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I. Introduction

Over a quarter century has passed since the discovery that the

equations of one-dimensional ideal fluid motion possess a variety of

self-similar solutions. These were found independently and more or

less simultaneously by Sedov (1953), Staniukovich (1949), Taylor (1950)

and others , stimulated by interest in nuclear and astrophysical explo—

sioris and in the general properties of gas dynamic systems. The useful-

ness of these solutions is twofold: they correctly describe l—D flows

at late times when the details of initiation or preparation have been

“forgotten,” and they are analytic, or at least reduce the solution to

quadratures.

A particularly useful and interesting type of self-similar motion

is that known as uniform or homogeneous. Its characteristic feature is

a velocity field which is proportional to the distance from the center

of symmetry. Most applications have been to problems with spherical

symmetry , such as supernova explosions (Keller, 1956), laser implosions

(Kidder, 1976) and self—gravitating clouds (Sedov, 1959). Closely re—

lated to the latter are cosmological models in the nonrelativistic

limit (Weinberg , 1972), which are distinctive by virtue of being pres-

sureless and unbounded.

Sedov (1959) distinguishes three types of uniform self—similar

motion in an ideal gas. In type I, the radius varies between 0 and ~~.

In type II, it varies between 0 and a finite maximum value, correspon-

ding to a turning point. Type III, to which we restrict ourselves in

the present work, has radius varying between a minimum (at a turning

Note: Manuscript submitted August 14, 1978.

1



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

point) and ~~~. We follow Keller (1956) in using Lagrangian coordina tes

to derive in §2 .1 a two-parameter family of solutions including, among

others, isothermal and uniform-density models as special cases . There

seems at first glance no reason why these should not be stable, and

indeed in the literature where applications are made (e.g., Zel’dovich

and Raizer, 1966) the possibility has apparently not been considered

before. We go on in §2.2, however, to argue that instability should

arise whenever a condition is satisfied, equivalent to the presence of

an entropy density which decreases outward. Physically the mechanism is

identical with that responsible for convective instability in static

stratified media when the temperature decreases in the upward direction.

Analysis of the linearized fluid equations in §3 using the techniques

developed by Bernstein and Book (1978) and Book (1978) confirms the

existence of the instability and yields both the space and time depen-

dence of the perturbations in closed form.

As was previously noted by Bernstein and Book (1978) and Book and

Bernstein (1978), the usual definition of stability is inadequate when

applied to nonsteady states, since the time dependence of the perturba-

tions is in general not exponential. It is appropriate to call a mode

stable (unstable) if the ratio of the perturbation amplitude to that of

the basic state vanishes (diverges) as t -h~ ~~~. We find that in the

present case the ratio is in general finite, but can be made arbitrar-

ily large in “unstable” systems by choice of sufficiently large mode

number

A brief discussion of the results in §4 concludes the paper.

2
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1. The basic state

1.1 Derivation of the equations

We start with the equations of ideal hydrodynamics which in

Lagrangian variables take the form

~~+ v • V p = O , (2.la)

p~’ + Vp = 0 (2.lb)

and

(pp
~~) = 0 (2.lc)

Here dots denote time derivatives and y in (2.lc) is the ratio of

specific heats.

