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-/, Optimal Filters for Bilinear Systems

We considérmauﬁiifﬁéér signal process driven by a Gauss-Markov pro-

cess which is observed in additive, white, gaussian noise.

An exact

stochastic differential equation for the least squares filter is derived
when the Lie algebra associated with the signal process isnilpotent. It
is shown that the filter is also bilinear and moreover that it satisfies

an analogous nilpotency condition.

Finally, some special cases and an

example are discussed, indicating ways of reducing the filter dimension-

ality.
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OPTIMAL FILTERS FOR BILINEAR SYSTEMS

WITH NILPOTENT LIE ALGEBRAS

1. INTRODUCTION

In recent years, detection, estimation and control of signal pro-
cesses represented by bilinear systems has received some attention in the
literature; see, e.g. articles [1], [2] and [3] and survey [4]. The
principal motivation for studying this class of problems lies in its
potential applications to a variety of practical areas such as inertial

navigation, satellite attitude control and angle modulation.

We focus on least squares estimators in additive, white, gaussian
noise environment. In [1l], such estimators have been obtained in
recursive and closed form under the assumption that Lie algebras associ-
ated with the signal process are abelian. In [3], the existence of such
finite dimensional, recursive estimators has been established under the
weaker requirement that these Lie algebras need only be nilpotent; no
attempt, however, is made towards displaying the estimator equations

themselves.

In the present paper, we derive explicitly, the finite dimensional,
closed form, recursive filtering equations when the signal process satisfies
a nilpotency condition, thus supplying a complete and constructive solu-
tion to this class of problems. In this process, we prove that the filter
is bilinear as well and, moreover, that it also possesses analogous

nipotent property. A number of interesting special cases arg identified
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in which the estimator can be alternatively realized via a linear filter
followed by a nonlinear postprocessor, a structure that may prove

advantageous from the viewpoint of practical implementation.

In the next section, we formulate the problem and present some
mathematical preliminaries. The third section contains the main theorem
on the properties of the optimal filter, and the final section deals with

computational considerations.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following standard linear Ito models for the signal

and observation processes respectively.

The Signal Model:

dE(t) = F(o)E()de + o 2 ()ew(e), £>0 2.1)
The Observation Model:
1/2
dz(t) = H(t)E(t)dt + R (t)dv(t), t >0 (2.2)

where, w(*) and v(*) are standard N and P dimensional independent
Wiener processes respectively, £(t) GIRN, z(t) € RP, £(0) is a
zero mean, gaussian random vector independent of w(*) and v(*) processes

and F(), QY%¢y, He), rY

2(') are time-dependent matrices of
appropriate dimensions, with Q(t), R(t) positive definite and continuously

differentiable for 2ll t.




Our interest in this paper centers on the least square estimation

of nonanticipative, square integrable, nonrandom functionals on the
Gauss-Markov process £(¢) definec in (2.1), based on the observation
process z(*) defined in (2.2). 1t is only natural to represent a

functional of this type by a dynamical system driven by &(¢).

Clearly, this problem fits the framework of the nonlinear filtering
problem discussed by Kushner [5]. His solution, however, requires, in
general, solving an infinite set cf coupled stochastic differential
equations. As a result, a number of approximation schemes have since

been proposed to '"close' this infinite set, notable among them: Extended

Kalman filter, Symmetric Density Filter, Bass-Schwartz Filter, a cumulant dis-

card hypothesis, fourth moment assumption and various other moment approxima-

tions; the interested render is referred reader is referred to Chapter
9 of [6] and reference therein. Fach of these attempts have experienced
varying degrees of success, depending on the specific practical applica-
tion at hand. Besides, they have often lacked rigorous mathematical

justification.

Our approach, here, is different, in that we seek to ''close'" the
Kushner equations exactly by suitably restricting the class of nonlinear
functionals to be estimated, thus obtaining an exact solution to the
restricted problem. Moreover, we should like this restricted subset of
functionals to be also '"dense'" in the class of L2 - functionals, so that
we would have essentially "solved'" the global nonlinear problem as well.

