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1. INTRODUCTION

The methods of operations research have been extensively used in

military applications. This paper presents three typical examples that

illustrate the use of operations research in electronic warfare and are

of considerable interest in themselves. The first example concerns

radar decoys and uses Markov chains in the analysis. It is shown how
to ca 1 cula..e two quantities of fundamental importance in the evaluation

of the defensive capability of a radar-decoy array. These quantities

are the probability of radar survival after an antiradiation missile

(ARM) attack and the expected number of ARM ’s required to destroy the

radar. The second example concerns j amming strategies and employs game

theory. It is concluded that, subject to certain restrictions , wideband

barrage jamming and frequency agility are the optimal strategies for a

j aimner and a radar , respectively. The final example concerns resource

allocation for an aircraft attack and involves both game theory and

optimization methods. A methodology is developed for the rational

allocation of resources when there is uncertainty about the defense’s

capabilities. Note : The notation in each section is independent of the

notations in the other sections.

2. DECOY PROBLEM

An ARM is a missile with passive homing devices that enable it to
seek a source of electromagnetic radiation of certain frequencies.

Radar stations are prime possibilities as ARM targets. To attack a

radar station, an aircraft conveying one or more ARM ’s may attempt to

approach the radar at a low altitude to avoid detection. When the

aircraft is sufficiently close to the radar, it rapidly ascends to a

high altitude while launching the ARM toward the radar, as illustrated

in figure 1. If an ARM attack is known to be imminent , the radar

transmissions should be curtailed as unich as possible. However , if the
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radar is part of an air defense system , it may not be feasible, in view

of the surveillance requirements of an air defense system, to curtail

radar transmissions sufficiently to thwart the ARM homing device. In

this case, a possible countermeasure to the ARM threat is to deploy

decoys in the vicinity of the radar .

J

ArnC PA IT

i
DeCOY

IA CA I

Dec 05

DICOY

Figure 1. Antiradiation missile (ARM) attack
against radar-decoy array.

It is important to know the probability of radar destruction when N

identical decoys are deployed around a radar and H ARM’s are launched

against the radar. If the ARM ’s are launched sequentially , the problem

can be formulated as a finite Markov chain.
1’2

Let X be a random variable representing the state of the

radar -decoy array after n attacks by single ARM ’s. The states of the

chain , which are the possible values that X may assume , are labeled by

the integers i = 0, 1, . . •, N + 1. The Markov assumption implies

the probability that X — i is dependent on the value of X 1, but not

‘F’. S. Hillier and G. J. Lieberman , Operations Research , 2nd ad.,
Hold.n-Day, San Francisco (1974).

2.g• Icarlin and H. M. Taylor, A First Course in Stochastic Processes ,
Academic Press, New York (1975).
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also on the values of X
0, 

X
1
, . . 

~ 
X

2
. The radar system is defined

to be in state i for i = 0, 1, . . ., N if N - i decoys and the radar

itself remain intact. The radar system is defined to be in state N + 1

if the radar has been destroyed by the ARM attacks, regardless of how

many decoys are intact. In the terminology of Markov chains , state

N + 1 is an absorbing state, whereas the other states are transient.

An alternative formulation of the problem is to assign separate

states for different numbers of surviving decoys when the radar has been

destroyed. However, this more detailed formulation seems unnecessary

for most applications, so it is not pursued in this paper.

Each attack by an ARM defines a transition by the radar system from

one state to the same or another state. In most applications, the

transition probabilities of the Markov chain can be assumed to be

stationary. Accordingly, the elements of the transition matrix P are

labeled P~ .., where i denotes the row and j  denotes the column. The

element P.. . represents the probability that X = j, given that X~_1 = i.

We define Z as a row vector with element i having a value equal to the

probability that X = i. For example , the first element (element zero)

of Z denotes the probability that X 0, that is, the probability that

the radar—decoy array is completely intact after m sequential ARM

attacks. Thus, Z = Z P. The elements of the n-step transition
—m+l -it—

matrix , P~ , are labeled P~ for n > 1. By definition, ~ = ~ P
n
. The

— ii -1n+n —In—
probability of radar destruction after M ARM attacks is given by the

element Since ARM attacks cannot increase the number of decoys,

P~~ = 0 for j < i.

