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DETERMINING CONFIDENCE BOUNDS FOR
b(' HIGHLY RELIABLE COHERENT SYSTEMS
9. BASED ON A PAUCITY OF COMPONENT FAILURES*

Janet M Mvhre and Andrew M Rosenteld

Claremont Men's College

Claremont, Calitorna

Sam C Saunders

Wasington State L nversin
Pullman. Wastungton

ABSIRAC]

A\ computationaliy simple method tor obtamng contidence bounds tor high
v rehable coherent systems, based on component tests which expenience tew ot
no talures, s given  Binomual and Tyvpe [ censored exponential fafure data are
considered  Here unknown component anrchabihties are ordered by weghting
tactors, which are hiestly presumed known then sensitivity of the conhidence

bounds to these assumaed weghts s examimned and shown 1o be low

1. INTRODUCTION

Previously, confidence bounds tor general coherent structures have been obtained by
using asvmptotic methods, such as hikelihood Rato [6], Maximum Likelihood (8], or Modified
Maximum Likelihood [1], by using Bayesian methods [7], or by assuming equal rehabihties for
all components. Asymptotic methods may be inaccurate at higher percentiles unless the number
of failures 1s very large. With Bayesian methods the possibility of inadvertently mfluencing a
decision through the selection of a prior distribution, when the number of tatlures s small, s
well known Finally, because the assumption of equal rehabilities of the components may not
always be tulfitled, the accuracy of a bound obtained by using this assumption could be
doubt. What we propose here 1s to use engineering knowledge, which can often be gained from
accelerated tife tests, materal qualitication tests, or laboratory tests of components, that pro-
vides information about the parameter space. 1t s felt that this intermedate ground avouds
some of the objections raised by Bavesans concerning “classical” statisticians who operate under
an assumption of total ignorance about the parameter space. Morcover, it attempts to avoid the
subjectivity which often seems to hinder the aceeptance of Bavesian methods

For special structures, such as series structures (and i some cases parallel and series-
parallel structures), exact methods (91 and additional approximate and asymptotic methods

*Rescarch supported mopart by the Office of Naval Rescarch Contract NOOO TS 76 C 0698
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214 MO OMYHRE A M ROSENFLLD & S € SAUNDERS
{4.5.9] tor obtaiming system contidence bounds have been developed. The accuracy of these
approximate bounds has been studied in specific sample cases tor structures of order two or
three [S91 In this paper some comparisons are made between the bounds obtained by the
weighting method developed here and approximate (asymptotic) bounds for special structures

where such bounds can be calculated
2. BINOMIAL COMPONENT FAILURE DISTRIBUTIONS

Since the unrehabihity of any practical system must be low, that of any component must
be even lower  The commonly used technique of obtaining confidence bounds for the probabil-
iy of success from sequences of Bernoudl trrads widl not be applicable here, because virtually all
of the components will have experienced no failures during their acceptance testing. Extending
an adea utihized by Lommicks [3]. we will examine the probability of svstem failures expressed
i terms of the least rehiable component. The estimate of this quantity s then used to con-
struct a lower confidence bound on the svstem rehability

A qualification test for cach component consists of a number of Bernoull trials of nomi-

nally identical components. Given there are n trials with v farlures tor the 7" component,
then 1t s assumed that the number of tatlures has a binomual distribution where ¢ s the unreli-
ability and 7 s the number of observations. We denote this by

X ~B(n,g) fori=1.2..m. ¥

Assume that ¢ may be expressed tor cach / by
(2.1) q = aq where ¢ = max ¢ and0 < ¢ < 1

For the present assume that the @ are known a prore In practice we may have obtained the a
trom relabihty goals and/or predicton reliabithiies. In order to obtamn a confidence bound for
¢. we proceed as tollows  Since the ¢ are small the distribution of X' may be accurately
approximated by Poisson distribution with mean A = n ¢ - Thus, assume

(2.2) \ ~ P(N) = Plng)

(For ¢ as large as 01, this approximation is valid for 7 s small as 100 An upper confidence
bound tor ¢ 1s obtained in the usual way since

TVor[Ta

where
A= ih =an ./2.1'1
[ 1 1

The 1008% upper contidence bound for A, call it A 18 the value of A tor which

21' b/t =1 -8, where A z \
1

(]

It tollows that the 1008% upper bound tor the unrehability ¢, call it g s

(2.3) q A Z" "
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We poimnt out that the Poisson approximation to the Binomual as used above is nor necessary tor
the calculation of this type of bound; however, it does greatly facihitate the computation

In order to obtain a lower confidence bound for the reliabihity of a coherent system with
component reliabthties p = (p,.. . ..p,). let
p=1—-q=1-aqfori=1, ... m

where @ and ¢ are defined as in equation (2.1). System reliability, A(p), may now be
expressed as a function of ¢ alone. Let the induced function be denoted by the equation

h(p) =h(l~aywq. ....1=a,q) = K(g:.a)
where ¢ = (a,....a,). The function h (g.a) 1s strictly decreasing as a function of ¢. Hence a
lower confidence bound on reliability, K (g.a). 1s K (g,.a) where ¢ 15 an upper confidence
bound on ¢

To illustrate these concepts, consider the following examples.

Example 2. 1° The tollowing bridge structure of five independent components 1s given:
L

B ¢y ol i © I

If the component rehabilities are p tor /=1, . S then the system rehability 1s given by
hip) =pype+prps+pypips+ prpypy
PLPyPyPs = PyPyPyPs = PyPyPaPs— PyPsPsPs
PrPiPsPs+ 2P PPy PaPs
Rewriting in terms of the unrehabihiies I - p = ¢ = aqgtor =1, . .. S yields
Klg.a) =1—-q*aataa)d —q'aaactaaay)
t @000 4 a a0 30 a1 a @@ aaa Fasaaagas)
2(]‘(11 1 ul;(l\)

From engineenng analyses 1t s known that components 1, 2. 4 and § have the same
unrehiability. However, 1t 1s also assumed that component 3 1s only 3/10 as unrehable as the
other components.  Assume the followmng weghts and test results

_cnm poncn( o " \
1 1 10 0
2 1 10 0
R} 3 20 0
4 110 0
5 1 10 0

Suppose a 90% confidence bound is desired. Since A = z vo=0, A s the value of b for
- |

which ¢ " = 10, so A, = 2303  Hence an upper bound on the unreliabihty ¢, at the 90%

v




216 M OMYHRE A M ROSENFELD &S C SAUNDERS

level, 1s given by g = 2 an = 2303/46 = 005S0. Fmally, the desired 90% lower
-1
contidence bound on rehabihity s given by h(g .a) = 0995

For such bridge structures s not possible 1o compute cither Approximately Optimum
(4] or Poisson Approximation {91 bounds. Morcover, asymptotic methods are generally not
applicable unless failures are observed. A comment 15 now in order concerning an empirical
relationship between the @ and . For industrial problems we have often found that sample
sizes generally are not equal but are roughly proportional to the unrehabiliies with the most un-
reliable component having the smallest sample size. One reason for this may be that specalized,
complen equipment often tends to be both unrehable and expensive 1o test

Example 22 Assume a series structure of order five has known weighting factors ¢ and sam-

ple sizes nowhere = 1,2, 5 9
\rmmpnncnl a n i
; 1 172 40
! 2 1 20 |
3 174 80 |
\ 4 172 40
| S 172 40
Assuming one fatlure on component 2, A = 389 at the 90% confidence level Usimg (2.3) we

find that ¢ = (39 Since g a? ~ U w g our conidence bound on system rehabibity s
]

h(q,.a) 897

The bounds obtained by approximate or asymptotic methods [4,5.9] are much lower than this
bound. tor example

Approvimately Opumum (AO) Bound R0
Moditicd Maximum Likelthood Bound (MMID NIR)
Poisson Approximation (PA) Bound MUY

Of course 1f one assumes more, one should conclude more so these particular differences may
not be compelhing

3. SENSITIVITY OF CONFIDENCE BOUNDS
TO ASSUMED WEIGHTS

The question that arses ts, what as the real difference between the bounds obtained
presuming that ¢ is known when i fact it may not be. A measure of the error caused by this
supposttion upon the bound obtained should be tound. Let the estimates made up by the
expermmenter for the values of g = (a,, . a,) be denoted by a = (ay, ., ) The esti-
mate of the upper bound constructed using a i equatton (2.3 will be denoted by

(31 .= N/ Yan

Frample 21 Differences between the exact bounds obtamed m example 22 and bounds

obtamed using vanous a are given below  The corresponding AO, MMLET and PA bounds are
also given (The astenisk by the ¢ or a indicates the component on which the fatlure as
assumed to have occurred )

v




HIGHLY RELIABLE SYSTEMS BOUNDS 217

Component na o' o™ a™ o™ o
1 40 1/2 1 1/2 1 1/5 1/100
2 20 1* 12 1/4 1 1* )iz
3 80 1/4 1/4 J & I* 1/10  1/100
4 40 172 1* 1/2 | 1/5 1/100
5 40 172 1 1/2 1 1/5 1/100
Bounds
Weighting Method 897 906 928 915 878 817
AO 820 871 .882 882 820 .820
MMLI 819 916 950 950 819 819
PA 806 806 806 806 806 .806

Note the weighting in case S which must be assumed in order to obtain confidence bounds
which are close to the AO or MMLI methods. In general, we would no!l expect the engineering
estimates of the ratios of the unreliabilities of the components to be off by a factor of 25 from
the correct weights for a series structure.

We now introduce the following notation for subsequent use:
" m
a=a/3¥a n,=Yan =ZXan/Xta
i 1
0
a=a/Ya n.=Yan =ZXan/ta
1 ]

ngy =min(ny, ..., 1)

THEOREM 3.1: Let k(g .a) denote the true lower confidence bound for a series system
of order m, and let h(§ .a) be the estimated lower bound. Then the absolute difference, .
between the true and estimated confidence bounds for a series system of binomial components
of order m satisfies:

N s > e A,
(3.2) P =|h(g,:a) — h(G,a)| < = — where s = ——
l—s LAY
and if
(3.3) n.=n-=n
then
2 3 3 Au
(3.4) [R(g,:a) — R(G,a)| < L l——l— . [l—r"' ] where r = —
2 m 1=t n

PROOF: By definition we obtain for the reliability of a series system

"m

(3.5) [Tr) = [Th0-aq) =1 = 5,,q + 52,4° £. . . % 5,4
= «|

where

S1, = ia Syy = ia @joovi Sy = na.
| < 1

v
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From (3.5),

(3.6) (o< T T I i [s2.4. Sall | Fent 15004 Sl

Recalling (2.3) and (3.1), (3.6) becomes

Al

‘ Y_(I zu
(R Dt 3
= 1‘.\: n Tan

+ A

| Z‘I(l 2(! @ ;
il i A
[ Ea,m) (Za n)- |

| e la
+ A = - g
" |(Zan)” (Ee 1w )"

To establish (3.2), we note that if @ > 0 for all « then
2 a . a .. o
. & l
CEan )" "y

(38)

Vs

By (3.8) and the fact that for positive v and . [v v € max (), expression (3.7) may be

bounded above by
- A \ T A
Y = = where v =
N |

N =3 ZEEY)

Assuming (3.3) we note that (3.7) becomes

(3.9) P < (*” l" |Zaa - Taa|+. . l*”' '“';11"1‘, : [I"I:. |

|
Let 7 = X _'n then (3.9) becomes

(310 AR 12‘1 a 2‘7‘ Q !‘4 + t"la - la |

Using the method of La Grange muluphers on the first term of (3.10), the maximum value of

Zu a , subject to the restriction that 2 a =1, is obtained at a, = 1/mfor j=1.2. ....m
<J 1
Thus
R gl m—1
311 Yaa - Yaa 1§ max |2u a. Yaa l S
om
E = l : :

The other differences between the corresponding symmetric polynomials are certainly less

than unity. Therefore, assuming them to be unity and performing the geometric sum, z:‘ =

(=" /(1 = 1), we obtain a bound on the remaining terms.  Assuming (3.3 we obtain

D <l +— — thus establishing (3.4). QED

For small 7, the bound obtained from (3.2) may be too large, particularly 1f one or
more failures have been observed. For example the absolute error bound obtained for the data
in Examples 2.2 and 3.1 is .24, In practice. however, when a sampling scheme such as that
given in Example 2.2 is used, there is adequate engineering knowledge behind the choice of the

"
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a so0 that errors of such large magnitude are not encountered. If little i1s known about the
weighting then equal component sample sizes are recommended.

Example 3.2- Consider a series system with equal sample sizes for each component:

component g h e
\ 1 20 172
2 1/100 20 1
3 1/100 20 1/4

Assume no failures, then for a 90% confidence level A, = 2.3026.

The actual error in computing the series system confidence bound is
|h(G, ) — hig,:a)| =|.889 — 885 = .004

For this example, the AO bound is 892, a difference of .007 from the correct bound. How-
ever, by Theorem 3.1 an absolute bound on the error for the weighting factor method would be

E }__ym+l
) et & ol WAASERE T
2m P~ ¥
where
A, 2.3026
— =3.
Z 30 and m

Obviously if the true bound were higher, say .887, then the AO would differ from the true by
only .005 and the actual error would be only .002. However, the point to be made is that we
often have more information ava.lable than simply the structure and the sample size and whzn
we do, it should be used.

Also it should be noted that if the order m of the structure were increased to 20 the abso-
lute error bound would still be only .0080.

We now wish to extend this error determination to a parallel structure of m components.
In general, we denote the reliability of a parallel structure of binomial components by:

np) =1 - [T -p).

ot

Writing A (p) in terms of ¢ we obtain

hip) = h(g.a) =1 - nu q.
-1

THEOREM 3.2: Let h(q,.a) denote the true lower confidence bound for A (p), and let
h(§,.a) denote the estimated lower confidence bound for 4 (p). We obtain

- (A, /m)”
P =R(gia) = h(Gua)| € ——.

qn

(3.12)
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PROOF: (3.12) is proved by noting that

m

3 ﬁ(l Hu
[Tea. — [l q[ ' =
=)

- - =
-1

D= Y
(3.13) (Ea.n)” (Zan)”

For ¢ > 0, the quanuty

§ = —— =exp [In
4 (Za,m)™ b (Xan)™

is maximized when Xln ¢ —m In (Zan) is maximized. This maximum occurs at

a =|Yan|/mn for j=1,2, ... m Thus the maximum value of ¥is 1/(m™1ln). Since
-|
each term in the difference

(tu n 7) ¢ (Zan )":"‘

1s positive, the absolute value of the difference cannot excaed 1/(m™ 1ln). From this (3.13) is
established:

(A,/m)™
2 /m :

oS

Q.E.D.

m

l:'I"

EXAMPLE 3.3: Consider a parallel structure of order two where no failures occur in test-
ing

component a n «@
\ /2 40 1
2 1 20 1/10

For a 90% confidence bound A, = 2.3026. The 90% lower confidence bounds for system relia-
bility are:

99834

h(q,.a)

1-gq} na
=

99970

I

h(Gia) =1-¢} [Ja
-l
The actual difference between these bounds is 1.36 x 10 . From Theorem 3.2 the maximum

possible error due to incorrectly choosing the weights is 1.66 x 10 * But in this instance the
AO bound is 99829 with a difference from the correct bound of 0.5 x 10 *

It should be noted that the weighting method bounds are easier to compute than the AO
bounds.
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We now consider a series parallel structure ot order m Z"' which consists of A parallel
structures  1in series.  the " parallel  structure has  m  components.  Parttion p =
(prps. Lpy)nto po= (p,p,, . ) where p = (p, , . A P o om). The rehabil-

ity of the system s given by h(p) = [] A (p) with 4 (p) bemng a parallel structure consisting
}

of m components. Now let ¢ = maxly,. ., q,) where again ¢ = aq for 1 =1, . m

The corresponding partiion of @ 1s @ = (a,.a, . . a,) Therefore expressing the rehabihity

in terms of ¢ we obtain

hig.a) = [Tk (a:a)
=-|

Therefore we establish the error on the lower confidence bound estimate for a series parallel
svstem by

THEOREM 33 Let A (g, @) be the true lower confidence bound for the /" (i=1.2,
. A) parallel structure of order = . and let h (g .a ) be the associated esumate of the lower
confidence bound. Then an absolute bound on error in estimating the confidence bound for a
series parallel svstem s given by

(REEY I[T])i (g..a) — [1 h(§,.a ){ < y €
'—‘. -1 | -1 ¥
where
el
(315 b v "

[l, "

that 1s € 1s the bound on error of the " parallel structure. The n are the sample sizes of the
components made during the qualitication tests

PROOFS By induction. For the case when A =1, see Theorem 3.2

Let A=2 For convenience set
f=h(q,.a)and { =K (§,a)
J Then |/ fy = Fyv bl =l =l =i+ 000l
= A=)+ = S 1A =0+ 10 = )]
Slh=-fid+1A=-fil=¢+ e
Assume expression (3.14) s true for A =a 1t holds tor A =» +1 since,

[!lr - ﬂ:l < [!d foi “1‘!

it

-1

-

[1f Ve =Fod + 1 [ T17 l"]*'li
-1 . |

+

Feid [] ! [] 8”
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I i
S | £ = ¢ u}?[]r [](f§(h) induction)
1 o 2.9
" + | nel
st = Bastl *# T4 =F | = lf = f]= X e QED
-1 =1 -1

&
Using a similar partiioning procedure for a parallel series structure of order m = z m.,

-1
then this system consists of A series structures in parallel, where the /M Series structure has
order m . Then p = (p,. . By P - n ¢ 1 h(p)) and hiq.a) =1 11
1 i

(1 - K (¢g.a)). The maximum error made by estimating the lower confidence bound s
obtained from

A

THEOREM 3.4: Let hig.a) =1 I (1 = 5 (g,. a)) be the true confidence bound
-1

A .
on the reliability of a parallel series structure of order m = ¥ m . And let A(g,.a) =1 - []
1 |

(1 ~ % (G,. a)) be the associated estimate of this lower confidence bound. Then

.
)

(3 16) B=|hig:a) —R(G:a) € X

\
+1

5
where + = - | and s s defined in Theorem 3 {
N

PROOF  Expanding R we obtan

. A |
B= [T - hlg:a)) ~ [TU - ELGa))f
-1 -1

By Theorem 3 3,

B < YI-Rg:a)) - ARG a )]
-1

- Y |h(q,:a) - K (3, a)l
-1

where for the " branch of this parallel structure we define (by Theorem 3.1)

. . s e
" = |'\ (q. (‘I) = (Q,,;u )l LR
I -5
Thus B < ¥ 7. QED
-1
Example 340 Consider the following structure.
pe s
—@— —@®— —O—

IO s S L e
| / | i |
P_._.A_ D L_,__.. \g\ ————— | SRS io\ I |
e '8

),
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componenl a, n, a,
1 1/4 100 1
2 1/4 100 1
3 1/4 100 1
4 1/4 100 1
5 1/4 100 1
6 1 150 3/4
7 1 150 3/4
8 1 150 3/4
9 3/4 250 1/4
10 3/4 250 1/4

We assume LX, = 1 and we desire an 80% confidence level. This will yield A, = 2.99. Simple
calculations show us

Tan, =950 q, = 00315

Tan =962.5  §,=.00311
R(g,, a) = (1 —(25¢,)% (1 —¢) (1 —(75¢,)) = 999994
h(G,a) =1 -¢)Aa— (7540 —(.25¢,)%) = .999999.

We realize an actual error of 5.38 x 10 °, and based on Theorem 3.3, a maximum possible er-
ror of 3.6 x 107°.

4. EXPONENTIAL COMPONENT FAILURE DISTRIBUTIONS

We now examine components whose life lengths are known to be exponential. If the
qualification test time for the /" component is T,, where i=1,2, . . ., m, then the number of
failures during the interval [0, 7] follows a Poisson distribution with mean A,7,. Define

m

(4.1) N, =ah where)\=ma|x ANand 0 < a, < 1.

(=

Let X, denote the number of observed failures during [0,7], then X, ~ P(aAT,. If all m
components are independent, £X, ~ P(AZa,T).

The upper confidence bound obtained here is completely analogous to the bound obtained
in (2.3), i.e., the upper 1008% confidence bound on A, say A, is

A= X/ Ea;T,.
Reliability at time +, R(r; A, ..., \,), may be written as A (A7, @) where A and a are

defined in (4.1). If follows that a lower 1008% confidence bound on system reliability is given
by h (A1, a) where a is the vector of true weights.

5. SENSITIVITY OF CONFIDENCE BOUNDS
TO ASSUMED WEIGHTS

When the true weights a are estimated by « then the estimated 1008% lower confidence
bound for system reliability becomes

(5.1) R (At,a) where X = A, /Za T,

v




224 J M MYHRE, A M ROSENFELD & S C SAUNDERS

For the exponential series case we measure error by means of the ratio:
h(AE: @)

(5.2) R monhid

h(AT '.(l)

We will show that in the case of equal component test tmes for series systems, the above
ratio 1s wdentically one. That is, the estimate is equal to the true confidence bound for any
weighting o

THEOREM S.1: For a series system of order m,

: 1 1 1 1
(5.3) exp =\t | = — SR SexpA |- :
TR T e The - Toas
wherte Ty = min(T,, ... F,yand Ty =max(Ty, ..., Ty lffori=1. .. . T,=T
then
. - . W,
(5 4) N, @) = h(XNt,a) = exp
PROOF: By expanding the ratio in (5.2) we observe
A, ¥ :
s pXP - Ta,
R "\(A,‘ d) ) I ‘ X Ta Ya \
= R . “ exp | -
b ira) Mt g PR BT Sel
(L it
L T e
1t s simple to see that
1 La |
Tt Ya T Ty
Thus
- .
(5.§) 1 1 . La Ya A _.| ‘1
Tend Tty Yal Ya l Ty Tt
Therefore based on (5.5)
| 1 " 1 |
exp =X,/ 1= - S NS expaAags - -
l lll‘ I\»nl' h I(l\ ’(-vsl
If for all . 1" = I, then the inequality expressed in (5.5) becomes
Ta Ya
« « 1 1 = 0

Yar STt ITm . T

theretore the ratio of (5.2) s identically one. That s

T At Xl e
WAL, @) = exp TSa Ya = exp TTa a = h(Ara)
= exp A /T QLD

Lieberman and Ross [2] have derived a method tor obtaiming confidence bounds for series
systems whose components have an exponential lite distribution. The test statistic used i ther
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method s based on the sum of stmulated system talure tmes For Type | censonng the
Lieberman Ross techmigue will, i general, not utihize all of the test data i the calculation of
then confidence bound  In the case of no observed tadures the Lieberman Ross method s not
apphicable  As shown by the tollowtng example, the procedure we propose is not hampered hy
an absence of qualification test tatlures

Faample Y 1 Assume that we have twenty components i senies and that no tadures have
been expenenced dunng testing — As s often encountered i practice, the test tumes are not all

equal

component o !
| l 1o
Y through 20 1/10 100
Ny I\l
2.1 I = 200 and 2.: = 29 At the 80% contidence level A = 1ol Letr =1, then
| |

S | ol
hNE, o) = exp QoY= 9N
' 200

The AO bound s 852 the PA bound s RIY

Assume that the o were not chosen correctly but were chosen according to one ot the
cases given below

component oV at e ™ L,

! el I 5 WU I

Y through 20 1/100 1/2 | | 100
AN o) BRI RER] DER) R4

The mavimum difference trom the true bound s 041 Based on Theorem S 1 the tatio s
bounded by

86 « R < 1 1%

Thus we know that regardless of the weights the 80% bound must be greater than 851 (the AO
bound 1s 88 Again, the pomnt to be made here s that we often have more intormation than
simply the structure and the sample size and when we do, it should be used  For this example,
ustng the tatio of Theorem S 1,1t as possible (0 show that regardless of the weghung the true
bound 1 at least as large as the AO bound (1o (wo signiticant tigures)

In the case of equal test tmes, say 100, the weghting method bounds are exact and equal
o 984 The AO bound s also U84

THEOREM S 2 For a parallel system of 2 exponential components with 0« n ¢«
tor ¢ = 1,2 o the dIifference

(N o) D o= |hNea) o BN

s approvimately bounded above ty

(N (/m)™
(8.7
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PROOLE  tor a parallel system of exponential components
- A
TN | 1
-l
I |Ae] < 1 then As 1 ¢ ' Theretore

o I“ A “ AMa ’ - (A, 0" [l [ ‘
[re} 1

2a )"  (Xa.T)"

Ihen by Theorem 3 20 D s approximately less than or equal o

X t/m)™
QED
P 1

|

6. CONCLUSION

I'he weghting method developed in this paper allows engineering knowledge to be used in
a very simple and feasible manner. It hittle 18 known about the weighting tactors, then we know
that tor component sample sizes of as small as 20, it there are no tailures, the absolute error
bound for a series system of intinite order s stll less than 008 In practice the actual errors
induced due to incorrect chowe of the weighting tactors are much less than the absolute

bounds

Sensitivity studies show that as quahlfication test sample sizes (test tmes) ncrease, the
effect of the weghts on the estmated contidence bound decreases. It httle 1s known about the
weighting tactors, the bound on the maximum possible error induced by different weights may
be reduced significantly by imposing equal sample sizes (test times) tor the components during
testing. Moreover, under the assumption of equivalent component test ttmes in the commonly
encountered case of exponential series systems, the contidence bound obtained s exact. The
advantages of the weighting metod proposed here lLie in the simphcity of the calculations, the
apphcability to any coherent structure when few or no tatlures occur, the ability to use in an
uncomphicated tashion certain types of engineering knowledge to compensate for small sample
sizes (test times), and, tor larger sample sizes, the demonstrated insensttivity o the choice of
weighting tactors
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APPROXIMATIONS TO THE RELIABILITY
OF PHASED MISSIONS

Harald Ziehms

Naval Posigraduate School
Monterey, Calfornia

ABSTRACT

A system whose configuration (block diagram or fault tree) changes during
consecutive time periods (phases) performs a "phased mission.” Recently, Esary
and Ziehms have shown that any multiphase mission can be transformed into
an equivalent, synthetic, single-phase system, and thus that the phased mission
problem can in principle be soived by standard reliabiity methods. We employ
these ideas here to study approximations to mission reliability and to develop
an algorithm which may be of pracucal interest. In addition, we extend the re-
liability calculus of Rubinstein, and Esary and Hayne, based on an approximate
hazard transform. to phased missions, and we show how this extended calculus
can be used in situations where phases are not of known fixed duration

1. INTRODUCTION

The technological development of the last two decades, particuiarly in the areas of space
flight, nuclear power generation, and weapons systems, has forced reliability analysts to con-
sider systems whose configurations change over time. "Phased missions" have received atten-
tion in the basic papers of Rubin [S] and Weisberg and Schmidt [9], which present computa-
tional procedures to approximately predict mission reliability and crew safety for manned space
craft, and in the United States Navy reliability manual NAVORD OD 29304 Revision A [8].

Recently, Esary and Ziehms [4] have investigated a phased mission of the following form:
A system consists of several independently performing components, each of which functions
continuously in time until failure occurs, and remains failed thereafter; repair or replacement is
not possible. The system performs a mission which is divided into consecutive time periods, or
phases, of known duration. The system configuration, defined as a subset of the components
and their functional organization, changes from phase to phase. As is the case with individual
components, only two states of the system are recognized, functioning or failed. The mission is
successful if the system functions throughout all phases.

Their main result is that any multiphase mission of this type can be transformed into an
equivalent, synthetic, single-phase system, and thus that the phased mission problem can be
sclved in principle by standard reliability methods. They point out, however, that a direct
implementation of their transformation could be frustrated by a large number of components in
the equivalent system.

*This research was partially supported by the Office of Naval Research (NR 042-300) and the Strategic Sys-
tems Project Office (TA 19422)

229 i _‘/q—a —

(. PRGCEDING PAGE HLANK
S—— ...
z - ™ -) e -—h‘ - o ~ " opmscrecytt




230 H ZIEHMS

In this paper we employ the ideas of Esary and Ziehms to study some approximations to
mission reliability and to develop an algorithm which may be of practical interest. In addition,
we extend the reliability calculus of Rubinstein [6,7) and Esary and Hayne (1], based on an
approximate hazard transform, to phased missions, and demonstrate how the extended calculus
can be used in situations where phases are not of known fixed duration.

2. PROBLEM FORMULATION AND PREVIOUS RESULTS

Suppose that the system under consideration has n components, labeled ¢, ..., C,. with
independent times to failure 7, .... T,. For all times ¢ > 0, define the performance state indi-
cator vector of the set of components X (1) = (X,(r), ... X, (1)) by X, (+) =1/t T, > and
X.(t) = 0 otherwise, A =1, ..., n. Assume that the mission is divided into m phases, and
that phase / starts at time 7, , and ends at time ¢,, j = 1, ..., m, with 1, = 0. Finally, let ¢,
be the structure function which describes the configuration (assumed to be coherent) of the
system in phase 4, ; = 1, ..., m. Then the event that the mission is successful is
{6 [X (Pl =1. .., é,[X (1,)] = 1}, and the mission reliability p can be expressed as

m

=E X ()L
a P ﬂag (1)1

To obtain an equivalent single-phase system, pseudocomponents C,, are introduced whose
reliabilities are the conditional phase reliabilities of the original components. Formally, for
k=1, .. nand j =1, ... m the performance state indicator variable U, of pseudocom-
ponent (', has the distribution

PlU, =1] = PLX, () = 1],
(2) P[L/k,=l]=P[A"A(,,)=ll<"k(l, |)=I]. le

The transformation is accomplished by replacing, in the configuration for phase j, component C,
by a series system in which the pseudocomponents Cy, . . ., C,, perform independently with
the probabilities of functioning given in (2), and by regarding the transformed phase
configurations as subsystems operating in series. As an illustration, consider the following
example.

EXAMPLE |. A system with three components performs a three-phased mission whose
phase configurations can be represented by the block diagrams

C,
phase 1: —_— L
C,
C,
¢y
phase 2: —_ C, -
«, C,
phase 3: C,
e e ———— S ——

V
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Cy——Cyp

Cn Cprr—=Cas
A s
2 Cy Cy
Cy Cy Cyn Cy Cy
The reliability of the equivalent system is
@A) p=E [[6,(UMUR. U,
i~
where U ' = (U,,. .... U,) and U U = (U, Uy,. ..., U,U,). The value of p as given

by (3) agrees with the value of p as given by (1) ([4], Theorem 3.1), and thus the ordinary reli-
ability of the equivalent system whose components perform independently is the same as the
reliability of the original system for its phased mission.

3. SOME BOUNDS ON MISSION RELIABILITY

An obvious first approach to approximating mission reliability —discussed in {4] and
repeated here for the sake of completeness—is to compute the reliability of each phase
configuration separately and then to multiply the results together. There are at least two
choices of component reliabilities to use in doing this: the component conditional phase reliabili-
Les

o= PIX. () =1]
(4) mo = PIXG) =X, ) =11, =2 .. m

which are the reliabilities of the pseudocomponents in the equivalent system, or the component
unconditional reliabilities through each phase

pr =rplX (1) =11 = [ =, et (SR
i=1
k =1, ..., n. The first choice leads to approximating mission reliability by

HEPRE nh'(ﬂlr' ETEY Tf,,,).

1=\

and the second choice to approximating mission reliability by

m

) PprrE = n oy P

=1
where in both cases 4,, j =1, ... m, are the reliability functions for the phase configurations.
(The reliability function of a system with structure function ¢ is defined by h(p,. ... p,) =
Eé(X, ... X)), where X, ... X, are independent Bernoulli random variables with
PIX, =11 =p,, k =1, ..., n.) The subscript PRF in (6) and (7) is meant to indicate that

these approximations are based on phase reliability functions.

It has been shown using (3) ([4], Remark 4.1) that (6) gives an optimistic result and that
(7) gives a conservative result; i.e., that for pas given by (1) or (3),

(8) PprrE S P S Tpgpe
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The above approximations can be employed only when the reliability functions of all m
phases are known. Although to compute them is considerably easier than to compute the
overall reliability function for the equivalent system, it may in practical problems still be a
formidable task. We will therefore now discuss an approach which avoids these difficulties.

For coherent single-phase systems with independent components, Esary and Proschan (2]
have established two bounds on system reliability which do not involve the reliability function
the mimimal path upper bound and the minimal cur lower bound. These bounds, when applied to
each phase separately, can be used to approximate mission reliability in the multiphase case.
Let h 4 and h, 4 denote the minimal path upper bound and the minimal cut lower bound.
respectively, for phase configuration ;. 7 =1, ..., m. Using basically the same approach as
before, and choosing as component reliabilities the conditional phase reliabilities 7, in one
case and the (unconditional) reliabilities p, in the other, we obtain the approximations

"

(9) weug ™ nh(ﬂl("lr' Tf,,)
-1
and
(10) Ppig = n higpy, oo o).
1
where the subscripts are to indicate that these approximations are based, respectively, on phase v
upper bounds and phase lower bounds. Since the phase configurations are coherent by assump-
tion, hyy, < h, < hyg, /=1, ..., m it thus follows from (6) and (9) that
(1) TprE S Tprg

and from (7) and (10) that
(12) Prig < Ppri-

From (8), (11), and (12) we can conclude that (9) is an upper bound on mission reliability,
and (10) is a lower bound on mission reliability.

4. CUT CANCELLATION AND FURTHER BOUNDS

Rubin, Weisberg, and Schmidt used a method to simplify the sequence of phase
configurations prior to beginning reliability calculations which has become known as "cut cancel-
lation." Cut cancellation does not affect mission reliability ([4], Remark 4.2) and can be sum-
marized in the following rule:

A minimal cut set in a phase can be cancelled, i.e. omitted from the list of minimal cut
sets for that phase, if it contains a minimal cut set of a later phase. The next example illus-
trates how cut cancellation works.

EXAMPLE 2. Consider the mission of Example 1. The minimal cut sets are

phasc | 5 ‘(.|.(‘\’
phase 2: {C.C,), [C).Ca), {C).Cy)
phase 3: {C,).

The phase | cut set [C.C ] contains the phase 2 cut set [ .}, and thus can be cancelled in
phase I, leaving a configuration which can never fail. Both the phase 2 cut sets {4} and

-
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(]
‘-
‘o

1€ ,.Cy) contain the phase 3 cut set {€ ], so they can be cancelled in phase 2. After cut cancel-
lation, the simplhified phase configurations can be represented by the block diagrams

phase 1

(i

phase 2: — s
C,
phase 3: «,

After cancellation. the transformation can be applied to obtain the equivalent system with the
block diagram

Cyy Cp

'y Cy

which is considerably simpler than the equivalent system of Example 1, but has the same relia-
bility

The methods of approximating mission reliability described in the previous section can
also be employed after cut cancellation has been performed. If we denote the reliability func-
tions of the simplified phase configurations by 4 . 7 =1, ... m  the approximations
corresponding to g, and p g, are

(13 T pRE-CC ™ [] R o o)
-1

and

(14 PPRF-cC ™ [I B e Blads
-1

respectively, where the added subscript C'C indicates that cut cancellation has been performed.
Similarly, denoting by #, 4 and A, 5 the minimal path upper bound and the minimal cut lower

bound. respectively, for the simplified configuration of phase ./ = 1. ... m. we obtain the
approximations
m
(15 TptR ¢ = nhfﬁv‘("l' e Tl’,;)
-
and
(e) g o= [Thistoy. opn,).

To show that these four approximations are bounds on mission reliability, we observe first
that since the simplified phase configurations are coherent, hyp S h < hyy. 1 =1 ...m
It follows from (13) and (15) that

(7 TpRE cC S TpeR o

B

v
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(18) Peig <o S Prri (O

Further, since the phase rehability functions are not less after cut cancellation than before, 1.¢
h, < h . 71=1, .. m then

(19 Tprt S TpRE (¢

tollows from (6) and (13), and

(20) PrRE S PPRE (0

follows from (7) and (14), where the latter inequality 1s noted here for further reference only
From (19) and (8) we conclude that =4,  and 7,4 ( are in fact upper bounds on mis-
ston rehability.

