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Let A be an m-accretive operator in a Ban~~ E uppose that

A 10 is not empty and that both E and E* are uniformly convex. We study

a general condition on A that guarantees the strong convergence of the semi-

group generated by -A and of related implicit and explicit iterative schemes

to a zero of A. Rates of convergence are also obtained . In Hilbert space

this condition has been recently introduced by A. Pazy. We also establish

strong convergence under the assumption that the interior of A 10 is not

empty. In Hu bert space this result is due to H. Brezis.
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SIGNIFICANCE AND EXPLANATION

This paper deals with two different but related topics: the behavior of

evolution systems for large time, and finding zeros for certain operators. ~n ~

[~4~ Pazy developed tools to analyze the behavior of some evolution systems.
~ ~~~Here -we~s ew-that~-thos~ 1tools can be used in a more general setting and therefore

the results can be applied to a larger set of problems. ~Wo then apply the same

tools to problems where time has been discretized. This gives u~ iterative

schemes for finding zeros for a large class of operators appearing both in physics

and in convex prograxmning. In particular we-e*e±i~ detailed information r°’~ the
rates of these iteration schemes.

L The responsibility for the wording and vi~~s expressed in this descriptive su~~~~y
lies with MRC, and not with the authors of this report.
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.STRONc, coNvFpr;ENCF. OF CONTRP~CTION SEMT’;~ r rJV;

ANt) OF ITERATIVE METHODS FOR ACCRETIVE OPFJ<ATORS

IN RANACH SPACES

Olavj Nevanhinna * and Sirneon Reich**

1. Introduction.

In his recent study 114) of strong convergence of nonlinear contraction semigroups in

Hi lhert ~;;u~c~~, A . Pazy has introduced a general condition on th.~ qenerator of a semiuI-o~ p S

which guarantees the strong convergence of S(t)x as t ~ for eacn x in the domain r f

S. One of our goals in the present paper is to show that his approach also works outside

Hilbert space. For simplicity, we assume throughout most of the pap~ r that both the I3anach

space and its dual are uniformly convex .

In Section 2 we define the convergence condition and present some examples. In Section

3 we establish the strong convergence of trajectories of contraction semiqroups whose genera-

tors satisfy the convergence condition . In Sections 4 and 5 we consider discrete implicit

and explici t iterative schemes for finding zeros of accretive operators A that satisfy the

convergence condition . The implicit scheme replaces the problem () Ax by a sequence of

easier problems , each of which has to be solved only approximately. No boundedness a~;sum ption

on A are needed to establish convergence in this case. The result for the explicit method ,

on the other hand , is restricted to bounded operators (or more generally, to locally bounded

opera tors in the presence of a priori informat ~n on the location of the zeros). In each casc~

we also Study the rate of convergence. Some of our results are new even in Hilbert space and

may be applied , for example , to convex programming (cf. 1181).

In Hu bert space there are two notable cases where strong convergence ~ccurs even though

the convergence condition need not be satisfied . In the first case the semigroup is generated

• by certain odd operators , and in the second it has a fixed point set with a nonempty interior .

The first case was partially extended to Banach spaces in 11 , Corollary 4.11. In Section 6

•permanent address: Department of Mathematics , Oulu University, 90101 Oulu 10, Finland.
•~ fleparti~~nt of Mathematics, University of Southern California , Los Anqeles , California

Sponsored by the United States Army under Contract No. DP.AG29-75-C-0024 arid by the
National Sc~iance Foundation under Grant No. ~.tS75—1738S AOl.
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we assume that the interior of A
1
O is nonempty and extend the second case outside Hu bert

space. In Hilbert space the result is due to H. Brezis 12) (see also 1131).

In Section 7 we indicate possible extensions and generalizations of our results to other

Banach spaces .

For previous results on the implicit and explicit schemes in Hilbert space see, for

example , 14, 6, 12, 14 , 18] and the references mentioned there . Banach space results can be

found in 18, 171 . See also [6, 11, 15, 161 .

Our terminology and notation follows that of [101 .
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2 .  The convergence condition.

Let E* be the dual of a real Banach space E, and denote the norm of both E and E*

by I . For simplicity we shall assume in the sequel that both E and E* are uniformly

convex . In Section 7 we show how some of our results can be extended in some sense to an

arbitrary Banach space.

