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Let A be an m-accretive operator in a Banach space E. Suppose that

A—lo is not empty and that both E and E* are uniformly convex. We study
a general condition on A that guarantees the stfong convergence of the semi-
group generated by -A and of related implicit and explicit iterative schemes
to a zero of A. Rates of convergence are also obtained. 1In Hilbert space
this condition has been recently introduced by A. Pazy. We also establish
strong convergence under the assumption that the interior of A-lo is not

empty. In Hilbert space this result is due to H. Brezis.
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SIGNIFICANCE AND EXPLANATION

\

This paper deals with two different but related topics: the behavior of
evolution systems for large time, and finding zeros for certain operators. ¥m <

[141 Pazy developed tools to analyze the behavior of some evolution systems.

wese

Here-wewshew-that~thossltools can be used in a more general setting and therefore

the results can be applied to a larger set of problems. /We—then apply the same
£Len ¢ B

tools, to problems where time has been discretized. This gives us iterative

schemes for finding zeros for a large class of operators appearing both in physics
s pbTeiine d

and in convex programming. In particular wewebtaigldetailed informationron the

rates of these iteration schemes.

\

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.




STRONG CONVERGENCE OF CONTRACTION SEMIGROUPS
AND OF ITERATIVE METHODS FOR ACCRETIVE OPERATORS
IN BANACH SPACES

Olavi Nevanlinna* and Simeon Reich**

1. Introduction.

In his recent study [14) of strong convergence of nonlinear contraction semigroups in
Hilbert space, A. Pazy has introduced a general condition on the generator of a semigqroup 5
which quarantees the strong convergence of S(t)x as t » » for eacn x in the domain of
S. One of our goals in the present paper is to show that his approach also works outside
Hilbert space. For simplicity, we assume throughout most of the paper that both the Banach
space and its dual are uniformly convex.

In Section 2 we define the convergence condition and present some examples. In Section
3 we establish the strong convergence of trajectories of contraction semigroups whose genera-
tors satisfy the convergence condition. “In Sections 4 and 5 we consider discrete implicit
and explicit iterative schemes for finding zeros of accretive operators A that satisfy the
convergence condition. The implicit scheme replaces the problem 0 ¢ Ax by a sequence of
easier problems, each of which has to be solved only approximately. No boundedness assumption
on A are needed to establish convergence in this case. The result for the explicit method,
on the other hand, is restricted to bounded operators (or more generally, to locally bounded
operators in the presence of a priori information on the location of the zeros). In each case
we also study the rate of convergence. Some of our results are new even in Hilbert space and
may be applied, for example, to convex programming (cf. [18]).

In Hilbert space there are two notable cases where strona convergence occurs even though
the convergence condition need not be satisfied. 1In the first case the semiqgroup is generated
by certain odd operators, and in the second it has a fixed point set with a nonempty interior.

The first case was partially extended to Banach spaces in [1, Corollary 4.1]. 1In Section 6

*permanent address: Department of Mathematics, Oulu University, 90101 Oulu 10, Finland.
**pDepartment of Mathematics, University of Southern California, los Angeles, California
90007.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS75-17385 AOl.




we assume that the interior of A-lo is nonempty and extend the second case outside Hilbert
space. In Hilbert space the result is due to H. Brezis [2] (see also [13]).

In Section 7 we indicate possible extensions and generalizations of our results to other
Banach spaces.

For previous results on the implicit and explicit schemes in Hilbert space see, for
example, (4, 6, 12, 14, 18] and the references mentioned there. Banach space results can be
found in [8, 17). See also [6, 11, 15, 16].

Our terminology and notation follows that of [10].
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2. The convergence condition.

Let E* be the dual of a real Banach space E, and denote the norm of both E and E*
by |+|. For simplicity we shall assume in the sequel that both E and E* are uniformly
convex. In Section 7 we show how some of our results can be extended in some sense to an
arbitrary Banach space.

In our setting, the duality map J:E -+ E* (defined by (x,Jx) = |x|2 and |Jx| = |x|)
is single-valued and continuous. JTf C is a closed convex subset of E, then also the
nearest point mapping P:E » C (defined by |x - Px| = inf{|x - y| : y € ¢}) is single-
valued and continuous.

