
AD AObI 621 CARNEGIE-44EU.ON IMIV PITTSBURGH PA DEPT OF COMPUTER —ETC FIG 9/2
DECOMPOSABLE SEARCHING PROBLLMS • (U)
OCT 78 J L BENTLEY N0001k—76—C—0370

UN CLA S SIFIE D CMU —C S—7R—IkS ML

I
I

S

1.0 ~~ L~

I

1 . 1

v~v ‘ 1111

‘~-t:
a4U_CS_78_1~J

i n r

~~~~ cOMPOSA8 SURctffNGjRQULEMS7

thy 

-fl’~ ~P~J

DEP A RTMENT
of

0 D D CCOMPUTER SCIENCE
U) NOV ~9 1918
11

I ~~~
iii — 

_
DU~~ 1BIJTION TATEYJNT&
Appmw.d for pub1~c r.1.ci ~Dsu b~~a~ Unliait~4

Carnegie -Me~~~~~~~versuty
78 ii 21 O1~

~~~~~~~~~~~~ ~~~~ :~~ T:I~
L
~ ~~~~~~~~~

r
Q(U-CS—78- 145

DECOMPOSABLE SEARCHING PROBLEMS

Jon Louis Bentley
Departments of Computer Science and Mathematics

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

Although searching Is one of the most important problems in computer science and many
particular results are known for searching problems, there really is no satisfactory “theory of
se.rching In this paper we propose a first step toward such a theory by defining th. class
of decomp osabl. searching problems and then proving three theorems about problems In this
class. These theorems are all of the form “given a data structure 0 for a decomposabi.
searching problem we can transform D into a new data structure 0’ for a related problem”.
The correctness and complexity analysis of 0 are then used to establish th. correctness and
complexity of 0’. We present transforms for converting a static structur. into a dynamic
structure, for adding “range variables” to qu.ries, and for making preprocessing/query tim.
tradeoffs. Th se transforms have already been used to develop a number of best known
“theoretical” algorithms, and promise to be an important tool in software engineering. ~

This research was supported in part by the Office of Naval Research under Contract
N000 1 4-76-C-0370.

,r!,(t

~~~~~~~~~~~~~~~~~



11 October 1978 Decomposable Problems - I -
Tabl. of Contents

1. Introduction
2. Decomposable Probl•ms 2
3. Dynamic Structures 4
4. Adding Rang. Variables 6
5. Preprocsssing/Qu.ry Time Tradeoffs 8
6. Conclusions 9

~~~~~~~~~~~~~~~ !.~~~~~~~

‘~~‘~ ~~~~ P1
C,

1, .~~lt

¶~ C~

L.~’±~
; i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _

1•1 October 1978 Decomposable Problems - 1 -

1. IntroductIon

The young field of “Concrete Computational Complexity” has gIven birth to a large number
of interest ing end usefu l results in the past decade. These result s have allowed us to apply
the tools of mathematics to the problems of describing rea l-world costs of computations.
Unfortunately , however , most of these results hay, been of a fairl y limited scope; the
literature is rich with theorems of the form “this problem is of this complexity” but has few
statements such as “ all problems in this class have this complexity ”. In this paper we def Ins
such a class of problems and prove thr ee theor.ms about the complexity of problems in that
class.

We investigate the problem of algorithms and data structures for searching and focus our
attention on a class of searching problems we call d.compossble. We giv, an alg.braic
definition of decomposable searching problems that allows one to test whether a given

problem is in fac t decomposable. We then give three constructions that allow one to
transform a data structure for a “common” decomposable problem into a structure that solves
a more “exotic” problem. We make no assumpt ions about the underlying “common” structure;
we use only the fac t that th, problem is decomposable.