In our setting , the duality map J:E E* (defined by (x,Jx) 1x 1 2 and iJx i = l x i )

is sin gle-valued and continuous . If C is a closed convex subset of F, then also the

nearest point mapping P:E * C (defined by ix — Pxi = inf{ix - Yl : y e C}) is single—

valued and continuous .

We recall that a possibly multivalued operator A c E x E with domain D(A) and range

R(A) is accretive if for each x. e D(A) and each y. c Ax ., i = 1,2, (y
1 

- y
2
, J(x

1 
- x2))

> 0. It is m—accretive if, in addition , R(I + rA) E for all r > 0. We shall always

assume that 0 ~ R(A) , so that A
1
0 is nonempty, closed and convex (see [3, Theorem 1.2]

and notice that A ’O is the fixed point set of the resolvent).

Let A be m—accretive and let P:E -
~ A

1
O be the nearest point mapping. We shall say

that A satisfies the convergence condition if l x ,  y J  r A , X l  < C, 
‘~
‘n 1 < C, and

J(x - Px) ) = 0 imply that u r n  infix — P x i  = 0.

Every stronoly accretive A (i.e. operator of the form B + ml , where B is m-accre-

tive and (1 > 0) satisfies this condition , and Pazy ’s perturbation theorem [14, Theorem 2.6)

holds in our setting too. Since both .3 and p are continuous , the following proposition

is also true (cf. [14 , Proposition 3.2]).

Proposition 1. Let A be m-accretive with A
1
0 ~ 0. If (y, J(x - Px)) > 0 for every

(x,yJ A with x j A
10, and the resolvent (I + A) 1 

is compact , then A sat isfies the

convergence condition.

Using this result one can extend some results of Pazy (14] on nonlinear parabolic equa-

tions in L
2
-spaces to IY—spaces for 1 < p ‘

In some cases operators actually satisfy a stronger convergence condition . We shall say

that an m—accreti ve operator satisfies the uniform convergence condition of order y > 0, if

—3—
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for each C > 0 there exists a constant rC > 0 such that if [x,y] r A , lx i  < C and

f~ i < C , then

(2.1) (y, J ( x  - Px)) > rC lx — px i
2’
~

This condition will be used to obtain convergence rates.

It is clear that if B is m-accretive then A = B + cii satisfies the uniform conver-

gence condition of order 1 for any a > 0. Certain substitution operators also satisfy

this condition . We also observe that if A
1
0 = {z} and the origin is in the interior of

Az, then A satisfies the uniform convergence condition of order 1/2. In fact, let

pu ~ AZ for all u i = 1 and some p > 0. Then (y — pu , J(x — z ) )  > 0 for all lx,y) r A.

Taking u • (x — z ) / I x  — zi , we obtain (y, J ( X  — z ) )  > p i x  — z i .

-4- 
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3 . The continuous case.

Let A satisfy the convergence condition . Since A is m-accretive , -11 generates a

semigroup S of nonlinear contractions on cl(D(A)), the closure of the domain of A. If

x r 0(A), S(t)x is a strong solution 110] of the initial value problem

(u ’(t) + Au(t) 0
(3.1)

~.u(0) = x

Theorem 1. Let —A generate the semigroup S on cl (D(A)). If A satisfies the con-

vergence condition , then for each x r cl(D(A)), S(t)x converges strongly as t -. to a

ze ro of A.

Proof. We may restrict our attention to IC in 0(A). Denote S(t)x by ult ), -u ’(t)

by v(t), and J(u(t) — Pu(t)) by j(t). For almost all t > 0 we ha, 1 ( t ) )  =

~ (u(t—h) 
— u(t), j(t)) + (t(h,t), j(t)), where h > 0 and u r n  t (h ,t)  = 0.

u(t—h) — u ( t )  = Pu(t) - u(t) + u(t—h) — Pu(t—h) + Pu(t—h) — Pu(t), and (y — Purt) , j(t)) 0

fo r all y A
10 , we obtai n ( u ( t — h )  — u(t), j ( t ) )  = — lu(t ) — Pu(t)1

2 
+ (u(t—h) — Pu(t—h),

j(t)) + (Pu(t—h) — Pu(t) , j(t)) ~ — iu( t) — Pu (t) 
2 
+ ~- {lu(t—h — Pu(t—h) 

2 
+ iu(t) — Pu(t) i

2
}

~~{iu (t—h) 
— Pu (t—h)~~

2 — lu(t) — Pu ( t ) i 2}. The mapping t iu(t) — Pu(t)l is Lipschitzian.

