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s Introduction

Over a quarter century has passed since the discovery that the
equations of one-dimensional ideal fluid motion possess a variety of
self-similar solutions. These were found independently and more or
less simultaneously by Sedov (1953), Staniukovich (1949), Taylor (1950)
and others, stimulated by interest in nuclear and astrophysical explo-
sions and in the general properties of gas dynamic systems. The useful-
ness of these solutions is twofold: they correctly describe 1-D flows
at late times when the details of initiation or preparation have been
"forgotten," and they are analytic, or at least reduce the solution to
quadratures.

A particularly useful and interesting type of self-similar motion
is that known as uniform or homogeneous. Its characteristic feature is
a velocity field which is proportional to the distance from the center
of symmetry. Most applications have been to problems with spherical
symmetry, such as supernova explosions (Keller, 1956), laser implosions
(Kidder, 1976) and self-gravitating clouds (Sedov, 1959). Closely re-
lated to the latter are cosmological models in the nonrelativistic
limit (Weinberg, 1972), which are distinctive by virtue of being pres-
sureless and unbounded.

Sedov (1959) distinguishes three types of uniform self-similar
motion in an ideal gas. 1In type I, the radius varies between 0 and «.
In type II, it varies between 0 and a finite maximum value, correspon-
ding to a turning point. Type III, to which we restrict ourselves in

the present work, has radius varying between a minimum (at a turning

Note: Manuscript submitted August 14, 1978.
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point) and ». We follow Keller (1956) in using Lagrangian coordinates
to derive in §2.1 a two-parameter family of solutions including, among
others, isothermal and uniform-density models as special cases. There
seems at first glance no reason why these should not be stable, and

indeed in the literature where applications are made (e.g., Zel'dovich

and Raizer, 1966) the possibility has apparently not been considered

before. We go on in §2.2, however, to argue that instability should
arise whenever a condition is satisfied, equivalent to the presence of
an entropy density which decreases outward. Physically the mechanism is
identical with that responsible for convective instability in static
stratified media when the temperature decreases in the upward direction.
Analysis of the linearized fluid equations in §3 using the techniques
developed by Bernstein and Book (1978) and Book (1978) confirms the
existence of the instability and yields both the space and time depen-

dence of the perturbations in closed form.

As was previously noted by Bernstein and Book (1978) and Book and

Bernstein (1978), the usual definition of stability is inadequate when ]

applied to nonsteady states, since the time dependence of the perturba-
tions is in general not exponential. It is appropriate to call a mode
stable (unstable) if the ratio of the perturbation amplitude to that of

the basic state vanishes (diverges) as t + ». We find that in the

present case the ratio is in general finite, but can be made arbitrar-
ily large in "unstable" systems by choice of sufficiently large mode
number .

A brief discussion of the results in §4 concludes the paper.
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X. The basic state
1.1 Derivation of the equations
We start with the equations of ideal hydrodynamics which in

Lagrangian variables take the form

b+v -V =0, (2.1a)
p2'+ Vp = 0 (2.1b)

and
) =0 (2.1¢)

Here dots denote time derivatives and y in (2.1lc) is the ratio of
specific heats.

In a spherically symmetric system, (2.la,b) become

7 -2 3 2
p + PR 3R (Ru) =0, (2.2a)
and
3 P _
pu + 5 0. (2.2b)

For a motion of the type known as homogeneous (or uniform) self-similar
flow (Sedov 1959), the position R at time t of a fluid element whose
position at t = 0 was r is required to satisfy

R=r £(t), (2.3)
where £(0) = 1 and £(0) = 0. The continuity equation (2.2a) then yields

3

plr,t) = oo(r)f' , (2.4)
and hence from the adiabatic law (2.1lc)
- -3
pr,t) = p ()€Y = s(xlp) €77 (2.5)
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with the entropy function s arbitrary. If we choose the initial

density profile in the form
o (r) = p(l-ri/r ) (2.6)
= r, -

where § and 4 are constants, then it follows from (2.1b) that

H+
2) 1'

il i 2
po(r) = p(l-r /ro (2.7)
and f must satisfy
3
g V2 _aledllp | -2 (2.8)