We see this work as one ot the first steps towards Tarjan’s (1978] goal of a “calculus of
data structures”. Although new results are presented, we see the main contributions of this
paper more in its systematization of a broad class of results. We characterize the class by
the 4Zgebresc structure of the problem statement , which is a fundamentally different kind of
characterizati on than those used to identify other well-known complexity classes. The
NP-Complete problems are defined by r.ducibüi*i.s, as are many diverse problems that are
known to be equiva lent in complex ity to matrix multipl ication. Lipton and Tarja n (1977] solve
a diverse class of problems by giving a method app licab i. for many problems In a specific
domain. (planar graphs).

This paper describes the research on decomp osable problems that was done up to the end
of 1977. Since that tim. the author and James B. Sax. have found a number of further
results in this area. This paper can therefore be viewed as an introdu ction ; a more complete
description of decomposable searching problems will appear In Bentley and Sax. (1978). In
Section 2 of this paper we present our model of search ing and define the class of
decomp osable problems within that framework. The three main construct ions are sketched in
Sections 3, 4, and 5. In Section 6 we present conc lusions.

., ---
-~~~~~~~~~~~~~~~~~~~~ .~~~~

11 October 1978 Decomposable Problems - 2 -

2. Decomposable Problems

A static searching prob lem Is usually given as follows: preprocess a set (or “fit.’) F of N
objects Into a data structur e 0 such that certain kinds of queries about F can be answered
quickly. (In some contexts F I. a muit liet; we refer to it here as a set for brevity.) To
analy x. the structure 0 we give three functIons of N S0(N), the amount of storag, required
by 0; P0(N), the preprocessi ng time required to build 0; and Q0(N), the time required to
answer a query. Unless explicitly stated otherwise, throughout this paper we will assume
that we are measuring the “worst -case ” complexity of these quantIties.

The most welt known example of a searching problem is usually called the Member problem ,
given as follows: prepzocess N elements from a totally ordered set such that queries of the
form “i s x in set F?” can be answered quickly. A common solution to this problem is to store
the elements of F in a vector sorted into increasi ng order and then answer querses by binary
search. Anal yzi ng this vector scheme shows that Pv(N) — O(N Ig N), S~/N) — 0(N), and
Q~

(N) — O(lg N). A more difficult kind of searchi ng problem is the Nearest Neighbor or Post
Offic, problem which calls for preprocessing a set F of .N points in the plane to facilitate
queries of the form “what is the nearest neighbor in F to point x?” (where x Is not
necessarily in F). A data structure recently given by Lipton and Tarj an (1977] has
P1(N) — O(N Ig N), SL(N) — 0(N), and QiJN) — 0(lg N).

Both Member and Nearest Neighbor are decomp osable problem.. Before formally
describing the class of decomposable problems, we will illustrate certain features of the class
with examples from these two problems. The first point to be made is that it Is the Member
and Nearest Neighbor probSenu themselves that are decomposable, and not the particular data
structures or algori thms used to solve the problems. An Informal definition of
decomp osability is that a search problem is decomp osable if one can answer a query about
set F by combining the answers to the query asked of sets A and B, where A and 8 are an
(arbitrary) partition of F Into two subsets. Member is decomposable because x Is a member
of F if and only If x is a member of A or x is a member of B, for any partitioning of F into A
and B. Likew ise Nearest Neighbor is decomposable because the distance from x to Its nearest
neighbor in F is the minimum of the distances from x to its nearest neighbors In A and B, once

again f or any partiti on. (We deal here wIth distance to nearest neighbor for tractabil ity;
extra bookkeeping will tell which point realizes that dIstance.)

We can now giv, a more formal definition of decomposability. We say that a searching
problem I. decompos able If th, response to a query asking the relation of a new object x to
set F can be written as

~~~~~~~ ~~~~~~~~~~~ -. . -~~~ -~-—--—
. -  - 

~~~~~~~~~~ 


n~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~ 

..-

11 October 1978 Decomposable Problem. 3 -

Q(x,F) — 0 q(x,f).
“F

We assume that 0 is the repeated application of the binary operator ~ over all elements
in Its domain. For 0 to be well defined mathematicall y 0 must be assoc iat ive ,
commutat ive , and have an identltyi for computat ional effic iency ws require that C be
computable In constant t ime. We can cast Membsr In th is framework as

