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INTRODUCTION

Consider an inventory system using a continuous review (s ,S) policy

with constant lead time of size T • The time between successive demands

is idd with distribution function H (.) and pdf h ( .). Likewise, demand

sizes are iid integer valued random variables with probability function

b (.). All demands are backlogged until filled • We will derive the dis-

tribution of customer waiting t ime. Since it is reasonable , we take

s > — 1, which means that no customer will ever wait more than T.

While the (s,S) continuous review inventory system has been greatly

studied, there has been little work on customer waiting time. Sherbrooke

[3) derived the waiting time distribution for the special case (S—l ,S)

system subject to compound Poisson demands. Simon (4) derived an expres-

sion for the expected wait in the (s,S) system when the demand process is

simple Poisson which can be shown to be a particularization of L — AW.

The most general analysis of the (s,S) continuous review system has

been done by Sahin [2) who developed expressions for both the time de-

pendent and stationary distributions of net inventory, i.e. on hand minus

backorders, and inventory position, i.e. net inventory plus on order, using

a renewal — theoretic structure. His advancement over earlier work was

in permitting demand size to be a random variable. Urbach [6] also analyzed

a similar system under the condition that no more than one order is out-

standing. He was interested in the case of random lead times. •

For the sake of presentation, we first develop the waiting time dis—

~~~ tribution f or the case of unit demand size. We than use the logic and some

of the results derived to extend to the case of random demand siss.
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Formulas . suitable for computation are given in the paper only for the

limiting stationary distribu;ion of customer waiting t ime. These are de-

rived in Appendix A. Since we will later be using Laplace Transforms,

we denote (s ,S) by (R,R+Q) to avoid confusion with the Laplace variable “s’.

Notation and Some Preliminaries

The following notation is used .

A(t) — inventory position at t ime t — on hand + on order —

backorder’s at t (also called assets)

d(t1,t2) — demand quantity in [t1,t2)

W(t) — waiting time of a customer who arrives at t.

T — constant lead time

8 — expected demand size

p — expected t ime between demands

— probability function of the sum of n demand sizes, i.e.

the n—fold convolution of b(•).

— n—fold convolution of h ( s)
y

• H (x) — I h~ (y)dy
0

h(s) — Laplace transform of h(.)

H( s) — Laplace transform of H()

ha (s) — Laplace transform of h~ (.) —

— Laplace transform of H~(.) h( 
—

Waiting Time f or Unit Demand Size

Since the lead time is constant , all of the suppliers assets at y,

i.e. A(y) , will be available to be issued to customers by y + T; and

3
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any assets ordered after y will not ~~available until after y + T. This

means thai a customer who arrive s at t will wait c ~ if f he receives one

of the assets on account at t + T — T. The customer will get an item

from A(t+t -‘fl only if the previous demands for those assets , d(t+ r —T ,t ) ,

are less than A(t+T —T) . We have then that

R*Q
(1) Pr[W(t) T] — E Pr[W(t) < TIA(t+T—T) — a] Pr(A(t+’t—T) — a]

a—R+l

R+Q
— E Pr(d(t+T—T,t) < alA (t+ —T) — a, Demand at t]
a—R+l

Pr[A(t+r—T) — a)

R+Q
— Z Pr(A(t+T—T) • a , d(t+r—T,t) < alDemand at t]

a1.R+l