2
6ro

We will use the separation constant T, the initial radius r , and the

Peak mass density f to rescale t; r and p, respectively. In these 1
reduced variables we have
b, = (1-rH ", (2.9) ;
2. n+
Py = i%%€r%17_i 3 iy
and
t 3722, (2.11)
A quadrature can be performed on (2.11), with the result
£2 = ome (2.12)
if y =1, and
o =§ a-£9 (2.13) 1

otherwise,where a = 3(y-1). If y = 5/3, (2.13) can be integrated

2)“. For other values of y the solu-

directly to give f(t) =+ (1 + t

tion is most conveniently found by numerical means. At large |t| when %




£ 0, the motion asymptotically approaches free streaming. As a
function of the anisentropicity parameter » , the solutions include
the cases of uniform density and quadratic pressure, # = 0, and uni-
form entropy density, # = 1/(y-1). If we exclude singular density
profiles, # is restricted to 0 < # < » . The other parameter is Y,
which must lie in the range 1 < y < o,
2.2. Physical mechanism for instability

At time t a small volume AV of fluid initially located at radius r
contains a mass Am = po(r)AVf-3, subjected to a pressure p = (l-rz)"*l/

[2(u#l)f3Y]. Consider two such fluid elements initially at radii r, and

1
r2 > rl. whose volumes are related by
& 1/y Jos i e 2, q,(n +1) /Y
sz/Av1 = (pl/pz) = [(1 r, Y/ (1 r, )] ; (2.14)
The compressional energy associated with these elements is
= + - . .
EP (plAv1 pzsz)/(Y 1) (2.15)

Their kinetic energy calculated from the expansion or contraction of

the sphere is

2
NE , (2.16)

2
Ek = ’:(Amlu1 + Amzu
Because the state is nonsteady (E # 0), the elements are subject

to an effective gravitational acceleration g = rf, and therefore have

i i oLt DOARR kil o -




a gravitational potential energy

” 2 2
Eg =hff (Amlr1 + Am222 ) . (2.17)

Now let the two fluid elements interchange positions.
By (2.14), they contract or expand so as to satisfy local pressure
balance after the interchange. Furthermore, the work done in com-
pressing one is just balanced by that done by the expansion of the
other, so the compressional energy Eé afterwards is equal to Ep. The

net change in energy is then

SE

|
=
N
+
=
Y
+
<f
]
o]
!
o)
1
=

+ Amzu - Am_u 2 - Am_u

2
% [Amju ;! 3% QU ]

2

o 2
+ LEf [Amlr2 + Amzrl - Amlrl - Am2r2 ]

=2 L 2 2
(£ + ff)(r2 - )(Am1 = Am2)' (2.18)

The first and second factors in the last member of (2.i8) are strictly

positive. The third factor, on the other hand, is proportional to

jap 2., A +1
(1-:2)”-(1-r2)“( 1) Y (2.19)
1 2 S 9
-X i
2
2 l_rlz n+l—n1
= (1-r,°) [1 - ( ) ¥ ] (2.19)
1 2
l-r2




This expression is negative for # < 1/(y-1l). In this case, therefore,

the interchange reduces the total system energy. We thus anticipate

that an instability will set in, characterized by "overturning" of the

profiles, such as is typically seen in convective or thermal instabili-
E ties of static media (Landau and Lifshitz, 1959).

When # < 1/(y-1), 6E> 0, in thch case no instability should

arise. The marginal case just corresponds to isentropic--more properly,
homentropic--states. By (2.5), the entropy function s satisfies

2
r

n+l-ny

s(r) = (1-r") (2.20)

The stable (unstable) case corresponds to outward increasing
(decreasing) s(r). Evidently the physical picture here is analogous to

that arising in connection with instabilities driven by a temperature

inversion in media with a stratified density. Destabilization takes place
owing to the buoyancy experienced by fluid elements in the nonuniform

F inertial gravity field. It is therefore purely a consequence of the

nonsteady character of the basic state.

