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QUASI-STATIC RANGE PROPAGATION EQUATIONS
FOR THE APPROXIMATE FIELDS WITHIN
A CONDUCTING SLAB

INTRODUCTION

During the last several years, considerable interest has developed in
determining the quasi-static field components of antennas located above, or
buried within, the earth's surface. Quasi-static range is defined as the
range of transmission where the measurement distance is much less than a
free-space wavelength. Quasi-static range results are useful for submarine
radio communication and detection; they also have applications in locating
buried miners and help geophysicists determine the electrical properties of
the earth.

For the semi-infinite conducting medium case (i.e,, air, single layered
earth), some work has been done to determine the quasi-static fields produced
by various subsurfaco sources when the measurement distance is comparable to
the earth skin depth (Most of these results are summarized by Kraichman.’)
However, the field strength expressions are very complex because they involve
products of modified Bessel functions of different argument. Recently, by
using finitely conducting earth-image theory techniques, we derived approxi-
mate expressions for the general quasi-static range electromagnetic fields
(in air and in earth) produced by various subsurface antennas.® Some numer-
ical calculations have also been provided.?

These investigations revealed that when the source is not buried too far
from the surface of the conducting half-space, the resultant electromagnetic
field is significantly different from that obtained in an infinite conducting
medium. Therefore, if the conductor is two-layered, the lower interface must
likewise affect the field (especially if the upper layer in which the source
is located is not too deep). For example, if the transmitting antenna is
situated in a shallow sea, the theory for a uniform conducting half-space
would not accurately describe the field at the sea bottom. This observation
is also true at the surface of the sea if the sea depth (&,) is less than
approximately one skin depth.

Neaver has evaluated the exact Sommerfeld integral expressions and
obtained numerical results for the quasi-static fields produced by horizontal
and vertical electric dipole (HED and VED) antennas located in the upper
layer of a two-layer conducting half-space.® Numerical results for the quasi-
static fields produced in the sea by a vertical magnetic dipole (VMD) for
various values of sea bottom conductivity have been obtained by Coggon and
Morrison.!0

This report employs finitely conducting earth-image theory techniques to
derive approximate expressions for the general ac quasi-static range electro-
magnetic fields produced by various subsurface dipole antennas, which include
the HED, VED, VMD, and horizontal magnetic dipole (HMD) types, each of which
is locatod 1n the upper layer of a two-layer conducting earth. For mathema-
tical convenience, consider the conductivity of the bottom layer as being
equal to zero. Thus, the problem is reduced to calculating the fields in a
conducting slab, Treating the bottom layer conductivity as equal to zero is not

e ———————till]
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that restrictive; in many practical cases, the conductivity of the upper layer
(o)) is much greater than the conductivity of the bottom layer (0,), particu-
larly in the sea-to-sea bed case. Therefore, this assumption limits the
results to measurement distances (p) of approximately §,/5, where §, is the
skin depth in the bottom layer. For example, at a frequency of 1 Hz, if o,

= 4 S/m (sea) and 0, = 10°2°S/m (sea bed), then §; v~ 250 m and §, ~ 5 km.
Therefore, for this example, the results should be valid to a measurement
distance of approximately 1 km. Furthermore, if the conductivity of the

sea bed is 107" S/m (62 ~ SO km), the results should be valid to a measurement
distance of approximately 10 km.

For the purpese of this report, all four sources are located at depth h
(h > 0) with respect to a cylindrical coordinate system (p,¢,z) and are
assumed to carry a constant current, I. The VED and HED antennas (of infin-
itesimal length L) are oriented in the z and x directions, respectively. The
axes of the VMD and HMD antennas (of infinitesimal area A) are oriented in the
z and y directions, respectively. Free space occupies the regions z < 0 and
z > ;, whereas the conducting slab occupies the region 0 < 2 < £, (see figure
1).* Displacement currents are neglected in both the slab and the air. The
magnetic permeability of the conducting slab is assumed to equal uj,, the
permeability of free space. Meter-kilogram-second (mks) units are employed
and a suppressed time factor of exp (iwt) is assumed.