We recall that a possibly multivalued operator A ¢ E x E with domain D(A) and range
R(A) 1is accretive if for each xi ¢ D(A) and each yi € Axi, g =2, (y1 - y2, J(x1 - xz))
> 0. It is m-accretive if, in addition, R(I + rA) = E for all r > 0. We shall always
assume that O ¢ R(A), so that A-lo is nonempty, closed and convex (see [3, Theorem 1.2]

and notice that A-lo is the fixed point set of the resolvent).

Let A be m-accretive and let P:E » A_lo be the nearest point mapping. We shall say

that A satisfies the convergence condition if [xn, yn] € A, |xn| < Cy |yn| < C, and

lim(y_, J(x_ - Px)) = 0 imply that lim mflxn - Pxn| = 0.

n-® n-o

Every stronoly accretive A (i.e. operator of the form B + aI, where B is m-accre-
tive and «a > 0) satisfies this condition, and Pazy's perturbation theorem [14, Theorem 2.6]
holds in our setting too. Since both J and P are continuous, the following proposition
is also true (cf. [14, Proposition 3.2]).

Proposition 1. Let A be m-accretive with A-lo #@P. If (y, J(x - Px)) > 0 for every
[x,y] ¢ A with x ¢ A_lo, and the resolvent (I + I\)-1 is compact, then A satisfies the
convergence condition.

Using this result one can extend some results of Pazy ([14] on nonlinear parabolic equa-
tions in Lz-spaces to Lp-spaces for 1 < p < =,

In some cases operators actually satisfy a stronger convergence condition. We shall say

that an m-accretive operator satisfies the uniform convergence condition of order y > 0, if

«3=




for each C > 0 there exists a constant FC > 0 such that if [x,y] € A, |x| < C and

[y| < C, then 4

(2.1) (v 30c = Px)) > Tolx - px|?Y .

This condition will be used to obtain convergence rates.

It is clear that if B is m-accretive then A = B + al satisfies the uniform conver-
gence condition of order 1 for any o > 0. Certain substitution operators also satisfy
this condition. We also observe that if alo = {z} and the origin is in the interior of
Az, then A satisfies the uniform convergence condition of order 1/2. In fact, 1e£.
pu € Az for all Iul =1 and some p > 0. Then (y - pu, J(x - z)) > 0 for all [x,y] € A.

Taking u = (x - z)/|x - zl, we obtain (y, J(x - z)) > olx = z|. i




3. The continuous case.

Let A satisfy the convergence condition. Since A 1is m-accretive, =-A generates a
semigroup S of nonlinear contractions on cl(D(A)), the closure of the domain of A. If

x ¢ D(A), S(t)x 1is a strong solution [10] of the initial value problem

u'(t) + Au(t) > 0
(3-1) {

u(0) = x

Theorem 1. Let =-A generate the semigroup S on cl(D(A)). If A satisfies the con-
vergence condition, then for each x ¢ cl(D(A)), S(t)x converges strongly as t » = to a
zero of A.

Proof. We may restrict our attention to x in D(A). Denote S(t)x by u(t), -u'(t)
by wv(t), and J(u(t) - Pu(t)) by 3j(t). For almost all t > O we ha YRR =

%(u(t-h) - u(t), j(t)) + (e(h,t), j(t)), where h > 0 and 1lim e(h,t) = 0.
h-+0

u(t-h) - u(t) = Pu(t) - u(t) + u(t-h) - Pu(t-h) + Pu(t-h) - Pu(t), and (y - Pat), J(t)) <O
for all vy ¢ A-IO, we obtain (u(t-h) - u(t), j(t)) = -|u(t) - Pu(t)|2 + (u(t-h) - Pu(t-h),

j(t)) + (Pu(t-h) - Pu(t), j(t)) i-hn)-PMtH2+%ﬂqu)-Pu&ﬁ”2+|u&)-PMtH%

= %{|u(t-h) - Pu(t-h)|2 - |u() Pu(t)|2}. The mapping t » |u(t) - Pu(t)|  is Lipschitzian.

N =

Consequently, (v(t), j(t)) < - é% |u(t) - Pu(t)|2 for almost all t > 0. Since A is

accretive we have (v(t), j(t)) 0 and we conclude that |u(t) = Pu(t)l is nonincreasing

v

and 1lim inf(v(t), j(t)) = 0. By the convergence condition the latter implies that
to o

lim influ(t) - Pu(t)| = 0. But since ‘u(t) - Pu(t)l is nonincreasing we also have
£

limlu(t) - Pu(t)| = 0. Finally notice that Iu(t) - p| is nonincreasing for any p ¢ A-IO

troo

and therefore we can write

[u(t) = u(t+h) |

IA

[utt) = pu(t)| + |Pult) - u(t+h) |

<

from which the convergence of u(t) follows, and in particular, if 2z = lim u(t),
toroo

2u(t) - Pu(ty|

(3.2) [ute) - z| < 2|utt) =pPu(e)| .