To establish that p e, and pp i (o are lower bounds, we need the following remark.
REMARK 1. Let ¢ be the structure function of the simplified configuration of phase

o=l o moand let U A =1, .. n /=1, .. m be the indicator variables of the pscu-
docomponents in the equivalent system. Then

[‘I"d) (}-41‘\('!3' [
-1

U <E e v . uwW.
2 : % 3

PROOF. The proot uses standard properties of associated random variables which are dis-
cussed in Esary, Proschan and Walkup [3])

The simplified phase configurations are coherent, and hence the structure functions

¢ . =1, .. m are nondecreasing. The Bernoulh random variables U, A =1, .. n. 7 = 1,

. m, are independent. Therefore ¢ (U '"U " . U "),y =1, ... m. are associated Ber-
noulli random variables tor which the assertion of the remark holds.

Using (), (S), and (14) we obtain ppy; (= ll Ed (‘(‘ Wy 9. . U YY) since cut
1

cancellatton does not affect mission rehability, (3) can be written as p = I[] é - gt
1

U U YY) Application of Remark 1 then vields the mequality

S
te

D PPRF (¢ < P

which together with (20) establishes the desired results,

5. COMPARISONS OF THE BOUNDS

The magnitudes of the bounds on mission rehiability presented in the previous sections,
and of the nussion reliability atself, can be ordered. This ordering s displaved in Fig. 1 where
the superscripts refer to the defining equations and inequahities which are summarized

]
"~

AL
Pppcc

18 19 13 147 14
E TpRF CC l”"lll‘ [

- S

=

10 14 6
Ppig'’ Pere cC Mop ToRe

) 7 a
<12 Pprr « 0 <" Teus

Figure 1 Qualitative companison of the bounds on nission rehabiling

(The superscnpts refer o the definmg equations and inequalities )
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No general inequalities can be established between m,.;, (( and 7, 4, and between
Pk ccand ppgso In the case of the two upper bounds, cut cancellation on one hand and the
use of phase upper bounds instead of phase reliabihty functions on the other hand both tend to

increase the apparent phase reliabilities, the amount of increase depending on the structure of

the mission as well as on the comonent rehabihiies. In the case of the two lower bounds,

pris o tends to be greater than p g, because of cut cancellation, but also smaller because of

the use of phase lower bounds instead of phase rehabtlity functions. Again, both the structure
of the mission and the component reliabilities determine which of them is greater in a particular

casce.

The inequality
(22) Prie S Prik

has not vet been established formally, but 1s an obvious consequence of (10), (16), and the fact
that h, 4 < hyy. 7 =1, ... m A similar inequality between the upper bounds mp 4 and
7 on . however, does not exist, because it is not necessarily true that /1 5 < h 5. Since
this may not be intuitively obvious, we give the following illustration.

EXAMPLE 3 For the mission of Example 1, the minimal path upper bound for phase 2
is hyoglm,myy, my) = 7wV v,y before cut cancellation, and hy g, (e oo,
myn = mw,vmy after cut cancellation.  Assuming that ), = m, = m;, = m, then
hega(m) = 23=-3m’+nY) and hig,(7) = 7Q2—a). For 0 < m < 0.8, hyylm) < hyg,(m),
and for 09 < = < 1, hygolm) > hyg (7).

It is also possible to compare the bounds with respect to the computational effort required
to compute them. In general, less effort is required to compute the m phase reliability func-
tions separately than to compute one reliability function for the equivalent system: phase
bounds are easier to compute than phase reliability functions; and cut cancellation simplifies all
reliability calculations, although it requires computational effort itself. The diagram below is an
attempt to summarize these observations. [ts comparisons may not hold in all cases, but do
indicate what is usually true. The svmbol — stands for "requires less computational effort
than."

TpUg ¢ T Tpeg ™ Tpere ¢ Tpre

—p

PpiB cC PPt~ PPRE CC T PPRE

6. AN ALGORITHM FOR THE "BEST" LOWER BOUND

Trying to select the best bound from those presented here is a problem whose solution
depends on the circumstances of each particular application and cannot be accomplished in gen-
eral. If one is interested in a conservative rather than an optimistic approximation, and if the
system to be analyzed has components with uniformly high conditional reliabilities in all phases,
then the qualitative comparisons of the previous section and numerical results suggest that
ppiy o is a good choice. Since these conditions are frequently encountered, an algorithm for
computing pp 5 (. is given below. Inputs to this algorithm are the phase configurations (in
the form of block diagrams, fault trees, structure functions, or complete lists of minimal cut
sets or minimal path sets), and estimates of the component conditional phase reliabilities o, .
k=1, ...n j=1, .. m If oneis willing to assume that components have constant failure
rates throughout each phase, then the component conditional phase reliabilities are given by
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ere r. s the fadure rate of component €, in phase /. and s the duration of phase
A AN SR TR . m

ALGORITHM: 1 for compuung p . 4

¢

(a) For ; = 1. . m find the minimal cut sets for the configuration of phase /

(b) Perform cut cancellation according to the rule given in Section 4 For 7 = 1. . m,
denote the number of minimal cut sets remaining in phase 7 by A (/). and the  th mmimal cut
set remamning in that phase by A . =1, . A())

() For A =1, .., n. compute p, for all ; =1. ... m for which (.eK for some

=1, .. A()), from

from

prrce= I 0 - 1 €0 -p))
1 -1 Cp ¢ Ky

(d) Compute g,y 4

&

The notation necessary to formulate this algonithm in precise mathematical terms obscures its
basically very simple content. We can restate 11 in the following more intelligible form

(@) Find the minimal cut sets tor all phase configurations.
(b) Pertorm cut cancellation

(¢) Compute p tor cach phase /in which component € s relevant from

I

(d) Obtain the "best” lower bound on nusston rehability by computing

11 11 (- 11 (-p )]

lall phases! {all min cut sets lall components in

in ecach phase) cach min cut set)

The following example, adapted from Esary and Zichms (4], illustrates how the algorithm
works.

EXAMPLE 4. A system with six components 1s to perform a three-phased mission. The
phase configurations are represented by the block diagrams

Cy Cs
phase |- —{‘ \};

e —— — S ——

(.}
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€,
C,—
phase 2. — (), (8 —
C, (o
C £,
phase 3:
e —
Cy
C,
Ce

The duration of the phases are d, = 30 min, d, = 2 hours, and d; = 10 hours. It is
assumed that the components have failure rates r,, which are constant throughout each phase:
estimates of their values (in hours ') are

K i 2 z 4 3 6
0.000 0.001 0.020 0.040 0.100 0.000
0.020 0.003 0.006 0.010 0.500 0.020
0.010 0.002 0005 0020 0500 0.020

s B —

A lower bound on mission reliability s wanted.

The application of the algorithm yields the following results:

(a) The minimal cut sets are
phase 1: #{C,.CJ#. (C;.C:}
phase 2: {C,), #(C,.Cil#, #{C,.CJ#. (C.Cy)
phase 3: [C.C;), {C.C;3), {Ca.Cyl.

(b) The minimal cut sets marked #{ |# above are cancelled. The remaining minimal cut
sets are

phase 1 {C:.C4
phase 2: {C}), (C1.C4)
phase 3: {C.Ci), [C1Ci) [C1.Cy).

(¢) We have to compute piyi o Paw Pags P pad pax Pss and pgre Since in the present
ry i 2
case m,, = ¢ ', we use the equation
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- L -r.d, z'l""l
P = l—I""A,= n(’ =

=] =

and obtain the following values for p,, (rounded to four decimals):

Ik 1 2 3 4 5 6
1 0.9900 0.9512
2 0.9608 0.9782  0.9608
3 0.8694 09738 0.930S 0.7866

(d) the bound pp; 3¢ is given by
pria-cc =1 = (I=p3)(I=ps)] x [1 = (1 = p}))]
x [1 = (I=p3) (1 = pgd] x [1 = (1=p3) (1=p3y)]
x [1 = (1 = py)(1—p3)] x [1 = (1—py3) (1—pgy) .
For the values of p,, computed in Step (c), we obtain, rounded to four decimals,
ppia-cc = 0.9438.

As a comparison, the reliability function for the mission is ¥

h = pi;p33 (P23 + pPe3 — P23 P63
+pi3pn [ = py)papsi + (p31 — p3dpar + (o3 — p3)].
and thus the exact mission reliability, rounded to four decimals, is
p = 0.9468.

7. AN APPROXIMATE HAZARD TRANSFORM FOR PHASED MISSIONS

Recently, Esary and Hayne [1] extended the scope of a application of a simple reliability
calculus of Rubinstein [6, 7] to coherent systems. This calculus uses an approximate hazard
transform and leads to conservative approximations to system reliability. We will show here
that its scope can be further extended to phased missions.

The hazard transform of a system with reliability function #(p,, ..., p,) is defined as
Huy, ... u,) =—log h (e "', ..., e ™,
where w, = — log p, is the component hazard of component C, having reliability
pik =1, ..., n. The approximate hazard transform H* considered in [1] can be defined by the

following rules:

(a) For a system consisting of a single component C,,
H‘ -y
(b) For a system which is a combination of two modules (subsystems with disjoint sets of
components) having approximate hazard transforms HI' and H,
H'= H| + H, if the combinaton is series

H'= H/H; if the combination is parallel.




RELCIABILITY OF PHASED MISSIONS 237

C,
G
phase 2: — (), C, —
C, Cy
G (
phase 3:
— Lo
C,
,
Cy

The duration of the phases are ¢, = 30 min, ¢, = 2 hours, and d; = 10 hours. It is
assumed that the components have failure rates r,, which are constant throughout each phase:
estimates of their values (in hours ') are

/A ! 2 3 4 5 6

1 0.000 0.001 0.020 0.040 0.100 0.000
2 0.020 0.003 0.006 0.010 0500 0.020
3 0.010 0002 0005 0020 0.500 0.020

A lower bound on mission reliability is wanted.
The application of the algorithm yields the following results:
(a) The minimal cut sets are
phase 10 #{C.Cl#, 1CLCY
phase 2: {C), #1CL.Cil#. #1CL.Cl#. (CLCY)
phase 3: {C,C . {CLCyl {CLCy)

(b) The minimal cut sets marked #| 1# above are cancelled. The remaining minimal cut
Sets are

phase 1 {C,.C4)
phase 2: {C), [C.Cyl
Phﬂﬁc ‘ [(‘].(’1’, {(‘_\.(‘\‘, {(\(‘J

(C) We have (o compute p ol pias padt Part Pk Pk P Pl and pgi Since in the present

’ o ’
case m,, ~ ¢ . we use the equation
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(¢) For a coherent system with minimal cut sets K, ..., K, whose approximate hazard
transforms are H,, ..., H,,
H'=H + .. +H.

It has been shown ([1], Theorem 2.5) that this approximate hazard transform is conservative,
i.e. indicates greater system hazard (less system reliability) than the exact hazard transform.

In the case of a phased mission, we can go one step further and define an approximate mis-
ston hazard transform by the rule

(d) For a phased mission whose simplified phase configurations have approximate hazard

transforms /|, ..., H, . the approximate mission hazard transform is
H=H + .. +H,.
where the component hazards are w,, = —log p,, Ak =1, ..., n, j =1, ..., m. We will denote

the reliability function corresponding to this approximate mission hazard transform by /', i.e.
(23) b=t

By comparing steps (a), (b), and (¢) of the rule above with the method of computing the
minimal cut lower bounds {or the reliability of the simplified phase configurations, we can con-
clude immediately that ¢ " < hygye =1 ,..,m It then follows from (16) and (23) that

(24) h™ < pprg

and hence from (18) and (21) that /" is a lower bound on mission reliability or, equivalently,
that the approximate mission hazard transform is conservative.

An algorithm for computing the lower bound 4 " follows the first three steps of the algo-
rithm for computing ppg; (. The next steps are

(e) Compute the component hazards
u,, = — logpy,

for all (;,/) for which p,, has been computed in Step (¢).

(f) Compute the approximate mission hazard transform

m A(y)

H=Y Y n“,k uy,.

=l 1=

(g) Compute the lower bound

h'=e "

A comparison of this algorithm with the one presented in Section 6 indicates that the
computation of the lower bound h* requires more effort than the computation of the lower
bound ppp (. we also know from (24) that h*is less precise than ppu (- Thus, it may
seem counterproductive to pursue the approximate mission transform any further. However, if
one is willing to—or has to, for lack of better information—assume constant component phase

failure rates, then the component hazards u,, take on the simple form w, = 2 r.d . and com-
- |

putations are simplified considerably. In this case, an algorithm for h* consists of the following
steps (expressed in an "intelligible" form):

- - —— T

v
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ALGORITHM 2: for computing 4 *in the case of constant
component phase failure rates.

(a) Find the minimal cut sets for all phase configurations.
(b) Perform cut cancellation,

(¢) Compute the component hazard ., for cach phase ; in which component € 1s
relevant from

u, = Yy rd.
-1
(d) Obtain the approximate mission hazard transform from

H =Y p 11 u

{all phases} {all min cut sets {all components in
in cach phase! cach min cut set}
(¢) compute the lower bound /#* from v
he=e t"

When component phase failure rates are assumed constant, the approximate mission
hazard transform becomes a polynominal in cach of the phase durations. Thus, ttis well suited
for parametric studies, as is demonstrated in the next example.

EXAMPLE 5. Consider the mission of Example 4. Assume that—all other data bemng the
same as before —the duration of phase 2, «,, i1s now uncertain, and that a sensitivity analysis on
it is desired.

From the algorithm above, we obtain the following general expression for the approxi-
mate mission hazard transtorm:

H* = rydrqd,
t(rpdy 4 orady) + Grgdy 4 rpdy(rgdy +orgd )
*(/'“lll + '|_\(l.\ + ’|\¢I1)(":|1I| T l,“l“ el | l‘.‘l:)
+ (I”l/‘ + I').\l/.‘ t '_\ul\)('x]llg + Y;'\tlw + ’;1(/()
t (rydy 4 rady rad ) rgdy + rody + rgdy)
H*as a function of «, can be written as

o ’I.((IJ = q + bd, + nl_:.
with : .

a = dry
Fdi(rpry +rgran + rarer + rara t rursy)
tdyd(rprat rprg 4 rara b rarag b rara b rarg)

3
+di(rprg 4 rarg, + rarg)
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b =r,
t dlrprn ¥ riprgy gt et rarg ¥ il F ryra ¥ rorg)
tdlrppran Y rpro ¥ raruat e ¥ rarn  rared).
€= rpary ¥ Il + ey v rials.
For the data given in Example 4, the numerical values of these coeflicients are
a = 0.012030
b = 0023333 hours '

¢ = 0.000258 hours *

For various durations of phase 2 (in hours), the approximate mussion hazard transform H*® and
the lower bound on mission reliability 2% both rounded to four decimals, are shown below.

d, H* I
0 00120 0.9880
1 00356 09650
2 00597  0.9420
3 00844 09191
4 01095 0.8963
S 01351 08736
6 01613 08510
7 01880 08286
8 02152 08064
9 02429 0.7843
10 02712 07625

For d. = 2 hours, py (o and p have been computed in Example 4 Their values are repeated
below, together with the value of #* (¢, = 2 hours), to tacilitate a comparison.

P = () 9468
Prig o = 0.9438
h*(d, = 2 hours) = (.9420.

In the case of constant component phase failure rates, the approximate hazard transform
can also be used to estimate mission reliability when phase durations vary randomly. If
D,, ... D, are nonnegative random variables denoting the durations of the phases, then the
approximate mission hazard transform is £H*(D . ... D,). where the function /{*is defined
as before and £ denotes expectation.  As an approximation to mission reliability we now use

(26) g*=e¢ (D, ... D),
which is much easier to calculate than the exact value EFe (D ... D,) Since ¢ ‘is a con-

vex function of v, it follows from Jensen's inequality that ¢ (D, .. D) < Fe '"(D,, .
D). and therefore g"is a lower bound on mission reliability

In our last example, we show how this approximation can be used, even without a com-
plete knowledge of the probability distributions of the D s

v
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EXAMPLE 6. Consider again the mission of Example 4, but this time assume that—all
other data being the same as before—the durations of phases 2 and 3 are random. The mean
durations are known to be £D, = d, =2 hours and ED; = d; = 10 hours, and the total dura-
tion of these two phases together is D, + D; = 12 hours. An estimate for the mission reliabil-
ity under these circumstances is wanted.

By rearranging the terms of (25) we can express H*as a function of 2, and D; by

HYD, D) =a,+a,D,+ a;Dy+ a,Di +aDi +a.D,D:.

where the coefficients a. ..., a, depend only on the known duration of phase | and the com-
ponent phase failure rates. Since D, + D; = constant, then Var D, = VarD; and Cov
(Dy,,Dy) = —=Var D, = —VarD;. Denoting this common but unknown variance by -, we can

write EDF = o’ + df, ED{ = o’ + d{, and ED,D= d,d, — o, and obtain
EH*(Dy,D;) = a, + ayd,+ aydy + aydi + adi + agdydy + o™ a, + as — ay),
or, numerically,
EH*(D,,D;) = 0.059728 + 0.000071 o*/hours”’.

For o’ = 0, i.e. when the durations of phases 2 and 3 take on their expected values with proba-
bility one, EH(D,,D;) = 0.0597 and g* = 0.9420, which agrees with the corresponding results
of Example 5. As o’ increases, EH*(D,,D;) increases and g* decreases: since o’ cannot be
greater than 20 hours’ under the given conditions, the maximum value of EH*(D,.D;) is
0.0611, and the corresponding minimum value of g*is 0.9407. We can therefore conclude that
the mission reliability is at [east 0.94.
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INSPECTION POLICIES FOR DETERIORATING EQUIPMENT
CHARACTERIZED BY NQUALITY LEVELS

/ Kander®

Technion — Israel Insutute of Fechnology
Hara, Israel

ABSTRACT

Inspection models deal with operating systems whose stochastic tarlure s
detected by observatons carnied out intermuttently  The current communica
non deals with systems o which N+ /2 levels of quahity can be diagnosed  Op
tmal pohicies leading to mimmal loss are developed, while the system's distri
bution s represented by an (N # D state semi-markoy process Based on previ
ous studies of the authors, relative ethiciencies of the proposed checking policies
are ascertamed. by comparison with the loss sustamed it discrimmation ot gqual
iy by omtermediate levels s disregarded and by viewing the system as one
which s either good or faled  Vanous models are treated where cheching,
truncated checking, and monttorng pohaies optimize loss pet ovele, per unit of
ume and per unit of good tme  Numernical examples are given

I. INTRODUCTION

Previous communications [4-6] dealt with operating systems whose stochastic fatlure was
detected by observations carried out intermittently. Three types of costs were introduced: one
pertaining to the expense incurred for cach check: the second associated with the time elapsing
between system failure and its discovery at the subsequent check. and the third relating to
replacement of the failed system. The optimal policy is a sequence of checking times
{r.. k =1,2.3....) minimizing the loss per lite cycle or, alternatively, per time unit. Models of
pure checking, truncated checking, and monitoring additional to checking were treated

Whereas systems treated before show only two quality characteristics, "good” or "failed”.
real life abounds with an infinity of cases where quality detertorates in many levels from “per-
fectly good" to "totally failed" In effect, for most instances, it can be stipulated that the "good,
failed" case is an idealization which comes about by gathering many quality levels into two
easily discernible states.

A multilevel quality system in the current study 1s described by a semi-markov process
The system can move from N, the perfectly good state, only downwards to NV 1. N . unul
it reaches 0, the failed state. No aging takes place during the stay inany state

The models of previous studies, as described above, take on a new form when apphed to
“diagnostic distributions.” A tume-interval sequence {ry. 7, . o 7 \} describes the policy: e,

*This paper was aceepted for publication prior to the death of De Kander i 1973 The munuscrpt was final
| | | |
zed for publication by Professor Shelemyahu Zacks, Case Western Reserve University
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rooo=No N L s the penodic checking schedule to be adopted dunmg stay in state
Consequently in these models, contrary  to the previous models  (emploving  good-tailed
disttibutions), tme from system’s operational start s not memornized

The loss of ume's ongin constitutes a deficiency of information for the dagnoste distr-
bution, while on the other side the higher number of quality levels s a gain Numencal exam
ples in later sections indeed demonstrate that relative optimal losses change from model to
model to the protit of either distrnibution

Varnous appheations of inspection models have been discussed in the hterature (see (1],
171, 131, 15D, while multilevel quality systems broaden the tield  One example of widespread
usefulness of the latter are “redundant structures” [1], hike parallel and standby systems which
constitute a great part of modern equipment

I1. BASIC ASSUMPTIONS

An mspection model of the present study s well-characterized it three specific sets of
assumptions are spelled out

(1) A statement has (0 be made about the detertoranon mechanmism ot the umit under
study and about the diagnostic power of an observaton carried out on the umit. In this study we
shall assume that at any given tme the umit s one of a fintte number of feasible states, that
a unique (temporal) ordening pertains to these states, that the mechanmism of deterioration con-
sists of successive Poisson transitions of the unit from the prevading state to the consecutive
state, and that spection reveals the prevailling state. The Poisson transiion parameters are
assumed to be known A typrcal example of such situation s that of a standby redundant strue-
ture. This s a unit made up of Vv (not necessartly dentical) subunits, the unmit as capable of
rendening s musston as long as one subunmit (at least) has not taded At any given time, one
subunit only 1s subject to possible random (Poisson) fallure.  After such farlure has taken place,
a further subunit 1s moved up, as it were, and carties out the mussion of the unit untl 1t fails,
too.  This 1s repeated unul tarlure of the last subumt  Inspection discloses which particular
subunit 1s carrying out the unmit musston.  Another example would be a structure exhibiting
parallel redundancy. Here the unit is assumed 1o be made up of NV dentical subunits, each of
which s subject to Poisson breakdown.  The nussion of the unit can be carnied out as long as
one subunit (at least) has not tailled. Inspection makes known the number of taled units

(1) We shall deal here with three teasible inspection modes

1) PURE CHECKING. Successive checks are carnied out at each check, the state of the
system 1s observed, and a decision about when to check next s made and so on. The tatlure of
the unit terminates one cyvele

B) TRUNCATED CHECAING. Successive checks are carnied out, at each check the state
of the system s observed. The set of all operative states 1s subdivided mnto two subsets, the
subset of "early” states and the subset of "late” states. It the check reveals the unit to be in an
carly state, a decision s made about when to check next I the system s i a late state, the
decision 18 made to termuinate the operation of the unit and a ¢vele 1s completed  Another feast
ble completion of the cycle occurs when 1t is found in a tailed state

) CHECKING FOLLOWED BY MONITORING. Here agan the set of all operative
states 1s subdivided into two subsets of carly and late states, respectively  Successive checks are
carried out as betore  As long as a check encounters the umit inan carly state, a decision s
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made about when to check next It a check finds the umit in a late state, a continuous monitor
ing procedure s intiated which extends unul the falure of the umit and the termination of the
cvele without any down time of the umit Another possibility — possessing nonzero probability
— of ¢yele termunation Gonvolving down tme) s that the first of two successive checks finds
the unit 1 an carly state while the tollowmg check reveals fawlure  1ois imphatly assumed that
the checking and monitoning procedures bear no influence on the natural hife charactensuces of
the umt

(i) Finally, the sources of costs have to be specttied and a loss function — whose muini-
mization is the objective of the mspection procedure — has to be set up We shall assign a cost
/1o each check that has to be carried out. The cost rate @ is assumed to be associated with each
unit of down time Fermunation of the ovele involves expenditure Rt it follows fadure 1t the
cvele s completed through termunation of an operative umit, the expenditure incurred s
assumed o be equal to S Montonng causes tWo cost components to make their appearance
There s a set-up cost M oand, in addition, a cost rate  incurred tor each tme unit of monitor-
g Further costs may show up in actual imspection sitwations and, i our experience, there s
no ditficulty in titting them into our general frame of reference. Under different sets of con-
crete crrcumstances we may desire to munimuize (at least) three distunct types ot loss tunctions
1) We may be concerned with the events occurring during one single cvele of umit operation
In this case our objective will be to mimimize the expected total loss [ over the cvele b) The
termination of the evele may be tollowed by reactivation of the Gdentical) unit through replace-
ment or reconstruction In such cases we assume an intinite horizon to the model and concern
ourselves with the minmmuization of the average loss / per unit of tme. ¢) Again, situations may
arise where 1t s proper 1o view the stucture of the problem as possessing an infinmite horizon,
but where 1t s of interest to nuinimize expected loss per unit of good ttme (te., operation time
of the system) rather than cost per unit time at large. The loss function pertaining to this situa-
ton will be described by the letter A

Ihe notation describing the vartous combinations ot loss functions and mspection modes
will be wdentical with that employved by us inan carher communication [S]. The letters ¢, ¢, ¢m
refer to pure checking, truncated checking, and checking followed by monmitoring, respectively
The letters, £, L and A describe what type of overall loss function 1s to munmmized in the con-
text under study Use of curly brackets is assoctated with model specification, absence of curly
brackets signities preoccupation with the loss function proper

L. OPTIMIZATION OVER ONE CYCLE

The umit under mvestigation passes through V consecutive operational states untl

reaches  the  tailed e For notational  convenence  we  shall assign the  subscripts
N, N=1. .... | to thy rst, second, Nth oy ponal states, respectively, the faded state s
assoctated  with  the subsenipt 00 A deasion procedure s then a set of anstructions
[ryv. 7y oo 7o 1L about when to cheek agam, given that the chieck presently carned out

has revealed the unit to be o state + Starting trom this premise, we obtan the expected future
loss durig the current eyele A as

K, =p (r) K ® Dt rFKag? kg ey K 4 +pr) K,

(n K.=J (l<i€<N 0€j<i),

where p (1) is the probability that the system (presently i state ) will be found in state
upon remspection after tme r - The quantity J (¢ ) represents the expected loss which will be
mcurred by the unit untd and mcluding) the next check, /s the loss that follows a check

o - ™ e ——
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revealing the system to be in a failed state. Clearly, this formulation lends itself to the
development of an iterative procedure for the purposes of optimization as indeed was already
pointed out in Ref. [1]. Relation (1) is transformed in an obvious fashion into

(2) W

)
gy JGz)+ Tp(r)K]| 0K i<N 0<j<i

-0

(2) K, =i,

Minimization of the total expected loss function

(3) L =K,
1s now carried out step by step. We note that
. 1
(4) k,(T]) . ]—I)”(: ‘Il(rl) +p|“(71) ./,, .

from which expression it is not difficult to derive 7, such that A’ ;(,) is brought to its minimal
value

(5) mln A'I(Tl) - K|‘ - A’|(T|‘).
Proceeding from here in an analogous manner, we have

1 : o
6) 1 e .
( K (7) 1_,,_(,')[J(T)+E”(”A

=0

and now that value 7~ of the feasible 7 is chosen which minimizes (6). we finally derive
(7 min Ki€r, Tt Tiap ooy ) =K, = KT, o Tyl e T
Overall optimization is attained when the optimal value of the last . that is. 7. has been

determined.

To gain better understanding beyond the formalism of the iterative procedure. we shall
deal now with various specific cost structures and modes of inspection.

Model {Lc¢) — Pure Checking

When the system is found in a failed state, some expense (positive or negative) may
ensue. Hence it is convenient to set
(8) J,=R

where R is typically playing no significant role as long as cycle optimization (rather than optimi-
zation in unit time) is required. Introduction of R appears artificial at the present stage — and,
indeed, setting R = 0 leads to the identical, optimal time sequence — but it is important for
further developments.

The expected expenditure until (and including) the next check, given that at present the
unit is in state 1, is given by

©) Jey=l+a [ p0de (0<i <N

The right-hand side of (9) is to be interpreted as follows: there is certainly going to follow a
check costing / monetary units; furthermore, the integral represents the average time during
which the unit is in the failed state 0.

V
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If. now. the quanuues J, J/,.... are successively introduced into the loss functions
K,. A, .. we finally arrive at the overall expected loss function [ equal to
(10) Le =Ky =1En) + ab (A1) + R,

where £(n) and £(Ar) denote the expected number of checks and the expected time in the
failled state before detection, respectively. The numerical optimization procedure yields the
optimal checking instructions [ry.7{ ... 7,1 and the minimal value A’y of the overall loss
function. It is not difficult to obtain (as byproducts) the values of the expectations £(n) and
E(Ar) for this case.

It should be noted that in this model (as well as in some others) the inspection policy has
no influence on the expectation of active life time of the unit under inspection. The life time
of the unit possesses a distribution which is the convolution of N exponential distributions.
The expected life time £(x) 1s simply the sum of the N expectations pertaining to the various
states. The expected cycle time £(r) — the average time elapsing from the initiation of the
unit up to detection of failure — is (partly) determined by the inspection policy. However, we
clearly have the following relation:

(1 E(r) = E(x) + E(Ar)

Addition of a constant to the loss function cannot influence the optimal strategy of inspection.
Hence we can modify the loss function (10)

(12) L =Ky=IE(n) +aE(0),
and the appropriately modified /functions are then given by
(13) J,=0

(14) J=1I1+ar.

This modification turns numerical optimization into a straightforward procedure.
Model {Lct] — Truncated Checking

The present mode of inspection envisages discontinuations of the unit’'s operation once a
certain state has been exceeded. Hence a decision procedure is made up a) of the specification
of this state & among the totality of operative states N, N—1...., J .2, 1, and b) of a set of
instructions [ry. 7y ... ey T4 7ol about when to check again given that the check
presently carried out has revealed the unit to be in state /such that G < / < N. We recollect
that termination brought about the unit's transition into the failed state 0 ensures an expense
R. whereas discontinuation of the unit's operation due to its being revealed in one of the states
G-1. ¢G-2..... 2. 1 is associated with expenditure §.

We are now in a position to set

(15) J,= R
(16) Jy=Jy= .= =8
(17) J=1I]+a f p (X)) dx (GLi<N)

and in principle, this set should be used in computational work for all feasible values of G, i.e.,
1 € G £ N We note that the case ¢ = 1 is identical with pure checking: this is indeed an
alternative with which truncated checking should be concerned. The case & = N cannot be
considered feasible since the proper interpretation which has to be attached to this is that the
unit’'s operation should never be started. The search for the optimal value of G may be
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shortened if we introduce the reasonable conjecture that no local minimum, other than the glo-
bal minimum, occurs when the minimum total loss is viewed in its dependence on G. The
present expression which is analogous to (10) 1s given by

Let = Ky = lE(n) + aE(At) + RF + SF*
(18) = [E(n) + aE(A1) + R + (S—R)F~

where Fis the probability of terminating in the failed state and F*(= 1—F) is the probability of
discontinuing the unit’s operation after finding it in one of the states G-1. G-2...., 2. L
Equation (18) represents the overall loss function whose minimum minimorum is sought. The
various quantities £(n), £(Ar), and F depends, of course, on the optimal checking instructions
specified by G and (74, 74y ... r.]. Again the numerical optimization procedure yields not
only these instruction and the minimal value A'{ of the loss function, but also the values of
E(n), E(Ar) and Ftor the optimal case.

We note that in this case, unlike model {c¢], the expectation of the active life time is a
function of the inspection policy pursued. Hence (11) will not be valid under the present cir-
cumstances. The expected active life, £(x') say, falls short of E(x) and this quantity too may
be obtained within the framework of numerical computation of the optimum policy.

Model {Lecm} — Checking Followed by Monitoring

This mode of inspection pursues the same type of checking as before, i.e., discrete inspec-
tions after ... 7 ... time units until a check reveals that a certain state G has been exceeded.
However, if at present the unit is still in one of the operational states G—1., G-2..... 2, 1, a
monitoring system is instantaneously put into service involving a set-up cost M and a monitor-
ing cost rate « per unit time; breakdown of the unit is discovered instantaneously if it occurs
after the initiation of monitoring. A decision procedure has to specify the state ¢ and give
instructions [ry. 7y ... (5 s Tge1. Tl pertaining to rechecking of the unit under inspec-
tion, given that the check presently carried out has revealed the unit to be in state
(G €1 €N).

The functions J are now given by

(19) J,=R

M+ d f P, (x) dx < i <G

(20) J = . .
< <
f+a f p LX) dy eSS

and again all feasible values G, i.e., 1 £ G < N, should be introduced and experimented with.
The case G = 1 is identical with pure checking. We note that the above representation does
not cover the alternative of having the monitoring system initiated at the very beginning of the
unit's operation. This will be taken care of below.

Again the quantities J are introduced into (2) and values of A[. K. K are derived
for prescribed G. We have then a series of nomimal loss functions depending on G-

Ko, Ko(2), . Ko@), .o KoV

To this series we adjoin

Q2n KON+ = M + dE(v) + R

1
\
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which represents the case of pure monitoring. The minimum mimimorum 1s selected and the
optimal decision rule is defined. The overall loss function in a representation analogous to (10)
and (18) 1s given by

(22) Lem = 1E(n) + aF (A1) + R + MF* + dF (monitored time)

where F*1s the probability of the monitoring system being activated and £ (monitored time) 1s
shorthand for the average duration of the monitoring activity. All the quantities appearing on
the rnght-hand side of (22) are obtained as computational byproducts when K. and
[re. v5 1 ... 7ol are calculated

Since the montoring policy does not affect the active life tme of the unit, the simple rela-
tion (11) holds again as in Model {c}

IV. OPTIMIZATION WITH INFINITE HORIZON

In many, if not most, apphcations the unit is replaced or reconstructered after failing, and
the inspection process continues toward an infinite horizon. The loss function that one wishes
to minimize in such cases i1s typically not that which was considered in the preceding section,
but rather a function representative of this indefinite continuation. Several choices of objective
functions present themselves, we shall dwell on two reasonable alternatives, proceed in detail
with respect to one of them, and outline how to go about the analysis with respect to the other.
These analyses are based on the approach taken in the preceding Section, and make use of the
L-minimization technique employed. Optimization over one cycle is then not only an end at
which to aim under a given (possibly not widely occurring) set of circumstances. Rather, this

type of optimization serves also as an essential link leading to further distinct methods of

obtaining optimal inspection procedures.

The proper choice of the objective function should be made on the basis of an analysis of
the concrete situation under study. The muluplicity of possible objective functions is not
meant to suggest that they should be used on a trial basis, as 1t were. Rather the salient point
is the close connection between the computational techniques and procedures leading to the
identification of optimal rules for diverse objective tunctions. L-optimization 1s the gateway
through which one can proceed with ease to further, and possibly more realistic, modes of
optimization

The two objective tunctions to be considered here are (a) the average loss per unit of
time, and (b) the average loss per unit of good time (active life time). The expected length of
the cycle has been denoted by £(r). Hence the average loss per unit time, 4 equals

i
En)
The expected active life E(x) either falls short of, or equals, the expected hte time £(\)
depending on whether the inspection policy (possibly) terminates an active unit or not. At any
rate the average loss per anit of good time 1s expressed by
|
Elx')
It follows then that A-optimization is equivalent, in a straightforward tashion, to L-optumization
whenever £(x) is not shortened by inspection. Of the models discussed 1in the present com-
munication, this is the case for pure checking and for checking followed by monitoring

23 . | -

(24) N i

In the remainder of this section we shall primarily deal with Foptimization.  An iteration
method., originally emploved by Brender [2] and utilized by the present authors in Refs [4] and
[5]. 1s effected in the following manner. Let a tunction D be detined
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Q23 D=L -1 E),

where /, is an arbitrarily selected trnial value of the loss per umit ume For given /, and for
Known component costs we may select that inspection procedure which minimizes the funcrion
D Let this munimal value of D, with trial value /, be denoted by

(26) D) = L) = 1LEQ])
Next we devise a new trial value /) by setting

L) D\(/)
Eefly) EQell)

27

The new value 7, 1s now nserted i (25) and the function D (with presently prescribed /3) s
minimized under the new condittons Repeaung this procedure, we have that at any given
stage, after minmmizaton, 1t s possible (o write

(28) D) = LU — LEC L)

where 0 s the munmimal vatue of 2 obtammed after the /th tteratton It thas function has
reached the value 0 (or a number sufticiently close to zero), the iteration procedure stops. It
may be shown that attaining a mumimal 2 equal to zero s in Kkeeping with the objective of -
optimization. Convergence of this procedure is ensured as demonstrated in Ret. 2 The value
/ which appears in the final tteration 1s the opumal (minimal) expected loss per unit tme, the
checking time sequence leading to mimmal D = D s the appropriate checking time sequence
optimizing [ In order to "translate” properly an objective function of the [-type into an objec-
tve function of Divpe land effect Fopumzation), we modify the Jtunctuons appearing in the
preceding section by deducting /. r (for each ) whenever either ¢ or  make their appearance

A-optimization, whenever it is not trivially equivalent to L-optimization, s typrcally deniv-
able from L-optunmuzation in a similar tashion

It 1s of some interest o recall a general relation connecting optima of L with optima ot /
It holds 1if the inspection policy does not effect a change 1in the active hite tme of the umt under
survelllance. Consider an Aoptimization problem assoctated with cost a of lost umit tme, let
the optimal sotution be denoted by /"(a)  Next, constder the corresponding L-opunmzation
problem, possessing, though different cost, a per unit of lost time, to wit

Q29 a=g —["(a)

The inspection policy minimizing £ (a) s dentical with the ispection pohiey muminuzing /(a)
Furthermore, the two optima are related to each other through the following equivalent formu-

las
L*(a—1"(a))
(30 1*(a) = :
E(x)

and

“(er)
G LMl = K} Mo+ 28

E(n)

A proof of this may be tound in our previous study [4]

A further problem of some interest s the establishment of bounds pertaiming to the
optimal loss. There are no new problems in the present context and the iterested reader s
referred to our previous study [3] as well as to some earhier studies 2, 4]
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V. AN EXAMPLE ?

