefore developed the fonts first , and tested them. To test the
fonts we needed sample data. Therefore we wrote a converter (Step 6, Section 3.1)
before we began to design other parts of the program.

As noted in Section 2.2.3, our previous definition of words later turned out to be
defective. This, however , was not until we came to the subject of line filling and
right justification. In fact, more accurate statement is that the definition turned out
to be incompatible with the later extension. In a moralistic view of programming,
the author may be accused for the sin of sloppy near-sightedness, but he is not
ashamed at alt.

White we are addressing a rudimentary par t of the system, we should not be
distracted by more advanced topics. When we developed the notation for case
shifting, our central concern was to reach a reasonably uniform notation comfortable
for the user. The question of line filling was just ignored. We arbitrarily picked
one possible definition of words, experimented with it , were generally satisfied with
it, and decided to proceed.

The author feels that there is nothing wrong with this approach, even though the
particular defini tion did not fill the needs of one of the later stages of the design.
We cannot address many things at the same time. We must proceed step by step.
We must pick a solution anyway if we are to go one step forward. The ultimate
inadequacy of the particular solution does not matter. It is more important that the
solution is formulated in a flexible way, so tha t we can smoothly modif y it later.

Could we avoid the later modifications by thinking about line filling in the first

- -

~

- -

~



‘U,

53

place ? Yes, of course we could. Doing so, however , would have traded real
experimentation f or a mental exercise. In this particular problem, this would have
done no great harm, but in genera l, experimentati on cannot be dispensed with
without losing some thing.

3.3.2. RELATION TO OTHER WORKS -

It is not surprising that the Lisp users’ life-sty le recently describEd by Sandewall(3)
is quite similar to ours. They program for unknown problems. Sandewall gives a
small samp le showing how a typical Lisp user might develop software. A program,
w hich finds suitable meeting hours from a list of schedules of peop le, and updates
the schedules, is described. The method, catted STRUCTURED GROWTH by Sandewall,
starts fr om a very modest fragments of the program the developer has vaguely in
mind, and extends them by an alt ernation of writing a small increment and testing it
by actually running it for a small sample da ta. The sample data is a part of what is
developed by structured growth.

Our use of small chunks for usable half-products amounts roughly to the same thing.
Our policy of making things visible also has a counterpart in Sandewall’s description.
He claims that the Lisp programming system is helpful to the user because every
piece of data or code is an S-expre3sion, and hence printable as such.

However , there are differences. In Sandewall’s case, the product is an object in
itself. Unlike in our case, he need not extrac t a specification from the program.
This difference makes his method insufficient for our purposes. We must crystallize
our ideas in the process of developing a program. We need more.

it is nevertheless reassuring that the life-style of experienced researchers in doing
researc h-oriented programming partly coincides with ours. A similar line of thought
is found in Teitleman(12).

Another related idea is found in left-corner construction philosophy of Kernighan
an Planger(4]. They develop software involving man-machine interaction in chunks.
For example , a -file archiving program is developed in this way. The idea is “to
nibble off a small manageable corner of the prograri . -- a part that does something
useful -- and make that work. Once it does, more and more pieces are added until
the whole thing is done (page 86, (4)). This is exactly what we have done (in 1,
Section 3.2).

The use of tables (2, Section 3.2) has been recommended by Ke ’nighan and
Plauger(13)~ The purity of the phases(4) has been practiced by Kernighan and
Cherry (14]. Writing programs tw ice(5) and having a cooling period(6) are corollaries
of the author’s previous thoughts(15). Showing to the others(9) has been advocated



~ppprr ~~~~~ 
-—,.-.- --- ---..-. ..—,.,—.‘_— -

~~~~
,—

~
-
~
,——..,..- _ - - .‘-.--- —.

~~~~~~~~
‘ ‘~~

- _
~•— ~ 

- _ ._—.
~
—,—..-,-_., —,.-. -,—. . - —— .—•..— _ .._ _ _ 

— - — --.-—

S 
54

by Wada (16]. Perhaps new is the exp licit mention of clean-ups(7), reviewing the

history(8), wise eteat(1O), and heal th control( 12). We feel that the most important
among them is clean-ups.

3.4. PITFALLS

Our project was a fun for the most part , but in a few places it was not. Whenever
the author lost control of himself , the process became frustration. The worst of
such events occurred when the author tried to do the development in the usual
pace under the mental pressure of try ing an unusual use of the SITBOL system
(Section 3.4.1), and when he impatiently tried to do a big chunk (Section 3.4.2).

3.4.1. UNUSUAL USE OF THE PROGRAMMING SYSTEM

The first loss of control was experienced in Step 5, Section 3.1, when we tried to
write an “assembler ” using the “U”-format input/output of SITBOL. This format
allowed us to write machine words onto an external medium. The step aimed at
developing a stand-atone program, which read a text containing symbolic
represen tations of LOOK commands, and converted it to a corresponding file suitable
for sending to LOOK. ~4ere, we concentra ted on the switching between already
loaded in-core fonts A and B. It was not necessary here to handle parameters in
LOOK commands.

As mentioned earlier , the listings and other working documents excepting temporary
memos were kep t throughout this project. This Step generated seven listings. The
author really hates to say this, but an analysis of these reveals that he was
singularly amateurish in this particular Step.

During the process we had to address the following tasks:

1. To find how a binary file containing LOOK commands can be written by a
SITBOL program;

2. To determine the command names for symbolically representing LOOK
commands; .

3. To determine the format of the symbolic commands;

4. To implement the code table for the “assembler”t

5. To decide what to do if a wrong mnemonic code is given; and



55

6. To develop the man-machine interface for the user to activate the program.

Tasks 2 and 6 were handled successfull y. As for the former , the mnemonic codes
were changed once, from the author’s own version to an in-verbatim copy of TYPER
codes. This was done smoothly because we were using a table. As for the tatter ,
the first version did not allow the user to type file names in the lowercase. This
restric tion was later relaxed. A facility to output help messages was added. In the
initial form, the prompt was fol lowed by a New Line. This was corrected. The
user’s response was made to appear in the same line as the prompt. All these went
smoothly in a controlled, conventional way.

Task 4 went somewhat less smoothly. At first , the table was kept in dynamically
crea ted names. We used, in the Srtobol notation, S(’~ ’ COMNAME) and the like. We
then somehow felt that the practice was distasteful , and decided to use Snobol
TABLEs instead. Perhaps this should have been post poned, since the subject was
basica lly an imp lementation issue.

Less smooth but stilt satisfactory was Task 3. Here, we changed the forma t several
times. The changes accounted for our increase d awareness of the necessity to

incorporate parameters later.

In the initial attempt for Task 5, we just ignored the wrong codes, and sent them to
the output as though they were portions of the text. We made bad typos here, and
could not find them soon. Tasks 1 and 5 impeded each other.

In Task 1, we first tried the default mode of the SITBOL output. This caused some
parts of the output lines to be mysteriously lost. We then learned about the
“U -format , tr ied it, and was griped by the system for committing the crime of
oven low. A sequence of guesses based on rather cursory description in (9) made
us gradually approac h the right solution, but a few sittings were wasted before we
fixed the typos relating to Task 5. We were not completely sure. We changed
impertinent parts of the program. We were distracted by the mental pressure.

The moral is clear. Don’t do other things when you are experimenting with an
unknown programming system. Proceed conservatively when you are doing a
dangerous job.

3.4.2. DOING TOO MUCH AT A TIME

Another confession relates to Step 14, Section 3.1. When our system succeeded in
producing a mixture of the hirakana and the katakana , the author felt a very strong
incentive toward making roman alphabets and digits printable (especiall y the latt er).



- 
- - ~~~

56

He became impatient looking at “1~t~1la~~” (Chapter 1) printed as “lit I.,~~~”
(Chapter ~), and “CMI.) 0) XGP” (the XGP ot CUt.)) as “

,~~~ 
0) ,,, “ (a nonsense

phrase). The author could not resist the temptation to sit down for three times
longer than the usual, and design and implement all of the rela ted part of the
system. He rewrote the program three times, and very carefully proofread each 

S

time. Nevertheless, this gave rise to bugs, which lasted more than one day. All
were typical careless errors, such as leaving out POS(O) when a pattern was to be
stripped from the beginning ol a string. The process involved a pain, rather than a

fun. It is frustrating to end One day’s work when you know that there is a
remaining bug.



• ~~- -—~~ -~ —----S ---~-.~- -5-- -. -S- —----S---—------ . -~~~~

57

3.5. DISCUSSION OF STEP 0

Some more remarks are in order concerning Step 0 of Section 3.1. The question is:
how did we choos. th, particular combination of (1) the input format , (2) the
processing program, and (3) the output format? This involved a comp licated set of
compr omises. We now sketch some of our thoughts. We begin with (3), proceed to
(2), and then come to (1) since the ear lier topics in this sequence had decisive
influences over the later ones.

3.5.1. THE OUTPUT FORMAT

Basically, our prob’em calls for doing some nice things using the XGP in the
production of Japan ese documents. W ith this broadness, our thoughts resembled a
negotiation between a prospective customer and a developer.

The cus tomer desires a fully general system handling the lcanj i. Indeed, the XGP
itself , if propert y controlled, can print any graphic pattern. He knows this from, say,
(1), points out that the kanji characters are special cases of graphic patterns , and
demands that the possibility be pursued.