MODIFIED FINITELY~CONDUCTING,
EARTH-IMAGE THEORY TECHNIQUES

In the semi-infinite conducting medium, where both the source and receiving
antennas are located above the earth's surface (z,h < 0) (see figure 1), the
quasi-static range (yp v 0) integrals are of the type that can not be evalu-
ated analytically throughout the quasi-static range,!! that is

T /u - A\ _ A(z+h)
By £ (—-——u . J‘) e 3, (o), (1)
where
Yo © im(uct:o)ll2 A~ 0 (air),

Yy~ (iwuoo)l/z (earth),
172
u = (lz + YZ) , and

J (Ap) = Bessel function of the first kind, order zero, and
argument Ap.

*Figures 1 through 6 are presented at the end of the text.
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Physically, the essence of the finitely conducting earth-image theory
technique is to replace the finitely conducting earth with a perfectly con-
ducting earth located at the (complex) depth d/2, where d = 2/y = §(1-1).
Analytically, this corresponds to replacing the algebraic reflection coeffi-
cient (u-1)/(u+)) in the exact integral equations by exp (-Ad), where A is
the variable of integration. Once this is accomplished, (1) can be readily
evaluated. For antennas located at, or above, the earth's surface, the
general image theory approximation is valid throughout the quasi-static
range." '»

When the source and receiving antennas are located below the earth's
surface (z, h > 0) (see figure 1), the quasi-static range integrals to be
evaluated are of the form!~6:8

vt J,(eldr . (2)

(u - X) e-u(z + h)

St
ro
e
o8

Integrals of this type can, and have, been evaluated analytically
throughout the quasi-static range.l-® However, the resulting expressions are
very complex because they involve products of modified Bessel functions of
different argument. Therefore, we let®

o uE Y1), -val(s + Ry ~yb(z + h) : (3)

where

b 2
a=0andb =1 for R1/6 << 1 IRl - ¢;‘ s+ (z+ )|,

1=
i

0.4 and b = 0.96 for RI/G less than approximately 1,

w
"

0.96 and b = 0.4 for RI/G between approximately 1 and 10, and
a=1and b =0 for p > 3(z+h).

Substituting (3) into (2) and substituting exp(-Ad) for (u-i)/(u+d)
results in

12 n e'Ya(l + h) ! e-XId + b(z + h)]Jo(Xp)dX: (4)
0

vhich can be readily evaluated throughout the quasi-static range.

DERIVATION OF THE CONDUCTING SLAB FIELD-
COMPONENT EXPRESSIONS FOR THE
GENERAL QUASI-STATIC RANGE

Because we have already derived the general quasi-static range sub-
surface-to-subsurface field-component expressions for the semi-infinite
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medium case, we can employ these results and the method of images to derive
approximate expressions for the ac quasi-static fields within a conducting
slab.® In this situation, the multiple image pattern is an infinite array
that supplements the original dipole exactly as the images of a physical
object located between two plane mirrors appear to be an infinite array of
that object.

HORIZONTAL ELECTRIC DIPOLE (HED)

The HED equations can easily be derived from equations (64) through (69)
of an earlier report.® They are

-\R_ T 2 -
& * ON 3 i
I cos L3 3 P ( ) L 2,2
§ Doy nzo n ] 3 o A )
( oN L\ “oN |
i e-YRlN Si 2 2-
[; = R3 Rz -1 1 + YRIN -y x2 (5)
i IN L\"NIN J
- 2
i yaxz 3b3x,
+ - 3 1 +D0b - —f‘-— -\abxz >
| Ay L AN
% YR
« TUON
! : It sin ¢ e 2.2
’ By TR N ey _l”RoN°VR0N]
n=0 RON
-YR
e IN 2 2
RaN IN
-yaX 2
2 2A A
. is 3 1+ %N (1 = _L-A N ’ (6)
AlN d 2N
® X ) -YR
E. It _cos ¢ S oc _%__ 34 3WR_+ R « W
Z dna n d ON ON
n=0 RON
X -YR
2 .4 IN
e - -
v (3+3vam#ynm) e : @)
IN