For finite time , A(t+t—T) and d(t+T—T,t) may be dependent random variables

since knowledge of A(t+r— T) may provide 
- 

information about the demands from

the start of the inventory system until t+T—T which, in turn, affect the

likelihood of d(t+T.-T ,t) . However , in Appendix A we show that A(t+r—T)

and d(t+T—T ,t) are independent in the steady state, and with the given

condition of a demand at t have probability functions

Pr [A—a) - ~ ; a — R+l , R+2,...R+Q

and

h a  Pr(d(t+ T—T,t)< d idemend at tJ — 1.—H (T—t)
___ d

In other words, the demands in the T—’r units preceeding the present

customers arrival form an ordinary renewal process in the steady state .

Latting F,( )  denote the steady state distribution of waiting t ime we then

4
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have from (1) that

(2) F (r )  — ~ £ [1 — IIR+L.(T~
r)) ; 0 < r < TV ‘

~~kl

F (T) l

As a matter of interest a special case of the results in Appendix B

is that E (W) — E(B)/X where

E (W) — expected waiting time

E(B) expected steady state backorders

and 1/A  a expected time between demands. Of course, this is simply

an example of L — 1W.

Waiting Time for Random Demand Size

For the unit demand size case the meaning of waiting t ime was obvictus.

In extending to random demand size, we have the problem of defining customer

wait. For example, what is the wait when a customer who demanded 10 units

receives five units immediately, but waits, say 10 days, before receiving

the other five units? Recognizing that the definition of waiting time

should depend upon the context in which the statistic is to be used, we

avoid th. problem of defining waiting time by deriving the distribution

of wait separately for each unit in the demand. Later we show the richness

of this approach by demonstrating how this distribution can be used to

develop several common performance measures.

As before we take a demand arrival to occur at t , but allow the demand

size U to be > 1. Each unit in the demand is identified by an index j from

1 to U. ~~ ~~ unit will wait < t iff the demands preceding the ~th unit

-
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which are vying for A(t+~—T) are less than A(t+ t—T) . In this case, those

demands are the j—l units of the present demand plus d(t+ r—T ,t). So

th R+Q
(3) Pr(j  unit waits c T ]  — E Pr[d(t+t—T ,t) c a—j IA(t+t—T — a, Demand at t]

a.R+1
. Pr(A(t+r—T) — a]

R+Q— E Pr(A(t+r—T) — a, d(t+ t—T ,t) < a—j lDeinand at t ]
a-R+l

Again, as is shown in Appendix A , A( t+i—T) and d(t+’r—T,t) are independent

in the steady state. Several authors, (2], (6], and [8], have shown how

to compute the steady state distribution of assets. As in the unit demand

size case, the number of demand occurrences in the preceding T—r units form

an ordinary renewal process in the steady state. That is

p(d) — lim Pr[d(t+r—T ,t) — diDemand at t]

— E bn
(d)[En(T_T) - H~~1(T—T) ] ; d > 1

and

p(0) — h a  Pr[d(t+r—T,t) O~Demand at t] 1 — H(T—t )
t4’

Letting j~w~~ 
denote the stead y state distribution function of waiting

time for the 1
th unit we have from (3) that

RIQ
(4) 4?,~,

(r )  — £ Pr[Ma] P(a—j) ; 0 T
a R+1

jF~
(T) — 1

a—j
where P(a—j)— r p(k) if a — j > O

k ’ O  -

— 0 otherwise
6
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Waiting Time and Some Common Inventory Measures

Expected number of units backordered and initial fill, i.e. the

fraction of demand satisfied without backorder, are two commonly used

inventory measures. Waiting time relates to each of these in a similar

way. We show in Appendix C that

o T
Expected Units Backordered — — ‘ £ (1— “