However, the irnplement or knows that this is infeasible. The mode of usage of LOOK
explained in Section 1.6 is called the text mode. In it, a pattern corresponding to a
given character is picked from one of the in-core fonts A and 8. This achieves a
grea t compression of information. -

Unfor tunately, we have more than 2,000 kanj i characters, and the in-core fonts are
res tricted to at most 254 kinds of characters. If we are to print the Icanji, we
cannot use the text mode. Instead, we must prepare a huge bit table (image file)
representing the completed document as a collection of dots. This must be created
on the PDP-10, and transmi tted to the POP-li. The size of data we must handle
would be at least ten times larger. This would necessarily result in cumbersome
handling and st ow processing. Besides, the development of the kanji font alone
would require a man-year eff ort , and, as discussed in Section 1.5.5, the development
of input technique for the standard Japanese documents is one of the unsettled
problems of the Japanese text processing. The customer, no mat ter how ambitious
he may be, will eventually , agree with the implementor that the general approach
should be dropped for now.

The developer, on the other hand, might propose a cheap solution based on
romanized Japanese. In this soli~tion, he has many things already available in the
computer system: text editors , formatters such as PUB(6), a large collection of fancy
font files, and so on. Basically, his job would be to enhance the environment. For
examp le, he could write a simple prugram for editing the input in order to faci litate

- - --- S - - --  - --A



-- -5-—--
-,

58

ovorscoring used in the standard systems of romanization for representing elongated
vowels. I-fe could also tailor the text editor in such a way that the changes can be
made for sy llables rather than individual characters. He might write a utility
program for detecting and correcting impossible combinations of characters in the
input file.

However , the customer would undoubtedly feel that this solution is unduly cheap,
and does not deserve any investment. It is all too clear that the resulting system
cannot be used for writing a scientific paper or a letter. The parties would
eventually reach the agreement that our kana-English approach be pursued. The
customer will probably insist that the decision be tentative, and that after a more
feasibility study, t he project may be dropped.

3.5.2. THE INPUT FORMAT

One obvious solution from the customer ’s viewpoint is to base our representation on
one of the established systems of romanization. We do not have a katakana
keyboard in the particular environment. We must use an ordinary ASCII keyboard.
Under these circumstances , this solution is certainly natural.

Unfor tunately, this “obvious” solution was not at all obvious for the implementon.
First , the standard methods of romanization are such that no mechanical procedure S

for transliteration into a kana representation is possible unless we go into the
meanings. For example , the case-desi gnating par ticle “ha” which (usually) follows
the subject of a sentence is pronounced “W a”, and therefore written “Wa ” in the
standard systems. But It is definitely “ha” ((i) in the kana notation. Can we
aut omatically change “wa” into “ha”? No, because t he syllable “Wa” (to) as a noun
means a ring! Roman—kana conversion taken literally is one of the very difficult
unsolved problems in Japanese text processing essentially equivalent to
kana-to-kanji conversion (Section 1.5.5). Hence, our own system of romanization.

There is another, entiret y different approach: we could ask the user to use the
ordinary ASCII keyboard as though it were a kana keyboard. Thus, he is to type
“q” if he actually wishes to type ta (a). He types p” for a dOuble-dot accent
(dakuten). He types “c” for “tsu” (~) , and “C” for small “tsu” (,). One big merit of
this method is that, if you are a perfect touch typist of the katakana keyboard, you
can save almost one half of your keystrokes.

The second method, however , has the drawback that it is almost impossible to~
proofread the file without printing it on the XGP. The correspondence has been
governed by historical reasons , and is almost as capricious as “qwertyuiop .

If this project had been done in Japan, this second method would have been the



59

first choice, since character displays and typewrite rs in Japan often includes 
S

ka takana characters. (This sacrifices the lowercase alphabet.) Since we were in

CMU, this was simply impossible.

3.5.3. THE PROCESSING PROGRAM

Our program was wr itten in Snobol, but we could alternatively write it in, say, the

assembler language. Another possibility was to use PUB (Section 1.6) perhaps as a
postprocessor.

The basic characteristics of this project indicated that as high-level a language as

possible be chosen. We were developing a mock-up. We anticipated frequen t
• changes. We didn’t have much man-power. The absolute amount of the code should

have been restricted. The assembler language was therefore out of question. Bliss,

Fortran, and Sail were also considered, but Bliss was found to be too low-level,

especially in input and output. The available Fortran processor had bad
idiosyncrasies in the A-format READs and WRITEs. Sail might have been a sensible
alternative , but Snobol was preferred because it was of a much higher level in
string manipulation.

Why didn’t we use PUB? To put it bluntly, because the author did not like it. When
he first used PUB, he was puzzled by unexpected appearances and disappearances
of empty lines. The fact was, the conventions differed in the “no-fill” and the “fill”
modes. He felt , perhaps for no good reason, that PUB was one of those mysterious
software which was suitable only to a novice or an addict. Unless you are willing to
restrict yourself to canned usages, you must diligently decipher the manual to
discover unwritten assumptions. To say this might not be doing justice to PUB.
Apparently, one source of the difficulty is LOOK underlying it. But if this is the
case, it is much easier to address ourselves directly to LOOK than to try to control
LOOK through PUB.

3.6. HOW TO PROCEED 
-

This section is a counterpart to Section 2.3. We estimate the labor involved in

proceeding fur ther.

The first thing to do is another clean-up. The present degree of organization of

our program happens to be just fit to the present level of sophistication. To

proceed fur ther, we must identify more structures , since otherwise the process
would be a pain. For example, the code fo r case shifting in the present fo rm is

scattered in a number of modules (for the processing of the words and the

paddings). This should be identified, separa ted, and encapsulated.



S• s__ • S _ ~~•_ -5•5-_ 5-5- S -55-•~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 60

S 

The second step will be to fill the holes listed in Section 2.3. If the clean-ups
mentioned above is first done, each of the refinements except for pagination(]) will
require at most one sitting. Pagination, however , will need several sit tings because
a new level of structure must be incorporated. We expect no more than five new
pages in the line printer tisting. The slow system will become slower perhaps for
20 per cent.

The third step might be a big clean-up. We should review the entire system, and
try to separate and hide our design decisions into modules in Parnas ’s sense [17). A
crucial question might be: “Can we nicely form a subset of our system which
efficiently handle tex ts in English?” The idea of automaticall y discriminating the text
paragraphs fr om the title lines is not restricted to Japanese document production.
The calculation of the widths of the characters , and the filling of the text lines are
also not specif ic to Japanese documents. We should organize our design decisions
nicely so that we can delete impertinent portions of our program to get an efficient
subse t for English texts.

Another crucial question about subsetting arises if we assume the use of a kana
keyboard. In that case , the bulk of the material about roman-kana conversion will
become unnecessary, but we must still think about katakanization, since ordinary
kana keyboards have only the katakana characters. In addition, we would have to
think about the discrimination between the uppercase and the lowercase alphabetic
characters , since most of the currently available kana keyboards do not have
lowercase characters.

Clearly, we would have had’ a hard time if we had set the subsettability requirement
as one of the starting requirements of the project. Once a runnable mock-up is
comple t ed, and good intuition is collected, this task becomes an enjoyable exercise.
At least the author feels that way.

Once this step is completed, it will be a relativel y easy job to build a more practical
system, e.g., w ith a dot printer and a microprocessor . We could alternatively build
our system on PUB(6] or SCRIBE(7]. Now that the problem has been well
understood, we would have much less difficulty in addressing ourselves to them.



-5 -.—~~~~~~~~~~ - - - •  -S- - -

61

4. ADDITIONAL REMARKS

4.1. USEFULNESS OF THE PRODUCT

In this paper , we have been mainly concerned with th, methodology of designing
programs. The program itself has been a by-product. This by-product, however , is
of some interest in itself. We now discuss how it helps a Japanese user. The
crucial questions are:

(1) Is the output sufficiently reada ble?
(2) is the output socially acceptable?
(3) Is the input sufficiently easy to prepare?
(4) Is the design marketable?

The first three questions are difficult to answer subjectively, especially for the
author. He naturally has an emotional attachment to what he created. He wishes to
answer “yes” if he can. The Japanese reader is requested t o do their own
objective judgment, and communicate it to the author. At least the first two
questions could be answered by looking at the sample output of the Appendix. The
author’s own tentative answers to these three questions are: yes , maybe , and yes .

The output is certainly very readable, it cannot beat typeset standard-form
documents, but in the author’s personal judgment , it is much better than his own
handwriting. It is compact , and the strokes are accurate. The mixture of the
kafakana and the roman alphabetic characters has enhanc ed readabi lity at least as
expec ted. The use of spaces narrower than other Japanese characters has also
helped to make the result pleasing to the eye. The author is wilting to read other
people’s papers written in this form.

He is sure that his fellow researchers in the computer field will enjoy receiving his
letters in this form. He is not sure whether this system can be safely used in
writing a letter to elderly people who don’t know much about his profession. Many
of them believe that handwriting talks about the personality of the writer. They
might feel that the author is trying to evade their judgment. The biggest single
difficulty in this connection comes from the custom of writing people’s names in
Chinese characters. The author would hesitate to represent the names of 

S

pres tigious people i, the phonetic notation. Even if we ignore the question of
pres tige, lega l significance of phonetically represented names of persons and
companies is yet to be explored. The answer is therefore “maybe”.