5e
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It is not difficult to see that if A satisfies the uniform convergence condition of

order Yy, then convergence occurs in finite time if y < 1, 1is exponential if y =1, and

1
: “TEENY) e : -
is O\t if y > 1. More precisely, we have (z = lim u(t)),
tro
stk o
(3.3) [utt) - z| < 2|x - px|{1 + |x - Px|2(Y_1)2fy-1)I‘ R T
and
(3.4) jute) - z| < 2|x - px|e Tt , y=1 .

Here [ denotes the constant FC appearing in (2.1). 1In fact, using (2.1) we see from the

proof of Theorem 1 that

lutey - puce)|? + Tlute) - pucer[?Y <o,

& e

1
(3.5) 2

for almost all t > O. This gives a bound for |u(t) - Pu(t)| and (3.3) and (3.4) then

follow from (3.2).
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4. The implicit scheme.

In this section we consider the implicit scheme defined by

(4.1) x + A Ax 3 X + e

n+l n+l" "n+l n n+l’ nze

where X, € E and {An) is a positive sequence.

Theorem 2. Let A be m-accretive and let {xn) be defined by (4.1). If A satisfies
o o
the convergence condition, ) A, == and 5 le | <=, then {x } converges strongly to
n=1 n=1 " 2
a zero of A.

Proof. If the conclusion is true with en = 0, then it is true if {en) has a compact
. 9 1 Y
support. Approximating any {en} € 2 by a sequence with a compact support and using the

facts that the resolvents JA are contractions and A-lo is closed, we see that we may
n

assume in the remainder of the proof that en =20

Let Juiw J(xn & Pxn), and denote (xn = xn+1)/)\n+1 by Vil S Axn+1. We have
Ixn+1 5 Pxn+1! * An+1(yn+l' Jn+l) % (xn 3 Pxn+l' )n+l) = (xn g Pxn' Jn+1)
i i 2 2
AP =P Bk lxn Pxnf,xn+1 Pxn+1] G E{lxn - Pxn| + lxn+l - Pxn+1| }. Hence
2 ! 2
(A =2) Ixn+1 % pxn+1| L 2An+1(yn+1’ Jn+1) f--‘xn % pxn| ’

@

. 1 g s
and ) < ®». Since (Xn} ¢ % and (Y417 Ipep) 2 0 it follows that

Z Xn+1(yn+1' In+1
n=1

lim inf(yn. jn) = 0. The sequence {xn} is bounded because A-IO # @, and (lynl} is de-
n»o

creasing. Therefore we can invoke our convergence condition and conclude that

lim inf|lx - Px | = 0. But {|x - Px |} is decreasing, so that x_ - Px_ -+ 0, and {x}
S n n n n n n n

- < - + - < - . re we
converges strongly because Ixn#m xn| < |xn+m Pxnl lPxn xn| = 2|xn Pxn He
used the fact that lxn - p| is nonincreasing for all p e a~to.

=




To obtain convergence rates we assume now that A satisfies the uniform convergence

i S = 0 - i
condition, and let en ). We denote (xn xn*l)/ln+l by yn+l ‘ Axn+1 and it: xn
by z.
When Yy = 1 we obtain immediately from (4.2) that
-1/2
- < 2 4
(4.3) lx, - 2| < 2|x, - Pxg] Ta-+ 2r )
i=1
where C = max(lxol + ZIPXOI, fylf}. Note that this is essentially the rate obtained for

the continuous case (3.4).
For y # 1 we shall assume for simplicity that for some £ > -1,

(4.4) A =An v

For ¥ < 1 we obtain from (4.2) that

(4.5) PR L4y

2 B, ~1/2y
n+l xn+1| s (erAOn ) lxn - Pxnl

Since |x e

et = Pl € e <l s ey~ 8

1 xn+1|, we get the following rates:

%y - 2l =otlx, -2l if >0
(4.6) = o(|x_ - z|MYy it g0
* 0(|xn = 2|1/Y-£) for™ e >0 if ] > =k