As an illustrative example, consider a unit possessing a standby redundant structure made
up of two identical subunits whose life times are exponentially distributed. We start out with
both subunits alive; one serves as a spare part, as it were, and the other one is in a state of
readiness and is subject to random failure governed by its life-time distribution. This is state 2
in the terminology of previous sections. If now the ready subunit fails, the other one — the
spare part — is instantaneously activated, subject as of now to random failure, and the unit as a |
whole has moved into state 1. Failure of the second subunit is equivalent to breakdown of the ]
unit and transfer to failed state 0. If now the inspection policy is one of pure checking, there is |
need to specify two times, 7, and 7,. Reinspection is called for 7, time units after the present
inspection if the unit has been found in state 2; and diagnosis revealing the unit to be in state 1
will lead to rechecking after 7, time units. The cost components are / monetary units per
check. a monetary units per unit of lost time and R monetary units as an exit fee — for recon-
struction, reacquisition, or (possibly) as a salvage cost. We seek optimization with respect to
one cycle, i.e., minimization of the function

Lc(l, a, R) = IE(n) + aE(Ar) + R.

We recall that each subunit possesses life-time density of the negative exponential type
(32) f(x)=¢e & x =20 £ >0. -

The transition probabilities from state to state, i.e., the probabilities of finding the unit in state /
upon reinspecting it after = time units, given that the present state is i (/ = 1,2, j=0,1,2; j
< 1), are obtained as

[72'1(7') =St

Py () = Ere "
pro(r) =1 —e & (1+£7)
pia(r) = e ¥

(33) Prolr) =1 —¢ ¢,

These transition probabilities have to be applied, in principle, to (6), and for the determi-
nation of J, in (6), use has to be made of (9). Now it has been stated before than an
equivalent procedure is to apply the probabilities to (12) and determine functions J, through
utilizing (14) and (13).

The expected active life is, of course, equal to
(34) E(x) =2/¢
and we aim to minimize

L = 1E(n) + aE(At) + R = [E(n) + aE(1) — aE(x) + R

(35) =L —aE(x) + R.

Clearly, a procedure minimizing L minimizes L at the same time. Furthermore, we have
J,=0
], =/ +ar,

(36) Jy=1+ar,




o e

glaaioniey

ro
e
ro

/ KANDIER

We proceed now in the following manner First we set

an K =K, =J =0
t jl(rl) + Py oolny) I\
A, = mn |~
1 £ I(T)
I+ ar,
= min =
l—¢
I +ar|
(38) - =,
l—e¢ !

A numernical procedure, such as one carried out on a computer, will yield the optimal
values r,"and A ,' i’ the appropriate computational optimization routine s utilized. However,
(38) s of such simple structure that differentiation and setting JA [ /d7, equal 10 0 leads
immediately to the desired aim. We obtain after some manipulation

39 s QL (1+ér)),
d

so that rather elementary mathematical tables may be used for the numerical determination of
r I the value of 7 as inserted in (38) it is casily established that

(40) K, =1+alr + :

Fhe values of 7, and of A ;are determined in an analogous manner. We have that

S .i,(r'.) + pya(ry) K|' tpyolry) K’
A, = min{-
& 1 I ‘v(r.\)
Nl tary+ érpe K,
= minj - =
1 & g

l+ar, frve Utvar))
(41) = ."|. * $ \- & .
1 g F (l—e "D U=e "

Againgin this particular set of circumstances, a convenient way of deriving the optimal values
ryand A s through the differentiation of A with respect oy and setting the denivative equal
to 0. Use of (34) and (39) leads to

(42) Liw Ry ~ =2 & R

Since furthermore we have from previous considerations that

(43) [« K,=1EM) + ab (),

we are able to obtain the expectations £ (n) and £() through the determunation of the multi-
pliers accompanyving /and «
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2y 1(T5)
E(n) = = : l¢~/'l -
1 = p,ssy) 1 Pyl
1 ET ¢
(44) = — s
| gna | «
2y 34 TH)
g 1 ) TPy \T;
I = py 3(rs) 1 = gy 7 y)
ET 1€
(45) o e e S
] —e 1—¢ !

The present development gives only the relatively weak result that (44) and (45) hold under
optimal conditions. However, purely probabilistic argumentation shows that they are vahd
(and, indeed, this is what is stated in (44) and (45), stars having been omutted) for all pro-
cedures (7, 7,).

VI. SOME NUMERICAL RESULTS AND COMPARISONS

The present communication is concerned with the utilization of information acquired
when a check is carried out. A measure of the value of the information available in such a
fashion would be the difference in losses associated with two distinct optimal inspection
schemes: one that utilizes the diagnosis of the actual state in which the unit (s found on inspec-
tion and the other that takes cognizance of part of the information only, to wit, the unit's age.

As an example, consider a standby redundant structure consisting of N identical subunits.
The life time of each subunit is exponentially distributed. We have then that overall lifetime is
Erlang-distributed with N stages. The optimal diagnostic procedure in this case will count the
number of fatled subunits at the time an inspection s carried out; the determination of the next
checking time will depend on this information. The ordinary (nondiagnostic) procedure, out-
lined in our communications [4-6], will register only whether or not the unit at large is still
active and, if active, will use the present age of the structure — but no more — in order to
determine the next checking time.

The general expression for the overall life-time distribution F(x) is obtained as
(46) F(x) = pyolx).
After numerous numerical calculations regarding diagnostic distributions represented by

redundant structures of N equal subunits and the respective overall life-time distributions of
Erlang type, the following inferences seem justified:

{a) Curtailed inspection, i.e., procedure |ct}, and monitoring after checking, i.e., pro-
cedure {cm ], are more economic than pure checking policy {¢}.

(b) The {c¢] procedure of pure checking leads to smaller loss for a diagnostic distribution
than for the respective overall distribution.

(¢) Higher economy for the diagnostic distribution than for the overall simple one seems
attamnable also in the case of [/} and [lem) modes but not so for {Lct) and {Lem) procedures.

Several numerical results for the diagnostic distribution of a unit composed of N = 2. N
= 10 equal subunits, and the respective Erlang-type distribution of degree 2 and 10, are de-
picted in Table | and Fig. 1.
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THE ERROR IN THE NORMAL APPROXIMATION
TO THE MULTINOMIAL WITH AN
INCREASING NUMBER OF CLASSES

Lionel Weiss*

Cornell University
Ithaca, New York

ABSTRACT

In an earher paper, 1t was shown that under certain conditions, if the
number of classes in a mulunomial distribution increases as the number of tri-
als increases, the probabilities assigned to arbitrary regions by the multinomial
distribution are close to the probabilities assigned by the distribution of shghtly
rounded-off normal random variables A different method of studying the ap-
proximation of the mulunomial distribution by a normal distribution 1S to use
the muluvariate Berry-Esseen bound. In this paper. these two methods are
compared, particularly with respect to the class of mulunomial distributions for
which the bounds on the error remain useful

1. EXTENSION OF AN EARLIER RESULT

We briefly review the discussion in Ref. [4], with slightly different notation. For each

positive integer n, {X(n), - - - .X,(,,(n)} have a joint multinomial distribution, with parame-
Aln) Aln)
ters n, {p\(n), -~ .pyi(n)), where p(n) >0, 3 p(n) =1, ¥ X(n) =n We assume the
=] (=)
following:

(1.1) Forsome A >0, min [l—p(n)] > A;

l<_/<A(n)
Aln) + )
12 ¥ [np,(n)] "2 approaches zero as n increases;

=1
(1.3) k(n)[np,(,(n)] V2 approaches zero as n increases.
(In Ref. [4], it was explicitly assumed that min : [np (n)] approaches infinity as » increases.

| <i<h(n
This fact follows from (1.2).) =y

Define Y.(n) as [np,(n)] V2(X,(n)=np,(n)], for i = 1,...k(n), and denote P(}¥ (n) = v .
i=1,..,k(n)=11by h,(¥y,..c.¥i (1)

Suppose {Z(n),.... Z,(,, (n)] have the following joint normal probability density func-
tion:

*Research supported by NSF Grant No. MCS76-06340
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X
2w

where =, 1s given by the identity Z Ve tn) z =0, In accordance with this, the random
-1

1 2atn) 1)

2 l“’” 5
(,.1() l“.\ o b
o el 4 5

Aln) {

variable  Z,,,(n) is defined by the identity Y /p(n) Z(n)=0. We note that
o]
E{Z(n)) =0, Variance {(Z(m)} =1 —-p(n), and Covariance ({(Z(n), Z(n)}=—

e n)p (n) for 1) =1, ...k(n) 1%

For ¢ = 1,...k{x)—1, define_the random variable Z (n) as the closest value to Z (n)
which makes np (n) + /np(n) Z (n) an integer (positive, negative, or zero). Z,,,(n) is
given by the identity

Aln)

h 3 Jr(mZ (n) = 0.

i
Define # (n) by

T () = Z00) + — )
- wn = /J \n - ———— .
2/np (n)
An) i v
Then |6 (m)| < 1for =1, ... k(n)~1.and ¥ 0 (n) =0.50[6,,,(n)|<k(n) — 1. Denote

e -
PiZ(n) = y:i=1]... k(n)—1] by g,(v..... Yilmr—t)s

For any measurable region S, in (A (n)—1)-dimensional space, let P, (S,), Pk." {S.)
denote the probabilities assigned to S, by /. g,. respectively. In Ref. [4], it was shown that

Alm?
lim |P, (S,) - P, (S,)| =0 for any sequence [S,). Denote max{k (m)[np,,,(m)] " ¥
i) -
[np(n)] ') by D,. In this section, we will show that there is a finite value ¢ such that

| P, (S,) — P, (S)| gD,

R

l!,,(2|(ll) ..... Xetnrind) Ry = i )
RIEHOIE e —— by R,. If Bis any event, let B denote its negation. Let
£.(Z ((n)...., Ziim—1(n))

@ derote the standard normal cumulative distribution function. We will use the following ele-
mentary inequalities:

(1.4) Foranyevents B,, ... B,. P(B, N .0 B)>1- Y P(B).

3y

(1.5) Forany x > 0, ®(x) > | — l\ e

(1.6) 1If Qis a random variable with P[Q < 0] = 0, then P[Q < VE(Q)] > 1 - VE(Q).

The inequality (1.5) is a simplified version of a familiar inequality in Ref. [1].

Let 4, denote the event {np (n) + /np (n) Z(n) > —;— npn), =1, A(n)}. This is

the same as the event
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AL 1 np (n) 6(n)
- —1/ i 1) k(n)t,
VI=p(n) 2 1=p(n) np(n)

and for all sufficiently large n, this event is implied by the event
Z(n) np (n)
——" >-l,/-—”—— -1,.., k(m)}.
—p (n) 4 I—p (n)

If we use (1.4) and (1.5), the probability of this last event is easily seen to be at least
1 —o0(D,),so P(4,) >1—0(D,).

If A4, occurs, the quantity # appearing in the expression A(n) on p. 145 of Ref. [4] is
actually between 0 and 1, since it sets the point at which the third derivative lS evaluated in the

Z.(n) 8.7 (n)
Taylor’s expansion of log|l + ————=1|. and it follows that ||l + —F—— < 8. Examin-
¥ s . np,(n) l L I Jnp (n) |
ing A(n) on p. 145 of Ref. (4] and €,(Z,...., Zi(»-1) on p. 146 of Ref. [4], we can easily see

A(n)

that if 4, occurs, then |log R,| < ¢\ D, +cD,| Zim) | +cy X [np(n)] 12

4l
Zl Z(m|'} = Q,, say, where ¢,, ¢,, ¢, are fixed finite positive values. From the discussion

on I4S of (4], we have E ]Q | <D, for some finite positive ¢. If we use (1.6), it follows that
¢ D,

PlQ, £~D,) 21 -

Thus the occurrence of {4,N [Q, <~/¢ D,]} implies that |log R, | <~+/¢ D lf we use
¢l 4) it follows that P[| log R,| < /D] 2 1 —o(D,) - /D, or Ple V'"" < R,
3 l - o(D ) — /¢ D,. This last inequalily implies that we can find two finite positive

conslams ¢y, ¢s, such that P[I - 1| <€ ¢; /D, > 1 —=c¢; \/D,. and from this, using the
argument on pp. 261 and 262 of Ref [3], we get that ]_P,, kSa) —~ P ()| <2(cy +¢3) /D,

This completes the demonstration.

2. THE BERRY-ESSEEN BOUND

Let G,(S,) denote the probability assigned to a (k (n)—1)-dimensional set S, by the nor-
mal cumulative distribution function corresponding to the normal density given above. If S, is
of the form {Y (n) < vi:=1,..k(n)—1}, then Sazonov's result [2] specializes to the ine-
quality

IPy, (S)) = G, (S)]g
(‘(/\(ﬂ)—l) Aln) -1
N
P.(n) "
(1 = p(n) ——"-| (1 = 2p,(n) + 2p(n))
pk('l)(")

pn) (1=p(n))
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C(A(n)=1) is not given explicitly, but is known to be greater than y[A (n)—1]7 for some posi-
uve value y

Sazonov gives an analogous result for the case where §, is any convex set, with a
different C'(k (n)—1) which is greater than y [k (n)—1]* for some positive y.

3. COMPARISON OF THE TWO BOUNDS

The bound developed in Section | is for the approximation of the probability of an arbi-
trary set by a discretized normal distribution. The bound in Section 2 is for the approximation
of the probability of special sets by a normal distribution. We will compare these bounds for
large A (n) and sets S, of the form (Y (n) < v =1, A(n)-1}

If all {p (n)} are of the same order of magnitude (that is, if each p (n) is approximately

5

1/k(n)), then the Berry-Esseen bound of Section 2 is approximately —=
v

-1
[Clhk(n) — D) VA(n)[k(n) — 1), which is greater than =% [k(n) — 1] °. This bound
v
|
becomes useless unless (k (n))n * approaches zero as n increases.

On the other hand, the bound in Section 1 approaches zero as n increases as long as each v
|

p (n) is approximately -“l) and (K (n))n 7 approaches zero. Thus for A(n} n the interval
n
| By

(n7, n' . we can use the bound of Section 1 but not the bound of Section 2.

Finally, we convert the approximation of P,,” (S,) by P, (§)) to an approximation of
P, (5,) by G,(S,), for sets S, of the form fu; < Yiln) < 25 = 1,..., k(n) — 1}. Let
S,. S,(1). S.(2), §,(3) denote, respectively, the following sets in (A (n)—1)-dimensional

space:
e, < Y(n) <10 =1..., k(n) — 1}
. < ZAn) <ti1=1.... kin)=1)
u, — R — < /Zn) <t + e L =1 k(n) =1t
2-/np (n) i = NG i
ll+———l———<7(n)<l———~l———'l=l Ak(n) —1
2-/np () " = 2SIy '
Then we have:
3.0 [P, () -P, (5,(1))] gDy
32 G,(5,3) <P, (5,(1)) < G,(S,(2),
b Aln) -1 [‘
(3.3 G,(5,2) - G,(5,03) < ?:5:1}? 21 [np (n)] -
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The inequality (3.1) is the main result of Section 1. The nequahty (3.2) follows directly from
the definitions of Section 1. The inequality (3.3) is derived as follows. Since S, (3) is a subset

of $,(2), G,(85,()) = G,(5,3) =G50 5,3). But 5,0n8,3) is

aln) -1 l l
U U = == < Zn)< 4, + =
- 2y/np (n) E il 2np (n) I

1 1
U - ——— Zn)<t, + = —
\ 2Jmp () * 3VWW~)H

and so
G.AS. () N S.3)) “i‘l'u ! < Z(n)<u + ,___.#l
’ ¥ S o - = A . ———
T el 2 np () ¥ 2\np (n)
~z Pl .1 < Z(n) <t + = ,_‘__M, )
: 2np () = 2/np n)

Z(n)
But P[Z () falls in a given interval of length L] = P = falls in the corresponding
vi-pin
v 1 L SRy TEEEt e .
interval ot length = < : — < - . Inequality (3.3) follows immedi-
Vi=pm) | = 2al-p(n)) = V2md

ately

It 1s an immediate consequence of the inequalities that [P, (S) — Plu < Z(n) <

p | o
GO B k(n)=1]] € —= D, + ¢/D,
’- \IYTA &
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ABSTRACT

An algorithm for calculating the probabilities of a summed multinomial
density function which is recursive with n (the number of trials) 1s presented.
Having application in inspector error models for audiing and quality control
problems with Cartesian product structures, the algorithm is discussed in the
context of computing optimal economic sampling plans. Computational experi-
ence with the algorithm is presented.

INTRODUCTION

In many statistica! decision problems, the probabilities of the adjudged or reported experi-
mental outcomes, given the rrue experimental outcomes of an experiment, must be determined
for tf.¢ various experiments considered. For example, in inspector error models in auditing and
quality control, the computation of p,(y|x) — where y and x are the reported and the true
number of defectives, respectively, in the n items sampled — is essential for determining
optimal economic sampling plans [3].1

More generally, this is an example of the following statistical problem. We wish to esti-
mate the posterior distribution of the states 6,....,8,, based on the true experimental outcomes
X|,....,X,, but the x's are unobservable. Observed in their place are y.....y,. Thus, the poste-
rior distribution must be estimated using the »'s; i.e., we must estimate p{® =6,|}Y =y ],
where © is a random variable whose domain is {#,,...,6,) and Y is a random variable whose
domain is {y,.....y,}). To do this, we need to find p{}Y =y |X = x;}, X being a random variable
whose domain is {x,,...,x,}, and then apply Bayes’ Theorem as follows:#

*Formerly School of Aeronautics and Astronautics, Purdue University

tConclusive evidence exists that inspectors and inspection procedures are fallible, and that these errors are
not sufficiently improved with training to be neglected in such model formulations [1.2.3.4] Errors are intro-
duced into the inspection process when an item s erroncously classified as either bad (Type-I error) or good
(Type-1l error)

tIt is assumed that the observables (1) are conditionally independent of #. given

263 g A S ———.




264 R K FINK & H MOSKOWITZ

plO=0|Y=y)=plY=y|0=0) p(O@=9)

where

Yoy =ylX=x} plXx=xl0=0)

A=1

plY =y |0 =06

and
e

Soply=yl0=06}) pl©=09)
-1

plY =y,

To illustrate, in quality control # would represent the [ot fraction defective (lot quality state), x
the true number of defectives in the sample, and y the number of observed (reported) defec-
tives in the sample (includes those properly and improperly classified). The computation of
p,(8]y) would be used in determining an optimal economic sampling plan; i.e., choosing an
optimal sample size n* and acceptance number ¢* The implementation of this plan would
involve (a) drawing a single sample of »*items from a lot of size N, (b) observing the number
of defective items y in the sample (perhaps erroneously due to inspection error), and (c) reject-
ing the lot if more than ¢* defectives are observed (i.e., if v < ¢* accept lot, otherwise reject
lot).

In discrete inspector error models, the probabilities p,(y|x) can be typically calculated
using a summed multinomial density function. In this paper, a highly efficient recursive algo-
rithm for the computation of these probabilities is presented. The following notation will be
used to develop the algorithm:

n = number of trials (sample size)
x = true number of failures in n trials
vy = reported number of failures in » trials
p,lv.x} = joint probability of reported failures and true failures in
n trials (an abbreviated notation for p,{Y =y, X = x})
p.lyvlx} = conditional probability of reported failures given the true failures

in n trials (an abbreviated notation for p,{Y = y |X = x}).

SUMMED MULTINOMIAL FORMULATION

If we can view an experiment as consisting of » independent trials, each trial having four
mutually exclusive and exhaustive outcomes (1) report a success when a true success occurs;
(2) report a failure when a true success occurs; (3) report a success when a true failure occurs;
(4) report a failure when a true failure occurs) whose probabilities remain constant for each
trial, each element of the matrix [p,{y|x}] can be computed using the following summed multi-
nomial density function (see Appendix A for derivation),

"Ny

n!(p,010) "(p (110} 2(p {011 ) p i1 1D
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(1) plilk} = 3y

(nynynyngeN

n

k

Vix

where N is the set of solutions {(n, n,y, ny n)l, (< n + 1), to the integer linear system
J=ny+ng k=ny+ng n =0, integer, and L, n = n. p,{0{0] is the probability that the
reported outcome is successful given that the true outcome is successful: p,{1]0} is the proba-
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bility that the reported outcome is a failure given that the true outcome is successful (Type-l
error); and so on.t n,, n, »; and n, are the number of times outcomes (1), (2), (3), and

(4) occur, respectively, in n trials.

However, the computational complexity of this density function and the fact that most
algorithms for determining optimal quality control inspection plans examine successively
increasing sample sizes, highlight the value of a recursive formulation of p.{vlx} (5], In this
paper we develop from the basic transition equation a recursive algorithm for computing
p,{v|x], for quality control and auditing applications, which circumvents the use of the more
computationally laborious summed multinomial density function.

RECURSIVE ALGORITHM
Development

If the experiment is composed of n independent trials, then the probabilities of outcomes
for n trials can be determined from the probabilities of outcomes for (n — 1) trials and the pro-
babilities for the nth trial. We will assume that the probabilities for each trial are identically dis-
tributed, and we can therefore write the step-transition equation:

(2 pli k) =p, U k1pif0. O} + p, (i k& = 11pyf0. 1) + p, i = 1klpi1. O]
+p, i =1 k=1pf1, 1}, 0<,<n0<k<n

Replacing the joint probabilities by the appropriate conditional and marginal probabilities and
dividing both sides by p,{x = k} yields:

n -

(3) p, b k)= 5 [p, (lilkipif0l0) + p, i = Llklp(1]0}]

n
# % (p, Lilk = 1o f0l1) + py i — Lk = Upy {11 0< /< n 0< & <n

For the case k = 0, this becomes

(33) pn{/|l‘] =pr}-l{lll\}pl‘010’ +p/1—][.1 S ll/\]l’,l”O},
and for k = n,

For the case 0 < k < n, we can show inductively that both (3a) and (3b) are true (see
Appendix B). Thus (3a) can be used for 0 < k < n, and (3b) can be used for 0 < k < n.
This approach forms the basis for the recursive algorithm presented below, which s more
efficient than using (3) because less than half as many computations are required.

Matrix Formulation of the Recursive Algorithm

Given the arrays of probabilities [p,{y(x}]] and (p, {y[x!]. we wish to find (p,{v[x]]. Let

R = an (n + 1) x narray constructed with rows from [p, {v|x]]
Q = an (n + 1) x 2 array constructed with rows from [p,{v|x]].

*+The values for /vl(tl\l would be typically determined empirically using past data on inspector performance
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STEP I: CONSTRUCT THE Q ARRAY. The (n + 1) x 2 Q array is constructed from
[p,lvIx)]. The first m rows of Q will be identical to row 1 of [p,{y|x}], and the remaining
(n +1 — m) rows of Q will be identical to row 2 of [p,{y[x]]. The value of m is determined in
one of two ways, depending on whether »n is even or odd: m = (n/2) + 1 for even n.
m = (n + 1)/2 for odd n. Thus, ¢, = p,(0/0} and ¢, = p,{1|0} for /=1, 2, .., m, and
gr=p01} and g, =p,{1|{l) for i =m + 1, m +2,..n + 1.

STEP II: CONSTRUCT THE R ARRAY. The (n + 1) x n array R is constructed by
taking the mth row (m as calculated in Step I, above) of [p, {y|x]] and using it as the mth and
(m — 1)th rows of R. The first (m — 1) rows of R are identical to the first (m — 1) rows of
(p, (vIxIl; the Gm + Dth row of [p, {v|x}] becomes the (m + 2)th row of R, and so on.
Thus, for i< m, r,=p,4lji=1}i=1}) for j=, 1,23,...n and for i>m,
r,=p, i = 1li =2} forj=1,23,...n

STEP I1I: CALCULATE ([p,{v|x}]. [p,{v|x}] is then calculated a row at a time as fol-
lows:

@

0
(4) lp,vlxl. =0, lo R

fora=1,223...nn+1,

where the subscript « indicates the a-row of the array. If we use the elements of the arrays in
place of the row vectors, (4) can also be written as
(43) [Pr;l()'(\' - l}ﬁ,,‘l‘(l 3 1} pn{.,"a = ]] pnl"l“ = l”

[ ] Fat Ta2 " laj " Tan 0
=4 d.
AR 0 Fal ™ Ta;=1) Fatn=1) Tan

It can be easily seen that this matrix formulation embodies the recursive equations (3a) and
(3b). We can continue recursively in this fashion to find [p, . {v[x}], [p, v [x}, ... .

EXAMPLE: Consider the problem where

9 1
[p|{)'|-\'}] - ) 8l
We wish to find [p,{v|x}] for n = 23..... Forn=2:

9 1
. m=n/2))+1=2—=0=1(9 .1
2 8
9 1
. m=0m/2)+1=2—=R=1|2 8
2 8

g a1 0
. (pylyixily =109 .11 0 9 .l]=['81 18 .01}

paly]x), =19 .llb 2 _8]=[,18 74 .08]

; 0

-
<
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Therefore,
81 18 01
[polv|xll =118 .74 .08].
04 32 .64
For n = 3:
9
9 .
. m=nh+1/2—Q= 2 8
2 8
81 .18 .01
0 18 .74 08
. m=(n+1)/2—R = 18 74 08
04 32 64

If we use (4), in Step 11, [p,{y|x}] thus becomes

729 243 027 001
162 [684] .146 008

Pl =1036 292 608 064
008 096 384 512

We can continue recursively in this fashion for n» =4.,5,... . Note that the rows of
[p,{v|x}] sum to one as they should, since a row represents the probabilities of various
reported experimental outcomes for a given true experimental outcome. ldentical results for
[p,{v|x}] are obtained by calculating the probabilities using the summed multinomial density
function. For example, for p3{l|l} we have j=n,+ny=1, k=ny+n,=1, and
n=mn,+n,+ ny+ ny=13, yielding the set N = (1,1,1,0), (2,0.0.1) which gives

30 1(9CDHUCDN8? (9120 8)!
|3| 1o 21000 1!
1

l’}“l” o

= .684.

Remarks

In its present form, the recursive algorithm assumes constant, identically distributed trial
probabilities. In the context of inspector error models, this implies constant inspector error
independent of sample size. However, more sophisticated models of inspector error can be
easily accommodated by the algorithm.

For example, if inspector error remains constant in each trial (i.e., for each item inspected
in the sample) for a given sample size n, but changes with increasing n, we can reflect this exo-
geneously adjusting [p,{v]x]] for each sample size n, and setting it to [p,{v[x1], (the inspec-
tor error probabilities for a single sample out of a sample size n). For each n we must then use
the recursive algorithm to regenerate [p {v|x}1 . [polvlxtln, oo o [p,dvlxil(, 0 while this
slows things down considerably, it is still much faster than the summed multinomial approach
(see Computational Experience below).
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A computationally simpler modet (which 1s more realistic for inspection error) is one in
which the trials are not adentcally  distributed, but change with sample size such  that
[p vy H o, the error probabilities at the Ath trial, are constant for any sample size n, but
Ip vl o and [p v need not be identical. This may reflect the effects of fatigue on
the inspector’s performance; i the transttion equation (2), this implies varable step-transition
probabilities. For this case, we can simply adjust {p vy, as necessary, and calculate
[p, v I frome [p v v} with victually no inerease m computation time

COMPUTATIONAL EXPERIENCEY

Using FORTRAN IV and a CDC 6500 computer, we have generated the arrays tor sample
sizes trom 71 = 1 to 2000 With the algorithm, these computations require about o0 s of central
processor (CPU) time to generate all matniees [p, v [y from 7= 1o 1500 A summed mult-
nomial solution requires 348s to generate only the matrix [p by v (Figo D0 1e should be
noted that the coding of the algorithm can eliminate the Q and R arrays, and can use temporary
row storage vectors ("temp”) o achieve a substantial reduction i central memory requirements
on the order of 77 (6]

350 SUMME D
| 0 RECURSIVE ™ MULTINOMIAL **
" 28 I 0 34 1 1693 |
50 | 2454 | 12548 |
30! s 1 osorr a2ere | SUMME D) MULTINOMIAL
‘\'} 100 k wae8 | 0068y |
1| 150 4 o0 245 Aqr rae | {
2001 a8 067 ] /
250
cru /
TIME " TME TO COMPUTE [0, {yl-} ] lo_,{v{l}' ] //
($) | 5 L
| N /
200| (i) /
[ RECURSIVE
L) = - | g .
| MTTIME TOCOMPUTE ONLY [P 4 v[x}] ; (CUMGLATIVE)
150 i .
100 .
80,
o0 -
40 .
20| .
| v .
{ - e
0 2% A0 4] 0o 50 200
nsSAMPLE SI2E
Picuke | Computational expenence, recursive and summed tormulations

CONCLUSION

Fhe algorithm presented describes an efticient method tor caleulating the probabiliies ot a
summed multinomial densitty functon. The algorithm s particularly advantageous when an
array of such probabiiies must be computed tor a number of different sample sizes as would
be the case when attempting o determine an optimal samphing plan for quahty control. The

A computer program abstract and program hstimg of the recursion algonthm s avalable on request The al
gorithm as used as a subroutine with other computational routmes tor determming optimal samphling plans in
ettty contral and auditrmge Abstracts and histings o these programs are also avalable on request
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algorithm can also be used o economucally develop appropriate tables tor a summed multino-
mial density function, which could be used tor constant inspector error models. It inspector
error rates are not constant but vary with the numbered item sampled, mspector error tables
could also be developed, it a recursion existed between p,(/[A), and p (/A 7 =0, 1,
A =01

For sample sizes in the range of practical interest, the core memory requirements of the
algorithm are not prolubitively large. While the effects of cumulative truncation errors in the
algorithm have not been studied in detal, the solution quahty has been generally acceptable in
apphications to date [7] Morcover, one can resort 1o extended precision arithmetric to minim-
ize such cumulative truncatton errors, however, at the expense of ncreased core memory
usage.  The computatonal advantage provided by the recursive algorithm has enabled the solu-
ton of problems which were previously computationally impractical 7]
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APPENDIN A

DERIVATION OF THE SUMMED MULTINOMIAL DENSITY FUNCTION
FOR DETERMINING p {v|v]

Let vy, vy, v, be the possible acrial ot rrue outcomes (data) ot an expeniment ¢ (e.g.,
sample of size ). Let vy, vy, o v, be the adiudged or observed (eg . ispector or auditor
reported) outcomes of an experiment ¢ We wish (o tind p )y i kl,toc /. K =0, ... n

Ihis can be derived using a summed multinonual density tunction 1t (1) the experniment ¢
consists of 2 dentical trials, () cach trial s a Bernoulli process to which the values 0 and 1 can
be  assigned To show this, Let B el 1} be the actwal outcomes of trial 1 with
plW, =0} = p o}, pin 1= pydth pdob ¢ pdth = 1 Ve te g, let 0 = a nondefective ttem,

I = a defective ttem) Thus, the tnals are imdependent and dentically  distributed. Let
x=L" MW Similarly, detine Vel 1) and v = L7 b for the adideed outcomes.  Let
il ol 0} = p,0]0), pid (Rl 0f = p, Lo, pil unt t} = pyC0[1),
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piV = 1W, =1} =p (1|1, be known ftunctions that are fixed Vi We wish to find
poAv = |y = A} We know that the four outcomes (events), (b, =0, W, =0} {}, =1,
W =0}, [}, =0, W =1} and {} =1, B =1} are mutually exclusive and collectively
exhaustive at each trial 1, with probabilities p {0, 0}, .., p {1, 1}, respectively. Let the above
four outcomes occur ny, 1y, nyoand ny umes, respectively, i experiment ¢ . Then we have
J=ny+ng K=ny+ng n=2X"\n, ny, ny ny ng >0, integer, where /. A, and n are
known.

The above system has a finite number (< 7 + 1) of feasible solutions. Let N = {(n,, n,,
ny, ny)| above linear system satistied}. Then
paly = J. x =k}

Al i - -
( p.ly = jlx = k) ey

where

pufy =k} = “l pdo, 4 ptt LY o, o) + potl, 04

or
(A.2) polx = A} = I:I p AL} pto} t
v
The joint probability distribution p,0v =, v = A} can be represented by the summed
multinomial density function
nt(p 0, 0Dt oD o, ) el ah ™ |

Py = j x =k} = L, tympgde N TSI e
Lkt My My My Wy

Letting p,{0. 0} = p{0]0} - p {0}, ete., and substituting and factoring yields

ntep (010D e ttjoh e et e frah

nyt oy ony!ong!

(A3 Py = s X = K] = iy npnynen

.

p 0}
But ny + ny = hand ny + ny = n — Ak Substututing (A2) and (A3 nto (A 1) then gives

' (o d0Jo) e o) e o) e i ih

my! oyt oy oy
n
b A
A

which is simply a summed multinomial density function, where 7 = ny + oy A Ny 4 Ny
no= X' n.n >0, integer, and the matrix [p{y [V s Markov. Note that (nyeomy e ndel
can be obtained by writing 7 i terms of nyove ., (n A b g A oong nde N, all com-
ponents being nonnegative. Hence,

iy ghe N

(A 4) puly = jlx =k} = El.,l

(A5) N=U; oln=k=j + ny j=ny k=ngy ndln=k=j + ng 20, j—ng 20, k—ny 2 0f
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APPENDIX B

THEOREM: For 0 < A < n,
(B p Utk = - polth + p i — Lk — U pyltitd = p ULk - pytofod
+ 0 AL poti]ol)

(and we assume that the above equation holds tor » 1)

PROOF: Expanding the left hand side of (B.1) with the recursion equation (3) we get

B.2) Pk =t pdoft) + p - 1A =1 pyfifil =

pfolty - A Gk 1 polol + g, b 1Kt 1ol
Fodod - A G =2 polth + eyl UK = 2t

+pdttl - & ‘: ). Ap, - LA = Hpdolel + p, s - 2lk = 1) pydt|ol])
ot A, U R = 200000+ p, b 20k = 2t

By induction we assume that the first bracketed term on the right-hand side of (B.2), [ 1, s
equal 1o the second bracketed term [ ], and the third bracketed term, [ 1. s equal to the
tourth, [ 1, Substituting [ 1, tor [ 1., and [ 1itor [ 1, (B.1) yields

B3 Pk =t} p o)t} + p, i — Lk = 1} pltfl) =
poI1) - p, Lk = 1) pydolo) + p, (1A — Upydt]ol)
ot e, - Uk = L pyfofod + p, (& = 2[4 — tipydLIO]]

The dentical result in (B 3) would also be obtained by expanding the night-hand side of (B.1)
using the recursion equation (3) Hence (B 1) s true.




A PROBABILITY MODEL FOR INITIAL CRACK SIZE
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ABSTRACT

With constant firing, metal faugue produces cracks in a gun barrel. The
useful life of the barrel comes to an end when a crack develops to a critical
size. The theory of Fracture Mechanics suggests a formula for crack size
growth rate. This formula can be used to determine the life of a barrel,
depending on the initial and critical crack sizes and other factors. The initial
crack size turns out to be a dominant factor. Unfortunately, accurate measure-
ments are not generally available on the initial crack size. In this paper, we
propose a simple probability model for the initial crack size and this, in turn,
leads to a probability distribution of the life of the barrel. This last distribution
is the well-known exponential distribution with a location shift. The simplicity
of this final result is one of the factors that make the model appealing.