To answer the third question, a number of comparisons could be made. Suppose
that you have a handwritten draft , and wish to put the text Into the computer. In
that case, it is much easier if the text is in English. Our form of the input is

S 
- -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

62

basically a romanized Japanese, and therefore requires numerous strokes. Your
ideas goes much fas ter than you can type. This is par ticularly true if , as we have

done in the Appendix, the case-defining particles (such as “ha” and “wo”) are

separated from t he preceding nouns. Even in this situation, however , the task would
be much easier than to write by hand if the result must be neat enough to be sent
to a conference for offse t printing.

Next suppose that we have our text in mind, and wish to type it direct ly. The
author ’s personal experience has been that it is much easier to write in Japanese
than in English. One reason seems to be that the author wishes to make corrections
more offen in English than in Japanese, his native language. The text editor he is
using is not necessarily kind when he is making correct ions. This gives a posi tive
bias to the native language even though it requires much more strokes.

As an aside we note that it is very hard to prr o~read the romanized text. Iypos

can be found much more easily in the output t~ • the input, even if the latter is
also printed neatly on the XGP.

The question of marketability is definitely beyond the judgment of the author.
However , he would be happy if he could buy a comparable system cheaply. The
central question seems to be how many people are willing to invest how much
money. For examp le, dot printers could be used for developing a low-cost version,
pr ovided that sufficiently many people are interested.

Efforts are going on to develop dot-printer-based systems for the production of
Japanese documents in the standard form. Our system could not compete once
these systems are made available at a comparable price, but there will be some time
bef ore this occurs because they require a number of technical breakthroughs. In
our case, vir tually no breakthrough is necessary.

A few additional comments follow. In trying to use our product, the author fe l t
some strange pressure from it. For one thing, he suddenly became aware that he
was unduly relying on the words of Chinese origin. (For the Japanese reader: he 4

f irst wrote ~~~t~~~~~~t< t~~. This should have been t’t~.) Our system will be useful in
a course on Japanese technical writing!

We left many interesting problems behind. For examp le, we could have exp lored the

possibility of abolishing spaces by mixing bigger and smaller hirakana fonts to
indicate the segmentation of the sentences. (In fact , Lady Murasaki did not use
spaces in writing The Tales of Genji, see Section 1.4. Instead, she used the sizes of
the characters and the feeding of ink to her brush for indicating the semantic
breaks.) We prohibited ourselves to indulge in this fascinat ing problem.

As noted earlier , in our sample texts we put spaces between nouns and

5-



-
-

63

case—def ining particles such as “ha”. (We did this to make the nouns stand out as
independent units.) However, children’s books usually do not leave such spaces.
They simply attach particles to nouns. If this is to be done, our katakanization
procedure must be refined.

We did a simple experiment for evaluating our katakanization procedure. We
arbitrarily picked a paperback (on technical matters ) and checked the words spelled
in the katakana. About 130 kinds of katakanized words were covered .by our
procedure. Nearly 100 kinds of katakanized words required a shift code. In
addition, there were about 70 kinds of words, w hich are usually spelled in the
hirakana but were katakanized by the author of the paperback.

4.2. DISCUSSION OF THE ENVIRONMENT

We now discuss how the programming environment affected our efforts. In fact , the
author feels 90 per cent of gratitude, and 10 per cent of dissatisfaction toward the
sof tware-hardware complex he used. The following should not be taken as a
criticism. Rather, it is an implicit proposal for the future improvements, and an
attempt to give hints to those who wish to do similar things.

4.2.1. THE XGP AND LOOK S

LOOK is a fancy program. It can even right-justify itself. (We used this feature,
and saved considerable man-hours.) The main problem is that It is poorly
documen ted, and sometimes behaves mysteriously. Often we had to rely on
experimentation to find the properties of the LOOK/XGP complex. 

S

We discussed earlier (Section 3.1, Step 4) how the choice of the contr ol codes by
the designer of LOOK interfered adversely with our efforts. Had it used printable

S characters for the codes (excepting the escape code, octal 177), we would have
been able to produce our mixed hirakana-katakana sample printout before we
developed an assembler.

4.2.2. 81109

This was perhaps the most helpful part of the environment. Without this software ,
and the graphic display, the fonts could have not been completed in the short
period.

However, the hindsight indicates that, if BILOS were better , we w ould have saved
several tens of hours. First , the charac ters to be chosen for modification had to be



- -  5- 5-5-5- 5-~S~ •~~~~

64

designated by their octal codes. We could alternatively use the character itself f or
the designation, but in our case this forced us to memorize that the syllable “ta ”
was in fact “s”, “chi” was “A”, and so on.

Another problem was that BILOS could display only one character at a time. One of
the most difficult aspect of the development of a character set is the balance
between the characters. In particular , the balance is quite subtle in the hirakana.
This is perhaps because the character set has its origin in connectable handwritten
forms. To check the balance, we had to go to the XGP. Since the access to it had
to be competed for wi th other users, we often waited until late at night before we
could get a feedback for a modification of the font. If BILOS had been designed in
such a way that all the characters in the font were shown on the screen, and could
be chosen by a pointing device, we could have saved more than thirty hours. If, in
addit ion, it could have shown an arbitrary text composed in the font, we could have
saved twenty more hours. Since the total time spent over the fonts has been
somewhere between 100 and 150 hours, these savings would have amounted to
30-50 per cent of the total time.

It is quite conceivable that these suggested improvements are impossible by the
limitation of the hardware. Even if possible, they may well require hundreds of
man-hours. We had no choice other than fitting ourselves to the limitation of BIb S,
but if we wish to build many more character sets in the future, we should first
assess the gains and losses of using BILOS unmodified.

Another possible area for improving BILOS is the size-adjusting command. It helped
greately when we developed the bigger fonts (of height 35) on the basis o f the

sma ller ones (height 30). However, the magnification algorithm of BILOS resulted in
rugged stroke boundaries, and considerable subseauent retouching was necessary
for smoothing them. Our eyes are quite sensitive to the changes of curvature.
Curved strokes must be carefully composed from gradual chargcs of regular steps.
BILOS in the present form doesn’t know this. S

4.3.3. SITBOL AND THE DEC SYSTEM-b MONITOR

We have organized our system as one single Snobol program which does everything.
Conceptually, however, what the system does may be cleanly divided into data
transforming steps, each of w hich does useful things separately. We did not arrange
these as a collection of sof tware tools(4) simply because our operating system did
not suppor t a pipeline. Pipelines are nice because the components are independent
in a guaranteed way. Some clean-ups would have been saved if we could have
used pipelines. . Should someone attempt to reimplement our design for UNIX, he

should arrange the modules in that way.

- ~~S~S SS ~~S~~ S S~~ 5 - 5 -



65

The slowness of the resulting system was disappointing. The author at first secretly
hoped that SITBOL would give a reasonably fast system. The fact was that the
conversion of a two-page document required a CPU time of the order of 40 seconds
(on a t(L-IO!!).s One interesting experience was that , when the tables of font widths
were incorporated into the program, the program as a whole run twice as slower ,
even though the tables had nothing to do with the workings of the program at that
stage excep t simply to occupy the storage (Step 21, Section 3.1). Apparent ly, the
culprit is the storage manipulator.

Basically, our system is a mock-up, and therefore a slow program is quite all right.
But forty seconds are too much. The slowness influenced the design. It was
in tolerable to wait in front of a terminal for the 40 seconds (which in the real time
often amounted to five minutes or more). We could have done much more if
SITBOL were faster. Many things were left unimplemented in our mock-up, because
to attack them clearly required more battles against the limitation of the
environment, avoidance of which was one of the central facets of our life-style.

It is a pity that the histogram feature of SITBOL was somehow disabled in the
particular installation used here. It is frustrating to have a slow system with no
instrumentation facilities.

In spite of all these difficulties, however, it should be gratefully acknowledged that ,
in the long run, SlTBOL and the System-lO Monitor helped us a tot. If , e.g., we

were to program in an assembler language of a mini, we would have had to throw -J
out many more good things. In particular, the file handling facilities of SITBOL were
very helpful. 

S

* A Note Added after the Formatting: The CPU time spent for formatt ing this t5
paper excepting the Appendix and the figures was 19 mm 34.7 see. The
Appendix, aga in excep ting the figure, required 3 mm 51.3 sec. These figures
include the time for a set up, which, in one experiment, required 9.9 seconds.
The measurements were done late at night when the com puter was being used
by from 7 to 10 users.

-~~~~~ - S 5-~~~S~~~ ~~~~~~~-



66

4.2.4. THE SNOBOL 4 LANGUAG E

S Our program was not small enough for the various known drawbacks of the language
to be comp lete ly harmless. Thus, the monolithic rule of naming objects considerabl y
slowed down the the programming process by the fear of collisions. Often the
author had to go to his terminal, and check whether a new name was indeed new .
The names grew longer and longer , making the listing clumsier and clumsier.

The spaces which had to surround binary operators made the program bulkier , and
harder to read. (In order to indicate the relations between the patterns clearl y, we
had to use double spaces for concatenations.)

ft was troubtesome that patterns directly written into pattern matching statements

~of ten resulted in a terrible loss of speed. Again, this made the program bulkier.
The expression became indirect and obscure.