Member(x,F) — OR equal(x ,f)
UF

and Nearest Neighbor as

NN(x,F) — MIN dlsta nce(x ,f).
ftF

it is clear that the quer ies that can be cast in this schema obey the informal d.flnition of
decomposab ility we gave above; for any partition of F into A and B, we know by the

.assoclativity arid commutatlvity of o that
Q(x,F) — 0 q(x,f)

f~F
— 0 (0 q(x,g), 0 q(x,h))

g(A
• 0 (Q(x,A),Q(x,B)) .

More than twenty decomposable searchi ng problems have been ident if led; we now mention
a few of these. From problems on linearly ordered sets (where the file to be preprocessed
contains elements from such a set) w e have already seen the example of Member. Further
examp les are Successor (what is the least element in F greater than x?), Rank (how many
elements in F are less than x?), and Count (how many elements In F have value x?). In Data
Bass problems , all of the problems that Rivest (1974) calls intersection queries are
decomposable ; these include secondary key retr ieval , partial match searching , and range

searching. Computational Geometry abounds with examples of decomposable problems. We
hav• already mentioned Nearest Neighbor; related decomposable problems are Farthest
Neighbor (which point is most distant from xl) and Fixed Radius Near Neighbors (which points
are within some fixed distance d of xl). Queries dealing with more complicated geometric
structures can also be dscom posab le; examp lss of such problem. are given by Oobkin and
Lipton (1976].

Although many searching problems are decomposab le, some others are not. An sxam ple of
a problem that is not d.composabl. is convex hull inclusion (preprocess N points in th. plans;
a query asks If a new point is within their convex hull). For any given point x within the
convex hull of F il ls not hard t o find a partItion of F into A and B such that x is not within