Consequently, (v(t) , j(t)) < — 
~~~~ iu(t) — Pu( t) 2 for almost all t > 0. Since A is

accretive we have (v(t), j(t)) > 0 and we conclude that u (t) - Pu(t) is nonincreasing

and u r n  inf(v(t), j(t)) = 0. By the convergence condition the latter implies that
t.~

lirn infiu( t) - Pu( t ) ~ — 0. But since u (t) — Pu(t)l is nonincreasing we also have
t.~

lirnlu(t ) — Pu(t)I = 0. Finally notice that lu(t ) - p~ is nonincreasing fo r any p A ’O

and therefore we can write

lu(t) — u(t+h) l 1. iu(t) - Pu(t) I + lPu (t) — u (t+h) I

< 21u(t ) — P u ( t )  I

from which the convergence of u ( t )  follows, and in part icular , if z • u r n  u(t),
t-,.=

( 3 . 2 )  u ( t )  - z~ 2 i u ( t )  - Pu (t) l .
0

—5—
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It is not difficult to see that if A satisfies the un i form convergence condition of

order y, then convergence occurs in finite time if y 1, is exponential if -
~ 

= 1, and

/ 1 \

~~ 
if ‘y > 1. More precisely, we have (z lim u(t)),

t-,=

1

(3.3) u(t) - zi < 21x - Px Ifl + ix - Px 1 2 1
~ 2 ’ y u ) r  t} 2

~~~
1
~~, r ~

and

(3.4) ju(t) — z i  ~~. 21x — Pxie
rt y = 1

Here r denotes the constant rC appearing in (2 . 1 ) .  In fact , using (2 .1)  we see from the

proof of Theorem 1 that

(3.5) 1 iu(t) — Pu( t) 1
2 

+ Flu(t ) — Pu(t) 2y 
<

for almost all t > 0. This gives a bound for lu(t) — Pu(t)) and (3.3) and (3.4) then

follow from ( 3 . 2 ) .

-6—

.

~

t 

______  _____________  _____________________  

I

- 

~~~~~~~~~~~~~~~~~~~~~~~ -~~~

‘

~~~~~~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ “‘ •;~~ ~-- -~~~



4. The implicit scheme.

In this sect ion we consider the implici t  scheme def ined by

(4.1) x + A  Ax x + e  , n ’On+l n+l n+l n n+l —

where x
0 

E, and {A }  is a positive sequence.

Theorem 2. Let A be m-accretive and let {x} be defined by (4.1). If A satisfies

the convergence condition , ~ A = , and 
~ le I < ~~, then {x } converges strongly to

n=l n=l n n

a zero of A.

Proof. If the conclusion is true with e 5 0, then it is true if {e} has a compact

support . Approximating any {e} ~ 9,1 by a sequence with a compact support and using the

facts that the resolvents are contractions and A 0 is closed , we see that we may

assume in the remainder of the proof that e
n 

5 0.

Let 
~n ~~~~ 

- Px). and denote (x~ - x
1
)/A

1 
by 

~“n+l E Ax
+l
. We have

I x~~1 
- P

~
m n+i I

2 
+ A

n+1
(
~n+l~ ~~~~~ 

= C X — Px
1
, 

~~+1~ 
— (X - P X ,

+ ( Px - Px , < ix  — Px Ix  — Px ~ 
1flx — Px 2 

+ 13c - Px i
2L Hence

n n+l n+l — n n n+l ri+1 — 2 n n n+1 n+l

(4.2) iX
1 

— Px 
~1~

2 
+ 2A ~1

(y 
1’ ~~~~~ 

.~. 
iX

n 
— Px~~

2

and ~~ A
1(Y 1

, 
~n+l~ 

< ~~~. Since ~A )  ,~ and 
~
‘n+l’ ~n+i~ 

> 0, it follows that

lim inf (y , j )  = 0. The sequence (x} is bounded because A
1
O 1 O~ 

and (ly l ) is de-

creasing. Therefore we can invoke our convergence condition and conclude that

lirn infix - Px = 0. But {Ix - Px I } is decreasing, so that x — Px -
~ 0, and {xn n n n n n n

fl-4~~

converges strongly because lx - x 
~ ix — Px I + IPx — x < 2 i x  - Px 

~~
. Here we

n4lIi n — n+m n n n — n n

used the fact that lx — p~ is nonincreasing for all p € A ’O.