3. Analysis of the perturbed equations 1

We follow Bernstein and Book (1978) and Book (1978) in obtaining L

linearized equations for the development of a small perturbation about
f the solutions of §2. For simplicity we consider only expanding states

(t > 0). The perturbed displacement ¢ satisfies the linearized form

of (2.1b),




D£+013--V§pl+vni-\7'§p‘ (3.1)

~

Substituting for “’. from (2.3), the perturbed density from

p1=-pVR"§. . (3-2)

~

and the perturbed pressure from

2. 1+n (1-y)
= 9P o ot} Y . |
Py "% P17 " 2(x+D) B 1 (3.3) |
we obtain (writing V = Vr)
a+2 x(l—rz)
£ s_ = 2("-'.'1) V(V'E) =y (Y'l) £ v . i - V's . £ o (3.4)

Letting 0 = V - 5 and W= vV X 5 , we have, on taking the divergence
and curl of (3.4),

a+2

- 2
f o Vv . [(1-r )Vo] - yr * Vo

ARG (Y
2(n +1)
= (3y=2)o + x * v Xw (3.5)

and

n+1

a+2 o " % ®
£ Cw ( J—)Voxg + W (3.6)

We look for solutions of (3.5)-(3.6), assuming 5 is separable into a




product of a function of position and a factor T(t) satisfying

a+2 ..
f T = uT, (3.7)

M constant. We further assume separation of the angular and radial

dependence by writing

a(r) = olr) v, _(8,9). (3.8)

In (3.5) w appears only in the formr « V X @, for which an expres-

sion in terms of o can be derived from (3.6) and {(3.8):

(p=1)r * V xXw = Aty [2r-Vo+rr:VVo-r2V20]
~ ~ n +1 ~ ~~

o[1-(y=1) #] 2(&+ 1)/(n +1). (3.9)

Substitution in (3.5) yields a second-order equation for the radial

factor o(r),

2 2
Y l1-xr~ d 2 do, _1-r o do
2( 7 +1) [ 3 de * & G TSR DR -
& ® o
do (A +1l~-nY)R(2+]1) 11 b = L
Yr 37 + [ (i=1) (% +1) 3y u+4.:| o = 0. (3.10)

: ; L
Rewriting this equation by means of the substitutions ¢ = r y

and x = r2, we obtain the hypergeometric equation




x(1l-x)y“ + [c - (a+b+1)x] y' - aby = 0, k3.11)
where
ay _ y du 2 ]
- { + 8 +5/2 % [(n+ L+5/2)2 - 4K] } (3.12a,b)
c =L + 3/2. (3.12c)
Here

(n+2)8 &+l
2 2Y

L(R+1) (# +1)=-n Y)

£ (1-1) (% +1) ] (353}

[u—2 + 3y -

The solution of (3.11l) which is finite at the origin is the hyper-
geometric function y = 2F1(a,b;c;x).

The boundary condition is found from the requirement that the
perturbed pressure vanish on the interface with the vacuum. Since the
unperturbed pressure already vanishes there, it follows from (3.3) that

y need only be finite at x = 1. The analytic continuation formulas

(e.g., Abramowitz and Stegun 1968) contain a term that diverges as

g5 .+ & ey .
(1-x) CaHh) unless a or b is a nonpositive integer. Thus we must have
; 2 Y
- n = %{u+245/2 - [ (1 +2+5/2)" - 4K]°} , (3.14)
n=0, 1, 2, *** . Treating n and K as analytic functions of y and

differentiating (3.14) yields 9n/3du < O. Hence the fastest growth
(largest u>1l) corresponds to the smallest value of n, viz., n = 0,

which implies K = 0. Solving for p, we finally obtain the dispersion

relation




Ly a(n42)+(n +1) (3y-1)]
2(u +1)

u=1 =

L[y (n +2) +(x +1) (3y=1) ]>+42 (2+1) (x +1-x y) }*
2 2(“"’1) ! (3.15)

For the upper branch, u>l for all £>0, provided # <1/(y-1l). The latter
is precisely the condition derived from the energetic argument of
§2.2.