e e o e
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; - d + bX bX -yaX
H~_1:4s1n92 . TS 9 Sk
P " n=0 P Aoy P AN
X -YR (d + bX.)  -yaX
0—%—(10YR0N)0 ON +——3-—-2'— e 2 R (8)
Ron AN
‘l
£
: -YR
8w I8 cos ¢ 'f _):l_ (I+YR e M
4w n=0 n) &S o
. ON
X, YR e""xz d+bX, DX,
+ 1 + YR e - —= - == 1), (9)
';3" ( m) 5 Boss AN
N
-YR -YR
~ ON IN
12 sin¢ e . (1¢YR
A nZO Py 3 (1 + ON) e 7o lN)
ON IN
-yaX
AN A
where
X, =2t +z-h,
X2 -Zm.l‘zoh,
2 g .3
RON = P g xll
5




= . " e S ani v DS S A R Ll £ i S g ‘

3
.

2 2 2
R.%"p » X2.

2 2.2
AIN P + b xzn

A2 =% v @ bx?, and

HORIZONTAL MAGNETIC DIPCLE (HMD)

The HMD equations can be derived from equations (76) through (81) of an i
earlier report.8 They are

iwpy IA cos¢ = X -YR
0 1 ( ON
N e — — 1
E) = nz=o n) 5 + YR0N> e ]
ON ‘
-vyaX '
X YR ¥
e IN e 2 | d+ b*; bx2
e Jall Rl T g o S
R 5 AN IN
IN
iwp IA sing L X -YR
0 1 ON
N e ——————— -
E¢ an i en ;_- (1 + YRON) (]
ON
r -yaX
g (d + bxz) ;i YaX2 o 2 | d+ bX2 sz -
SR ¢ S — - ==t (12)
AZN 0 2N IN
iwp IA cosp = e-YRON
P - ( Y
Ez i 4n 2 ° € i RON)
n=0 R
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“YRon 32 |
IA sin ¢ e 2 2 ]
" - Y
Hy = ngo ¥ B 1 -g—R S s
ON ON
-YR
o N i & 5 {22
- R3 [?_ (1 + YRIN) Y X2
IN IN
N
2 2
-yaX 3 3
+ e 2 —%— 1 - ; + ; 1 - g » (14)
AN An/ A\ A
-YRON
_ IA cos ¢ e 2 2
H¢ 5 4n o % AP 50 (1 e RON)
n=0 R
ON
-YR
IN -yaX
e 2.2 2 1 1
i (1 *YR YRy v e "3 A‘s"\ (15)
IN 1 2N
and
H & h‘_ﬂ!‘__ﬁ uf = XL (3 + 3 YR + 2R2 e-YRON
z 4n P€n 5 oN ~ Y ON)
(0]

3(d + bX)) -yaX
b ——i e
AS
2N

. (16)

VERTICAL ELECTRIC DIPOLE (VED)

The VED equations can be derived from equations (73) through (75) of an
earlier report.® They are

12 bt x1 2.2 'YRON 1
B, “dws L 0%, |5 {3+ SRy + vRG ) e
n=0 e ]
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X -YR
§ 2.2 IN
= (3 + SYRIN oy RIN) e ] 4 an

B o~ abe § ——3——°-YR°N ¥~ ] 1 + YR oy iat
z i 4no a0 cn R ON Ye
oN Ron
e-¥R1N 3X2 2.2
. 1 - 1+ YR )* Yo , (18)
R R IN
IN N
and
-YR -YR
TRT § st s b s (19)
¢ an P 3 ON s IN]|
n=0 Rent RiN

It should be noted that (17), (18), and (19) are identical to Weaver's
results.®
VERTICAL MAGNETIC DIPOLE (VMD) ANTENNA

The VMD equations can be derived from equations (70), (71), and (72) of
an earlier report.8 They are