In summary, almost every known drawback of the language did some harm in our
projec t. Nevertheless, in the tong run, the Snobol language helped us a lot, just as
SITBOL and the System-b Monitor did. It is absolutely great that our program
could be confined in some twenty-five pages of sparsely printed line-printer

S outputs.

4.2.5. THE HUMAN ENViRONMENT

It may sound strange if we include this subject here, but the lively reactions with
the computing community of the Computer Science Department of CMU was more
than essential for this work. This was an integral part of our environment. Many
curious people talked to t he author while he was developing the “funny” fonts. The 

S

first XGP printing was accept ed by a great enthusiasm. People’s interest gave the 
S

author precious incentive, and opened the way to communication in which the author
could get information quickly. 

—~~~~~~~~~~~ - 5-— --



67

Acknowledgment

The following persons provided useful information about our hardware/software

environment: Siang Wun Song, Brian Reid, Andy Hisgen, Sten Andler, and Joe

Newcomer. Thanks are due to Bill WuIf for discussions. Many members, too
numerous to mention, of the computing community in which this work was done

contributed by showing interest. To name but a few , the author is indebted to

Vuichiro Anzai for his suffering as a brave user of the earlier versions of this

system, and Anita Jones for acting as our first non-Japanese user.



S~~~ _~ 5 _ ~~~~_5~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ —

S

S - -
- S~~~~~~~~~~~~ - 5~~~~~~~~~~ S~~~~~~~~~~ S~~~~~~~~S5 - 5 S s

68

References

1 R. Reddy, W. Broadtey, L Erman, R. Johnsson, J. Newcomer , G. Robertson and 4.
Wright: XCRIBL -- a Hardcopy Scan Line Graphics System for Document
Generat ion, Information Processing Letters, Vol.1 (1972), pp.246-251. Also la.
Mark Faust, George Robert son, and Harold Van Zoeren: CMU XGP System,
unpublished on-line documentation, Carnegie-Mellon University, Department of S

Computer Science, April 13, 1978.

2. Douglas T. Ross, Ed.: special issue on requirements, IEEE Transactions on
Software Engineering, Vol.SE-3, No.1, January 1977, pp.2-84.

3. Erik Sandewall: Programming in an Interactive Environment: the “Lisp”
S Experience, Computing Surveys, Vol.10, No.1 (March, 1978), pp.35-71.

4. Brian W. Kernighan and P. 4. P auger: Software Tools, Addison-Wesley, Reading, S

Mass., 1976.

5. Tadao Umesao: Techniques of Intellectual Production (Chiteki Seisan no Gijutsu,
or tt~ ~~~~~ 0 ~~~~~ in Japanese), Iwanami Shoten, Tokyo, 1969.

6. Larry Tesler: PUB - The Document Compiler , Stanford Artificial Intelligence
Project Operating Note 70, Carnegie-Mellon Univ. Comp. Sci. Dept. Edition, May
1973, unpublished.

7. Brian K. Reid: SCRIBE Introductory User’s Manual, First Edition, June 26, 1978,
unpublished.

8. Lee Errnan a~d Ron Tugender: BILOS, A Program for Editing Character Sets, an

unpublished on-line document, Carnegie-Mellon University.

9. James F. Gimpel: SITBOL -- Version 7.48, SITBOL Project , Stevens Institute of
Technology, Hoboken, NJ., 1976.

10. Izumi Kimura: On Teaching the Art of Compromising in the Development of
External Specifications, Journal of Information Processing, Vol.!, No.! (May, 1978),
pp.33-4 1.

11. Izumi Kimura: Pieces-of-Paper Approach in the Overall Design of Software ,
Department of Computer Science, Carnegie-Mellon University, to be published.

12. Warren Teitleman: A Display Oriented Programmer ’s Assistant , Proc. 5th IJCAI,
Vol.2, M.I.T., Cambr idge, Mass., August 22-25, 1977, pp.905-915.

- ~~~ S — 5 _55 - S .~~~~~~
-— -

~
-~~~~~~~~~~~S..-—- _- - --.--— -~ - ~~~~~~~~~ S~_ S~ S_••~~~~~ 5-~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

5 - - - -- - 5 5 -~~~~

69

13. Brian W. Kernighan and P. 4. Plauger: The Elements of Programming Style,
McGraw-Hill, New York, 1974 and 1978.

14. Brian W. Kernighan and Lorinda L Cherry: A System for Typesetting
S

Mathematics , Comm. ACM, Vol.18, No.3 (March 1975), pp.151-157.

15. Izumi Kimura: On Proofreader ’s Programming, Research Reports on Information S

Sciences, No.C-14, Department of Information Science, Tokyo Institute of
Technology, August 1977.

16. Eiiti Wada: informal discussion recorded in Proc. of a Symposium on Structured
Programming and Experiences With It (Kozoteki Puroguramingu to Sono Keiken
Shinpojumu Hokolcushu, or ~5’E~t~ ~

itO) tft~ lfh, T
~L j ~

t~~~~<b*~ , in Japanese), Tsukuba, Ib0raki, July 1975, Programming Symposium
Committee, Info. Proc. Society of Japan, Tokyo.

17. For example, David L Parnas: Designing Software for Ease of Extension and
Cont raction, Proc. of 3rd International Confer. on Software Engineering, May
10-12, 1978, Atlanta, Ga., pp.264-271.

F
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

70

APPENDIX. A JAPANESE VERSION. 
-

1:I~h~’ ~ i~L~ /~ I~~~L

t,~~ /~t I ~~~*~ 0 h—*.~ — . .~O)  iit~~< (CMU) th~~h~ ~~~ LIt,
S 

S 

~~~~J ~’Z ~~~~~~~~~ ~I’i .’& (XGP) ~ U~~ t~ to ~~ ~~,t, ~~~~ t~~ *~~~~~f3 0
lt~&~~ (i~~—~ t~ t5~~) ~~ *~<U * 0) (/W , ~tf(~ ~ ~ ~~~ lf/.,lj l~,
L~4~I~~ €O~~~X .i~<li~’~ I: Mit, 11/.1 th~ 0 ltb~~’~~ 0) ~~~ l~, ~t~VV~ ~ ttt~

S ~~1tI: ~ j*~/ I J ~ .tt~~~ ~ ~~~ J~~I~ W~ tO) f~. ~ ~~~~

tt~J/~ 0 Z~~~ It ~~~ I: &i’l ~ 1~O)t ~~ t ~~~~~ £1~ ~O) XGP ~ ~~~~~ ~~~~~~~~~

t (~~~øt~. lZl~h~~ 0) tZlU~
” 0) t~~ It. ~~~ ~ t~~ i ~ ~~~~

S

‘••~~~ Ut~t~ ~ ~ 5 ~~~ ~~~~~~. ~0) XGP I: tzl~/~~ 0) ~I;hU~ C) ~ <th~ ~
1~4~1~t ~~J:5, ~ ~~~~~~~

t,~~t ~ 0 L,z~~ it, l~L~
”L, ~ t’*tt t’()t~t~ , ~?;&~~ t: ~~~ ~t~~t~i i±t’U~

)
~ t,t

S t~~. ~},Ut’ 0) CMU /~t~~u It tr~~ l fh 0) j :Th ~~~~~~ t) , ~f~O) ~~~~~ l ~~ffl~t~ :~ it *‘~~
l~~” ~l()~ Z~0) (t~ 1, I: ~tt~ t.~~.4 It t~Q~ t ~‘h,1~ arC, ~frt ~tt 0) l~~Li/~ ~ L,t, t~bIi

‘
~~ Ut ‘&tt~~ ~~~~~ 0) ~~ It Li~~ .t51 U~ 3. ~ thI~< ~~~~~ W~. ~ < 1z. CUU

0) XGP It, ~~~~~~~ 0) POP-Il *~ ~ ~~ t ~~~~ 030J < IZ l1h~ *~ ~~().

~tC) tfj~ ”
~ ~~u< i ~t ,t o ’,~ t~~ ~~ t~ ~~~, ~~~~~~ ~~ ~~~~~~

r~~~

It ~~) Iz 1ittI~/~ arC.. /~— t~~iY 0) ‘fM~4~ s i t l~,Lit t~~~1~L Uu. ~

~~~~~~
t It ô th/~i1 ~ ~ ~j () (.

~~ (~~ ,/ i  ~ /~l) 
~ ~i It ~~ ttb C ~ ~th*tr~. ~~~~~ ~~M~tt ~~~/V~~~

~O) ~ ~<,1~th ~ ~~~~~~~~~~~~~~ W~ti. t~~~I. ~0) ~~~~~ 12. ~tC) ~~~ to I ~~$‘~,t $~~1~0YC~~. ~ 1~tX. 1tjt I ~ < ()  ni~~~ ~~~~~ t~~/~ l13 *~ tt1~th< ~~~ .)

~~~O) It~~U ~~~ t t*tii,, 1t~~t it ~
(0) 2t/. ~C ai~~ .