~~~ 

iU— iF
~~

(T))dT
p 

~~~~~

and

Initial Fill — E (l_B(i i)) ( F (0) )
3—1. 3w

where
1— 1

B(j—1) — £ b(k)
k-i

Both have the common term l—B(1—l) which has a simple interpretation.

Suppose a series of N demands is observed and the units in each of the

demands are indexed as before. Let n~(N) be the :‘
~~~~~ 

of demands of

size i in the N demands. Then $(N,j) • £ n~(N)/E i n~(N) is the fraction
i—i i—i

of total units in the N demands which have index 3. In the limit as N goes

to infinity we get

n~
(N) i n~,(N)

(3)  — lim • (N,j) — 
~~~~~ ~~~~ N / i—l N

— Z b(i)/e — 
l BU ’ l)

i—i

which is just the proportion of units demanded which have index 3. Thus ,

both expected units backordered and initial fill are equivalent to taking

7
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the corresponding measures for each possible unit in a demand, weighting

by the proportion of times that unit occurs, and averaging.

There is no particular advantage to actually computing the above

measures using ~F (.). However, this does indicate how simply some
measures are able to be expressed with 

3
P (.). Other examples are the

probability that a demand is completely filled without waiting and the

expected number of demands backordered when a demand is c~ounted as back—
ordered until completehy filled.
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APPENDIX A

DISTRIBUTION OF A( t) AND d(t,t+z) GIVEN A DEMAND AT t + z

The R ,R+Q inventory system is observed from t imsO to t+z. Arbitrarily,

we take the demand process to begin at time 0 with A(O) R4Q. We will

find

h a  [Pr [A( t) — a, d(t ,t+z) — d~A(O) R+Q, Demand at t+z]
t4a

The expression “Demand at t+z” is used to mean that a demand occurs within

dz of t+z. Let N(O,t) be the number of demand occurrences in (O,t) and

N(t,t+z) be the number of demand occurrences in t,t+z. Given the values

of N(O,t), N(t,t+z), and A(O), then A(t) and d(t,t+z) are uniquely deter-

mined by the sequence of demand sizes associated with those demand

occurrences. If N(0,t) — m, there is a countable though, in general,

infinite number of demand size sequences which will result in A(t) — a

given A(O) — R4Q. Cal]. X(m,a,R.+Q) the set of all such sequences. And,

if N(t,t+z) — n then d(t,t+z) — d if f the n demand sizes sum to d. We

nave then

(11) G(a,d,z,t) — Pr(A(t) • a, d(t t+z) — djA(O) — R+Q, Demand at t+z ]

d a

— £ I Pr [A(t) • a, d(t ,t+z) • dIA(O) • Rig, Demand at t+z,
• n”O~~~O

N(O,t) a, N(t,t+z) • n)

Pr(N (O ,t) — a, N(t,t+z) — nIA(O) — R+Q, Demand at ~~~
d 

b (d) 
“ Pr[X(m a,R+Q)1 Pr[N(o,t) — a N(t, t +z) — n 1 Demand at t+z]

n 
~~~~~~~ 

r(t+z)dz

— F(a ,d ,z ,t ,R+Q) dz/ r(t+z)dz

9
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whers r(t+z) — pdf of a demand occurrence at t+z
(also called the renewal density)

and Pr[X(m,a,R+Q)] — probability

a demand size sequence from the set X(m,a R+Q) occurs.

Consider P(.,n,z,t) — Pr(N(0,t) — a, N(t ,t+z) — n, Demand at t+z]

For a lye have
t

P(m ,n ,z ,t) — I P(m—l ,n,z,t—y) H(y)dy

and on taking Laplace transforms we get

P(m,n,z,s) — P(a—l ,n,z,s)h(s)

Applying this recursively from a • 1 yields

(*2) P(m,n,z,s) P(0 ,n,z,s)(h(s))m ; a > 1

Consequently , the Laplace transform of F(ad,z,t) is
- d - a
P(a,d,z,s) — I b

n(d) P(o,n,z,s)E Pr(X(m,a,R*Q)J [h(s)]m
n o

— — F1(s) F2(s)

where 
- d
F1(s) — I b~~(d) P(o ,n z ,s)

n o

and - a -
F2(s) 

a £ Pr(X(m,a,R+Q)][h(s)]m

Now

him G(a,d,z,t) — him P(a,d,z,t)dz/lim r(t+z)dz

F1(s) -

— him C 
• 

) him (s?2(s)/hia r(t+z)
5~0 5~0 t-’.

a

d - h a  £ Pr(X(m,a,R4.Q)b
~(t)

• [him I I b~(d)P(o,n,g,y)4y)[ t~~ ~~o ]
t.,a 0 n—o him r(t+z)

provided the separate limits exist .
10
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Consider the first term

td d t
him I I b~(d)P(o.n,z,y)dy — I b~~(d)him I P(o,n,z,y),
~
4” 0 n—o n—o t-”~ 0