Analogous approach has in the past, been taken by Balakrishnan [7] and
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more recently by Huang [8], Chapter V, although in a "static'" framework,
that is, nonrecursive estimation of a single random variable from fixed

length data without the dynamical signal and noise framework.

In view of the above considerations and some results available
(see [9] and [10]) on approximation of nonlinear systems with deterministic
inputs, the class of bilinear systems seems to be the most promising subset
on which one would like to focus attention. We, therefore, assume that

the signal process {x(t)} x(t) € RM, to be estimated, evolves

t >0

according to the following bilinear dynamical equation:

N
dx(t) = Ax(t)dt + ) B £, (£)x(t)dt (2.%)
i=1

B are M X M constant matrices, and x(0) is

where A, Bl,..., N

independent of £(0) and w(*) and v(*) processes. With this model, we
seek a finite dimensional stochastic differential equation for computing

x(t/t) 4 E[x(r)/z%].

Besides the aforementioned mathematical considerations, the above

signal model has strong justification on physical grounds as well. As
discussed e.g. in [1] and [11], (the state transition matrices of) bilinear
systems, evolving on Lie groups can perfectly represent certain types of

motion such as rotation of rigid bodies.

It may be appropriate at this point to recall some pertinent definitions

and facts from the theory of Lie algebras and Lie groups. Further details

may be found, for example, in [12]. Let L denote a Lie algebra and




GL é eL, the associated Lie group. It is easy to verify that the set

L, A fL,L] A {[A,B] | A,B €1} (2.4)
is an (ideal) subalgebra, where [A,B] A AB-BA, is the Lie bracket

operation. Now define analogously the following two series of decreasing,

nested subalgebras, recursively as,

t* & 05t & flaml & ek, nE TR L iRl - L
(2.5)

and
L AL _,,L ;14 {[AB] |AB€L ;}, k=23,... (2.6)

Definition 2.1: The Lie algebra L (and the Lie group GL) is said to be

a) abelian if L, = {0}

b) nilpotent if there is an integer K such that ik = {0}

{o0}.

¢) solvable if there is an integer K such that Ly

Analogous definitions can be made with respect to an associative
algebra as well, merely by replacing Lie bracket operation by ordinary
matrix multiplication in the above discussion. It then follows directly
from the definitions that a) =b) = c) and that for a Lie algebra to
possess one or more of these properties it is sufficient that the smallest
matrix algebra containing the Lie algebra also possess the corresponding

property.
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Coming back to our estimation problem summarized in the signal
and noise models (2.1), (2.2) and (2.3), it was shown in [1], that if the

Lie algebra generated by the matrices A’Bl""’ B denoted by

N’
{A, Bl,...,BN}L is abelian, the estimator for x(*) consists of a

linear filter and a nonlinear postprocessor. In [3], the abelian tvpe
condition was replaced by a weaker nilpotency condition. However, [3]
establishes merely the existence of a finite dimensional recursive filter.
In the next section, we derive explicitly under the above Lie-algebraic
nilpotency condition — the stochastic differential equations of the filter
and futhermore explore its algebraic properties as well. A perliminary

analysis of this type for the much simpler special case of associate

algebraic nilpotency may be found in [13].

3. PROPERTIES OF THE NON-LINEAR FILTER

We begin with some lemmas which will be heavily used in the proof

of the theorem.

Lemma 1 (Canonical Nilpotent Form):

Every nilpotent matrix Lie algebra can be converted, by a similarity
transformation, into its canonical Lie algebra consisting of block diagonal
matrices wherein each diagonal block is triangular with equal elements on

the diagonal.

Proof: See Sagle and Walde [12] pp. 224-227.
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Lemma 2 (Exponential Formula):

N
Let < be a Lie algebra of matrices with {Hi} as its basis.
=]

for any pair A,B € &£ we have
N

iglgi(t)Hi

eAtBe-At

N
where {gi(-)} are analytic functions.
i=1

Proof: See lemmas (i) and (ii) of Wei and Norman [14].