1. tzli6.Ii~ I ii&M ~rdt t~~~ ,6~~
’t o t~,lt ~~~tt ~ ~~~~~ I~1~U *~ ‘~~~* I t3 ~~lz ~t,t ~~~ ~~~ It ~~ U t~ 1~~~~~~~~/ V &i~~~ (1] *~ ~~th< i:<t~ ~

.i ~~*5 V~t~ ~~~ (1f~~. ‘t*t I t~ U3W~ ttb ~C tfu ’r~< 1 I. ,t .7ct~~
t~0) t1~~~

rQ~~~~<j ~~~~ I tG~ Ut ~~ ~~ ~~
;‘

LA - -
S -~~ S S S --

-- --.-

~~

--

~~~~

=-.-

~~

-- —-

~~

-.--— —-

2. tfLtL~ Lij~~lV.. I J< th/A~t~, t30 I t~i.. t~ *, .t< ~fl1~ ’z1 I ) <~ Z~~ 0)

~~~~~~ It. 1II~UIi ~~ *1t t~~ (/~~.tIf [2)). ‘t*t 1 ~0) CMU C) XGP, iw.o~..
~e~— a) ItbL~. ~~~~ (~~~ t~J~ ~C *~ o ~ 5Liu) ~~~~~~~ o t~ ~C ~&,t
lt~ lfh I ~~~ ~~~ *~

S

:~~i: :0 i~t~2tb I ~ultIt.. 1~~~ i: ~~ <t~~1~ ~~~~ U~ Litt~~~.

C) /~~1Li~~ ~1t CMU 0) XGP 0 ~~~~~~ ~~~~~ /it~2t.,.~3 ~ t ,/z~ tC) ~
~~~~~~ 0) tt~ &5t~. th~3Li~~ ~& ItMft~ I ~~~~~~ ~~ t,~ <*7t,t~ ~~ I Xt~,i6 -C

~~ Wl~— J~ ~ ~~orC. ~Lt~~~ 0) ~~ d~~ It ~~~/. ~~i~~f~L~(3).

1. fft’~’,.~~
CMU 0) XGP ( f’J i& l~/J~~) It. t~,tt~ 0) lt*’~ C t~ 

)~
‘
~ k 0) 3.t i: I~~U: ~~<

1 * ~ /z I  183~ U) ~~~~~~~~~~~~ C I ~~~ltt *<~~~l: C~t t~~. .t~ U it 121 8.54~~~0) O—JV ~—i~— (.1~~~Li) C. Z~~O~~3 14~J* 0) ( < f 1~~*t~ . ~~ ~~~~~~~~ *~
‘ t

~
t t~X. ~~~Li I i tti ~~~~ 114 j

~ ~~ ~~ :~ *
S 1’J .’& ILi~1~t~ It tth~~ 0) POP-i 1/45 l~ ~~,t i±t4.~ ~ktL :o SIU / ... 0) ~~~~~~~~~~~~~~~~

t~lt. ~~~~~~ I ~~~~~~ ~j ~~ — JJb 0 ~~OI.3 It. P< i5K~~(1~~
.. I&~~sl~) C~~~. :o

POP-Il it 1 ttA.t3 U) I $,t J~IJ.. ~~~~~~~~~~ it tr~~f :o #i7.~1 It
Itt~l). t}).~~ t 2~3IIZ POP-Il 0 U*~~~< t I lfLt< ~ t~ . :0)

~~Iz ~ l~~< ~ JJS3~~~. I t~/J~ Litt3 itt 4~~ 1. ~~~~~~~ V.. 0) ~1
~~*~~ t $4~L~ 1~~. ~t0) 0)~ I~~< I: .~ t< I ~~~~~ t1~/ .. It. t1,Ut t<~~< ~~~

~t ~~~~~ 0) POP-il It Ith~~ 0) POP-lO ~i(I-1O 4~~) l ~flt t~0. 2— tf It
~~1) PDP-IO’$~b ~~~~~~~ XGP t~t~*~z.t~ ~U9~5L~ LOOK it LMLa I ~~~~ ~~ IZ 2 ,t. XGP
I ~~~~~~~~ t3. Q) 3h.A. CC) ~~~ ~~. i~~.tii ~~~~

‘ 0’) J~~’~ LiflI~ I. 1~hZ~
) 

~~
~~ it ~~~:

.r look
ado ship hira3o/538
ado ship kata30/539
*text.xgo

ii~~~ It LOOK C) Zth~Li tAtt~, &f ~ 2-3~~~~ 12 ~~~~~~ 0) 7*~~~~~~

I POP-lO 0) ~iI’Ai hira30, kata3O *~ POP-li 0) ~•1~3r4~~~~ ~
1~t~538l1/.. 3~Jii~ lit %539t1/. ~ Li’Z ~<~ :U. ~ t~~ 1 t~ . ~~~~~ It ~~~~~
t~~~ ~~~~~~~~~~ I •I<~) ~~4P~ text.xgo I POP-jO $‘~~~ POP-li it ~~~~ :~ ILittt% t~ tO) C .~’). :0) text.xgo 0) ~~ it, 538I1/~ s~ 1J~ 53911/., 0) ~* L ~~~l~~ I
~~/~1i< ~~~~~~. ~ L,~tL~ t3 I— P ” d~.i~’(fltt (

~~.

<4~L,I’ ~~ I 1~Ufi1~ ~~~, l.~D It POP-i l it ~~~~~ t~~ PDP-10 (B-~iZ~ 1~ ~ ~t11t ) 11

--



— S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —

~~~ 
5 - —‘II,

72

<* L iI~ :~ I Iflf~t ~ . ~~ It POP-il it ~~~~~~ t~~ POP- b (B-~.i~~~/.’~ t~ ~I11j~ ) It
0 ~~C L /..:3 ~0)~ ~~~~~~ o C ~~~. t~,I1I.i—I F It ~~ 0) POP-lO (KL-bO~~~. A-~ X5 L.~ ~ J lf1t~~) I ~~ 1~tEt Iz ~~ t t~~0)-C. ~~~~~~ ~ tat~~u~ ~ -C ~~ ~ f. t~~;t~~; *‘,~~~~t~~ ~ :~ * ~~ *~. :: Ctt

It’<.

~t LOOK It. L,a~ 3~< C) i1/..t~~. ?.31 1:12 ~tfl ~ fl ~ t~tiu 127: ~
~* ‘ I  .~Jz <?~ f.I~II ~~~~~~~~~~~~~~~~~~~ :*t~, C) 7*~~ it ~~-r~ tt it t.~~ ~
~~ 4 *tt i t,  ‘en t~i~~~ ~ ,~ ~ (1~L~ cit. :na~, 0) ~~~~~~~~~~~
I. 5~r~~~ it ~~

) 0) ~~~~~~~~~~ ~ it t~ t~~~t ,*~ :~ 1: ~~~~~ ‘tO)
I1~~~ 1:12. ~~~~~~~~~~~ 

0) ~~t it 1i~U.~5 L~~/V ~ *~th( . ‘tO) ~1’1~ It XGP 0) ~~~~~ f t:3j~ ~rJ
t:U ~b~t Ut~ arC. t)~~~ 0) ~~~ 0) ~~ it t~~ t~~ 0) tO) I :~ It

~~~~~ ~~ LI it it Jtk~ *t3 .bt~ 0) 7*) l ~ It, ~t*t’f~tt A- 7* )t ~ ~~~ Iit e-
~ J:tt’*t~~. LOOK It ~ #Z~~~~~1~~ 0) ~~ I: 5~~~~~t/~ i— 1 0) t,tt~ It ~~~Lt.

tt~ 0) 2 *J t U) ~~~ I ~~~~~ I ~~~ t~i~t~ 0)
~~~~~~~~~~~ I ~i~E7 it ~~~~~~ 0)

I: ~~~~ U~M ~~~~~ J9-~ 4)  I 1}< Y.~ . ~~~~~~ I ~~~ ~~~~~~~~ It1~~~~
t T~~.

t,~~t L~&1,c2—tF It. LOOK I: ~~ tt~ I: t~ t3 ~#Z~~~y4)b I i~~~ <+j~~ ~~~~ a) -(It

~#XI~ I3~~& I t~ L~t ~t1~U tO) ‘
~~ L i ~t’ 0) L,Th ‘t0) l~4~ ~~ ~~~~ to) I

~~~~ ~tit I ~~~~~~ ~J-~ X iO9~/A it <t~1it LCOKti~ it V.th/. ~~~~~~~~~~ t ~~
~C ~~~~. :0) ~~~~~~ I ItL,~ /~ ~~ Itit. PUB ~ ~Lt 0) ~\b*~�.. ~O~I5L~ ~

t~~ ~~. t # ~/~ ~ ~~~~ bi~~ Lfr <. t.~ V~7DU~
l) I: I~ tA. Litt~~

~~ t ~~~~ lt~ I2i~U< 2~’t<, t}~ 5lfb ~ .t< ~~~~~ 0) t It SCRIBE ~ bI~~~t~ 1~~~
tU~ tO) ‘i~ Brian Reid It ,t,t it,tf ~~ ~*t!~ ~ :tt It :0) U~~ I ItL~b/~ ~~ It ~~

S