An attack by a single ARM can be modeled as consisting of two
phases. During the first phase , the ARM selects a target frczn among the
radar and the decoys. If the radar system is in state i, then.

7



denotes the probability that the radar is selected; it follows that

1 — r
i 

is the probability that one of the decoys is selected . During

the second phase , the ARM attacks its chosen target. Thus, cx .

represents the probability of destruction if the radar has been

selected, and B . represents the probability of destruction if one of the

decoys has been selected. These quantities are often called single—shot

kill probabilities. Since it is much easier to harden a decoy than a

radar against a detonation , we have < cx . in all practical cases. If

the radar system is in state N , no decoys remain , so rN = 1.

The preceding definitions imply that the diagonal elements of the

transition matrix are given by
= 1 — r~cz~ — (1 — r i)B i , i = 0, 1, . . ., N — 1 ,

(1)

~
‘N+l ,N+l =

The transition matrix has the form

~~~ (1 - r0)B 0 0 . . . 0 r0
cz
0

O P
11 (1 — r 1)B 1 . . . 0 r1

cz
1

. . . . . . . . (2)

0 0 0 . l a N 
a
N

Lo 0 0 . . . 0 1 
—

It follows that

— (P~~ )
fl 

. (3)

8

~~~ 
—-—

~~~~~~~~

.

-- ‘.



- -

If the decoys are well designed , the ARM will not be able to

distinguish between the decoys and the radar . In this case, the target

selection can be considered random, with each of the N - i + 1 possible

targets equally likely to be chosen. Thus,

r .  = 
N — + ~ 

, i = 0, 1, . . ., N . ( 4 )

The indistinguishability assumption , if not warranted , still can be used
to calculate a lower bound on the probability of radar destruction.

As a simple example , suppose N = 2 decoys are deployed and M = 3

ARM ’s are sequentially launched against a radar-decoy array of

indistinguishable targets. It is assumed that once a target is selected

by an ARM , the probability of its destruction is independent of the

state; that is, a . = ci and B. = B for all 1. The transition matrix is

3 — c x — 2 B  2B a0

2 - a - B  B a0 2 2 2
(5)

O 0 1 - a  ci

0 0 0 1

By means of matrix multiplication, we can obtain P3, which gives the

transition probabilities relative to the termination of the attack. Of

particular interest is the element P03
, which appears in the upper

right corner of the P3 matrix and corresponds to the probability of

radar destruction after three ARM attacks. Carrying out the algebra and

denoting this element by y, we obtain

— 
1 (a—B )a (2a — 5B — 18)1j . (6)

Since 0 < ci < 1 and 0 < B < 1, it is apparent that

9
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cx if ~ < a,

y = a if B = ci , (7 )

y > c t  i f B > c z .

To put this result in perspective, consider the simultaneous

launching of three ARM ’s against the radar-decoy array. If it is

possible to assign each ARM to a different target out of the three, then

an ARM will be launched against the radar with certainty . Thus, the

probability of radar destruction after the attack is equal to the

single—shot kill probability for the radar ; that is , -
~ 

= ci in this case.

We conclude that the simultaneous attack of each radiator in the array,

if feasible, is advantageous to the attacker when B < ci and the

radiators are indistinguishable to an ARM .

In evaluating the defensive capability of a radar-decoy array

against an ARM attack, there are two quantities of primary interest.

One quantity, which was evaluated in equation (7), is the probability of

radar destruction after the attack. The second quantity is the expected

number of ARM ’s required to destroy the radar. We next show how to

calculate the latter quantity when the ARM ’s are launched sequentially.

It is intuitively clear and can be shown mathematically from

equation (2) that the probability of eventual radar destruction is unity

~ i ~‘ N + 1, and an unlimited number of ARM ’s are available.

(Karlin and Taylor , pp. 90-91, give the mathematical details of this

t~~e of calculation.2 ) Let 
~~~N+l denote the probability that , starting

from state i, radar destruction occurs during the nth transition. It

follows that

2~ • Karlin and Ii. H. Taylor, A First Course in Stochastic Processes,
Academic Press , New York (1975).
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and 
n=l 

i,N+l = 1 = ~~ . ., N (8)