t t z
But list I P(o,n,z,y)dy • him I I h (x)h(y+z—x)dxdy

~~~~~~~ ~~ ~~~~~ y~~ ~~~~~ 
n

s
- I h~ (X)  him I h(y)dy dx

tM . y—z—x

• h
n
(x)(l_H(z_X)) dx— h *  (1—H) — 11 (z) — H~~~(z)

which is just the probability that the number of renewals in an interval

z for an ordinary renewal process equals n.

Now consider the second term .

a

him £ Pr(X(m ,a,R*Q)] (h (t) ) I lim r(t+z)
t-a a o  a

— ~~~ 
pdf of a transition to asset state a at t

pdf of a demand occurrence at t+z

m1
• 

~a
where

— average time between transitions to state a

and p — average t ime betwsen demands.

and which follows because th. number of transitions to state a

is itself a renewa l process. Moreover , sin e p — expected amount of time

11
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the system spends in state a between transitions to state a, then

— him Pr(A( t) — a] • Pr(A • a]
t-M.

Summarizing then, we have shown that
d

him G(a,d,z,t) — Pr[A—a] £ bn (d) (H (z) — H~~1(z) ]
n o  n

This contrasts to Sahin’s (2] result for the steady state distribution

of A (t) and d(t,t+z) without the condition of a demand at t+z. This con-

dition changes the demand process in a interval of length z from a

equilibrium demand renewal process to an ordinary demand renewal process.

12
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- APPENDIX B

RELATIONSHIP OF WAITING TIME TO EXPECTED UNITS BACKORDERED AND

INITIAL FILL

From Sahin ’s work (2] we have for the stationary system that

a

(61) Expected units backordered — E(B~] — I Pr[Units Backordered > 3]
3—0

a R+Q a
— I £ Pr(A’.a] £ (H’(T) — R~~1

(T) ] C~
(a4.j )

jo a r+l n l

where R~(T) — ~ 
T 
(1—11(y)) Rn_1(T_Y)1Y

k
and C (k) — 1 — £ b~ 

(i) — l~
)
~ (k) ; ii k

i—I. I

— 1; otherwise

Letting Z (T) — B [ B ]  and taking Laplace transforms we get after some

algebra that

(62) Z(S) - L E (1-H(s)) ; C(a+1) 
~~~~ (H(s)~ -

~~ a’R+l j o

a

£ [C~~1 (a+j) — C (a+j)]
jo ~‘ - ~~ ft

• where we have used that the Lapla:e transform of H~(t) is

Returning to the time domain we get

13
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T R*Q a a

(33) 3(6 ] — !  I I ((1—H(T—r)) £ + £ (H (T y) —y u 
~ a R+h ~~~~~~ 

e n l  n

I C~~1(a+j)— C~(a+i))e
It is possible to show by algebraic manipulation of (33) that

— ~ 
1—3 (1—1) $

3—1

but it is more appealing to argue the above result straight from the terms
a C~~1(s+j) — C (a+j)

in (33). The term ‘I ft is the proportion of units in the

st 3—0
n+]. demand which wait longer than t given that A (t+r—T) — a, and that

the number of demand occurrences in (t+r—T ,t) — n. In this perspective,

the ~~~~ demand is the customsr arriving at t. By probablisticaihy

weighting over all values of n, we get the proportion of units in the

arriving customers demand which must wait longer than ~ • But
a T
£ 1—3(1—1) I (l~4Fy(t))dT~ by the arguments given in the report is the
3—1 0 0 ~
s~~~ propor t ion.

Initial fill, IF, is the fraction of total demand which is filled

without wait • Thus

IF — ~~ 
Number of units filled without wait
Ni~~ er of units d.aanded

N (t)
lim I n
t4 i•i

N (t)
list £ d
t9a i—i

where

N(t) — number of demands in period t

di — size of 
~th demand; i — 1, 2,...~(t)

• 

and — amount of ith d.—~’d fill.d without wait; I. — 1. 2...I(t)

• S
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So 

_

N(t) N(t)
IF • him I ~i / list £ d /)1(t)

t4c. i—l N(i) t -MI ih

— 
Expected number of units filled without wait per demand with0

probability 1.

Now the expected number of units filled without wait per demand isa

• I [Prob that 3 or more units in a demand are filled without wait] which3—1 a
equals I (4F~(O))(1—B(j—l)). In other words, for 3 or more units to be• 3—1 ~
filled immediately, there must b. at least 3 units demanded and at least
the unit does not wait. Consequently

IF — ~~ 
(l
~
3(J_1)XjFw(O))

3—1 0

I

• 

±• ~.•ii
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