~~~~~~ *~*tt* 0) ~~~~~ I PUBt~ 0) 5~-& I D<t) I~t 1~.tb 0) ~~ U~ f C3~
f
~L.~ ~

s~1~t it :~ i±t~ t~ :~ t 1J*~ .I/.. ~ t~ tt1~ ~~~, PUB 0) th~V I It~i< t~ /~~ It
<4~ t~ 5~~~.t< *~ ~~~~ti’e~ it ~ t4~tt, ~~~~~~ ‘t3 It ~~~~~~

~~~ :0) ~ O~
7i~~ (It. d~~tL ~~~~~~ 0) 2*iI~ ~~~~~ I) < 1t~~t t}D~~~

&~M. ~~~~~ ‘tU) ~~~~~~~~~~~ It CMU C) 93 7.q~~1 5~~r 1Li4 ~ ~~~~ ‘V~U,~3 -ia~ si~
BILOS I ~~~~~ O~”(t~ ~,< it ~~~~ :‘~ ~~~

-C~r~. S

2. (,/~ tO)
S

i—~f th’ J~ti~ ~~~~~~, **** 0) iX fA 4~ ~~~I1.
’

~ ~k~ i it J~t~~~ I tr’~~t~ Li~~ . tf6:~ t2
11 1: (1~~t .t~~ ~,U* C) D—?t,~ I ~~~~ ~~~~ (:*t It ~0) /...i /. 0) 2U~~ o
s4~~ 6’ 3U~~ 0) It~~ it ~ ‘t-~ C) £i i. .C

~~.) O-v L ~ t2 t i,tt . :*t it it
I it 3~sU1~ ~~ ~~~~~ ~~~~~ i~ tsudzuki ~ *~<. S > . ~ It. ‘tO)

t~<f 0) 1~~~ J~b I ~tflr~~ It ‘t*vftt ~~~~~ ~~~~~ ~ t~L d-~ :~ I
~~ — i C~~. •.i~~ *~~* t <<. >>. ~7. 0) ~~ it th<~~. O~~~r~l’ it ~~~~. O~~1 it

l]’~r~7U~ •C
~~~~~~ ~~ — I * CtIt~ ~~ ; C tht~t~ ~*t3. 11 ~~ ~~~~ ~~ lz. t).i~~~

0) ~~~*-ftt It. ~~ tI~ f I~~5t~ It 2s~~ * *t3. fi 0) ~~~ ~~~~ 0) It(’ ,1~ 7741b I
S MATOME ~ t~~ ~Lt 0) Snobol ‘~O95h~ it ~ LOOK ti~ 0) 5~— &~ p44, ~

~~~~~~~~ 5 t  S S - -


73

S

Izure ni seyo , kono ikken henteko na houshiki ha, tsukatte miruto
igai ni kimoch i yoku tsukaeru. Soshite ,
sou i u “i gai ni tsukaiyoi mono ” wo mitsukeru niha, mush iro eukoshi
darak eta yarikata no hou ga yo l nodeha naika, to i unoga ,
kono hanashi no hitotsu no ganmoku de aru.

%Z3. Hansel naishi Jiman

Sokode tsug i niha , dono you na yarikata dd kono puroguramu
wo tsukuttaka shirusou.

Kerni ghan>ra no meicho Softw ar*~ Too s (4]
ni ha, “Hidar i uesum i kouseihou ” (left-corner construction)
to lu cho t t o k i m y ouna yougo ga detekuru. Kore ha, choudo kokode
yatta goun i , shiy ou sekkei wo <puroguramu sakuse i to douji iii

S eusumete yuku baa i ni ehu tosh i t e i wareru kot o de , k i hontek i na
yasashli bubun kara junjun ni tsukur i , dek i ta tokoro wo iji tte
yousu wo tashikame nagara, shidal ni zenta l ni oyonde yuku to i u

S kangaekata wo iu. W areware no hanash i ha, ootnune soflO suji fli

not t o t t e iru. tiousukoshi kuwashiku , donna koto ga tokuchou ka to
kangaete miruto , soreha teugino youni matomerareru to omou.

(1) Sukosh izutsu tsukur i, tsukut ta
S

mono ha , tsukaeru han ’i de j issa i n i r i you shite itta koto. S

(Haya i hanashi, kono roribun ha , wareware no cehisutemu
wo teukatte kaita i.~ake
dearu.) Sono you ni suru to , sh inr i tek i na ban al ga deki ru
hoka, mazu i tokoro wo haijame ni mitsukedasu koto ga delciru.

(2) Hyou ni dekiru tokoro ha, te t te i tek i ni hyou ni sh ita koto.
Hyou ha narubeku minareta katach i ni suru noga yoi. JIS
k ikaku nado areba , ari gataku ita da i te sonomama tsukau. Souiu mono
w o keisank i shar i ni tek isuru katach i ru tsukurikaeru tame ni
kuwar eru ke isan j ikan ha, lcd ni shinal. (Zutto ato ni natte ,
shouhin to shite u~ru tame no mono wo taukuru dan rid demo nareba,
<makuro wo taukatte maeshor i wo suru, to lu youna koto ma
h i teuyou rid narou ga , sore ha sashiatan i ninotaug i sannotsug i de
aru.)

11: it*~~)Z< 0) tttiIj~. (0) ~h.i/. 0) t~t1b.)

- - - — - — _ - S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - S~~~_~~ _ 5 5~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

74

MATOME ~ t~~ ~ t.t 0) Snobol Pü~~~i.. it <*,t~~ ~ LOOK t~~ 0) 5~—~
,y (II, *-C ~~~ . t)~~~~~~ I~~Li  ‘tO) l~~ It ‘eit~~1,< ~,t ~~~~~~~~~~ ~~~< t2.41~h Lit

I: *)1)~~
(tt <*t~ ~~ it ~~~~~~ <t)Ld~ ~*~t*/~ It [3) 1: ~~~~~ th~ . ~LLi~~

0 ~.t. ~ i’~~Z ‘~ ~~~~~~I~.k’ tft) ~6~~V~t J~~/~1’~.

ItL~b 1: U~ Ut~ ~~ it. :tt It Z~< ~~~~~ 1~~A. C t0 ~~~~, (O)~ ~‘<4’$If)
I: b1~ ), t~ )~~~ L~~/ . it J~’t’~< 4OO1~~/~ tt~~. :0) ~~ (cit. 5~—~ -5<o. ~~~~ Z.TLk 0)

I Li’~ <~ ~~~~. z-tf ~~~~~
1

~~
’— 7

~~~
—

~X U) tt,lhi ~~ ~~~ t 0) io9~k~~ tCI
J~~.tI1 LZ~ —~ I ~ I1~~~ ~ Li~ .t~~ It~ t., It I)th,tt~~ ~~ It

I~~k~” ~~ - ::C ~~~~~ tO) It. / ~~~~~ 1±t~O/. ~Ctt ~~<. tL i
mock-up C ,t. ‘tO) t~~t It ~~ ~ 11th t,i1~ ~~~ tii~ 0) tt,Ltti 0) I~~ It ~~~~.

‘~: ~~~~~~~~~

~5a9~i~ 0) ~I(It, Snobol 4 0) .b b 0) ‘i.1~ It Li~ *‘<600, ~~~ 5t ~< 130 It ~~~~
~~ ~~ L’~ 3. ~~~~~~~~ ~~ t, it I1~~ ~ ~,t 25~ —~J f~~1~ 1’. Z~< 4,<l:

S O’P
~~
f) -C ~~~ -C~~. t~’tt~ :~ it 1U,b /V ~s’t<t. KL-1O*~ 0) PDP-lO ~

(0) ~~~~~
£i~i~ /~~I ~~~~~ t~ O)It. CPULM it Lit 4OO~~ l~~ *~~~~~~~ S S (t,~~t ‘tO) ~t

0) ~~~~~~ 0) .b:.I:/. It t~•, l~ C) /~~ 0) ~~~ ~~~ ~ ~~~ t.~~~ ~
ti<~~~ tU it ~~~.) Mock-up /Z~~~ ‘t*vCt t~~t.~’ ‘~t*.

‘
P~ L i~~~ O) *~ O,L,’~’ 0) tfl ~,i /.. C

~~~~. iJ,~ ti , :tt I /~~.tli Yti~~ tii..z:~ C ‘) ~ tit  ~~~~~ ~
-
~t ~~~~~~ C

~~~,lf ti  *~ hr... ~ ~~~ th’ . ~‘h2 ~,ttt~ I (,t~th. ‘tO) ~~~ I t~d~,t (
~h~/i< 1Et~~ it..