Jui. Ik~ = “RoN “en

___L__ e & e
F_¢ N = an 5o pen —-—T— (1 + YRON) T (1 + YR]N)

Ron IN
-yaX
e
Ay A
X YR

1A 2.2 ON

Hov - o ngopcn ;ﬁ— (3% 3vRy *+ vRGy ) e

3(d + bX.) -yaX

L (21)

AN
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and
Wonsdb I -—-3-—°-\RON 1-”21.1& ¢ v
t Lo R R ov) " VP
ON ON
SRy st
2 v 2 1 + YR o Y
R R wyt e
N IN
ik 362y 2 s(d - bX_)*
az2) 2 1
e e L =g |~ 1 oot T 0 )
AN AN AN AN

DERIVATION OF THE CONDUCTING SLAB FIELD=COMPONENT
EXPRESSTIONS FOR THE QUASI-NEAR RANGE

Quasi-near range is defined as the asymptotic part of the quasi-static
range, i.e., where the measurement distance (p) is much greater than a skin
depth in the conducting medium and much greater than the depth of burial of
the transmitting and receiving antennas. Generally, p must be greater than
38 and >3(z + h). For the conducting slab case, p should also be greater
than 3¢,. However, as we shall see later, the requirement that p > 2§ and
e > 20, may be sufficient for most cases.

The quasi-near range approximation is setting the function u = vA? + v:

in the exact integral expressions equal to y, which is the propagation con-
stant in the conducting medium.

LONG HORIZONTAL LINE SOURCE/ANTENNA

Fot a long horizontal line source antenna. oriented in the x-direcgion.
the electric field within a conducting slab may be written exactly as (for

e 1k s e e N A N B TS 8 S LA

z>h
iop I =
By * - 22— [ F£Xl cos \y da, (23)
0
where 2 )
- R - 2
uh -uh -uz u( 1
H_i’ ‘“")§° iy
EQ) e — (24)

; g |
ull - R e
8

e A A AR o G et oSt M




E | TR 5807

u-u

R = 3777152 , and (25)
8 0

/2 2
u =vVx + vy, ~ A for the quasi-static range.

o 0
The magnetic fields within the conducting slab may be determined from

oE JE
1 X 1 X
= - d = —
HY imuo 9z - IblZ imuo oy (26)

Application of the quasi-static (yg v 0) and quasi-near (u ™ Y) approxi-
mations to (24) and (25) results in

A A
2 = sinh - < qinh o
F(\) o [COSh LB p Yh] LCOSh Y(,'L o X sl Y(ll_ z)]
u

P ((27)
(y sinh yzl [l + T coth y!,lJ)

If the slab is not too thin, the denominator of (27) may be approximated as

1 R 1
] Y sinh Yll

2\
3 1] + —
Yy sinh yzl [ ¥ coth yll

[1- 2 corn w]. @

Substituting (27) and (28) into (23) and (26), and noting that!3

[ cosy dr=0 (29)
o
and
f A cos )y dA---l-z- (30)
o y
results in
;
By~ |- —‘—,—] ] [acem] (31)
| moy
Hy —1—7] o] [pezm] (32)
LYY
and
I 2t Y3
O e IQ] lA(Z.h)l . (33)
L ny y J
10
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Equations (31), (32), and (33) are each divided into three parts. The
first is the quasi-near range field-component expression valid at the surfuce
of a semi-infinite conducting half-space.’ The second is the familiar plane-
wave correction factor employed to account for the presence of stratification
in the earth.!% For o, >> 0,,

Q™ coth v, . (34)
The third part accounts for the burial depth of the transmitting and receiving
antennas. For the conducting slab situation when z is greater than h,

2 cosh Yh cosh y(@1 - 2) sinh Y(ll,’ h - 2)
A(z,h) Vv R - 5 (35)
A sinh v, coth®ye,

and

cosh y(z1 +h - 2) 2 cosh vh sinh y(z1 - 2)

B(3,h) ~ cosh YL, : sinh v2, g (36)