Lemma 3:

Then

(3.1)

Consider the signal and observation models of (2.1) and (2.2) respectively.

Define a (vector) process {y(t)}t >0 by

N N
dy(t) = Dy(t)dt + Z Eigi(t)y(t) where: D, {Ei} are1
i=1
i=1

matrices of appropriate dimension, y(0) is 1

independent of £(0), w(+) and v(+) processes.

(3.2)

Then y(t/t) Q_E[y(t)/zt] satisfies the following stochastic differential

equation:

A 2 N
dy(t/t) = Dy(t/t)dt + ) E, *E
i=1

: .(t>y(t>}dt + {Et[y<c>aT<t>]

]
V£
!

- §<c/c)ET<t/c>} T ()R (6)dv(e)

v(0/0) = Ely(0)]
where EE[+] A E[+[z"] A E[+[{z(1)| 0 < 1 < t}]

dv(t) = dz(t) - H(t)g(t/t)dt.

3

(3.3)
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Proof: Apply the Kushner nonlinear filtering equations [5] to the signal

Process (yT(-), ﬁT(-\)T with z(*) as the observation process.

p Lemma 4:
T - .
Let x = (xo, xl,..., xn) be a gussian random vector with mean vector
T e . n
mo= (M, M ey D) and covariance matrix P = [P, ] We
0 1 n ij j=0
L

then have the following relation:

( [xo E [xon n
i=2 j=2 i=2
X n ifj
E[e o q x.]=< (3.4)
i=1 * X
(m1 + pol) E[e ], n=1.
\

Proof: We shall indicate only the main steps of the proof leaving the purely

algebraic manipulations to the reader.

X n X n
EEe °n Xi] =J (2ﬂ|P|)_(n+l)/2exp - %(x—m)TPnl(x-m)- e ® mx, dx
i=1 ki i=1

R i (where [*]|A det(*))

7 m T n

= (2W|P|)_(n+l)/2 ca® 2Qoo f %, =
an+l i=1
N P G Y ¥ 2 3]
exXp - l(xO m Qoo) . Qoo + i,§=0Qij(xi mi)(xj mj)] dx

i=j#0

(upon completing the square for the term i = j = 0 and using the notation

Qij é_i,jth element of P"l A Qs




T

9
(m %P ) ~{(ntl) n
=g w90 iy (ZW]PI) ¢ dx Il x, exp - lkx -m - —l—)zQ
i"]. il 2 (6] e 00
R
ry’ 1 v 1
* G k. - s —Y0ien. ) P z Q, (x,~-m.)(x —m - —)
i,j=0 ° ° QT e T e SEE R
i=0,j#0 i#0,3=0
n 1 n " ©
+ Z Q..(x,- m,)(x.- m,) exp[- Z 1 —gl(x,— m,) - ol _ ol J'
AT B R A | okt e v ¢ Poo N oo
(where, C.., A cofactor of P..)
ij = ij
1 n
(m + 2P ) =1 n
o 2 2 17 T -1
= e 0o |2vP*| J .Hlxi exp - El(x*- m.) P, (x*— m,)
l:
R"
o Coi
exp[‘Z A (Poi % mi)]dx*
i=1 *
(integrating with respect to x , using the notation P, A [P,.) 5
= Q c BT
R e e )T and the facts that s Ll for choice of
1 n Q 15 C L |
153 ij
integers i,j, i', j' and Coo=|P*[’
1 n
(m + =P ) i n
g o 2 o0 2 1 A =] *
= e -IZWP*] Jiglxiexp - fl(x*- i, = PO) P il m~ Po) dx
R"
Lt *
(combining the exponents, and noting the fact that C02 = Z Pojcii' with
.21 O
* * i
with C,. A cofactor of P,, in P_,. Also P A[P . P ... P ]T.)
L] g (I Q= ol 02 on
We have thus arrived at the following conclusion:
x0 n (m0 %P”) ¢ N
Ble © M x,f = e o0 . Ty (3.5)
i=1 i=1

e ; :
where Y = (Yl"'Yn) is a gaussian random vector with mean vector

T " i
m, + P .,..., m_+ P ) and P, as the covariance matrix.
1 ol n on *
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Now, a standard moment theorem for gaussian vec:ors (see e.g. [15]) vields