I ~ h&b 1- it ~~IMtt~ ~~~~~~~~~~~ it ~~~tit ~ /4~/.. it Li;’t~~. :*t It. ttLth
~~~~~~~~~~~~ ~~~~~~~~ ~~~ 

r.~~ I ~.<ti D)~
) It ~~~~~~~~~ ‘to) ii*~ it

O’,4~~. 
‘
~~ ti~ l~~ Uh it ,t,t ~ btt3 :~ ~ Lit ~~ 1~~ it :*ti~t o :~ -C 

~~~~~~~~~~~~

c I O~~i~ ~ t3 11~L4 It ~ < *~ith it ‘~~t LiZ,t~ *~, ~~tC) Lit r-J~~’j31~~ ,
r-j IJ,&~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘t:-(~~~~~ ~ I 0~~ Ii3 Iib <t ; ~~~~~~ f) I~ h&i~J- ~ it l i z . :n -C
iz~ t11 r&4-J~~4~~~ ~ f t rn~— ~~ it ~~~ ~~~~ ~zi~ v~ ,i.~. ~~~~~ th S

rIJi~jj~j ~ ~,-c. :~~,t Li~ ,Iz.

~~~~~~ :L~f ~~~, ~~~ ~~~ ~~~ 0) ~~ t~~t~ it ~~~~~~~~~ ~ t Ct

~ t~~ :~ it Lit ~Iz. t.~ It :0 ~~ t. I2L~~ ~~~~~ ~ ~~~~~~~~~~~~~~~ it
tc,<o Li1zM UML ‘to) <~~~ It U~ 1z

~~~~~ #‘JxI~. ~~~~ ~~ ~ C):~ tt1z *~. ~f It ~~~ti  ~ /. I t i ,tLi~~~ orCit
t t~~. :n-C t~o <~ t~ ~~ < *-<~ ~ t~~~. i~~v1 ~~~~~ i.~~~ ~~ ~~~~~~~~~ *~~

~~~~~ 0) ~~i1 I 03,t ~~~~~~. ‘tO) ~$ 0 ~ <13OLi~ 3ti it ~t~t It ~~~< ~~~~~~ ,

1OOL,,~3ti /z~ 1~ it 7~lt ~~~~ b&h~-*~ I: T~~ :~~ti C ~~ O)It <~~~ 
( ~~~~.

‘tO)l~~’ 70 i~~. ~~~~~~ ~~ .C 
~ < to ~ ~~~~~ it ‘~,tt~t. ~to i ~~ it

ir~~~ it ~~ to) *~ ~~,/z (i~3i~5. i~h. ~~~~~ Ii ~~
, 

~~~). 
(~< i t> *~ ~~~J 5 ~

~~~ flU Lit 12. rIt,.
~I)j *~~ 1 ) U1z.

- - ~~~ - - -~~~~~~~~~~~~~~ — S



75

t-U; ~~~~~ it. ~~~~~ ~,t~<a) u~~U it t-~~— -C. ~, ~~ *~ ~~~~~~ 

S

2_q it ~~ t ~~~ It iw~c C~~ tm~ it ~~~~ ~
( a~ :~ -C ~~~~. ~~~~~~

~ ‘JZI~. ~~~~~ ~~f *- o):~ *1iz ~~. ~~~ ~ ?~~ I) ~~~ ~ / .. I U~ t t~~ 0) ~1Z
~ ~~~~~~ ~~~~~ ~~~~~ I i~~. ‘~~~~~~~ u~ .t~~~ it *‘~ t 

u~,uj~f, Li~~
11~t~ o ‘~i it ‘u<~~

-(t .b’~’t~’t~ /~$ .. ‘e~ U~ :‘~ I ~~~O ‘&~~~ ~ 5O-~X * i—if o
th it ~~~it<t~ to ~ ~~ o,~ :z~ ~~~~~~~~ 

-C 
~~~~.

ti Ct ~~<. ~~~
‘
~~ ~~~~ o ~z.tfi~ ~ ~ 1;~~If It. t’~J~ It r~tU~~ U th(t) -(~~u.

S

iz~~tli :1.. ~ nU.i:/. ~ ~~~~~~~~~
r~ o) ~~) U It /E/VI1~ ~ ~~~~~~ OYC.. ~~

t rf*t it ~~~~. :o U~~~ lt / ~ V~t: ~~
- I~5Li~ It. ~~~~ ~~~ uu’~ti It ~ ttJ < ~~~~~~~~~

‘tUt.. ‘t5U~ rU~~ It ~~ UJti t0)~ I ~~~~~ 1:12. t~U t:Li /~~It/z ~‘() ‘)~/z 0) I~~
~ .iUOY(I2 ~ Uth.. ~ U~ O*. :0) It~ L, o o~, o ~ct< -C

~~~~.

3. ItbttU ~~ U U~ /.. S

~~~ 1:12. io ~~ ~~*iz C :o) 1O~~~IA I ~)<,/zth Li~i’t~.

Kernighan~ 0) ~ tit.~ Software Tools [4) itit. r1J/~()
~~~~~~~ 5thiI~~ j (lef t-corner

construction) ‘~~ t~3 ti, ~ ~~~~~~~~~~~~~~ ~ Ct<~. ~tt it.. ~~~~~ ‘t”~ iz J~~it.
L1~i3 tt~~Itti I ~~~1.. ~ <ttU ~ ~

‘
~ L I: ttdt ~< i1~u it Li*~~tit t’u*~*t~ :‘~ C.

~ *‘~ Liti £1b *~ 1~i*hL.*A, it ~~~~ -C~r~ ~~~ I tu 1 ,t J,t I

~~~~~~~~~~~ Li/zli it ~L/zt i it 2~~bC ~ Li~ *~MX~ /z I t~~. 4*t 4~*t 0) It~~~II 
It,

2~~2~~ ‘to) t(~ lt O),~~,t U~ . t~ tZ L, <~bLi<. L’.~ :~ * ~-(tI.5 ~‘ ~~

~~~~~ ‘t4tIt ~
(0) .t5it ~~~~~~~~ ~~ ~ t5. S

(1) t:Li1~~ : <1; . ~<,1z ta) It. ~~~~ it/..t~ C 1 ,~~~ U it Oi3 LitU,/z :~~.

(i2~’U l2~ Li. 0) 5A,I~~/ . It. t)tt*)*t U) ~~~~~ I ~~~t ~~~ 412 C~~.) ‘tO) ~~
I: t~ ~~. Lib’)t~ ~ I2O~ U d C~~ ii*~. ~1U ~~~~ I it

(2) ~~~ it ~:; It. t~ tUt~ I: ~~~ It 14z :~~. ~~~~ It ‘~3~~< i~~it/z
I: t~ 0)* J:U. JIS ~d < ~~ ~*t11. ai~~iz< i~1zhitit ‘to~~~ ~~~~~

tO) I Pj-U~ /.~ U~
(i it t~ 1~ thtzt it ~<f)~~.t~ ~~ it ItI~~h

t th ,~ It. ~ It ~~~~ (1~~~ ~~ It ~~~~ Li~~ 1)h ~ Lit ~~ 1z~ 0) tO) I
/z~~ It -Ct ~ *tI1. V~ O I ~~~~ i.t 1,~

f) I ~ t~~ ~~2 :~ t ~~~~ it
~~~~ *. ‘tfl It ~ Li~ tzQ It0)~

(
~hO)~A (a~~

(3) ?~~,~~~lf,th I th It Gt~ J~ it) <,1z ~~. ~ It kt~ t~ tO) I

~‘ Li~~~l1z~ . ‘tfl I ~ It kt~ ~~ it t3 t~ C). ~~:~~
— tt~~~ (Jt~—*~i) I

S ~~~Li L ~
)
~~~t t~<. 1z1z~Li ~~:~~

- It. ~ttU1}b (1zLtII ~~~~~ ‘t’~.t~~Pt 0) 9~r ?
iI—~~

) ~‘1) *~ ~*t11 W <  U*~Lit )*U. 0) v~. -C ~ *‘, ~�.d;~ t~ ii~ *~ ~~ 
-( 

— 5 —  ~~~~~~~~~~~~~ 
—

~
- 5



S ~ 
- 

- ~r~~~ ——-- — ._-_-____,_ . -
~~~~ : 

- S S

76

(4) t’< ~~
i—

~~~~ 
it ‘tfl’t*t 1i.i / . .  0) u)~~~~tiJv I itt). ~ItU ~ I ‘I”~~~t~ ~~ it

) < ,j z . X .  1z~ .tI1 D~ 0) ~~~~~ It /zL’T3 IIflU It. ~.t 0) ~7I~~C I tY.~~
1) t~

~~~~~ -,<~~ 
r~~~•

(5) ~~ t~i til~~~ ~~~~~~~~~~~ 1 ~~ it. ~~~~~~ I 2~~ *~< ~~ lt L11z :~ .

~1 DthU,b b. t~~tht~1 I D<~~. ~O~ S1~ It I11~ Ft ~ ‘~~~J 0) Dt() i’ ~~~~~~~~~~ b L I

I i~’ttt1 ~ < It ~~~~. t1~~t~ z-(~~~~ *~h~~/.. it i±uLi~ ~ 1~~. (‘to) 1zM’(’ C
4’~fl~~Li ~ ~ - d ~~ :~ *~ t~3i~L’ .) ~1z ~t~~Li< C~/z 1a~~i~ I t~ 0) ~ 0~15L~ 0)

~f: I: Itth~ t~ ~~. ‘toi~~ ~~~ I t~~ It. ‘J~~~ .’9 It ~~~~~~ :fl ~ 0)
to) I ~~~~~ Li~*~ t~t~ ~~~~ I t~. ~~~~ it iii.’t< ~ i t J— is.:J I~ Cit
t~:~ *?~t . ~<it ~~~~~ 1 ~~~~~ It. ‘Jz54.’9 t 2.b ~~~<f ~~~ (

~t~ ~~~~~~~~

I Lit~~~.
(
~1z Li/z~~ I ~~~~~ t5tit~ tt~1t ’ it ~~~~~ I Li~~~Li.

0) ~~~~~ 1:12. :~ b~ I ~~~ 0) ’~
” it~. tLit.. 1±-)thU.1.4 It~~~U1 0 I~4.

l~~~1~ Lif~r. I~~ 0) It/. 5 ‘~~
uJJ.f4jq I O) L i t t~~~ it’. Li/z~~ 0) 1z’~I’ It

t~C ttt Jt ’u. (~~Li5 tt1~ If.~ ~

(6) ~ p4)I, I 1I~~ ttU Li1z~ . (~ < tU~ ’~ U*~ ttt’ 0) ~~ It ~~
) 1~~. U,I1/. , ItIt) tC

ItLi~~~t ~~ trC. Li~~~i±ti 1~~ 0) ~~~Y- ()IP it DUt ‘J~~~4~.’9 I Z~1. JJ~~tt ~~ I:
S Wz :~~. ‘t: -C ~iz ~

-C~ :‘~ it. t-L,5 ~~thc ~ ~ 1c~~i~ l~~ *~
::-C 0) b*~ ttt’ It ~~ < it *‘,t iU. ~ ,1z ‘J~~~

.(
~~~ it 2.3Li*~~~6 Li/z~ tt~.