+1. 
= 

~~~ 
~ik~~~,N+1 n > 1 , i = 0, 1, . . ., N .

By definition , the expected number of ARM ’s required to destroy the

radar, if the initial state is i, is

~i,N+l 
= 

n l  
nf
~~N+l 

, i = 0, 1, . . ., N . (10)

Multiplying equation (10) by 
~ki 

and summing over i, we obtain

N N

~~ ~ki~ i,N+l ~~ r~ •~~~ ~~~~~~~~~ 
(11)

n—l i— O

Using equations (8) through (10) in equation (11), we derive

~k,N+l 
= 1 + 

~~~~ 

Pkj1~i N+l , 
k = 0, 1, . . ., N . (12)

To obtain the quantity of interest , 
~o ,N + 1’ these N + 1 equations

must be solved simultaneously. Since P . . = 0 when j < i, it follows

from linear algebra or matrix theory that a solution exists if P~ . <

i ~ N + 1.

To illustrate the use of equation (12), we return to the example

considered previously in which N = 2. We may write

~23 
= 1 + P22~i23

~13 
= 1 + P11~j13 + P12i.’23 (13)

;i 03 
= 1 + P 

~~~ ~ 
+ p01~

j
~~ + P

02~23

Solving these equations simultaneously and substituting from

equation (5) , we obtain

.4

11
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2 ( a -B )
~O3 ci + a( cz + B)  

(14)

assuming that u > 0. If the costs required to ensure various values of

. a and ~ are known , this equation can be used to determine i io3 as a

function of cost. The quantity 
~O3 

is a measure of the defensive

capability of the radar and two decoys. Similar calculations can be

done to assess the relationship between the cost and the defensive

r’apability of a radar and N decoys.

3 . JAMMING OF RADAR

The duel between a radar and a jammer can be analyzed by means of

game theory if suitable restrictions are placed on the options available

to the combatants. As is usual in game theory, it is assumed that both

combatants choose their strategies simultaneously without any knowledge

of each other’s choices.

We define a basic time interval that is equal to the round-trip time

of one or more radar pulses. During each time interval , the radar may

transmit the pulse in one of n bands of equal bandwidth. A pure

strategy consists of choosing a single fixed band for transmission

during all, time intervals of operation. A mixed strategy entails the

randomized selection of a band during each basic time interval. The

jaseter is assumed to employ noise jamming of fixed average power. A

pure strategy for the jansner consists of jamming a fixed subset of the n

radar bands with uniformly distriboted jamming energy during all time

intervals of operation. A mixed strategy entails the randomized

selection of a subset of bands to be j ammed during each basic time

interval. Within the jammed bands, the jamming energy is uniformly

12
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distributed with a power spectral density denoted by J
0. If a single

band is j ammed , then J
0 

has its maximum possible value J
1
. If k bands

are simultaneously jammed , then J0 
= J

1/k 
in each of these bands. Ran-

dom thermal noise of power spectral density N
0 is assumed to be present

at the radar receiver.

We construct a payoff matrix with the rows corresponding to the

radar ’s pure strategies and the columns corresponding to the jamtner ’s

pure strategies. Thus, the payoff  matrix has n rows and - 1 columns.

The payoff is defined to be the signal-to-interference ratio at the

output of the radar receiver. We assume that the radar receiver

contains a matched f i l te r  and that the j amming can be modeled as

independent , band—limited , white Gaussian noise. Consequently , the

signal—to-interference ratio at the receiver output is 2E/(J
0 

+ N
0
),

where E is the pulse energy at the receiver output.~ Although it may not

always be an adequate measure of radar performance , the signal-

to-interference ra t io  is used for the payoff in order to simplify the

mathematical analysis.

Although the j ammer has - 1 possible pure strategies , there are

only n distinct classes of strategies. A specific class is defined

accord ing to how many band s are jammed , as indicated in table I. If a

column of the payof f matrix is associated with a strategy belonging to

class C
k~ 

then the entries in the column have the two possible values

listed in table I. The form of the payoff matrix is illustrated in

table II.

3A . Whalen , Detection of Signals in Noise , Academic Press , New York
(1971).

13
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TABLE I. POSSIBLE JAMMER STRATEGIES

Number of pure
Entries in correspond i ngClass Definition strategies in 
column s of payoff matrix

______ _________________ 
class _________________________

2E
C 1 

J
0 

J 1 
in one n 1 entry : 

+ N
0band; other

bands not 2Ejammed n - 1 entries:

Ck 
J
0 

J
1
/k in k k entries : 2E

bands; othe r Lki ~~~~~ + N0bands not
2Ejammed n - k entries :

2EC J0 J~/n in all 1 All entries :
n

ba nds ~~~~~ Nn 0

Note: J
0 

= jamm i ng power spectral density within a jammed band.

Si 1 
= maximum possible va l ue of J

0
.

k = numbe r of jammed bands .

n = number of bands.

E = pulse energy at the rece i ver output.

N0 
= power spectral density of thermal noise.

14
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TABLE I I .  FORM OF PAYOFF MATRIX

Jarmie r strateg ies

2E 2E 2E 2E
J 1 

+ Nc~ + N + N
k 0 n 0 