_ _

.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

---
~~~~~~~~~~~~

- . -
~~~~~~ ~~~

—.-
~~~~~~~~~ —

-

11 October 1978 Decomposable Problems - 4 -
th. convex huH of either A or B. We can use this to prove that convex hull inclusion Is not
decomposable.

3. Dynamic Structures
In th is section we turn our attention from static problems to dynamic problem.. In static

problems the data is organized once-and-for-aU before any searches ars dons. In dynamic
problems the set F (and the data structure 0) are initIally empty and elsmen ts are then added
to F one-by-one. (Tb. term dynamic sometimes Implies that elements can also be deleted
from F; we do riot use it in that sense.) The most well known exampl. of a dynamic data
structure is the AV1. tr •e described by Knuth (1973]. An AV1. tree allows N elements to be
inserted at a total cost of O(N Ig N); at any point one can answer Member queries In O(lg N)
tim,. In this section we will first develop a dynam ic structure for the Nearest Neighbor
prob lem, and then show how th, techniques we employ can be used to conv.rt any static
structure for a decomposable problem into a dynamic structure.

There are two news approaches to this problem. Tb. first stores the points irs the plane
In a linked list , inserts a new point by appending it to the front of the list , and answers a
query by examining every point In the list. Calling this structure B (for “br ute force ”) we
have

P&N) - S9(N) - Q&N) - 0(N).
A second naive solution calls for using the Llpton/Tar jan structure and rebuilding It after
eac h insertion. This “rebu ilding ” scheme yields Pp(N) - O(N2 Ig N), SR(N) - 0(N), and
QR(N) — O(lg N). In choosing between these schemes one cou ld achiev, very good Insert ion
tim, or very gooo query time, but not both. Wi will now develop a struc turs that has both.

Our faster str ucture will consist of a set of LipIon/Tarjan structures (which we abbr eviate
as LTS), each of a distinct size which is a power of two. Our structure is Initially empty.
Wh.n the first point Is inserted, we build an LTS of size one. When the second point is
Inserted , we build the two points into an ITS of sire two, discarding our previous ITS of size
one. When the third point Is insertsd we have two ITS. (of sizes on, and two), and after the
fourth point is inserted we have ons ITS of size four. Insertions proceed In a way analogous
to binary countIng: after the N-th element Is inserted we have an ITS of size 2i If and only
li the j- tts bit of the binary integer N is one. (This structure Is similar to the binomial queues
of Vuillemin (197$].) To answer a Nearest Neighbor query for a new point x we perform a
nserest neighbor search for x In all the ITSs in our structure , then r turn the minimum of
thoss as the answer to the query.

To analyze our structure (which we call Il, b.cause It is a transformation of the LIS I) we

____________________________ — — ~~- --
-_ _ _ _ _ _ _ _

11 Octo ber 1978 Decomposable Problems - 5 -
note that if I’ contains N elements then we are using at most Ig N ITS.. Since each of those
is of size less than N we know that we can perform a nearest neighbor search on any of
them In O(lg N) time. Therefore the time required to search is Q,~(N) — 0(lg2 N). Since each
of the ITS. requires space linear in th. number of elements it contains, the total space
requirement of I’ is S1~(N) — 0(N). To count the total cost of having inserted N elements into
L’ is a bit more difficult. The total cost of building LTSs of size m — 2) is the cost of building
one ITS of size m multiplied by the number of times the j-t h bit in a binary word turns from
zbro to one in counting from zero to N. If we assume that N is a power of two then a simple
sum shows that P1~(N) — O(N ig2 N), and we can us this ‘act to show that P1’(N) is of the
same order for N not a power of two.

The structure that we have used for dynamic Nearest Neighbor searching can be used to
convert any static structure for a decomposable problem into a dynamic structure for that
problem. We will assume that we are given a static structure D with performances P0(N),
S0(N), and Q0(N). Our dynamic structure D’ will consist of a set of static structures, cacti of
distinct size a power of two, built as before In a manner analogous to binary counting.
Analyzing 0’ shows

P0’(N) - O(PD(N) Ig N],
Q0i(N) - O(QD(N) Ig N], and
S0(N) — O(S0(N)].

The above analysis shows that we can convert a static structure to a dynamic structure
with only a logarithmic increase in query and insertion t’mes. We can achieve even better

- results for some structures. If the static query time QD(N) grows as ~l(N~) for some E) 0,
then we can show that QD’4N) is bounded above by some constant times Q0(N). Likewise If
PD(N) grows faster than N1’~, then we will not incur the additional logarithmic factor in
PDI(N). For certain structures we do not have to build the static structures over again from
scratch—-we can merg. existing structures. In that case too we can avoid the extra
logarithmic term in P0~(N). (We can give at least five examples of such structures.) We can
also show that for some problems the increase of the logarithmic factor Is not incurred If we
measure average Instead of worst-case query times.

This static-to-dynamic transformation has already been used to yield a number of new
al gorithms. Bentley, Detig, Guibas and $ax• (1978) describe “binomial lists ”, which were
obtaine d by apply ing the transformation to sorted arrays. They show that with proper
imp lementation the storage used by binomial lists is absolutely minimal and that their
structure is optimal over the class of all structures using only minimal storage. in addition to
theoretical interest, their structure is efficiently implemented and experiments show that it is
competitive with other dynamic member structures in many applications. Another use of this

- -

11 October 1978 Decomposable Problem. - 6 -
transform has been given by Yao, Yao and Bentley (1978). They reduced the complexity of
calculating the “rank funct ion” in a vector set from barely sub-quadratic to N times a
polynomial in lg N by transformrng a static maxima s.arching structure to dynamic.

Many other aspects of converting static search structures to dynamic will be described by
Bentley and Sax. (1978]. In this section we have seen a transform that increases both query
and processing costs by a factor of 0(15 N). Bent lsy arid Sax. displ ay a whole set of
transformatIons which add a fac tor of k to query time and a factor of kNhIk to processing
tim,, for any fixed integer k. (For examp le, it Is possible to convert a static structure to
dynam ic by adding a fac tor of 5 to query time and 5N1/5 to processing time; this might b.
useful if many queries were anticipated.) Further, they show that using only the prope r ties of
decomposability, these transformations are optimal to second-order terms. They then
demonstrate “dual” transformations that add a fac tor of k to processing times at the cost of
increasing query times by a fac tor of (k2/2)N u/ k~ They investigate the question of dynamIc
str ucturss in which elements can be deleted as welt as Inserte d and show that although