[ iv,] = e[ Y el T (
E .] = (m, +P E{ Y.] + YP E[ 1Y } 1 3.6)
j=1 & 1 ol j=o 1 j=2 1j [k=2 k

k#j

Combining (3.5) and (3.6), and using repeatedly identity analogous to
(3.5) for vector x with reduced dimensionality gives (3.4), completing

the proof.

Q.E.D.

We are now in a position to state and prove the main theorem of

this paper.

Theorem 5: Consider the signal process {x(t)}t o evolving according

to (2.3) and (2.1) and the observation process {z(t)}c - as in (2.2).

Suppose that the Lie algebra £ generated by the set of matrices
Adk(B y ol L= 1,2 N; K = 0,1,2 }
{ A i ’1"' SN SIsEe Ry > - sLsLyge e |
*
is nilpotent, with dimension N and order of nilpotency N, , where

(&)
AdA(Bi) A By

and, for kK = 1,2,¢45

k k-1 k-1
Ad,(B)) A A« Ad, "(B)) - Ady "(B;) - A.
Then the least squares filtered estimate x(t/t) A Efx(t)/{z(1)} }
O0< 1 < t

can be obtained from the finite dimensional, bilinear, stochastic

differential equation of the following form:




A N ~
By (DE, (t/0) + ] ¢ (Ddu, () |x" /o),

~ N
dx" (t/t) = [A*(t)dt + 3

i=1 i=1

~ 2 % M
%* ! —
X (./o) e 'RM 5 M* _<— M o [L}%)—l‘]

NN ~1
~k E[x.(0)], i< M
TR o L (3.7)
L ot &

(e FE) = B(EVE (BfE)

where

€
T -1
p(t) A J H (1)R “(t)dv(t), the modified innovations process,
0

where, g(-/-) is obtained from the standard Kalman-Bucy filter (see

N
[16]), L(e) is an M x M and A*(-), {B:(-)} ’{C:(.)}N RN AR
i=1 i=1

matrix valued deterministic time functions such that the Lie algebra £

generated by the set of matrices

a—

k %
Ad (B (O = 1,2,00505 § = 1,2,.00N; ko = 0,105 £ >0

2 *
Ad (A (t))
L Ct(t)

is nilpotent with N, as the order of nilpotency.

%
Proof: Let {H.}N be a basis of £ and i% the canonical form of £ .
i=1

Hence, by Lemma 1, there exists a (nonsingular) matrix S such that the

f N * =1 * : -
set Hi with Hi Q,SHiS s 1= Lyvewy N is a basis of ib and
i=1
% 3 1% 2 % Q. % %
“i = diag Hi’ Hi""’ Hi for all i =1,..., N, where, each
* * &
diagonal block H”, e Toiuey N 5 ReEldlyicX 18 WX M, XMVzM'
=1 =




e o

12
and of the following form:
k. * k k=% k =%
= G s . > > - ¢
Hi hiiIMk + Hi . hii R, kHi strictly upper triangular. (3.8)
Now, consider the transformation
-At
y(©) = [se k0 (3.9)

Using the above observation and Lemma 2, the transformed version of (2.3)

can be written as,

*
N

Y Hiéz(t)]y(t)dt (3.10)
=1

dy(t) =

% : * ]
where, & (t) = D(t)E{(t), and D(*) is a deterministic N X N matrix
valued (analytic) time function. But, note that the dynamical system

(3.10) is in a "decoupled" form and hence is the direct sum of the £

"subsystems'
*
k [ ¥ krr |k
dy"(e) = | J T8 (0) |y (e), (3.11)
i=1

where, yk(°) is the Mk vector as follows

k

g [yMk-1+1’ L Mot Mk]T'

(with Mo A 0). We have thus

effectively segregated the filtering problem into % independent subproblems.