While the continuous semigroup converges for y < 1 in finite time (3.3), the implicit
scheme does not generally converge in a finite number of steps. This, in fact, is impossible

if xo d Pxo and A 1is single-valued at A-lo. However, the following is true:

1

Proposition 2. Assume that A0 ={z} and 0 ¢ int(Az). If e =0 and (xn)

satisfies (4.1) so that (x

)/)\n+ + 0, then there exists N such that x =z for

n = *n+1 1

n > N.
The proof is obvious. A case where (xn - xm_l)/)\n+1 always tends to zero is the

following: if the modulus of convexity of E satisfies 6(e) > ke® for some s > 2 and

“Ge




n+l
S - c .8 -1/s
k >0, and {) } ¢ 27, then by [8, Theorem 2.6] |xn A R T 25 :

If y > 1, (4.6) is of no interest and we proceed differently. For 8 > -1 we set
|2

!x - Px
n n

= knn-u and determine the largest « for which (kn} remains bounded. From

(4.2) we then have

-a B.Y ay -
(4.7) kn+1(n+1) + 2FCAOn kn+1(n+1) <) knn

By an induction arqument we see that fkn} is bounded if a < (148)/(y-1), and we obtain

the rate
_11+8
(4.8) x, - z| = 0l\n i g e SE T A
For £ = -1, we obtain similarly
ek 4
(4.9) Ix, - z| = o\(log n) 2(Y'1)> AL

Note that the rates (4.8) and (4.9) coincide with the rate for the continuous problem.

By Theorem 2, at each step the equation x Ax ] xn has to be solved only

n+l 3 An+1 n+l
approximately. If An is sufficiently small this can often be done by using some locally
convergent iteration method (e.g. Newton's). The initial quess for xn+l may be taken to

be x .
n

When A is continuous and defined on E (or more generally when I-A maps a closed
convex subset of E back into itself}, one can actually use the explicit method to produce
both the step size sequence {An) and the sequence {xn} itself in such a way that (4.1)

is satisfied with summable errors and {An} 4 El. This can be done by using the method of

[11].

-9~
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5. The explicit scheme.

In this section we consider the explicit scheme defined by

” - >
(5.1) X .41 € %, )nAxn, n )

where X ¢ Es and (An} is a positive sequence. We shall study the convergence of (xn}

under the assumptions that (xn} © D(A) and that ((xn - )/ln} is bounded. This is

x
n+l

always the case if D(A) = E and R(A) 1is bounded. It can also be quaranteed for suitable

()n) if A‘IO is contained in the interior of D(A) and % is close enough to A-IU.

Since E* is uniformly convex, there is {15, p. 89] a continuous nondecreasing function

b:10,#=) » [0,) such that b(0) = 0, b(ct) < cb(t) for c > 1, and
2 2
(5.2) |x + v| < x| + 2(y, Jx) + max{|x]|, 1}|v|b(|Y|)

for all x and y in E.

o

o
We shall assume that Z )n = and X Anb(kn) < =, For any given continuous non-
n=0 n=0

decreasing function b(t) with b(0) = 0 such sequences (An) always exizt. 1In particular,
if the modulus of convexity of E* satisfies 6?*(6) > ke' for some k > 0O and r > 2,
then b(t) < c(:s_1 with s = r/(r-1). Therefore if E = Lp, 1l < p < ®, we can take any

fkn} 3 Es\ll with & = p 4f 1< p < 2" and s =2 if p > 2.

Theorem 3. Let A be m-accretive and let {An} be a positive sequence such that

L3 == and ] )b(r) <= Assume that f{x } satisfies (5.1) and that
=0 n=0

{(xn - xn+1)/xn} is bounded. If A satisfies the convergence condition, then (xn) con-

verges strongly to a zero of A.

n+1)/An by Y, € Axn. Using (5.2)

Proof. Let j = J(x_- Px_ ), and denote (x - x
n n n n
we have

S PX |2 = 'xn = Pxn = Anynl

|x Ixn+] n

n+l Pxn+1

2 .
e fo = B b0 e B Gy 3)

max(lxn - Pxnl, 1}|ynllnb(lnlvn|)

«10=

-

.