deletion is provably infeasible in j.neral, if ~ is invertible then deletion can be achieved at
a cost of only a cons t ant factor . They also show how the processing time between insertions
can be bounded; this Is useful in on-line systems. In related wor k, Bentley and Shaw (1978)
have formally proved th. correctness of the static-to-dynamic conversion discussed In this
chapt.r by writing it as an Alphard form and prov ing its correctness in that context. Similar
methods can be used to prove formally the correctness of all the transforms of Bentley arid
Sax..

4. AddIng Rant. Variables
Irs tie last s.ction we showed how to transfor m a static struc tur. into a dynamic structurei

irs th is section we will show how to transform a static structure for a particular query into a
statIc structure (or a related query. We will illustrate the construction by first app lying it to
the planar Nearest Neighbor prob lem, and then considering the general case. Th. relat ed
searching problem that we will solve is most easily stated if the points In the plans are
viewed as cities , each of which lias an associated population. We are to preprocess the N
citiss and their populations. A query will give a point it In the plane and a population rou ge
(described by upper and tower bounds), and the search must determine which of the cities in
the desired population range is the closest to point it.1 (So a query might ask “of alt the cities
with population between 60,000 and 120,000, which is the closest to point it?”.)

1Tkle .wch ,. •l lhs ,ss f~v. u .0, de.uvösd by ktwth 11973 ~ 550) .. “as~ ..mp5,.t.d th,ø *hsss s~asdy

~ulte difficuft sod Iharef.,, uselly ml ssa.ads~d’.

- .— -.-~~~- . ~~ - .4

11 October 1978 Decomposable Problems - 7 -
The data struct ure we use to solv• this problem is a res th at has LT Ss in all Its nodes.

The root of Our tr ee contains an ITS representing all th. cities in F. The left son of the root
will represe nt all cities with population less than the median population, and the right son will
represent the cities with popu lations greater than the median. In each of those nodes there
will be an ITS representing half of the cities. ’ This partitioning continues so that on the i-th
level of the tree there are 2~ ITS., each representing cities contiguous in the population
dimension. To answer a query for the nearest neighbor to point it in population range R we
will search for the nearest neighbor to it in a subset of the ITS. (th, union of which ii all of
the cities in the range), and then return the minimum of the reported distances. Specifically
we search all the the LTSs that represent a population range contained in R and having
father s with range not contained in R. We can easi ly describe exactly which ITS. will be
searched by a recursive algorithm which visits the nod.. in the tree containing the relevant
ITS..

The first st ep In analyzing our structure is to note that th, tree we build is Ig n levels
deep. The time requ ired f or building the LTSs on each level is bounded above by 0(N Ig N),
so we have P1~(N) — 0(N 52 N) (I’ now represents the ITS with range restriction capability
added). Likewise the storage required on any levsl is 0(N), so S1(N) — 0(N Ig N). Since at
most two ITSs are searched on any level (at cost bounded above by 0(lg N)), we have

— 0(1g2 N). Thus we see that our new structure adds a factor of Ig N to each of the
cost functions we measure.

We consider now the general case in which each element f of the set F contains an
additional population dimension written p(f). The modified query we want to answer (for
objec t it and range R) is

Q’(x,R,F) — 0 q(x,f).
f F
p(f) R

The structure we use is the tree structure describsd above in which cacti node of the tree
contains one of the original structures 0. Analyzing the resulting structure 0’ as befor.
shows that a factor of Ig N i. added to each of the cost functions giving

P0.(N) - 0(P0(N) lg N],

~ b4(N) — 0(S0(N) lg N), and
Q0’(N) - O(Q0(N) Ig N).

This transformation can be used to solve the “range s.arching” problem defined by Knuth
(1973, p. 554]. In this problem we preprocess N points in k-space and answer subsequent
qusries asking for all points that have every key value in some specified range (that is, f or all

11 October 1978 Decomposable Problems - 8 -

points lying in some rectilinearly-oriented hyperrectangle). Rang. searching in one dimension
can be accomplished by use of a sorted vector. We can use th is structure as a “base ” arid
add k-i additional range variables by the transform of this section. We then apply the
speedup” of merging structures to yield the “range tree” structure R with performances

PR(N,II) — 0(N (lg N)1~~),
SR(N,k) — 0(N (Ig N)~~

1), and
— O((lg N)1’ + F)

where F is the number of points found in r•spons. to th. query. This structure is the best
known structure for range searching, and was discovered through the use of this
decomposable transform. This transformation can also be used to derive the data structures
or “Maxima Searchin g and ECDF Searching” described by Bentley and Shamos [1977].

Fur ther aspects of adding range variables will be descr ibed by Bentley and Sax. (19783.
Just as In the static-to-dynamic transformation there were a set of conversions, so there are

in this transformation also. We have s•en in this section a transformation which increases the
preprocessing, storage, and query costs by a factor of O(lg N). Bentley and Saxe show a set
of transformations that increase preprocessing and storage costs by a factor of 1’ and query
costs by a factor of 0(N111’). The dual transform adds a factor of 1’ to query costs and
increases preprocessing and storage requrements by O(N’m). They also show that these
increases are not always ircurred. They can be avoided in exactly the same way as in the

static-to-dynamic conversion: if the underlying structures can be merged quickly, if the
underlying functions ’ are fast growing, or if average query times are considered. The
transformations that we have described in this section add a range variable to a static
structure , yielding a new static structure. Lueker [1978) has described a new transformation
that is applied to a dynamic sructure and yields a new dynamic structure in which range
variables can be specified. He has used this transform to produce best-known structures for
dynamic range searching, ECDF searching, and maxima searching.

5. Preprocessing/Qu.ry Time Tradeoffs
in this section we examine the final construction for decomposable problems. Unlike the

two other constructions, this construction is not due to the author. it has been used
previously in a number of algorithms, and it is included here because its scope of applicability
is precisely the decomposable problems. The construction is appropriate for a structure that
has very high preprocessing t ime or storage; it allows us to develop a class of structures
with decreased preprocessing and storage requirements at the cost of increased search time.

The data structure makes use of clusters. The preprocessing partitions the N elements of F
(at random) into N/c clusters of c elements each, then applies the preprocessing algorithm of

_ _ - ‘- -~~~~~~~~~ ~~ - -~~~~~~~~~~~~ -‘~~~ ~~~ - — - - -~~~~~~ - -
‘
~~
—