Hence (except for a possible increase in filter dimensionality) we may
assume without loss of generality that £ = 1, so that the original

system has no nontrivial subsystems beside itself.
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Now, apply the filtering equation (3.3) of Lemma 3 to the system

(3.10) with
r k &
By hypeee By }
% 3 £ *
He = W 5, 8 RS ERR (3.12)

0

First note that the solution to this system (for o > 0) can be explicitly

written as %

ebo(%) . 4 (0) q=M
q

g *

yq(E;o) W g N

5,;(00) 41 I ) )

e o g 7 s
u=q+1 s=1 ml,...,ms=l q = 11< Jl=12<..Js=u

Y Ol f%kq*l s ( My .
0 H[h. el (E,)a0, |5 <M 3.13
Yu( ) I j 0= 1 19‘939' mQ'( Q,) g q ( )

0 O 0
where
*

5wy = E‘ h J%E*(r)dr 3.14
o o = Tk k k 8 (3.14)

0

Now, using identify (3.4)—with conditional expectations—of Lemma 4,

application of (3.3) to (3.10) yields:




e

14

R e, - N NN (ko 1,5)
dy(t/t) = [ J H (0)g, (e/t) + P _(t) |y(e/et)de + i AR | H“t (t)y (t/t)dt
j=1 4 k=1 1=1 j=1 ©1+J
S, a K2,5.3)
+ Z ZD (edy(eie) +P_ (£)v(t/t) D, . (E)y(t/c)
=1 j=1 ] i= l j= 1 HJ
A ] N N A(N l’J) o~
+ P_(E)y(E/t)foen ) ZD (t)y(t/t) + P_(t)y(t/t)
i=1 j=1
- B R )dv(n)
$(0/0) = Ely(0)1, (3.15)
B N
where, the deterministic matrix valued time functions {Hj(-)} 5 Po(-)
J=i

%
and { k ( o} Jk= Lyaae, B g 15 = 1,...,N} belong to the linear manifold
N* x| N*
Z\H, generated by the set Hj and can be computed from knowledge
j=1 j=1

of the covariance matrix P{e¢) of the g(+) process and the matrix

D(e) A [Dij(-)]. Further, the "supplementary state vectors"

— *
{y(k’l’J%-) | j,k=1,...,N; 1 =1,...,N } appearing in (3.15) are defined

as follows:

5 (k,i,j) (k,i,3) (k,i,j)|T

k,i,

gHobillay sl @) s Bl saiew s Ty (®) } :
with
0, q=M
(k,i,j)
= — * .
yq(O“) 3-1 uzq ? (3.16)
u=q+1 s=1 ml’. = m =1 q 1] < jl_l ceed § =y
M-q 5*(0) o_ (0 m s “‘g
e’ y. (0) J 2 Jli Mq_li’ (0 Noj )hi i do. M |h, (ol)dog]
r=1 0 0 0 =1 /Q 2 L
m_=k 0 # T

- q < M

N
R ) i o b it J
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and we have used the well-known fact that the conditional covariance
matrix given by
P(9, ©) & E[(£(0) - E0/t) (E/0) = Eo/0)"/2" | (3.17)

is nonrandom for O < Et.

A direct differentiation now reveals that the vector of augmenting

states

: @nn® a5 a,NmTT N
y(') A y(*) y(') ...... y(') € R (3.18)

satisfies a differential equation of the following form:

\

N Al
aly®) = [al@ + ] vHOE © ['y®de + 850y (0
i=1

L (3.19)
l.0) ~ 0

where we have used the formula (see e.g. [17]) frequently used in fixed

point smoothing, viz;

___:_—"’P(gt")—- - freey - poET R Yo R(E,0) (3.20)

N
and the M X M blocks of matrices al('), Bl(-) and {Yi(.)l belong
i=1

respectively to the

M * % * * * *
” {TII_M, T‘;’Hl. I TT'HN,-‘.} . M {TTH b ,...,T?HN*} and

e 2 St 1 2

n{n ™ ut™ ..., H TM}.