Since for c¢ > 1, b(ct) < cb(t), this yields, for some M,

|12 <

2 .
(5.3) x .. -p < |x, - Px |“ - 22 (y . 3)

n+l *n+l

+ Mmax{|x - pPx |, 1}A b() )
n n n n

This inequality implies that {[xn - Pxn|) is bounded. 1In fact, if we set

d_ = max(|x_ - Px [, 1) then
n n n

2 2

dn+l :-dn ;e Mdnxnb(xn) Az
and consequentl since d2 - d2 = (d -d)(d +d)
i e G n+l n n+l n' " n+l n'’

g S& 9 MAbO ),

which implies the boundedness of dn and hence of Ixn - Pxn . But then (5.3) actually im-

plies that

(5.4) Ixn - pxnlz e |xk - ka|2 +e. 0>k

where € =cC ] A,b(A,) » 0 as k + @. Hence lim|x - Px | exists. Furthermore
k juk j sl n n

om o
2
(5.5) 2 Y A ly,o 3 <%, =px |“ +c T ab0r)
g~ L i 0 0 ) i i

o

Since Z An = o and (yi, ji) > 0 this implies that 1lim inf(yn, jn) = (). Now we can
n=0 n+w

apply the convergence condition since, by assumption, (yn} is bounded and repeating the

boundedness arqument for xn - Pxn with a fixed p ¢ A-l

0 1in the place of Pxn we also
have {x } bounded. Thus 1lim 1nf|x - Px | = 0, and, since limlxn = Px | exists,
- n-w B o n-o L

lim|x_ - Px | = 0. Finally, we have for all n > k,
M n

(5.6) |x

o
2 2
s ka| < |xk - kal + clizklib(xi) .

Consequently, lxn - xkl L lxn - kal + |ka - x| < 2|xk - ka| +e is small when k is

k'

k

large and the proof is complete.

-11-




In order to obtain convergence rates, we again assume that A satisfies the uniform
S s-1 ’
convergence condition of order y. We also assume that b(t) < ct for some 1 < s < 2,

and that A = A nB with
n 0

(5.7) -1<8<-~1/s ,

w0 o«

s s

so that 2 xn = ® and 2 )n < », For the explicit scheme the rates depend on Yy and @
n=0 n=0

in a more complicated way than in the case of the implicit scheme. If the order Yy is very
small, then the rate of convergence is independent of Yy and is determined by B8 and s.
The rate is better if B is smaller. On the other hand, if Yy is large the rate is inde-
pendent of s and equals the rate for the implicit scheme. In this case, the larger £ is,
the better the rate is. In general, for any fixed y and s, there exists a unique optimal

choice B = B*, defined by

j'-l, 2
(5.8) [

Lj((l-y)s - 1)_1, TES s

We shall obtain the following convergence rates (z = lim xn).

n-<o
([ 148s
oln 2 + B € (B*, -1/s)
__148
(5.9) N z| =<o n 20D ]y 51, Be (-1, 8%
o el By
0\(log n) e e Y > 1 B==l s

\

(For y =1, B = B* = -1, choose > 1/rc, where T appears in the definition of the

AO C

uniform convergence condition.)

Since for y > 1 and B < B* we obtain the same rates that were obtained for the im-
plicit scheme and the continuous problem, we do not expect to be able to improve the rate by
using other sequences. We shall also show below that in Hilbert space with Yy = 1, the rate

-1/2

O(n ) obtained with An = Ao/n is in some sense optimal over all possible choices

=12~
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(Xn} € 22\21. This shows that the result of Bruck [6] is, in some sense, the best possible.
On the other hand, for Yy < 1 the rate (5.9) may be pessimistic. 1In fact, if A-lo is a
singleton, then the convergence is faster.

We shall now establish (5.9). From (5.3) we obtain

2 2 i s
(5.10) [xM1 - Pxn+1| < e = Pxn| 2 e J) #ed
let ) = xn" and |x -px | =k n® . By (5.10)

n 0 n n n 1 <

-a -a _ B, Y_=ay Bs
(5.11) kn+1(n+1) i knn 2rxon knn + Cn .
Let a = - (s-1)B/y. Then

_(s-1)8
1, Y s §

(5.12) kgl sy {k, - [2ra gk - CIn"}

with § = B(1 - s + sy)/y. If y>1 and B > g* (8 > -1), then {kn) must be bounded.
The same is true if vy <1 and § > -1 which holds for all B if y <1, and for 8 > -1

if y=1. If y=1 and B = -1, then (5.12) yields (s < 2)

-1
(5.13) Kngp <Ky + D (1~ 2M0 ) +cln

-2
+ lc ZPAOkn]n ‘

Since TA_ > 1, (kn} must again be bounded. For y > 1 and B8 < B* one proceeds as in the

0
( (s-1)B
oln ¥ J, 8¢ (8, -1/8)
___1+8
(5.14) X, - Pxn|-< oln 2(v-1) rY>1, Be (-1, B*]

1
0Q1°9 n) 2”'1)). R R

To obtain rates for |xn - z|, note that Ixn - z| < |xn - Pxn| + |Pxn - z|, and by (5.6),

2 1+Bs
1|‘n'p"n| +qn 3

implicit case. Hence we have

\

@
2 2
|2 = pxyl%c Ix, - P+ c ]2

i=n

-13-




The rates (5.9) now follow from (5.14).