~~~~~~~~~~~~ . -~~~~~~~~~~



11 October 1978 Decomposable Problems - 9 -

o to each of the clusters to build N/c structures. To answer a query we search each of the
clusters and then combine those answe rs (by decomposability) to tOrm an answer to the
original query. Analyzing the resulting structure Q~ shows

Q0.(N) • (N/c) Q0(c),
S0.(N) — (N/c) S0(c), and
P0 (N) — (N/c) P0(c).

Notice that a continuum of performances is achievable.

This transform has been used by A. Yao (1977] to achieve a number of new results. He
used as “underlying” structures those presented by Dobkin and Lipton [1976) that had
logarithmic search times but preprocessing and storage that were (a large) polynomial in
N. By choosing c appropriatel y (as a function of N) ‘faa was able to achieve the best known
algorithms for many multidimersional problems. ‘faa’s methods can be app lied to many other
problems that do not pr&ma fac~e appear to be searching problems. These are problems
which ask a “decomposable function” to be computed over every element in a set. Naive
algorithms for performing this task require quadratic time, but the problem can be reduce -’ -’ to
performing N decomposable searches. ‘s’ao’s methods can then be applied to yield
sub—quadratic algorithms. There are other applications of this transformation of structures in
more typical searching contexts. In many applications the available storage is bounded, so
we can use these methods to design a structure that will use exactly as much storage as is
available. if we know in a certain application exactly how many searches will be made, then
we can choose the cluster size to minimize the total cost of preprocessing arid searching.