1. INTRODUCTION

Suppose that there is a crack of size b in a gun barrel after N rounds have been fired. The
rate at which the crack size will grow, db/dN, is a central topic of study in Fracture Mechanics.
The following formula, taken from Davidson, Throop and Reiner!'!| represents a reasonably
simplified version of many more complicated ones available.

(1.1 db = C(AK)'".
dN E Sy K,
where

AK = increase in stress intensity

E = elastic modulus

M
[

tensile yield strength
K, = fracture toughness
m = a constant between 2 and 4

C = a material constant.
*Research supported by the Army, Navy, and Air Force under the U.S. Army Research Office-Durham grant

No. DAAG29-76-G-0238. Reproduction in whole or in part is permitted for any purpose of the US. govern-
ment.
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Throop'! gives a simple expression for AK, which depends on the size b and the shape of the
crack, as follows:

(1.2) AK = aSVmb,
where
g +1
S = bore stress = p w,
w—]
p = pressure
w = ratio of outer diameter inner diameter

1.5 if the crack is a frontal notch

a = { 1.0 if the crack is semielliptical
0.5 if the crack is semicircular.
Thus
b ‘
(13) _‘_, S hrn P
dN e '
where v
\
(1.4) D = [Ca”S"n" /[ESVK,].

Suppose that the barrel is fired a few rounds to provide a heat check pattern. The size of
the largest crack produced at this stage is called the /ninal crack size and denoted by b,. The
number of rounds, L, required for this crack to grow to the critical crack size b _1is the lfe of
the barrel. From (1.3), it is easy to obtain an expression for L: ]

2

m [b“ {m=2) :‘h‘ (m ) j] s 2

[
. .
(1.5) % llog b — log b,) if m = 2.

It is easy to see from (1.5) that while the effect of b on L is minimal, the effect of &, is

significant. For instance, an increase from 4 in. to S in. in b_ increases L only by when

1
20D°
,30(7 4. For the same m, the increase in L when b, is decreased from 0.01 in. to 0.001 in. is
D
be useful to model the distribution b,. We do this in the next section and show how this leads
to a simple distribution for L.

Also, the initial crack size is difficult to measure since it is so small. It would therefore

To the best of our knowledge, there have been only two previous attempts made (o intro-
duce probability models in the problem of fatigue crack growth. Racicot"'l assumed fixed values
for b, and b . and various probability distributions for the several factors in . He then
obtained empirical results for the distribution of L by simulation on a computer. Hanagud and
Uppaluri? used a formula for crack growth rate which is slightly more complex than (1.1) and
involves a quantity r which is the ratio of the maximum stress intensity factor to the minimum
stress intensity factor. They assumed that both AKX and » were random, and obtained approxi-
mations to the expected crack size growth rate. They used these results to study improvements
in rehability obtainable by examination and repair. Since examination and repair are not possi-
ble in a gun barrel operating in the field, their results are not applicable to our problem.

e A I i e o i i i ‘ . .J
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2. THE PROBABILITY MODEL

The first few rounds of firing produce a heat check pattern. Let this pattern contain N
cracks having sizes (', ....C'y. Then the initial crack size b, is given by 4

In our probability model, we assume the ;. C,.... are independent and identically distributed
according to a uniform distribution on [0,B]. We also assume that N is an independent variable
governed by a Poisson distribution with parameter A. A physical interpretation for B and A is
as follows: B represents the maximum possible initial crack size and A is a measure of the
number of cracks in the heat check pattern. Our probability model depends on just these two
easily interpretable quantities. Thus,

P(b, € b) = P(max(C,.....Cy) < bIN 2 1)
Y P(max(C,.....C,) < b) P(N =n)
T |
Y P(N =n)
T |
- h # .
2 i—l;l e *\"/n! v
0l
Y *\/n!
n=|
so that
b B
Q.10 P, < b) = i-i»f‘l, 0<bh <8
=

The distribution in (2.1) is our probability model for the initial crack size. [t is physically
motivated and simple. A sample application of this model given at the end of this section pro-
vides more support for the model.

If the distribution of D (for definition, see (1.4)) or the distribution pf the factors that
enter 1 are known, one can combine that knowledge with the probability distribution of b, in .
(2.1) to obtain the distribution of the life L of the barrel. *

As a sample application, we will obtain an approximation to the distribution of /L.
Assume that Dis known and m = 4. Formula (1.5) states that

| I
a5 Db, Db

Thus, for any x > 0,

r [I. <

AET 1 4 =X
DB Db, ADB

- P

b, \
— +_,)l
Lo ae |
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b
P 2 1
B A
l,\ (w\ VAl )
from(2.1)
et |
(2.2) = 1 &

where = stands for approximately equal to and we have used the relations

1

1 + s = | 2 and ¢* | = e,
A A

which are good approximations even for moderate values of A The conclusion in (2.2) may be
summarized as follows

o It the number of all crack sizes in the heat check 1s moderately large. the hte of a
gun barrel has an exponential distribution with a location shift

L] In the general case, where 1 is assumed to be random, the distribution of the hife
of the barrel becomes a munture of shifted exponential distributions

The assumptions of a unitorm distribution for mitial crack size and a Poisson distribution
for the number of cracks in the heat check pattern are not required for a result hike (2.2) and
were made here just to illustrate the proof. In tact, it can be shown from the theory of imiting
distributions for the maximum (or nuomum) ot large numbers ot random varables that the
distribution of £ can be approximated by a shifted Weibull distribution. In the general case

where D s assumed to be random, the distribution ot [ can be approximated by a muxture of

shifted Werbull distributions with a common shape parameter

It 1s hoped that currently available data on gun barrels will be studied turther to test the
validity of our model

3. CONCLUSIONS
(1) A simple probability model for the imttial crack size s given i (2.1)

(2) 1tas derived, as a conscquence, that the hfe of a barrel has a shifted exponenual dis-
tribution

(3)  Under pracuically no assumptions, 1t can be shown that the hite of a barrel has a
shifted Weibull distribution

(4) When D as defined in (1.4) 15 assumed to be random, the distiibution ot the hite of a
barrel 1s a muxture of shifted Werbull distributions with a common shape parameter
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ABSTRACT

A new approach is presented for analyzing multiple-attribute decision prob-
lems in which the set of actions is finite and the utility function is additive.
The problem can be resolved if the decision makers (or group of decision mak-
ers) specifies a set of nonnegative weiglts for the various aitributes or criteria,
but we here assume that the decision maker(s) cannot provide a numerical
value for each such weight. Ordinal information about these weights is there-
fore obtained from the decision maker(s), and this information is translated
into a set of linear constraints which restrict the values of the weights. These
constraints are then used to construct a polytope W of feasible weight vectors,
and the subsets H/ (polytopes) of W over which each action a has the greatest
utility are determined. With the Comparative Hypervolume Criterion we calcu-
late for each action the ratio of the hypervolume of # to the hypervolume of
W and suggest the choice of an action with the largest such ratio. Justification
of this choice criterion is given, and a computational method for accurately ap-
proximating the hypervolume ratios is described. A simple example is provided
to evaluate the efficiency of a computer code developed to implement the
method.

INTRODUCTION

We consider finite action decision problems of the following nature: The decision
maker(s) must choose one action from a finite set 4 of feasible actions. Each action
a e A, i =1, .., m, is evaluated with respect to a finite set C = {¢,|; =1, ..., n} of judgment
criteria (attributes). Let s, be the raw score of action a, with respect to attribute c¢,; these
scores may be on either ordinal or interval scales.

We suppose an action will be chosen on the basis of maximum utility, where the utility of
action a, is u*(a)) = u(s,, ..., s,). We further assume that the utility function « is additive
(see Fishburn [5-7]) so that
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Q0] u*Ca) = ulsy, ... s,) = ZU(s ).
-1

It then follows from the basic results of additive utility theory that for the purposes of decision
making we may replace the functions w, of the raw scores s, by w v  where v is a relative
value of the raw score s, based on the set of all possible scores s, with respect to attribute ¢ ,
and each w, is a positive weight. Furthermore, without loss of generality, we may choose the
relative values so that for each attribute ¢,, the most desired raw score s . of the m scores is
mapped into the value v. = 10 while the least desired raw score s  of the m scores is mapped
into the value v , = 0. (This assumes that not all the values w (s ), /=1, ..., m, are the
same. If this were so, there would be no need to consider attribute ¢.) All the other raw
scores s, for the various actions @, are mapped into values between 0 and 10 inclusive. (Any
finite values a and b, with @ < b, could be used instead of 0 and 10, respectively. we choose
the interval [0, 10] for its simplicity and intuitive appeal.) Also without loss of generality, we
may choose the weights w, so that Yw, = 1.

Thus we write the utility of each action a as
n

(2) u*(a) = z W
=1

Since the v, depend on the raw scores s, and the preferences of the decision maker(s) for
these scores, we may asume that he (they) can provide the appropriate v values without undue
difficulty. We therefore define the m by n matrix } of the v, values: for each column ; the
values v, lie between 0 and 10 inclusive, with at least one of them being 0 and at least one of
them being 10.

If we define the n by 1 column vector w of weights and let }' be the /th row of }"we may
rewrite (2) as
(3) u*(a) = Vow.

If the decision maker(s) provide(s) an appropriate weight vector w = w* then (2) or (3)
should be used as the basis for selecting an action. In many cases, however, the decision
maker(s) may not be willing to provide a particular w. In the case of an individual decision
maker this may be simply due to the fact that he or she cannot articulate his or her preferences
with such precision. Indeed, it may be somewhat unusual to find a decision maker who will
specify a particular w. In the case of a group of decision makers, there may be considerable
disagreement about the appropriate weight vector w. This could be the situation if, for exam-
ple, they represent different sectors of society and the decision problem encompasses different
criteria which are economic, environmental, and political in nature.

We may therefore distinguish two extreme situations that can apply to the state of
knowledge of the decision maker(s) with respect to w :

(i) Nothing is known about w except that it lies in the set

weE"l Y ow =1 alw >0}
1

-

(i) Tt is known that w = w*

We term case (i) multiple-attribute decision making with no mformation and case (it) multiple-
attribute decision making with complete information, and respectively refer to a multiple-attribute
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problem with no information or complete information. We wish to consider the general case
between these two extremes, and we term it multiple-attribute decision making with partal
mtormarion. It will include the two cases above as specific extremes.

We therefore define the set B as the set of weight vectors that the decision maker(s)
deem(s) feasible, i.e., may be an appropriate one in light of his subjective feelings (or in light
of their range of agreement if there are several decision makers). In case (i) above, therefore,
we have

W=Ilwebt| Tw=1alw >0} =W
!

while 1in case (1) we have

W = {w*}.

Having thus introduced the notion of multiple-attribute decision making with partial infor-
mation, we shall, in the next section, discuss the construction and characterization of W After
that we will introduce the Comparative Hypervolume Criterion for choosing an action when the
set W is not a unique point. The following section details the Monte Carlo method that has
been developed to accurately approximate the numerical quantities used by the Comparative
Hypervolume Criterion. The final section summarizes the numerical method and presents an
illustrative example that has been used to partially evaluate the accuracy and efficiency of the
Monte Carlo method and the computer program implementing it

We note here that a similar approach has been presented in [3] for the case of no infor-
mation and a minor extension of it. The numerical approach of [3] is only efficient for the case
of no information, however, and cannot be used in the general case of partial information. The
Monte Carlo technique presented herein is quite different and much more efficient.

THE SET W OF FEASIBLE WEIGHT VECTORS

We have seen above that the set W of feasible weight vectors is W in the case of no
information and the singleton set {w*} in the case of complete information. In the general case
we may suppose that W is defined by equality and inequality constraints involving the com-
ponents w,. .... w, of w. In the present situation, however, we will confine ourselves to linear
constraints involving the weights. These may arise very naturally as follows.

We can translate the statement "attribute ¢ is at least as important as attribute ¢." on the
part of the decision maker(s) into the mathematical statement w > w . As a direct extension
of this that is compatible with the foundations of additive utility [S], we let Jand A be subsets
of N = {1. ... n} and translate the statement "the set of attributes with indices in J, taken
together, are at least as important as the set of attributes with indices in A " into the mathemat-
ical statement

ZM' : Z Wy,
et

LeA

With similar reasoning, constraints of the torm

ZW < by
«l

where b, is a constant between zero and one, may be elicited from the feelings and statements
of the decision maker(s). The important point is that the decision maker(s) agree(s) that
weight vectors not satisfying such constraints are not to be considered
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In general, then, we shall assume that the partial information possessed by the decision
maker(s) concerning w has been encoded in a set of linear constraints on w, ... w,. To these
we add the normalizing constraint z w = 1. Without loss of generality we can convert all the

constraints 1o inequaklity constraints; hence we may write W as

(4) W ={wel" 4w <b w2 0}.

where 4 is the s by # matrix of constraint coeflicients and b is the s by 1 right-hand side vector.
Thus His a bounded polvtope in £7. W C W and in the case of no information, B = H. In
the case of complete information M'is a single point.

THE COMPARATIVE HYPERVOLUME CRITERION

Now that we have constructed ¥, how shall we use it in aiding the decision maker(s) to
select an action ¢ to implement? For every w € W we can compute, for each ¢ € 4, the utility
value #*(a) = } w. and hence find the action or actions with highest utility value for this par-
ticular w. Let us call such an action an optimal one with respect to w and denote by 4 (w) the
set of such optimal actions with respect to w. Clearly, if there i1s an action a such that
a € 4(w) for all w € W, then we can confidently claim that this a is the one to choose. Given
4, b, and }, we can check, but not necessarily easily, for the existence of such a clearly optimal
a (a necessary and sufficient condition for @ € 4 (w) for all w € W is that @ € 4 (w?) for all
extreme points w* of ). But it will be rare indeed that such a clearly optimal action exists, so
we must search further for a basis for choosing an action.

If there is an action a such that @ € 4 (w) for "most” w € W (but not all w € W), then it
seems reasonably wise 10 sefect this action; it is the one most “likely" to lead to the highest util-
ity of any of the actions inn 4. Here, "likely" is taken with respect to a uniform probability dis-
tribution of the w ¢ B, What we are now suggesting, therefore, is to measure for each a € 4
the relative frequency with which @ € 4 (w). We then suggest as optimal an action with the
largest such relative frequency. Stated another way, we define an optimal action to be one
which maximizes the probability of yielding a utility value at least as high as that of all other
actions for a randomly selected w e W. For reasons which will shortly become apparent, we
call this criterion the Comparative Hypervolume Criterion (CHC). Besides its intuitive appeal
as illustrated above, its compatibility with Bernoullian utility constructs has been demonstrated
in Ref. [1].

Let us now be more exact about the CHC. Define, for + =1, ... m,
(5) H ={weWla e 4w},
where, to repeat,
(6) 4(w) ={a e 4|V w > W k=1, .. m).
Thus we have the equivalent characterization
(7 H =1{weW|lhw > Viw k=1, ... ml.

We then measure the relative frequency with which @ € 4 (w) by

(8) r = f” dw/ fu dw,

where the element of integration dw in (8) depends on the dimensionality of W (which will be
discussed below). Thus, 7 is a ratio of hypervolumes. The Comparative Hypervolume Cri-
terion then suggests the choice of an action @ such that r > A =1, ... m
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The computational difficulty faced by the CHC is the computation of the ratios ry, ..., r,,.
Although W has aa explicit characterization as a polytope and the same is true of / by virture
of (7), it is very difficult to carry out the integrations required by (8). We have developed a
Monte Carlo simulation method to accurately approximate the ratios r, ..., r,, needed by the
CHC:; this is detailed in the next section.

THE MONTE CARLO SIMULATION METHOD

In Ref. [3] is given a relatively efficient Monte Carlo method for evaluating the hypervo-
lume ratios in the case of multiple-attribute decision making with no information. In this case

W = W, so a random point w within W can be easily generated by drawing » uniform random
numbers and then normalizing them to sum to one. The quantities V' w, (1 =1, ..., m are com-

pu ed and compared, and a record is kept of the value or values of / that maximize(s) } w. If-

k. s the count of the number of drawings for which action a, yields the maximum value of } w
in . total sample size of g, then k,/gis the appropriate estimate of r.

This approach might be extended to the case of partial information by discarding the point
w drawn if w e W, but this sampling will be highly inefficient if W is small relative to W.
Moreover, it will not work at all if the dimension of W (the number of independent vectors
needed to span it) is less than n—1 (as will be the case if W is partially defined by an equality
constraint other than Y, w, = 1).

In Ref. [2] we outlined a general Monte Carlo approach for computing statistical measures
for a linear function defined over a polytope. That general approach will be adapted and
extended here in order to yield an efficient numerical procedure for approximating the hypervo-
lume ratios. The basic idea is to change coordinate systems, taking a vertex of MW as the new
origin. The new coordinate system uses the ordinary Euclidean distance p and a set of angular
coordinates. For a specific set of angular coordinate values, the integration with respect to p
required in the numerator and denominator of (8) may be carried out explicitly. Integration
with respect to the angular coordinates cannot be explicitly carried out, however, and is instead
replaced by a Monte Carlo drawing of the possible sets of angular coordinates. These
correspond to vectors randomly directed into W from the vertex chosen. As will be seen, the
method requires the vertex chosen to be a nondegenerate one. Now we present the method in
detail.

Let d be the dimension of W (d < n—1) and let y be a nondegenerate vertex or extreme
point of W. Thus, y is formed by the intersection of exactly d linearly independent hyperplanes
from the set of hyperplanes defining W. We choose y as the origin in a spherical coordinate
system utilizing the Euclidian distance p and ¢ —1 angles. We will use ¢ to designate the vector
of angles. For an arbitrary point w ¢ W we have

F I
p=||w—yH=lle —y‘)"
=1

>

and the information needed to compute the appropriate value of ¢ for w (assuming w = y) is
contained in the unit vector & = (w — y)/[{w — y[[. Thus the denominator in (8), call it

S(W), may be expressed as
S(W) =J ff p!" Vdpdd.
"

"is the Jacobian of the coordinate transformation.  An analogous

where Jis a constant and Jp"

expression, call it SC/), holds for the numerator of (8) so that we have
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9) ro=SHYSW) = [ [ o Vapass [ [ p? dpds.
H "

We shall shortly show that for any specific ¢ we can explicitly perform the indicated integration
with respect to p. We cannot perform the integration with respect to ¢, however, and instead
will use Monte Carlo simulation to generate random values of ¢

With ¢ defined as above for any w ¢ W (take § = 0 for w = y), we may write w € M as
w =y + pd. Then define A as the set of all such unit vectors directed from y into W, ie.,

(10) A=(8]8=(w—y)/||w—1v||. we W. w=y].

Thus for every ¢ such that w = (p, &) € B we can equivalently describe w as y + pd since
there s a unique correspondence between & and 8. Now rewrite S(H) as
st = [ [ o) p! Vapao.
"
where Q(H | 1s the indicator function of the set /. Now that both S(#H) and S(H) are
expressed in ierms of integration over W we will explicitly perform the integrations with
respect to p

Given an arbitrary 8 € A, denote by p(d) the largest value of p such that y + pd e W'
T'hus, by the convexity of W, the himits of integration on p in S(#) and S(W) are 0 and p(3),
respectively. We can find p(8) as follows: Letting 4, be the /th row of the s by » matrix A
partially defining W through 4w < b, p(8) is the smallest distance to a plane 4w = b, such
that 4.y < b Of course 4 (y + pd) = b, cannot occur for positive p if 4,58 <0, so we must
exclude this case We thus find

(1 p(&) =min {(b, — 4/ (48 |4,y < b, 456 > 0).

In the direction &, the indicator function Q(#) is | for p in the interval [4(8), h (8)]
and 0 for p outside this interval, where 4 (8) and 4 (8) are the smallest and largest nonnegative

values of p, for p < p(8), respectively, such that V' (y + pd) > Vi(y +pd). k =1, ... m (f

no nonnegative value of p < p(d) exists which satisfies this inequality, we take
h(d) = h(8) =0) We will see below that it is a simple matter to determine all the intervals
[h (&), h(&)]

Performing the integrations with respect to p in (9) now, we obtain

fl[h’ (m]” - lg (m"' dé
T T = p .
o
fl,,(a)l db

where the integrations with respect to ¢ must be performed over all ¢ such that the
corresponding & lies in A, We cannot perform these integrations eastly, so we shall instead
approximate (12) by randomly generating direction vectors 8 € A, For each such 8 so gen-
erated we can easily compute the quantities p(8*), A (8%), and 7 (8"), + =1, ... m With a
sample of direction vectors & of size g we then approximate (12) by

A / d
b l[nm‘)] [n69)]
Al
f g /
(13) 5 l“w)l
Al

(12)
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Equation (13) represents a samipling formulation of the hypervolume ratio r of (8); it is a sta-
tistical approximation of » with a sampling error that is a function of the sample size ¢ Thus,
tor g sufticiently large, all r will approximate their respective 7, accurately enough to be used in
their place in connection with the CHC.

We have thus far failed to treat three important points: (a) determination of the dimen-
sion d of W, (b) explicit computation of the 4 (8) and # (8), and (¢) generation of random
direction vectors 8 € A. The last of these depends on the fact that y is a nondegenerate
extreme point of W, and the first is aided considerably by this fact. Being nondegenerate, y is
formed by the intersection of exactly d linearly independent hyperplanes from the set of hvper-
planes defining #. As demonstrated elsewhere [1], the edges of W at y, i.e., the intersection
of the d linearly independent hyperplanes taken (d¢-1) at a time, comprise a set of d linearly
independent vectors along which lie the extreme points of W adjacent to y. Thus there are
exactly « adjacent extreme points, and since y is nondegenerate (in the linear programming
sense also), each of these adjacent ¢xtreme points can be generated by part of one simplex
pivot. Denote these adjacent extreme points by y'. ... y* Note that the number of them
serves to define the dimension d, thus taking care of point (a) above.

Define the unit vectors ¢'. ..., ¢“by
(14 g =@ =Ny =vll. 1=1, ..., d
This set of linearly independent direction vectors spans A and will be uscd Lo generate rundom
vectors & € A. Let ¢ be a convex combination of ¢'. ... ¢*, ., q = Zlq where Zr =

l=1
and all 1, > 0. Thus ¢/[[q[[ is an efement of A, and in fact we have

o d
(15) A={g/llqll la = L e’ T oy=1, allg >0}
[=1 [=1
Since ¢'. ..., ¢“are linearly independent, each unique convex combination of them generates a

unique vector ¢ and hence a unique vector 8 = ¢/|]g|] which is an element of A. Thus, in
order to generate a random element of A we might simply generate ¢ uniform random
numbers, normalize them to form a random convex combination, and then use them in expres-
sion (15) to obtain a random element & ¢ A. Unfortunately, this straightforward approach leads
to a biased choice of & € A. It is not difficult to show, however, that if all pairs of unit vectors
(¢* ¢V, | < k < | < d form acute angles, then an unbiased choice results if we use

o i
(16) =3 nq/Il X nq'll.
J=] I=1

where the 1, are independent uniform random numbers on (0, 1) and a sequence (7, ..., 1,) 18
discarded if [|Z, r,¢'l| > 1. If, however, some pairs of unit vectors (¢*, ¢') form obtuse
angles, then it is necessary to further restrict the sequences (¢, .... r,) used to those for which

HE, ¢l € u, where u = (1 — cos’B)'? and B is the largest angle between pairs of unit vec-
tors (¢°, ¢ ). This takes care of point (o).

Now we deal with point (b). Given the nondegenerate extreme point y, a randomly gen-
erated direction vector 8 € A, and p(8), there exists at least one a, such that V .y > Vy for
=1, ..., m. Without loss of generality we will assume that a, has this property, t.e., (s
optimal for lhn weight vector y. Then A, (8) = 0. Now suppose a, is the unique optimal
action at y; ie., Vyy > Vy for/ > 1. Then either (a) Vi(y + pd) > V(y + pd) for 1 > 1
and all p [0, p(8)], in which case /(8) = p(8), or (b there exists a smallest scalar
: €0, p(8)] such that }i(y +:8) = V' (y + :8) for some / > 1. In case (a) we take
h () = h(8) = 0 for A > 1. In case () we clearly have h,(8) = : where z1s exphaitly given
by
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an z=min{(V, = V)y/(V, = V)D8|(V, = V)y/(V, = V)D& > 0.
A

If z from (17) exceeds p(8), then case (a) applies. Suppose case (b) applies and + = 2. Then
we have 4,(8) = z = 4,(8), and the above method for finding 4,(8) can now be used to find
h,(8). In a straightforward and eflicient  way, therefore, all the intervals
h(8). h(8)]. 1 = 1. ... m, may be determined.

We have thus far ignored the case in which a, is nor the unique optimal action at y, Le.,
in which ¥,y =} vy for at least one + > 1. To see whether we want a, or one of the other
equally good actions at y we have merely to compare the values of ' (y + €8) and
V (y + €d) for a sufficiently small positive € and use the action with highest such value. Note
that while this form of tie among several actions may occur at y, it will not occur in practice at
the point y + 4, (8) because & is chosen randomly and hence the probability of such a tie is
effectively zero.

One more point deserves mention here. The Monte Carlo method requires that y be a
nondegenerate extreme point of W. We can clearly increase the likelihood of finding such a
nondegenerate extreme point to use by eliminating obviously redundant constraints from the
definition of W and keeping any equality constraints defining W’ as equalities instead of two ine-
qualities. Despite these precautions, it is conceivable that B may not possess any nondegen-
erate extreme points, or that a reasonable amount of searching does not identify one. In such a
case it is computationally reasonable to modify a degenerate extreme point by making the basic
variables which are zero slightly positive. W will thus be modified and will have at least one
new extreme point, a nondegenerate one. The Monte Carlo method can then be used. and,
since this type of perturbation can be made arbitrarily small, the errors introduced by 1t can also
be made arbitrarily small.

We have now treated all aspects of the Monte Carlo method developed to approximate the
hypervolume ratios ry,..., r, by ry. ...r,. In the next section we will give a concise step-by-
step summary of the method and then present an illustrative example whose obvious solution
serves as a check on the Monte Carlo method and the computer program written to implement
it.

COMPUTATIONAL SUMMARY AND AN EXAMPLE

The computational method for computing ry, ....r,, by (13) may be summarized as fol-
lows:

(1) Select a nondegenerate vertex of W, and label it y. This can be accomplished by gen-
erating an arbitrary linear objective function to be maximized over W, and, utlizing the sim-
plex method, continuing to pivot until a suitable vertex is obtained.

(i) Determine the vertices y'. .... y“adjacent to y and then the unit vectors ¢'. ... ¢
Again using the simplex method, each y'is obtained by pivoting into the basis represented by y
an appropriate nonbasic variable. Slack variables must be considered too. The dimension of
W, d, is determined by the number of adjacent vertices.

For A =1, ..., g carry out steps (i) through (vi) (in which the dependence on A 1s
suppressed).

(i) Generate sets of « uniform random numbers (7y.....¢,) until a set is found such that
[lgll < 1 or ||ql] € u (see discussion following (16)), where ¢ = L ¢ Then generate the
direction vector & = ¢/||q||
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(iv) Determine the upper integration limit p(8) from (11).
(v) Determine the intervals [# (8), #(D]. i =1, -, m.

(vi) Compute the kth terms in the summations in the numerator and denominator of (13)
and add them to the previous subtotals.

(vii) Compute all 7 via (13).

Once the 7 are available as accurate approximations of the r, the Comparative Hypervo-
lume Criterion suggests the choice of the action a with largest value of 7.

A computer code was written in FORTRAN to implement the numerical method
developed above, and the following simple example was used to get some idea of the code’s
accuracy and running time. The example had + = 3 and n = 52,V (of size 52) had a 10 in
column /and a 0 in the other S1 columns, + =1, 2, 3. W = W was used. By virtue of the
symmeltry present it is eastly seen that r| = r, = r; = 1/3,

Table | shows the numerical values obtained for the 7 tor the first ¢ random vectors 8. ¢
= 100, 200, 400, 900, 2000. The results are quite accurate for the larger values of ¢ and are
reasonably wecurate even for small values of ¢ The cpu time required for each sample of 100
direction vectors averaged about 1.25 seconds on an IBM 370/158 computer

TABLE 1. Computed Hypervolume Ratios
tor the Example

Samplc Size ¢ (-‘oﬁlpulqd Ratios ]1

r T o
= e — — -~ S
100 0.2821 | 0.3883 | 0.3298

200 0.3244 | 0.3424 | 03332 |

400 0.3362 | 0.3299 | 0.3340 |

900 0.3230 | 0.3449 | 03321 ‘

2000 0.3343 | 0.3352 | 0.3308 1

DISCUSSION

The Comparative Hypervolume Criterion has been presented as a rationale and method by
which a decision maker or group of decision makers can select one action from a finite set of
actions when the selection must account for multiple criteria or attributes. It does not require
that the deciston maker(s) specify exact values by which to weight the various attributes, and
this could be an important consideration in practical decision making situations. If the com-
parative hypervolume ratio r for a particular action « 1s significantly greater than one-half, then
the decision maker(s) should be able to adopt it with confidence. If, on the other hand, there
1s no action with a fairly large ratio, then more caution is called for. Since 7 1s the proportion
of weight vectors for which a has a utility value at least as high as all other actions, it is possi-
ble that 7o action will have a very large ratio. This might well be the case, for instance. if
several different actions have rows ' of 1 which are fairly similar. 1t would then be appropri-
ate to use the CHC to make comparisons among the actions in specific subsets of 4. For exam-
ple. some judicious pairwise comparisons might enable the decision maker(s) to eliminate a
number of actions. The CHC might then point rather definitively to one of the remaining ones
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Thus, even if it is not used as the sole basis for selecting an action, use of the CHC can

greatly aid the decision maker(s) in excluding some possible choices or in evaluating the effect
of various constraints placed on the attribute weights. To aid decision makers in these ways,
the computer code could eastly be operated in an interactive mode.

(1
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ABSTRACT

The loading problem we consider 1s 10 assign a set of discrete objects, each
having a weight. 1o a set of boxes, cach of which has a capacity limit. in such a
way that every object is assigned to @ box and the number of boxes used 1s
minimized

A charactertzation of the assignments is offered and used 1o develop a set
of rules for generating nonredundant assignments. The rules are incorporated
into an imphcit enumeration algorithm. The algorithm s tested against a very
good heunistic. Computational experience shows that the algorithm s highly
efficient, solving problems of up to 3600 0-1 vanables in a CPU second

1. INTRODUCTION

One form of the loading problem [2] is to assign a set of m objects, each having a certain
weight w, i =1, - - - m, to a number of boxes, each of which has a weight capacity limit
¢, j =1, .n in such a way that every object is assigned to a box and the number of boxes
used is minimized.

There are many applications of the loading problem. Eilon, et al. [3] considered the prob-
lem of determining the number of vehicles to carry a given consignment to a destination. It
can be used to cut rectangles from larger rectangular sheets [5] and to schedule jobs of given
duration on parallel machines (7].‘ Johnson [10] called it a "bin packing" problem for assigning
data files of given lengths to disc tracks.

Let

x, = 1 if object / is assigned box*), 0 otherwise.

v, = 1if box j is used, 0 otherwise.

289




290 M S HUNG & ] R BROWN

The loading problem can be written as the 0-1 linear program:

"

(p) Minimize - = ¥ v

subject to

(§)) 2.\"=l (=1, - .m,
1=1
() Z wx, ¢y, j=1, - .n
=
(3) x,=0or 1l forall s j.

Other forms of the loading problem have been suggested by Eilon and Christofides (2].
One form is to maximize the total value of the objects that can be assigned to boxes. This has
been investigated by Ingargiola and Korsh [9]. Another form is to minimize the unused space
in the boxes used. If all box sizes are equal, then this problem is equivalent to our problem
(p).

A solution to the loading problem (p) entails two interrelated decisions: which boxes to
use and how to assign the objects to the boxes. The second decision is more difficult because
of the massive number of combinations that need to be investigated. This paper offers a char-
acterization of such assignments. The characterization has been shown to be very effective in
reducing the effort of searching for an optimal solution to the loading problem.

With respect to other solution methods for the loading problem, Eilon and Christofides
(2] proposed an implicit enumeration algorithm for problems in which the box capacities are all
equal. They also proposed a heuristic which, according to the computational experience con-
ducted for this research, is very good and efficient. A more detailed discussion of the heuristic
is given in Section 4. Johnson [10] developed four heuristic algorithms for the bin-packing
problem. The heuristics are similar in nature to that of Eilon and Christofides; therefore, their
quality should be comparable.

The algorithm presented in this paper is based upon the characterization of the assign-
ments. Computational experience in Section 4 shows that the algorithm, which guarantees
optimal solutions, is competitive with Eilon and Christofides’ heuristic in terms of solution
time.

2. CHARACTERIZING ASSIGNMENT MATRICES

Let 4 =[x ] be an m x n matrix of zeros and ones. The rows of 4 correspond to objects
and the columns correspond to boxes. x, = | means object / is assigned to box /. Therefore,
no row in 4 contains more than one 1. 4 will be called an assignment if every row of 4 has
exactly one 1. If some rows are zero rows (nult rows), then 4 is called a partial assignment.
(For clarity, object /is denoted by a and box /is denoted by & in this section.)

For a clearer understanding of the following development, suppose five objects,
a,, a,, -, asare to be assigned to four boxes, b,. - . by Further suppose there are

two assignments as shown in Fig. 1.

Suppose objects a,, a,, and a; have the same weight, 1.e., w, = w, = w, and boxes b,
and b4 have the same capacity, ¢; = ¢y Then 4, and 4, are essentially the same assignments

e — oae . ‘
— it s
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Aq A2
Boxes Boxes
b b b. b, ! b b b: b

Objects ! 2 3 4 Objects 1 ? 3 4

a 1 a 1

a2 1 ap 1

a3 1 ag

ag 1 34 1

ag 1 ag 1 |

FIGURE 1 Two assignments

First, boxes b, and b, contain essentially the same objects in both 4, and 4, except for the

indices of the objects. Second, objects ay and a are individually assigned to essentially the

same boxes because both boxes have the same capacity. Hereafter we shall refer to two assign-

ments that are essentially the same as "equivalent assignments,” and all equivalent assignments \
but one are "redundant.” An assignment that is not equivalent to any other assignment will be

called "nonredundant.” These definitions are necessary because in an enumeration scheme,

optimality of a solution is guaranteed only after all nonredundant solutions are considered,

explicitly or implicitly.

To identify the equivalent assignments in general, let us suppose there is an equivalence
relation "p" (e.g.. same weights) among the objects and an equivalence relation "o" (e.g., same
capacities) among the boxes. If a a pa,. then exchanging rows /and A in the assignment matrix
vields an equivalent assignment; so does exchanging columns j and & if b ob,. To aid our
identification, partition the assignment matrix by blocking together rows equivalent under p and
columns equivalent under o. For example, the two matrices in Fig. 1 are blocked and shown

in Fig. 2.
A, Az

by by b3 bg by by b3 ba
ay 1 ” ]
aQ 1 ay 1
a3 1 ay 1
a 1 ag 1
ag 1 ag 1

Fiaure 20 Block form of two assignments
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An assignment matrix is then transformed into “normal form" by the following steps:

(a) Permute the rows within each row-equivalent block so as to put them in inverse lexico-
graphic order; e.g., (0,1,0,0) precedes (0,0,1.0), which precedes (0,0,0,1).

(b) Permute the columns within each column-equivalent block so as to put them in inverse
lexicographic order.

As for our two examples, A, is already in normal form, whereas the normal form 4, is
shown in Fig. 3.

Ay
by bo by b3
aq 1
az 1
an 1
a4 1
ag 1

Figure 3 Normal form of assignment {

It can be seen that 4, has the same normal form as 4,. Hence, a formal remark:

REMARK: Two assignments are equivalent if their assignment matrices have identical
normal forms.

If two partial assignment matrices have the same normal form, then we also assert that for
every completion of one assignment, there is an equivalent completion of the other. Thus, in
order to avoid generating redundant assingments in an implicit enumeration scheme, one
should branch in such a way that every partial assignment is always in normal form.