1 i . L
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1
I 10
n-1i :
i | i<q < )
1i A G R e ~ S S (3.21)
lo Lo
1 N
Furthermore, {Yi(')} are block diagonal matrices with identical
i=1

diagonal blocks given by H?(')TT, i=1,..., N. For future reference,

. N*
we also note that since y(k’i’J) A O, HkA. () EWR{H?(')TM}
M 3 ’1’.] 1 1 j:]_

We may now again apply lemmas 3 and 4 to (3.19) and obtain the following

differential equation for 1y(t/t).

~ N ~ A
ero = [l + § Ao e + @]l
i=1

B N N N i 1 ~(k,1,1)
+ R (Oyt/tyde + T F ]y 4 (©) vy /D)
k=1 i=1 j=1 ]
*
N N ~(1,1,3)

s 3
+ [Po(t) y(t/t) + izl J_Zlvij(t) y(t/t) , P_(£)7y(t/t)

N*N 1~ (21,0 1~
+7) D; 5 (£ y(e/t) ,...P (£) y(e/t)
i=1j=1
NN (N,1,1)
~ b 9J -
+ 7 oL@ | O ©dw
1=1 y=1 ™

l;(O/O) =0 . (3.22)

The "new'" set of supplementary states appearing in (3.22) is in turn given

by




A it 2 ek S
Gy | Goded) (k,1,3) (k,1,9)" T
) T 1.1, 1,1.2 N*,
y(t) A ly( )(t), y( )(t). ...... ; y(N N 2
1
J’k=]’ ,N;]":lv .N
(k,i,j) I (k,i,3) (k,i,j) (kyis i) T
k"-',-' . 1 N ] -l') k',-' . ” ' <t
y( 1 J )(t) A yl(k s"’J (t)9Y2( l,J')(t), ...... . V (k 1 v] )(t)
l M
0 q > M-1
(k,i,7)
kl,-"-l
y 1737 0y ¢
Yooy )
u=q+l s=1 ml,...,ms=l q=il<j1 = iz<'°Js=u
i %
5 go(oo) 2) % 0M— -1
) e v,(@ J J Biks J 9 Pij(oo’ o )Pi'j'(oo’ or,)
N 0 0 0 2
rl # r,
m =k
b |
m = k'
¥2
S
mr1 mr2 my :
hi 3 hi 5 dor ,dor =S & (og)doQ] (3.23)
r Jr r. Jr 1 2 =1 1o dg My %
1 1 2 2 Y
B
Now, the "new" augmenting state vector
*2
3 ST TRV AR B LN W T MNN
y(t) A |y (), 'y (E)sssnees y (0)] €R (3.24)

is easily seen to satisfy the following differential equation analogous to

(3.19)

2

N 3
dyw =l ® + ) vim ]y o+ gfolymdn fy© = o
i=1

(3.25)
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N
where the M X M blocks of matrices az('), 82(‘) and {Yf(’)}
i

(=1
now belong to W({TEIM, Ith"'-’ T?H**},Wéfaﬂ*, T?H;,..., T H
2 2 N 52

7 and
2 N

MM M
M {Hsz.HZTZ. cees BT

} . Also Yi('), i =1,.... N are diagonal with
. B M A = B M
blocks given by Hj( )T2 , and Yk,i,j( ) t.m{Hj( )TZ}

N*
j=1

Tt is now clear how the above process can be iterated. At exactly

M-1
the Mth application of Kushner equations we find that Yi =0,
i=1,2,..., N so that no new supplementary states appear, resulting in
closing the chain of coupled nonlinear filtering equations. Define
3 T 1 T (M—l)T T &
x (t) A [y(t) 4l ) (IR y (t)} . We see that the dimension of x (*)
* DRLE * M-

is given by M + M(NZN ) + M(NN )2 gl S M(NZN ) L

2. % M-1
M [——————(N LB ~—]