~~~~~~~~

. . . .- - - 

2E 2E 2E 2E

- 

~i~~~o 

. . .  _  

- -

.

-

. .  

_

H 2E 2E 

- 

: : 
2E 2E

±L + N _- - ---- - -- . - . -  fl~~
_ O

Note: E = pulse energy at the rece i ver output.

J
1 
= maximum possible value of J

0.

N
0 

= power spectra l dens i ty of therma l noise.

k = number of jammed bands .

n number of bands .
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The upper value of the game is the maximum payoff that can result if

the j aimner selects the pure strategy resulting in the smallest maximum

payoff. From tables I and II, it is seen that this strategy is the

unique strategy of class C .  Thus, the upper value of the game is

vi 
= 

~~~~ (15)

The lower value of the game is the min imum payoff that can result if
the radar selects the pure strategy resulting in the largest minimum

payoff. From the tables, it is seen that all pure strategies have the

same minimum payoff. Thus, the lower value of the game is

2E
= 

+ N~ 
( 16)

A saddle point is defined as an entry that is both the minimum in its

row and the maximum in its column. According to game theory, the

existence of a saddle point implies that pure strategies are optimal for

both combatants. Since the upper and lower values of this game are not
equal , a saddle point does not exist for this game if n > 1. Thus, a

mixed strategy is optimal for one or both of the combatants.1”~

Each row of the payoff matrix has the same array of entry values ,

although the ordering differs  from row to row . Because of this

symmetry , it is intuitively plausible that an optimal strategy for the

radar operator is to choose a band randomly , with each band having a

probability of being chosen equal to 1/n. A radar that is operated in

this mode is called a frequency—agile radar.

Let be a vector with entries denoting the probabilities of the

radar ’s strategies, let ~ be a vector with entries denoting the

‘F . S. Hillier and G. J. Lieberman , Operations Research , 2nd ed.,
Holden—Day, San Fra icisco (1974).

i’D. J. White, Fundamentals of Decision Theory , American ?lsevier , New
York (1976).
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probabilities of the jansuer ’s strategies. We represent the payoff

matr ix by A . The expected payoff is

n 2’~-l

~~A~~j ~~~ , ~~~, 
p~A1.q . . 

(17)

i=1 j=l

We denote by 
~~ 

the particular vector corresponding to a frequency-agile

radar; that is , the elements of are given by p11 
= i/n, for all i.

It follows that

n

= ~ q
~ i~l 

Ai~ 
. (18)

From the tables, if j belongs to class Ck,

A . .  = 
2Ek 

+ 
2E(n — k) 

, J 
~~ 
C~ . (19)

It is easy to verify that a unique minimum value of equation (19)

results when j £ C . Thus, with corresponding to the pure strategy

of jamming all bands, we conclude that, for any ~~~,

< 

~~l
’
~~) 

(20)

Since all the elements of a1 are zero except the element corresponding
to strategy C , it is straightforward to verify , by using equation (17),

that

i(
~

,g
~) = (21)

}for all £• Combining equations (20) and (21) , we have

17



~~
. ~(E.i’ai) £ V(~.1~a) (22)

It is known from the theory of games4 that this relation establishes

and as the vectors corresponding to the optimal strategies for the

radar and the jammer , respectively. The value of the game , determined

from equations (18) and (19) , is

2E 

N0 

(23 )

This quantity is the signal-to—interference ratio that results when both

combatants employ optimal strategies.

We have shown that the jainmer should spread the j amming energy

uniformly throughout all n bands. If the bands are contiguous, we

conclude that wideband barrage jamming is preferable to narrowband spot

jamming. The signal-to—interference ratio at the output of the radar
receiver is given by equation (23) when barrage jamming is employed.

Although we have obtained an interesting and useful result, we have

rather art if icially restricted the available strategies. By insisting
that the game strategies be chosen simultaneously, we have excluded the

possibility of repeater jamming. The implicit assumption that the

jamming is a stationary process during each basic time interval

eliminates swept-frequency jamming and deception jamming from

consideration. The radar ’s options have been limited to the selection

of a transmission frequency. If any of these restrictions on the

strategies are removed, the game becomes difficult, if not impossible,

to solve.

4D. J. White , Fundamentals of Decision Theory , American Elsev.ier, New
York (1976).

18
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The preceding game , wh ich was originally suggested by Nilsson ,5 is

an illustration of a finite two-person zero-sum game. Infinite

two-person zero-sum games that describe certain problems in electronic

warfare have been solved in a few cases.

4. RESOURCE ALLOCATION FOR AIRCRAFT ATTACK

A classic example of the application of game theory and optimization

principles to electronic warfare arises in the planning of bomber

penetration or an aircraft attack against an air defense radar system.

The attacker must assign the roles of the available aircraft and

allocate the jamming equipment and other resources. Some or all of the

strike aircraft (or bombers) may be allocated jamming equipment. As

“self-screening” jammers , strike aircraft can hinder both the ranging

and the direction f inding of a rad ar . However , the radiated energy may

help the radar to locate the strike aircraft. The weight and the volume