6. Conclusions

To summarize this paper we have seen at least two types of results. On a higher level we
have seen three transforms that can be applied to searching structures for decomposable
problems: converting a static structure to dynamic, adding “range variables ” to a structure ,
and making preprocessing/query time tradeoffs. These transforms have already been used to
yield resul ts on a more concrete level. These include the currently best known “theoretical”
algorithms for such problems as the rank function, member searc hing, range sear ching, and
minimal spanning trees. These transforms can also be used as software engineering tools:
each transf orm is easily coded and would be a valuable entry in a “sof t ware engineering
handboOk”.

Throughout this paper we have mentioned other work on decomposable problems that has
already been done and will be repor ted by Bentley and Saxe [19783. Much further work ,
however , remains to be done. Open problems include identifying additional decomposable
problems, showing more efficien t transforms than those we discussed, giving new types of

-- ---,

~

‘-

~

-

~

- . --

~ 

~~~~~~ 


11 October 1978
-

Decomposabl. Problems - 10 -

transforms , showing the optimality of transforms, performing exac t (Knuthian) analysis of
transforms , and developing software to implement these transforms. Perhaps the most
Obvious open problem, though, is to identify other classes of problems and prove general
results concerning problems in the class.

In conclusion, this paper contains three kinds of results. The first kind of result that we
have seen is a set of particular algorithms; the framewor k of decomposable problems has
been useful in both the discovery and the presentation of these algorithms. The second kind
of result we have seen is the three particular transforms, and the different tradeoffs
available within each transform. The final kind of result in this paper is the definition of the
class of decomposable problems. To the author’s knowledge, this is the first example of a
class of problems that is defined algebraically and for which a general set of conversions is
known. This kind of result promises to be valuable both in proving theorems about the
asymptotic complexity of computational problems and in providing software engineers with
more powerful tools.

Acknowledgements

The author gratefully acknowledges helpful conversa tions with David Jefferson and Andrew
and Frances Yao. The contributions of James Sax. to the author’s understanding of
decomposable problems (and thereby to the presentation of this introductory paper) are too
numerous to mention; a simple “thanks” will have to suffice.

References

Bent ley, J. L, 0. Detig, L Guibas, and .1. B. Saxe [1978]. An optimal data structure for
minimal-storage dynamic member searching, in preparation.

Bentley, J. L and J. 8. Sax.. Decomposable searching problems, in preparation.

Bentley, J. L and M. Shaw (1978). A class of correct and efficient transformations for
converting data structures from static to dynamic, in preparation.

Bentley, J. L arid M. I. Shamos (1977]. “A problem in mult ivariate statistics: algorithm, data
structure, and application?, Proceedings of the Fifteenth ALIerton Conference on
Commu,ucation, Control and Computing, pp. 193-201.

Dobkin, 0. and R. J. Lipton [1976). “Multidimensional searching problems”, SIAM J ournal of
Computing 5, pp. 181-186.

Knuth, 0. E. (1973]. The Art of Computer Programming, volume 3: Sorting and Searching,

— _~~~~~~~~~~ _ - ~~
_

- - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~


~~~~-..- - ---~~~~- - . -~~~~~~~~~- -~~~~~ --- -

11 October 1978 Decomposable Problems - 11 -

Addison-Wesley , Reading, Mass.

Lipton , R. .J. and R. E. TarJan (1977). “Applications of $ planar separator theorem ” ,
Eig hteenth Symposium on the r~~ndatio,~, of Computer Science, pp. 162-170.

lueker G. S. (19783. A transformation for adding range restriction capability to dynamic
data structu res for decomposable searching problems, UC Irvine Technical Report.