0

—7—
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To ~~~~~ converqence rates we assume now that A satisfies the u n i f o r m  conver ’, ’r v ~’

~~r~iition , and let e — ~) .  We denote (x — x +1)/A ~ 
by 

~~~~~~~ 
Ax~~~1 and Urn x

by z.

When i = 1 we obtain immediately from (4.2) that

(4.3) I x - zi 2ix 0 - Px01 
i l  

+ 2r C A . ) ’
~

2

where C = max {1x0 1 + 21Px01 , 1v 11). Note that this is essentially the rate obtained for

the continuous case (3.4).

For y ~ 1 we shall assume for simplicity that for some f-~ - -1,

(4.4) A = A
0
n6

For ‘c 1 we obtain f rom ( 4 . 2 )  tha t

(4.5) 1x 1 — Px
1 1 (2r

c
A
o
n
B)~~~~

2’
1 l x  —

since 1x 1 
— PX

1 1 x 1 
- z~ < 2 I X 1 — Px

1 1 , we get the following rates:

Ix~~1 — zI = o(Ix — zI 1”~) if B > 0

(4 .6) O C Ix — zl 1”~ ) if B > 0

= o (Ix — zl 1”Y ~) for s -‘ 0 ~~ B > —l

While the continuous semigroup converges for y < 1 in finite time (3.3), the implicit

scheme does not generally converge in a finite number of steps. This, in fact, is impossible

if x
0 ~ Px0 and A is single-valued at A 10. However , the followinq is true :

Proposition 2. Assume that A
1(D = {z} and 0 r int (Az). If e

n 
5 0 and (x (

satisfies (4.1) so that Cx — x )/A ÷ 0, then there exists N such that x = z f~~rn n+l n+l

n - N.

The proo f is obvious - A case where (x ~ - X +i ) / A
+i 

a lways tends to zero is the

fo l lowing:  i f  the modulus of convexity of F sa t i s f ies  tS( ) - kc
5 for  some 5 > 2 an d

—8 —
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k > 0, and (~~
} / 9~~, then  by [8 , Theorem 2.61 ! x — 

—

If y - 1, (4.6) is of no interest and we proceed differently . For B > —1 we set

lx — P x I
2 

= k n ci and determine the largest ‘~ for which {k} remains bounded . From

(4.2) we then have

(4.7) k
1
(n+l) ° + 2r

~~ 0
n
8
k
’
~+1 

(n +l )  °~ 
~ k n °

By an induction argument we see that f k }  is bounded if ci < ( l + 8 )/ ( y— 1 ) ,  and we obta i n

the rate

( 1 l+B”\
(4.8) Ix~ — zI = 0~n 

2 y—l 
1 , 8 > —l

For B = — 1 , we obtain similarly

(4 .9) ‘
~n 

- zi = O ((log n~~
2
~~~~~)) ~ 

> 1, 8 = -1

Note that the rates (4 .8)  and ( 4 . 9 )  coincide wi th  the rate for the continuous problem .