*
NZN -1

The filter of the form (3.7) results upon rewriting the
innovations term in the standard bilinear format.
x
It only remains to prove the nilpotency of £ . Towards this
end, we note the following features of (3.7)

(i) Each vector Jy(t),l £ j <=l s "coupled" at most
" -
to its "adjacent" vectors 4 1y(t) and 7 1y(t) (through

* *
A (°) and Ci('). i=1.,..., N matrices.)

ko= e i
apy &N g ORIyl g,
&k
N'N -1 N°N -1
.th * *|N *)N
Then the i~ row of M x M blocks of A («), Bi and Ci
B j=l - j=1

are elements of

* * * %*
” {T?IM, TP:H prviy T oy B T aeey B *TM} with (1,1)P block

*
of Bi equal to H?T? v

-
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*

N

*

(iii) {Bi} are block diagonal — hence, in nilpotent canonical form-—
v =]

*
while {Ci} is block triangular with each M X M block being

%v 151<¥M.

a multiple of TI "

Keeping in mind the above observations and carrying out the Lie bracket

operations blockwise, we find that the matrices KQ i(t) iy Adl* (Ad(t)),

Ci(t)
*
i=1,..., N; & =0,1,... inherit all the properties of A (t) noted

above so that all the M X M block of matrices

= *
B e AMS @) B, k=it g L., B ave elchetly
k,.],l,l ] I-\ J

Al * N : -
triangular. Since; as noted above, B.(t) are themselves in nipotent

i=1
canonial form, the desired conclusion can be verified simply by carrving out

blockwise the Lie bracket operations required in the definition (2.1b) of

nilpotency.

Yo
o]
o

We thus see that the optimal filter structure (3.7) is similar to
that of the signal model (2.5) in that (i) it is bilinear in both drift
and diffusion terms, and furthermore (ii) it also possesses the nilpotency
property of (2.5). This behavior is analogous to that of linear
filtering problems in which a linear signal model gives rise to the

optimal filter which is also linear in both the drift and diffusion terms.

The above structural features notwithstanding, it seems unlikely that

the state spaces of (2.5) and (3.7) will be identical nilpotent group
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manifolds. This is obviously undesirable from a practical standpoint.

One way to remedy this situation might be — rather than least-squares —
& to look for error criteria themselves defined on such manifolds. Such
an approach for signal processes evolving on abelian Lie groups was

followed in [1].

4. COMPUTATIONAL CONSIDERATIONS

Realization of the filter (3.7) in the form of a block schematic
is shown below in figure 1. The practical significance of the bilinear
property of the above filter is that on-line microprocessor implementa-
i tion of the filter is still possible with easily available and cheap
hardware consisting of integrators, summers and multipliers. This
is especially important in view of the obviously huge dimensionality of

this filter.

| Figure 1

Block Schematic of the Optimal Nonlinear Filter

m—— s el

St £(*) = ‘

K-B p-——-2-"—a | Bilinear | ,

z(.) filter t N system |~k 'w.[L *

2{+ | H(®) B R L Rk (ST

'Riccati Equation '
it A

[ SR,




The following example illustrates the optimal filter (3.7) — for

v specific choice of (2.3) — obtained by applying the alogrithm developed

in the proof of theorem 5.