The normal forms of two equivalent assignments are not necessarily identical because the
columns in the same equivalence block may contain an unequal number of 1's among the rows
of an equivalence block. For example, assume that b, and b, in 4, and 4, (Fig. 1) are in the
same column block and object a; is assigned to b, in 4, All other assumptions about 4, and
A, remain the same as before. Then the normal form of 4, and 4, will be different even
though the assignments are equivalent.

The following rules, which were developed by Brown [1], ensure that partial assignments
are in normal form and that the normal form is unique. To achieve both purposes, a concept
of relatively equivalent columns (boxes) is needed.

DEFINITION: Boxes & and b, (columns ; and A) are relatively equivalent if and only if
b, and b, are equivalent under o and, in every completely assigned row (object) equivalence
block, columns jand A have an equal number of 1's.

“I
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A row block is completely assigned if every row has been given a 1. Thus, at the begin-
ning, when no object has been assigned, all equivalent columns (boxes) are also relatively
equivalent. Once a row block is completely assigned, some equivalent columns may become
relatively unequivalent and remain so for all following partial assignments.

R1: (Selection of branching object.) Object a is to be considered for assignment only if
(a) object @ | has been assigned, or (b) is the smallest index of any object in its equivalence
block.

R2: (Selection of branching box.)

1. Object @ can be assigned to box » (i.e., X can be fixed to one) if either (a) a | was
assigned to a box whose index is not greater than j, or (b) ¢ is the smallest index in its
equivalence row block. (This rule preserves the lexicographic ordering of rows.)

2. Object a can be assigned to box b if either (a) column j—1 of 4 is not empty, or (b)
j1s the smallest index in its relative column equivalence block. (This rule preserves the lexico-
graphic ordering of columns.)

R3: Object ¢ can be assigned to box b, only if the sum of the elements of the row block
of a in relatively equivalent column j—1 is at least one greater than that in column /. (This
rule ensures the uniqueness of the normal form and is to be used in conjunction with R1 and
R2)

The above characterization of assignment matrices and the rules for avoiding redundant
assignments can be used for any problem involving allocation of a set of discrete entities to
another set. Generalized assignment problems [11] and 0-1 multiple knapsack problems [9]
belong to this category.

3. THE ALGORITHM

The algorithm presented here is basically an implicit enumeration method whose branch-
ing strategy is based on Rules R1-R3. The bounding aspect of the algorithm is adapted from a
lower bound suggested by Eilon and Christofides [2].

The lower bound on the objective function value of the loading problem is the fewest pos-
sible number of boxes that can contain all the objects. Therefore, it can be computed as fol-
lows, where the boxes are indexed in descending order of their capacities:

(4) zy=minf{k: Y o > t“
|

- . the initial lower bound, provides a termination rule for the solutions. It any solution
uses -, boxes then the solution procedure is stopped. This bound was found to be very
effective in the extensive computational experience described in Section 4.

Before the start of the algorithm, the boxes are indexed in descending order of their capa-
cities and the objects are indexed in descending order of their weights. Eilon and Christofides
[2] used an ascending order for the boxes but our experience showed that this often leads to
inferior solutions. On the ordering of objects, Johnson [10] and Golden [6] also showed that a
bin-packing heuristic which uses a descending ordering performs better than other heuristics
which use different orderings.




We term case (i) multiple-attribute decision making with no mformation and case (it) multiple-
attribute decision making with complete information, and respectively refer to a multiple-attribute

- St ol

294 M S HUNG & 1 R BROWN

Given the list of objects and the list of boxes, the algorithm determines for cach unas-
signed object those boxes to which it can be assigned. To determine the candidate boxes for
object «, rules R1-R3 for avoiding redundant assignments are used. We also make sure that the
unused capacity of each box considered is large enough for object + Once the candidate hst s
set up, object /is then assigned to the lowest indexed box in the hst. This assignment phase
continues until all objects are assigned and a feasible solution 1s found

During the course of assigning objects to boxes, some boxes may become “full” A box is
full if its unused capacity is too small to accomodate any more objects. A full box and its con-
tents can then be removed from their respective lists and a new lower bound can be computed
according to (4). If, after object /—1 is assigned to a box, the box becomes tull, then the lower
bound is recomputed and denoted by = . Of course, if the box is not full, then -, = - , for
P2 2.

After a feasible solution is found, with the number of used boxes denoted by =, the algo-
rithm immediately backtracks to the lowest indexed object + whose - = =, and reassigns the
object to another candidate box. ;

To be specific, we first define the notation used in the algorithm.

= = upper bound on the objective function value; it is initialized to oo.

n 1

T, = ¢ — Y w x.the unused capacity of box j ¥
I

U = Set of box indices to which object /can be assigned. U is

determined by rules R1-R3, the condition that for every / € U, w < [,
and the condition that the addition of box j does not make the total number of
used boxes exceed (2 — 1).

z = lower bound after object -1 has been assigned.

The algorithm has the following steps:

STEP 0 (Preparation): Put the boxes in descending order of their capacities (¢ ), and the
objects in descending order of their weights (w). Block boxes and object. respectively, accord-
ing to their capacities and weights. Find z|. Set Z = o and / = 1.

STEP | (Screening): Determine U. It U = ¢, go to step 4.

STEP 2 (Assignment): Assign object / to the first box in {'. Remove this box /from U
and adjust its 7. Compute the bound = . If = > = go to step 4.

STEP 3 (Forward Branching): Increment ¢/ by 1. If / does not exceed m, go to step 1.
Otherwise, a feasible solution is found. Update = If = = - |, stop because the optimal solution
is found. Otherwise, find the smallest index  whose - = - or which was assigned to the - th
box. Go to step 4. -

1+

STEP 4 (Backtracking): Decrease by 1. If / > 1, go to step 2. Otherwise, the last = 1s
the optimal value. If = = oo the problem has no feasible solution.

4. COMPUTATIONAL EXPERIENCE

The algorithm was programmed in FORTRAN IV-G and run on a IBM 370-145. Three
types of problems were randomly generated.




where b, is a constant between zero and one, may be elicited from the feelings and statements
of the decision maker(s). The important point is that the decision maker(s) agree(s) that
weight vectors not satisfying such constraints are not to be considered
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| Type-1 problems have equal box capacities, which are equal to the maximum object
weight plus 100, and the object weights are uniformly distributed between 20 and 120 in multi-
ples of 10. Therefore, all columns in the assignment matrix are in one block and there may be
as many as 10 row blocks. 1

1 Type-2 problems have equal box capacities and the object weights are uniformly distri- {
buted between 20 and 120. Therefore, there is one column block and there may be as many as
100 row blocks.

Type-3 problems have box capacities uniformly distributed between 100 and 200 in multi-
ples of 10 and the object weights have the same distribution as Type-1 problems. Therefore
there may be as many as 10 column blocks and 10 row blocks.

A total of 165 random problems of various types and various sizes were generated (see
Table 1). Each problem was solved by both the algorithm and Eilon and Christofides’ heuristic.
Both solutions were put into subroutines and run back to back, so as to minimize the discrepan-
cies that usually exist in computer clocking mechanisms.

TABLE | — Computational Experience

Heurnistie

Problem - : 4 v
- . | Algonthm No of
Problem Size No of Time Gn seconds) Time Gn seconds) Suboptimal
Type mxn Problems - . . . . . + Solutions

High Low  Median = High = Low = Medan
t t + t t :

1 30 %30 18 03 o0 024 037 006 006 2
1 40 ~ 40 15 1.22 | 039 039 0.74 009 009 2
1 S0 xS0 13 079 0o 060 1.28 014 014 2
1 60 x 60 15 167 086 [UCR 246 019 0:21 2
2 30~ 30 18 450 6 021 0.5 081 006 (U 3
2 40 ~ 40 15 06l 040 041 1 83 012 1.32 4
2 S0 x50 15 4607 056 060 &5 016 1.22 3
3 30 %30 15 0228 0224 026 008 006 006 0
3 40~ 40 s OS50 043 043 012 010 010 0
3 SO~ S0 15 073 06’ 0.71 017 01s 0le Al
3 | ol x 60 | 15 | 1.200 | 1.01 1 06 0.27 0.22 ax a

Eilon and Christofides’ heuristic [2] is an rpass algorithm. After the boxes and the
objects are numbered in the same orders as in our algorithm, it successively assigns an object to
the lowest indexed box capable of accomodating it. When all the objects are assigned, one pass
is complete. Then an object, which can be arbitrarily chosen, is reassigned to a box to which it
was not previously assigned. The assignment of the other objects is then continued. This reas-
sigment may be repeated up to -1 times. In the program, when the first solution of the heuns-
tic yields a = value greater then = . ris set to [= /3], where [ ] denotes the largest integer part.




where the element of integration dw in (8) depends on the dimensionality of W (which will be
discussed below). Thus, 7 15 a ratio of hypervolumes. The Comparative Hypervolume Cri-
terion then suggests the choice of an action @ such that r > r . A =1, ... m.
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The computational experience reported in Table | reveals:

® The algorithm is very efficient. For the 165 test problems, only 3 required more than
1.7 s of cpu time on the IBM 370/145. For problems with 60 objects and 60 boxes, the median
time was only a little over | s.

® Eilon and Christofides’ heuristic is of high quality. The heuristic produced only 18
suboptimal solutions. For every case in which the heuristic produced a suboptimal solution, the
associated value exceeded the optimal by only 1.

® The lower bound computed by (4) is generally effective. One measure of the tightness
of bounds is the ratio of the bound to the optimal value [4]. For the 165 problems. the lowest
ratio (z,/2) is 81.5% and the average ratio is 98.5%.

® The performance of the algorithm is not greatly affected by the bound. For example,
in the three problems that took more than 1.7s for the algorithm, the bounds were all one less
than the respective optimal values.

5. DISCUSSION

Further experiments were conducted to improve the efficiency of the algorithm.
Specifically, in light of the recent bounding techniques for integer programming [4], we wanted
to see if bounds better (higher) than those found by (4) could be obtained.

Following the Lagrangean relaxation approach suggested by Geoffrion [4], we constructed
a Lagrangean dual formulation of (p). The obtained Lagrangean dual problem is as follows:

(L) Max Min E)' = 2)\ Z.\‘ - ll
‘ A -1 -1
subject to
(2) z w, X, < ¢ »
-1
(3) x,=0o0rl, ¥y, =0o0r1 forall j

Given a value for each A, (L) decomposes into a collection of 0-1 knapsack problems.
one for each box /. That is, for each j, we solve

(L) (L) Max ZA X
=1
subject to
) Twx <o
-

v, =0or ] forall , j

Let x| be the optimal solution and y, = z A v be the optimal value of (L) . Then for each
-1
J, the optimal decisions will be
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v,=land x,=x,fori=1, .m, ify, > 1, and

(6) y, =0and x, = 0 for all /, otherwise.

The explanation for (6) is that if y, > 1, then by letting y, = 1 (use box /) and assigning
objects whose x = 1, to box j, we can reduce the objective function value of (L).

To find the optimal A (that which maximizes (L)), we use the subgradient ascent method
[8]. At iteration r > 0, define the subgradient vector (S) to be

S! = tx,;-l.

/=1

x,, is the optimal solution of (L), based on (A). Then the next A vector is, for each com-
ponent,

(7 At =\+0S/,

where 6 is a step size determined in the same manaer described in [8]. Once A'*'is computed,
we go back to solve knapsack problems (L) ,.

Five problems of 30 objects and 30 boxes were tested. For each of the five problems, the
above procedure did not produce a bound better than that found by (4) after 300 iterations and
nearly 1 cpu minute. This experience suggests that for the test problems considered in this
paper, the bound derived from (4) may be the best, in terms of quality and ease of computa-
tion.
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ABSTRACT

Proposed 1s a Heuristic Network (HN) Procedure for balancing assembly
lines. The procedure uses simple heuristic rules to generate a network which is
then traversed using a shortest route algorithm to obtain a heuristic solution
The advantages of the HN Procedure are: &) it generally yields better solutions
than those obtained by application of the heuristics, and b) sensitivity analysis
with different values of cycle time is possible without having to regenerate the
network. The rationale for its effectiveness and its application to problems with
paralleling are presented. Computational experience with the procedure on up
to S0 task test problems is provided

1. INTRODUCTION

Assembly line production methods are extensively used in high-volume manufacturing.
Because of the typically high level of output in line production, even a small reduction in per-
unit cost results in substantial overall savings. Since Salveson [13] first formulated the problem
in 1956, several researchers [1,2,4,5] have suggested both exact and heuristic procedures to the
well-known single-model, assembly line balancing (SMALB) problem.

More recently, extensions to the SMALB problem, such as mixed model lines [8,14], sto-
chastic balancing [7], and paralleling [2,3,11,12] of assembly lines, have been proposed. The
mixed assembly line has several variations of the same general product intermixed on one line.
Stochasticity allows for variability in the task times and considers the consequences of incom-
pletion of tasks at stations. The paralleling extension, which is of special interest in this paper,
allows tasks to be performed at more than one station.

It is important to note that the solution procedures suggested for the aforementioned
extensions to the SMALB problem normally require repeated solution of many SMALB sub-
problems. Thus, their success relies heavily on being able to solve the basic SMALB problem
efficiently. This paper presents such an efficient procedure.
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The remainder of the paper is organized as follows. The exact solution procedure to the
SMALB problem proposed by Gutjhar and Nemhauser [4] is reviewed in the next section. In
Section 3 the Heuristic Network (HN) Procedure, which we have derived from the Gutjhar and
Nembhauser algorithm, is described. The basis for the effectiveness of the HN Procedure is also
examined. The procedure is then applied 1o an example problem. Section 4 presents computa-
tional experience with the HN Procedure and suggests directions for further study.

2. MATHEMATICAL FORMULATION OF THE SMALB PROBLEM

Let ¢r = T'/n be the production constrained cycle time where n is the number of units
desired to assemble in time 7,

K

set of tasks to be performed on any one unit of the product
{1, 2. ..k}

t (1) = the time required to perform task / € K
| i
4 ()
W ()

all tasks contained in the ah station.

set of stations in the assembly line
2. gl

set of tasks contained in the jth station.

total work content in the /th station; namely, sum of the task times of

It

\

Then, the objective of the SMALB problem is to

Q.1 Minimize Idle Time = Z=q¢%r — Y 1(:)
eA
subject to:

(@uU 4() =K

(All tasks have to be performed.)
(b)4(/))NA40() = ¢ (the empty set)
(No task can be assigned more than once.)

@@W@G) = 3 k)< crijeQ

Aed())

(The work content in any station cannot exceed the
cycle time.)

(I v < vand xe4 (), ved (), then < J

(If task x precedes task v, then y cannot be
allocated to a station that precedes the one to which
v is assigned.)

It is well known that the objective of the SMALB problem given above is often reduced to
one of two alternate forms:
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(2.2) Minimize Z = q, given cr, or
(2.3) Minimize Z = cr, given q.

This is because 2 1(:1) (the total work content) is a given constant in expression (2.1),
QA
leaving ¢ or cr as the only variables to be minimized. It the production constrained cycle time,
cr, is known, we can attempt to minimize ¢ as in expression (2.2). Similarly, given ¢, we have
¢r to be minimized as in expression (2.3). Henceforth, when we refer to the SMALB problem
we will be referring to minimizing expression (2.2).

The Gutjhar and Nemhauser algorithm [4] begins by generating a directed network based
on the precedence diagram for the SMALB problem. The network is constructed with nodes
representing a collection or subset of tasks that can be performed in some order without prior
completion of any task not in the subset. Let € (/) and [C (/)] represent the tasks at node
and the sum of their times, respectively. Clearly, the source and sink nodes are given by
C0) =d. ([C0] =0, C(r) = K (the complete set of tasks), and ([C(r)] = Y.

A

In the network a directed arc (1) is defined if and only if C()eC(/) and
tlC()] — 1 [C()] < er. Clearly, the arc correspords to a station assignment of all tasks con-
tained in C'(/) but not in C (/).

As a result of this definition of the network, there is a one-to-one correspondence
between paths from the source node (node 0) to the sink node (node r) and feasible assign-
ments of tasks to stations. Thus, a path containing ¢ arcs required to traverse the network from
node 0 to node r is equivalent to ¢ work stations each with a cycle time of ¢r. Consequently,
idle time equals

qcr ~ zl(l).
A

Thus, finding a solution to the SMALB problem is equivalent to finding the shortest path of
this network.

The major difficulty experienced with this algorithm is that the number of nodes gen-
erated increases exponentially with problem size [4], which leads to heavy computational
requirements of both time and storage.

3. THE HEURISTIC NETWORK
3.1 Procedure

While generating all possible nodes guarantees an optimal solution, a heuristic solution
can be obtained by generating a limited number of nodes. The quality of the solution can be
enhanced by using heuristic rules to generate relevant and promising nodes. In this research
we use the following four popular heuristics [1,6,9,15]: (1) Ranked Positional Weight, (2)
Largest Task Time, (3) Smallest Task Time, and (4) Random Assignment. Unlike the first
three rules, the Random Assignment rule can be applied a number of times to generate addi-
tional nodes.

Each heuristic can be used to generate a solution which is equivalent to a set of nodes in
the directed network. After each heuristic is applied independently, the sets of nodes can be
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combined to form a composite network. This allows consideration of additional arcs and as a
result the possibility of a shorter path and, hence, a better solution.

When the first heunistic rule is applied, a total A + | nodes are obtained for a A task prob-
lem in the composite network. Next, by applying the second heuristic rule we obtain an addi-
tonal A — 1 nodes, as the sink and source nodes are clearly common for all heuristic rules.
Continuing this process, if » heurnistic rules are applied we develop a total of
[(n = 1) (kA = 1)+ (k +1] =n(k =1 + 2 nodes in the composite network. Of course, the
number of nodes in the composite network can be further reduced, by eliminating duplicate
nodes during the generation process.

Additional arcs are then added between any two nodes / and J for which C'(4) € C' (/) and
tlC)l = lc)) € er

For example, in Fig. | two heuristically generated networks are shown. The shortest path
(equivaient to stations of length less than or equal to the required cycle time of 50) consists of
darcs — 0, 1,2, 4, 50r0, 1,2, 3, Sand 0, 6, 7, 8, 9, respectively. Consider a composite net-
work obtained by merging the two networks.  As shown in Fig. 2, the augmented network con-
tains 2 additional arcs: between nodes 1 and 8 and nodes 8 and 4. Note that the shortest paths
in the composite network consist of only 3 arcs (stations): 0, 1, 8, 5 (and 0, 1, 8, 9). This
demonstrates that the compostte network may in fact yield a better solution than when the
heuristics are used separately.

80 102 145

@"'di__@_"@’“’@ 0 as 80 97 145
e el il e B
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3.2 An Illustrative Example

Consider the 11-task SMALB problem shown in Fig. 3. Let the cycle time, ¢r, be 50. For
purposes of illustration, only three heuristic rules have been used to obtain the composite net-
work. Specifically, the Random Assignment rule was applied twice, and the Largest Task Time
rule employed once. Table | shows the three solutions generated by the application of the
three heuristic rules. The work content times for the stations are also indicated. Table 2
details how the nodes were generated for one of the heuristics.

PRODUCTION CONSTRAINED
CYCLE TIME, CR =50

FiGURE 3 Tllustrative problem

Table 1. — Generation ot Heuristuie Solutions
_Snlution No. Rl::i:.”llls:l:d Task Assignments
P TRandom () | 1.2.6.8 45 3.7 9.10 11
i UCW) | ——=>49, 46 45 41 11
2 Largest () 1.3 4.512.6.7.9 10.8 11
Task Time t[C(M)] | 43 46 v 49 43 11
i 3 Random () E 3 5.2.6 \8',':“5_ Q‘;;i(). 11
L tcwl 43 46 41 18 44

L epend
¥ staton assignments corresponding to the shortest path

through the composite network

Note that each heuristic will yield two common nodes: the source and the sink nodes.
For the three heuristic solutions we have 32 nodes labelled from 0 to 31, nodes 0 and 11 being
the common source and sink nodes, respectively. The composite network is illustrated in Fig.
4.

Each of the three heuristics considered separately yields a five-station solution. However,
the composite network shows that a four-station solution is possible, as shown in Table | and
Fig. 4.

When the composite network is traversed with arc length equal to the desired cycle time
of 50, a minimum of four arcs are required. As shown in Fig. 4, the first station is equivalent
to arc (0.4), the second to arc (4,27), the third to arc (27,29), and the fourth to arc (29.11).
The assignment of tasks to stations is then obtained by "backtracking.” i.¢., tasks are assigned to
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Table 2. — Tasks in Nodes for Sequence No. |,
Using Random Assignment Heuristic

Node No. (i) Tasks Work fcgrn::; et[(‘(m
0 0 0
1 1 8
2 1.2 21
3 1,2.6 39
4 1,2,6.8 49
5 1,2.6.8.4 80
6 1.2.6.8.4.5 95
7 1,2,6,84.5.3 130
8 1.2,6.8,4.5.3.7 140
9 1,2,6.8,453.7.9 148
10 1,2,6,8,4,5.3.7.9,10 181
11 1,2,6,.8.4,5,3.7.9.10.11 192

TASKS IN STATION 4= C(11) - C(29) = 10,11}
TASKS IN STATION 3 = C(29) - c(27) = {479}
TASKS IN STATION 2 = C27) - C(4) = {35}
TASKS IN STATION | = C(4) - c(0) = {1.2,6.8}

Figury 4 Composite network

¥

——
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the last station first. To illustrate, consider the assignment of tasks to station 2. As shown in
Table 1, node 27 corresponds to the set of tasks C(27) = (1,3,5.2,6.8) with work content of
99, while node 4 corresponds to ((4) = (1,2,6,8) with work content of 49. The set of tasks
assigned to station 2 are those that appear in set ((27) but not in ((4). This yields tasks 3 and
5 with a station work content of 50. The assignment of tasks to stations which achieves the
four-station balance is shown in Fig. 4.

4. COMPUTATIONAL EXPERIENCE WITH THE HN PROCEDURE

The HN Procedure was programmed in Fortran IV and was tested on problems of varying
difficulty that have appeared in the literature. The program and full details of the problem sets
can be found in Pinto [12]. The largest problem solved was a S0-task problem due to Mansoor
[10].

Table 3 provides the computational results  Balance efficiencies were above 96% for all
problems but one. Computation times, of course, varied with the parameters of the problem at
hand. The computational efficiency 1s improved when the HN Procedure 1s applied to multiple
iteration problems, as described in the next section

Table 3. — Computational Results for a Set of
SMALB Problems Using the HN Procedure

No of [ No. of | Mimmum Cycle | Cycle Time | Balance | CPU Time in Seconds
L Fasks | Stations | T'ime Possible | Achieved | b fhciency | UBM 360/ 7 %)
e 4 S0 S0 96 S on
- ik S ~ iR W) 045
17 (Thomopolous) 3 126 126 1Oy 090
45 (Kilbridge! } 184 184 100 $2
29 (Buxey) 7 48 S0 97 11
SO (Mansoor) 5 - 472 N 32
| 50 (Mansoor) 10 - 244 96 8 94
| | | ]
% 1 1 1 | i
*Sev Fig 3

randomiyv generated problem

4.1 Computational Experience With HN Procedure for
Multiple Interation Problems

Multiple iteration line balancing problems, such as paralleling problems [2.11.12], are
those in which several SMALB subproblems are required to be solved. Since the number of
these subproblems often increases exponentially, computational effort in solving individual sub-
problems becomes very important.

It is convenient to consider the HN Procedure as consisting of two stages. In Stage 1 the
nodes of the network are generated, while in Stage 2 the arcs are added and the network
traversed to obtain task to station assignments. When applied to multiple iteration problems,
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significant computational savings are achieved because Stage 1 is required to be performed only
once.

To illustrate, consider the branch and bound method of solving the paralleling of stations
problem [12]. Each successive iteration of the branch and bound technique requires the solu-
tion of an SMALB problem. The difference between two consecutive subproblems is that each
successor subproblem will have one additional station paralleled.

This is conveniently handled by the HN Procedure, since the paralleling of a station only
affects Stage 2 computations. Table 4 shows the application of the HN procedure to the paral-
leling of stations problem, demonstrating that significant computational savings are possible.

Table 4. — Computation Time for Paralleling
of Station Problems

, . " 7 SSE——— — —_—
I > &t 1 - .
No No Cycle | 1'|mv. o CPU Time in Seconds :
ol po7 Time Generate (IBM 360/75) ‘ Cumulative
Tasks fteravon | ¢ o | Achieved | Nelwork | Time to ﬁnfl Shortest Route | Time
(Stage 1) (Stage 2)
¥ + + + = — —= = 4 4
1 (kg 1) | K 52 01s 008 023
2 3 50 - 009 032 v
i 3 SO - 010 042
29 (Buxey! ] 7 S0 13 11 24 1
2 3 48 - 1.2 16
i o 4N - 14 SO
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PSEUDO-MONOTONIC INTERVAL PROGRAMMING
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ABSTP T

A pseudo-monotonic interval program is a problem of maximizing A\)
subject 10 v e ¥ = [veR" | a < 4y < b a, b e R™ where /s a pseudo-
monotonic tunction on Y, the set defined by the linear interval constraints. In
this paper. an algorithm to solve the above program is proposed The algo-
rithm s based on solving a finite number of hinear interval programs whose
solutions techniques are well known These optimal solutions then vield an op-
tmal solution ol the proposed pseudo-monotonic interval program

INTRODUCTION

Since the publication of the first paper on the method of solving a linear interval program
[4], there have been several attempts to look into possible generalizations. A linear fractional
interval program is an obvious generalization, as 1t is rooted in Charnes and Cooper's observa-
tion that a linear fractional program is equivalent to a linear program [7]. Subsequently,
Charnes and Cooper (8], Buhler [6], and Bector and Bhatt [1] gave different methods for linear
fractional interval programming, the last two mainly reducing the linear fractional interval pro-
gram to an equivalent linear interval program.

Further generalization of the problem of maximizing the nonlinear interval programs does
not seem obvious due to difficulty in working out suitable sufficient optimality criteria. This
paper is but a step in this direction.

DEFINITIONS [9]. Let /:D — R be a differentiable function on D, an open subset of
R" Let § € Dand x". x'eS. Then on S, /s said to be

(1) pseudo-convex if
VAT G — x') > == flx®) S Filx")

(i1) quasi-convex if
fERE) € FEeR) = Ve (X"~ x%) <0

(1) pseudo-concave if —/is pseudo-convex on S

(iv) pseudo-monotonic if /is both pseudo-convex and pseudo-concave on S.

*On leave from Indian Statistical Institute, Caleutta, India
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The pseudo-monotonic interval program under consideration is:

(P) maximize f(x)
subject to xeX = [xeR"la < Ax < b, a. beR")

where 4 is an m X n matrix and /is pseudo-monotonic on X. Also it is assumed that

Al. X is bounded.
A2. A4 is of full row rank.

THE ALGORITHM (LINEARIZATION TECHNIQUE)

The proposed algorithm to solve the pseudo-monotonic interval program (P) is based on
the following theorem.

THEOREM 1 (Kortanek and Evans [9]): Let f be a pseudo-concave function on a closed,
convex set Cand x*e(C. Consider the two programs:

I:  maximize f(x), subject to xeC.
II: maximize V /(x*)'x, subject to xeC.

Then x*is an optimal solution of program 1 if and only if X*is an optimal solution of program
1.

As the objective function of the program (P) is pseudo-monotonic and hence pseudo-
concave, the algorithm aims at finding an x*e X, the feasible set of (P), which satisfies Theorem
1. This is done by successively generating extreme points of the polyhedral constraint set X
and at each step using the stopping rule given at the end of the description of the algorithm
below. The stopping rule is based on Theorem 1.

To start the algorithm, an initial extreme point of the constraint set is required. For this,
choose an x"¢R” such that V £(x") # 0. Now consider the following linear interval program:

(L,) Maximize Vr(x)x
subject to xelX

It would be interesting to note that an optimal solution of (L) exists, as the object func-
tion is continuous and the constraint set is compact by assumption Al. Then by Lemma 6 of
Ref. [4). f(x")eN(4): the orthogonal complement of the null space of 4. This, coupled with
assumption 4, makes (L,) satisfy the requirements to use the method of Ben-Israel and
Charnes [4] to solve (L,). A solution of (L,) then gives an extreme point solution x' of (L)
(see example 2 at the end of the paper).

The algorithm can now be described through the following steps.

STEP 1: Let x' be an initial extreme point of X. Set / = 1. Solve by Ben-Israel and
Charnes’ method the linear interval program:

(L) maximize V£ (x)'x, subject to vel.

Let x'*! be an extreme point optimal solution of (). Note: The remark made for the program
(L,) above is also valid for each (L) in the sense that ¥ f(x)eN (A )*, satisfying the assump-
tions of Ben-Israel and Charnes’ method of solving linear interval programs [4].
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STEP 2 : (i) If x'*'e(x', x% ..., x'}, stop. Suppose x'*' = x/, for some j, 1 <j <.
Then x/, x'*', -+ x'solve the program (P) due to theorem 2 below.

Gi) If x'T'g{x!, x2 ..., x}, gotostepl with i =i + 1.

THEOREM 2. (The stopping rule): If in step 2 of the algorithm, x'*'e{x', x2 ... x},
i.e. x'*' = x/for some j, 1 </ < then x/, x,,,, ..., x'solve the program (P).

PROOF. Without loss of generality, let x**' solve (L;), 1 <k <. That is,
V(M) x> V(x*)'x for all x in X. In particular, ¥ f(x*)x*+! >V (xN'x* as xteX.
That is, Vf(.\'T)'(.\" "' = x% <0, implying that f(x**!) > f(x* as fis a pseudo-convex func-
tion. Hence

(1) Gl € 76e®) £ - < il € 7l
Now it is given that x'= x'*' maximizes (L), for some j. 1 </ <i If j =14 ie.,
x'= x/, then by theorem 1, x'solves (P). If 1 </ < i then

V (x)'x" > Vf(x)'x for all xelX.
But x‘e X, so that
Q) Vf(x)'(x'=x) >0, implying that

(3) S(x') > f(x') as [ is pseudo-convex.

Combine (1) and (3) to get
(4) f(x) = fx'*) = - = f(x).

Since / is pseudo-convex, it is quasi-convex also [10]; therefore, f(x') =
S(x) =V (x)(x'=x) <0, or

(5) V lx)'x' <V fx)'x.
From (2) and (5) and the fact that x' = x'*!,
(6) Vflx')x' =V f(x')x"*,

which implies that x' maximizes (L)). Then by theorem 1, x'also maximizes (P) and so do
x/, x/tY o x'"Vdue to (4) above.

CONVERGENCE

The algorithm generates a sequence of extreme points of the convex constraint set X until
one of the extreme points generated earlier is repeated. At this state, optimality is reached due
to theorem 2. Since X is bounded, it has finitely many extreme points and hence convergence
occurs in finitely many iterations. This observation is in accordance with the result of Bela
Martos [2] applied to this situation that a maximum of a pseudo-monotonic function lies at one
of the extreme points of the compact convex constraint set X. In fact, the result of Bela Martos
is for differentiable quasi-monotonic functions, but then pseudo-monotonicity — quasi-
monotonicity for differentiable functions.

REMARKS

This paper is an extension of the linearization technique used to solve a pseudo-
monotonic program [S] and an interval linear fractional program in a finite number of iterations
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(1]. In the case of a pseudo-monotonic program which is maximizing a pseudo-monotonic
function subject to the linear constraints 4x < b, x >0, the programs (L) are the ordinary
linear programs which can be solved by simplex method.

ILLUSTRATION

EXAMPLE 1 The interval linear fractional program: maximize (¢'x + a)/(d'x + B), sub-
ject to xeX = [xeR"la < Ax < b, a, beR"} and dx + B > 0 for xeX, is an example of a
pseudo-monotonic interval program as a linear fractional function. (¢'x + a)/(d'x + B8) on X
is also a pseudo-monotonic function on X [3].

EXAMPLE 2%. maximize

X + 2 _Xz\/le +2)2+ (.xz)z_ 1

FOk = (x + D7+ (x))?
subject to
-1 <x + x3 <2
1< X <35,
0< x; <8
Here

-1 2 ISR X
a=1] 1], b=|5|. 4 =10 1 0], and x = [|x,[.
0 8 ar 1001 *3

N(A) is spanned by zero vector in R’ [4]. Denote by X" the set of solutions of the interval
constraints. Now for any x,
(x4 2 — 38 [x; + (x; +2)¢]

(& + D%
[,\'_\ S (.\‘] + 2)6]2

(E2+ 1%
0

Vflx) =

where £ = 1/(x, + 2)2 + (x,)? — 1. Denote

—(x; + 2~ 380 [x, + (x; +2)€] T
—[x;, + (x; + 2)¢)° by V/(x).
0

Then ¥ f(x) is a positive multiple of ¥V f(x), and therefore maximizing VY f(x)'x for any
x'eX? over all xeX? is equivalent to maximizing ¥V /(x')'x over xeX" in the sense that both the

=1
maximizing problems admit same optimal solutions. It is easy to see that x '=] 1] is an
0
0
extreme point of X° Also, Vf(x)' = |-4]|.
0

+The objective function of example 2 is due to Bela Martos (3]

o
<
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STEP 1: Solve the linear interval program
(L)) maximize V/(x)x =—dx,
subject to xeX'
The method of Ben-Israel and Charnes gives

A+ 2(1 —A) — 8u
1 Bzx 2

8u
and 0 < u <1 as the optimal solutions of (L ). The extreme point optimal solutions in partic-
ular can be obtained by taking A and u as 0 or 1 which are

2| (1] [-6 -9
1], {1].] 1 |and | 1 |.
0] [0]18 8
. -
Let x° = |1| be taken as an extreme point optimal solution of (L ).
0
STEP 2: x’¢{x'}. So go to step 1 and solve the linear interval program: l
(L,) maximize V/(x2)'x = -289x, '
subject to xeXx! .
2
(L,) has same optimal solutions as (L ). Therefore x* = |1] is an extreme point optimal
0
solution of (L,).
3 b ) ) 2
STEP 3: x'e{x!, x?} as x? = x> Hence x? = |1| gives the optimal value of f(x) which is
0
0.
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A TARGETING MODEL THAT MINIMIZES
COLLATERAL DAMAGE

Jeffrey H Grotte

Institute for Detense dnalvses
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ABSTRACT

This paper considers the problem of allocating weapons to achieve targeting
obectives while simultancously mimmuzing aggregate damage to surrounding
nonmihtary facihities, cach of which has an upper imut to the damage s per
mitted to mcur - A model s tormulated which assumes only that damage to n
dividual targets or associated fachtes does not decrease as the number of allo
cated weapons mcreases  An o imphat enumeration algonthm, based on that of
Lawler and Bell s described that vields optimal integer solutions  An example
s presented

1. INTRODUCTION

One of the assumptions behind the argument to employ counterforce targeting of strategic
weapons (the targeting of an enemy's strategic capability), as opposed to countervalue targeting
(the objective of which is the destruction of population and economy), is that sufficient destruc-
tion of strategic targets can be achieved without causing appreciable damage to the surrounding
nonstrategic facilities. This paper presents a model which addresses the following two ques-
tions: Given a collection of weapons, potential aimpoints, and a configuration of strategic tar-
gets — cach being assigned a munmum level of damage, and nonstrategic facilities — cach hav-
ing a maximum level of permissible damage.

(A) Is there an assignment of weapons to aimpoints (an allocaton) that satisties the above
two sets of constraints?

(B) Of all allocations satistying the above two sets of constraints, which is the one (or a
one) that minimizes the (perhaps weighted) sum of the damage to the nonstrategic facilities?