By Theorem 2 , at each step the equation x~~ 1 + A +1P~
x +1 i X

n 
has to be solved only

approximately. If A
n 

is su f f i c i en t l y  small this can often be done by usinq some locally

convergent i t e ra t ion  method (e . g .  Newton ’s ) .  The i n i t i a l  guess for x
~~~1 may be taken to

be x
n

When A is continuous and defined on E (or more generally when I-A maps a closed

convex subset of F back into itself’ , one can actually use the explicit method to produce

both the step size sequence { A }  and the sequence C x )  itself in such a way that (4.1)

is satisfied with sumunable errors and (A )  / t~~. This can be done by us ing the method of

Ill)

-9-
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5. The exid i cit scheme.

In this section we (:urIn ider  the e x p l i c i t  ;ct~~rn’~ d e f i n e d  by

(5.1) x ~~x — 2A x , n > 0n+ l  n n n —

where x 0 F., and ( 2  
n~ 

is a 1,r~~ A t  ve ’;oq rericn . We sha l l  s tudy the converqer~ -~ ~ f IC
r

ind. r the  assumptir,n~; that 1 X }  C D ( A )  and t h a t  ( ( x  — x
1
)/A } is bounded. Thi s  I A

always  th~ case i f  0 (A )  = F and P(A) is bounded . It can also be quaranteed fur suitable

i f  A~~~ is contained in the interior of 0(A) and x
0 

is close enough to A
1
~ ).

Sln(;.~ E* is uniform ly convex, there is  (15, [A . 89) a con t inuous nondecreasing f u n c t i ’~r

b :IO ,’) • ~~~ such that b (0) = 0, b(ct) ch (tj for c ~ 1 , and

(5.2) lx  + y 1
2 

lx l
2 + 2 (y , Jx)  + m a x ( I x l ,  1 }i y i b( l y l )

for all x and y in F..

We shall assume that 2 = and ~ A b() ) ~~ . For any given continuous non-
n=O n=O 

n

decreasing function h (t) with b (0) = 0 such sequences ( A)  always exi:t. In particular ,

if the modulus of convexity ~‘f E~ s a t i s f i e s  
~E*

(c)  ~ kc r for some k = r~ and r - 2,

then b(t) r :t ’ with ci = n Cr—i). Therefore if F iF, 1 < p < ~~, we can take any

{2 }  9
5

9
1 wjtji ci = 

~‘ 
if 1 p 2 and ci = 2 if  p > 2 .

Theorem 3 . r,~t A be m—accretive and let (2) be a positive sequence such that

i = and 2 h (A ) =. Assume that {x ) satisfies (5.1) and that
0 - fi fl fl

n 0  n=0

(Cx — x ) / 2  is bounded . I f  A satisfies the convergence condition , then {~ I con-
n n+l n n

verges strongly to a zero of A.

Proof .  Let j = .3(x — Px ) ,  and denote Cx — x )/A by y • Ax . Using (5.2)
n n n n n+l n n n

we have

ix - Px I 2 < Ix — Px ~2 — lx — px — ~ ~ 
2

n+l n+l — n+l n n n n f l

~ 
IX — P x l 2 

— 2A (y~~, j )  +

m a x { I x — P x I ,  l i l y IA b (A iy I )

— 10—
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Since for c 1 , b (ct) cbCt), th i s  y i e l d s , for some N ,

(5.3) ix~~ 1 
— PX~~~1~~

2 
IX - P x 1

2 
- 22 ( y ,

+ M max{Ix — Px I. 1)2 b CA )
n n n n

This inequality implies that (Ix — p x l }  is bounded. In fact , if we set

d = max (Ix - Px I , 1) thenn n n

d
2 

d
2 

+ 141 A b CAn+1 — n n n n

and consequen t ly ,  since d - d — Cd - d ) (d + d ),n+l n n+l n n+1 n

d ‘ ‘1 + MA b(A
n+l — ii n n

which implies the boundedness of d and hence of Ix - Px i . But then (5.3) actually im-

p l i e s  tha t

(5.4) x — P x i
2 

~ . 
— PXk i

2 
+ F

k~ 
n > k

where t c A b (A ) ~ 0 as Ic ~~~. Hence lirn ix - Px exists. Furtheriw reIc - j j  n nj =k  n-~~

(5.5) 2~~~A~~Cy., j.) < ‘c0 — Px01
2 

+ C~~~~A~ b ( A ~~) -