In a spherically symmetric system, (2.la ,b) become

~ 
+ pR

2 
-
~~~~~ (R

2u) = 0, (2.2a)

and

p~i + = 0. (2..2b)

For a motion of the type known as homogeneous (or uniform) self-similar

flow (Sedov 1959), the position R at time t of a fluid element whose

position at t = 0 was r is required to satisfy

R = r f(t), (2.3)

where f(0) = 1 and ~(0) = 0. The continuity equation (2.2a) then yields

p(r,t) = p (r)f 3, (2.4)

and hence from the adiabatic law (2.lc)

p(r,t) = p (r)f = s(r)p1 ~ 
3y (2.5)

3
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with the entropy function s arbitrary. if we choose the initial

density profile in the form

p (r) = a(l_r2/r0
2) 

~ (2.6)

where ~ and ~t are constants, then it follows from (2.lb) that

p (r) = ~(l—r
2
/r

2)~~~~ , (2.7)

and I must satisfy

? f3~
’2 

= 
2(
~
t +1th = T 2

. (2.8)
~ r

We will use the separation constant t, the initial radius r , and the

peak mass density ~ to rescale t, r and P~ respectively. In these

reduced variables we have

p = ( 1—r 2) ~
‘ 
, (2.9 )

2 h + l( l—r )
= 

2 ( K +1) (2.10)

and

~ f~
’
~~

2 
1. (2.11)

A quadrature can be performed on (2.11), with the result

= 2~n f  (2.12)

if y = 1, and

= (1 — f a ) ( 2.13)

otherwise,where a = 3(y-l ) . If y = 5/3 , ( 2.13) can be integrated

directly to give 1(t) = ± (1 + t2)~~. For other values of y the solu-

tion is most conveniently found by numerical means. At large ( t j  when
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+ 0, the motion asymptotically approaches free streaming. As a

function of the anisentropicity parameter it , the solutions include

the cases of uniform density and quadratic pressure, it = 0, and uni-

form entropy density, it = l/(y-1). If we exclude singular density

profiles, it is restricted to 0 ~~ it . The other parameter is y,

which must lie in the range 1 
~ 

y < ~~~.

2.2. Physical mechanism for instability

At time t a small volume ~V of fluid initially located at radius r

contains a mass ~m = p (r) L~Vf 3, subjected to a pressure p = (l-r2) ~
t4~1,

(2( it+1)f 3
~ ]. Consider two such fluid elements initially at radii r

1 
and

> r1
, whose volumes are related by

= (p /p ) l/Y ((1~r1
2 )/ ( 1—r 2

2 ) 3  +l)/’y (2. 14)

The compressional energy associated with these elements is

E = (p
1~v1 + p2~~ 2)/ (y-l) . (2. 15)

Their kinetic energy calculated from the expansion or contraction of

the sphere is

= ‘~(&n1
u
1
2 + Am

2
u
2
2
). . (2. 16)

Because the state is nonsteady (1 � 0) ,  the elements are subject

to an effective gravitational acceleration g = rI , and therefore have

5 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
- -..,



— -- -, —- ---- —- .-. - ---

a gravitational potential energy

E
g 

= ~~f f  (~m~r~
2 

+ ~m2r2
2 ) . (2.17)

Now let the two fluid elements interchange positions.

By (2.14), they contract or expand so as to satisfy local pressure

balance after the interchange. Furthermore , the work done in com-

pressing one is just balanced by that done by the expansion of the

other, so the compressional energy E afterwards is equal to E . The

net change in energy is then

~E = E + E + E - E  -E  — B
p k g p k g

= ~s [~ m1u2
2 
+ ~ Xfl . U~~~ — — ~~~2

U
2

]

+ ½ff [~m1r 2
2 
+ — &n1r1

2 
— t~m2r2

2 ]

= ~~~~ + f f ) (r
2
2 

— r
1
2) ( t ~m1 

— 
~m2

). (2.18)

The first and second factors in the last member of (2.18) are strictly

positive. The third factor, on the other hand, is proportional to

2 ?t +l

( 1 —  r
1

2 ) it _ ( 1 —  r
2

2 ) i t(
1
~~~1

2 ) 1  (2.19)

l-r 
2 it +l-ity

(l—r
1
2
) 
[1 

— (~ r 2
2 )  

~
‘ ] (2.19)

6 
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This expression is negative for it < l/(y-l). In this case, therefore,

the interchange reduces the total system energy. We thus anticipate

that an instability will set in, characterized by “overturning” of the

profiles, such as is typically seen in convective or thermal instabili-

ties of static media (Landau and Lifshitz, 1959).

When it < l/(y-l), 6E> 0, in which case no instability should

arise. The marginal case just correspond.s to isentropic—-more properly,

homentropic—-states. By (2.5), the entropy function s satisfies

s(r) = ~~~~~~~~~~~~~ (2.20)

The stable (unstable) case corresponds to outward increasing

(decreasing) s(r). Evidently the physical picture here is analogous to

that arising in connection with instabilities driven by a temperature

inversion in media with a stratified density. Destabilization takes place

owing to the buoyancy experienced by fluid elements in the nonuniform

inertial gravity field. It is therefore purely a consequence of the

nonsteady character of the basic state.

3. Analysis of the perturbed equations

We follow Bernstein and Book (1978) and Book (1978) in obtaining

linearized equations for the development of a small perturbation about

the solutions of §2. For simplicity we consider only expanding states

(t > 0). The perturbed displacement £ satisfies the linearized form
of (2.lb) ,

7
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p, 
~~~~~~

.-.... . . 

~~~~~~~~~~ r V

p
.~. 