Let B be a maximal monotone operator in Hilbert space such that 0 ¢ BO and
|Hx| =1 for x # 0. Consider the explicit scheme for A = 1 + B. Clearly A-IO = {0}
and we have

IZ IZ 2

| x < {1 - & )2lx
= n n

n+l

It is therefore natural to ask how fast the solutions of the equation

2 2 i
(5.15) lxn+ll =(1-2) lxnl A

can decay when [An} c 22\11.

Proposition 3. If (An} € 22\11 and {xn} satisfies (5.15) with Ixnl i_Kn-q

for all n, then qgq < 1/2.

2. .1
Proof. If (An) ¢ 2°\%°, then for every ¢ > 0 there are infinitely many k such that

i
22 > 1M (9, Lemma 1]. By (5.15)
el e
j=k
2 ¢ G
I 29 § Al d® =) 20 <
R e N

The term in the brackets must of course be positive. Using |le :_Kj-q and
T .2
E A, 2 l/kx’t, we obtain gq < 1/2 + €¢/4 and the result follows.
3=k 2
0
.
ol
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6. Another sufficient condition for convergence.

In this section we study another sufficient condition for strong convergence.

Let S be a contraction semigroup in E, and let F be its fixed point set. 1In (2],
Brezis proved that in Hilbert space, if int(F), the interior of F, is nonempty, then for
each x in the domain of S, S(t)x converges strongly as t + ® to a point in F. Using
the idea of Pazy's proof [13] of this result we show here that the result can be extended
outside Hilbert space. We also show that it is not true in all Banach spaces.

Theorem 4. Let FE be a Banach space and assume that both E and E* are uniformly
convex. Let S be a contraction semigroup in E with a fixed point set F. If int(F) # &,
then for each x in the domain of S, S(t)x converges strongly as t + ® to a point in F.

Proof. Let a ball with center % and radius r > 0 be contained in F.

Since, by (5.2),

20y, 3x) + |x|? < |x + v|? < |x|2 + 2(y, ax) + max(|x|, 1) |y|b(|ly|]) for all x and y in
E, we obtain for t >s, 0 <p <r, and |u| =1,

- pul?

=2p(u, J(S(t)x - x.)) + |s(tyx - "o|2 < |s(t)x - x, - pul? < |sts)x - x

0 0

< [s(s)x - xolz - 2p(u, J(S(s)x - xo)) + Mpb(p). Hence

20(u, J(S(8)x - x) - I(S()x = x) < |sm)x = x| = [s(0rx - x;|* + mobo).

Denote J(S(t)x - xo) by y(t), and let u = J-l(y(s) - y(t))/lv(s) - y(t)|-
We obtain

ly(s) - y(ty| < {|s(s)x - xol2 - |stt)x - xnlz}/zo + % Mb(p) .

Given € > 0, choose p such that Mb(p) < €, and then choose so such that

Then |y(s) - y(t)l < e, 8O

{|s(s)x - xolz - |s(t)x - x°|2}/o < €/2 for all t > s > s5,.

that 1lim y(t) exists. Since .:l-1 is continuous, 1lim S(t)x also exists and it clearly
Lo troo

belongs to F.