Since ~ A — and Cy. , j.) > 0 this implies that u r n  inf(y , j )  - 0. Now we can
n—0

apply the convergence condition since, by as8umption, f y i  is bounded and repeating the

boundedness argument for x - Rn with a fixed p A
1
0 in the place of Px we also

have Cx I bounded. Thus lim infix — Px — 0, and , since linu x — Px I exists,n n n n nn-.~

uim lx - Px I = 0. Finally, we have for all n > k,n n

(5.6) I x~ 
— PX

k 1
2 

~~ 
I’cJ~ 

— Px~j
2 

+

Consequently, ix — XII ~. lx~ 
- P1c

11 + IPX k 
— X

II < 2~x1 
— P1c11 + is small when Ic is

large and the proof is complete.

-11- 
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In order to obtain convergence rates, we again assume that A satisfies the uniform

convergence condition of order y. We also assume that bCt) < ct
S i  for some 1 s 2 ,

and tha t  A = A n
8 

withn 0

(5.7) —l < B < —1/s

so that 
n~ O~~ 

= and 
n~’O

’
~ 

< ~~~. For the explicit scheme the rates depend on y and B

in a more complicated way than in the case of the implicit scheme . I f  the order y is very

smel l , then the rate of convergence is independent of y and is determined by B and s.

The rate is better if B is smaller. On the other hand , if y is large the rate is inde-

pendent of s and equals the rate for the implicit scheme. In this case, the larger B is ,

the better the rate is. In general, for any fixed y and s, there exists a unique optima l

choice B = BA , def ined by

1_ 1, if y < l

(5.8) 8*
—l

— 1) , if y > 1

We shall obtain the following convergence rates (z = lim x ) .
n-pm

(l+Bs\

O~n 
2 

~ € 18”, —l/s)

/ l+8\

(5.9) Ix — zI = ol~n 
2 (y—l)1 ‘r > 1, B € (—1, 8*1

O~~1og n)
2(1 1)), y > 1, B -l

(For y = 1, B = B” = -1, choose A
0 

> l/r C~ 
where r

~ 
appears in the de f in i t ion  of the

uniform convergence condition.)

Since for y > 1 and H 8* we obtain the same rates that  were obtained for the im-

plicit scheme and the continuous problem , we do not expect to be able to improve the rate by

us ing other sequences. We shall also show below that in Hu bert space with y = 1, the rate

O(n 1
~
’2 ) obtained with A — A9/n is in souse sense optimal over all possible choices

—12—
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{A }  € t 2\t1 This shows that the result of Bruck [6) in noise sense, the best possible.

On the other hand , for ‘
~
‘ < 1 the rate (5.9) may be pessimistic. In fact, if A 0 is a

singleton, then the convergence is faster.

We shall now establish (5.9). From (5.3) we obtain

(5.10) lx — Px 2 
~ Ix — Px 2 

— 22 Cy , j  ) + cA S
n+l n+l — n n n n n n

Let A = A 0n 8 and I X n - Px j  = knn
_ci 

. By (5.10) ,

(5.11) Ic Cn+l)
_ci 

< k n ci 
— 2rA nBk’mn~~~ + Cn8~n+l — n 0 n

Let a = — ( s — l )B /y . Then

— 
(s— l ) B

(5.12) Ic < (1 + 1) ‘
~ ( Ic  — [2r2 k~ — Cm

6
)n+1 n n O n

with 6 = 8(1 — s + sy ) /y . If y > 1 and B > ~~“ (6 > —1), then {k} must be bounded.

The same is true if y < 1 and 6 > -l which holds for all B if ‘
~
‘ < 1, and for B > -l

if y = 1. If y = 1 and B = —1 , then (5.12) yields (s < 2)

(5.13) 1n+1 ~ kn + [k ( l  — 2rx 0 ) + C m 1

+ (C — 2~ A Ic 1n~
2

O n

Since (‘A
0 > 1, (k} must again be bounded . For y > 1 and B < B” one proceeds as in the

implicit case. Hence we have

/ (s—l)B\
2’r ) , B € (B” , —l/s)

( 
i+\~~~~

(5.14) lx — Px
~~

= o~n 
2h-—l)) y > 1, B € (—1, 6”)

O~~ 1og n)
2
~~~~~),y > 1 , B _ _ l