+ p
1 

R — - V
RP1 

+ V
II~ • V~ p. (3.1)

Substituting for ~ from (2.3), the perturbed density from

p
1 = — p • 

~~~, 
(3 .2)

and the perturbed pressure from

2 l+it (1—i )
= a~ 

- 
k~~+l) P~ V~ . (3 .3 )

we obtain (writing V = V )

= 
Y(1-r2 ) V ( V ’~ ) - (y-l) r V • — • r . (3 .4 )

— 2 ( it +1) .~~ ~~~ ‘p.. ~ =

Letting a = V • ~ and w = V x~~, we have , on taking the divergence

and curl of (3.4),

= 2 ( i t+ l )  V ( ( l—r
2)Va] — yr • Va

— ~3y—2> a + r  • V X w  (3.5)

and 

= 
(1 

- -~i)v a x r  + w - (3.6~

We ]ook for solutions of (3.5)-(3.6), assuming ~ is separable into a

8 
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product of a function of position and a factor T(t) satisfying

cs+2 ..
f T = 1T , (3.7)

~,i constant. We further assume separation of the angular and radial

dependence by writing

0( r) = o Cr )  Y (e ,4~). (3.8)

In (3.5)  w appears only in the form £ V x w , for which an expres-

sion in terms of a can be derived from (3.6)  and (3.8) :

(ji—l)r • V x w = l—(y -- l) it 
[2r.Va+rr :VVa—r

2
V
2a]

= ~ [l— (y— l) it] i(i+ 1)/C it  +1) . (3.9)

Substitution in (3.5) yields a second-order equation for the radial

factor oCr),

2 (it +l) 
[

2
d 

Cr
2 

~~~ - 
2 £(L+ 1)o  — 2r ~2~

]

- yr + - 3y - ~i+2] a = 0. (3.10)

Rewriting this equation by means of the substitutions a = r~y

and x = r2 , we obtain the hypergeometric equation

9 
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x(l - x )y ” + [c - (a+b+ 1)x] y ’ - aby = 0 , (3. 11)

where

} =~~i~ {it + £ + 5/2 ± [(it+ P.+5/2)2 - 4K]½ },

c = P. + 3/2. (3.12c)

Here

K — 
(It +2)& 

+ 
i t+ l  

1— 2  + 3 — 
£ (P.+l)(it+l)—ity) (3 13)— 

2 2~y 1
M (ii—l)(h+l )

The solution of (3.11) which is finite at the origin is the hyper-

geometric function y = 
2
F
1
(a,b;c;x).

The boundary condition is found from the requirement that the

perturbed pressure vanish on the interface with the vacuum. Since the

unperturbed pressure already vanishes there, it follows from (3.3) that

y need only be finite at x = 1. The analytic continuation formulas

(e.g., Abramowitz and Stegun 1968) contain a term that diverges as

(l-x) 
- it +1) 

unless a or b is a nonpositive integer. Thus we must have

— n = ½{it ÷P.+5/2 — [ ( i t  +P. +5/2) 2 
- 4K]~ } , (3.14)

n = 0, 1, 2, . Treating n and K as analytic functions of i~ 
and

differentiating (3.14) yields an/b < 0. Hence the fastest growth

aargest ~ ‘1) corresponds to the smallest value of n, viz. ,  n = 0,

which implies K = 0. Solving for t’~ 
we finally obtain the dispersion

relation

10
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= - 
1YL (it+2)+ (it+l) (3y-1)]

2( it +1)

+ fly&(it+2)+(It +l) (3y—l) ]
2
+4L(L+1)(it+l...ity)}’~ . (3 15)— 

2(it+1)

For the upper branch, ~>1 for all £>0, provided it <1/(y-1). The latter

is precisely the condition derived from the energetic argument of

§2.2 .

Returning to (3 .7) , we find that, provided ‘p1, the time depend-

ence can likewise be expressed in te rms of hyperge ometric functions in

the form (Bernstein and Book, 1978).

T(t) T(O) ‘3 Ct) + ‘1(0) ~ (t) , (3.16)

Here ,

+ .~~~~~~~ , ~~
. + ~J; 4; 1—f U], (3.lla)

~ (t) = [a (1_f_U) ]½ F E ~. + ~~~~~~~~, ~~ + ~~~~ ; f~ 1—f ~], (3.17b)

and t~ — [ (a+2) 2 
— 8iia] ½ • For late times (large f), the analytic

continuation formulas yield

r(1/2) r C l/u ) 1 3 18 )r [1/4+(2+~) /4a]r[l/4+(2-~ ) /4a ] . a

(2/a ) ½ ~(3/ 2) r (l,’a) f 3 l8bi Ct) -

~ r(3/4+(2+A ) /4a]r( 3/4+(2—~ )/4~ ] . 
)

11 
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The numerical coefficients in (3.18) grow exponentially with ~ for j i  >> 1.

The case of 1=1 is very similar , except that confluent hypergeometric

functions replace 2
F
1

, as observed by Berr~stein and Book (1978) and Boo~:

and Bernstein (1978) , and (3. 18) is replaced by expressions proportional

to

4. Discussion

We have seen on energetic grounds that a certain class of spheri-

cal ideal gas expansions can be expected to be unstable whenever the

gradient of the entropy density decreases with increasing r. Detailed

analysis of the linear per turbations about these nonsteady basic states

confirms this prediction , provided we appropriately generalize the

usual definition of instability. Somewhat surprisingly , the solutions

fall out exactly without recourse to numerical approximations, owing to

the separability of the linearized equations.