=15~




" : -1 e -
If A is m-accretive and int(A 0) # 4, then a similar argument shows that the im-

plicit scheme (4.1) will always converge. It is not difficult to see that if X An = m,
n=1

= 4 P .
then the limit will belong to A 0. The same is true for the explicit scheme (5.1) if, in

addition, 2 xnb(x") < ® and the operator A is, for example, bounded.
n=0

Theorem 4 does not hold in all Banach spaces. To see this, consider the space C(0,1]

with the max norm. Let A be the operator
Au(x) = max{a(x)u(x), 0} uecfol), 0 <x<1 ,

where a(x) 1is a continuous function satisfying a(0) = 0, a(x) > 0 for x > 0. A is

m-accretive and A 0 = {f ¢ clo,11:f(x) <0 for 0 < x < 1}. Let S be the semigroup
. _ _=a(x)t . :
generated by -A. For u, = 1, S(t)uo(x) = e which does not converge in C[0,1].
-16-




7. Extensions and Refinements.

In this section we show that under certain rather restrictive assumptions that always
hold if E and E* are uniformly convex, versions of Theorems 1 and 2 hold in any Banach
space. We also observe that the hypotheses of Theorems 3 and 4 can, in fact, be weakened.

let E be a real Banach space with dual E*. The duality mapping J from E into the

family of nonempty weak star compact convea subsels uf E* is defined by
J(x) = {x* ¢ E*:(x, x*) = [xlz and |x*| = |x]|}

for each x in E. Denote the distance between a point x ¢ E and a set V c E by d(x,V).
A point z ¢ V is said to be a best approximation to x ¢ E if |x - zl =d(x, V).

Recall that a set V in E is called a sun [19] if whenever z ¢ V is a best approxi-
mation to x ¢ E, then z is also a best approximation to z + t(x - z) for all t > 0.
Every convex set is a sun. If V is a sun and 2z ¢ V 1is a best approximation to x ¢ E,
then there exists j ¢ J(x - z) such that (y - z, j) < 0 for all vy ¢ V. The set V is
said to be proximinal if each x in E has at least one best approximation in V.

An operator A ¢ E x E is said to be accretive in the sense of Browder (5] if for each
X, € D(A) and each Y € Axi, i=1,2, (y1 - y2, j) > 0 for all j ¢ J(x1 - xz). This
stronger notion of accretibility is needed in the generalization of Theorem 2 but in Theorem 1
it is superfluous since we have to assume that the semigroup is differentiable.

Let A c E x E be an accretive operator in the sense of Browder (in certain cases only
the fact that A 1is accretive is really needed) with 0 ¢ R(A), and assume that A’lo is
a proximinal sun. If P is a selection of the nearest point mapping onto A-lo, then for
each x ¢ E, there is at least one j ¢ J{(x - Px) such that (y - Px, j) < 0 for all y in
A 10, We will denote this j by Jp(x - Px).

In this general setting, A will be said to satisfy the convergence condition if there

is a selection P of the nearest point mapping onto A-lo such that if [xn, yn] € A,

|xn| < e |yn| <€, and lim (y , Jo(x = Px)) =0, then lim inflxn - Pxnl = 0.
ne n-se

With this extension of the convergence condition, Theorem 1 is true as stated if the

sewmigroup S is differentiable. Theorem 2 is true as stated. In Theorem 3 one only needs




to assume that A—lo is proximinal. Theorem 4 is true if E* 1is uniformly convex with a
Frechet differentiable norm.

The following example may be of some interest in connection with the convergence condi-
tion in general Banach spaces. Let E = C[0,1), and let a(x) be a nonnegative continuous
function. Let (Au)(x) = a(x)u(x) for u ¢ E and let S be the semigroup generated by
-A. It is clear that S(t)u0 converges for all u, € E if and only if a(x) = 0 or
a(x) >0 for x ¢ [0,1). We show that for these operators the convergence condition is not
only a sufficient condition but also necessary. Assume therefore that a(x) > a > 0 for
x € [0,1). Then A_lo = {0} and P is trivial so that in the convergence condition we can

use any j ¢ J(un). Let X, € [0,1] be a point such that [un(xn)l = |un|m, where (un}

is any bounded sequence in E. Assume then that

lim (Au_, j ) =0 .
n n
n’d)
- 2 - 2 ]
But (Au , j ) = a(x )'u Im and since a(x) > g » 0 we conclude [u [ » 0, 1i.e. A satis-
n n n n - Nlew

fies the convergence condition. If on the other hand a(x) - 0 then A satisfies trivially
the condition, and hence in this case the strong convergence of the trajectories of the semi-
group is equivalent to the convergence condition on its generator. This is in contrast with

the situation for similar operators in Hilbert space (cf. [14], or consider A in 12 given

by E »w &k where a v 0,).
n n’'n n

Finally we remark that if A does not satisfy the convergence condition, the problem
0 ¢ Ax can still sometimes be solved iteratively by approximating A by A + pnI and

letting pn " 0 slowly during the iteration. See, e.qg. [7, 15, 16].
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