To obtain rates for Ix~ — zi , note that jx — zi < lx - P x i  + iPx~ — zi , and by (5.6),

ix — P x 1 2 < I~~ 
- P x 1 2 

+ c~~~A 7  < in — 

~x I
2 

+
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The r .et  c-’ (‘, - ‘ I )  now 1 I ‘iw from (5. 14)

Ii I , ’  r n i x i p r . i (  s i ’  t ‘~n .- e; .’ r u ’ ., i i  III I f,.’ rt ‘ p.c -c - .u i l i  t f , ,~ t () . Hf) , i r ir l

I hx~ I f i r  IC / 0. ( , , n ’ . i d , - ,  t I e ’  exp i  . - i t  ‘; ‘ f i . ’m e ’  for  A • I 4 B . c l e a r l y  A 1
0 — (01

a nd we ’ t i - i / ’

lx 1
2 (1 — A ) 2

i x  
2

04 1  -— it ci n

I t  I ’ ;  I h e r . ’  f r ’ -  r i , u t  i r e  I t o  u . k  h o w  f a ~;t the ~;r . 1u t  ~Ofl 5 of the equat ion

(5 .15 )  I x  ~2 ( 1  — A )21x 1
2 

+ A
2

n + l  n n n

2 1
can decay when C n 

9. \ I

~~~~~~~~~~~~~~~~ If  ( A )  ‘ 9,
2 \9,1 and { x }  s a t i s f i e s  ( 5 . 1 5 )  w i t h  x l  <~~~~fl~~~~

for a l l  n , then  q 1/2 .

Proof .  If  (A )  9
2
\[

1 
then for every r > 0 there are in f i n i t e l y  many k such that

~ A~ - l/k
U

~ (9 , Lemma II .  By C5.15)
j =k

l IC k I 2 ~ A . I x. 1
2 

- y A~
j=k~~ ~ j=k 3

( =‘ 1/2 “I

(
~ ~~~ 

2(~~~~i x . I
4) 

- l~~

~j =k 

~ 
(
~1~

Y”2 ~
The term in the brackets must of course he positive . Using x .i ~~~~~~~~~ and

~ A~ -‘ 1/k 1” , we ob ta in  g < 1/2 + t/4 and the result follows.
j = k  ~

0

—14—
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(~. Another sufficient condition for convergence.

In this section we study another sufficient condi t ion for strong convergence.

Let S be a contraction semigroup in F, and let F be its fixed point set . In 121,

Brezis proved that in Hilbert space, if i n t C F ) ,  the interior of F, is nonempty, then for

each x in the domain of S , S(t)x converges strongly as t * — to a point in F. Using

the idea of Pazy ’s proof [13) of this result we show here that the result can be extended

outside Hilbert space. We also show that it is not true in all Banach spaces.

Theorem 4. Let F be a Banach space and assume that both II and E* are uniformly

convex . Let S be a contraction sernigroup in F with a fixed point set F. It int O’) # 0,

then for each x in the domain of 5, S(t)x converges strongly as t • to a point in F.

Proof. Let a ball with center x0 and radius r > 0 be contained in F.

Since , by (5 .2),

2(y, Jx) + i x l
2 

Ix + y1
2 

~~, + 2 ( y ,  in) + max( Ixl, l ) l y l b C l y l ) for a l l  it and y in

F , we obtain for t > s, 0 ~ p ~ r, and lu l = 1,

—2p(u, J(S(t)x — x0)) + ISCt )x — x0 l
2 

~. iSCt)x — x
~ 

— oul
2 

~~, l sC s x  — x
~ 

—

~~, I s s x  - x0I
2 - 2p(u, J(SCs)x — x0)) + M p b ( p ) .  Hence

2p (u, J(S(s)x — it
0
) — J(S(t)x — x0)) - IS(s)x — x0l

2 
— IS (t)x — x

0l
2 

+ MpbCp ).

Denote J(S(t)x — x0) by y(t), and let u = J 1
C y( s )  - y(t))/~y(s) - y(t)l.

We obtain

ly (s) — yCt) I (lS(s)x — x0l
2 

— l s t x  — xq i
2}/2p + 4Mb(P).

Given c > 0, choose p such that Mb (p) c c, and then choose s~ such that

(IS(s)x — x~ l
2 - lS (t)x - x0l

2}/p € €12 for all t ~ ~ 
Then ly(s) — yCt) I ~~. ~~‘ so

that 1mm y(t) exists. Since is continuous, lint S(t)x also exists and it clearly

belongs to F’.

0
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If A is m—aecret i ve arid int (A
1
0) # 0, then a s i m i l a r  argument ~;hc,w’~ tha t f I t . -  im-

pli cit scheme (4.1) will always converge . It is not d i f f i c u l t  to see tha t  i f  A
n 1

then the l i m i t  w i l l  belong to A 10. The same is true for the explicit scheme (5.1) if , in

a d d i t i o n , ~ A h ( A  ) ‘~‘ and the operator A i s , for example , bounded .
n=0

Theorem 4 does not hold in all Banach spaces. To see this , consider t h e ’  space rfO ,IJ

w i t h  the  m a x  norm . Let A be the operator

Au (x ) = m ax ( a ( x) u ( x) , 01 u c (O , 1) ,  0 x I

where a(x) is a continuous function satisfy ing  n ( 0) — 0, a (x) > 0 for x ‘ 0. A I ’ .

m-accretive and A ’O C f C[0,l1 :f(x) 0 for 0 x 1). Let S be the semigroup

generated by -A. For u 0 
5 1 , SCt)u

0
(x ) 5~

a (’c)t which does not converqe in C10,1).

-l~~ 
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7. Extensions and Refinements.

In t hi s  section we show tha t  under cer ta in  ra ther  restrictive assumptions that always