When h is greater than z, the resulting expressions are

i A 2 cosh yz cosh Y(ll - h) ) sinh y(zl +z-h) rass
¥ cosh le vk Yll cothgryzl
and
2 sinh yz cosh y(&, - h) cosh y(R_ + z - h)
B(x,R) * sinh yll " ¢ coshlyll : (38

It should be noted that

%; A(z,h) ~ % B(z,h) (39)
and
BN v QAN (40)
When z = h = 0 or ll’
A(z,h) ~ 2 - tanh’ va, v 1 for [ye |51 (41)

and B(z,h) ~ + 1. Furthermore, when |y&y| > 2V2 (£;/6>2) and £>2(z + W),

ACEN) ~ Blz,h) v o YRt R) (42)

11
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If h=0and z = &,

2

A(z,h) v 2B(z,h) ~ z;;;-;z;

» (43)

which is identical to von Aulock's result.!S (See chapter 4, p. 14 of
Kraichman’” and Bannister.®) Furthermore, if h = 0 and £,/§ > 2, then

-Y"
Alz,h) v 2e ! lz cosh y(2, - 2) - sinh y(¢, - z)] (44)

and

-Yl
pzm v 2e ! [cosh vty - 1) - 2 simh v, - 0] (45)

which is identical to von Aulock's result.}5 (Also, see chapter 4, p. 13 in
Kraichman.”)

HORIZONTAL ELECTRIC DIPOLE (HED) ANTENNA

By following the same procedure outlined in the derivation of the equa-
tions for the long horizontal line source antenna, the quasi-near range HED
antenna field-component expressions, which are valid within the conducting
slab, may readily be determined. They are

oo 102t ? hny (46)
P 2nop
B, " 15-31%4! @ atety , (a7
nop
Ez ~ o, (48)
nov SR8 qae,m , (49)
"’ nyo
R R TCRV I (50)
‘ 2nyp
and
Hy ~ LB of atsh) o (51)
2ny o

When h = 0 and 2z = 2, the HED antenna expressions reduce to the results
previously derived by Bannister.!”?
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HORIZONTAL MAGNETIC DIPOLE (HMD) ANTENNA

By employing Maxwell's equations and the reciprocity theorem, we see
that the quasi-near range HMD antenna field component expressions, which are
valid within the conducting slab, may readily be determined from the HED
antenna expressions. They are

iwy IA cos ¢
B % =g Q B(h,2) , (52)

9 2nvp
iwy IA sin ¢
E v —2——e— QB(h,z) , (53)
¢ 3
Yo
)
Ez ~0, (54)
H A IA sin ¢ Q 3B(h,2) A (55)
o) 3 Y 92
o
W WA IA co;;g}Q_&B(ggg) ; (56)
¢ 2mp Y
and
n o SASRS QB , (s7)
2myp

where B(h,z) = B(z,h), with h and z interchanged. That is,

cosh Y(zl,* 2 - h) 2 cosh vz sinh 1(21‘- h)

- X 58
B(h,2) ™ cosh yll sinh Y4, (58)
Furthermore,
sinh y(R, + z - h) 2 sinh yz sinh y(2 - h)
Q 3B(h,z) - 8 g 1 (59)
Y 9z sinh y& sinh y&, tanh yg

1 1 1

VERTICAL MAGNETIC DIPOLE (VMD) ANTENNA

By employing Maxwell's equations and the reciprocity theorem, we see
that the quasi-near range VMD antenna field-component expressions, which are

13

444""""'.'-I-lllIllllIIlllllIIllIllllIlllllllllllllll-llll.ll--..-...................ﬂ“‘
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valid within the conducting slab, may easily be determined from the HED
antenna expressions. They are

E 'v-—"‘!% QzA(h,z).