Returning to (3.7), we find that, provided y>1, the time depend-
ence can likewise be expressed in terms of hypergeometric functions in

the form (Bernstein and Book, 1978).

T(t) = T(0) F () + T(0) ¥ (t), (3.16)
Here,
1,244 1 2.4 1 . _-a
F(t) = 2F1[Z Rt st At (3.17a)
2 a3 244 3 2-4 3 . _-a
G (t) = IS G TSR e 2, = % ~7 37 1-f 1, (3.17p)
and A = [(u+2)2 - 8ua) 5. For late times (large f), the analytic

continuation formulas yield

r(l/2)r(1/a) £
St~ T'[1/4+(2+4) /4a]T [1/4+(2-8)/4a] ' (3.18a)

(2/0)" T(3/2)T(1/a) £

GO ~ Tr/ar@0) /4alT] 374701 74a] . (3.18b)

11




The numerical coefficients in (3.18) grow exponentially with p for u >> 1.
The case of Y=1 is very similar, except that confluent hypergeometric

functions replace , as observed by Bernstein and Book (1978) and Bool:

1
2'1
and Bernstein (1978), and (3.18) is replaced by expressions proportional
(u-1)/2

to f(in £)

4. Discussion

We have seen on energetic grounds that a certain class of spheri-

cal ideal gas expansions can be expected to be unstable whenever: the
gradient of the entropy density decreases with increasing r. Detailed
analysis of the linear perturbations about these nonsteady basic states
confirms this prediction, provided we appropriately generalize the
usual definition of instability. Somewhat surprisingly, the solutions
fall out exactly without recourse to numerical approximations, owing to

the separability of the linearized equations. .

As noted in §1, what matters in determining the stability of a

time-dependent motion is the relative size of the perturbations. By

(3.18), the latter vary asymptotically like the unperturbed radius.
At early times, however, when f differs substantially from zero, the

perturbations can be amplified dramatically. If p >> 1, they grow

approximately exponentially for t & 1, experiencing ~ p% e-foldings.
The total amplification and the time required to approach the asymp-

totic state in which they "freeze out" both increase with p. As y =+ 1,

both the total amplification and the time required to approach satura-
tion diverge (Bernstein and Book, 1978). Since u increases with
increasing %, decreasing # , and decreasing y, &ll of these trends tend

to enhance instability.
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Note that as & + ®, y diverges. This implies that the problem is
not mathematically well-posed. In any real physical system, dissipa-
tive phenomena related to viscosity, thermal conduction, radiation,
etc., set an upper limit on the mode number for which the ideal fluid
model is valid. For shorter-wavelength disturbances than this, not
only the detailed perturbation analysis, but the whole physical picture
must be drastically different.

The perturbations studied here have radial dependence which peaks
at r = . They therefore should be most readily observable as an
enhanced mixing or turbulence near the periphery of the expanding
cloud. Since the instability is controlled by the sign of the entropy
gradient, it seems likely that the nonlinear limit to which it tends
is characterized by ds/dr =2 0, 0 < r < ro. Whether this limit is
actually attained is beyond the scope of the present work.

Another, perhaps more important, question remains unanswered.
Uniform self-similar motion is an analytically convenient model used
to approximate real flows. To what extent is the instability treated
here associated with the latter, to what extent an artifact of the
model? The present paper can of course provide no rigorous answer.
Nonetheless, it seems physically plausible that for flows sufficiently
close to uniform expansion, the results of the present analysis
must be applicable. Even for nonuniform motions, either analytically
or numerically described, the energetic argument of §2.2 can be em-
ployed and should again correctly predict the presence or absence of

instability.
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