of the jamming equipment may necessitate a reduction in aircraft

armament. Another tactic is to provide jamming equipment to auxiliary

aircraft, termed “escort” jainmers , that accompany some or all strike

aircraft in close formation during part of their flights. Although the

strike aircraft  may be protected , the escort jamzners may be susceptible

to attack. A third possible tactic is to deploy jamming aircraft

outside the detection range of the air defense system . Unless the

jamming energy transmitted by these circling aircraft , which are termed

“stand-off” Jammers, is caref ully coordi nated with the flight patterns

of the strike aircraft , the jamming energy usually penetrates through

the sidelobe s of the rad ar radiation pattern . Thus , high-power antennas

are often required for the stand-off j arraners to be effective . However ,

5N. J. Nilsson , An Application of the Theory of Games to Radar
Reception Problems, IRE National Convention Record , 7, Part 4 (1959),
130—140.

6W. L, Root, Cozr.rsunications through Unspecified Addi tive Noise ,
Information and Control , 4 (1961), 15-29.
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it is possible for a diving aircraft to follow the main beam of a

stand-off j ammer , forcing the radar main beam to receive the jamming

energy. The three jamming tactics are illustrated in figure 2.

o -  SI L~ SCØI ~~NINC. J AMM(~

STRIKE

b ~ S C O P T  ) A M N T R

,~ STAND O~~ JAMM IP

Figure 2. Radar jammers during
aircraft attack.

Game theory is appropriate to the analysis of this conflict since

evolving technology and tactics as well as incomplete intelligence and

reconnaissance preclude a precise knowledge of the details of the air
defense system. Each possible assignment of aircraft roles is labeled
by an index i, while each possible type of air defense system is

assigned an index j. Other parameters , denoted by the vector x , must be

chosen by the attacker. These parameters describe the characteristics

of the jamming equipment and the weapons allocated to the aircraft .
Each element of x is assumed to have a continuous or an infinite range

of possible values because any element with a finite range is removed

f rom the vector and used to enlarge the indexed set of the attacker ’s

options.

20
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To define a payoff matrix , we first define a function , represented

by f(i,j,x), which is the expected value of the measure of effectiveness

of the mission ; that is,

f ( i , j , x) = E[g(i,j,x)] . (24)

For each value of (i,j,x), g(i ,j,x) is a random variable on the sample

space of mission outcomes. For example , g ( i , j , x) could be the gain from

the complete or partial accomplishment of the attacker ’s mission minus

the loss from the destruction of some of the attacking aircraft during

the execution of the mission. The units of this function might be

monetary or some measure of lost fighting capability.

An immediate difficulty is the problem of assigning a value to the

loss of pilots. Such an assignment is highly subjective, if not

impossible. A way out of this difficulty is to calculate the

probability of pilot death or capture for each choice of i, j, and x.

Denoting this probability by z~ (i ,j,x), we impose the constraints that

zk
(i,j,x) < C , k = 1, 2, . . . , (25)

where C is the max imum acceptable value of this probability. The

subscript k is used to distinguish the various types of aircraft
(strike , escor t , stand —off , etc .) that the pilots may f l y .

If there are no possible choices of x that satisfy these

inequalities for fixed values of I and j ,  then the option corresponding
to index i is removed from consideration by the attacker . In other

~~rds, this option is no longer considered viable , regardless of its

destructive potential. If no possible values of x and i can be found to
satisfy equation (25) for each possible value of j ,  then either the

mission must be cancelled or the value of C must be raised .
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Assuming that equation (25)  can be satisfied for some possible

choices of x , the attacker should choose x to maximize f(i,j,x). Since

the possible values of x indicate the characteristics of the jamming

equipment and weapons aboard the aircraft, there are additional

constraints to be considered. The most obvious constraints involve the

dimensions and the weight of individual items or groups of items.

Labelling each constraint by an index n, the constraints can be

expressed symbolically by

y~ (i~x) < D , n = 1, 2, . . . , (26)

where the D are constants. Note that the functions y (i,x) usually do
n n —

not depend upon the index j. The maximization of f(i,j,x ) ,  subject to

equations (25) and (26) , is accomplished by means of mathematical

programming. We obtain a specific value of x , denoted by ~~(i ,j), which

is the optimum value when i and j are specified.

We can now define an appropriate payoff matrix. The element values

are given by

A .. = f[i,j,~~~(i ,j)] . (27)

Once this payoff matrix has been constructed , the optimal strategies can

be evaluated according to the principles of the theory of zero-sum ,

two-person , finite games, for which effective computer algorithms exist.

A slightly different formulation of our resource allocation problem

results if we have sufficient confidence in our intelligence and recon-

naissance information to assign probabilities p . to each defense option.

We then define the expected values:

~~~~~~~~~~~~ 
=~~~p~f(i,j,x) , (28)

22

~ 

- 

~
- 

-- ‘

~~~~~~~~~~~~~~

-

~

——-—- ---- 



- 7-- .

and

Zk
(1,X) Lp .zk (i ,J , x)  . (29)

For each fixed value of i , we choose x = 
~~(i) as the value of x that

maximizes ?(i,x) subject to the constraints given by equations (26) and

Zk
(:L ,X) < C , k = 1, 2 (30)

If no value of x satisfies these inequalities for some fixed i, then

strategy i is eliminated from further consideration. Once ~~(i) has

been determined , we define a payoff function by

= f[i.~~~(i)] . 
(31)

The strategy i that maximizes the payoff function is the optimal one.

An attractive feature of this formulation of the problem is that it

automatically yields a pure strategy. The previous formulation with a

payoff matrix yields a pure strategy only if the matr ix contains a

saddle point. If a saddle point does not exist , the optimal strategy is

a randomized one. Unfortunately, when a single strike or a muall number

of strikes are launched, random5 zed strategies usually cannot be

properly executed.

We now consider an extremely simplified and artificial example
designed to illustrate the methodology of resource allocation for an

aircraft attack . Suppose there are two possible air defense systems

labeled by j = 1 and j = 2. Only two possible aircraft attack

configurations are considered . If i = 1, a strike aircraft carrying

self-screening jamming equipment is supported by a stand-off jazmuer. If

i = 2, a strike aircraft without self—screening equipment is accompanied
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by an escort j ammer. The strike aircraft is labeled by k = 1, while the

auxiliary a i rc ra f t  is labeled by k = 2. The vector x is assumed to

consist of a single element, denoted by w, which represents the weight

of the jamming equipment on board the strike aircraft.

We assume that both the weight and the volume , v , of the jamming

equipment are constrained . The constraints, which are symbolically

represented in equation (2 6) , are

0 < w < W  , (32)

and

0 < v < v , (33)

where W and V are specified constants. We assume that

= p~ , 
(34)

where ~ is a constant density, Combining these relations, we obtain

0 < w < min (W , pV) , ( 35)

which denotes the range of possible values for w.

By definition , the strike aircraft has no jamming equipment when

i = 2. Thu s , we may write z~ (2 ,j,w) = z
k
(2
~
)). We assume that, for the

specified value of C,

zk (2 ,i )  < C  , j = 1, 2 , k = 1, 2 , (36)
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where we recall that the left  side is the probability of pilot loss for

various types of aircraft (strike or escort in this case) and defenses.

When i = 1, we assume that the stand-off j ammer is relatively safer

from attack than the strike aircraf t , so tha t

z2(l,j,
w) < z~~(l ,j,w) , j = 1, 2 , (37)

This relation implies that z
2

(l ,j,w) satisfies equation (25 ) if
z
1