hold if F: and E* are uniformly convex, versions of Theorems I and 2 hold in any Banach

spac e. We also observe that the hypotheses of Theorems 3 and 4 can , i n fact , be weakened .

Let E be a real Banach space with dual F,”. The duality mapping .1 from F in to  the

family of nonempty week star compac,t . u u u v w~ ..uiiseL ~ l E* is def iu ied  b~.

3(x) = Cx ” r E” :(x , x”) = lx l
2 and Ix ”l — l x i )

for each * in F.. Denote the dis tance between a poi n t  x F and a set V c F by d ( x ,V).

A point it V is said to be a best approximation to x ~ F if Ix — zi = dCx , V).

Recall that a set V in F is called a sun ( 19) if whenever z e- V is a best approxi-

mation to IC E , then z is also a best approximation to z + t(x - z) for all t > 0.

Every convex set is a sun . If V is a sun and z V is a best approximation to x .‘

then there exis ts i J(x - i t)  such that (y - z, i) < 0 for all y V. The set V is

said to be proximinal if each x in F has at least one best approximation in V.

An operator A C F ~ E is said to be accitotive in the sense of Browder (51 if for each

x~ D(A) and each y . Ax~ . i = 1, 2 , (y
1 

— y
2

, j )  > 0 for a l l  i c J C x
1 

— x
2
). This

stronger notion of accret ibili ty  is needed in the generalization of Theorem 2 but in Theorem 1

it is superfluous since we have to assume that the semigroup is differentiable.

Let A ‘- E x F be an accretive operator in the sense of Browder (in certain cases only

the fact that A is accretive is really needed ) with 0 RCA) , and assume that A
1
0 is

a proximinal sun. If P is a selection of the nearest point mapping onto A ’O, then for

each it • F, there is at least one j r J t j c  — Px) such that (y — Px, I) 0 for all y in

A ’O. We will denote this j by J~ (x - Put).

In this general setting. A will be said to satisfy the convergence condition if there

is a selection P of the nearest point mapping onto A 1O such that if  (X
n~ Yn1 A,

lx I ~ ~~. ly I < C, and 1mm (y , 3 Cx — Px )) — 0, then u r n  inf ix — Rn I — 0.n — n — n P n n n n
n’•~

With this extension of the convergence condition , Theorem 1 is true as stated if the

s~~~igroup S is differentiable. Theorem 2 is true as stated. In Theorem 3 one only needs

-17-

i
_ _ _ _  _ _  _ _ _  _ _ _ _  

_ _ _ _ _ _ _  

4
•~~ iiiir4iId ~qplL.j ~ 

,~~ T~ ’ 
‘.; ~~~~~~~~~~~~~~~~~~ tfl~i~ -



to assume that A ’O is proximinal. Theorem 4 is true if F.” is uniformly convex with a

Frechet differentiable norm.

The follow i ng example may be of some interest in connection with the convergence cond i-

tion in ien.’r~i I Banach spaces. Let F. C(0,l ) ,  and let aCx ) be a nonnegative continuous

f u n c t i o n .  l et (A u )  Cx ) = a (x)u(x) for u c F. and let S be the semigroup generated by

—A. I t  is  ‘ - l e e r  t ha t  S ( t ) u
0 converges for a l l  u0 F if  and only if a ( x )  1 0 or

aCx ) -‘ 0 for x . (0,11 . We show that for these operators the convergence condition is not

only  a s u f fi c i e n t  cond i t i on  but a l so  necessary.  Assume therefore  that  a C x )  > a > 0 for

* I0 .~~J . Then A
10 = (0) and P is trivial so that in the convergence condition we can

use any J f J (u ). Let x • 10 ,1) be a point such that lu  Cx 11 = lu  I . where {u
n n fl . it n i t —  n

is any bounded sequence in F.. Assume then t h a t

lim (Au , j ) = 0
n n

it so

But (Au , i~ ) = a( x ) Iu~i~, 
and since a ( x )  a > 0 we conclude i U n I~ • 0, i.e. A satis-

fies the convergence condition . If on the c,ther hand aCx) = 0 then A satisfies trivially

the cond it ion , and hence in this case the strong convergence of the trajectories of the semi-

group is e q u i v a l e n t  to the convergence condition on its generator . This is in contrast with

the situation for  similar operators in Hilbert space (cf. 1141, or consider A in given

by $~ •‘ .e r, where  a ‘
~ 0.).n ri n n

F i n a l l y we remark that if A does not satisfy the converqence condition , the problem

0 ( Ax can s t i l l  sometimes be solved i t e r a t i v e l y  by approximating A by A + p 5  and

l e t t i n g  
~
‘n ‘ 0 ‘;lowl’/  d u r i n g  the i te ra t ion .  See, e.g. (7, lS , 161
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