2. MATHEMATICAL FORMULATION

The fundamental elements of the model are M strategic targets, henceforth called simply
“targets,” N nonstrategic facilities, or "nontargets,” / different weapon types, and J potential aim-
points to which any weapon can be directed. An allocation = is the matrix (= [r =1, ... /.
jo= 1. ... J) where = . an integer, is the number of weapons of type /allocated to aimpoint

For each target m, we suppose a real-valued response function /,.(2) which represents the
damage to target m from allocation = We require that £, () be monotonically nondecreasing
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i cach component of : . which s an implicit assumption that, given any allocation, the alloca- ]
non of addittonal weapons does not result i less damage to any target  Fach target m s |
assigned a real number ¢, which s the muinimum damage requirement (targeting objective),

te, tor an allocation 2 to be feasible, ot must sausty 7, (0 > ¢, om =1, M

Simularly, tor each nontarget # there s a response function g, (2), monotoncally nonde-
creasing i each component of 2 and a real number J, denoting the maximum damage pernit-
ted to this nontarget  Further, each nontarget 718 assigned a nonnegative weight, or value, A,

Ihe nonnegative iteger w s the number of weapons of type avalable tor allocation J

We can now combine questions (A) and (B) into the tollowing problem £

\
(n Mimmze £ = 3 A ¢ ()

o
subject to
(2) Fal a6 m=1 ..M,
(RY) e.(2) £ d, =l .. N;
(€} 2 oW gl

-\ ¥

(3) Y &G -1, , A J= 1, e G

where Z ' s the set of nonnegative integers I problem £ 18 infeasible, then the answer (o
question (A) s clearly "no”, otherwise, an answer o question (B) s ensured because the
number of allocations which satisties constramts (4) and (3) s fimite

3. AN ALGORITHM
Problem P admits solution by impheit enumeration.  The following algorithm s based

upon the lexwographic technique of Lawler and Bell, [4] though, unlike the Lawler-Bell
approach, this algorithm does not use binary vectors. We tirst wdentty the matnix = with a vec-

tor & This can be done in a number of ways, one of which s through the following relation-
ship
(6) B.» 2 S G SR & U SRS R o ol T ISR

Note that this can be reversed as tollows

-y, iR <‘,‘> I.:-<kll>ol‘k—l. Rwdd

where < v > s the largest integer less than or equal to v With this in mund, we will drop the
crrcumflex, and in the discussion that tollows, all allocations will be vectors in Z', 1e, A
dimensional vectors with nonnegative integer components  We require two binary relations
between vectors in Z)

COMPONENTWISE (PARTIAL) ORDERING: We write v > v b v, > v A =1, A,
Vvl v 2 v and v v tor at least one A

LENICOGRAPHIC ORDERING We write v > v il v > v where A = man {A]y =
1 TS s A
vohoand v > vy S v ory =y
{ {
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L et

G - ceZ)ls S wofork =1, ., Kih=h <k ] I> II

Thus 4 is a set of allocations that satisties constraint (5) of problem £, and clearly contains all
allocations that satisty constraint (4), and so must contain all solutions to problem P, providing
problem P is feasible. Since > totally orders &, we could enumerate all the points of ¢ and

{
find the solutios to P in this manner. However, the monotomicity of the objective and con-
straint functions will permit us to skip over many infeasible and/or nonoptimal points. To see
this, we need some notation. Consider a vector ety We will denote by =+ 1, the vector v,
it 1t enasts, satsfyving

Oy >X
1 SR

At most one such vector exists, but may fail to exist because of the boundedness of . The

vector - 1 will be that vector v, i it exasts, satisfying
e
T > X

() =

s S p=ex Sy
! R

This vector will always exist except for = = 0. The vector = *will be that v, it it exists, satisty-
ng
e ()
X > &
!
)

\
- Al
[(r S AL R .-)l —~ ¥ 2 X
[/ ~ ) . S

0 ' I . .
Intuitively, = * 1s the first vector in & following = Gin the lexicographic ordering) which 1s not
(componentwise) greater than or equal to & For some 2, =% may not exist, however, we will

adopt the followimng convention: For any = for which = * does not exist, we will set

(* = D= w, forh =K <k f l> l. k=1, ..., K,

thereby ensuring that - * 1 exists for every = el Crucial to the algorithm s the observation

that for any = €4, any v that satisfies = < v < -* — 1 also satisfies v >
- el l » b

Figure | outlines the fundamentals of the algorithm. A brief inspection of the flow chart
will make clear that the algorithm must terminate after a finite number of steps. It A = o
upon termination, the problem is infeasible, otherwise an optimum integer allocation will
always be tound. The order in which the constraints are examined was chosen because, for cer-
tain applications, this order was efficient.  However, we make no claim that this s, in any
sense, an optimal ordering.  For other applications, a different sequence of constraint evalua-
tions nmight well proved to be better

v
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4. A CLASS OF EXAMPLES

We will now look at a class of examples with point targets and nontargets, where the des-
truction of any target or nontarget is a binomial random variable with probability of kill depen-
dent on the allocation, but with independent weapons effects. We will use Cartesian coordi-

nates to specify locations; in particular, target coordinates are (x,. v,). m =1, ... M,
nontarget coordinates are (., v,), n =1, .. | V. and aimpoint coordinates are (& . ).
1 =1. ... J For response functions we will employ "probability of kill" which is computed as

follows: Let p” be the probability that a single weapon of type 1 allocated to aimpoint ;. dev-
troys target m, conditioned on the weapon’s arrival at its destination. The probability that a
type-/ weapon arrives at its destination, 1.e., its "reliability," is given by p . Because we have
assumed independence of weapon effects, it is not difficult to compute the total probability that
target m s destroyed by allocation =z, which is

/ /
G =1=-T1ITQ=ppm
.l I

Simularly, we denote by p” the conditional probability that a single type-/ weapon allocated
to aimpoint 7 destroys nontarget n. Therefore, the probability that allocation = destroys nontar-
get nas

Lalz) = 1 - r] rl(l - p.po)

Although the values of the parameters {p”} and {p”} can be entirely arbitrary. within the
obvious limits

0
0

a2 < | (5, ey R ) (RN (I8 A (PR |

n A

pl< 1 0 s N e B TS el e

we will use, for tutorial purposes, the following formulae, which are not unreasonable approxi-
mations to certain types of weapon damage curves and have been proposed by other analysts
(see, for example, Eckler [1], or McNolty [S]):

o= expl—a,  l(x, =€)+ (v, )N m=1, ... Myi=1, ... I, j=1, ..., J.
(10) p" =expl—B,.lu, =€)+, =)V n=1, .. Noi=1, ... Lij=1. ... J
where all « . B, are nonnegative real numbers. The parameters {a .} and {8 .} are meas-

ures of the rate at which weapon effects decrease with distance.

With these conventions, we can now write explicitly the problem P which comprises this
class of examples:

P Given nonnegative weights X, n = 1. ... N, and the values of
cel0, 1], m=1, .. M
d,el0, 1], n=1l, .. N
wel', iR (R
pel0, 1], o ils ses i
an. 20, 1 =] Iim=1, ... M
B., 20, | =1, l.n =1, \
o Vo m =1, \f
S Py n =1, \
&1 5 jo=1, J
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/

\ !
minimize h(z) = ¥ A, Il - I111 'l —p,enpl~ 8, Mp, =€) + v, — { )“HI' }
-1

- |

=l

subject to
fnl2) =
I .l Al b
1 — n n(l — p, expl—a, ,[(x, — €)°+ (y, — EAFYM e oo Y M
=1 j=I
8,(z) =
b
1-TIITQ —p. expt-B  l(u, — €)'+, =L)D" <d, n=1, ... N

-1 1=l

7
2-‘ < w I R
-1

x'

5. COMPUTER APPLICATIONS

A FORTRAN routine to solve problems of the type given by P was written for the CDC
6400 computer, and was used to solve the numerical example of this section. The values of the
parameters are listed in Tables 1-6. The configuration of the targets, nontargets, and aimpoints
is depicted in Fig. 2.

TABLE 2. Nontarger Parameters

e |
TABLE 1. Target Parameters i my | v, i A d,
M =2 1 f—210 12 (03]
S I 2 -1 | =1 4 |03
I -1 0 |08 " S v e o
m 3 1 1 6 0.3
21 Jo o8] KN EN N ERLEN
TABLE 3. Aimpoint Parameters
J =5
£, 9 TABLE 4. Weapon Parameters
A ENK i
= P
/ 3 0 0 | 1 09
4 1 0 i —_—
5 1 -1 2 6 | 0.7
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TABLE 5. Components of a TABLE 6. Components of B
m n o
1 2 1 2 3 4
1 0.1 | 0.1 1 005 [ 01 |01 | 0.09
| ! o
2 Jos5 o5 2 |[080 |08 |08 | 080 |
12
(m] “+1 (o]
S - B = —B——
-1 -2 (o} | 2
(0] = o
® TARGET
g O NONTARGET ‘
O AIMPOINT

Figure 2 Configuration of the example

The routine ran for five seconds to compute the optimal solution I given in Table 7. Itis
interesting to note that if all the ¢ are changed to 1.0, which is equivalent to removing the
individual nontarget damage constraints, then the optimal allocation is =', given in Table 8. In
this latter case, we have reduced total collateral damage over that given in Table 7, but only at

the expense of considerably greater damage to two of the nontargets.

TABLE 7. Optimal Allocation 2

=t TABLE 8. Optimal Allocation '
j p:
1 2 3 4 S iy
1 0 0 0 1 2 3 4 5
Gout 110 0100
2 2 0 1 0 2 2 0 013 0 0

g2} =037

hGE) =52 g8) =024 RIZ) =43 S -
NG =083 G =024 i) =um 380 Coo
L) =083 g ) =028 G =082 g \
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DIFFERENTIAL-GAME EXAMINATION OF OPTIMAL
TIME-SEQUENTIAL FIRE-SUPPORT STRATEGIES
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ABSTRACT

Opumal time-sequential fire-support strategies are studied through a two
person zero-sum determimistic differential game with closed-loop (or feedback)
strategies  Lanchester-type equations of wartare are used i this work  In addi-
ton to the max-min prnaple, the theory of singular extremals s required to
solve this prescribed-duration combat problem  The combat 1s between (wo
heterogencous forces, each composed of infantry and a supporting weapon svs
tem (arullery) In contrast to previous work reported in the literature. the at
tritton structure of the problem at hand leads to torce-level-dependent optimal
fire-support strategies with the attacker’s optimal fire-support strategy requinng
him to sometimes sphit his artullery fire between enemy infantry and arullery
(counterbattery fire) A solution phenomnon not previously encountered in
Lanchester-type differential games is that the adjomnt variables may be discon-
tinuous across a mamifold of discantunuity for both plavers’ strategies  This
makes the synthesis of optimal strategies particularly difficult - Numencal ex-
amples are given

1. INTRODUCTION

The allocation of a specific weapon system type to an acquired target is an important tacti-
cal decision in the fire-support process.** Accordingly, the determination of optimal (or even
good) fire-distribution strategies for supporting weapon systems?t is a major problem of military
operations research. The problem is of interest to the military tactician because he may need a
clearer understanding of the circumstances under which a supporting weapon system (such as
artillery) should engage the enemy’s primary weapon system (i.e. infantry) and when it should

engage the enemy’s supporting weapon systems.

*This research was supported by the Office of Naval Research (partially through the Foundation Rescarch
Program at the Naval Postgraduate School and partially through direct tunding)

**See pp 133 1o 143 of Ret [26] for a further discussion

+See Ref [38] for a brief discussion of the distinction between a primary weapon svstem (or infantry)
and a “supporting” weapon system

‘e
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In this paper we will examine the dependence of opumal time-sequential fire-support stra-
tegies on the form of the combat attrition model. Previous work by Weiss [38] and Kawara
[22] suggests that an optimal fire-support strategy consists in always concentrating all fire on
one enemy target type (although this target type may change over ume). We will consider a
differential game with shightly different combat dynamics than the fire-support differential game
recently considered by Kawara [22] and show that optimal fire-support strategies quite different
in structure than those obtained by him may arise. Moreover, the solution to the problem
which we consider in this paper involves a solution phenomenon not previously encountered in
a Lanchester-type differential games: the dual (or adjoint) vanables may be discontinuous
across a manifold of discontinuity for both players’ strategies.

Fire-support operations (as are any combat operations) are a complex random process
[26]  We will nevertheless consider a simplified deterministic Lanchester-type model in order
to develop insights into the structure of optimal time-sequential fire-support strategies. H K.
Weiss [38] has emphasized that such a model of an idealized combat situation is particularly
valuable when 1t leads to a clearer understanding of significant relationships which would tend
to be obscured 1n a more complex model.

The problem of determining an appropriate mixture of tactical and strategic forces
(another aspect of the optimal fire-support strategy problem) was extensively debated by
experts during World War Il. Some analysis details may be found in the classic book by Morse
and Kimball (see pp. 73-77 of [27]). The problem was studied at RAND in the late 1940's and
early 1950°s [16] and elsewhere [1]. It would probably not be too far-fetched to claim that this
problem stimulated early research on both dynamic programming [2] and differential games
[16,20]. Today the problem of determining optimal air-war strategies is being extensively stu-
died by a number of organizations (see, for example, Refs. [17.25.29.36]). An idealized ver-
sion of A. Mengel's problem [16] appears in Isaacs’ book as the "War of Attrition and Attack"
(see pp. 96-105 of Ref. [21]). Discrete-time versions of this problem of determining optimal
"air-war" strategies have been considered by a number of workers as time-sequential combat
games [5.6.15] (see also Refs. [7.13]). A related problem has been considered by Weiss [38]
(see also Ref. [37]), who studied the optimal selection of targets for engagement by a support-
ing weapon system.** More recently, Kawara [22] has studied optimal time-sequential strategies
for supporting weapon systems in an attack scenario version of Weiss' problem. Other recent
work has considered various conceptual and computational aspects of time-sequential combat
games [28-30].

Since our work here may be considered to be an elaboration upon and extension of

Kawaras's fire-support differential game [22], we will review his main results and relate our
work here to them. Kawara [22] considers combat between two heterogeneous forces. each
composed of infantry (the primary weapon system) and artillery (the supporting weapon sys-
tem). The time-sequential decision problem is to determine each side’s optimal strategy for
distributing its supporting weapon system’s fire over enemy target types according to the cri-
terion of the infantry force ratio at the prescribed-duration attack’s end. Kawara concludes that
each side's optimalt strategy is to always concentrate all supporting fire on the enemy’s sup-
porting weapon system (counterbattery fire) during the early stages of battle (if the total

*We refer to a differential game as being a Lanchester-type differential game when the system dynamics
are described by Lanchester-type equations of warfare [34]

**See Ref [33]. however. for a justification of the optimality of strategies given by Weiss [38] A general
solution algorithm s also presented in this paper [33]

tKawara does not determine the optimality of extremal strategies determuned for his problem (e show
that sufficient conditions of optimality are satisfied [4]). We use the word “extremal” to denote a trajectory
on which the necessary conditions are satisfied
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prescribed length of battle is long enough) and then later to switch to concentration of all fire
on the enemy’s infantry. He states that this switching time "does not depend on the current
strength of either side but only one the effectivenesses of both sides’ supporting units" (see p.
951 of Ref. [22]). Moreover, an optimal strategy has the property of always requiring concen-
tration of all supporting fire on enemy infantry during the final stages of battle.

Thus, Kawara concludes that for his model the optimal fire-support strategies do not
depend on force levels. However, this is only true provided that the appropriate side’s (in
Kawara’s numerical example, the defender) supporting weapon system is not reduced to a zero
force level before a critical time.* Let us assume, therefore, that neither side’s supporiing
weapon systems can be reduced to a zero force level.** For this condition the optimal fire-
support strategies are force-level independent and may be expressed solely in terms of "time-
to-go" in the prescribed duration battle. The purpose of this paper is to show that a tactically
realistic variation in the attrition equations leads to a problem with force-level-dependent
optimal fire-support strategies. This result has an important implication for tactical decision-
making: optimal time-sequential allocation of fire-support resources depends not only on initial
intelligence estimates but also on a continuous monitoring of the evolution of the course of
combat.

Thus, the purpose of this paper is to illustrate the dependence of optimal fire-support stra-
tegies on the nature of Lanchester-type combat attrition equations [34]. We consider a slight
variation in Kawara's problem (i.e. different combat dynamics) for which the structure of the
optimal strategy of one of the combatants is significantly different than that in the original prob-
lem [22]: the optimal strategy of one combatant depends directly upon the enemy’s force levels
and is no longer to always concentrate all fire on either the enemy’s primary or supporting
weapon system. Furthermore, we will show that an optimal strategy in which a side divides the
fire of its supporting weapon system between the enemy’s primary (infantry) and supporting
systems can only occur when the enemy’s infantry has some fire effectiveness (in the sense of a
nonzero Lanchester attrition-rate coefficient) against his infantry. The optimal strategy of one
side to sometimes split its fire is very similar to that which occurs in a one-sided (optimal con-
trol) problem previously considered by us [31] (see also Ref. [32]) for the optimal distribution
of fire by a homogeneous force in combat against heterogeneous forces. In Ref. [31], the
enemy consisted of two weapon-system types, each of which undergoes attrition at a rate pro-
portional to the product of the numbers of firers and targets (referred to, for convenience, as
"linear-law" attrition). In fact, this previous work of ours [31] was the motivation for our
examination here of other attrition structures in Kawara’s problem.

2. KAWARA'’S FIRE-SUPPORT DIFFERENTIAL GAME

Since Kawara’s fire-support differential game is the point of departure for this paper, we
will review the development of his model. The reader will find it convenient to compare the
mathematical statement of Kawara's problem (1) of this paper, with the fire-support differential
game studied in this paper, equations (2), in order to understand the dependence of optimal
fire-support strategies on the mathematical form of the attrition equations.

Kawara [22] considers the attack of heterogeneous X forces against the static defense of
heterogeneous Y forces. Both the X and Y forces are composed of two types of units: primary
units (or infantry) and fire-support units (or artillery). The X (infantry denoted as X))
launches an attack against the Y infantry (denoted as Y;). We consider that phase of the attack

*See the expression for T3 on p. 949 of Ref [22] and its plot in Fig. 4 of Ref. [22]
**Initial force levels and the known length of battle may be sufficient o guarantee this for a given set of (or
range of values of) Lanchester attrition-rate coeflicients

oy




326 ) G TAYLOR

which may be called the "approach to contact." This is the time from the initiation of the
advance of the X, forces towards the Y, defensive position until the X, forces actually make
contact with the enemy infantry. It is assumed that this time is fixed and known to both sides
and that infantry fire has negligible effectiveness against the enemy’s infantry during this time.
During this time the fire-support units remain stationary, and each unit has the capability to
deliver either "point-fire" counterbattery fire against enemy artillery or “"area fire" against the
enemy's infantry.

! It is the objective of each side to attain the most favorable infantry force ratio* possible at
the end of the "approach to contact," at which time the force separation between the opposing
infantries is zero and artillery fires must be lifted from the enemy’s infantry in order not to kill
friendly forces. Thus, the decision problem facing each commander is to determine the "best”
distribution of artillery fire over time between enemy infantry and enemy artillery in order to
maximize the quotient of friendly infantry (numerical) strength divided by enemy infantry
strength at the end of the approach to contact. This situation is shown diagrammatically in Fig.
1. The reader is referred to Kawara's paper [22] for further details of the model's develop-
ment. It should be pointed out that this model also applies to the case of an amphibious land-

ing and the determination of the optimal time-sequential allocation of the supporting fires of

naval ship guns.

I-u

ATTACKER

<2

FiGure 1 Diagram of Kawara's Fue-Support Differential Game

Mathematically, the preblem may be stated as the following **
\ l(")

maximize minimize { —
{ ! w)

with stopping rule: 1, — I' = 0,

I (I\l
subject to: - = = VA XV
(battle dynamics) di :
. O
— - - v)a,y,,
(n Jr =
‘I-“I b
—— = — ub,y Xy,
pr (LARS.
dy,
—= = = (] = u)byey
dt

*See Ret {38] tor some msights into the dynamics of combat from considening the force ratio

*We ouse caprtal letters to denote the closed-loop (or teedback) strategies [19] of the plavers and the
corresponding lower case letters to denote the corresponding strategic varables (41 A strategic vanable s
the realization tor outcome) of a strategy  Thus, w() = Cxy) and 10 = 1xy)

R TR NIRRTy
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with initial conditions

X =0)=x"and y(r =0) = y'for/=1,2,
and
XX, 2> 0 (State Variable Inequality Constraints),
0 < w,v < 1| (Strategic Variable Inequality Constraints),
where
v, (r) s the number of X infantry (i.e. X)) at time ¢,
v,(1) is the number of X artillery (i.e. X,) at time 1,
similarly for y (1) and y,(1),
a is a constant (Lanchester) attriction-rate coefficient*
(reflecting the effectiveness of Y, fire against X,
similarly for & ,
and
u(v) s the fraction of X (V) artillery fire directed at
opposing infantry forces.

We observe that for 7' < +oo it follows from the battle dynamics (1) that x,(¢r),y.(r) > 0 for
all 1 € [0,7]. Thus, the only State Variable Inequality Constraints (SVIC's) that must be con-
sidered are x, v, > 0.

Kawara's results and conclusions [22] have been previously discussed in Section 1.

3. ANOTHER MODEL FOR OPTIMAL
FIRE-SUPPORT ALLOCATION

In this paper we will study a variation of Kawara's [22] fire-support differential game (1)
just given. We will see that for this problem the structure of the optimal fire-support strategy
for the attacker has a fundamentally different form than that for (1): the attacker must some-
times split his fire between the defender’s primary supporting units in order to “avoid overkill."
Furthermore, the nature of this split in an optimal strategy depends on the allocation of the
defender’s supporting fires.

Let us again consider the attack of heterogeneous X forces against the static defense of
heterogeneous } forces. Each side is composed of primary units (or infantry) and fire-support
units (or artillery). The X infantry (denoted as X,) launches an attack against the position held
by the Yinfantry (denoted as ). Again, we will consider only the "approach to contact" phase
of the battle. This phase is the time from the initiation of the advance of the X, forces towards
the Y, defensive position until the X, forces actually make contact with the enemy infantry. It
is assumed that this time is fixed and known to both sides.

Using "cover and concealment," the X, forces begin their advance against the Y, forces
from a distance and move towards the ), position. The objective of the X, forces during the
"approach to contact” is to close with the enemy position as rapidly as possible. Accordingly,
small-arms fire by the X, forces is held at a minimum, or firing is done "on the move" to facili-
tate their rapid movement. It is not unreasonable, therefore, to assume that the effectiveness
of X,'s fire "on the move" is negligible against } . We assume, however, that the defensive },
fire causes attrition to the advancing Y, forces ai a rate proportional to the product of the
numbers of firers and targets. Two possible justifications of this are as follows: because of the

*See Ret [10] (also [8.9]) for methodology tor the prediction of such coethicients from WEApoOn svstem per
tormance data
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movement (and intermittent concealment) of the \, forces and the distance involved, the },
defenders either (a) fire into a constant (but moving) area without precise knowledge of the
consequences of their fire, or (b) fire at ' targets, with the result that the ume to acquire such
a target is inversely proportional to the density of \', forces and much greater than the tme to
kill an acquired target. Under cach of these sets of circumstances the assumed form of attrition
has been hyvpothesized to occur [11,37]

During the “approach to contact,” the fire-support units remain stationary . Fach unit has
the capability to dehiver counterbattery fire against enemy artillery or “area fire” against the
cnemy’s infantry.  In other words, we assume that each side’s fire-support units fire into the

(constant) area containing the enemy’s infantry without feedback as to the destructiveness of

this fire. On the other hand. the effectiveness of counterbattery fire 1s not symmetric with
respect to the two combatants. We assume that the defender has the capability (for example,
through the use of aerial observers) to sense when an enemy supporting unit has been des-
troved so that fire may be immediately shifted to a new target*, and that fire 1s umiformly distri-
buted over the survivors.t The attacker, however, either (a) does not have the capability to
sense destruction of enemy fire-support units accurately (and hence distributes his fire uni-
formly over the (constant) area occupied by the defender’s tire-support units), or (b) does have
adequate fire assessment capability, with the result that target acquisition times (which are
inversely proportional to the density of the enemy’s fire-support units) are much larger than the
time to destroy an acquired target. This leads to a ), attnition rate proportional to the product
of the numbers of X, firers and Y, targets [11,37]

It 1s the objective of each side 1o attain the most favorable infantry force ratio possible at
the end of the "approach to contact,” at which tume the force separation between the opposing
infantries 1s zero and artillery fires must be lifted from the enemy infantry’s position in order
not to also kill friendly forces. Thus, the decision problem facing cach side 1s to determine the
"hest” distribution of artillery fire between enemy infantry and artillery over time in order to
maximize the infantry force ratio at the time of contact between the two fantry forces. This
sttuation 1s shown diagrammatically in Fig. 2

ARTILLERY ARTILLERY

Yo
2

ATTACKER
b

Y

Fraure )

Diagram ot Fie Support Difterential
Game studies i thas paper

“Alternatively . we may think that the attacker has massed so much artillery that U targets are alwavs casily
acquired by ) Conce an v umit has been destroved  Morcover, it will be assumed below that the imital v
torce level s sutficiently large to guatantee that its never doven to zero

i assumption s not essental for the structure of 'S aptonal tire sappart steagety A semedar structue
al result may be obtamed when Vs attntion s the same form as that tor Y We have made the above as
SUmpton, morcover, so that the resultant attotion model s most simidar o Kawara's 122 but vet vields
sipividtcanty different results for the attacker's fre Support strategy
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The above assumptions lead to the following differential game with an attrition structure
slightly different from that in Kawara's problem [22].
g 0 xatr,)
maximize minimize { - .
t ! vilr,)

with stopping rule: r, =0,

X ll\|
2) subject 10: —— = — @ NV — va N Y.

(hattle dynamics)  df
L (- v)
— = v)a,v,.
dt il
dv, 5
—— = — ub VX7,
dt il
&I)'_‘
= = — (]~ 1) b5 e,
(l’ - . P

with initial conditions
x(r=0) =x"and vy (r=0) = y"for/ = 1,2,
and
NV > (State Variable Inequality Constraints),
0 < w,v < 1 (Strategic Variable Inequatity Constraints),

where all symbols are (essentially) the same as defined above for problem (1).

We observe that for 7" < +oo it {ollows from the battle dynamics (1) that v, (r), v,(r),
and v,(r) > 0 forall r € [0.7]. Thus, the only SVIC that must be considered is v, > 0. How-

ever, let us assume that the torce level of the attacker's artllery s never reduced to zero. In other
words, we consider the special case in which x5yand Tare such that x,(7) > 0.

4. CHARACTERIZATION OF OPTIMAL FIRE-DISTRIBUTION STRATEGIES
FOR THE SUPPORTING WEAPON SYSTEMS

It should be clear that in (2) above we have a.a, a,.b,.b, > 0. Although the results of

A. Friedman [14] concerning existence of value do not apply directly to our fire-support

differential game (2), they do apply to a suitably modified version. If we were to consider a
dX

version of this problem with - A, s v)a,v, + ry where ry > 0, then it may be shown
«

(see pp. 210-230 of Ref. [14]) that this "modified" differential game has value and that a saddle

point exists in pure strategies (see pp. 234-235 of Ref. [14]). We will now develop the basic

necessary conditions of optimality for (2).

For x vy, > 00 the Hamiltonian for (2) is given by [12]
HOx y. p.quy) = pila vy + va ey = phas(l =)y,
3 = qub vy = gy (L —w)byvax,,
where we have adopted the following correspondence between state and adjoint variables:
state Variable  dual variable

\ [’
¥ q for /= 1.2.

—— T e e

v
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I'he adjoint system of differential equations tor the dual varnables s

dp ¢ .
«) .4 1 f’” = aquyiPt viaayap, with p(T) =
i d\l ¥i
- dp ¢ "
(3) 2 _dH =uh viq, t U-ub,vag,  with p, (1 =0,
de an,
dq aH : Vi
(6) - - = X Py T WD X with ¢ (1) = —
dt ar vy RS 4\ )
dq » ¢ -
N ‘:' - f:” = v, (D awyp, + (- by, with ¢ (1) =0
t ayv,

I'he results of Berkovitz [3] say that A p(), and q(¢) are continuous functions of time except
possible at manitolds of discontinuity of both ' and }* (see Section 4.3 below)

When v vy > 0, the extremal strategic-vartable pair, denoted as (v ") s deter
mined by the max-mun principle. Hence, we consider

maximize munmize H Xy, poquiy).

s v s 1 Osvsl

S0 that

I far S, () >0
(8) ut(r) = ln for (1) <0
where the (-switching function 8, (r) 1s given by
9 S = b (—q)v = bi(q)vy
and

I tor S (1) >0,
(10 v*(p) =

0 for S,(r) <0,
where the }-switching function §, (1) 18 given by
(n S.0) =appx, = ap;

1t 18 readily shown that

\
(12) Pl x () = constant = p (D (1) = )
i
d \
(13) (g ) = ay, l me) > 0,
dr Vi
and
I/A\.I
(14) 2 AU =u®S () — ab v,
dt

We must further investigate the possibility of singular subares (Ret [31] or Chapter 8 ot
Ret. [12D) . Let us first show that o s impossible to have a b -singudar subare  In other words,
v () must be 0 or 1 almost everwhere in time. The impossibility of a bsingular subare s
ds, ‘
established by showing that P > 0 torall rel0, 7] 1tas clear that
i

‘

(s (1 u™S () <0 torall re |0, 1
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!

X
Considering (13) and the fact that ¢ (T)y(T) = — —: < 0, we see that ¢,(1)y,(r) < 0 for
Y

all r€l0, 7], whence follows the assertion via (14).

It is possible, however, to have a U-singular subarc on which %% = 0 (or, equivalently,

S.(t) = 0) for a finite interval of time. There are two cases to be considered: (a) v* =1 and
(b) v* =0.

4.1. U-Singular Subarc on Which V* = |

When v* = 1, it is readily computed that

(16) a3, (a6 bayy)
i e anowy—apnbyy,.
and
d’s, x{
an 7 - — l—%) xz{(a“b,y,)u’bl == (aub))’g)(l —ll.)b)}.
Vi

If we consider (9), the requirement that 3—7 = 0 yields the first condition for a U-singular subarc

with V* = [
(18) b1q 1y = byqw,.

If we consider (16) and (18), the requirement that ?jd? (3—7, = 0 on a singular subarc on which
oH

—— =0 for a finite interval of time yields the second condition JSor a U-singular subarc with V* =

ou
k
(19) dpby, = apby,.
On a subarc on which the first and second conditions for a singular subarc hold, we additionally
2
require that -:—2— %Zi = 0 so that (17) yields the singular strategic-variable value required to
t
keep the system on the singular subarc
*(r) b:
u - 5
(20) b+b,
; A o 9 | d* |oH
Checking the generalized Legendre-Clebsch condition* [23,24] ™ v § > 0, we find

that on a subarc on which (18) and (19) hold we have
8 | a* |oH x{
El’ {F 'E'] o ';.‘;'](Xz)z{a“(bozy‘ + a‘z(bz)zyz, > 0.

We may write the equation of the U-singular surface (see p. 683 of [31]) as

) b
1) AR R

Y2 apby

“This is a necessary condition for optimality. R. Isaacs [21] gives an equivalent condition [18]

v
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4.2. U-Singular Subarc on Which V* = 0

When v* = 0, it is readily computed that

ds, x{
(22) E— - -l' (ullhl".l v lllvh:)':) i h;r;S‘(l).
dt ‘y,' 3
and
d:s, ds, )
(23)  —5 = —uthxy — + arbyw = uS, (1) + bygyy + paxsluth, — (1 — u®) b)),
an 2 202¥; 9202 2 2
so that the first and second condinons for a U-singular subarc with V* = 0 are, respectively, (18)
and
ol
(24) ‘lllhl.rl - “l_‘h.‘.'..‘ + b:_b') —\T] {—S‘(!),
Xy

It should be noted [18] that the above singular surface exists in x — p space. It is convenient
to write

¥ by _
(25 — - —— 4 ——— (= 5§,(r)} for v* =0.

The singular strategic-variable value is given by

3

bi+b,

(26) w*le) =

PP
[] =
£3X3

The requirement «* < 1 yields that on a U-singular subarc with }"™* = 0 we must have
Q27N by(=q)yy < bypyx,.
It is readily checked that the generalized Legendre-Clebsch condition is satisfied.

4.3 Discontinuity of Adjoint Variables Across Manifold
of Discontinuity of Both U* and V*

I+ is convenient to introduce the backwards time t defined by
(28) =i

From (20) and (26), we see that «*(r) must change, in general, discontinuously from
by/(b+by) to by/(b+b,)(1 —q,v)/(pyxy) whenever v*(7) changes from 1 to 0. Let us con-
sider the totality of trajectories on which this happens. The locus of points in the r.x.y —
space for such simultaneous switches is then a manifold of discontinuity of both U*and }™*
Across such a manifold the adjoint variables need not be continuous [3].

Let r, = 7 (x,y) denote the backwards time at which v*(7) changes from 1 to 0. For
future purposes, it will be convenient to consider a simultaneous switch with «* changing from
the singular control b,/(b,+b,) to 1. Then the manifold of discontinuity of both U*and }™*is
given by

(29) F(r, x,y)=1~-T + 7r.(x.y) =0,

and

(;(y) - ll“h[‘\'l - (ll_\h:.".\ = (),
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Across the manifold of discontinuity, we have

p'G) =plz,) —p g.: - %—:‘i.
Q') =q'(r,) —p %‘t - o %;’
and
H(z')=H( ) +p ?Tf + o %’".
or
et plr ) ot
(30) p'(r}) =p'(r, p ax
a7,
31 (—q,(r\'))=(—q|(r‘))+p 5"‘ +(r(th|.
M
ar,
(32) (=q:(7)) =(=gy(7,)) +p ity aa)b,,
and
33) Hir ) = Hz ;) + p-

If we consider (9) and (11). it is readily shown that

, ; ar, ar,
(34) S0t D) = elay ) + ay3(bivs) + plbgy, —= — by, —2].
o 6_\'1 = 8_\‘_‘
and
ol e ar, ar,
35) S.(7)) = = plax, a; —u_‘af\j .

Recalling that «*(r,) = by/(b\+by)), u*(r) =1, v*(r,) =1, and v*(r') = 0. we may sub-

T, ar, ar,
stitute (30) through (32) into (33) to obtain for @ X vy —— + @y — + by, —- = 1
v, ©ooN, 1
(I”(hl):_"l\'_\lr
Go o S L ,
1k ... SRS, .
ll axgy, o, asV, o, VNS 8,
Then we may write
S, =aia (b)), + ay(by) iy,
5 ar, a7,
ay(hy) ygbyyy 5\—1 = by, 'é.‘,:
(37 r—
ar, or, ar,
L=apvyy, 5\| = G¥y 5\':' = b, o,

- — i ————
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and
X a7, ar,
—ap (b)) yx,la,x, 5— - iy E—Iw
(38) S F) . e . (e il *2 =
: ar, a7, " a7,
- \ ) SEp e Py —— v 4 y, ——
ap Ny ax, a,v) ax, LR v,

5. SYNTHESIS OF EXTREMAL STRATEGIC-VARIABLE PAIR

By the synthesis of the extremal strategic-variable pair we mean the explicit determination
(using the basic necessary conditions of optimality) of the time history of the extremal
strategic-variable pair (#*v*)* from initial to terminal time [21,31-33]. The basic idea is to
trace extremals backwards from the terminal manifold (where boundary conditions for the
adjoint variables are known) in such a way as to guarantee the satisfaction of the initial condi-
tions. Thus, it is convenient to introduce the backwards nme 7 defined by (28).

5.1. Extremal Transitions in Strategic Variables

It seems appropriate to examine what the possible transitions (or changes) are in each
strategic variable as we work backwards from the end (i.e. as 7 increases). It has been shown
previously that ?I—ST < 0 for all 7 € [0.7]. If we consider the boundary conditions (4) and (5)
for the adjoint variables, it foiiows that §,(r = 8} > 0. Thus
l for 0 <7< 1
0 for r, < 7.

Ve

(39) (1) =

It will be convenient to refer to that phase of the planning horizon during which v*(r) = 0 as
V-Phase I (i.e. 0 < 1 < T — r,) and to that during which v*(r) = 1 as }-Phase II.