Rivest , P. L (1974]. Analys Is of assoc iat ive retrieval aigerithm~, Stanford Computer
Science Department Report STAN-CS-74-415, 102 pp.

TarIan, P. E. (1978). “Complexity of combinatorial algorithms , SIAM Review 20, 3, pp.
457-491 (July 1978).

VuIllemin, .3. (19783. “A data structure for manipulating priority queues,” Comm. of the
ACM, 21, 4, pp. 309-315 (April 1978).

Yao, A. C. (19773. ‘F ast algorithms for finding minimum spanning trees in K dimensions”,
Proce edings of the Fifteenth 4U.rton Conferenc. on Communication, Control and Computing,
pp. 553-556.

Yao, A. C., F. F. Yao, and .3. L Bentley (19783. On computing th. rank function of a set of
vectors , to appear.

_ _ _ _ _  - - -
~~~ ________ - - A


- -- - •~~~~~~~~~~~~~ -~~~~~ - •-~~~~~---~~~~~~~
- -

UNCLAS SIltED
SIC1IRStY Ct. AS SIPIC A t OM O~ t NtS PAGE (Ph.. , 0 . &.i...sd)

DCDAOT ~~~~~~~~~~~~~~~~~~~~~~~~ b A I ’ C READ IN$T~ UCT1ONS
,“.r ~~~~~ ~~~~~~~~~~~~~~~~~~~~ “ “ ‘- “- BEFoRE COMPLETING FORM

I . $tPOmt SUNSI~ 3. OOV~ ACCESSION NO S. ~ ICIPI INT% CA ? A . O Q NUkI•I~~

cMu-CS-78- 145 ____________________________

A. TI tL E (, d SuAl l.) I. TYPE OF ~ EPO~~T A PE~~IOO COVI~~tO

Interim
DE~~MPOSABLE SEARCRfl~ PROBLE1S S. PERFORMING ORG. REPORT NUMS ER

~~. Au T OR(i~
a. C0N?RA C T O* GRANTNUM•L*(.)

- Jon Louts Bentley N00014-76-C-0370

5. PERFoRMING ORGANIZATION NAM E AND ADDRESS IS. PROGRAM EL E MENT . PROJE CT . YAII~
carnegie-tie lion university A REA I W ORK UNIT N U M S I R S

Computer Science Dept
Sch.niey Park , PA 15213

II. CONTAOU.ING OFFICE NAME AND ADDRESS Il. REPORT DATE

Office of Naval Research -
‘

~
,. October 1978

• Arlington, VA 22217 15
14~~MOss tO*sNO A GENCy NAME S ADURES$(II di u.e~~ I 1,.. C.ø.p .l1M5 Off ..) IS. SECURIIY CI. ASS. (.f tAll ~sp.4!)

UNCLASSIFIED
~0OVE - - -IS.. p$CLASt, ,Icat ,o&bowwQ ~~&DINO

SCHEDULE

I~~. O1STR,SUTION STA T EMENT (.1 thIs RapAM)

Approved for public release; distribution unlimited

I?. DISTRISUTION STATEMENT (.1 IA. .b.Ir.e I .at.e.d In Jl..k 30. II 4IfVi.~~,t .. R.p..()

IS. SUPPI.IMINTAAY NOTES

IS. KEY WORDS (C.øfMu. .n , v ~~ss .14. Il ..i •..y .4 I4.&ISp S~ bl~~ k ti~~~bsr)

as. ASSTRACT (C.n IAw. ~N r ~~s~•~ .14. IV q,s.•.~~p a4 S4..eIi1~ 3~ A s•h ~~b.)

DD , ~~~~~~~ ~473 EDITION 0? I NOV SI IS 05501.1,1 UNCLASSIFIED
S/N OIO3~ SI4~~AAO I I

- SECURITY C1.AUIFICATION OP THIS PAGE (US,... DMa ..I. ~~4)