¢ 2nop

Hov - A QBm,)

2mye

9IA 2
Hov - —=—37 Q A(h,z) ,
2ny o

where A(h,z) = A(z,h), with z and h interchanged. That is,
2 cosh vz cosh(!l - h) sinh Y(ll + 2 - h)

A(h,z) ~ -
cosh Y2, stk Yll cothzyz

1

DISCUSSION

It would be of interest to compare the results derived in this report
with some known results. Figures 2 through 6 show comparisons of modified
image theory‘ quasi-near (asymptotic) theory, and Weaver's numerical integra-
tion results® for the electric and magnetic fields at the surface (z = 0)
of a one-skin-depth-thick (&, = &) conducting slab produced by an HED located
in the middle of the slab (h/6 = 0.5). The normalized amplitude of each
component (E” or H”) is given by

ans® anos®
_"_H__mds‘.__“_o._i__. (64)

11 (Zon o) B v

H® =

Two values of a and b are considered for the modified image theory plots.
The a = 0.4 and b = 0.96 results should be valid in situations close to the
source, and the a = 0.96 and b = 0.4 results should be valid at further
distances. In each of these cases, only five terms of the infinite summation
were needed for 1 percent accuracy.

As Weaver has indicated,® this particular model possesses symmetry
about the plane z = h. When z = h, all components that vary as R(z,h) equal
zero. Furthermore, if z = 0 or 2;, all components that vary as A(z,h) are
equal, whereas all components that vary as B(z,h) are equal and opposite.
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Figures 2 and 3 show horizontal electric field comparisons of the modi-
fied image theory, asymptotic theory, and numerical integration results. We
can see from figure 2 that, for the Ef component, the modified image theory
a=0.4andb = 0.96 curve agrees well with the numerical integration results
throughout the range of p/§ considered (0 < p/§ < 3). However, we observe
that beyond approximately 1.25 skin depths, the (simple form) asymptotic
theory agrees more closely.

We can see from figure 3 that, for the E¢ component, the modified image
theory a = 0.4 and b = 0.96 curve agrees well with the numerical integration
results for 0 < p/§ < 0.75, while the a = 0.96 and b = 0.4 curve more closely
agrees for 0.75 < p/§ < 3. Beyond approximately 2 skin depths, the asymptotic
theory provides the better fit to the numerical integration data.

Figures 4, 5, and 6 show the magnetic field comparisons of the modified
image theory, asymptotic theory, and numerical integration results. We see
from figure 4 that, for the Hp component, the a = 0.4 and b = 0.96 curve
agrees very closely with the numerical integration results for p/§ < 0.5, but
only moderately so for p/6 > 0.5. The a = 0.96 and b = 0.4 curve is in good
agreement beyond 1.5 skin depths, while the asymptotic theory curve provides
the best fit beyond 2.5 skin depths.

In figure 5, we can see that, for the H$ component, the modified image
theory a = 0.4 and b = 0.96 curve agrees very closely with the numerical
integration results to p/8§ ~ 2. Beyond that, the asymptotic theory curve
provides the best fit.

In figure 6, we can see that, for the TH component, the modified image
theory, a = 0.4 and b = 0.96 curve agrees very well with the numerical inte-
gration results for p/§ < 1. Beyond p/§ = 1, the a = 0.96 and b = 0.4 curve
agrees more closely. For p/§ > 2, the asymptotic theory curve also agrees
well with the numerical integration results.

Thus, it appears that the (simple form) asymptotic theory will provide
results of sufficient accuracy when the measurement distance is greater than
2 skin depths and greater than twice the slab depth (i.e., p/8§ > 2 and
/R, > 2).

1

CONCLUSIONS

Approximate expressions for both the general ac quasi-static and quasi-
near fields produced by electric and magnetic dipole antennas located within
a conducting slab have been derived by employing finitely conducting earth-
image theory techniques and by applying the quasi-near approximation to the
basic Sommerfeld integrals.

Ne have demonstrated that the resultant approximations very closely
agree with previously derived numerical integration results. In particular,
it appears that the (simple form) asymptotic theory will provide sufficiently
accurate results when the measurement distance is greater than 2 skin depths
and greater than twice the slab depth.

1§
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Although displacement currents in the conducting slab have been ignored
in the analysis, they can be included by simply rcplncln; o with o + iwe in
the field strength equations, providing |y2| >> |y,2|. The resultant expres-
sions are applicable to short range olectrongnetie propagation in a shallow
sea.

16
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