Extremal transitions in «* for increasing 7 are shown in Fig. 3. Thus, this figure shows
what changes we might expect to observe in «* as we follow an extremal backwards from the

aS, x{
end of the planning horizon at r =0. During }-Phase Il when v* =1, o = ——',
darT AR
"
(ay by, —ab,yyy) with S, (r=0) = bx{/y{ > 0. When u* = 0, then —I‘L ‘—' < 0. Dur-
ar [\ n

ds, x|

ing V-Phase 1 when v* =0, T l——‘;l (@ by, —apbyyy) + by,v,5 (7). During both
arT '\“

phases, the singular subarc may be excited with either «* = 0 or «* = 1. Once «* becomes 0,

it remains this way. The above statements will be further justified below.

'<r,

i

5.2. Extremal Synthesis for 7,

From the above we have
x{
(40) S,(r=0) = b, = >0,
Ji

*It should be kept in mind that, for example, «*(r) = U*(1.x,y)
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u'!us u.=|

FIGURE 3 Extremal transitions in u® for increasing 7
1

u*=0
NOTE
L a2y2
[bl"'bZ] [|" 92‘2] FOR v*=0,
Hs = b2
*
[b,+b2 FOR v"=|,
so that by (8) we have
u*(r) =1 for 0 < <7, (41)

where 7, is the smallest zero of the equation S, (r=7,) = 0. If the U-singular subarc is reached
in }-Phase Il (see section 4.1. previously), then let us denote the backwards switching time at
which «* changes from | to b,/(b,+b,) as 7,. Clearly, it is necessary that r, < 7, for this
singular subarc to appear in the solution. Thus, in general, there are two cases to be con-
sidered:

@ 2, < 75

u
and
® 7, >,
In this paper we will consider only the former case, with the latter one following along the same
general lines of development. We therefore assume that ayy.a y.a,.b,.b, x{.x3y{, and v§ are
such that v, < r .. We will give numerical results for this case below. Moreover, in all our
numerical computations we have only encountered this case.

5.2.1. Extremals Near the Terminal Manifold

al2h’

If we con-

is, sy I
Recalling (16), we see that —‘, > 0 (<0) if and only if ‘—l- > (<) -
arT Ty a0,

V’ . ; by
sider (40), it s clear that S,(r) > 0 for v* =1 when =1 ik

/

However, S,(7) may
2 apb,

: vy apb,
change sign when — <

)] apb,
apbyw,=anb,yyat =1, Thus, 7, is the smallest root of
1 1 1

A N T
hl.\':n h!.\'3 apvy

Then U-singular subarc occurs when both S, (r=7,) = 0 and

hit o, (42)

If v{is given, then S, (r=7,) = 0 and apby, = apb,v, may be combined to yield the value
of v{ required in order to reach the U-singular subarc (denoted as v{%. Thus, for
bl ((l||_|'|’—h|.\"4)

—=—. (Other results are given in the Appendix.)
h_‘ (ln(l ‘h|.\’j1’“)

apv{ # b,xs we have y{ =

!/

; ’ . 4

We denote the corresponding ratio of y{ to yi{*as |—;
Y2

e ———
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When S (r = r,) =0 with a by, < apb,v,, it follows that 7, 1s the smallest root of
the transcendental equation
tl”\'ll h
A

dr
12

(43) [hl } anyi Y

THEOREM 1: Assume that 7 > r.. Then, u*(r) =1 on any extremal as long as

PO . ) ¢
v*(z) = | for — > -
Va V)

PROOF: The proof is by contradiction. Let r = v{/ys.

Vi vy
(a) Assume that we could have a switch in «*(7) (with v*(7) = 1) for ——‘ > '-1, In
¥2 2
other words, we can find 7, such that §,(r=7,) = 0 with
(44) S,(r) > 0for0 £ 7 < 7,
Vi vi]
for ——' > ——ll
A L]
v
y i Vi
(b) Consider 7 = —l = [—] + € with € > 0 and such that 7, < r,. Then it may be
¥ X3

shown that at 7 = (y{/¥3) * we have dr,/dr > 0. This implies, however, that r, > 7 for
ro=r

ut =1 R Y
(¢) Observe that l". ) for0 < v € r, < r,s0 that y/y, = y{/y3e """ Hence,
¥ apb, . 3
(45) — (r=7,) > ——forr =F
M (l”hl

! ds,
since then 7, (r=7) > 7 It has been shown above that 3 > 0 for v,/vy > apby/lay b)),
dT

1S,
Thus, (45) implies that ‘AI—— (r=7,) > 0, and hence
ar

(46) 0=3S,(=1)>S,(r)forrelr, —8.7,).

i

This last statement (46) is a contradiction to (44), and the theorem is proved
QE.D.

Other results are obtained in a similar fashion.

5.2.2. Field Construction

For a given set of terminal values x{.x 3y, and vy an extremal may be traced backwards
from the terminal manifold by a backwards integration of the state and adjoint equations com-
bined with (8) and (10) (also (20) or (26)). By varying these terminal values, the entire field
of extremals (see p. 128 of Ref. [12]) may be obtained.
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The various types of extremals that may occur in the field of extremals are shown in Fig.
| 4 This figure 1s representative of all our numerical results for 7 < 7 (see Section 523
| below)  Pertinent information concerning each type of extremal s given in the Appendix.

)
T T T T T
I
Pail
AII ﬂ
1 yz
V- PHASE T ! V- PHASE T
b v*:=0 vtz —12
| I
‘ Pa2
| ».I o= -9
A4
i
Pa3
I
| Ps2 S P
I |
Pgs/ | |
u -US l
Y u*:0 ' = 12 oppbp
u ‘bz/(b|" 214N I _O-D—
1 83\ = I &9% Psn ]
Paq 83 P ok,
| i S e B N
| - I L 1 L RN
(_ 120 80 60 a0 20 r:0
- (t=T)

BACKWARDS TIME, r (MINUTES)

FiGure 4 Identfication of various types of extremals tor

which intormation s given in the ~\p|‘c!h|l\

320 Numerical Examples

A computer program to calculate numerical values for information given in the Appendix
was written in FORTRAN for the IBM 360 computer.® A plot of the field of extremals (see
Fig. 5.6, and 7 below) 1s generated by this program. The closed-form analytic results presented
in the Appendix are used whenever possible.  Approximate numerical solutions to transcenden-
tal equations (for the determination of, for example. 7. 7 . etc) are developed by the well-
known Newton-Raphson method. In those cases tor which closed-form solutions are not avail-
able to the state and adjoint equations, a standard fourth-order Runge-Kutta numerical integra-
tion method 1s used. A time step Ar was used in these numencal integrations which vielded
agreement to the fifth place to the nght of the decimal place in tests cases in which the approxi-
mate numerical solution could be compared with the exact solution.

Parameter sets for the numerical examples given in this paper are shown in Table 1. for
our problem (2) we may consider time to be an additional state variable so that the state space
is five-dimensional, t.¢., the state variables are 7. X, vy v and vy Thus, unfortunately, we
cannot graphically depict the field of extremal trajectories but must be satistied with viewing
"cross-section” plots of 1t

*The author would ke to thank Captan Jeffrev L Blhs (US Army) for domg this work - Subsequent

computational contributions were made by Captamn Robert 1 Hill HE U S Army)
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V-PHASE I
=
v =

<>

U-SINGULAR
“ SURFACE

= \\\\

100 80 60 1, 40 20 1y
BACKWARDS TIME, T (MINUTES)

FiGURE S Plot of v /v, vs backwards tme
tor field of extermals tor parameter set 1

100 80 60 Tv 40 20 Ty

BACKWARDS TIME, v (MINUTES)

FIGURE 6 Voud in field of extremals shown e plot of

Vv, vs backwards tme r for parameter set
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y2
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1
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5

Figure 7. Filled-in void in field of
extremals for parameter set 2

TABLE 1. Parameter Sets Used to Generate Numerical
Results Shown in figs. 5.6, and 7.

Parameter I S 7
Scl d (l“ a, b| b, X1 X3 L)

1 0.003 0.006 0.01 0.004 0.005 4.0 8.0 8.964

2 0.003 0.006 0.01 0.004 0.005 4.0 8.0 11.597

The most illuminating plot for gaining insight into the structure of the optimal fire-
support strategies for (2) is that of extremal trajectories in terms of y,/y, vs backwards time 7.
This is shown for parameter set 1 in Fig. 5. The corresponding strategic variable values for X
and Y (i.e. u*and v* along each extremal are also given. Other plots have been considered,
but they provide little, if any, additional insight.

The most significant features of the field of extremals shown in Fig. 5 are the two U-
singular "surfaces"; there is one in x,y — p, q space in V-phase I and one in y-space in }-phase
II. In each phase, X uses the strategy U = 1 above the singular "surface" and the strategy U’
= 0 below it. Similar to our discussion in Ref. [32], the singular surfaces are present in the
field of optimal trajectories so that the X artillery avoids "overkilling" either Y, or Y, This
insight is obvious when one, for example, considers

(/}'|
dt »
\, il
- ' e - e —— s T R
E—‘ - e b e . PR,
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Thus. the rate of destruction of Y, per unit of X artillery decreases over time as the Y, force
level decreases [31,32].

Results for parameter set 2 are shown in Fig. 6. There is a void (see p. 169 and also p.
187 of Ref. [21]) in the field of extremals. This is because in backwards time at the end rof
the U-singular subarc in }-phase II, we would have u (7. ") (as given in Fig. 3) equal to 1.054
if the adjoint variables were continuous at 7. The following theorem further explains this
situation

THEOREM 2: There can be no U-singular subarc beginning in backwards time at 7 " with
U||hl_\'| = (ll)hl": for
h|[)3(T‘ ).\‘3 + h_qu(T| )_\'1 <0
When a U-singular subarc begins at 7" with a6,y = a,6,v,, there is no discontinuity in the
adjoint variables at 7 = 7, (i.e. ¢ = 0in (37)).
PROOF: Immediate by (27) and (37).
Q.E.D.

Additionally, Theorem 3 gives the extremal transitions in X 's strategy possible from the U-
singular surface in V-phase Il as we work backwards from 7. Thus, since b;p(7 )y, <
by(—q,(7.))) v, for parameter set 2, a void would exist in the field of extremals if the adjoint
variables were continuous at 7.

THEOREM 3: Assume that there is no discontinuity in the adjoint variables at 7 = 7,
with ‘Illbl.‘.l . (1”[7))'_1. Then

1 if bypy(r.)x, < by(—gqy(7,))y, then we can only have u*(7) =0 for 7 € (v,.7,4d)
where & > 0,

I If bypy(r)x, = b,y(—q,(r))y, then we can have
(a) 0,
u*(r) = (6 (1 —(]_1\'3/([73.\':))‘b:/(h|+h1).
() S0

for 7 € (v, 7 +8) where & > 0.
PROOF: (a) When we are on the singular surface in V-phase Il at r = r. . then by
(22) and (23) and the continuity of the dual variables we have
S(r=1)) = g'“(r =7} =0,
and
by
bi+b,

(47) g‘j,(r_r.') = a,b,(b+b)prx v, lu‘(r,') -

i

4,2
[l i ]l'
P,
o (/.
where S denotes ——.
dr
(b) Considering a Taylor series expansion about r = r ', we have by the above for r >

+

Ty WP
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(r=1)? 4
(48) S.(1) = 3, {7},

where r e (¢ 1)

(¢) When w*(r) = 0for 7 e (¢ 7 +8), then

e {2V

S.Gr=r"") = —a,(b)) pavar, |I <0,

Py
so that there exists 8, > 0 such that §,(r) < 0 for all 7 e (r 7 +8,) Thus, we can always
have «® = 0 as we work backwards in F-phase [ from the {-singular subarc in }-phase 11

(d) Now let bypy(r vy > b g Dy By (26), the C-singular control in }-phase 1
g = (L-quw/(pyx ) bbby < 1. Thus, the C-singular subarc is possible. When
Wt (r ") = 1 then § (r=r") > 0 by (47). When incquality holds, it follows that there exists
8§, > 0 such that §,(r) > 0forall re (¢ 7 +8) Clearly, we cannot have «* = [ f bipslr.)
Vo< b q,(r,'))r,.

QED

The same analysis as used i the proot of Theorem 3 applies on a {-singular subarc in §-
phase I when v* = 0. As long as (27) holds. one has three options similar to those of part 11 of
Theorem 3

S 24 Fdlimg moa Voud

We have emphasized that H, p(r), and q(1) are continuous functions of (me excepi pos-
stbly at manifolds of discontinuity of both (" and }* (see Section 4 3 From Theorem 3
follows that a void must exist in the field of extremals when these functions are continuous and
bipa(r vy < by gy Ny, AL 1L moreover, v* changes (as we progress backwards in
time) from | to 0 and «® from b,/ (b +h) to a different value  Thus, we have a mamifold of
discontinuity of both " and }'* Morcover, if we consider results given above, 1t s readily
shown that #*(r) remains for increasing = (e, backwards time) equal to zero once 1t changes
to zero. Then from Theorems 2 and 3 it follows that for A pae " v < A G gols " My the
dual variables must be discontinuous to fill in the vord, and we st have w*(:) = 1 for
r.< r < ¢! Furthermore, if we consider Fig 6 and considerations “in the large.” the mam
fold of discontinuity must lie on the }-transition surface

Thus, we have established that tor a by = a b, we have

u*(r,) = b,/(b,+h,).

v*(r,) = |
and
b e B
(49) virt) =0
It remains to determune the function r (x.y) of (29) so that ':; and :1 may be computed,

and the jumps in H, p, and q subsequently determined (see (30) through (33)) 1t should be
clear that 1t is impossible to explicitly determine  (x.¥y)  However, by computation of five
points on the F-transition surface, the desired partial denivatives may be estimated by using
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lincar approximations to the appropriate directional dooivatives and solving a system of four
linear equations in four unknowns.  For parameter 2 (as the reference case), this yvielded
the following estimates

ar,
- =~ 00000, = - —().295,
av, av,
(S0)
7 ar,
- ~0.0167, — - —0.0331
V) aVv.

1t 1s, therefore, convenient to rewrite the yump conditions across the manifold of discon-
unuity of both {"*and }*

+ ar‘
Prt) = pi(r)), plr)) =pir,.) —p ;
T 6\_‘
ar,
(S qi(r)) = q(r,) n (Hl|1”|.
av,
; ar,
q)r)) = qy(r.) —p taapnb,,
v, il

v
where p and o are related by (36). In this case the jumps (37) and (38) in the switching func-

tons Sillll"l'.}' to
( )2 . b il
1 VN V - sPs =
aploy) v fogwy 3, ¥ 5

(52) ‘\';.(r\’) o ll||(”|,“\'| + (ll_'(,’.\)"l'.‘ e

ar, ar,
| vy a‘-‘ bl‘.l\.‘ (':)."l

and
; ar,
—_— anelb)yx; 3 0
(53) S(r)}) = —n ) ) o
| ik b a7,
- @aks - - PN,y —
@aV) a\.‘ LY Y2 6_\‘,

Since v*(r"") = 0, we must have S.(r,"") < 0 so that (50) and (53) vield that ¢ > 0. It
should be clear that o = 0 1f and only if H. p, and q are continuous at .. For o > 0, the
condition that *(r ") = 1 yiclds that we must have

S, )
(54) - > 0,
or
where §,(r,"") is given by (52). Although it cannot in general be guaranteed that (54) will
always hold when a void in the field of extremals such as that shown in Fig. 6 exists, it should
be clear that it must it the problem (2) is to have a solution. The author conjectures that this
is true. It is readily shown that when (54) holds, we have

(55) S, >0, S0 <0, and S, <0

The appropriate value for o 1s determined by “considerations in the large™ the structure
of the entire field of extremals determines the value of this parameter. In Fig. 7, we let r

"
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denote the backwards time at which the C-singular subarc 1s entered in F-phase 1. Correspond-
ing to rMis o which yields the tirst and second conditions (18) and (25) (with g < 1) for a
C-singular subare with #7 = 0 at +/" > 7 For 0 < o < o one uses (1) = 1 for r'" <
r < rland then «'(x) = 0 for r > ¢/ For o > o the U-switching function S, (r) never
changes sign, so that & (r) = 1 for all = > r° Thus, by manipulation of o, one may fill in the
voud in the field of extremals in b-Phase I The resulting tield of extremals 1s shown in Fig. 7.

N25 The Case of Neghgible Y Small-Arms Eflectiveness

It seems appropriate to consider what happens to the solution to the problem at hand as
the (relative) effectiveness of Y, (small-arms) fire becomes neghigible, e as a; — 0. Let us
consider Fig. S (or Fig. 7). The C-simgular “surface” in }-Phase Il has equation yv,/v, =
apbyag b)) Thus, as a0 with the other parameters bemng held constant, this singular
“surface” appears higher and higher on the v/ v,y axis in Fig. S0 In the limit, the singular sur-
face does not appear in the finite part of the plane. Thus, we have shown that an optimal stra-
tegy in which a side divides the fire of its supporting weapon system between the enemy's pri-
mary (infantry) and supporting systems can only occur when the enemy’s infantry has some fire
effectiveness (in the sense of a nonzero Lanchester attrition-rate coefficient) against his infan-
try

6. DISCUSSION

In this paper we have examined the dependence of optimal time-sequential fire-support
strategies on the torm of the combat attriion model by considering a differential game (see
(2)) with shightly different combat dynamics than those n the fire-support differenual game
considered by Kawara [22] (see (1)) For this fire-support differental game (2) we developed
first-order necessary condivons of optimafity and constructed “cross-section” pictures of the tield
of extremals. By comparing and contrasting the structure of optimal fire-support strategies for
our problem (2) with that for Kawara's fire-support differential game (1), one begins to under-
stand the nature of the dependence of optimal strategies on the combat dynamics by also com-
paring and contrasting the combat attrition equations for these two differential games.

Our fire-support ditferential game (2) was similar to Kawara's problem (1) (see Ret. [22])
except that we let the attacker’s (e Us) artllery produce "lincar-law” attrition® against both
the defender’s artillery and also his infantry and let the detender’s infantry produce "linear-law”
attrition against the attacker’s infantry.  As contrasted with the optimal time-sequential fire-
support strategies for Kawara's problem (1) of always concentrating all arullery fire first on
enemy attillery and later on enemy intantry (the unung of the switch bemng force-level indepen-
dent), tor our problem (2) the optimal strategy tfor one combatant (the attacker, V) depends
directly on the enemy’s force levels and 1s no longer to always concentrate all fire on either the
enemy's primary or secondary weapon system. The latter result, morcover, was shown to
depend on the defender’s infantry having some fire effectiveness (in the sense of a non-zero
Lanchester attritton-rate coeflicient) against the attacker's ifantry

The solution to (2) 1s characterized by the presence of singular surfaces (in Issacs’ termi-
nology [21], universal surfaces [18], a different one tor cach F-phase of battle. When the bat-
tle state reaches one of these surfaces, \ tollows an optimal strategy of dividing hus artllery fire
between enemy infantry and artillery 1 order to avord "overkill”  Another characternistic ot the
optimal fire-support strategies (not present tor Kawara’s [22] problem (1)) s that \'s optimal

For convemence we use the term hinear law s attntion 1o denote an atinmon process in which a target type

undergoes attomon at i rate propotbonal to the product of the numbers of firers and targets (3032

\
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strategy may sometimes depend on }'s distribution of supporting fires.  This behavior occurs on
the singular surfaces. In fact, X sometimes must react instantaneously to changes in Y's fire
distribution.

The development of even a partial solution to (2) has involved a solution phenomenon
not previously reported tor Lanchester-type differenual games: the adjoint (or dual) vanables*®
are discontinuous across a manifold of discontinuity of both € " and }° This manifold of
discontinuity exists for a certain range of parameter values in the solution to the problem at
hand (2). Furthermore, there 1s a military interpretation to this manitold of discontinuity: if
Y, concentrates fire on X', and X, on },, then when Y, changes to concentrating all fire on \' |,
X must re-evaluate the worth of a }, unit because it now has a direct influence on the pavofl
Such a discontinuity in the adjoint variables is unique to differential games [3.4] (ie.. it cannot
occur for a one-sided optimal control problem).

It should also be pointed out that the presence of singular (i.e. universal) surfaces in the
solution to (2) 1s apparently independent of the form of the criterion functional (here, terminal
payoff) and depends only on the combat dynamics. For purposes of comparison we considered
the same payoft as considered by Kawara [22]. We also showed that the singular (i.e.. univer-
sal) surfaces can only by present in the solution when the defender’s infantry }, has a nonzero
casualty producing capability against \'|.

The problem (2) considered in this paper has certain similarities to the "War of Attrition
and Attack: Second Version" studied by R. Isaacs (see pp. 330-335 of Ret. [21]). We have,
however, developed a much more complete solution to our problem than that given in Ref
[21] for Mengel's problem. Although this problem (2} possesses some simifarities to the
Lanchester-type optimal control problem studied by us in Ret. [31]. 1ts solution has turned out
to be much more complex. Our developments in this paper, however, have been significantly
helped by intuition gained in the study of the simpler, one-sided problem (see Ret. [32] for a
further discussion).

As a result of our investigation here, we hope that a better understanding of optimal fire-
support strategies has been developed. As is always the case, however, the msights gained into
the optimization of combat dynamics from our study of the differential game (2) are no more
valid than the combat model itselt. Our work here shows that the tuncuonal forms of the vari-
ous target-type casualty rates produced by the artillery essentially determine the most significant
aspects of the structure of the optimal fire-support strategies. Thus, our study of this optimiza-
tion problem shows the importance of determuning the appropriate (Lanchester-type) model of
combat dynamics.

APPENDIX

Extremal Trajectories for the Fire-Support
Problem with r < 7 :

In this appendix we give information about the various types of extremals shown in Fig

*The reader should recall that these represent the margimal values of toree nwpes. re . o) ab@n o)
where b= 1 (rx,y) denotes the value of the differential game (see (14210
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ui(r) =1
pl . " L Vi v{
El S0 for 0 € 7 < 7,/ with it i 8
.> S Vs
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Let S, (r=7" = S Also, on P!, we have
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! ) ayw( [ snde
(1) = x{ exp {a, it + — |e 1|t

hl‘.‘

Also,

.')'*'(l hl

Ny(7) = x4,

,"l\;'

vilr) = v e
\'3(7’) - l'_*'.
and

h|\_\

vy avy ayw By 4 1
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E2.

On P

and
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u'(z) = by/(b+b))
PY: for r, < 7 < 7., where 7 is determined in El.
vir) =1
we have

S.(r) =0,

(l||hl"| . (ll.\h.v_\').

. is the smallest positive root of S, (r=7,) = 0. where

S.(7)

4 o BT ay
= 8§ 4 a0y Sl
L (9,\?)
ol B a), . ay ; .
+ gt |—|+ —| (¢ — 7,) = —— exp [Oxi(z — 7,)|}.
X A (".\w)

with 8 = b,b,/(b,+b,). An upper bound on 7,’is given by

Also, on P
X, (7)
va(7)
vi(7)

_\':(T)

and

par) =py = b

Foo=agy/lab).

we have
ay i+ apyd AL
= x| exp ———v‘;% ¢ “ =11t
A
=3
i N\SH )
=i e
PR ITAE )
=yje
” (I||||. +ﬂ|1\“j’ (s * E o 1 \'|’
pi(7) = pi exp |- : e T Y with pit = —|— |
Ox AN
. 1% an |4 M a a i
4 o =7 e v i e L i
i) exd) Xy A (Bx )
: IR e -\'|' ay a0
q,(1) = qi ¢ ’ ] | = Il—«' : l
Ax s

o o
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u'(r) =1
- " . - 5 4"|’ ."I'
E3. Py: forO0 < 7 < 7 with — > |—|.
V4 V3

vi(r) =1

7, 1s the smallest positive root of S, (r=7) =0, where S, (7) is given in El.

An upper
bound on r is given by

a

{ e — >
' a;b,

It has been shown that §,(r) > 0for 0 < 7 < r,. The solutions to the state and adjoint equa-
tions are the same as those for P, given previously.

u'(r) =1
E4. P forr, <7</l
vi(r) =0

v

We have that S,(7) < 0 for r > r, and that

ds

~“ A%
— (7) = hl\'zlsl(f) b i ‘_“I (ullhl.“l(r) — (Il\bw\'s’).
dr ¥y gk i

Also, on P, we have

dx 1

—— = ax v with x(r=7) = x|,
dr

Xo(r) = xy +api(r—1),

azb i 3
vilr) = yjexplbixi(r—r)) + 2 (r=7)%.

¥a(r) = y4,
and

dp 1

- gl with [’l(T=T‘.) - Pi.
dr

dp: g :
—= = —bvq, with py(r=7) = p).
dr

!

dq

Xy
= —a, — — b\x,q,with ¢,(r = 1) = ¢},
dr 1 i 124 q) ! q)

dq,

= —a,p,with q,(r=1)) = ¢}
dr

We have not been able to develop solutions in terms of "elementary” functions to the equations
for X, py. Py gy, and q,.
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u'(r) =1

Pl forrdl <r <+

vir) =1
7. 1s the smallest positive root of S, (r=7,) = 0, where

) [ |

ay n,\u

(bxi)?

S.(7) = SSH 4 q,b y3t!

a
bx{

+ I(r~rd)—

g

Again, an upper bound on 7, is given by ay/(a,;b;). lt has been shown that §, () > 0 for
!l <7 < 1, Also,on P/, we have

and

a, it
; ¥ A
X (1) = x$ exp a3t (r—78) + ———— lc

b!.\'j
x,(1) = x4,
£ "
v (r) = pi e voave=Tse)
¥ .
yolr) =yttt

all‘ll” b
py(r) = pttexp {—a vt (=7 l) = ——— [('
hl"‘.‘
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{ 1"
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12 (i II]

|
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Results are similar to those for P}, above in E4.

w'(r) =1
E7. Pis: forr ' <r </l
vi(7) =0

Results are similar to those of P, above in E4.

ur) = by/(b+b)-(1 —qovy/(px) = ug
K8 I’\/.“ for v < 7 "

v =0

As usual, we have that S (r) > 0 for = > 7 . In order for a U-singular subarc to be pos-
sible for = < 7, the following condition must hold at r = 7" :

bipy(r . Iny(5)) > by(—qa(r Ny ).

Also, on P!, we havet

x'

dx . - o

— = g x v With x,(r=7) = x|,

dr

dx, . u .

—= = q,y, with xy)(r=7) = x},

dr o

dv, . ! . 49

o . u¢h X,y with yvi(e=r) = vy, j

arT

dv, 2 , Sty

=% = (1=u ) byn,vy with vy(r=7) = vy,

dr
and

ip : .

2 —ay vy With p(r=7) = p.

dr

dp, ; . =

P = —b\v1q, with py(r=7) = p},

ar

1 Xy . 3 . .

it ~d ‘l, - ughv,q, with ¢ (r=7) = q;.

llf ."I

! . : . .

3 —apy — (1 = ug)byx,q, with g (r=r7) = q}.

dr . e ©

ui(s) =1
y / . e 7 vy
E9. PY: for0 < 7 < r, with — < |—].
3 L
vir) =1

+A further discusston of the continuity of the adiomt varbles s to be found m Section S 24 of the main
tent
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7., Is the smallest positive root of

by — ——| —anbyyir, + —— e "' =0.
X3

ar, ) »{
It should be noted that pe 3 > 0, where r = y{/yy. It may be shown that for 0 < — <
r 4

)

hl
b,

@y

L PR T
where the determination of = is given in E1. We also have that 7 (r) < 7 (r)) for r; < r,
(xy and x3 held constant). The solutions to the state and adjoint equations are the same as
those for P!, given previously. Let §.(r=7) = S p,(r=7,) = pi, etc.

u'(r) =0
E10. P”:: forr, ST ST

Ve

vir) =1 v

It follows that for all 7 < r, we have § () < 0 and (r) < apby/layb). r, is the

v N
smallest positive root of S,(r=7,) = 0, where § (7) is given by

a3
S.(7) = 8"+ a byh —
(h \\

ay,
(r—=7,) = — ’;—‘ exp lh\\a(r-—r )l’

\1 (byx3)”

Also, on P}, we have
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¥
gilz) = gf — ayl—lr=7,),
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Again, an upper bound on 7 is given by a)/(a,b)). It may be shown that S,(r) < 0 for all
r > 7!/, Also, on Pj; we have
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vL(7) = Xy,
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It may be shown that $,(7) < 0and S, () < 0 forall r > 7. Also on Pj, we have

iexpla i (=)}

) 2a,
SIS e

- . b, ) .
(x5 coth(—=A4(r—7)+B)for T (x3*)* > ayy;,

yi
.

hw(v\"v'): . : N . 2 b, TR .
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, by . e ;
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and 1
" o il e Ly AR
p(7) = piiexp{—a, i (=7 ) with pj = —< | —|
NN
dp, . i .
—= = —b,y,q, with pylr=7) = p3,
dr 3 :
s Y| -
qile) = gt = ayl—| Gz—7.).
Vi
(lq‘v - . .
—= = —a,p, — byx,q, with g,(r=7,) = ¢>.
% dr
We have not been able to develop solutions in terms of "elementary” functions to the equations
for p,and q,. ..
- 1’
vir) =0
E13. P}, and Ph;: for T, < 7.
vir) =0
v
Results are similar to those for Pyysul previously in E12.
u'(r) =0
Phs: for = € T
El14. s oF e
vir) =0
Results are similar to those for P}, previously in E12.
vir) =1
ElS. Pl forrd €7 € )
vir) =0

Results are similar to those for P, previously in E4.
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ON THE MANIPULATION OF TRANSFER PRICES
IN A STATIC ENVIRONMENT

John P. Bonin

Weslevan University
Middletown, Connecticut

ABSTRACT

In a statc environment, J. Hirschleifer’s marginal cost solution to the
transfer pricing problem is commonly accepted as analytically correct. Howev-
er. actual pricing practice within Western corporations and socialist-planned

economies generally deviates from marginal cost pricing. Some form of aver-
age cost pricing is more commonly chosen. Recently in this journal. H. Enzer |

i has claimed to show that some form of average cost pricing is indeed the |

analytically correct solution to the transfer pricing problem when choice of tech- \ ‘

nique and manipulation are allowed. Enzer claims that optimal decisions made

by each of two divisions according to their individual self-interests are made

compatible with overall firm optimization when the transfer price assigned (o

the internally-transferred commodity is any form of average cost

We show that the marginal cost solution is correct for Enzer's problem in )
the absence of manipulation by either division. Indeed. this was all that Hir-
schleifer claimed. In the process. we uncover a fundamental mathematical er-
ror in Enzer's argument. When manipulation of the transfer price by divisions |
is allowed, we demonstrate the faults with Enzer’s average cost solution and
conclude Hirschleifer's original statements on manipulation to be correct even
in Enzer’s environment. A final section briefly indicates the importance to the
transfer pricing problem of a growing body of economic literature on incentive
structures.

1. INTRODUCTION: THE STRUCTURE OF THE PROBLEM

In a recent issue of this journal [4], H. Enzer claims to demonstrate mathematically that J.
Hirschleifer’s [9] marginal cost solution to the transfer pricing problem is inappropriate. In his |
paper, Enzer argues that some form of average cost is the theoretically correct transfer price. 1
Since the textbooks on managerial economics that we consulted accept the analytical validity of
Hirschleifer’s work,* Enzer’s result, if correct, would be a significant criticism of accepted ‘

1

theory. Interestingly enough, Enzer would have also provided analytical justification for institu-
tionally accepted pricing practice in both Western corporations and socialist planned
economies.t The purpose of this note is to show that Enzer’s result is theoretically invalid. In

“Cf. Haynes and Henry (8], pp. 413-424. and McGuigan and Mover [14]. pp. 349-360. Gupta and Cozzolino

[6]. p.32. provide an interesting numerical example of marginal cost transfer pricing in a retractable pen com-

pany

tBornstein [3] is a discussion of socialist pricing practice while Kyn. Sekerka. and Heyl [11] analvze socialist |
pricing theory. McGuigan and Moyer [14], pp. 354-360. consider corporate pricing practices 1
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the process, we demonstrate the fundamental mathematical error in Enzer’s paper. A conclud-
ing section discusses the relevance of work on incentive structures to the transfer pricing prob-
lem.

The basic nature of any decentralization problem is to structure incentives so that myopic
optimization by individual units generates optimization of aggregate goals. The particular prob-
lem of transfer pricing involves a firm composed of two divisions, or profit centers. The firm
and its divisions have complete deterministic knowledge of all cost, demand. and production
relationships. One assumes that each division maximizes its own profit while the firm attempts
to maximize total profit. The divisions are vertically integrated. since the output of one is used
as an input by the other. In the simplest case, the transfer of this commodity takes place inter-
nally in the absence of external markets. Final output and any other inputs are transacted on
competitive markets so that these prices are parametric to the firm (and, hence, the division).
To complete the specification of the environment for the transfer pricing problem, it is neces-
sary to consider the decision-making structure.

Fundamental to the determination of a transfer pricing solution to the decentralization
problem is an assignment of decision variables to various agents. In Enzer’s paper, the produc-
tion division chooses the level of usage for two inputs (x,. \,), and the distribution division
chooses input levels of the intermediate commodity («), produced by the other division, along
with another input (x;). The decision environment in the initial Hirschleifer article 1s simpler.
Here the distribution division of a firm incurs a cost which varies with the level of the inter-
mediate commodity marketed. The production department incurs production costs which vary
with output. In both environments, the transfer price is to be determined so that the output
level of the intermediate commodity which maximizes total profit will also be profit maximizing
for each division.

Hirschleifer demonstrates that the firm should set a transfer price equal to the marginal
cost of producing the output which maximizes total profits. If each division maximizes its own
profit using this transfer price to evaluate interdivisional transactions, the optimal output level
for each division will be equal to the one which maximizes total profit. Conseguently, marginal
cost pricing solves the decentralization problem. In the following section, Enzer's complicating
addition of the choice of technique by each division is shown to be a red herring. The Hir-
schleifer result reported above is derived in such an environment.

Crucial to the solution of this decentralization problem is the stipulation that the firm, an
agent separate from each division, imposes a transfer price which is taken to be a parameter in
the individual division's maximization problem. Given that the firm has full information con-
cerning costs and demands, this position seems tenable. However, Enzer seemingly allows the
possibility that each division might consider the influence of its decisions on the transfer price
and attempt to manipulate the price in its own self-interest.* In his paper, Hirschleifer considers
the case where the distribution division anticipates a transfer price set equal to marginal produc-
tion cost at the level of output it chooses. This division would then find as optimal a level of
output smaller than that which maximizes total profit. At the same time, Hirschleifer indicates
that, if both divisions anticipate the transfer pricing rule, a bilateral monopoly develops.t Con-
sequently, dual manipulation yields a bargaining problem with no consistent price-
decentralizable solution.

*Refer to Enzer (41, p 379, fiest-order conditions number one tor diviston one and aumber twa tar division
two  Nouce that s not considered parametric in either
tSee Hirsehleter (9], p 30, tor a discussion of manipulation
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Enzer uses this manipulation argument to suggest that the firm must fix the level of
operations in Hirschleifer's problem to solve the decentralization problem. In what follows. the
manipulation problem is shown to be present, both in Enzer's formulation and in his incorrect
average cost solution. When dual manipulation of the sort discussed above 1s assumed, a
profit-maximizing production division produces more of the intermediate commodity than a
profit-maximizing distribution division is willing (o accept. We also demonstrate that the
introduction of an external market for this intermediate commodity 1s not the solution to bila-
teral bargaining. Indeed, by pointing out Enzer's fundamental mathematical error, we cast
severe doubt on the validity of his entire discussion, since all the cases he considers depend on
this incorrect assertion.

In the literature, transfer prices are allotted two functions, that of resource allocation and
of performance evaluation. In the spirit of Hirschleiter’s article and to correct Enzer's mistaken
assertions, we concentrate in the next section on the resource allocation problem (1.e., marginal
conditions). Enzer's analysis addresses this role but his exposition seems to confuse the two
functions. Indeed, when participating agents have perfect knowledge of all demand, cost and
production conditions, the absolute level of either division's profits calculated by using the
transfer price provides no new information for performance evaluation. However, once Enzer's
assumption of perfect knowledge 1s dropped, the transfer price problem comes under the broad
rubric of resource allocation with ncomplete information. A concluding section briefly
discusses some of the recent interesting contributions to this topic in the economic literature
Several results on designing incentive structures to combat manipulation and to generate "truth-
ful" responses under incomplete knowledge are discussed. Further work on the theory of
transter pricing should at least take cognizance of this new research in economics

2. THE ANALYTICAL PROOF

Initially, we demonstrate the validity of Hirschleifer’s transfer price solution when a
choice of technique by both divisions i1s assumed but manipulation of the transfer price by
either division is not allowed. The firm then stipulates that any transactions of the intermediate
commodity between divisions will take place at a transfer price equal to the marginal cost of
producing the output level of this commodity which maximizes total tirm profits. Note that this
price level is set independent of any maximization decisions made by the individual divisions
On the other hand, when either division can manipulate the transfer price by altering 1ts own
decisions, no consistent pricing solution which harmonizes the conflicting interests of the two
divisions can be derived. Enzer’s average cost pricing schemes are subject to the same criticism
he levels at Hirschleifer's marginal cost scheme. Enzer's mathematical error 1s shown to
involve equating several partial derivatives which should be evaluated at different realizations of
their arguments.