~~~~. ,~~~~ti  it -C~Iz to) I I2Li~ tt3 Lt it. ~~ lt ~}‘~I1/~ ~ <. ~ ft~O)t. ~~(It
1zti(~ .~ 0) Li*~~ttti I t4~ t~’~ ~~ itit. iz~~i. u~5:~ C ~,iz.

(7) ~~~~~~~~~~~ ~ :5. :/z:1zLi1z -
~:3 *~ ~~ 1z ~~ It ~~~ I: ~Iz* I t~ ~~f:

Liz :~~. 5— & :5’t~ I ~bT~ 0) 0) ~~ I: t~Li:~~ .t5 it <.b.~ I t3.
‘tO) l~~ . ~bt~ 0) tt~~’ I.*k~~ I t~*t~ tf ~M. V.t ~~ U I et”. Liiz() .

I ~It/zLi/z1) t~. :*t it tt~~t~ It ~~~~ ‘tO) 1~* 0) :t~ It. 5r
~~i9

(t D<~~,t. ~~~~ ~~ Ift~~<t~ It ~~~~~ fi~ ‘~~ I~Lth-<t~ ~
ti ~~~~*. ~~ C ~‘,tt~~ i~~~. mock-upD~<() ~

) ~C ‘t~~t’~ :~ I ~~~~~~~~~~~ ~~~<

~&tU ~ :5t~ <~ Li*’tU arC t*~ ti tL ~~~ . ~o) *~Iz* It. Ijth 0) ~~~~~~ ~
L’ ,Li,~ It ‘(“~~~~

‘
~~ t~~~. tf~$~ z~

(8) :n it ~~~1.4t/z I2~ L, 1z~*~. ~IItth t~ 1~M~ it. ~ <1~t’ ~~ < I t*~~Li~’< ~ Lit
C) ~ t~r.t 0) £i~/ ~ it ‘toil ~C ~ t~t1~ < ~~ it Li. ~~~~~ I ~~~~~~

~ 1~U< *~ .t< ~~~~~ :~ 1~~
) iti.&o ~ tL.*/., I thL~~ ~~I: L/z :~~.

(9) ~tht ’ I: t~it/. it ~~t I lt~ t,t. d~/.’t~ I it Liz :~ . t:L1~
-
~

,<,t ~ < ~~. ~t*~ tt~ th I Izuu t~ it ~~~~ ~ :~ *~ C~~ 0)-C. ~~~~~~

1 ~~ 1zLJ ~‘tU. ~1z t)~ it IX~t ~~. ,~~A, C Li~4 0) MI~ Li it ~5<. ~ U~ O) It.

~< t~i,ntt~~ :~
U0) Iit ~~~ ai ~~~ I ~,1z ~~~~. ‘tt’tt D<,t (i~~ 0)12 mock-up ~o)1l~’~ .

~

-~~~~~~~~~- — - ~~~~~~~~~~- - - -— ------- -
5-,

77

I ~Li~ ,XIt ~ 4Itt ~~ ‘at’. ~e’~ o i(l 0) ~~ I
1zW, C) ::~ t ~ t~~L -C. ~~~~~ L~ ,c. ~tiu /zUl~~< ~ o):~) t U3 ~t (t 1l~~— I
-ri. iz’~.til :o 0) t5~ tO) I *~L’t i~~. ‘t: C ~Iz d~UO.t3 *~ ~“flz<

~~~~~~ 
-r( it /z to) I ~~~~ ~C ~~~~~~ ~ /z~~Li< D<t)  ~ t~t ~~ t~~0) 

~~

it J~t b*t~ .

(11) A
’.h~~ I1~ L, /z~ . 4~~1i ft ~ I ~~~ :~. ~‘t< /~izLi (~ Ift*D I

t~~~Li g <fit -r ~1z~ t~~iJ< ~m. ‘t ~~t~~ ~ u’etrCt.. ;< ~ :~ It
~~~~~ orC.. ~~ ~ Litt. ~~ Ut~ ‘~i I) ~~ ~ L,t~i— it ~~~~~~~~~ (t. D it ‘en t

* J1i.)

IiL~~~~~ 0) .t5’~ :~ C. Li~~ I ~ti”j . zL—~ it tt~~ ‘j t’~iz. ~1:Li; -
~tt

1zO)Liö~,/z. :*tlt /zt’~~~~ t 1~~ ~~~~ ~ Li~ O)it. ~~C :~ It ~~~t~~I: *t ~~~~

Li~~5 ~5<t (.)
~~ ~b’~ tO) I D<~1z~ tt’*~ Z?z~ 4t< t~~~~ U I.~~~/zt~ ~~ Li,~,It)

Lit. ~~~~~~
0) t~ 1z I ~~ t $< ~~~ C a~. ‘to ~~ tLi ~~~ ~~~~~~~~~~~~

1EO) Li < ~~~~~~~~~ t~~tft~L,~’ it DU t~,<~ it ‘~,t ~t. i’iM’ ~~~ I i< ~b’~.tiI t

~b~~~liLt L~~ t~’tfl ~~ ~~~ . •b~~~IfLik ~~ ~ ti,t t C It ‘tO) tV&~ ~~ ~~~~~~~ I

5 c_(
<*t~~~i~ ~~~~~

,‘~t. ~ it f~ ~~ i~ it. t~t~:~~5<~ ~
(
~~ ~1t ItI2 t*~~~,/z :t t

~~~~. t:t, i2i~ LiU dr . ‘t,t.~< it Li~~’t~ . J~~1~~ it, .t<il~,t Db0)th~ ~
‘tO) t) ~~~D 0) flt ~ It Di C) tO) -C ~~~ ~~~~~~ j,&j,~ ~ ~~ ~~ i: ~,t i~iz~ .
XUL’. 1-~~l (~~< It ~~~~~ I l2’l’< /iLih~< ~~~~~~~~ r/~~fl1~~~ ~ r/~t~~~~~~ it. ~~

U) ~~~(~~pJ  ~ r~~ ~ it IiItt CtU3 01 ~tt~~ ~t. i/Y~ it Ut t 1z,-
~~

~~~ it ~~~ It ~‘e~’f~ ~ ~~~ ‘t:-C DU. ‘tO) £~.4 0) ~,Itli.

thi ~~~< I. .b.1zA, 0) 3’M’1bJ~ ~C4~L~ ~~ t’ :~)<~ 0) ~~~~~. I: t4~-~,t.. L~~~ it ‘P,t Lt,1z.
3~~ ttLiLi,~ I I. ‘tO) izti It .t< ~~~t~t4z ~~~~~. ~~ /~U1~~~.b: 1~-3~ . ~~ ~
~~z< ~~Z<. 2Li * t~ i~~t’ ~(It ~ I)~ *t1. ‘tO) ~t 0) 1}~ D It Di 0) Di 0)
t t :L /z. tL*t, 0 ~ iz.t ~~ ~hrtU I it~t ,tt; C P05(0) 1 th~~~t*t /zl,. ‘to) Ii~~.

~ -~yt,~z~~ ilthl; -C ~~1z *, ~~~~~ Itit ~~~~~~~~~ <~~bhiz~. t~Li Q)~~
(

*
~~ ,t Ut UtItt 0) Li~~ I ~~~~ 0)12. L~’ ~ to) t

CMU 0) XGP I D~,t ~)‘~~~ b~
)
~ ~~~~~~~~~ I ~tiz~t 1zW 0) J15 1.. I.. i~4~,tt iz

~ 51 .t< -C D<,t ,~‘t. ~ < it 1zO)L< D<,1z Q)U i~~i~ C ~~~~. l,flbfl 0)

*‘()~ /z 2. ~
) 7

~~~iP 0) $~Uisi, Li~~ 5<~, 0) 11~ */~ 
‘
~~ Lit. t1 0) ‘~3~,,1z to) C

a~~~~I: $:ut4)*t~ .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—5 - 5 -  5 - —  _


~- S •- ~~~~~~~~~~~~~~~~~~~~~~ ~~~ 5 ’ r - -
~~~~~

— ~~~~~~~

78

1. ~~~~ tt~ th~~h 0) iL~t*D, t~4~~1~ L~ tb, ~~~~ 1969.

2. Brian W. Kernighan and P.J. Plauger: The Elements of Programming Sty le, Second
Edition, McGraw-I-lilt , New York, 1974 and 1978.

3. lzumi Kimura: Cheap production of Japanese documents, an experiment in
programming methodology, Carnegie-Mellon University, Department of Computer
Science, June 1978.

4. Brian W. Kernighan and P. J. Plauger: Software tools, Addison-Wesley,

I

—- SS SS  S S S S_ 5 S~~~~~~~~ 5_~~~~~~~~ ~~~S 5  5 ~~ 5~~~~ 5_ S S S S