Example 6: M=3, N=2, A=0

i i
b, b 0
o 2 i o
B, = |0 S , i=1,2 J (4.1)
0 0 b
6]

Observe that with this choice, the system (2.3) is already in the
canonical decoupled form as given by (3.11) and (3.12), and hence we
may take — following the notation of the proof — D(¢) A 12

C*(-) A £(%) and y(*) A x(+). This simplification permits a vast
reduction in the filter dimensionality as follows. Since N =N = 2,
M = 3 we have M* = 219 having required three applications of

Kushner equations. But in this case Dij(') A I so that the number

of resulting augmenting states can be reduced by a factor of 22 =4,
by combining them as follows. Define
k 2 D
vy F ogorl R, ke A2 (4.2)
i=j=1
and
et SRR NS OO a1 R R N .3)
i=j=1 i'=j'=1

*
This vields M = 21 dimensional filter with the following coefficient

matrices:
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and finally

NGy =t | o} . 3x21 (4.7)

where, the notation used is as follows:

(t)

pij(t)‘ Gij(t): i,jth elements of matrices P(t) and [F(t) —P(t)HT(t)R— H(t) )
respectively
§(*): KrBnecker delta function, :
and for any n X n matrix U, :é
1
AT and U A UT) (4.8)

Observe the repetition of the Sth and 6th block rows as well as the
all zero row numbers 6, 9, 11, 12, 14, 15, 17, 18, 20, 21 in the above

example, so that the filter dimensionality is in effect reduced to 10.

This observation can be generalized in a straightforward way, and it

follows that the filter dimension in effect can be reduced to

M1 [ (PN +1-1
&

i=0 i

Despite the possibility of improvements of the above type, the
practical implementation of such filter may at times prove formidable.
We conclude this paper by pointing out three nontrivial cases in which
the bilinear filter presented here collapses into an easily implementable,

nonlinear, memoryless postprocessor, as shown in figure 2.
’ > p ’ 23
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Figure 2

i 1

z(t) ; Linear Memoryless
—_—

> S

Filter Nonlinearity

>

x(t/t)

(i) Systems with Output Nonlinearity:

Suppose the components of the x(°) process to be estimated
are multilinear forms in the components of a linear system driven
by the £(*) process of (2.1). Systems of this type are frequently
of interest in realization theory (see e.g. [18]) as they serve

as good models for a wide class of nonlinear processes. Since

all (conditional) moments of a multivariate gaussian distri-
bution are completely determined by its (conditional) mean
vector and (nonrandom conditional) covariance matrix, it is

easy to see that ;(t/t), t > 0 can be obtained as in figure (2).
It can also be checked by direct differentiation that the x(*)
process satisfies a bilinear dynamical equation with the nilpotent

Lie algebra as in theorem (5).

(ii) Abelian Systems:

B in (2.3) commute.

| Suppose that the matrices A, Bl""’ N
It is easily verified that
N t
Z B. J &, (T)dr
i=1 * ot At
x(t) = e s e x(0). (4.9)

The desired filter structure now follows upon utilizing the gaussian

characteristic function formula. (See also [1] and (19].)
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(iii) Single Input Systems:

In (2.3) let N =1 and let {A,B}L be nilpotent. If we use the
canonical form of Lemma 1, it is not difficult to see that each
component of ¥(*) can be written as a finite sum of terms of the
form

t
i bJC(T)dI t ol Oo-1
y. & e *er| E(9))E(0,) " £(0y)do, 00 dOy ,

where b is a random variable independent of £&(*). But the & fold
integral in the above expression can be replaced by %,[{f&(o)do]g. Thus

case (iii) is roughly a combination of cases (i) and (ii).

For the sake of completeness, we record some formulas useful in
solving the above three cases. Let Y(t)_A:f:)E(T)dT . Then,

Y(e/t) + £ o))
Y(£). 2 e - & 2 2
Ble' v (0)/2t] - e s m [t/ + 0P (D), o (t)]

(4.10)
2 o
where 07(t): Nonrandom error covariance (computed via a Riccati
) A th X :
equation) and mg(n,v): 2~ moment of a gaussian random variable with mean

n and variance v.

Furthermore, ml(n, v), & = 2,4,6,... may be recursively computed via,

(see e.g. [20], pp. 159-162)

om, (n,v)
L 2(8-1
v - K 3 ) my_»(n,v) (4.11)
with
m,(n, 0) = n* .
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