As noted in §1, what matters in determining the stability of a

time-dependent motion is the relative size of the perturbations. By

(3.18), the latter vary asymptotically like the unperturbed radius.

At early times , however , when f differs substantially from zero, the

per turbations can be amplified dramatically. If ~i >> 1, they grow

approximately exponentially for t ~ 1, experiencing e-foldings.

The total amplification and the time required to approach the asymp-

totic state in which they “freeze out” both increase with p . As y ~ 1,

both the total amplification and the time required to approach satura-

tion diverge (Bernstein and Book, 1978). Since ~ increases with

increasing P., decreasing it , and decreasing y ,  ~ 11 of these trends tend

to enhance instability .

12
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Note that as P. + ~, ~ diverges. This implies that the problem is

not mathematically well-posed. In any real physical system, dissipa-

tive phenomena related to viscosity, thermal conduction, radiation,

etc., set an upper limit on the mode number for which the ideal fluid

model is valid. For shorter-w.welength disturbances than this, not

only the detailed perturbation analysis, but the whole physical picture

must be drastically different.

The perturbations studied here have radial dependence which peaks

at r = r
0. They therefore should be most readily observable as an

enhanced mixing or turbulence near the periphery of the expanding

cloud. Since the instability is controlled by the sign of the entropy

gradient, it seems likely that the nonlinear limit to which it tends

is characterized by ds/dr � 0, 0 � r ~ r .  Whether this limit is

actually attained is beyond the scope of the present work.

Another, perhaps more important, question remains unanswered.

Uniform self-similar motion is an analytically convenient model used

to approximate real flows. To what extent is the instability treated

here associated with the latter, to what extent an artifact of the

model? The present paper can of course provide no rigorous answer.

Nonetheless, it seems physically plausible that for flows sufficiently

close to uniform expansion, the results of the present analysis

must be applicable. Even for nonuniform motions, either analytically

or numerically described, the energetic argument of §2.2 can be em—

ployed and should again correctly predict the presence or absence of

instability.

13



ACKNOWLEDGMENTS

I am grateful to Dr. C. F. McKee for suggesting the physical

explanation of this instability, and to Dr. N. A. Krall for the hospi-

tality of the Laboratory for Applied Plasma Studies, Science Applications,

Inc., La Jolla, CA, where the research was carried out. In addition, I

would like to thank Mrs • M. Kost for her contribution in preparing the

manuscript. The work was supported by the Office of Naval Research.

14 

— -- - —  —- - —--~~~~~~~-~- ---~ - —-- - -.- -.- -.-—-~----- -~~~ —------- .- .-- . .— —~~-——-~~~-
-- - ,

~~~~~~~~~~ ----—.-.~~- - — —



-‘I,

REFERENC ES

Abramowitz, M. & Stegun, I. A. Editor-s 1964 Handbook of Mathematical

Functions. U.S .  Govt. Printing Office , Washington, DC.

Bernstein, I. B. & Book, D. L. 1978 Astrophys. 3., ~~~ 0000.

Book, D. L. 1978 Phys. Rev. Lett. 41, 000.

Book, D. L. & Bernstein, I. B. 1978 Phys. Fluids, 21 000.

Keller, J. B. 1956 Quart. Appi. Math. 14, 171.

Kidder, R. E. 1976 Nuclear Fusion 16, 3.

Landau, L. D. £ Lifshitz, E. M. 1959 Fluid Mechanics, p. 8. Addison-

Wesley, Reading, MA.

Sedov, L. I. 1953 Doklady Akad. Nauk SSSR, 90, 753.

__________ 
1959 Similarity and Dimensional Methods in Mechanics,

pp. 271—281. Academic Press, New York.

Staniukovich, K. P. 1949 Doklady Akad. Nauk SSSR 64, 467.

Taylor, C. I. 1950 Proc. Roy. Soc. A ~~~ 155.

Weiuberg, S. 1972 Gravitation and Cosmology: Principles and Applications

Of the General Theory of Relativity, pp. 571-578. Wiley, New York.

Zel’dovich, Ya.B. and Raizer, Yu.P. Physics of Shock Waves and High

Temperature Hydrodynamic Phenomena, pp. 104-106. Academic Press,

New York.

15

— —  - - - —~~~~~~~~~~~~~ —~~~~~~~~ —— ~~~~~~~-— — - . — — — , .  - .— — .  
~~~~~~~~~~~~ — - -~~~~