(l,j,w) does. The latter function is assumed to be linear , that is,

z
1
(l,j,w) a. + b.w , j = 1, 2 . (38)

Using these functional forms in equation (25)  and combining the result

with equation (35) , we obtain the overall constraint ,

0 < w < w0 , (39)

where

/ C - a C - a
w0 = min (W , pV , 

b ‘ b 
2 (40)

\ 1 2 /

It is assumed that w0 
> 0 so that the constraint of equation (39) can be

satisfied by at least one value of w.

Having examined all the contraints , we turn to the maximization of

f(i,j,w) for i = 1, 2 and j = 1, 2. Since the strike aircraft has no

jamming equipment when i = 2, we may write f(2,j,w) = f ( 2 ,j) for

j = 1, 2. Suppose that f(l,l,w) and f(1,2,w) are maximized by w =

and w = w2, respectively, and that both w1 
and w

2 
fall within the range

specified by equation (39). Using equation (27), we may construct the

payoff matrix :
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Defensive strategies

f(l~ 1sw1) f(11 2 1w2)
Offensive
strategies

f(2,1) f(2,2)

If it turns out that

f(l~ lsw1) < f(2 ,l) < f(2,2) (41)

then this game has a saddle point , and the optimal offensive strategy is

to send an escort jaxnlner along with the strike aircraft. In this case ,

the value of f (l ,2,w2
) is irrelevant, so we need not bother to determine

w
2
. If f(l ,l ,w) is a linear function of w , then w

1 
is either 0 or w

0
.

Suppose a probability p
1 

can be assigned to defense option j = 1.

Then defense option j = 2 has a probability p
2 

= 1 — p
1
. Equations (29)

and (36) imply that equation (30) is satisfied for k = 1, i = 2 and

k = 2, i = 2. For simplicity , we assume that the stand-off jaxnmer

cannot be attacked when i = 1. Thu s,

z
2

(l ,j,w) = 0 , j = 1, 2 , (42)

and equation (30) is satisfied for k 2, i = 1. From equations (29)

and (38) , we have

Z
1

(l~~W) = p
1
a
1 

+ (1 — p1)a2 
+ 

[P1
b
1 

+ (1 - P1)b2]w 
. (43)

From equations (30) , (35) , and (43), we obtain the overall constrain t,

O < w
~~~

wc~

~~

-- - -

~
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where

C - - (1 -
w~ 

= mm ~~~ p
1
b
1 
+ (1 — P1)b 2 

(45)

It is assumed that w~ > 0, so that the constraint of equation (44) can

be satisfied by at least one value of w.

From equation (28), we have

f(1,w) = p
1
f(l,l,w) + (1 — p

1 ) f ( l ,2,w) . (46)

Suppose that this function is maximized by w = w~ . Then equation (31)

yields

f
1
(l) = p

1f(l,l,
w~) 

+ (1 — p
1 )f(l~

2~w~) 
. (47)

If f(l,w) is a linear function of w, then w~ is either zero or w
c~
.

Using equations (28) and (31), we obtain

f1
(2 )  = p

1
f(2 ,l) + (1 — p1 ) f ( 2 ,2) . (48)

If it turns out that equation (41) is valid and

f(l,2,wj) ~ f(1.l,w~) 
w~ = w

1 • (49)

then equations (41) and (47) to (49) imply that

f
1

(2 )  > f
1

(l)  . (50)

Thus, the optimal offensive strategy is to send an escort jaxmner along

with the strike a i rc ra f t .
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