Following Enzer's notation, let

u f(x . \) represent production of the intermediate commodity,

¢ = g(x; «) represent production of the final product, and

p. ry ry ry be the respective price parameters tor final output and the three inputs
bought in the market.

The firm wishes to solve
Max: m = pg(xs 4) — rix; = riXs = rixa
where v = /(x,. \»)
Rather than use Lagrangian analysis, we substitute for « and obtain the following three first-
order conditions:*

*We detine # @y oy Ay ) or /

(Aeliy . whdu! and @ely, whiy,
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T om/dx, = pg. Sy — 1, =0
) Om/Oxy = RSy —ry=0
(R)) am a\lgl'.\': ry =0

We can solve (3) for y, as a function of w, call it \;(«) and substitute in (1) and (2). Neces-
sary conditions for a maximum for the firm's profits are then®

o ‘I\;

oy am/dx, = p |e: - + gl fi—-ri=0
du
. ‘/\x.

2) am 8\:"’[’ s, - + £ ’; r..=-0,
du

The production division chooses y; and \, to maximize its own profit, using the transfer
price 7, to evaluate output; e |

Max: 7, = r f(x1. X2) = FiX1 = TaX2
with regard to \,. \»

First-order conditions are

o, + 1 5 2 / 0
- r . N -y ry =
(4) 3 " X1 X0 Su 1 1
: sl -+ [ ) o, / 0
(S) s sl {5 i\ au =N

Let us denote as i, the optimal output level which results from y,. \» solving (4) and (3), ie.,
Hp - "\l" \-)

The distribution division chooses w, here designated as ), and y\; to maximize profits by
using the transfer price to evaluate the cost of the intermediate commodity used. The problem
1S5

Max: n, = Pe(xy u) = Fyxy — ruu,
with regard to u,

First-order conditions are

(6) ok 0
- PR Fx -
ax: I 1
am, ar,
(7) S o= g, r u — =0.
ou " & ou

Using (6) to solve y;(u) and substituting in (7), we obtain a single necessary condition

dyx(u)

ar r [.L'\ :/ ul r, — uor,/ou =0

du

The decentralization problem s solved when «, from (4) and (5), w, from (7, and «*
from (1) and (2)" are all equal. Algebraic operations on Enzer's conditions generate (1), (2),

Followmg Fnzer, we assume sufficient concavity of production tunctions to ensure that first-order conditions

represent a global maximum
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and (3) as the first-order conditions for the firm’s maximization problem, and (4) and (5) as
those for a profit-maximizing division 1. Also, (6) and (7) are identical to the necessary condi-
tions in Enzer for division 2 to profit-maximize. Consequently, our problem is formally
equivalent to Enzer's problem. Our simplification helps to clarify the important aspects of the
analysis.

Firstly, assume that the firm can impose a transfer price so that transactions between divi-
. , A Cog e Oy
stons will take place only at that price. This implies .6; =01n (4), (5), and (7). How should
u

r. be determined? It is clear from a comparison of (4) and (5) with (1) and (2) that the
choice of technique which maximizes both the firm's profits and division . profits will be
attained for any specification of r,, the transfer price. Hence, the choice-of-technique complica-
tion is simply a red herring. However, the optimal amount of the intermediate commodity pro-
duced and used from the viewpoint of maximizing total firm profits (denote this output ¢ 1s
generated if and only if 7 is set by the firm to solve

(8) ro=plegdx(u®) /du* + g)).

Then, maximizing 7 and maximizing =, will yvield the same level of operations, 1.e., u* = up
Substitution of (8) into (7) yields w; = u* when 7, is maximized. Consequently, the decen-
tralization problem is solved: i.e., u* = up = up, when the firm imposes the transfer price
which solves (8) upon all transactions between divisions.

In economic terms, (8) is interpreted to mean that the transfer price should equal the
value marginal product to the distribution division of using the amount of the intermediate
commodity «* which maximizes total firm profit. However, from (1) or (2), the nght-hand
side of (8) can also be shown to equal the marginal cost of producing this optimal (from the
firm’'s viewpoint) level of the intermediate commodity «* Note that from the definition of the

, T 2 € 0Cy h Fag , :
marginal cost of producing u, ko = ;'1 o Consequently, (8) generates the Hir-
schleifer result that in the absence of manipulation, the transfer price r, should equal the mar-
ginal cost of producing u, evaluated at that output level which maximizes total firm profits, e,
u* Introducing a choice of technique for each division, though cluttering the analysis, does not
change the analytical result.

How then, did Enzer conclude that the correct transfer price is some variant of average
cost? If the result is true, it must depend on his allowing manipulation of the transfer price by
ar
divisions. In the above analysis, suppose ‘6 Z (0 1.e.. the transfer price depends on the level
u
of the transaction between the two divisions. Either a transfer-pricing rule defines this deriva-
tive or the divisions form expectations about how their actions affect 7. In Hirschleifer’s
ar, :
example referred to above - > (0 because the distribution division knows that the transfer
up
price #, would be set equal to the marginal cost of producing the level of the intermediate com-
modity it demanded.* However, the production division did not expect to influence the
ar
transfer price so that = 0. Therefore, (D', (2), (4, and (5) arec unchanged. However,
up
(7) is now less than zero at u, given r,. Consequently, u;, < u* = up, as Hirshleifer suggests

¥ Ihe first equality represents the identity between the marginal cost of producing the commodity both for the
firm and the production diviston  The latter equalities follow trom partial differentiation of the detimtion of
the cost of producing . 1¢. ( ( Pon, Y, noting that dy A n

tWe are assuming that margial cost mereases with the production of wn the relevant range
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Suppose both divisions expect the transfer price to respond positively to the level of the
intermediate commodity transacted because of the marginal cost pricing rule. Then, (4) and
(5) will be positive at «*, given r,. Consequently, u, < u* < up. If, for some reason,
ar, il . :
-a' < 0 were expected by both divisions, the inequalities would be reversed. In any case, |

u |
allowing the transfer price to be influenced by the level of the intermediate commodity
transferred destroys decentralization by the pricing mechanism. The conflicting self-interests of
the two profit-maximizing divisions can not be harmonized. As Hirschleifer points out, the
bilateral monopoly which results must be resolved through bargaining strategies.

: ar,
The average cost solution, embraced by Enzer, implies —av- # 0 since the transfer price is
u

linearly related to average cost. Hence, in the presence of manipulation, it falls victim to the
same criticism. Indeed, if the transfer price were set equal to average production cost, the pro-
duction division would earn zero profits on any level of output. Hence, all ievels of production
would be equally desirable for this division. The distribution division would want average pro-
duction costs to be minimized, and hence its own profit maximized. Therefore, the cost-
minimizing output level should be imposed on the production division. But this is precisely
what Enzer objected to in the Hirschleifer problem.

Enzer's fundamental mathematical error involves equating several partial derivatives

which are themselves functions of w, the level of the intermediate commodity transferred. The 4
second equation (p. 380) reads
alr, u)
(9 - =—\;=— X = MC, = dC,/du.
ou

Each expression is a function of «, with A the marginal cost of producing the level of « which
maximizes the production division’s profits i.e.. w#p, and A the marginal production cost of «*
the level which maximizes total profits. The left-hand side of (9) should be evaluated at u,, the
level which maximizes the distribution division's profits.* Therefore, (9) is true only if the par-
tial derivatives involved are evaluated at the same argument, ie.. wy = u" = up. Conse-
quently, Enzer assumes what he is trying to prove, i.e., that the decentralization problem is
solvable by the pricing mechanism. Indeed, his specification is overdetermined, which accounts
for the arbitrary constant of integration appearing in his price equation. Enzer does not solve
the transfer pricing problem when manipulation is allowed.

We point out, in passing, that admitting an external market for the intermediate commo-
dity also does not vield Enzer's result. Enzer's fundamental mathematical error is continued
throughout this article; hence, his remaining discussions are all incorrect.  As Hirschleifer sug-
gests, when the external market is competitive, the transfer price must equal the market price.
For any transfer price below the market price, the producing division will maximize profits by
selling all of its output on the external market. At any transfer price above the market price,
the distribution division will maximize profits by buying all of its input from the market.
Hence, the only price at which transfers between divisions will take place is equal to the exter-
nal competitive market price. The situation becomes more complex when external markets are
not competitive. However, none of Hirschleifer's original insights nor the later corroborating
literature are rendered incorrect by Enzer's paper. In the absence of manipulation, the correct

*The sentence below the equation states “and Div 2 will demand mput o unul the marginal revenue pro

duct P¢ oequals the margimal cost of producing . " Thisas true only f the LHS of (a0 /e s evaluat

ed at w

n
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transfer price 18 margimal cost.  On the other hand, manipulation evokes a monopolistic
response from the manipulator, and destroys decentralization by the pricing mechanism

3. DESIGNING INCENTIVE STRUCTURES TO ALLOCATE RESOURCES

Despite its technical faults, Enzer's paper has raised important issues in the practical appli-
cation of transfer pricing to transactions within a capitalist corporation. Indeed, many such
organizations and virtually all sociahist planned economies use some variant of average cost to
determine the price of intermediate commodities transferred nternally. While attempting to
simulate the desirable allocative consequences of competitive markets, these orgamizations have
been torced to consider the other role of monetary vaniables. When production and market
conditions are not known with perfect certainty, the level of profits 1s often a performance indi-
cator.* Hence. when marginal cost pricing leads to negative profits (e, in the decreasing costs
case), Western authors refer to a contlict between divisions over the correct mode of transter
pricing. Although O. Lange [12] argued that one advantage of socialism is that transactions can
take place at margimal cost in this situation with the level of profits unimportant, his solution
requires  that some  agent  possess  complete  mformation  about all important  ¢conomic
phenomena.t Consequently, when knowledge about the economic environment is incomplete.
due to cither dispersion within a hierarchical organization or stochastic elements, transter prices
are important as both resource allocators and performance evaluators.

An extensively studied arca in the hiterature on decentralization under uncertainty 1s the
team problem (¢f Marschak and Radner (13]). In a single-tier hierarchical organization, the
center attempts to allocate a centrally held resource to individual independent divisions whose
production relations are not vertically hinked. Information is dispersed as each division s the
sole agent possessing knowledge about its own production conditions, which may be stochastic
In a proper team, all agents wish to maximize total team profits. The object 1s to pass sufticient
iformation to the center, given constraimts on the capacity of information channels, to allow
the solution of the complete optimization problem.  An extremely interesting extension by
Groves [S] constructs incentive schemes which force individual divisions, acting in their own
selt-interest and maximizing own profit only, to achieve the proper team solution in which total
profit is maximized. Hence, Groves has designed an incentive structure within the team frame-
work which generates complete optimization for the organization even when individual divi-
stons pursue their own self-interest. Enzer's characterization of the transfer pricing problem
indicates the importance of this problem in a vertcally-integrated hierarchial orgamization

In this spirit, when ihe tirm does not have complete information about production condi-
tions, the Hirschleifer solution developed in the previous section s unavailable  The firm can
not calculate marginal or average cost relationships. Consequently, production information
must be obtained from the divisions so that the firm can set the transter price + Why would
either division respond truthfully rather than attempt to manipulate the transfer price i its own
favor by responding i the monopohistic way described in the previous section’S Such general
problems in the incentive compatability of resource allocational mechanisms are presently being

“CtoHavek [T tor the classic statement of this pomt

£ Bergson [ for a comasm of Lange's scheme on this point

fhor Enzers example. the firm needs mtormation about production from both divisions i order to solve 1o
tal profit manimization  In Hiesehleder's example. the tirm needs production mtormation only trom the pro
duction diviston and cost mtormation trom  the distnibution  division To the cconomist. this s often
caumvalent mformation

T Bergson [T tor a similar pomt about | ange
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researched by economists. L. Hurwicz [10] provides an excellent characterization of the prob-
lem and a review of the earlier literature. In Bonin [2], we have derived useful properties for a
piecewise linear incentive structure in a single-tier hierarchical situation with dispersion of
knowledge. The producing agent provides a truthful ex ante estimate of production conditions
and subsequently strives for maximal ex post performance once the stochastic production vari-
able is realized. The center is able to impose any degree of risk of plan underfulfillment on the
producing agent by manipulating the parameters of the incentive scheme. We are presently
working on embedding this incentive structure in a vertically-linked hierarchical environment.
Results obtained should shed light on optimal incentive schemes for decentralized planning of
intermediate transactions within both Western corporations and socialist economies.
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ABSTRACT

We consider a class of asymmetric two-person games plaved on graphs, and
characterize all the posittons in the game

In this note we consider a class of asymmetric two-person games in which the players
alternately choose from a set of permissible moves, and the object of the game is to make the
last move. We will characterize the positions in the game as winning, losing, or drawing from
the point of view of each of the players.

Formally, let (V. 4) be a directed graph, where } is the (finite) set of vertices, and
4 C bV is a set of directed arcs such that 4 = 4, U 4, The players take turns choosing
vertices of the graph according to the rule® that if vertex v has just been chosen by plaver j,
then player + (+ = ;) may choose any vertex x such that (v, x) € 4. That is, player / may
move along arcs in 4. Player / loses the game (and his opponent wins) if it becomes his turn
to move from a vertex v such that no arc (v. x) isin 4 .

’

If 4, = 4, the game is called "impartial" or "symmetric." otherwise it is called "partial” or
"asymmetric."* Most of the literature on games of this sort has concentrated on symmetric
games,# but we will show that the vertices of an asymmetric game can be characterized in a
natural way, which generalizes the results obtained for symmetric games [2].

In particular, we will characterize the set W' of vertices that are wimmng for player /in the
sense that if he chooses a vertex win W then he can assure himself of eventually winning the
game. Similarly, we will find the set L of vertices which are /osing for player /, such that if he
chooses a vertex vin L then he cannot prevent an eventual loss, and the set of drawing ver-
tices D which are neither winning nor losing. Since the game is asymmetric, the resulting par-
tition of the vertices is in general dependent on which of the two players is under consideration.
Following Steinhaus [3] and Smith [4], we will also be interested in characterizing the
(minimax) number of moves which remain from each vertex. (Steinhaus’ interest in this ques-
tion arose from the consideration of problems of naval pursuit.)

It will be convenient to consider, for every vertex v, the set of vertices from which player
/ can reach v, defined by R (x) = {vel|(v.x)ed ). For every set of vertices S. denote the set

*The game starts when player | selects a vertex from some initial set /ot vertices
tAn equivalent model (¢f Smuth [4]) treats asymmetric games as having one set of ares, but two sets of vertices
tWith the notable exception of a recent book by J H Conway (1]
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of vertices from which player / can reach some vertex in S by R (85) = UR (x), and let

ved

U (S) =1 — R (S) be the set of vertices from which the set Sis unreachable by player /

Note that U (}) is the set of vertices from which player 7 can reach no other vertex: 1.e.
the set of vertices from which player / has no permissible moves. So player ; (; = 1) wins the
game if he chooses a vertex vin U (}).

For each positive integer n, define the sets of vertices B, and ¢, by B, = (= ¢. B, =
U, (U (B, ), and €, = U, (U, (C, D). Observe that €} = U, (U, (#)) = U, (}), and
B, = U, (}). So player 2 wins if he chooses a vertex in (. and player | wins by choosing a
vertex in B,

The relationship between the sets B, and C, is given, for every n, by the following propo-
sition:

PROPOSITION: () B, , € B,. and C, , C C,. (i) B, € U,(C), and C, C
U, (B,)

PROOF: Observe that for . 7, C V. if S € Tthen U (S) D U (D, and U (U (S))
c U (U (), for {n. i} = {1.2). Also note that, when n = 1, both propositions (i) and (ii)
hold (since forany S € V. ¢ C Sand U (}) C U (5)).

Suppose that for some fixed », it has been shown that B, | € B, and €, | C C,. Then
B, = U, (U, (B,.)) C U, (U, (B)) = B, and C, = U, (U, (C,.)) € U, (U,(C,)) =
C, .\, and so proposition (i) is true for all n.

Suppose it has been shown for some n that B, € U, (C,) and €, C U, (B,). Then
U,(B) DU, (U,(C))) =C,,p.and so B,,, = U, (U, (B)) C U, (C,,). The same argu-
ment shows that C,,, € U, (B,,,). and so proposition (ii) is true for all n.

Note that proposition (i) together with the facts that }is finite implies that there is some
integer A such that B, = B,,, = U, (U, (B)), and (= C ., = U, (U, (C)). Of course
proposition (i) also implies that B, = U B, = Band C = C, =C

We can now characterize the sets of vertices which are winning, losing. and drawing for
each player, as follows:

THEOREM: () W,=8, and W,=C (i) L,=R,(C), and L,= R, (B). (i)
D, =U;(C)-B.and Dy= U, (B) = C.

PROOF: First we show that W', contains B i.e. if player 1 picks a vertex in B, then he
can make his subsequent choices so as to eventually win the game. Recall that B = U B, and

suppose that player | picks a vertex b, in B,. If b is in B, then player | has won, otherwise
player 2 picks a vertex x such that b, €R, (x). Since B, = U, (L, (B, ), it follows that
b, €R, (U, (B, ), and hence xel (B, ):ie. veR, (B, ). So no matter what vertex vis
picked by player. 2, player | will always be able to respond by choosing a vertex b, in B, .
After at most n choices of this sort, player 1 picks a vertex b, in B, and wins. So W', contains
B. and similar argument shows that W, contains .

It is an immediate consequence that L contains R, () and L, contains R, (B), since 1f
player 2, for instance, picks a vertex in R, (B), then he cannot prevent player 1 from picking a
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vertex in B and eventually winning It only remains to show that D, = U, (C) — B and
D, = U, (B) — (: this will exhaust the set of vertices, and thus prove parts (i) and (ii), as well
as (i)

Suppose player 2 picks a vertex vel’, (B) — . Then player | must choose a vertex w
such that veR, (w), and so weB, since vel'; (B). If player | chooses a vertex weR, (C),
then we have seen that he cannot prevent his eventual loss. However, we observe that player |
can always choose a vertex wel, (C), since veC = U, (U, (C)); ie. since veR, (U, (C)).
Thus, whenever player 2 picks a vertex in U, (B) — C, player | can always respond by choos-
ing a vertex in U, () — B (and his only other choice is to choose a vertex in R, (C)).

Similarly, whenever player 1 chooses a vertex in U, (C) — B, player 2 cannot reach a ver-
tex in €, but he can respond by choosing a vertex in U, (8) — C. So D, = U, (C) — Band
D, = U, (B) — (:if player / picks a point in D, player / (; # /) can always choose a point in
D . and must choose such a response to avoid an eventual loss. This completes the proof of
the theorem.

As a final note, observe that if player 1, say, picks a winning vertex v in B, then he can
assure a win after making m more choices, where m is the number such that ved,  ,—4,. If
player I chooses a losing vertex veR, (C), then he can count on making only p moves before
losing, where pis the number such that veR, (C,.) — R, (C)).

For example, consider the graph with vertices } = {a. b. ¢. d. ¢, /) and arcs 4, =
1" U {(d. e) (e, and 4,=4"U {(c. N. (f. N), where 4' = {(a. &), (d ), (c. b),
(b, @)}. Then it is straightforward to verify that W, = B, = {a. ¢}. W, = C, = {f}. L, =

{e. f1. Ly=1{b.d e}, D, ={b. d), and D, = {a. ¢}. Thus, for instance, if player 1 moves to
vertex b he can assure himself of a draw, but if player 2 moved to b, he could not prevent a
loss.

Of course, in a symmetric game this could not occur: a vertex which is losing for one
player would also be losing for the other. For a discussion of the symmetric case, and its rela-

tionship to classical concepts of stability in games and graphs, see Roth [2].
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ABSTRACT

An alporithm s developed to modity the Wilson Q to account tor a short
term expenditure constramt over o catalog of tems  Representative results are

shown and gencralizations made

I. INTRODUCTION

Organizations managing inventories under budgeting svstems of himuted flexibility periodi-
cally face short-term fund constraints.  They have a fixed amount of dollars to operate with
through the remainder of the fiscal year, at which time they can resume unconstramed operi-
ton. The problem arises of how to manage the system with least cost, subject to such an
expenditure constraint

We solve the problem of determining order quantities by emploving dynamic program-
ming and a generalized Lagrangian concept sometimes utilized with that technique (cf . Chapter
2. Section 16, of Bellman and Drevfus [1D . In our case, a Lagrangian cost (Lambda) is defined
for cach dollar spent before the end of the yvear. The dynamie programming algorithm then
determines, for cach item in the catalog which must be bought, how much to cut that item’s

Wilson FOQ as a function of Lambda, and the tme remaming in the vear.  As the value of

Lambda mput s raised, solutions will be computed which spend less money

We do not address in detail the problem of finding the Lambda value which will exactly
cquate projected funds spent to funds available. Many sophusticated iventory managers, such
as the US. Dept. of Defense, already have computer programs for projecting total fund expen-
ditures as a function of inventory management parameters, and such programs could be adapted
to the purpose of finding a suttable Lambda. In less sophisticated systems expenditures can be
monitored, and Lambda used as kind of a control knob. At an even simpler level, the results
shown in this paper, obtained from use of the dynamic programming algorithm, indicate which
of two alternative "naive” policies tor cutting order quantities to save money makes most sense

Il. MODEL

I'he assumptions and cost structure (apart from Lambda) underlying the Wilson FOQ are
assumed. Thus, the costs considered are a fixed cost for cach order placed and a holding cost
per dollar of inventory held per vear. An order for an item must be placed whenever assets
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reach 0, and there is no lag placement and receipt of an order. In the classical Wilson formula-
ton demand is deterministic, but following Snvder’s [4] generalization we permit demand to be
stochastic, requiring only that the interarrival times between successive demands be
independent and identically distributed.

For any item purchased there is a dollar outlay equal to the (unit price of the item) x
(amount purchased). We wish to minimize total fixed order costs and holding costs over a
catalog of items, subject to a constraint on total outlays during the remainder of the fiscal year.

By use of the generalized Lagrangian concept, our problem can be solved as a succession of

unconstrained single item problems (for each item in the catalog), where we wish to minimize
the sum of holding costs plus fixed costs plus outlay costs, costed out at the rate of Lambda per
do'lar of cutlay

1. BASIS FOR DYNAMIC PROGRAMMING

I'he need for dynamic programming to solve what has been reduced to a single item prob-
lem arises from the limited duration of the constraint. Suppose, for a minute, that demand was
deterministic, that the Wilson EOQ for an item was 10, that current assets were 0, and that
total demand before year's end was 1. It might well be optimal to make one purchase of 11
units, rather than two smaller purchases; 1.¢., the impact of the outlay constraint could be to
increase the size of the current purchase in order to decrease total outlays on all purchases
through year’s end in a cost-effective manner. In general, the optimal size of the current pur-
chase cannot be computed independently of its impact on the need for successive purchases.

In order to use dynamic programming we artificially divide the remaining time in the fiscal
year into successive review periods. It then is assumed that in any given period we will need to
buy at most once, and then only at the beginning of the period. The review period concept is a
solution device only, and does not correspond to any entity in our basic model. Why then is its
use vahd? Well, suppose cach review period were only one day long. Clearly, there would be
little practical difference between ordering only at the beginning of review periods, or ordering
whenever assets hit zero: i.e., we can always get more precise answers by making the review
periods smaller. In our use of the algorithm, we used a review period length of 1 week, and
then verified that changing the length to 1/4 week had little effect on our answers.

IV. NOTATION AND PRELIMINARY DERIVATIONS

A — Lagrangian cost per dollar spent before year's end
K — administrative cost to procure
H — cost to hold per year as a percent of unit price
C — unit price of an item
d — expected demand rate (per year)
G (v)  — probability that total demand over / periods > x
Q. —  Wilse EOQ
O (A) = optimum amount to buy with / periods to go
1) S(Q) = [K + (Q/2) (Q/d) HC/Q:-

i.e., Sis the expected value of the average holding and fixed order cost incurred per unit when
an amount Q) is bought. Note that "d" is the reciprocal of the mean interarrival time [3], so
Q (1/d) is the expected time to deplete Q units and (/2 is the average inventory during that
time.
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2) PQ) = [S(Q) — S(Q)] Q).

re., PCQ) s the increase in holding and administrative cost attributable to a buy other than the
Wilson EOQ.

) C(Q. N) = P(Q) + COAX:;

e, C(Q. A) is the total cost increase associated with (O, including Lambda cost.

V. DYNAMIC PROGRAMMING FORMULATION

Let 7C(Q. . A) be the total increase in cost attributable to all buys made during the rest
of the year. This assumes there are / periods to go, a buy of Q units must be made now (assets
= (), and an optimum policy 1s followed thereafter. In other words, 7C(Q. /. A) is the gen-
eralization of C'(Q, A) (equation 3) to include future buys as well as the current buy.

Then,
IC(Q. 1. A) = C(Q. \)
TCCQ. 2, 0) = CQ. A + G(Q) TCQ. 1. A)
TC(Q. 3. N) = CLO. N + G (DY TC(QL 2. )
) + G, (Q) = G (D] TCQ,. 1. ) Vv
ICQ. no N) = C(Q. ) + i e, nu NG Q) G
|

For example, let us look at the equation for 7'C(Q. 2. A). First of all, we incur a cost of
C(Q. A, since by definition of 7C(Q. 2. A) a buy is needed at the beginning of period 2. (If
on an item no buy is needed., 1.¢., assets are above 0, we need not calculate any costs since
there 1s no decision — the only decision we are concerned with is how much to buy when
assets hit 0.) In addition to a cost of €' (Q. A), we will incur an additional cost if another buy is
needed at the beginning of period 1. For this to happen, demand in period 2 must exceed what
we just bought, (Q), which happens with probability &, (Q). The cost incurred will be
IC(Qy. 1. A) . In the equation for TC(Q. 3. \), G, (Q) 1s the probability that the next buy
will be in period 2, &, (Q) G, (Q) is the probability that the next buy will be in period 1.

ALGORITHM. The equations are solved recursively. We first find Q, (), the value of
@ which minimizes 7C(Q, 1. A), given by line 1 of (4). Substituting the value found into that
equation gives us, by definition, 7C(Qy. 1. A). Next, we solve for Q+(XN) and 7C(Qs. 2. \),
and so on. To find Q (X) at any step, we have an equation (the appropriate line of (4)), and
we just find the value of @ which minimizes the equation. To find the mini-
mizing value we use a grid search, because 7C(Q. . A) need not be a convex function of Q
In conducting the grid search we look at values of Qin the internal [1, V2 Q,]. In the Appen-
dix it is shown that an optimum Q can never be > V2 Q.. An optimum Q can be > (),
although the Lambda concept guarantees that on an expected value basis total purchases over
the year will go down, it does not guarantee that all Q" (A) must be < Q.. Recall the example
cited in Section 111

VI. RESULTS

Figure 1 gives some representative results. It shows the optimum cut as computed by the
algorithm as a function of Lambda and the number of months remaining in the budget vear
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LAMBDA = 5% LAMBDA: I5%
MONTHS
T0

CASE Qy  VARIABILITY\GO | 2 3 6 I L

(IN MONTHS

OF SUPPLY)
lo 3 Hi 55% 35% 25% 5% 85% 75% 65% 55%
b 6 Hi 40% 30% 25% 5% 75% 55% 45% 20%
Ic 12 Hi 20% 20% 20% 15% 60% 55% 45% 30%
2a 3 Lo 55% 25% O O 70% 40% 15% 15%
2b 6 Lo 40% 40% 30% (I0%) 75% 60% 40% (5)%
2¢ 2 Lo 20% 20% 20% 20% 60% 60% 60% 35%

Figure 1 Cuts in Wilson Q

For the cases shown, holding cost was at a 25% rate and set-up cost (A) was $100. A
demand rate of 100 per year was used and unit price adjusted as necessary (o get the values
shown in Figure 1 for EOQ months of supply. High variance denotes a monthly coeflicient of
variation of 100% while low variance denotes 25%. The negative binomial was used to approxi-
mate the demand distribution, as this had previously been found effective for our catalog of

. ¢
iems.

Each month had four weeks, the week being the length of the review period. The grid
search with intervals equal to (0.05) (Q,) was used. As 2 check, cases Ib and 2b were rerun
with review period of 1/4 week. The answers never differed by more than (0.05) (Q,).

VII. CONCLUSIONS

In the high-variance case results were relatively well-behaved. They indicate that a
"naive" policy of reducing all buys by the same percent makes more sense than the naive policy
of putting some limit on the maximum months in the EOQ as a budget measure. In fact, in
the optimum it is the high-dollar items with short EOQ’s that tend to be cut the most.

In the low-variance case —one we consider less realistic—the optimum policy may in some
situations consist of trying to make one buy to last the rest of the year. Hence, an increase
over the Wilson @ may be called for as denoted by the percents in parentheses. This effect can
produce a very irregular pattern as shown by these additional results for case (2b):

week | 4 | 8 12713 14 15 Ji1e J20 |24
cut 55% 25% »0, (5%) (10%) (l_ﬁ“(u) 25% | 15% 0

It is reasonable to implement the algorithm by tables such as those shown. Holding-cost
rates and administrative costs are typically constant over at least a major subcatalogue of items.
Demand is not, but the only effect of demand. given the other variables specified, 15 via 11s
effect on the shape of the probability distribution. Thus, for the normal, the results would
actually be independent of demand, given the other variables specified, namely: A, H. (Q,/d),
and the coefficient of variation.
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For the normal distribution, if you, say, double expected demand (&), but halve unit price
and increase variance fourfold (so Q,/d and the coeflicient of variation are unchanged), then
Q,7Q, will stay the same. The normal produces this effect because under the normal density
the probability of a value x depends only on the number of standard deviations x is from the
mean, not on the mean itself. Hence G, (Q) = G| (2Q), where G, ( ) assumes an expected
demand rate J and standard deviation 1, and (, assumes an expected demand rate 2d, and
standard deviation 2.

VII1. EXTENSIONS

In principle, the same type of approach can be used to determine cuts in reorder points.
The mathematics is such as to require use of approximations. The impact of these is not
known, but they are reasonable. To incorporate the proposed cuts in Q, into the reorder point
calculations, however, further complicates the task.

This paper was concerned with a constraint on outlays of a shorter term nature. We
assumed that at year's end we could go back to operating in an optimum manner without regard
to the pattern of cash outlays. If this is not true, if there is a long-term constraint, it makes
sense (o react by constraining the total inventory investment. A good paper relating in part to
this is that by Presutti and Trepp [2].

While the problem posed in this paper has not, to our knowledge, been treated before, a
somewhat related problem has received attention in the production research literature. In that
problem, economic lot sizes (read economic order quantities) for a group of items must be
determined under a constraint on total production in each period, rather than over a total hor-
izon as here. See, for example, P.S. Eisenhut's paper in AIIE Transactions, June 1975.

APPENDIX

We show that for Q > V2 Q.. S(Q) > S(Q/2). Therefore, a policy of buying
Q > V2 Q, would always be dominated by buying /2. and then making another buy of Q/2
later in the budget year as necessary.

SQ) — S(Q/2) = K(1/Q = 2/Q1 + (HC/d) (Q/2 - Q/4) =
(5) = K/Q + (HC/d) (Q/4)
(6) S(Q) = S(Q/2) >0 <=>~K/Q + (HC/d) (Q/4) > 0.

Substituting HC/d = (1/Q,)) (2K) in (6), we have
2KQ
40/
<=> 20, < Q.

(M SQ) - SQ/D >0<=>-K/Q + >0
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CORRIGENDA

It is regretted that two typographical errors occurred in "Optimal Investment, Pricing and
Replacement of Computer Resources," by Charles H. Kriebel, Anthony A. Atkinson and Hunt-
ley W. H. Zia which appeared in the December 1977 issue. Vol. 24, No. 4. The errata are as
follows:

1. On page 540 the last line of the second footnote was omitted. The footnote should
read:

tFor convenience and to simplify notation, we will employ the tfollowing con-
ventions in the remainder: all functions are assumed differentiable, and. as in (1) and
(2), will be designated by capital letters; their derivatives will be written as

906G, (a,. b, ¢)/ab, = g(b, ) or simply g/

2. On page 544 the proof'to Corollary (Theorem 2) should read:

PROOF: Trivial from Theorem 2: M(},, =MC,,..=MC}, V. Q.ED.

@ U § GOVERNMENT PRINTING OFFICE 1978 261 252 «




F——'-————'—mj

INFORMATION FOR CONTRIBUTORS

The NAVAL RESEARCH LOGISTICS QUARTERLY is devoted to the dissemination of
scientific information in logistics and will publish research and expository papers, including those
in certain areas of mathematics, statistics, and economics, relevant to the over-all effort to improve
the efficiency and effectiveness of logistics operations.

Manuscripts and other items for publication should be sent to The Managing Editor, NAVAL
RESEARCH LOGISTICS QUARTERLY, Office of Naval Research, Arlington, Va. 22217.
Each manuscript which is considered to be suitable material tor the QUARTERLY is sent to one
or more referees.

Manuscripts submitted for publication should be typewritten, double-spaced, and the author
should retain a copy. Refereeing may be expedited if an extra copy of the manuscript is submitted
with the original.

A short abstract (not over 400 words) should accompany each manuscript. This will appear
at the head of the published paper in the QUARTERLY.

There is no authorization for compensation to authors for papers which have been accepted '
for publication. Authors will receive 250 reprints of their published papers.

Readers are invited to submit to the Managing Editor items of general interest in the field
of logistics, for possible publication in the NEWS AND MEMORANDA or NOTES sections
of the QUARTERLY. I




s |
NAVAL RESEARCH JUNE 1978 3
LOGISTICS VOL. 25, NO. 2 3
QUARTERLY NAVSO P-1278 )
2
e
p
CONTENTS
ARTICLES Page |
Determining Confidence Bounds for Highly Reliable Coherent J. M. MYHRE 213
Systems Based on a Paucity of Component Failures A. M. ROSENFIELD
S. C. SAUNDERS
Approximations to the Reliability of Phased Missions H. ZIEHMS 229
Inspection Policies for Deteriorating Equipment Z. KANDER 243
Characterized by N Quality Levels
The Error in the Normal Approximation to the Multinomial L. WEISS 257 ::
With an Increasing Number of Classes J
A Recursive Algorithm for a Summed Multinomial R. K. FINK 263 {-’
Density Function H. MOSKOWITZ ! v
A Probability Model for Initial Crack Size and F. PROSCHAN 273
Fatigue Life of Gun Barrels J. SETHURAMAN
Multiple-Attribute Decision Making With Partial J. R. CHARNETSKI 279
Information: The Comparative Hypervolume Criterion R. M. SOLAND
An Algorithm for a Class of Loading Problems M. S. HUNG 289
J. R. BROWN
8
A Heuristic Network Procedure for the Assembly Line P. A. PINTO 299 C
Balancing Problem D. G. DANNENBRING
B. M. KHUMAWALA
Pseudo-Monotonic Interval Programming C. R. BECTOR 309
S. K. BHATT
A Targeting Model that Minimizes Collateral Damage J. H. GROTTE 315
Differential-Game Examination of Optimal Time-Sequential J. G. TAYLOR 323
Fire-Support Strategies
On the Manipulation of Transfer Prices in a J. P. BONIN 357
Static Environment
A Note Concerning Asymmetric Games on Graphs A. E. ROTH 365
A Note on EOQ Under Fund Constraints . A. J. KAPLAN 369
Corrigenda 378

OFFICE OF NAVAL RESEARCH
Arlington, Va. 22217

4

-




